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The benefits of using electronic health records (EHRs) for disease risk screening and personalized health-care
decisions are being increasingly recognized. Here we present a computationally feasible statistical approach with
which to address the methodological challenges involved in utilizing historical repeat measures of multiple risk fac-
tors recorded in EHRs to systematically identify patients at high risk of future disease. The approach is principally
based on a 2-stage dynamic landmark model. The first stage estimates current risk factor values from all available
historical repeat risk factor measurements via landmark-age–specific multivariate linear mixed-effects models with
correlated random intercepts, which account for sporadically recorded repeat measures, unobserved data, and
measurement errors. The second stage predicts future disease risk froma sex-stratifiedCox proportional hazardsmodel,
with estimated current risk factor values from the first stage.We exemplify thesemethods by developing and validating a
dynamic 10-year cardiovascular disease risk prediction model using primary-care EHRs for age, diabetes status, hyper-
tension treatment, smoking status, systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol in
41,373 persons from 10 primary-care practices in England andWales contributing to The Health Improvement Network
(1997–2016). Using cross-validation, the model was well-calibrated (Brier score = 0.041, 95% confidence interval:
0.039, 0.042) and had good discrimination (C-index = 0.768, 95%confidence interval: 0.759, 0.777).

cardiovascular disease; dynamic risk prediction; electronic health records; landmarking; mixed-effects models;
primary care records

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; EHRs, electronic health records; HDL-C, high-density lipoprotein
cholesterol; SBP, systolic blood pressure.

Using electronic health records (EHRs) to systematically iden-
tify persons at high risk of developing future disease outcomes
has the potential to increase the cost-effectiveness of health care
(1); however, existing risk prediction models do not fully opti-
mize available historical data. The development of computation-
ally feasible statistical methods for predicting future disease risk
from existing EHRs presents specific methodological challenges
and opportunities.

First, risk prediction models are typically developed using tra-
ditional prospective study designs, which define a baseline origin
at which risk factors were observed and from which to predict
future disease risk. However, EHRs are dynamic in nature—for
example, in primary-care records, an individual’s follow-up
begins at registration with a general practice, risk factors are

measured sporadically during general practice visits, and follow-
up continues until the person transfers out or dies. Defining
arbitrary time origins for model development without allowing
for the in- and outflow of study participants over time can intro-
duce bias (2). Second, risk predictionmodels typically use single
measures of error-prone risk factors (e.g., blood pressure and
cholesterol), but EHRs often contain data on risk factorsmeasured
repeatedly over time which could be utilized both for model
development and for predicting future disease risk. In partic-
ular, repeated measurements can be used to predict error-free
“estimated current values” of risk factors,whichmay increase their
predictive ability (3). Third, most risk prediction models require
complete risk factor data in order to predict future risk. An
exception in cardiovascular disease (CVD) risk prediction is the
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QRISK2 model (4), which has a built-in tool for substituting
missing data on risk factors using age- and sex-specific popula-
tion average values. Notably, this substitution approach is not
compatible with the multiple-imputation approach used for
model development of QRISK2 and has not yet been formally
validated (5). Since EHR systems are primarily designed for
patient management and administrative purposes, there can be
large amounts of unobserved information on risk factors that
needs to be handled appropriately and compatibly both in model
development and for predicting future disease risk.

While multiple methods exist for developing risk prediction
models using EHRs, a previous systematic review found that only
8% of studies modeled repeated longitudinal measures, only 54%
accounted formissing data, only 16% appropriately accounted for
censoring and loss to follow-up, and none assessed informative
observations (where the clinic visit itself provides meaningful
information) (6). Our aim was to establish a computationally fea-
sible generic statistical framework that accounts for these potential
advantages and biases of EHRs in the development of dynamic
risk prediction models that leverage repeated measurements and
handle unobserved data on routinely recorded risk factors. Our
approach combines 2 existing methods, landmark-age models
and multivariate linear mixed-effects models (2, 7). A landmark
age is a reference point (e.g., 40, 45, 50,…, 85 years) at which
we want to make risk predictions using risk factor information
collected up to that age. A series of prediction models, which we
call landmark-age models, are constructed with time origin at
the landmark age and past risk factor information from eligible
individuals (e.g., in our setting these are persons who are cur-
rently registered with a general practice and at future risk of
disease at the landmark age). As such, individuals may con-
tribute to one or more prediction models, depending on their
eligibility at the landmark age reference points.

Typically, landmark-age models are constructed using Cox
proportional hazardsmodels with the last observed risk factor val-
ues. We propose an extension to this, whereby we replace the last
observed valueswith error-free risk factor values estimated from a
multivariate linear mixed-effects model using all available
repeated measures of past risk factor values for each landmark
age (8). Multivariate mixed-effects models intrinsically handle
unobserved data and sporadically recorded repeat measures (9)
and their measurement errors (10). The approach also provides
flexibility to account for the number (or rate) of clinic visits as a
proxy for illness severity or health anxiety. There is a strong body
of statistical evidence showing the benefits and potential applica-
tions of modeling longitudinal data using mixed-effects linear
regression models (3, 11–14), but this method is not often em-
ployed in the development of risk prediction models using EHRs
(6). Moreover, using landmarking to model data in EHRs has
been previously proposed (15) and has been combined with uni-
variate mixed-effects modeling (16, 17) but not in the context of
dynamic risk predictionmodels.

In the current study, we explore how landmarking can be com-
bined with multivariate mixed-effects linear regression models to
leverage the advantages of each method in order to generate
dynamic risk prediction models suitable for use in EHRs.
We illustrate our approach through the estimation of 10-year
CVD risk using EHRs from 10 general practices in England
andWales.

METHODS

Data source

We used patient data from 10 randomly selected general prac-
tices that contributed data to The Health Improvement Network
(18), a United Kingdom general practice database that derives
data from routine administrative and clinical practice. During con-
sultations with patients, family physicians enter data on medical
symptoms and diagnoses using Read codes (19) (a hierarchical
classification system), while information on drug prescriptions is
entered automatically into the EHRs. The Health Improvement
Network captures information on patient demographic character-
istics, practice-level data, diagnoses and symptoms, specialist re-
ferrals, laboratory testing, disease monitoring, prescribing, and
death. For this study, we created code lists for the risk factors and
outcomes using previously described methods (20). Code lists
were reviewed by a clinician (I.N.) and have been published
on ClinicalCodes.org.

The main outcome was newly recorded diagnoses of nonfatal
or fatal CVD, where CVDwas defined, as with previous primary
care risk scores (4), as angina, myocardial infarction, stroke, tran-
sient ischemic attack, or major coronary surgery and revasculari-
zation. Cause of deathwas ascertained usingRead codes.

Risk factors were selected on the basis of those in the validated
American College of Cardiology/American Heart Association
Pooled Cohort Risk Assessment Equations (21, 22) and included
age, sex, diabetes status (binary, ascertained using Read codes
(23)), smoking status (binary), systolic blood pressure (SBP)
(adjusted for hypertension treatment), total cholesterol level, and
high-density lipoprotein cholesterol (HDL-C) level. Once an
individual had a diabetes diagnosis or a prescription for a blood-
pressure–lowering medication, he or she was considered to have
this condition/treatment throughout follow-up. Values for SBP,
total cholesterol, and HDL-C were standardized by centering on
sex-specificmeans and dividing by the standard deviation.

Study population

Data were available from January 1, 1997, to January 18, 2016.
Individuals entered the study from the latest of the following
dates: 1) the date of registration at a general practice plus 6
months; 2) the date for acceptable computer usage (quality mea-
surement defined as the year in which a general practice continu-
ously used their computer system for recording of medical events
and prescribing) (24); 3) the date for acceptable mortality report-
ing (the date on which mortality recording reflected that of the
United Kingdom general population) (25); 4) the date on which
the individual turned 30 years of age; or 5) January 1, 1997. In-
dividuals exited the study at the earliest of the following dates:
1) theirfirst (i.e., “incident”) newly recordedCVDevent; 2) trans-
fer out of the general practice; 3) their date of death; or 4) January
18, 2016. The target population for which we wanted to esti-
mate CVD risk included persons with general practice records
and without a history of CVD or statin prescriptions (see Web
Figure 1, available at https://academic.oup.com/aje).We excluded
participants with statin prescriptions, as these individuals are
already being treated for being at risk of developing CVD
and as such would not need to be identified by a screening
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algorithm. In addition, the study sample excluded personswith
unknown sex, persons with a study entry date after age 85 years,
and persons with no measurements of smoking status, SBP,
total cholesterol, or HDL-C between study entry and study exit
(Web Figure 1).

The following measurements were considered biologically
implausible and were changed to “missing” for the analysis:
SBP <60mmHg or >250mmHg (26); total cholesterol level
<1.75 mmol/L or >20 mmol/L (27); and HDL-C level <0.3
mmol/L or >3.1 mmol/L (26) (out of a total 1,675,241 mea-
surements, 12,352 measurements were changed to missing).

The scheme under which The Health Improvement Network
was to obtain and provide anonymized patient data was approved
by the National Health Service South-East Multicenter Research
Ethics Committee in 2002, and scientific approval to undertake
this study was obtained from the IQVIA World Publications
Scientific Review Committee (IQVIA, Durham, North Carolina).
E.P., J.B., D.S., I.P., andA.M.W. had full access to the data used
to create the study population. This article follows RECORD
reporting guidelines (Web Table 1) (28).

Statistical analysis

Two-stage dynamic risk predictionmodel. Weused a 2-stage
approach to construct a dynamic risk prediction model, first
modeling historical repeated risk factor measurements using mul-
tivariate mixed-effects linear models and then estimating 10-year
CVD risk using Cox proportional hazards models (Figure 1). We
briefly present the methods here and provide more detail in the
Web Appendix. In both stages, models were developed at land-
mark ages (40, 45,…, 85 years) for eligible participants, defined
as those 1) registered with a general practice at the landmark age,
2) with no CVD diagnoses prior to the landmark age, and 3) with
no statin prescription prior to the landmark age. Treating each

landmark age as a time origin, past risk factor information was
extracted from age 30 years onwards and participants were fol-
lowed up for 10 years until their first CVD event or the study
exit date (Figure 1). Crude incidence rates by age at study entry,
sex, and calendar year of statin prescriptionwere calculated.

Estimation of error-free current risk factor values. For each
landmark age and separately formales and females, wefittedmul-
tivariate mixed-effects linear regression models (9) on past repeat
measurements for smoking status, SBP, total cholesterol, and
HDL-C. Each model included fixed intercepts and slopes for
each risk factor, a time-dependent covariate for initiation of
blood-pressure–lowering medications for SBP, and correlated
individual-specific random intercepts for all 4 risk factors. These
models were estimable for persons with at least 1 measurement of
at least 1 risk factor. From eachmodel, we estimated the error-free
current risk factor values (i.e., the predicted values at the landmark
age) using the best linear unbiased predictors from the empirical
Bayes posterior distribution of the random intercepts, conditional
on the past observed risk factormeasurements.

Estimating 10-year CVD risk. Ten-year CVD risk was esti-
mated from a landmark age Cox proportional hazards model,
stratified by sex and with time since landmark age as the underly-
ing time variable. The model adjusted for landmark age and land-
mark age squared and included the following risk factors: last
observed diabetes status; last observed treatment for hypertension;
and estimated current risk factor values for smoking status, SBP,
total cholesterol, and HDL-C. Participants were followed up for a
maximum of 10 years. Therefore, proportional hazards are
assumed only across a 10-year period.A “super-landmarkmodel”
approach (7) was used with robust standard errors. A super-
landmark model is a version of landmarking in which the data
sets contributing to the landmark models across all landmark
ages are stacked and a single time-to-event model is fitted to
the stacked data set (Web Appendix).

30 50 60 70 8040 9590

Age, years

45 756555 85

Figure 1. Schematic showing the landmark age approach. The dashed lines indicate historical repeat measures of smoking status, systolic blood
pressure, total cholesterol, and high-density lipoprotein cholesterol, modeled by means of landmark-age–specific multivariate linear mixed-effects
models. The diamonds show the landmark age (time of risk prediction). The arrows indicate the 10-year follow-up to the point of a cardiovascular
disease event or censoring, modeled via a landmark Coxmodel.
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Assessment of predictive ability. The performance of the
10-year CVD risk predictions was assessed with measures of
calibration (i.e., calibration plots by decile of predicted risk), pre-
dictive accuracy (i.e., Brier scores; an average of the squared dif-
ference between the observed outcome and predicted risk, where
lower scores indicate better predictive accuracy and zero means
perfect calibration), and discrimination (i.e., C-index; a measure
of how well the model discriminates between persons with and
without CVD (29, 30)).We estimated the C-index over all partici-
pants (calculated over pairs of different individuals) and also
separately at each landmark age. The latter is estimated on subsets
of persons of the same age; thus, we call this an age-adjusted
C-index, which naturally will have lower values to reflect poorer
discrimination (31).We used 10-fold cross-validation, splitting
the data by general practice, to account for overoptimism.

The above 10-year CVD risk predictions were compared
against predictions from 1) a “basic” landmark-age model, which
included sex, age, last observed diabetes status, and last observed
treatment for hypertension; 2) a dynamic landmark-age model
with landmark age interactions with each covariate; 3) a dynamic
landmark-age model with last observed measurements of all risk
factors instead of estimated current risk factor values; and 4) a
dynamic landmark-age model using cumulative mean values of
all historical measurements recorded before each landmark age,
of smoking status, SBP, total cholesterol, andHDL-C. Predictions
from models 3 and 4 were only estimable for persons with 1 or
moremeasurements of all risk factors, whichwe call the restricted
sample.

Sensitivity analyses. We conducted 4 sensitivity analyses.
First, instead of using all available historical repeat measure-
ments of risk factors, we restricted the data to be within 10
years before each landmark age. Second, we adjusted the

results of the multivariate mixed-effects models for the annual
rate of repeated measurements in the 5 years before each land-
mark age (as a proxy to account for bias due to sicker or more
health-conscious individuals’ having more repeats (32)). Third,
instead of estimating current risk factor values from only past
information, we estimated the future 10-year average risk factor
levels from a multivariate mixed-effects model derived from
both past and future risk factor information within the 10-year
future horizon (Web Figure 2). Importantly, only past observed
risk factors were subsequently used in the prediction of the future
10-year average risk factor levels for the Cox model. Fourth,
since it might be useful to identify patients who are still at
high absolute risk even after treatment with statins, we
reran the main analyses including statin users in the models.
The mixed-effects model including a time-dependent co-
variate for statin therapy initiation for total cholesterol and
statin therapy at the landmark age was included as a risk
factor in the Cox model.

All analyses were performed using Stata 14.2 (StataCorp
LLC, College Station, Texas), and 95% confidence intervals
were generated for all measures of association.

RESULTS

Study sample

The target population included 41,373 persons with general
practice records and without a history of CVD or statin use at
study entry. Of these individuals, 32,328 persons (78%) had at
least 1 measurement of smoking status, SBP, total cholesterol, or
HDL-C recorded before the first CVD event or statin prescription
(Web Figure 1). Mean age at study entry was 47.9 (standard

Table 1. Characteristics of Participants in the Study Sample, The Health Improvement Network, United Kingdom, 1997–2016

Characteristic

Sample and Baseline Characteristic
Mean (SD) No. of
Measurements

per Year

Study Sample (n = 32,328) Restricted Samplea (n = 12,292)
Study
Sample

Restricted
SampleaNo. of

Persons % Mean (SD) No. of
Persons % Mean (SD)

Age at study entry, years 47.9 (13.6) 47.5 (12.3)

Male sex 17,592 54 6,819 55

History of diabetesb 3,743 12 2,175 18

Prescription for blood-pressure–
loweringmedicationb

9,935 31 4,685 38

Prescription for statinsb 5,617 17 2,003 16

Current smokerb 9,453 29 3,358 27 0.6 (0.4) 0.6 (0.4)

Systolic blood pressure, mmHgc 134.8 (21.0) 135.3 (21.1) 1.4 (1.4) 1.6 (1.4)

Total cholesterol level, mmol/Lc 5.5 (1.1) 5.4 (1.0) 0.4 (0.4) 0.5 (0.4)

HDL-C level, mmol/Lc 1.4 (0.4) 1.4 (0.4) 0.3 (0.3) 0.4 (0.3)

Abbreviations: HDL-C, high-density lipoprotein cholesterol; SD, standard deviation.
a The restricted sample contained only patients with at least 1 measurement for each variable (smoking status, systolic blood pressure, total cho-

lesterol, and HDL-C).
b Number and percentage were calculated across the follow-up period (e.g., a diagnosis of diabetes at any point during follow-up was counted as

a history of diabetes for that individual).
c Based on the first measurement taken after study entry.
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deviation, 13.6) years; 17,592 participants (54%) were male,
and5,617 (17%)wereprescribed statins after studyentry (Table1).
Participants generally had more repeat measures of SBP than of
smoking status, total cholesterol, and HDL-C (Table 1). On aver-
age, there were 1.1 years between repeated measurements of
smoking status, 0.5 years between repeated measurements of
SBP, 1.1 years between repeated measurements of total choles-
terol, and 1.2 years between repeatedmeasurements of HDL-C.

Overall, 2,861 participants (7%) had a newly recorded CVD
event over the course of a mean 10.4 (standard deviation, 5.6)
years of follow-up. Crude CVD incidence rates per 1,000 person-
years increased from 2.9 for persons aged 40–44 years to 35.2 for
persons aged 80–84 years; rates were higher in men than in
women, and they decreased among statin users by increasing
calendar year (Table 2). Participants in the study sample and
the restricted sample (n = 12,292 (30% of the target popula-
tion); Web Figure 1) were similar in terms of age at study
entry, sex, SBP, and total and HDL-C levels, but those in the
restricted sample were more likely to have diabetes (Table 1).
The study sample had more males than the target population
but was otherwise similar (Web Table 2).

Estimates from the landmarkmodels

Regression coefficients from the age- and sex-specific multi-
variate linear mixed-effects models and hazard ratios for the Cox
models, without 10-fold cross-validation, are provided in Web
Tables 3–6. Overall, the values of the fixed intercepts from the
multivariate mixed-effects linear models show that SBP and total
cholesterol level increased over the landmark ages, whereasHDL-C
and smoking status decreased (Web Table 3). In addition, hazard
ratios were generally stronger for the model using estimated cur-
rent risk factor values than for the model using the last observed
values or cumulative mean values (Web Table 6).

Assessment of 10-year CVD risk

In the landmark model with estimated current risk factor val-
ues, 28% of individuals had an estimated 10-year CVD risk of
≥10%, and 10% had an estimated risk of ≥20%. The model ap-
peared well-calibrated (Web Figure 3A), had a Brier score of
0.041 (95% confidence interval (CI): 0.039, 0.042) (Figure 2A),
and had an overall C-index of 0.768 (95% CI: 0.759, 0.777)
(Figure 2B). The C-index was improved by 0.016 (95% CI:
0.013, 0.020) in comparison with the basic model (Figure 2C).
Discrimination was better at younger ages (Figure 3). Additional
age interactions did not further improve calibration or risk discrim-
ination (Web Figure 3B and Figure 2B). The basic model (includ-
ing only age, diabetes status, and treatment for hypertension) also
appeared well calibrated (Web Figure 3C), had a Brier score of
0.041 (95%CI: 0.040, 0.043) (Figure 2A), and had a lower overall
C-index of 0.752 (95% CI: 0.742, 0.761) (Figure 2B). Similar to
the main model, the basic model also discriminated risk better at
younger ages than at older ages (Web Figure 4).

Estimated 10-year CVD risk appeared slightly higher in mod-
els using last observed and cumulative mean risk factor values
as compared with estimated current values (Web Figure 5).
Calibration, Brier scores, and C-indices were similar across
the landmark models with last observed, cumulative mean,
or estimated current risk factor values (Web Figures 6 and 7).

Risk discrimination was better at younger ages than at older
ages across all models (Web Figure 8).

Sensitivity analyses

Therewas no difference in risk discriminationwhen themodel
was restricted to using historical repeated-measures data collected
up to 10 years before the landmark age (C-index = 0.768, 95%
CI: 0.758, 0.777) or when the estimated current risk factor values
were adjusted for the rate of clinic visits (C-index = 0.766, 95%
CI: 0.756, 0.775). However, we observed an increase in risk
discrimination using estimated future 10-year average risk factor
levels (C-index = 0.774, 95% CI: 0.765, 0.783) instead of esti-
mated current risk factor values. C-indiceswere lowerwhen statin
users were included in the analysis, but the patterns of risk dis-
crimination and calibration remained the same as in themain anal-
ysis (WebTables 7 and 8).

DISCUSSION

In this paper, we have presented a computationally feasible sta-
tistical framework for developing dynamic risk prediction models
for use on EHRs with historical repeated measures of risk factors.
The 2-stage landmark approach combines Cox proportional

Table 2. Crude Cardiovascular Disease Incidence Rate per 1,000
Person-Years According to Age at Study Entry, Sex, and Calendar
Year of Statin Prescription, The Health Improvement Network, United
Kingdom. 1997–2016

Factor No. of Incident
CVDCases

Total No.
of PY

Crude IR per
1,000 PY

Age at study entry,
years

40–44 167 57,754 2.9

45–49 239 53,056 4.5

50–54 307 49,903 6.2

55–59 356 37,132 9.6

60–64 382 29,552 12.9

65–69 396 22,417 17.7

70–74 386 15,626 24.7

75–79 299 10,575 28.3

80–84 187 5,317 35.2

Sex

Male 1,520 198,797 7.6

Female 1,341 232,166 5.8

Calendar year of
statin initiationa

1997–2001 225 4,828 46.6

2002–2006 968 38,857 24.9

2007–2011 687 46,662 14.7

2012–2016 365 27,543 13.3

Abbreviations: CVD, cardiovascular disease; IR, incidence rate; PY,
person-years.

a Calendar year of the prescribing date of the index statin prescription.
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hazards regression and age-specific multivariate linear mixed-
effects models, which account for sporadically recorded repeat
measures, unobserved data, and measurement errors. We
illustrated the framework for the derivation and validation of
a primary-care dynamic risk prediction model for 10-year
CVD risk, but it has potential for wider application to other

diseases and conditions and for use on other electronic patient
records in which repeated measurements are recorded, such as
those collected in secondary-care settings.

Our motivation was based on optimizing electronic primary-
care data for automatically identifying high-risk individuals for
full formal disease risk assessment, rather like a prescreening tool

Brier Score

0.041 (0.040, 0.043)

0.041 (0.039, 0.042)

0.040 (0.039, 0.042)

0.039 0.040 0.041 0.042 0.043

Basic model

Model with estimated current 
   values of risk factors

Model with age interactions

Model Brier Score (95% CI)
A)

0.752 (0.742, 0.761)

0.768 (0.759, 0.777)

0.769 (0.760, 0.778)

0.74 0.75 0.76 0.77 0.78

C-Index

Model C-Index (95% CI)
B)

Basic model

Model with estimated current 
   values of risk factors

Model with age interactions

C)

Change in C-Index

0.000 (Referent)

0.016 (0.013, 0.020)

0.017 (0.013, 0.022)

−0.015 0 0.015 0.025

Change in C-Index (95% CI) P Value

<0.01

<0.01

Basic model

Model with estimated current 
   values of risk factors

Model with age interactions

Model

Figure 2. Calibration and risk discrimination statistics for 3 models of cardiovascular disease risk prediction (n = 32,328), The Health Improve-
ment Network, United Kingdom, 1997–2016. A) Calibration statistics for each risk prediction model. The graph shows the Brier score (▪) and 95%
confidence interval (CI; bars) for each model. A lower Brier score is interpreted as better calibration. B) Risk discrimination statistics for each risk
prediction model. The graph shows the C-index (▪) and 95%CI (bars) for eachmodel. A higher C-index value is interpreted as better discrimination.
C) Change in risk discrimination for each risk prediction model. The graph shows the change in C-index (▪) and its 95% CI (bars) for each risk pre-
diction model in relation to the basic model (referent). The basic model included age and sex plus the last observed measures for diabetes status
and hypertension treatment. Themodel with estimated current values of the risk factors included all factors in the basicmodel plus predicted current
values for smoking status, systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. The model with age interactions
included all factors in the basic model plus predicted current values for smoking status, systolic blood pressure, total cholesterol, and high-density
lipoprotein cholesterol, plus interactions of age with all risk factors.
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with the potential to increase the cost-effectiveness of health care.
For example, several international guidelines forCVD risk assess-
ment and management (21, 33–35) recommend using a system-
atic strategy for prioritizing people for full formal risk assessment
on the basis of an estimate of their CVD risk using risk factors
already recorded in EHRs. CVD risk assessment tools, such as the
Framingham risk model (36) and QRISK2 (4), are now integrated
into electronic primary-care record systems, but they are not pur-
posefully designed for prescreening use. The QRISK2model esti-
mates CVD risk using the last observed values for the numerous
risk factors, and when data are missing, imputes them using age-
and sex-specific population averages for continuous risk factors or
assumes no adverse clinical indicators. Our proposed framework
optimizes all available historical risk factor values, handling
potential bias from spurious one-off measurements, and when
data are missing, intrinsically imputes them using all other risk
factor information. Future work should formally compare such
models for prescreening use and assess their cost-effectiveness.

For illustration, we compared a basic CVD risk model using
sex, age, diabetes status, and treatment for hypertension against
extended risk models with additional risk factors incorporated as
cumulative means, last observed values, or estimated current risk
factor values for smoking status, SBP, total cholesterol, and HDL-
C. Our findings showed amodest improvement in risk discrimina-
tion when including estimated current values of additional
risk factors but no difference in risk discrimination in the restricted
data set when comparing additional risk factors incorporated as
last observed, cumulative means, or estimated current risk factor
values. Cumulative mean risk factor values handle sporadically
recorded repeat measurements and account for measurement er-
rors, but they are only estimable for persons with at least 1 his-
torical measurement on all risk factors and thus are not suitable
for population-wide screening. A major strength of the land-
mark model with estimated current values of risk factors is that it
can be applied to personswith at least 1measure on any of the risk
factors included in the multivariate mixed model (in our illustra-
tion, this was approximately 80%of individuals).

Another strength of our landmark framework is that it was
developed and internally validated using data that reflected the

complexity and messiness of the EHRs that would be used to
estimate future disease risk for individuals, unlike risk predic-
tion models developed using purpose-designed cohort studies.
Importantly, the assumptions made about the dynamic nature of
the historical repeat-measures data, unobserved risk factors, and
measurement errors in the model development are compatible
with the assumptions required for making a risk prediction for a
new individual using data from EHRs.

In our sensitivity analysis, we investigated the use of predicted
future 10-year average risk factor levels instead of estimated current
values and observed a modest improvement in risk discrimination.
This suggests that future risk factor values for smoking, SBP,
total cholesterol, and HDL-C are more predictive of future 10-year
CVDrisk than current values.A considerable limitation in this anal-
ysis is that it ignores informative censoring of individuals due to
death or CVD events in the multivariate mixed-effects model,
although evidence from empirical and simulation studies (11, 14)
suggests that there is often little to be gained frommore complex
modeling (e.g., joint models (37)).

Other methods with which to develop risk predictionmodels
for use on EHRs exist, including machine learning approaches
such as neural networks (14, 38, 39) and statistical approaches
such as joint models (14). Prediction models developed using
landmark and joint models for single risk factors have been
previously compared (40) but not in a setting using multivar-
iate risk factors. Joint models are more computationally burden-
some than landmark models, and further development is required
before they are computationally feasible for application to
large EHR data sets. However, landmark models can be
developed using any standard statistical software with multi-
variate mixed-effects models and Cox regression. Analyses
employing the landmark-age- and sex-specific multivariate
mixed-effects models can be run in parallel, since the most
computationally burdensome part is extracting the out-of-
sample individual-specific random intercepts for estima-
tion of the current risk factor values.

Certain limitations of our proposed method remain. First, our
approach assumes a multivariate normal distribution for esti-
mated current values of continuous and binary risk factors. Such
an assumption is not uncommon in statistical methodology for
epidemiology (e.g., in regression calibration (10) and multiple
imputation (41)); however, it would be possible to replace it
with a mixture of regression models with correlated latent vari-
ables (42). Second, the added distributional assumptions on the
risk factors may limit transferability of the model to other popu-
lations and implicate recalibration methods for use of the model
in other populations, especially in comparisonwith conventional
CVD prediction models. Investigating the impact of model mis-
specification is on our future research agenda. Third, uncertain-
ties in the estimated current risk factor values are not accounted
for in the Cox model. However, our previous work suggested
that such uncertainties are often negligible relative to the esti-
mated standard errors of the β coefficients in the Cox model
(10). Fourth, persons with more frequent EHRs are more likely
to have health conditions or health anxiety. We attempted to
account for this by adjusting the estimated current risk factor val-
ues by the annual rate of repeated measurements, although it
may be plausible to additionally include this as a risk factor
in the Cox model. Fifth, for our illustration, we assumed
a lack of specific Read or drug codes to indicate no diagnosis
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Figure 3. Overall and age-adjusted values for C-index, The Health
Improvement Network, United Kingdom, 1997–2016. Dashed lines,
95% confidence intervals.
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or medication use, and information on cause of death was only
available for 13% of participants who died, meaning CVD
incidence was underestimated in this study. Sixth, we used the
same definition of CVD events as used in CVD risk prediction
models employed in practice, such as QRISK2, which includes
“soft” outcomes such as angina. However, while angina can be
a symptom of coronary heart disease, it is not a disease itself,
and the appropriateness of including it in the outcome defini-
tion of CVD risk prediction models will depend on the clinical
context. Finally, despite the use of contemporary data, CVD
screening and treatment practices have changed over time and
are not accounted for in themodels. These limitations are unlikely
to have affected our between-model comparisons.

The benefits of optimizing EHRs for disease risk screening and
personalized health-care decisions are increasingly being
recognized. There is a growing need for suitable statistical
methods, data analytics, and machine learning approaches
with which to address the computational and methodological
challenges involved in the analysis of such “big data.” The
framework presented in this paper provides a practical, trans-
parent, and flexible solution for the development of dynamic
risk prediction models for use on EHRs.
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