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ABSTRACT Periodontal disease comprises mild to severe inflammatory host re-
sponses to oral bacteria that can cause destruction of the tooth-supporting tissue.
We report genome sequences for 18 clinical isolates of Porphyromonas gingivalis,
Prevotella intermedia, and Tannerella forsythia, Gram-negative obligate anaerobes
that play a role in the periodontal disease process.

Periodontal disease describes a range of mild to severe inflammatory oral bacterial
infections that can ultimately cause destruction of the tooth-supporting tissues.

Periodontitis affects 10 to 15% of the adult population worldwide (1). The host
inflammation seen in periodontitis is provoked by oral bacteria and a number of
species, including Porphyromonas gingivalis, Prevotella intermedia, and Tannerella for-
sythia, have been shown to be disease associated (2); P. gingivalis, in particular, is
regarded as a keystone pathobiont subverting host defenses (3). Here, we describe the
draft whole-genome sequences (WGS) of 18 anaerobic bacterial strains isolated from
patients; the strains were selected from the culture collection of author W. Wade,
obtained during previous studies. In those studies, subgingival plaque samples were
collected from periodontal pockets �8 mm in depth in subjects with advanced
periodontitis by means of a curette. Samples were cultured on fastidious anaerobe agar
(FAA, Lab M) supplemented with 5% horse blood and incubated anaerobically for up to
7 days. P. intermedia, T. forsythia, and P. gingivalis strains were identified by 16S rRNA
analysis. Genomic DNA isolated from all three species (Genomic DNA clean and
concentrate kit, Zymo Research) was used to prepare libraries (Nextera DNA library
preparation kit) which were analyzed on Illumina MiSeq. Sequence reads were quality
controlled using Trimmomatic (4) and WGS assembled using SPAdes v3.6.2 (5). Genome
size and assembly quality were assessed using QUAST v4.3 (6) (see Table 1).

Multilocus sequence typing (MLST) of the P. gingivalis WGS using pubMLST
(pubmlst.org) identified two strains as sequence type 30 (ST30); however, six strains
presented with novel STs, and the rest had incomplete MLST profiles (see Table 1). A
core genome analysis of the P. gingivalis WGS, using the Harvest 1.0 program suite
(http://harvest.readthedocs.io) (7), indicated that they all nest within the existing P. gin-
givalis genomes available in NCBI GenBank. WGS of all species were analyzed against
the Comprehensive Antibiotic Resistance Database (https://card.mcmaster.ca/analyze)
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(8) to identify known and putative antimicrobial resistance genes. Two “perfect hits”
were obtained, both in P. intermedia strain 885, against the cfxA2 gene; this broad
spectrum �-lactamase has been reported in several Prevotella spp. (9). Analysis of
flanking sequence revealed the presence of a Tn4555-like sequence, from Bacteroides
fragilis, suggesting horizontal acquisition (10). PHASTER (PHAge Search Tool Enhanced
Release) (11) analysis of all WGS found just a single intact bacteriophage (33.8 kbp in
length, with a G�C content of 48.78%, and encoding 36 proteins) in P. gingivalis
WW2952.

Phase-variable type I restriction-modification systems (pv-RMS) were found in all of
the P. intermedia genomes and in five of the P. gingivalis genomes (Table 1); similar
pv-RMS were subsequently identified in P. intermedia and P. gingivalis genomes already
in the GenBank database. A pv-RMS system found in Streptococcus pneumoniae has
recently been shown to facilitate the epigenetic control of genes involved in virulence
(12, 13). Structural similarities between the S. pneumoniae system and the pv-RMSs
identified in P. intermedia and P. gingivalis raise the possibility that epigenetic regula-
tory mechanisms may also play a role in periodontal disease.

Accession number(s). These whole-genome shotgun sequences have been depos-
ited in GenBank and the versions described in this paper are the first versions (see
Table 1 for full details).
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