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ABSTRACT 25 

We present a new method to assess the information carried by temporal patterns in spike trains. The 26 

method first performs a wavelet decomposition of the spike trains, then uses Shannon information to 27 

select a subset of coefficients carrying information and, finally, assesses timing information in terms of 28 

decoding performance – the ability to identify the presented stimuli from spike train patterns. We show 29 

that the method allows: i) a robust assessment of the information carried by spike time patterns even 30 

when this is distributed across multiple time-scales and time-points, ii) an effective denoising of the 31 

raster plots that improves the estimate of stimulus tuning of spike trains, and iii) an assessment of the 32 

information carried by temporally coordinated spikes across neurons. Using simulated data we 33 

demonstrate that the Wavelet-Information (WI) method performs better and is more robust to spike 34 

time-jitter, background noise and sample size than well-established approaches, such as principal 35 

component analysis, direct estimates of information from digitized spike trains or a metric-based 36 

method. Furthermore, when applied to real spike trains from monkey auditory cortex and from rat 37 

barrel cortex, the WI method allows extracting larger amounts of spike timing information. Importantly, 38 

the fact that the WI method incorporates multiple time-scales makes it robust to the choice of partly 39 

arbitrary parameters such as temporal resolution, response window length, number of response 40 

features considered, or the number of available trials. These results highlight the potential of the 41 

proposed method for accurate and objective assessments of how spike timing encodes information.  42 

 43 

  44 
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INTRODUCTION 45 

The importance of precise spike timing in carrying meaningful information has attracted much 46 

attention (Quiroga and Panzeri 2009; Rieke et al. 1999). Does the temporal structure of spike trains 47 

provide information beyond the total spike count, or does it merely reflect noise? According to the “rate 48 

coding” view, neurons represent stimuli solely by the rate of firing within an encoding time window 49 

(Adrian and Zotterman 1926; Shadlen and Newsome 1994). In contrast, according to the “temporal 50 

coding” view, the time structure of the responses conveys additional information not provided by the 51 

total spike count (de Ruyter van Steveninck et al. 1997; Optican and Richmond 1987; Richmond and 52 

Optican 1987; Victor and Purpura 1996).  53 

Experimental evidence accumulated over the last three decades has suggested that precise 54 

spike patterns - on the scale of milliseconds - do indeed convey information not available in rate codes 55 

(Arabzadeh et al. 2006; de Ruyter van Steveninck et al. 1997; Di Lorenzo et al. 2009; Eckhorn and Popel 56 

1975; Foffani et al. 2009; Fontanini and Katz 2006; Kayser et al. 2010; Laurent et al. 1996; Montemurro 57 

et al. 2007; Panzeri et al. 2010; Panzeri et al. 2001; Quiroga and Panzeri 2009; Richmond and Optican 58 

1987; Victor 2000). For this, a straightforward way to assess the significance of spike timing has been to 59 

represent spike trains as sequences of ‘0’s and ‘1’s denoting the absence or the presence of a spike in 60 

post-stimulus time bins and then, using the formalism of information theory, evaluate whether the 61 

information about stimulus identity carried by such patterns is significantly larger than the information 62 

carried by spike counts alone (de Ruyter van Steveninck et al. 1997; Kayser et al. 2009; Panzeri et al. 63 

2001; Strong et al. 1998). However, this approach leads to a combinatorial explosion (the “curse of 64 

dimensionality”), because the number of possible response patterns increases exponentially with the 65 

number of bins (Panzeri et al. 2007). Thus, for an experimentally feasible number of trials, this limits the 66 

precision of the temporal patterns to be studied (i.e. the size of the time bin) and the length of the 67 

response considered.  68 
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A solution to the combinatorial explosion problem is to reduce the dimensionality of the spike 69 

trains. To this end, a well-known approach is to compress the neural responses into a small number of 70 

features using Principal Component Analysis (PCA). By using this method, Richmond and Optican (1987) 71 

showed that time patterns in responses from neurons in the macaque inferior temporal cortex could 72 

disambiguate visual stimuli that could not be distinguished by firing rate alone (Optican and Richmond 73 

1987; Richmond and Optican 1987). Despite the value of this application, the PCA-based time 74 

decomposition has two main caveats. First, PCA represents directions of maximum variance, which are 75 

not necessarily the directions with largest information. Second, PCA coefficients are not localized in time 76 

and may not capture sources of information that are precisely localized at one or a few restricted post-77 

stimulus time points (Panzeri et al. 2001), or even encoded at multiple temporal scales (Fotowat et al. 78 

2011; Harvey et al. 2013; Kayser et al. 2009; Panzeri et al. 2010). Here we propose another type of 79 

dimensionality reduction that is able to capture time-localized information encoded at multiple time 80 

scales (Figure 1). The method combines wavelet decomposition and information theory to first identify 81 

features in the spike patterns carrying relevant information, and then use these features to quantify the 82 

amount of sensory encoding carried by these responses using a decoding approach. We validate the 83 

method on simulated spike trains and compare its performance to that obtained with PCA, direct 84 

estimations of information from digitized neuronal responses and a widely used Metric-Space (MS) 85 

method (Victor and Purpura 1996). Results on simulated data demonstrate that the Wavelet-86 

Information (WI) method is more robust and extracts more spike timing information than previous 87 

methods for a wide range of background firing rates and inter-trial jitters. The advantages of the WI 88 

method are confirmed by evaluating its performance with experimental data from the monkey auditory 89 

cortex and the rat somatosensory cortex. Additionally, we show that the same approach can be used to: 90 

i) denoise spike trains, providing a more robust quantification of the stimulus selectivity and ii) assess 91 

and visualize the information carried by the synchronous firing of neurons. 92 
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 93 

MATERIALS AND METHODS 94 

WAVELET DECOMPOSITION 95 

The wavelet transform is the inner product of a signal with dilated and translated versions of a 96 

wavelet function (Mallat 2008; Strang and Nguyen 1996).Formally, given a signal  and a wavelet 97 

function  the continuous wavelet transform (CWT) is defined as: 98 

  ,   with 99 

    ,  100 

where ℜ are the scale and translation parameters, respectively. The translation parameter 101 

changes the location of the wavelet function, while the scaling parameter dilates or compresses it. The 102 

correlation of the signal  with the dilated (contracted) versions of the wavelet  gives the low 103 

(high) frequency components. The CWT is very redundant and, without any loss of information, it is 104 

practical to define the wavelet transform only at discrete scales  and times , which is 105 

called the dyadic wavelet transform (DWT). The DWT is non-redundant, in the sense that from N data 106 

points we obtain N wavelet coefficients, each of them representing the amount of activity of the original 107 

signal at a specific time and scale. Further, patterns in the signal with different frequency and time 108 

localizations are represented by specific wavelet coefficients. The DWT can be computed using a 109 

hierarchical and very efficient algorithm called multi-resolution decomposition (Mallat 1999). This 110 
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end result is the decomposition of the original signal into a series of detail scales and a final 112 

approximation, corresponding to the time-localized activity in different frequency bands. 113 

Starting from the binned spike trains, in this study we implemented a 5-scale dyadic wavelet 114 

decomposition using Haar wavelets, which is a square function that is ideally suited to identify local 115 

contrasts at different scales. The spike trains were always binned with 1-ms windows unless stated 116 

otherwise.  117 

 118 

SELECTION OF WAVELET COEFFICIENTS 119 

From the total set of wavelet coefficients, equal to the number of bins in the spike trains, we 120 

selected a subset of coefficients based on their mutual information with the stimuli, defined as 121 

(Shannon 1948): 122 

,    123 

where  is the set of stimuli and is the set of values of a wavelet coefficient . The significance of 124 

the information given by each coefficient  was established based on surrogate testing: for each 125 

coefficient we calculated a distribution of information values obtained by shuffling trials (i.e., 126 

randomizing trial-stimulus relations) 20 times. Surrogate distributions were calculated separately for 127 

each decomposition level (information values obtained from coefficients of the same levels were 128 

combined) and the 95 percentiles of each distribution were used as statistical thresholds (horizontal 129 

dashed lines in Figure 1C). To avoid having too many features with significant information, if more than 130 

25 coefficients were significant, we used the 25 with largest unbiased information (the same restriction 131 

was applied to the PCAinfo method). In this context, unbiased information was defined as the difference 132 

of the direct measure of information and its corresponding statistical threshold computed from shuffling 133 
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the trials. Additionally, if none of the coefficients crossed the statistical threshold, we used the two with 134 

the largest information. 135 

 136 

STIMULUS DECODING AND INFORMATION ESTIMATION FROM CONFUSION MATRICES 137 

In order to estimate information in a set of features, we used a cross-validated (leave-one-out) 138 

naïve Bayesian decoder to assign the response on each trial in the testing set to a given stimulus, which 139 

gives a lower bound of the information available in the spike trains (Quiroga and Panzeri 2009). 140 

Decoding performance was computed as the proportion of correct predictions. The conditional density 141 

functions and the selection of features were based solely on the training trials. For comparison, we also 142 

used Linear Discriminant Analysis (Fisher 1936; Quiroga et al. 2007) and Nearest Neighbors classifiers (in 143 

which case, features were assigned z-scores in order to avoid scaling problems) and obtained virtually 144 

the same results. 145 

In cases where the linear decoder introduced systematic errors (Figure 7), we computed the 146 

mutual information between the actual and the predicted stimuli from the confusion matrices: 147 

 , 148 

where  is the set of actual stimuli presented to the decoder and  is the set of predicted stimuli by 149 

the decoder. In order to correct for the upward limited-sampling bias in the information estimate, we 150 

used the quadratic extrapolation procedure described elsewhere (Panzeri et al. 2007; Strong et al. 1998) 151 

and implemented in Magri et al. (2009).  152 

 153 
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 155 

METRIC SPACE METHOD 156 

 We also compared the WI method with the Metric Space (MS) approach (Victor and Purpura 157 

1996), which clusters responses based on a distance metric between spike trains. This distance is 158 

defined as the minimum “cost” of converting a spike train into another one by deleting, inserting or 159 

moving spikes. The cost of deleting or inserting a spike is always set to 1, and the cost of moving a spike 160 

per unit of time is given by the free parameter q (expressed in units of 1/ms), which has to be optimized 161 

for each dataset. Thus, when q is zero, moving a spike is free and therefore only the spike count is taken 162 

into consideration. As q is increased, more weight is given to the precise timing of the spikes. Note that 163 

since moving a spike by 1/q ms has the same cost of deleting it, 1/q defines the temporal precision of 164 

the analysis. With the MS method, we classified trials using a nearest neighbor decoder - more 165 

specifically, we assigned each tested trial to the class of its nearest neighbor in the training set.We 166 

systematic varied q from 0.001/ms to 524/ms, in half octave intervals. Only representative q values are 167 

reported. For computing the spike train distances we used a MATLAB function available at www-168 

users.med.cornell.edu/~jdvicto/spkdm.html. 169 

 170 

SPIKE TRAIN DENOISING 171 

To visualize spike patterns containing information, we adapted the WI method to denoise the 172 

spike trains by: (1) computing the wavelet decomposition of the mean PSTH of each stimulus, (2) 173 

denoising the mean PSTHs by reconstructing them using only the wavelet coefficients with significant 174 

information, (3) setting to zero the denoised PSTHs values below a threshold at 1 s.d. of the absolute 175 

values (taken from the denoised PSTHs of all stimuli), and (4) using the denoised and thresholded PSTHs 176 

as masks, preserving only spikes in bins passing this threshold. This effectively preserves spikes 177 
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conveying stimulus information and deletes the others. We remark that although the selection of 178 

informative wavelet coefficients was the same for all stimuli, the masks were different for each stimulus.  179 

 180 

ESTIMATION OF INFORMATION IN CORRELATED SPIKE PATTERNS 181 

To estimate the information given by the correlated firing of pairs of neurons (i,j), we computed 182 

the wavelet decomposition for each trial n and calculated the normalized distance between the values 183 

of a corresponding wavelet coefficient (i.e. considering a specific time location and scale) in both 184 

neurons, as: 185 

𝐷𝐷𝑐𝑐,𝑛𝑛
𝑖𝑖,𝑗𝑗 =

�𝑤𝑤𝑐𝑐,𝑛𝑛
𝑖𝑖 −𝑤𝑤𝑐𝑐,𝑛𝑛

𝑗𝑗 �

�𝑤𝑤𝑐𝑐,𝑛𝑛
𝑖𝑖 �+�𝑤𝑤𝑐𝑐,𝑛𝑛

𝑗𝑗 �
  , 186 

where𝑤𝑤𝑐𝑐,𝑛𝑛
𝑖𝑖 is the value of wavelet coefficient c of neuron i at trial n. Analogous to the procedure 187 

described in Figure 1C, we then selected the distances 𝐷𝐷𝑐𝑐
𝑖𝑖,𝑗𝑗 that had significant information about the 188 

stimuli and used these distance values for decoding. In other words, we implemented the same 189 

procedure as before but using the distances 𝐷𝐷𝑐𝑐
𝑖𝑖,𝑗𝑗 between the wavelet coefficients of each neuron 190 

instead of the value of the coefficients themselves. 191 

 192 

EXPERIMENTAL DATA 193 

Monkey A1 data   194 

As described in a previous work (Kayser et al. 2010), neural activity was recorded from caudal 195 

auditory cortex (mainly areas A1 and caudal belt) of three alert animals using multiple microelectrodes. 196 

The data was high-pass filtered (4 Hz), amplified (Alpha Omega system) and digitalized at 20.83 kHz. 197 
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Recordings were performed in a dark and anechoic booth while animals passively listened to acoustic 198 

stimuli. The sound stimulus consisted in a 40-second sequence of pseudorandom tones (“random 199 

chords”). This sequence was generated by presenting multiple tones (125-ms duration) in different 200 

sequences (12 fixed frequency bins per octave), with each tone frequency appearing (independently of 201 

the others) with an exponentially distributed inter-tone interval (range 30-1000 ms, median 250 ms). To 202 

estimate spectrograms of the acoustic stimulus, the signal was convolved with complex Morlet wavelets 203 

with central frequencies ranging from 20 to 1600 Hz. Then, the instantaneous amplitude of each 204 

“frequency” was computed as the norm of the complex values. The z-scored instantaneous amplitudes 205 

were used for computing spike triggered averages for reverse correlation. 206 

Rat S1 data:  207 

As described in previous works (Lebedev et al. 2000; Panzeri et al. 2001), recordings in the 208 

somatosensory cortex of adult Wistar rats were performed with an array of six tungsten 209 

microelectrodes. Neurons in barrel-columns C1-3, D1-3 and E1-3 were recorded, while their 210 

corresponding whiskers were stimulated individually. The stimulus was an up-down step function of 211 

80 µm amplitude and 100-ms duration, delivered 48 times for each vibrissa with a 1 second inter 212 

stimulus interval. Neuronal activity was amplified and band-pass filtered in the range 300-7500 Hz. Spike 213 

waveforms were digitized at  25kHz (Datawave Discovery, Boulder, CO).  214 

 215 

RESULTS  216 

OUTLINE OF THE WAVELET INFORMATION FRAMEWORK 217 

The first step of the WI method is to convolve the spike train responses (to repeated 218 

presentations of a set of stimuli; Figure 1A) with Haar wavelets (Figure 1B; see Methods). Thus, each 219 
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trial is decomposed into a set of wavelet coefficients representing local spike patterns at different time 220 

scales. In order to identify wavelets carrying meaningful information, we then compute the mutual 221 

information between each coefficient and the stimuli (Figure 1C). Information values are compared to 222 

distributions constructed by stimulus label permutations (see Methods). Then, the wavelet coefficients 223 

with significant information are used to represent the data. We used a decoding approach to quantify 224 

the performance of the WI method (and other methods for comparison) in extracting stimulus 225 

information. Figure 1D shows confusion matrices of naïve Bayesian decoders trained to classify 226 

responses with time patterns as in Figure 1A, either with spike counts or with the selected wavelet 227 

coefficients. As expected, by construction, the performance with the WI method clearly outperformed 228 

the one obtained with spike counts. 229 

 230 

PERFORMANCE WITH SIMULATED DATA 231 

We used simulated data to quantify the performance of the WI method and compared it to 232 

other approaches. The simulated data consisted of a set of 200-ms responses to four hypothetical 233 

stimuli created with a two-step procedure: (1) a specific spike time pattern (a sequence of pre-defined 234 

spike times) was assigned to each stimulus and inserted into the response of a given trial with a random 235 

shift within a window centered at their original time; (2) background activity was generated 236 

independently for each trial following a Poisson process with a given mean rate and was then added to 237 

these patterns.  238 

The example in Figure 2A illustrates the ability of the WI method to extract information at 239 

different time scales. A relatively precise spike timing distinguishes the first two stimuli (at the bottom; 240 

generated using a jitter of 0.5 ms) and a pattern at a coarser scale distinguishes the remaining two (at 241 

the top; generated using a jitter of 8 ms). The mean background rate was 8 spikes per second. The right 242 
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panel of Figure 2B shows the outcome of the WI method using a fine (1 ms) binning of the data. The 243 

mean decoding performance was close to perfect (0.975), thus indicating the ability of the method to 244 

capture time patterns at different scales. To further understand this result, in Figure 2C we show the 245 

decoding outcomes obtained when considering coefficients of each wavelet scale separately. While the 246 

coefficients from the coarser scales (scale 4, 5 and last approximation) could distinguish the coarse time 247 

patterns of stimuli 3 and 4, the high frequency coefficients (scales 1, 2 and 3) distinguished the more 248 

precise patterns of stimuli 1 and 2. For scale 1 no coefficient crossed the statistical threshold and we 249 

therefore used the two with largest information. 250 

For comparison with another dimensionality reduction method, we applied the PCA based 251 

developed by Richmond and Optican (1987). For this, we computed the principal components (PC) from 252 

the spikes trains binned either with 1-ms or with 8-ms windows (vertical lines in Figure 2A). As with the 253 

WI method, we estimated the time pattern information by decoding stimuli based on the scores of the 254 

four PCs with largest variance. As shown in Figure 2B, neither the 1- or 8-ms bins could capture the 255 

information at both time scales. In particular, with the 1 ms binning the decoder could distinguish 256 

between stimuli 1 and 2 but not between 3 and 4, given that pattern of these 2 stimuli were scattered 257 

across several bins. Likewise, when using the 8 ms bins the decoder could distinguish between stimuli 3 258 

and 4, but this gridding was too coarse to distinguish between stimulus 1 and 2. 259 

To test the WI method in scenarios mimicking different recording conditions, we generated 3 260 

examples (Figure 3) including patterns with different time localizations, precision and complexity, and 261 

we systematically varied the background firing rate (2 to 64 Hz) and the time jitter (2 to 64ms). Left 262 

panels show simulations with low background rate and jitter (4Hz and 2ms, respectively), while right 263 

panels show simulations of the same patterns but with larger baseline firing and jitter values (16Hz and 264 

8ms).  265 
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We further implemented a similar PCA-based approach but selecting the principal components 266 

with the highest information. Also, we calculated performance using the whole binned responses (i.e., 267 

with no reduction of dimensionality). We then compared these ‘time pattern’ strategies to a total spike 268 

count decoding, simply summing the total number of spikes of each trial. The selection of features was 269 

always performed on a set of trials used to train the decoder (training set), and then performance was 270 

evaluated in a different set of trials (test set).  271 

Figure 4A displays results for different jitters and background rates for Example 1 of Figure 3 272 

(using 15 trials per stimulus for training and 20 trials for testing).The results displayed are the averages 273 

of 20 simulations for each combination of parameters. As expected, there was an overall decay of 274 

performance when increasing the background firing rate and jitter, due to the increasing difficulty in 275 

extracting time patterns. Still, the WI method provided the best decoding accuracy in nearly all cases, 276 

except when very large jitters were used (of the order of, or larger than the time patterns themselves). 277 

In this case, all information in the time patterns was destroyed and only spike count carried information. 278 

Similar results were obtained for Examples 2 and 3 (Supporting Figure 1).  279 

We then investigated how the number of trials used for training the decoder, and for selecting 280 

the set of response features used for decoding, affected performance. To do so, we repeated the 281 

analysis of Figure 4A but systematically varied the training set size (from 5 to 65 trials per stimulus in 5-282 

trial steps). We used 20 simulations for each method and set of parameters (jitter and background rate). 283 

Figure 4B reports results for all 3 examples, averaging across all baseline firing and jitter values of Figure 284 

4A. The performance of the WI, PCinfo and no-reduction method increased monotonically with the 285 

number of trials used for training. In contrast to the PCinfo and no-reduction methods, the WI method 286 

reached a value close to its maximum performance within less than 20 trials, stressing its robustness to 287 

undersampling. 288 
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To evaluate the efficiency of each method in reducing the dimensionality of the responses 289 

without loss of information, we computed the performance of the naïve Bayesian classifiers as a 290 

function of the number of response features used for classification. For this, we ranked the features 291 

either by variance, in the case of PCAvar; or by information, in the case of wavelets and PCAinfo. 292 

Additionally, we performed a similar analysis by ranking the response time bins by their amount of 293 

information and then selecting only the n most informative ones (referred hereafter as ‘binned 294 

responses’). Figure 5A reports the results for each of the three examples of Figure 3, when using a 295 

training set of 15 trials per stimulus. While the WI method needed 10 or fewer response features to 296 

reach maximal performance, all other methods needed a larger number of response features, which also 297 

varied substantially across examples. Thus, the performance for these latter methods was very sensitive 298 

to the number of response features used. In sum, the WI method reduced the dimensionality of 299 

responses in a more efficient and robust way.  300 

Interestingly, the performance using principal components with largest variance (PCVar) had a 301 

much steeper increase of information with the number of features compared to the performance 302 

obtained with PC coefficients chosen based on information (PCinfo). This seemingly counterintuitive 303 

result can be attributed to the low number of trials (15 per stimulus) used for training in this case, which 304 

gave a relatively poor estimation of information carried by each principal component. To verify this, we 305 

ran the same analysis as in Figure 5A but using 50 trials per stimulus (Figure 5B). As expected, with the 306 

larger training set PCInfo showed a clear increase in performance and was much more efficient than 307 

PCVar for small numbers of features. Consistent with the results shown in Figure 4B, increasing the 308 

number of trials had little impact on the performance of the WI method, thus highlighting its robustness 309 

to sample size.  310 

 311 
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PERFORMANCE WITH DATA FROM THE MONKEY AUDITORY CORTEX 312 

Single neuron recordings were performed in primary auditory (A1) cortex in response to a 40-313 

sec long sequence of pseudorandom tones (see Methods for details). We divided the sequence into 500-314 

ms time intervals and denoted each time interval as a different discrete “stimulus”. For this dataset, we 315 

trained naïve Bayesian decoders to predict which of different chunks of the time-varying stimulus was 316 

being presented. In total, 34 responsive neurons (with >1 Hz mean rate) recorded in 12 sessions were 317 

included in this analysis. Each session consisted of 50 to 60 presentations of the stimuli, which we 318 

separated into two non-overlapping sets of training and test trials.  319 

For each neuron, we first evaluated the performance of the various methods with a time 320 

resolution of 1-ms, using 15 trials for training. Figure 6A shows the decoding performance of each 321 

neuron using the different approaches described above (y-axis), against the performance achieved with 322 

wavelets (x-axis). Note that the WI method outperformed the other methods for virtually all neurons.  323 

Figure 6B shows decoding performance versus training set size and reveals that the WI method 324 

performed significantly better than the other methods. Moreover, performance with wavelets 325 

decreased only slightly when decreasing the training set size and was close to optimal with as few as 10-326 

15 trials. In contrast, the other methods showed a marked decrease when using few trials. Consistently, 327 

however, all methods revealed that spike timing contained more stimulus information than the spike 328 

count. 329 

We then quantified the impact of temporal precision used to quantify the neural responses. 330 

Figure 6C shows that decoding performance was maximal when using a bin size of about 5-10ms (and 331 

more towards 10 ms for the PCA based methods). This result is comparable to the optimal resolution 332 

previously reported for this data using a direct information estimate (Kayser et al. 2010). In all cases, the 333 

performance decreased as the bin size increased, meaning that larger bin sizes missed relevant 334 
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information arising from the precise pattern of firing of these neurons. Moreover, the performance of all 335 

methods also decreased for bin sizes smaller than 5-10 ms. This arises because the outcome of 336 

increasing temporal precision is the trade-off of two opposing effects. One the one hand, a finer 337 

resolution leads to a potentially higher information content in the neural responses. Because of the data 338 

processing inequality (Quiroga and Panzeri 2009), increasing resolution can only increase or leave 339 

invariant the information available in the responses. On the other hand, a finer resolution increases the 340 

dimensionality of the responses, thus making it more difficult for a decoder to extract the available 341 

information. A drop in decoding performance when increasing the resolution thus means that from that 342 

resolution onward the additional information available at finer resolution is no more sufficient to 343 

overcome the added difficulty in decoding many extra and weakly informative dimensions. Thus, the 344 

ability to extract more information at finer resolutions with WI compared to other methods is due to the 345 

optimal dimensionality reduction implemented in the WI method. For example, with a bin size of 1 ms 346 

(i.e. an order of magnitude increase of the dimensionality of the response space used for decoding), the 347 

performance with wavelet decreased only about 15% with respect to the 5-10 ms resolution, while 348 

decreases of about 30% and more than 50% were observed for the no-reduction and the PCA-based 349 

methods, respectively.  350 

Next, we evaluated the ability of all methods to extract information from populations of 351 

simultaneously recorded cells. For this, we used the data of 10 (out of 12) sessions where 2 or more 352 

responsive neurons were recorded simultaneously. For each session, all possible combinations of a 353 

varying number of cells were used. In this case, we did not set a minimum of wavelet coefficients or 354 

principal components for each neuron; i.e., if a neuron had no significantly informative features then 355 

this neuron would provide no features to the decoder. Results (Figure 6D) show that the decoding 356 

performance with wavelets was significantly larger than the one achieved with the other methods.  357 
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 358 

PERFORMANCE WITH DATA FROM THE RAT BARREL CORTEX 359 

To evaluate the potential of the WI method to optimally extract time localized information, we 360 

analyzed neuronal responses in the rat barrel cortex. In this data, a precise onset time is given by the 361 

time of whisker stimulation. We used a naïve Bayesian decoder, as before, to classify which vibrissa 362 

(from the set of C1, C2, C3, D1, D2, D3, E1, E2 and E3) was stimulated in each trial. Forty-eight trials were 363 

available for each vibrissa, and we randomly assigned half of these trials for training and the other half 364 

for testing. Figure 7A shows the responses of a representative neuron. Responses were binned in 1-ms 365 

windows, as before, and considered in a 200-ms response window starting at stimulus onset. Figure 7B 366 

compares the WI method with the other approaches for 84 responsive neurons (with >1 Hz mean firing 367 

rate). The WI method again outperformed all other methods for the large majority of the cells. The left 368 

panel of Figure 7C displays the decoding performance as a function of the post-stimulus window (i.e. a 369 

window of 200-ms means taking the whole response shown in Figure 7A). Consistent with the previous 370 

results, the WI method gave the best results for nearly all time windows considered. In contrast to the 371 

auditory data above (Figure 6), in this case the ‘no reduction’ approach did not give a good performance 372 

because only a fraction of the bins provided relevant information. Moreover, while for wavelets the 373 

performance kept increasing within increasing post-stimulus window, for the no-reduction and the PCA-374 

based methods the performance decayed or remained at the same level. This again indicates that these 375 

methods do not perform as well as wavelets when the dimensionality of the response increases. We 376 

also observe that for this data the ‘spike count’ decoding provided better results than both PCA-based 377 

(and the no-reduction) approaches. However, this was in part due to systematic errors in the decoder. 378 

For example, the PCAvar decoder classified D1 responses as D1, D2 or D3 (but still ruling out the 379 

possibility that other vibrissae were stimulated). In order to verify this, we computed the information 380 
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between the predicted and the actual stimuli from the confusion matrices, as shown in the right panel of 381 

Figure 7C (see Methods for details). In this case, PCAvar provided more information than the spike 382 

counts. As before, in nearly all cases the wavelet-based decoding provided the best results.  383 

Figure 7D shows both the decoding performance (left) and the information extracted from the 384 

confusion matrices (right) as a function of the bin size used. The peak of performance and information 385 

was at a bin size of about 25 ms for all methods, except wavelets. In particular, all methods showed 386 

decay in information for larger bin sizes because with larger bin sizes the information given by precise 387 

time patterns is lost. But interestingly, all methods except wavelets showed also decay in performance 388 

(and information) for bin sizes smaller than 25 ms. As with the monkey data, this is due to the increase 389 

in the response space dimensionality accompanying the increase in resolution. With this same data, a 390 

previous work (Panzeri et al. 2001) reported an optimal bin size smaller than 25 ms, using a method 391 

analogous to the ‘no-reduction’ shown here, i.e. calculating the mutual information from the binned 392 

responses. But in that case, a high dimensional space was avoided by considering a much smaller 393 

response window of 20 ms. In this regard, the advantage of wavelets is crucial whenever the optimal 394 

response window is not known a priori. 395 

Finally, we studied the information carried by populations of neurons. For this, we assumed that 396 

all neurons were recorded simultaneously (an approach that doesn’t take into consideration the effects 397 

of correlations) and repeated the procedure used in Figure 6C. Since 100 neurons were available, we 398 

averaged across 30 randomly chosen combinations for each number of neurons. Additionally, to avoid 399 

an excessive number of features we only allowed a maximum of 5 wavelet coefficients or principal 400 

components per neuron (instead of 25, as before). Results are shown in Figure 7E. The performance 401 

achieved with wavelets surpassed the one achieved with the other methods. Except for the no-402 
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reduction and PCAinfo cases (due to the abovementioned limitation in dealing with high dimensional 403 

response spaces), the performance increased monotonically with the number of neurons. 404 

 405 

COMPARISON WITH THE METRIC SPACE METHOD 406 

 Next we compared the WI method with the MS approach for different q values (see Material 407 

and Methods), both with the simulated and real data reported above. Figure 8A shows the results of 408 

such comparison with same 20 simulations illustrated in Figure 2A, using different background firing 409 

rates. Note that WI is more robust to increases of noise levels for this example. Figure 8B shows the 410 

results for the simulations shown in Figure 4A (to save space, results with 32 and 64-ms jitter are not 411 

shown since in these cases the performance with all methods was close to chance), and Figure 8B the 412 

result for the 3 examples presented in Figure 4B. Altogether, we observe an overall better performance 413 

with the WI method proposed here. Note also that the performance of the MS method is dependent of 414 

the choice of the parameter q. For instance, a q value of 0.128 gave the best performance with a jitter of 415 

16 ms but also the worst performance with a jitter of 2ms. Conversely, a q value of 0.362 gave the best 416 

performance for the 2-ms jitter case but a relative poor performance for larger jitters. In this respect, 417 

the advantage of the WI method is that it doesn’t require the tuning of any parameter and automatically 418 

gives a performance that in most cases surpassed the one obtained with the MS method, even when 419 

choosing the optimal q value.  420 

Figure 8C displays results as function of training set size (as in Figure 4B). For these examples, a 421 

q value of 0.128 gave the best overall results for the MS method. These results were, however, not as 422 

good as the ones obtained with the WI method. We note that the MS method was remarkably robust to 423 

undersampling, as can be seen in the results of Example 2, where it outperformed wavelets when less 424 
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than 10 trials per stimulus was used for training, likely due to the fact that this low number of trials was 425 

not sufficient for a good selection of wavelet coefficients. 426 

 Results of the comparison between the WI and MS method for the real data are shown in Figure 427 

9. In particular, Figure 9A (left panels) displays the results obtained for the A1 monkey neurons (as in 428 

Figure 6) using four representative q values for the MS method. For this dataset, the average 429 

performance obtained with the WI method was significantly better than that obtained with the MS 430 

method for all q values (paired t-test, p<0.05 in all cases; see right panel in Figure 9A). Figure 9B shows 431 

the results obtained for the barrel cortex neurons. As with the monkey data, performance with the WI 432 

method was significantly better than that obtained with the MS approach for all q values (paired t-test, 433 

p<10-23in all cases; see right panel in Figure 9B). The relatively poor performance of the MS method for 434 

the rat dataset is likely due to the compact time localization of the informative spikes.  435 

 436 

DENOISING SPIKE PATTERNS 437 

 We next investigated whether the WI method could be used to denoise single-trial spike trains. 438 

Denoising entails, in brief, identifying spikes correlated with the informative wavelet coefficients and 439 

discarding the remaining, non-informative ones (see Methods). Figure 10Ashows the denoising of the 440 

time pattern of Example 3 (Figure 3) with a jitter of 4-ms jitters and background firing rate of 64-Hz. We 441 

observe that a large amount of the background non-informative spikes were removed and the 442 

remaining spike rasters after denoising (Figure10A, bottom left) were very similar to the spike patterns 443 

embedded in the data (see Figure 3). A similar reduction of background ‘noisy’ activity is evident when 444 

comparing the PSTHs before and after denoising (Figure10A, right Panels).  445 
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To quantify these observations, we repeated this procedure varying systematically the jitter and 446 

background firing rate (using 15 trials per stimulus). Figure 10B shows the number of errors obtained by 447 

the denoising procedure for different jitters as a function of background rate. Here, we defined errors as 448 

the sum of false positives (not deleting a spike corresponding to background activity) and false negatives 449 

(incorrectly discarding a spike that belonged to the informative time pattern). For comparison, we also 450 

calculated the number of errors obtained when thresholding the original PSTHs but without a prior 451 

wavelet denoising (green traces). This was done to assess whether denoising could be achieved by a 452 

simple PSTH thresholding. Further, to show that results were not just due to the smaller number of 453 

spikes obtained after denoising, we also calculated the number of errors obtained when randomly 454 

erasing the same number of spikes (black lines). In general, the wavelet-based denoising approach gave 455 

the lowest number of errors. Results obtained for the other examples of Figure 3 were similar and are 456 

shown in Supporting Figure 2. 457 

Next, we applied this denoising approach to the spikes of a representative neuron taken from 458 

the auditory dataset. Figure 11A shows the raster plots before (top) and after (bottom) denoising, where 459 

it is clear that time patterns (spikes consistent across trials for each stimulus) are more easily visualized 460 

after denoising. Given this encouraging result, we then asked whether wavelet denoising could lead to 461 

obtaining cleaner and sharper spike-triggered averages (STA) of the stimulus. STAs are commonly used 462 

representations to assess which stimulus features (out of the many in a complex dynamic stimulus) drive 463 

the neurons’ responses (Dayan and Abbot 2005). For this, we used a time-frequency representation of 464 

the acoustic stimulus (see Methods), and we computed the STA in the form of the Spectro-Temporal 465 

Receptive Field, i.e. the average frequency spectrum of the stimulus around the time of spiking. To test 466 

the effectiveness of denoising in removing the detrimental effect of non-stimulus driven spikes, we first 467 

computed the STA for the original response, then added background Poisson noise with a mean firing of 468 

100Hz and computed the STA in this noisy condition. Finally, we denoised the data with the Poisson 469 
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noise and recomputed the STA. Results are shown in Figure 11B. The original STA showed a clear tuning 470 

to stimuli with energy in the 200-300 Hz frequency range, approximately 50 ms preceding the spike 471 

occurrences. This stimulus selectivity was dramatically diluted after adding the background noise, but it 472 

was again recovered after denoising.  473 

 474 

INFORMATION IN THE SYNCHRONOUS FIRING OF NEURONS 475 

 We next investigated whether the WI method could be extended to quantify the information 476 

conveyed by the synchronous firing of pairs of neurons, by assuming that in this case the informative 477 

wavelet coefficients for both neurons should covary across trials (see Methods). For comparison, we 478 

also evaluated the information carried by: 1) coincident spikes – i.e. spikes from different neurons fired 479 

within a short time window (Grun et al. 2002) – although it should be noted that, in contrast to WI, with 480 

this method a single, unique, time scale that defines “coincidence” has to be defined a-priori; 2) an 481 

implementation of the MS approach, calculated by computing the distance between the spike trains for 482 

the pair of neurons as a function of q, and then using a decoder similar to the one used for wavelets 483 

(using the MS distance instead of the wavelet distance). For this analysis, we used the 3 q values shown 484 

in Figure 8. 485 

 Performance was tested by simulating the activity of a pair of neurons with a correlated firing 486 

during a ‘synchrony window’ (200-360 ms in the case of the example displayed in Figure 12A, left) during 487 

the presentation of one of two stimuli (stimulus 1). In the rest of the response window we added spikes 488 

generated independently, following a Poisson distribution with a mean firing probability equal to the 489 

one of the synchronous spike pattern (40-Hz). Therefore, by construction, all the information about the 490 

stimuli was only given by the transient synchronization. 491 
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We ran several simulations like the one illustrated in Figure 12A (left panel), varying 492 

systematically the duration of the synchrony window and adding time jitters in the co-activation. We 493 

used 20 trials per stimulus for training the decoders and 20 for testing. Figure 12B shows the decoding 494 

performances for different jitters as function of the length of the synchrony duration. Clearly, the WI 495 

method outperformed the coincidence count for nearly all window sizes and jitters. The overall 496 

decoding performance for all methods is shown in Figure 12C.  497 

We then extended the spike train denoising procedure described above to better visualize 498 

informative patterns of synchronous firing. For this, we used the distances of the selected wavelets. The 499 

mask for a given stimulus (analogous to the denoised PSTHs in the previous case) was constructed by 500 

averaging the distances of each wavelet coefficient across trials and then adding together the mean 501 

distance of each coefficient multiplied by its time support (with a value of 1 within the time range 502 

spanned by the wavelet and 0 elsewhere). Figure 12A (right panels) displays the raster plots of the 503 

neurons shown on the left panels after denoising, where it is clear that the coincident activations are 504 

highlighted and non-informative spikes deleted.  505 

 506 

DISCUSSION 507 

A key problem in assessing the contribution of precise time patterns to sensory coding is the 508 

high dimensionality of the datasets. While several statistical methods have been developed to correct 509 

for sampling biases arising in these cases (Montemurro et al. 2007; Nemenman et al. 2004; Paninski 510 

2003; Panzeri et al. 2007; Panzeri and Treves 1996; Strong et al. 1998), these methods are still of limited 511 

value when dealing with long response spaces with high temporal precision. Other approaches to tackle 512 

this issue have been proposed, for example, based on simplifying the structure of interactions among 513 

possible information-carrying symbols with a minimum information loss (Ganmor et al. 2011; Panzeri 514 
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and Schultz 2001; Shew et al. 2011),developing binless estimations (Victor 2002) or defining spike train 515 

distances to quantify information (Victor and Purpura 1996). 516 

In a classic work, Richmond and colleagues proposed to reduce the dimensionality of the 517 

response space by using PCA (Richmond and Optican 1987). However, PCA offers no time resolution - 518 

thus being limited for characterizing time-resolved patterns - and it relies on identifying directions of 519 

maximum variance of the data, which may or may not match the dimensions with relevant information. 520 

Here, following the general idea of dealing with high dimensional spaces by implementing a 521 

dimensionality reduction that captures relevant information, we proposed a new computational 522 

approach to assess information carried by time patterns in single and multiple neurons. This approach is 523 

based on: i) extracting features of the spike trains with the wavelet transform, ii) a dimensionality 524 

reduction by which a subset of wavelet coefficients are selected using information theory, and iii) a 525 

quantification of time-pattern information by using a decoding approach.  526 

With both simulated and real data we demonstrated a robust performance of the WI method in 527 

capturing meaningful information in the spike trains, without committing to specific assumptions about 528 

the time scales at which information is encoded and even capturing information in localized patterns at 529 

multiple time scales. This feature is of utmost importance considering that recent studies have shown 530 

that neural responses carry complementary information at a number of different time scales, ranging 531 

from millisecond precise spike patterns to slow rate variations or slow network oscillations on the scale 532 

of hundreds of milliseconds (Bullock 1997; Fairhall et al. 2001; Lisman 2005; Nadasdy 2009; Panzeri et al. 533 

2010; Victor 2000). However, it has been challenging to characterize how these neural responses work 534 

together to represent information, because most spike train analysis methods are committed from the 535 

beginning by the specific choice of an optimal time scale. 536 
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The performance of the WI method was minimally affected by increases in the dimensionality of 537 

the responses (obtained by increasing the time resolution, the length of the response considered, or the 538 

number of neurons) compared to other methods. In fact, compared to methods like PCA, using the 539 

whole (binned) response space (i.e. without any dimensionality reduction), or using spike counts the WI 540 

method was able to extract more information from the spike trains, as quantified by decoding 541 

performance. In addition, the information obtained with wavelets was more robust to varying degrees 542 

of background activity and jitter in the precise timing of the spikes. For the cortical data analyzed here, 543 

high information values were found with PCA, but only when the optimal time scale (i.e. response length 544 

and resolution bin) was considered. Crucially, information values obtained with wavelets were much less 545 

sensitive to the choice of the time scale used to study the neural responses. In our view, these 546 

advantages arise because the convolution with Haar functions implemented with the dyadic wavelet 547 

transform identifies local contrasts at different time locations and at different time scales. In other 548 

words, the wavelet transform offers a time resolved, multi-scale representation that automatically and 549 

efficiently represents time patterns of different lengths and resolutions, appearing at different times. 550 

The advantages of wavelets for spike train analysis reported here are in line with the reported 551 

advantages of wavelets for spike sorting (Quiroga 2012; Quiroga et al. 2004) and for denoising evoked 552 

potentials (Ahmadi and Quian Quiroga 2013).  553 

We also compared the WI method to the MS method (Victor and Purpura 1996), a widely used 554 

metric based approach to estimate information in spike trains. We found that overall the WI method 555 

performed better more robustly than the MS method. In particular, MS results varied substantially 556 

depending on the choice of q (defining the weight given to precise timing vs. number of spikes) and no 557 

q-value gave good results in all conditions – i.e. for different firing rates and jitters. So, it may not be 558 

possible to find a single q-value that is suitable for different neurons in a dataset (with different firing 559 

rates, time pattern resolution, degrees of information, etc). On the contrary, WI is parameter free and 560 
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performed well in all tested cases. With the real data, the performance of the MS method was lower 561 

than WI, likely because of the compact time localization of the informative spikes, something that is 562 

captured by the WI method when doing the selection of informative wavelet coefficients. Another 563 

aspect of practical importance is that the MS method took significantly longer to compute than WI. For 564 

the monkey data, while the WI method required consistently between 100 and 150 seconds to compute 565 

the results for each neuron, the MS method processing time was strongly correlated with the mean rate 566 

of the responses: computations for neurons firing around 2.5 Hz on average took about 200 seconds or 567 

more per q value, whereas computations for neurons firing around 5 Hz took around 400 seconds. Since, 568 

as in previous works (Roussin et al. 2012; Victor and Purpura 1996), results are calculated for about 569 

dozens of different q values, computations with the MS method took about two orders of magnitude 570 

longer compared to wavelets. 571 

A key strength of the WI approach is its data-robustness. In particular, the WI method required 572 

fewer trials to achieve optimal results, and needed fewer features to represent the relevant information 573 

in the spike trains compared to other methods. This efficient compression of the responses mitigates 574 

the ‘curse of dimensionality’ and allows the analysis of larger responses, the use of higher resolutions, 575 

and also the possibility of population coding analyses where features of several neurons are considered 576 

together. This represents a significant advance compared to the other dimensionality reduction based 577 

approaches examined in our study, which in some cases tended to underestimate the time resolution or 578 

the amount of information in the spike trains because actual increases in information were 579 

counterbalanced by the limitations of these methods to deal with higher dimensional responses.  580 

It is of interest to briefly discuss how the data robustness of the WI method (due to its highly 581 

efficient reduction of dimensionality) relates to the biases in extracting information from neural 582 

responses often discussed in the literature (Panzeri et al. 2007). First, the success of the WI method in 583 
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effectively compressing the responses to a very small number of informative dimensions leads to a 584 

strong reduction in the downward bias in decoding performance, which is given by a limited number of 585 

data for training the decoder (Jacobs et al. 2009; Quiroga and Panzeri 2009). This is demonstrated by the 586 

success of the WI method to extract high information values even for very fine temporal resolutions in 587 

real data and the nearly optimal performance obtained with relatively few trials with the simulated 588 

data. As a rule of thumb, 10 or more trials per stimulus were found to be enough to avoid a major 589 

downward bias problem (see Figure 4b). Second, the higher information values achieved by the WI 590 

method allow reducing (and correcting more efficiently) the upward bias in estimation of information 591 

from the confusion matrix due to the limited number of experimentally available test data. As shown in 592 

Panzeri and Treves (1996), this upward bias is roughly proportional to the number of different stimuli 593 

that are predicted by the decoder when a given stimulus is presented. As a rule of thumb, the 594 

corrections for the upward bias in the confusion matrix information calculation work well if the number 595 

of different stimuli that are predicted by the decoder when a given stimulus is presented is 2 to 4 times 596 

smaller than the number of trials per stimulus (Panzeri et al. 2007). The WI method gives  less decoding 597 

errors, and  therefore a smaller upward bias in confusion matrix information calculations.  598 

 We stress that with the WI method we do not estimate directly the mutual information 599 

contained in the stimulus response probabilities, either in the form of binary words, as in (Strong et al. 600 

1998), or in the form of PC scores, as in (Optican and Richmond 1987). Instead, we limited ourselves to 601 

the calculation of cross-validated confusion matrices. These estimations give a lower bound to the 602 

information available in the data (Quiroga and Panzeri 2009). However, it is in principle possible to 603 

extend the WI method to help also direct calculations of information from neural activity (Strong et al. 604 

1998). It is well known that such direct computations of information from binary response words are in 605 

practice possible only for short response windows, due to the curse of dimensionality (Kayser et al. 606 

2009). In this respect, the WI method may be further developed to extend the applicability of direct 607 
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calculations of information to longer windows by providing a relatively low-dimensional representation 608 

of the binary word response, thus providing more data robust direct calculations of information. Such 609 

implementations are beyond the scope of the present paper but are ripe for future work. 610 

 We have also shown that the WI approach can be adapted to denoise spike trains and to 611 

estimate and visualize correlations across neurons. In particular, we found an improved performance in 612 

estimating information in the correlated firing of neurons compared to a MS approach (Victor and 613 

Purpura 1996) or the standard technique of analyzing coincidence counts, what has been called “unitary 614 

events” (Grun et al. 2002). As in the case of other methods to assess time-pattern information, the 615 

caveat of the unitary event approach is that it is highly dependent on the time resolution used to bin the 616 

spike trains. For instance, co-activations can be missed if the time scale at which they occur does not 617 

match the window used for binning the spiking activity (Lopes-dos-Santos et al. 2013). Likewise, results 618 

with the MS approach rely on the choice of an optimal q-value. The advantage of wavelets in this 619 

respect is the fact that it allows evaluating correlated firing at different time scales and for specific time 620 

localizations. 621 

Finally, the possibility of denoising spike trains allows a much clearer visualization of informative 622 

time pattern and a better characterization of the neuron’s selectivity (though reverse correlation), as we 623 

illustrated with data from monkey auditory cortex. The spike train denoising based on WI could in 624 

principle be used for a number of other novel applications. For example, it can be used to better 625 

characterize relationships between spiking activity and local field potentials (particularly their phase at 626 

selected frequency bands) carrying out information about the stimuli. The better visualization of the 627 

stimulus driven spikes can be also useful to study relationships between stimulus-driven and “internal 628 

state” components of neural activity, a topic of current interest in systems neuroscience (Harris and 629 

Thiele 2011). In general, the more accurate characterization of the neurons’ tuning offered by WI 630 
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denoising will likely offer important practical advantages for the discovery of the “thesaurus” that 631 

relates sensory stimulus to neural responses, and could further facilitate the understanding of what 632 

features encoded by the neurons do contribute to behavior.  633 

A MATLAB implementation of the WI is available from: www.le.ac.uk/csn/WI. 634 
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FIGURE LEGENDS 645 

Figure 1. Description of the method. (A) Simulated neural responses to 2 stimuli. (B) Responses are 646 

binned and convolved with Haar wavelets. Note that for the example in (A), the time pattern associated 647 

with Stimulus 1 matches both scale and time localization of the wavelet in the first level displayed in 648 

blue; whereas the time pattern associated with Stimulus 2 has a larger jitter and fits with a wavelet in a 649 

higher scale (shown in red). (C) Wavelet coefficients with significant time pattern information are 650 

identified. Dashed lines represent statistical threshold for information significance for each 651 

decomposition level (see Methods). The red and blue circles denote the information values 652 

corresponding to the wavelet coefficients in B. (D) Decoding results in the form of confusion matrices 653 

using the total spike count (left) or the informative wavelet coefficients (right) as inputs to the decoder.  654 

Figure 2. Decoding time patterns at different time scales. (A) Simulated responses to 4 stimuli. Marks 655 

represent spikes at a given time (horizontal axis) in a given trial (vertical axis). Twenty trials per stimulus 656 

are displayed (dashed lines separate trials of different stimuli) and only the first 152 milliseconds of each 657 

trial are displayed for clearer visualization. Vertical axes denote the size of the bins used (light gray:1-ms 658 

and dark gray:8-ms bins).(B) Confusion matrices of naïve Bayesian decoders trained with PCs extracted 659 

from responses binned with 1 or 8-ms bins (left and middle panel, respectively), and based on 660 

informative wavelet coefficients (right panel). Decoding performances are shown in white. (C) Confusion 661 

matrices obtained when using wavelet coefficients from specific decomposition levels, as labeled.  662 

Figure 3. Results for different examples, background firing and jitter. The panels show 3 examples of 663 

simulated responses to 4 different stimuli. Ten trials per stimulus are displayed. The background firing 664 

was modeled as a Poisson process with mean rate of 4 (left panels) or 16 spikes/second (right panels). 665 

Stimulus-specific time patterns were added to the background firing with a 2- (left panels) or 8-ms (right 666 

panels) jitter. 667 
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Figure 4. Performance of the WI method. (A) The different plots show the time pattern information, 668 

quantified in terms of decoding performance using spike counts (black), principal components with 669 

largest variance (purple), principal components with significant information (blue), no dimensionality 670 

reduction (green), and wavelets (red). Each data point represents the average of 20 simulations (error 671 

bars show SEM) for Example 1 of Figure 2 with varying jitters and firing rates, as labeled.(B) Relative 672 

decoding performance as a function of the training set size for the different methods. Results are 673 

averages across all combinations of background firing rates and jitters. Note that in nearly all cases the 674 

wavelet-based algorithm outperformed the other methods. 675 

Figure 5. Information with varying number of features. (A) Decoding performance for all 3 examples, 676 

with 8-Hz background firing rate and 4-ms jitter, as function of number of features used for decoding 677 

(mean ± SEM; 40 simulations). For all these simulations we chose intermediate values of background 678 

firing rate (8-Hz) and jitter (4 ms). Features were ranked by information (wavelets, binned responses and 679 

PCinfo) or by variance (PCvar). The training set size was of 15 simulations per stimulus. (B) Same as A, 680 

but using with a training set of 50 trials per stimulus. 681 

Figure 6. Time patterns in responses from monkey A1 neurons. (A) Time pattern information of 34 A1 682 

neurons extracted using the PCA-based and no-reduction methods (y-axis), against the performance 683 

achieved with wavelet (x-axis). Most cases are below the diagonal (dashed lines), indicating a better 684 

performance of the wavelet-based method. The training set size was of fifteen trials per stimulus. (B) 685 

Average decoding performance for different methods as a function of the training set size. Bars denote 686 

standard error of the mean. The performance with wavelets was larger than with the other methods. (C) 687 

Average decoding performance for different methods as a function of the bin size (15 trials per stimulus 688 

used for training). (D) Average decoding performance for the different methods as a function of number 689 

of simultaneously recorded neurons used. Marks show averages across 10 sessions and bars denote 690 
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standard error of the mean. As in (A), fifteen trials per stimulus were used for training. The performance 691 

with wavelets was significantly larger when considering more than 1 neuron. 692 

Figure 7. Time patterns in rat barrel cortex neurons. (A) Responses of a representative neuron to 693 

mechanical stimulation of different whiskers (C1-3, D1-3, E1-3). Each dot denotes a spike in a given trial 694 

(vertical axis) at a given time (horizontal axis). Forty-eight trials were recorded for each whisker. Stimuli 695 

were delivered at 0-ms and lasted 100-ms, which corresponded to the OFF response. (B) Decoding 696 

performance for 84 responsive neurons with wavelets (x-axis) compared to spike count, PCAinfo, PCAvar 697 

and with no dimensionality reduction, respectively. Most entries are below the diagonal (dashed line), 698 

thus indicating a better performance with wavelets. (C) Left: Mean decoding performance for different 699 

methods as a function of the post-stimulus time window. Right: Mean information for the different 700 

methods, estimated from the confusion matrices (see text for details). Solid lines denote averages and 701 

shaded areas SEM. (D) Left: Decoding performance for different methods as function of bin size. Right: 702 

Stimulus information for different methods estimated from confusion matrices as function of bin size. 703 

(E) Mean decoding performance for the different methods as a function of number of neurons used. 704 

Solid lines show averages across a set of 30 randomly chosen neurons (except for 100 neurons, where 705 

only 1 combination is possible) and shaded areas denote SEM (barely visible due to the very small error). 706 

As before, note the better performance of wavelets for nearly all post-stimulus time windows and any 707 

number of neurons considered. 708 

Figure 8. Comparison of MI and MS methods with simulated data. (A) Performance of WI and MS (for 3 709 

different values of q, as labeled) methods for multi-scale responses of Figure 2A with varying 710 

background rates. Shown are mean and SEM across 20 simulations for each noise level. (B) Performance 711 

of WI and MS for the same examples in Figure 4A. For space reasons, we do not show results with 32 712 
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and 64-ms jitters (performance was close to chance levels in all these cases). (C) Same as Figure 4B 713 

comparing the WI and MS approaches. 714 

Figure 9. Comparison of the MI and MS methods with real data. (A) Left panels: Same as in Figure 6A 715 

for the WI and the MS method with 4 representative q values. In average, decoding performance 716 

achieved with wavelets was 26 ± 8%, 24 ± 8%, 144 ± 35% and 449 ± 73% (mean ± SEM) above the one 717 

obtained by the MS method when q employed was 0.045, 0.128, 0.362 and 1.024, respectively. Right 718 

panel: Decoding performances for WI and MS methods (for the same q values). Shown are mean and 719 

SEM. Wavelets gave better results for all q values (n = 34, paired t-test, p<0.05). (B) Left panels: 720 

comparison of WI and MS for the same data as in Figure 7B. For this dataset, decoding performance 721 

achieved with wavelets was 46 ± 5%, 54 ± 5%, 61 ± 5% and 68 ± 6% (mean ± SEM) superior the one 722 

obtained by the MS method (same q values as in A). Right panel: Comparison of WI and MS performance 723 

for the rat data. Wavelets gave better results for all q values (n = 84, paired t-test, p<10-23). 724 

Figure 10. Denoising time patterns with simulated data. (A) Left panels: A 100-trial realization (25 trials 725 

per stimulus) of Example 3 from Figure 2, before (top) and after (bottom) denoising. Right panels: 726 

Peristimulus-Time-Histograms (PSTHs) for each of the 4 stimuli before (top) and after denoising 727 

(bottom). (B) Number of errors (see text) after denoising (in red) obtained for Example 3with different 728 

jitters (same values used in Figure 3) as function of background firing rate. Results are averages across 729 

40 simulations (error bars denote SEM). For comparison, results obtained when thresholding the original 730 

PSTHs (without prior wavelet denoising; see text for details) are shown in green. Results obtained by 731 

randomly erasing the same number of spikes as with wavelet denoising are displayed in black. In most 732 

cases, the lowest number of errors was obtained after wavelet denoising. 733 

Figure 11. Denoising time patterns with monkey A1 responses. (A) Responses to 8 stimuli of a 734 

representative A1 neuron before (top) and after (bottom) denoising. Gray lines separate trials 735 
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corresponding to the different stimuli.(B) Spike trigger averages (STA) of the time-frequency 736 

representation of the acoustic stimuli computed from the original spike trains (top), when adding a 737 

Poisson noise with 100-Hz mean firing rate (middle), and after denoising the spike train with the Poisson 738 

noise (bottom). Note that adding the Poisson noise dilutes the original time frequency representation, 739 

which is recovered after denoising. 740 

Figure 12. Extracting information from spike synchrony. (A) Left: Responses of two simulated neurons 741 

to two stimuli. Spikes between 200 and 360-ms were coincident in trials corresponding to stimulus 1 (in 742 

red). This transitory synchrony was the only source of stimulus information in the responses. Right: 743 

Denoised spike trains. (B)Performance obtained with the wavelet-based method, by the MS approach 744 

and with the number of spike coincidences for different spike jitters and synchrony durations. (C) 745 

Average decoding performance for all methods across all jitter and background levels.  746 
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	ABSTRACT
	We present a new method to assess the information carried by temporal patterns in spike trains. The method first performs a wavelet decomposition of the spike trains, then uses Shannon information to select a subset of coefficients carrying informatio...
	The importance of precise spike timing in carrying meaningful information has attracted much attention (Quiroga and Panzeri 2009; Rieke et al. 1999). Does the temporal structure of spike trains provide information beyond the total spike count, or does...
	Experimental evidence accumulated over the last three decades has suggested that precise spike patterns - on the scale of milliseconds - do indeed convey information not available in rate codes (Arabzadeh et al. 2006; de Ruyter van Steveninck et al. 1...
	A solution to the combinatorial explosion problem is to reduce the dimensionality of the spike trains. To this end, a well-known approach is to compress the neural responses into a small number of features using Principal Component Analysis (PCA). By ...
	The wavelet transform is the inner product of a signal with dilated and translated versions of a wavelet function (Mallat 2008; Strang and Nguyen 1996).Formally, given a signal  and a wavelet function  the continuous wavelet transform (CWT) is defined...
	,   with
	,
	where( are the scale and translation parameters, respectively. The translation parameter changes the location of the wavelet function, while the scaling parameter dilates or compresses it. The correlation of the signal  with the dilated (contracted) v...
	Starting from the binned spike trains, in this study we implemented a 5-scale dyadic wavelet decomposition using Haar wavelets, which is a square function that is ideally suited to identify local contrasts at different scales. The spike trains were al...
	From the total set of wavelet coefficients, equal to the number of bins in the spike trains, we selected a subset of coefficients based on their mutual information with the stimuli, defined as (Shannon 1948):
	where is the set of stimuli and is the set of values of a wavelet coefficient . The significance of the information given by each coefficient was established based on surrogate testing: for each coefficient we calculated a distribution of information ...
	In order to estimate information in a set of features, we used a cross-validated (leave-one-out) naïve Bayesian decoder to assign the response on each trial in the testing set to a given stimulus, which gives a lower bound of the information available...
	In cases where the linear decoder introduced systematic errors (Figure 7), we computed the mutual information between the actual and the predicted stimuli from the confusion matrices:
	,
	where is the set of actual stimuli presented to the decoder and  is the set of predicted stimuli by the decoder. In order to correct for the upward limited-sampling bias in the information estimate, we used the quadratic extrapolation procedure descri...
	We also compared the WI method with the Metric Space (MS) approach (Victor and Purpura 1996), which clusters responses based on a distance metric between spike trains. This distance is defined as the minimum “cost” of converting a spike train into an...
	To visualize spike patterns containing information, we adapted the WI method to denoise the spike trains by: (1) computing the wavelet decomposition of the mean PSTH of each stimulus, (2) denoising the mean PSTHs by reconstructing them using only the ...
	To estimate the information given by the correlated firing of pairs of neurons (i,j), we computed the wavelet decomposition for each trial n and calculated the normalized distance between the values of a corresponding wavelet coefficient (i.e. conside...
	,𝐷-𝑐,𝑛-𝑖,𝑗.=,,,𝑤-𝑐,𝑛-𝑖.−,𝑤-𝑐,𝑛-𝑗..-,,𝑤-𝑐,𝑛-𝑖..+,,𝑤-𝑐,𝑛-𝑗...  ,
	where,𝑤-𝑐,𝑛-𝑖.is the value of wavelet coefficient c of neuron i at trial n. Analogous to the procedure described in Figure 1C, we then selected the distances ,𝐷-𝑐-𝑖,𝑗. that had significant information about the stimuli and used these distance ...
	Monkey A1 data
	As described in a previous work (Kayser et al. 2010), neural activity was recorded from caudal auditory cortex (mainly areas A1 and caudal belt) of three alert animals using multiple microelectrodes. The data was high-pass filtered (4 Hz), amplified (...
	Rat S1 data:
	As described in previous works (Lebedev et al. 2000; Panzeri et al. 2001), recordings in the somatosensory cortex of adult Wistar rats were performed with an array of six tungsten microelectrodes. Neurons in barrel-columns C1-3, D1-3 and E1-3 were rec...
	RESULTS
	OUTLINE OF THE WAVELET INFORMATION FRAMEWORK
	The first step of the WI method is to convolve the spike train responses (to repeated presentations of a set of stimuli; Figure 1A) with Haar wavelets (Figure 1B; see Methods). Thus, each trial is decomposed into a set of wavelet coefficients represen...
	We used simulated data to quantify the performance of the WI method and compared it to other approaches. The simulated data consisted of a set of 200-ms responses to four hypothetical stimuli created with a two-step procedure: (1) a specific spike tim...
	The example in Figure 2A illustrates the ability of the WI method to extract information at different time scales. A relatively precise spike timing distinguishes the first two stimuli (at the bottom; generated using a jitter of 0.5 ms) and a pattern ...
	For comparison with another dimensionality reduction method, we applied the PCA based developed by Richmond and Optican (1987). For this, we computed the principal components (PC) from the spikes trains binned either with 1-ms or with 8-ms windows (ve...
	To test the WI method in scenarios mimicking different recording conditions, we generated 3 examples (Figure 3) including patterns with different time localizations, precision and complexity, and we systematically varied the background firing rate (2 ...
	We further implemented a similar PCA-based approach but selecting the principal components with the highest information. Also, we calculated performance using the whole binned responses (i.e., with no reduction of dimensionality). We then compared the...
	Figure 4A displays results for different jitters and background rates for Example 1 of Figure 3 (using 15 trials per stimulus for training and 20 trials for testing).The results displayed are the averages of 20 simulations for each combination of para...
	We then investigated how the number of trials used for training the decoder, and for selecting the set of response features used for decoding, affected performance. To do so, we repeated the analysis of Figure 4A but systematically varied the training...
	To evaluate the efficiency of each method in reducing the dimensionality of the responses without loss of information, we computed the performance of the naïve Bayesian classifiers as a function of the number of response features used for classificati...
	Interestingly, the performance using principal components with largest variance (PCVar) had a much steeper increase of information with the number of features compared to the performance obtained with PC coefficients chosen based on information (PCinf...
	PERFORMANCE WITH DATA FROM THE MONKEY AUDITORY CORTEX
	Single neuron recordings were performed in primary auditory (A1) cortex in response to a 40-sec long sequence of pseudorandom tones (see Methods for details). We divided the sequence into 500-ms time intervals and denoted each time interval as a diffe...
	For each neuron, we first evaluated the performance of the various methods with a time resolution of 1-ms, using 15 trials for training. Figure 6A shows the decoding performance of each neuron using the different approaches described above (y-axis), a...
	Figure 6B shows decoding performance versus training set size and reveals that the WI method performed significantly better than the other methods. Moreover, performance with wavelets decreased only slightly when decreasing the training set size and w...
	We then quantified the impact of temporal precision used to quantify the neural responses. Figure 6C shows that decoding performance was maximal when using a bin size of about 5-10ms (and more towards 10 ms for the PCA based methods). This result is c...
	Next, we evaluated the ability of all methods to extract information from populations of simultaneously recorded cells. For this, we used the data of 10 (out of 12) sessions where 2 or more responsive neurons were recorded simultaneously. For each ses...
	PERFORMANCE WITH DATA FROM THE RAT BARREL CORTEX
	To evaluate the potential of the WI method to optimally extract time localized information, we analyzed neuronal responses in the rat barrel cortex. In this data, a precise onset time is given by the time of whisker stimulation. We used a naïve Bayesi...
	Figure 7D shows both the decoding performance (left) and the information extracted from the confusion matrices (right) as a function of the bin size used. The peak of performance and information was at a bin size of about 25 ms for all methods, except...
	Finally, we studied the information carried by populations of neurons. For this, we assumed that all neurons were recorded simultaneously (an approach that doesn’t take into consideration the effects of correlations) and repeated the procedure used in...
	COMPARISON WITH THE METRIC SPACE METHOD
	Next we compared the WI method with the MS approach for different q values (see Material and Methods), both with the simulated and real data reported above. Figure 8A shows the results of such comparison with same 20 simulations illustrated in Figure...
	Figure 8C displays results as function of training set size (as in Figure 4B). For these examples, a q value of 0.128 gave the best overall results for the MS method. These results were, however, not as good as the ones obtained with the WI method. We...
	Results of the comparison between the WI and MS method for the real data are shown in Figure 9. In particular, Figure 9A (left panels) displays the results obtained for the A1 monkey neurons (as in Figure 6) using four representative q values for the...
	DENOISING SPIKE PATTERNS
	We next investigated whether the WI method could be used to denoise single-trial spike trains. Denoising entails, in brief, identifying spikes correlated with the informative wavelet coefficients and discarding the remaining, non-informative ones (se...
	To quantify these observations, we repeated this procedure varying systematically the jitter and background firing rate (using 15 trials per stimulus). Figure 10B shows the number of errors obtained by the denoising procedure for different jitters as ...
	Next, we applied this denoising approach to the spikes of a representative neuron taken from the auditory dataset. Figure 11A shows the raster plots before (top) and after (bottom) denoising, where it is clear that time patterns (spikes consistent acr...
	INFORMATION IN THE SYNCHRONOUS FIRING OF NEURONS
	We next investigated whether the WI method could be extended to quantify the information conveyed by the synchronous firing of pairs of neurons, by assuming that in this case the informative wavelet coefficients for both neurons should covary across ...
	Performance was tested by simulating the activity of a pair of neurons with a correlated firing during a ‘synchrony window’ (200-360 ms in the case of the example displayed in Figure 12A, left) during the presentation of one of two stimuli (stimulus ...
	We ran several simulations like the one illustrated in Figure 12A (left panel), varying systematically the duration of the synchrony window and adding time jitters in the co-activation. We used 20 trials per stimulus for training the decoders and 20 f...
	We then extended the spike train denoising procedure described above to better visualize informative patterns of synchronous firing. For this, we used the distances of the selected wavelets. The mask for a given stimulus (analogous to the denoised PST...
	DISCUSSION
	A key problem in assessing the contribution of precise time patterns to sensory coding is the high dimensionality of the datasets. While several statistical methods have been developed to correct for sampling biases arising in these cases (Montemurro ...
	In a classic work, Richmond and colleagues proposed to reduce the dimensionality of the response space by using PCA (Richmond and Optican 1987). However, PCA offers no time resolution - thus being limited for characterizing time-resolved patterns - an...
	With both simulated and real data we demonstrated a robust performance of the WI method in capturing meaningful information in the spike trains, without committing to specific assumptions about the time scales at which information is encoded and even ...
	The performance of the WI method was minimally affected by increases in the dimensionality of the responses (obtained by increasing the time resolution, the length of the response considered, or the number of neurons) compared to other methods. In fac...
	We also compared the WI method to the MS method (Victor and Purpura 1996), a widely used metric based approach to estimate information in spike trains. We found that overall the WI method performed better more robustly than the MS method. In particula...
	A key strength of the WI approach is its data-robustness. In particular, the WI method required fewer trials to achieve optimal results, and needed fewer features to represent the relevant information in the spike trains compared to other methods. Thi...
	It is of interest to briefly discuss how the data robustness of the WI method (due to its highly efficient reduction of dimensionality) relates to the biases in extracting information from neural responses often discussed in the literature (Panzeri et...
	We stress that with the WI method we do not estimate directly the mutual information contained in the stimulus response probabilities, either in the form of binary words, as in (Strong et al. 1998), or in the form of PC scores, as in (Optican and Ric...
	We have also shown that the WI approach can be adapted to denoise spike trains and to estimate and visualize correlations across neurons. In particular, we found an improved performance in estimating information in the correlated firing of neurons co...
	Finally, the possibility of denoising spike trains allows a much clearer visualization of informative time pattern and a better characterization of the neuron’s selectivity (though reverse correlation), as we illustrated with data from monkey auditory...
	A MATLAB implementation of the WI is available from: www.le.ac.uk/csn/WI.
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	FIGURE LEGENDS
	Figure 1. Description of the method. (A) Simulated neural responses to 2 stimuli. (B) Responses are binned and convolved with Haar wavelets. Note that for the example in (A), the time pattern associated with Stimulus 1 matches both scale and time loca...
	Figure 2. Decoding time patterns at different time scales. (A) Simulated responses to 4 stimuli. Marks represent spikes at a given time (horizontal axis) in a given trial (vertical axis). Twenty trials per stimulus are displayed (dashed lines separate...
	Figure 3. Results for different examples, background firing and jitter. The panels show 3 examples of simulated responses to 4 different stimuli. Ten trials per stimulus are displayed. The background firing was modeled as a Poisson process with mean r...
	Figure 4. Performance of the WI method. (A) The different plots show the time pattern information, quantified in terms of decoding performance using spike counts (black), principal components with largest variance (purple), principal components with s...
	Figure 5. Information with varying number of features. (A) Decoding performance for all 3 examples, with 8-Hz background firing rate and 4-ms jitter, as function of number of features used for decoding (mean ± SEM; 40 simulations). For all these simul...
	Figure 6. Time patterns in responses from monkey A1 neurons. (A) Time pattern information of 34 A1 neurons extracted using the PCA-based and no-reduction methods (y-axis), against the performance achieved with wavelet (x-axis). Most cases are below th...
	Figure 7. Time patterns in rat barrel cortex neurons. (A) Responses of a representative neuron to mechanical stimulation of different whiskers (C1-3, D1-3, E1-3). Each dot denotes a spike in a given trial (vertical axis) at a given time (horizontal ax...
	Figure 8. Comparison of MI and MS methods with simulated data. (A) Performance of WI and MS (for 3 different values of q, as labeled) methods for multi-scale responses of Figure 2A with varying background rates. Shown are mean and SEM across 20 simula...
	Figure 9. Comparison of the MI and MS methods with real data. (A) Left panels: Same as in Figure 6A for the WI and the MS method with 4 representative q values. In average, decoding performance achieved with wavelets was 26 ± 8%, 24 ± 8%, 144 ± 35% an...
	Figure 10. Denoising time patterns with simulated data. (A) Left panels: A 100-trial realization (25 trials per stimulus) of Example 3 from Figure 2, before (top) and after (bottom) denoising. Right panels: Peristimulus-Time-Histograms (PSTHs) for eac...
	Figure 11. Denoising time patterns with monkey A1 responses. (A) Responses to 8 stimuli of a representative A1 neuron before (top) and after (bottom) denoising. Gray lines separate trials corresponding to the different stimuli.(B) Spike trigger averag...
	Figure 12. Extracting information from spike synchrony. (A) Left: Responses of two simulated neurons to two stimuli. Spikes between 200 and 360-ms were coincident in trials corresponding to stimulus 1 (in red). This transitory synchrony was the only s...

