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Abstract 

Expected or reference mortality rates are commonly used in the calculation of measures such as 

relative survival in population-based cancer survival studies and standardized mortality ratios. These 

expected rates are usually presented by age, sex and calendar year. In certain situations, stratification 

of expected rates by other factors is required to avoid potential bias if interest lies in quantifying 

measures by such factors, for example, socioeconomic status. If data on a population level are not 

available, information from a control population could be used to adjust expected rates. We present 

two approaches for adjusting expected mortality rates using information from a control population; a 

Poisson generalised linear model, and a flexible parametric survival model. We used a control group 

from BCBaSe, a Swedish register-based matched breast cancer cohort, to illustrate the two methods 

using socioeconomic status as a risk factor of interest. Our results showed that both the Poisson and 

flexible parametric survival approach estimate similar adjusted mortality rates by socioeconomic 

status. Additional uncertainty involved in the methods to estimate stratified expected mortality rates 

described in this study can be accounted for using a parametric bootstrap, but may make little 

difference if using a large control population. 

 

Key words: Control group, expected mortality rate, flexible parametric model, life tables, Poisson 

model, socioeconomic factors, standard population, standardized mortality ratio. 

Abbreviations: SMR, standardized mortality ratio; SES socioeconomic status; FPSM, flexible 

parametric survival model; SE, standard error. 
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Expected mortality rates calculated from a reference population are used in occupational, actuarial 

and medical research, and are often used as a comparative measure for an exposed population of 

interest. In order for estimates which use this comparative measure to be unbiased, it is important that 

expected mortality rates represent the mortality the exposed population would have experienced had 

they been unexposed (1-6). Thus, when one wishes to quantify the effects of factors which both the 

exposed population mortality and expected mortality rates vary by, expected mortality rates stratified 

by such factors should be used. Here we focus on population-based cancer studies where expected 

mortality rates are often presented in life tables by age, sex and calendar year. Relative survival (7,8), 

the loss in expectation of life (9) and standardized mortality ratios (SMRs) for cancers all use the 

expected mortality as a proxy for the mortality rate cancer patients would have experienced had they 

been cancer-free. It is of interest to consider how risk factors other than age, sex and calendar year 

affect cancer survival, for example, comorbidity or socioeconomic status (SES). Since both 

cancer-specific and all-cause mortality differ by SES (10,11), one must account for differences in 

mortality in the reference general population by SES if one wishes to estimate relative survival or 

similar measures by SES. 

 

Previously this problem has been addressed by creating stratified life tables by using individualized 

information for the whole population (12-16). Unfortunately, it may not always be possible to obtain 

information for such factors for the whole population. There have also been some attempts to address 

this problem for SMRs in a Bayesian framework using different prior distributions (17). Others 

describe methods that create stratified life tables for such risk factors when individualized data are not 

available by using mortality information from subgroups of the reference population and prevalence 

of risk factors (4,12,18). We expand on these methods by presenting two models which use 

information from a control population to adjust expected mortality rates for covariates other than age, 
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sex and calendar period. The methods described here require a control population that accurately 

represents the reference population. This could either be a control population for the disease of 

interest, or another control population not related to the disease of interest. Using data on SES from a 

Swedish control population as an example, we also describe how to account for additional uncertainty 

involved in such methods by using parametric bootstrapping. 
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METHODS 

Data 

We used a cohort of breast cancer patients diagnosed between 1992 and 2012 in the Stockholm and 

Gotland regions of Sweden from a register-based database, BCBaSe, alongside matched controls; 

matching was based on age, year and region. Information on highest educational level was available 

for women with breast cancer and controls and used as a measure of SES. SES was categorised into 

low, medium and high; these corresponded to compulsory education less than or up to 9 years, up to 3 

years of secondary education, and post-secondary education, respectively. Data on the Swedish 

population, obtained from Statistics Sweden (19) were used to create expected mortality rates specific 

to the Stockholm and Gotland regions by age and calendar year for females. Follow-up of control 

women began one-year post the diagnosis date of their matched breast cancer case to avoid a problem 

with the original matching that was based on the control being alive at the end of the year of diagnosis 

of the corresponding case woman. We restricted analyses to women with breast cancer and controls 

who were diagnosed between, or started follow-up between, 35 and 90 years of age. The study was 

approved by the Stockholm Regional Ethics Review Board. 

 

Relative survival 

We were interested in modelling relative survival of the breast cancer patients in BcBaSe by SES. 

Relative survival, )(tR , is defined as the ratio of the observed all-cause survival in the cancer 

patients, )(tS , and the survival expected had the cancer patients been cancer-free, )(* tS ; the latter of 

these is commonly taken as the expected survival from the general population, and t  represents time. 

We were interested in relative survival as an estimator of net survival, the survival experienced by 

patients when they can only die of their cancer (20). Transforming the relative survival function to a 
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hazard function gives the excess hazard (or excess mortality rate), )(tλ . This is the difference 

between the all-cause mortality seen in the cancer patients, )(th , and the mortality had the cancer 

patients been cancer free, )(* th . It is generally preferable to model the hazard function, but it is 

straightforward to transform back to the survival scale. We were interested in estimating the relative 

survival for the breast cancer patients by SES, age at diagnosis da  and year of diagnosis dy  as a 

function of time since diagnosis, t : 

 .
),,SES|(
),,SES|(

=),,SES|( *
dd

dd
dd yatS

yatS
yatR  

 

Standardized mortality ratio 

In addition to relative survival, we were interested in calculating the SES-specific standardized 

mortality ratio (SMR). The SMR is the ratio of the observed number of deaths in the study population 

divided by the expected number of deaths in the reference population while standardizing over 

important covariates; the denominator is calculated by multiplying the mortality rate in the reference 

population with the person-time at risk in the study population (21). The reference population should 

represent the study population had they not been. 

 

 

Methods to adjust expected mortality rates 

We need ),,SES|(*
dd yatS  in order to estimate the relative survival by SES as written above. On the 

hazard scale, this means we need the expected morality rates stratified by SES, age and year. Since 

we often only have expected mortality rates by sex, age and year from life tables, we were interested 

in estimating adjustment factors, jρ , for each SES group j ; these can be functions of attained age 
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and attained year and are multiplied by the unadjusted mortality rate to give the SES-adjusted rate. 

The adjustment factors quantify the relative effect between the mortality rate in the control 

population, ch , and the expected mortality rate in the whole population, *h  for each SES group. 

This can be formulated in the following way:  

 







×∑ jj

j

c ya
yah

jyah SES),(exp=
),(
),,( 3

1=
* ρ  (1) 

Two timescales, attained age a  and attained year y  are included. We use modelling approaches to 

utilize all information and avoid potential problems with small control populations. Note that sex is 

omitted from models in this application since the control population contained only females. In this 

paper we used a control population that was matched to our cases of interest, however, the described 

methodology could have been undertaken using a separate control population, provided that the 

control population was representative of the reference population. Similarly, the resulting 

SES-adjusted expected mortality rates calculated using the matched control population described 

here, could be used for analyses of diseases other than breast cancer patients.  

 

Adjusting expected mortality rates using Poisson models. Equation 2 illustrates how to estimate 

adjustment factors jρ  by using a generalised linear model framework with Poisson error and log 

link; cd  denotes the year-, age- and SES-specific death count and cr  the person-time at risk in the 

control population.  

 )),,((ln)),((lnSES),(=)),,((ln *
3
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c . No baseline group was included in the Poisson model, instead 
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an offset of )),((ln * yah  was included so that covariate effects modelled deviations from this offset.   

 

In order to model two timescales using this approach we split the timescale for every individual by 

attained age and attained year. We split in monthly intervals which increased the number of 

observations in our dataset from 133 361 to 29 553 897; we included the log of the original 

unadjusted expected rate, )),((ln * yaλ , as an offset which assumed a constant rate for each year. 

Splitting time in this way can become more computationally intensive with increasing number of 

timescales and for smaller time increments. 

 

Adjusting expected mortality rates using flexible parametric survival models. Flexible parametric 

survival models (FPSMs) can also be used to adjust expected mortality rates. FPSM (22) use 

restricted cubic splines (23) to model a transformation of the survival function. In this application, the 

models were used to model the log hazard function (24,25). A FPSM which models the log hazard 

function looks as follows:  

 ,));(());((=));((
=1

dd0 xxx ×++ ∑ γβγ tlnrcstlnrcsthln
D

d

 (3) 

where t  is time, ));(( 0γtlnrcs  is a restricted cubic spline function of log time, D  is the number of 

covariates with time-dependent effects, and ));(( dγtlnrcs  is the spline function for the thd  

time-dependent effect. 

 

In order to use a FPSM to estimate adjustment factors, we must smooth expected mortality rates and 

constrain coefficients in the FPSM to ensure there is no reference group represented by the baseline 

restricted cubic spline; this way covariate effects estimate deviations from the smoothed expected 
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rate. Expected mortality rates in life tables are empirical calculations of the rate in every age between 

0 and 100 in yearly increments. These rates can fluctuate from year to year, particularly when 

considering a specific region in one country as in this application. This reasoning can be another 

argument for smoothing the expected mortality rates found in life tables; smoothing is also useful 

when abridged life tables are available (26). Smoothed expected mortality rates, *
sh , were estimated 

by Poisson models using the number of deaths and person-time at risk from the original expected 

mortality rates, *d  and *r  respectively, in the following way:  

 ),(),(
),(*
),(*ln)),((ln *

yyaas yrcsarcs
yar
yadyah γγ +=
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




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where attained age and attained year were modelled using restricted cubic spline functions rcs with 

four degrees of freedom. Here we assume that the relative effect of age is the same within each 

attained year, however, it is possible to extend this model by including interactions. 

We use these smoothed expected mortality rates in FPSMs to estimate adjustment factors as follows:  
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 (5) 

The reference group represented by the spline function in the FPSM, ));(( 0γtlnrcs , is constrained to 

have the same knot locations and same parameter values as the estimated age restricted cubic spline 

);( aa arcs γ  in equation 4. Two timescales are modelled simultaneously in equation 5 without the 

need for time-splitting as is required for the Poisson approach. The first timescale is modelled as the 

standard timescale in a FPSM by modelling the baseline log hazard function as a function of attained 

age. The second timescale, attained year, is incorporated by adding the year of birth of each individual 

to their attained age, calculating restricted cubic splines on this scale, and including in the model. 
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In both approaches, jρ  was allowed to vary over attained age in a smooth manner but the effect of 

calendar year was assumed constant, i.e., the relative effect of age was assumed to be the same over 

all calendar years; two degrees of freedom were used for the splines included in the interaction 

between attained age and SES. The functional form assumed for the adjustment factors is highly 

important and should be checked using standard model checking methods, i.e., using AIC and/or BIC, 

and likelihood ratio tests. Sensitivity analyses of the functional form assumed here are presented in 

supplmetary materials.Stata code is also available as an online appendix which illustrates how to 

estimate adjustment factors using the two approaches.  

 

Uncertainty in adjusted expected mortality rates. It is common to assume that there is no uncertainty 

in the expected mortality rates taken from life tables since these rates usually are based on the whole 

population. However, when creating adjusted expected mortality rates using a control population, 

there is uncertainty associated with the estimation of the adjustment factors that should be accounted 

for; this is a two-step process where the uncertainty of the estimated adjustment factors are not carried 

through to analyses which use the adjusted expected mortality rates. Accounting for this uncertainty 

can be done in the following way using a parametric bootstrap method:   

    1.  Estimate adjustment factors using the control population  

2.  Draw from a multivariate-normal distribution using the mean vector ρ and the 

variance-covariance matrix from the model in step 1 to get new adjustment factors  

    3.  Create new adjusted mortality rates using these new adjustment factors  

    4.  Estimate relative survival and its variance using these new expected mortality rates  

    5.  Save these estimates and repeat steps 2-4 a number of times, n   
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    6.  Estimate the adjusted-standard error, adjustedSE  by using Rubin’s rules (27,28) 

 ))1/(1(=adjusted BnWSE ×++  

where W  is the mean of the variances estimated in each of the n  bootstraps, and B  is the 

variance of the relative survival estimates from the n  bootsraps.  

 In this study, we use the above process with 100 repetitions where relative survival was 

estimated from flexible parametric survival models as described in the next section and the variance 

of the estimated relative survival was obtained using the delta method. 

 

Relative survival and standardized mortality ratio analyses of Swedish breast cancer patients. 

26 913 female breast cancer cases from BcBaSe were used to obtain estimates of SES-specific 

five-year relative survival. FPSMs were used to model the log excess cumulative hazard with three 

degrees of freedom. These models adjusted for SES, both age at diagnosis and year of diagnosis using 

restricted cubic splines with two degrees of freedom using equally spaced quantiles of the distribution 

of the events, included time-dependent effects for these three variables, and included an interaction 

between age at diagnosis and year of diagnosis. The expected mortality rates estimated from the 

unadjusted Swedish life table and SES-adjusted mortality rates by the methods described were used. 

We calculated confidence intervals for the relative survival estimates using a parametric bootstrap as 

described. We also calculated confidence intervals based on estimated adjustment factors using 10% 

and 1% random samples of the control population to assess how the confidence intervals vary using 

different sized control populations. Point estimates of relative survival taken from these different 

sample sizes were not directly comparable since only one random sample was selected; we were only 

interested in how the uncertainty in the relative survival varies. 
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We also estimated SMRs for patients diagnosed with stage I breast cancer by SES; stage I disease was 

chosen as an example to avoid presenting SMRs over all stages. We compared the SMRs when using 

the SES-adjusted and the original unadjusted expected mortality rates as the reference rate across 

several ages at diagnosis. 
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RESULTS 

Descriptive statistics of the breast cancer cases and controls from the Stockholm and Gotland regions 

identified in the BCBaSe database and used in the analyses are shown in Table 1. For 3.7% of 

controls and 3.2% of cases SES data were missing (these data are not included in Table 1). 133 361 

female controls were used for the adjustment of expected mortality rates and 26 913 female breast 

cancer cases for relative survival analyses after exclusions based on age at diagnosis. Figure 1 shows 

the estimated adjustment factors and Figure 2 the adjusted mortality rates from the two approaches. 

The adjustment factors were slightly different in the two methods, particularly for those younger than 

50 years. Uncertainty was higher in the adjustment factors from both approaches where the mortality 

rates were smaller. Not surprisingly, the mortality rate for the high SES group was lower than the 

original unadjusted mortality rate. While the adjusted mortality rate for the medium SES group was 

similar to the unadjusted rate in those younger than 70 years, the adjusted mortality rate in the low 

SES was more similar to the unadjusted rate in those older than 70 years. Figure 2 also illustrates the 

effect of smoothing in the FPSM approach.  

 

Figure 3 shows five-year relative survival by SES estimated from FPSMs using the original 

unadjusted life table mortality rates, and the SES-adjusted mortality rate from the FPSM approach. 

Similar results were seen for the Poisson model approach which are shown in Figure S2 in the 

supplementary materials. The relative survival was highest for the high SES group for all ages when 

using both the unadjusted and SES-adjusted expected mortality rate. Using the unadjusted expected 

mortality rates suggested that there was a larger difference in the five-year relative survival between 

the low and high SES groups. For example, the difference in the five-year relative survival between 

the low and high SES group when using unadjusted expected mortality rates in year 2000 for patients 

aged 45 years at diagnosis was 0.0521; this difference was 0.0266 when using SES-adjusted rates 
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from the FPSM. Table 2 displays SMRs using the unadjusted expected mortality rate, and the 

SES-adjusted expected mortality rate using the Poisson approach and the FPSM approach. There is a 

clear difference between the SMRs when using the unadjusted and SES-adjusted expected rates. 

 

Confidence intervals for five-year relative survival were slightly widened due to the additional 

uncertainty of estimating the adjustment factors; see Figure 4 for high SES, and Figures S4 and S3 in 

the supplementary materials for medium and low SES, respectively. Tables S1-S6 in the 

supplementary materials show more detailed results for one-, five-, and ten-year relative survival. 

Figure 4 also shows confidence intervals for relative survival estimates when using 10% and 1% 

random samples of the control population. For those aged 45 at diagnosis in year 2000, the five-year 

relative survival was estimated at 0.9255 using adjusted expected mortality rates from the Poisson 

approach. The unadjusted and adjusted standard error for this estimate was 0.0617 and 0.0635, 

respectively. Larger differences in the adjusted confidence interval were seen in older ages, for 

example, the five-year relative survival estimated when using adjusted rated from the Poisson 

approach for 75 year olds in 2000 was 0.8843 with corresponding unadjusted and adjusted standard 

errors 0.0749 and 0.0801, respectively. When using only a random sample of 10% and 1% of the 

control population confidence intervals widened further; the five-year relative survival and the 

adjusted standard errors for the 10% and 1% samples were 0.0666 and 0.0955 respectively for 

patients aged 45 in year 2000. 
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DISCUSSION 

Our results showed that both the Poisson and FPSM approaches can be used to adjust expected 

mortality rates and create adjusted life tables. Results from both methods yielded a higher mortality 

rate in the low SES group and a lower mortality rate in the high SES group. Results from relative 

survival analyses indicate that differences in mortality rates between the SES groups tend to be 

overestimated if SES-adjusted expected mortality rates are not used. Our findings corroborate results 

from earlier studies of socioeconomic gradients in breast cancer survival in Sweden (29-31) and 

previous findings of bias in estimates which used lifetables not adjusted for subgroups (4-6). We 

found little difference in the size of confidence intervals when using a parametric bootstrap in a large 

control population. Using only 1%  of the control population, approximately 1 400 individuals, to 

estimate adjustment factors, resulted in larger confidence intervals. Because of a higher all-cause 

mortality in the older women there was a larger uncertainty in this group when estimating the 

adjustment factors, which translated into a wider confidence interval when accounting for this 

additional uncertainty. Any additional uncertainty in any relative survival estimates due to estimating 

adjustment factors may also reflect the complexity of the adjustment factors model.  

 

We expected the adjusted mortality rate for the low SES group to be higher than the original 

unadjusted mortality rate. However, in women over 70 years the low-SES mortality rate was almost 

the same as the original unadjusted mortality rate; this similarity was due to a larger proportion of 

women this age being classified as low SES, particularly in earlier calendar years. This illustrates one 

potential problem of using educational level as a measure of SES, the opportunity to achieve a higher 

education was less common in earlier birth cohorts; suitable and stable measures of SES for use in 

research have been discussed extensively elsewhere (32,33). It may have also been useful to include 

additional covariates and interactions in the model to account for the difference in highest education 
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achieved over age and calendar year. 

 

Both approaches for estimating adjustment factors are dependent on the control population being 

representative of the reference population i.e., transportability characteristics must hold (34). If the 

control population is not, then the adjusted mortality rates will be incorrect and analyses using these 

will be biased. For example, it is not advisable to use a male control group to estimate adjustment 

factors for a female population since the effect of SES on mortality rates may differ in males and 

females. However, it is possible for the adjustment factors estimated using the methods described here 

to be applied to different populations based on reasonable assumptions; for example, the adjustment 

factors estimated here for the Stockholm and Gotland regions are likely to be applicable to the whole 

of Sweden. In this illustration, a matched control population was used to estimate adjustment factors 

and adjusted expected mortality rates. It is important to note that the control population used in the 

estimation of the adjustment factors need not be a control population which was previously matched 

to the diseased population of interest.. 

 

We saw minor differences in the adjustment factors and their confidence intervals between the 

Poisson and the FPSM. The reason for these differences could be due to 1) differences when 

considering continuous time, as in the FPSM approach, versus assuming a constant expected mortality 

within yearly intervals, as in the Poisson approach; or 2) the effect of using smoothed rates plus the 

model chosen to smooth the expected mortality rates. It is possible to use the Poisson approach when 

using smoothed expected mortality rates, thus we repeated analyses using this method and saw closer 

agreement between the adjustment factors estimated from this model and those estimated from the 

FPSM. However, small differences were seen in the absolute adjusted rates between the two methods 

since the largest differences in adjustment factors were seen in those younger than 50 years where the 
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absolute rate is very small. In the same manner, one possible limitation of the smoothing implemented 

in this study is that the model used was simple. While it is possible to use a more complex smoothed 

rates model, sensitivity analyses illustrated that the smoothed rates model offered a reasonable fit; 

Figure S1 in the supplementary materials shows the fit of different smoothed rates models for year 

2000. On the other hand, it may not be reasonable to assume a constant expected mortality rate within 

a yearly period, and smoothing offers an alternative to this assumption. 

 

This work expands on previous work using SMRs to create sub-population, or adjusted, expected 

mortality rates. These previous methods require information on the prevalence of exposures in the 

whole population (4,18), or use covariate-specific SMRs (12), e.g., for a specific age, year and SES 

group. Although these methods also estimate adjusted expected mortality rates, our methods have 

additional advantages. Firstly, information on the whole reference population is not required; we 

instead suggest using information often recorded in control populations, related or unrelated to the 

diseased population, and make the assumption that the control population is representative of the 

reference population. Here, we assumed the stratified mortality rates (by SES, age and year) in the 

control population were representative of the reference population. Secondly, it is advantageous to use 

both information from the control population and information from the general (reference) population. 

Thirdly, covariate-specific SMRs are usually available for categorised covariates, here we are able to 

capture a continuous effect of covariates using a modelling framework. 

 

Conclusions 

Both the Poisson and FPSM approaches can be used to adjust expected mortality rates using a control 

population; these adjusted rates are essential for avoiding biased results in certain situations when 

calculating relative survival, SMRs, and other similar measures. Since the Poisson model is a 
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generalized linear model and available in different statistical software, it will be the more familiar 

approach to many. The ability to model two timescales simultaneously in the FPSM approach is 

highly useful to avoid long computational time when using a large dataset. Accounting for the 

additional uncertainty involved in estimating adjustment factors using a control population can be 

done using parametric boostrapping, and should be done for small control populations, but may not 

make a large difference when the control population is large. Since data on factors such as SES are 

often more easily available in control populations, the methodology presented in this study could offer 

the possibility of estimating relative survival, SMRs, and other measures to answer clinically relevant 

questions for risk factors other than sex, age and calendar year of diagnosis. 
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Figures 

 
 

Figure 1: Adjustment factors (solid lines) with 95% confidence intervals (dashed lines) for each 

socioeconomic (SES) group from the Poisson and flexible parametric survival model (FPSM) 

approaches; Stockholm and Gotland regions of Sweden in year 2000 
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Figure 2: Adjusted mortality rates for each socioeconomic (SES) group from the A) Poisson and B) 

flexible parametric survival model (FPSM) approaches; Stockholm and Gotland regions of Sweden in 

year 2000 
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Figure 3: Five-year relative survival of female breast cancer patients diagnosed in the Stockholm and 

Gotland regions of Sweden using unadjusted life table rates (solid) and socioeconomic status (SES) 

-adjusted rates (dashed) from a flexible parametric survival model approach  
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Figure 4: Five-year relative survival estimates and 95% confidence intervals (CIs) for high SES in 

2000 from both Poisson models and flexible parametric survival models (FPSM) when using the full 

control dataset, n=133 361, and unadjusted CIs (100% U); the full control dataset and adjusted CIs 

(100% A); a random 10% sample, n=13 414; and 1% sample, n=1 394 of the control dataset and 

adjusted CIs (10% A and 1% A, respectively).  
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Tables 

Table 1. Descriptive Statistics of Breast Cancer Patients and Controls From the Stockholm and 

Gotland Regions From BcBaSe Used in Analyses 

   

    Breast cancer cases, n (%)    Controls, n (%) 

  N= 26 913   N=133 361  

 Age; mean (SD)   61.3 (12.4)   61.3 (12.4)  

 Year   

 1992-1994   2 892 (10.8)   14 345 (10.8) 

 1995-1999   5 760 (21.4)   28 510 (21.4) 

 2000-2004   6 512 (24.2)   32 174 (24.1) 

 2005-2009   7 032 (26.1)   34 891 (26.2) 

 2010-2012   4 717 (17.5)   23 441 (17.6) 

 SES group   

 Low   6 873 (25.5)   37 792 (28.3) 

 Medium   10 491 (39.0)   53 225 (39.9) 

 High   9 549 (35.5)   42 344 (31.8) 
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Table 2. SES-Specific Standardized Mortality Ratio and 95% Confidence Intervals (CI) for Patients 

Diagnosed With Stage I Breast Cancer Between 2000 and 2010 Recorded in the Stockholm and 

Gotland Regions of BCBaSe Using SES-Adjusted, Poisson and Flexible Parametric Survival Model 

(FPSM) Approaches, and Unadjusted Expected Mortality Rate as the Reference 

   

  Low SES Medium SES High SES 

 SMR 95% CI SMR 95% CI SMR 95% CI 

 Unadjusted   1.44   1.31,1.57  1.27   1.15,1.39  1.51   1.34,1.70 

 Poisson-adjusted   1.35   1.23,1.48  1.43   1.30,1.57  2.22   1.97,2.49 

 FPSM-adjusted   1.36   1.24,1.49  1.44   1.31,1.58  2.27   2.01,2.54 
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