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Abstract 

Joint modelling of longitudinal and time-to-event data has received much attention recently. 

Increasingly, extensions to standard joint modelling approaches are being proposed to 

handle complex data structures commonly encountered in applied research. In this paper 

we propose a joint model for hierarchical longitudinal and time-to-event data. Our 

motivating application explores the association between tumor burden and progression-

free survival in non-small cell lung cancer patients. We define tumor burden as a function of 

the sizes of target lesions clustered within a patient. Since a patient may have more than 

one lesion, and each lesion is tracked over time, the data have a three-level hierarchical 

structure: repeated measurements taken at time points (level 1) clustered within lesions 

(level 2) within patients (level 3). We jointly model the lesion-specific longitudinal 

trajectories and patient-specific risk of death or disease progression by specifying novel 

association structures that combine information across lower level clusters (e.g. lesions) into 

patient-level summaries (e.g. tumor burden). We provide user-friendly software for fitting 

the model under a Bayesian framework. Lastly, we discuss alternative situations in which 

additional clustering factor(s) occur at a level higher in the hierarchy than the patient-level, 

since this has implications for the model formulation.     

Keywords: longitudinal; survival; joint model; shared parameter model; hierarchical; 

multilevel; cancer 
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1. Introduction 

In clinical or epidemiological research studies, longitudinal data may be in the form of a 

clinical biomarker that is repeatedly measured over time on a given patient, whilst time-to-

event data may refer to the patient-specific time from a defined origin (e.g. time of 

diagnosis of a disease) until a clinical event of interest such as death or disease progression. 

A common motivation for collecting such data is to explore how changes in the biomarker 

are associated with the occurrence of the event. A rapidly evolving field of statistical 

methodology, known as “joint modelling”, aims to model both the longitudinal and time-to-

event data simultaneously providing several potential benefits over more traditional 

approaches.1–3 Compared with using the observed biomarker measurements as covariates 

in a time-to-event model, a joint modelling approach can protect against bias due to missing 

data or measurement error in estimating  the association between the value of the 

biomarker and the risk of occurrence of the event.1,4 Moreover, we can explore the 

associations between more complex aspects of the biomarker trajectory (such as the rate of 

change) and the occurrence of the event. Lastly, we might wish to use the longitudinal 

biomarker data in the development of a “dynamic” risk prediction model, and joint 

modelling approaches lend themselves to this purpose.5,6 

The so-called “shared parameter” joint modelling approach consists of two regression 

submodels, one for the longitudinal biomarker measurements (the “longitudinal submodel”) 

and one for the time-to-event outcome (the “event submodel”). Dependence between the 

two submodels is allowed for by assuming that the model for the time-to-event outcome 

includes as predictor some functional form of the patient-specific parameters from the 

longitudinal submodel, commonly referred to as an association structure. In the joint 
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modelling literature to date, primary focus has been on a situation in which there is a single 

normally-distributed biomarker measured repeatedly over time for each patient and a 

unique, possibly right-censored, time to a terminating event of interest.4,7 However, a 

number of extensions have been proposed for the standard shared parameter joint model, 

such as competing risks,8 interval censored event times,9 non-normally distributed 

biomarkers,10 and multiple biomarkers.11 

Nonetheless, a common aspect of the proposed methodology has been that the longitudinal 

data have a two-level hierarchical structure; longitudinal measurements of the biomarker 

are observed at time points (level 1 of the hierarchy) which are clustered within patients 

(level 2 of the hierarchy). The patient is therefore considered to be the only clustering 

factor. An example of this data structure is shown in Figure 1a. However, there exist many 

situations in clinical and epidemiological research in which we wish to analyse longitudinal 

and time-to-event data where the longitudinal data component (and potentially also the 

time-to-event component) has a hierarchical structure with clustering factors beyond just 

that of the patient.  

In this paper we describe a joint modelling approach that can be applied to longitudinal and 

time-to-event data with more than one clustering factor. In Section 2 we introduce several 

motivating examples which describe the types of data structures our joint modelling 

approach is intended for. In Sections 3 and 4 we describe the formulation and estimation of 

a joint model that is suitable when an additional clustering factor occurs at a level lower in 

the hierarchy than the patient-level. In Section 5 we describe an application in which we use 

this joint model to explore the association between tumor burden and risk of death or 

disease progression in non-small cell lung cancer (NSCLC) patients undergoing treatment. In 
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Section 6 we describe the formulation of the joint model under alternative scenarios in 

which the additional clustering factor occurs at a level higher in the hierarchy than the 

patient-level. In Section 7 we close with a discussion. 

2. Motivating examples 

2.1 Tumor burden and progression-free survival in non-small cell lung cancer 

In our primary motivating example, interest lies in exploring the relationship between tumor 

burden and the risk of death or disease progression in patients with non-small cell lung 

cancer (NSCLC). After a patient initiates treatment the size of each tumor lesion is measured 

repeatedly over time in order to assess the effectiveness of treatment and aid clinical 

decision making. Accordingly, for a given patient, we can define the tumor burden as some 

patient-level summary of the sizes of their individual tumor lesions. Given that a patient 

may have more than one lesion, our data consists of a hierarchy in which the longitudinal 

measurements are observed at time points (level 1) which are clustered within a specific 

lesion (level 2) for a given patient (level 3), as represented in Figure 1b. 

Consideration of the multilevel structure of the data is important for several reasons. Firstly, 

the underlying growth trajectories may vary across different lesions, even when those 

lesions are clustered within the same patient. We can allow for between-lesion variation in 

the growth trajectories through the use of lesion-specific, as well as patient-specific, 

parameters in the longitudinal submodel. Equivalently, the introduction of lesion-specific 

parameters in the longitudinal submodel allows us to account for the within-cluster 

correlation of longitudinal measurements made on the same lesion and therefore 

appropriately estimate standard errors. Secondly, the hierarchical structure of the data is a 
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key aspect to consider when specifying the form of the association between the longitudinal 

and event processes, something we discuss further in Section 3.3. 

2.2 Patients within clinics or the meta-analysis of joint model data 

Our other two motivating examples relate to an alternative data structure in which the 

additional clustering factor occurs at a level which is higher in the hierarchy than the 

patient. One example is where repeated observation times (level 1) exist for patients (level 

2) and those patients are clustered within clinics (level 3). Another example is an individual 

patient data (IPD) meta-analysis where observation times (level 1) are for patients (level 2) 

clustered within randomised clinical trials (level 3).12 In both of these examples, we wish to 

include the additional clustering factor (i.e. the clinic or the trial) in our joint modelling 

approach, so that we appropriately allow for the correlation structure. However, because 

the additional clustering factor occurs at a level higher than the patient-level, there are 

different implications for the specification of the joint model association structure 

compared with our previous motivating examples. For this reason we describe a formulation 

of the joint model for this type of data structure separately; in Section 6 of the paper.  

3. Model formulation 

3.1 Longitudinal submodel 

Consider the situation in which we have a three-level hierarchical structure for our 

longitudinal data, where the patient represents the highest level of the hierarchy (in Section 

6 we discuss the situation in which the patient does not represent the highest level of the 

hierarchy). We assume our longitudinal outcome measurements 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖) are 

obtained  at a set of time points 𝑘𝑘 = 1, … ,𝐾𝐾𝑖𝑖𝑖𝑖 which are assumed to be nested within unit 
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𝑗𝑗 (𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖) of the level 2 clustering factor which in turn is nested within patient 𝑖𝑖 (𝑖𝑖 =

1, … ,𝑁𝑁), the level 3 clustering factor. We model the longitudinal outcome in continuous 

time using a generalised linear mixed effects model where we assume 𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡) is governed by 

a distribution in the exponential family with expected value 𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑔𝑔−1(𝜂𝜂𝑖𝑖𝑖𝑖(𝑡𝑡)) for some 

known link function 𝑔𝑔(. ). Specific choices of family and link function lead to, for example, 

linear, logistic or Poisson regression. We specify a three-level hierarchical model for the 

linear predictor 

 𝜂𝜂𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑖𝑖𝑖𝑖′ (𝑡𝑡)𝛽𝛽 + 𝑧𝑧𝑖𝑖𝑖𝑖′ (𝑡𝑡)𝑏𝑏𝑖𝑖 + 𝑤𝑤𝑖𝑖𝑖𝑖
′ (𝑡𝑡)𝑢𝑢𝑖𝑖𝑖𝑖  (1) 

where 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡), and 𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡) are vectors of covariates, possibly time-dependent. The 

vector 𝛽𝛽 contains fixed-effect parameters, and 𝑢𝑢𝑖𝑖𝑖𝑖  and 𝑏𝑏𝑖𝑖 are vectors of level 2 (cluster-

specific) and level 3 (patient-specific) parameters, each assumed to be normally distributed 

with mean zero and unstructured variance-covariance matrix, that is 𝑢𝑢𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(0, Σ𝑢𝑢) and 

𝑏𝑏𝑖𝑖 ∼ 𝑁𝑁(0, Σ𝑏𝑏). We assume that 𝑢𝑢𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑖𝑖 are uncorrelated. 

3.2 Event submodel 

We observe an event time 𝑇𝑇𝑖𝑖 = min{𝑇𝑇𝑖𝑖∗,𝐶𝐶𝑖𝑖}, where 𝑇𝑇𝑖𝑖∗ denotes the true event time for 

patient 𝑖𝑖 and 𝐶𝐶𝑖𝑖  denotes the right-censoring time, and define an indicator of observed event 

occurrence 𝑑𝑑𝑖𝑖 = 𝐼𝐼(𝑇𝑇𝑖𝑖∗ ≤ 𝐶𝐶𝑖𝑖). We model the hazard of the event using a proportional 

hazards regression model 

 ℎ𝑖𝑖(𝑡𝑡) = ℎ0(𝑡𝑡;𝜔𝜔) exp�𝑣𝑣𝑖𝑖′(𝑡𝑡)𝛾𝛾 + �𝛼𝛼𝑞𝑞𝑓𝑓𝑞𝑞�𝛩𝛩𝑖𝑖𝑖𝑖(𝑡𝑡);  𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖�
𝑄𝑄

𝑞𝑞=1

�  (2) 

where ℎ𝑖𝑖(𝑡𝑡) is the hazard of the event for patient 𝑖𝑖 at time 𝑡𝑡, ℎ0(𝑡𝑡) is the baseline hazard at 

time 𝑡𝑡 given the vector of parameters 𝜔𝜔, 𝑣𝑣𝑖𝑖(𝑡𝑡) is a vector of covariates with an associated 
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vector of fixed-effect parameters 𝛾𝛾, and ∑ 𝛼𝛼𝑞𝑞𝑓𝑓𝑞𝑞(𝛩𝛩𝑖𝑖𝑖𝑖(𝑡𝑡);  𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖)
𝑄𝑄
𝑞𝑞=1  forms the 

“association structure” for the joint model which consists of some specified set of functions 

𝑓𝑓𝑞𝑞(. ) applied to the full set of (possibly time-varying) parameters from the longitudinal 

submodel 𝛩𝛩𝑖𝑖𝑖𝑖(𝑡𝑡) = �𝛽𝛽, 𝑏𝑏𝑖𝑖,𝑢𝑢𝑖𝑖𝑖𝑖 , 𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡), 𝜂𝜂𝑖𝑖𝑖𝑖(𝑡𝑡)� with associated fixed effects 𝛼𝛼𝑞𝑞 (𝑞𝑞 = 1, … ,𝑄𝑄). 

The functions 𝑓𝑓𝑞𝑞(. ) might each correspond to a functional of the longitudinal submodel 

parameters for a given patient 𝑖𝑖 and cluster 𝑗𝑗, for example, the expected value or rate of 

change in the longitudinal biomarker. Alternatively, they might be functions of the 

longitudinal submodel parameters for a given patient 𝑖𝑖  across all 𝐽𝐽𝑖𝑖  clusters, representing 

different methods for combining the level 2 clusters into a patient-level summary (as 

described in the next section). We refer to the fixed effects 𝛼𝛼𝑞𝑞 as “association parameters” 

since they quantify the magnitude of the association between aspects of the longitudinal 

process and the event process. In the next section we describe the variety of ways in which 

the association structure for the joint model can be specified.  

3.3 Association structures for patient-level summaries 

Given that the event time 𝑇𝑇𝑖𝑖 is measured at the patient-level, the patient represents the 

level of the hierarchy at which our primary interest lies for understanding the association 

between the longitudinal and event processes. Accordingly, we wish to formulate a model 

that captures the association between the longitudinal and event processes at any given 

time 𝑡𝑡 in a meaningful way at the patient-level. A decision is required about how 

information from the level 2 clustering factor (that is, the clustering factor between the 

patient-level and the observation-level) is used in the formulation of the association 

structure.  

Since the number of level 2 units may differ for each patient (i.e. it isn’t necessarily the case 
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that 𝐽𝐽𝑖𝑖 = 𝐽𝐽𝑖𝑖′  for all 𝑖𝑖 ≠  𝑖𝑖′) we must combine the information in the level 2 units into some 

patient-level time-specific summary. Obvious choices for a patient-level summary measure 

are likely to be the summation, average, maximum or minimum taken across the level 2 

units within patient 𝑖𝑖. That is  

 𝑓𝑓𝑞𝑞(𝛩𝛩𝑖𝑖𝑖𝑖(𝑡𝑡);  𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖) = ∑ 𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡) 𝐽𝐽𝑖𝑖
𝑖𝑖=1   (3) 

 𝑓𝑓𝑞𝑞(𝛩𝛩𝑖𝑖𝑖𝑖(𝑡𝑡);  𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖) = 𝐽𝐽𝑖𝑖−1 ∑ 𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡)𝐽𝐽𝑖𝑖
𝑖𝑖=1    (4) 

 𝑓𝑓𝑞𝑞(𝛩𝛩𝑖𝑖𝑖𝑖(𝑡𝑡);  𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖) = max(𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡);   𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖)   (5) 

 𝑓𝑓𝑞𝑞(𝛩𝛩𝑖𝑖𝑖𝑖(𝑡𝑡);  𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖) = min(𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡);   𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖)  (6) 

The association structure resulting from equation (3) assumes that the hazard of the event 

for patient 𝑖𝑖 at time 𝑡𝑡 is associated with the sum of the expected values (at time 𝑡𝑡) for each 

of the level 2 units clustered within that patient. In contrast, the 𝐽𝐽𝑖𝑖−1term in equation (4) 

provides us with the average of the level 2 cluster-specific expected values within patient 𝑖𝑖 

rather than their summation alone. Lastly, equations (5) and (6), respectively, assume that 

the hazard of the event for patient 𝑖𝑖 at time 𝑡𝑡 is associated with the level 2 cluster (within 

patient 𝑖𝑖) that has the largest or smallest expected value at time 𝑡𝑡. It is possible for more 

than one of these summary functions to be included in a single model (i.e. 𝑄𝑄 > 1). 

Moreover, other summary functions are possible but are not described here. 

The most appropriate summary function(s) may be determined based on clinical context, or 

by choosing the association structure that provides the best model performance based on 

some criterion. For instance, returning to the first motivating example introduced in Section 

2, we may believe that risk of death or disease progression for a patient with NSCLC is 
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driven by treatment-failure occurring at a single lesion. We may therefore assume the 

hazard of the event for patient 𝑖𝑖 at time 𝑡𝑡 is associated with the maximum (i.e. largest) of 

the lesion-specific expected values, since this would represent the lesion with the most 

advanced disease, for example due to it having the worst treatment response.   

Moreover, we could easily replace the 𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡) in equations (3) through (6) with some other 

function of the longitudinal submodel parameters, such as the level 2 cluster-specific rate of 

change in the marker at time 𝑡𝑡 (i.e. 
𝑑𝑑𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

)  or the area under the level 2 cluster-specific 

marker trajectory up to time 𝑡𝑡 (i.e. ∫ 𝜇𝜇𝑖𝑖𝑖𝑖(𝑢𝑢)𝑡𝑡
0 𝑑𝑑𝑢𝑢). For instance, we may assume that the 

lesion with largest growth rate may be most informative of treatment failure. Such 

extensions follow naturally from association structures that have been proposed elsewhere 

for shared parameter joint models.11,13 

The specifications in equations (3) and (4) both assume a constant magnitude of association 

between the expected value of each level 2 unit and the hazard of the event; that is, there is 

an implicit assumption that the level 2 units within a patient are exchangeable since their 

expectations are each multiplied by the same fixed effect association parameter 𝛼𝛼𝑞𝑞. 

However, it is possible that some of the level 2 units are believed to be clinically more 

relevant in determining the rates of the event. For instance, consider a setting in which 𝐽𝐽𝑖𝑖  

lesions clustered within patient 𝑖𝑖 are located in different physiological locations, for example 

the lung, brain, or liver. To accommodate the relative importance of these locations in 

determining the risk of the event, say, death, we can accommodate cluster-specific weights 

in the association structure 
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 𝑓𝑓𝑞𝑞�𝛩𝛩𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑟𝑟𝑖𝑖𝑖𝑖;  𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖� = �𝑟𝑟𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡) 
𝐽𝐽𝑖𝑖

𝑖𝑖=1

 (7) 

where 𝑟𝑟𝑖𝑖𝑖𝑖 corresponds to a user-specified non-negative weight for cluster (i.e. lesion) 𝑗𝑗 in 

patient 𝑖𝑖. 

The summary function in equation (7) therefore corresponds to a weighted sum of the 

expected values (at time 𝑡𝑡) for the level 2 units clustered within patient 𝑖𝑖. Note however 

that the level 2 clusters are still exchangeable with respect to the distribution of the cluster-

specific parameters, that is 𝑢𝑢𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(0,𝛴𝛴𝑢𝑢), but not with respect to their relative 

contributions to the hazard of the event (as determined by the user-specified weights).  

A benefit of the specification in equation (7) is that, for example, an individual is not 

required to have a lesion in each of the possible locations. In contrast, if every individual has 

one or more lesions in each location, then a more flexible approach may be to treat 

measurements taken at different locations as different biomarkers entirely. This is 

equivalent to an approach where we have multiple biomarkers, for example lesion size and 

circulating DNA, each measured repeatedly over time. In this situation the multiple 

biomarkers within a patient are not exchangeable and therefore each biomarker can have 

its own longitudinal submodel specification, and have a different coefficient quantifying its 

association with the hazard of the event. Methods for the joint modelling of multiple 

longitudinal biomarkers and time-to-event data, where the multiple biomarkers are not 

exchangeable, have been described elsewhere.11,14,15 Although it is outside the scope of this 

paper, the methodology described here could be extended to a situation in which we have 

multiple longitudinal biomarkers, some of which may or may not have additional levels of 

clustering. This type of data structure is therefore represented in Figure 1c. 
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4. Model estimation 

We assume that conditional on the cluster-specific and patient-specific parameters, 𝑢𝑢𝑖𝑖𝑖𝑖  and 

𝑏𝑏𝑖𝑖, and the vector of all remaining population-level parameters, denoted 𝜃𝜃, the longitudinal 

measurements for individual 𝑖𝑖 are independent across time, independent across clusters, 

and independent of the event time. That is, we assume 

 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 ⊥ 𝑇𝑇𝑖𝑖 | 𝑢𝑢𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖,𝜃𝜃 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 ⊥ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖′  | 𝑢𝑢𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝜃𝜃 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 ⊥ 𝑦𝑦𝑖𝑖𝑖𝑖′𝑖𝑖 | 𝑢𝑢𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖,𝜃𝜃 

(8) 

for some 𝑗𝑗 ≠ 𝑗𝑗′ and 𝑘𝑘 ≠ 𝑘𝑘′. Under this set of conditional independence assumptions, the 

log posterior distribution for the 𝑖𝑖𝑡𝑡ℎ patient can be written as  

 

log𝑝𝑝�𝑢𝑢𝑖𝑖1, … ,𝑢𝑢𝑖𝑖𝐽𝐽𝑖𝑖 , 𝑏𝑏𝑖𝑖,𝜃𝜃 � 𝒟𝒟𝑖𝑖�

= ��� log𝑝𝑝�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 � 𝑢𝑢𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖, 𝜃𝜃�

𝐾𝐾𝑖𝑖𝑖𝑖

𝑖𝑖=1

𝐽𝐽𝑖𝑖

𝑖𝑖=1

�

+ log𝑝𝑝�𝑇𝑇𝑖𝑖, 𝑑𝑑𝑖𝑖 � 𝑢𝑢𝑖𝑖1, … , ,𝑢𝑢𝑖𝑖𝐽𝐽𝑖𝑖 , 𝑏𝑏𝑖𝑖 ,𝜃𝜃� + �� log 𝑝𝑝�𝑢𝑢𝑖𝑖𝑖𝑖  � 𝜃𝜃�
𝐽𝐽𝑖𝑖

𝑖𝑖=1

�

+ log𝑝𝑝(𝑏𝑏𝑖𝑖 | 𝜃𝜃) + log𝑝𝑝(𝜃𝜃) + 𝐶𝐶 
 

(9) 

where log𝑝𝑝�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 � 𝑢𝑢𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖,𝜃𝜃� is the log likelihood for the longitudinal submodel, 

log𝑝𝑝�𝑇𝑇𝑖𝑖, 𝑑𝑑𝑖𝑖 � 𝑢𝑢𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖,𝜃𝜃� is the log likelihood for the event submodel, log 𝑝𝑝�𝑢𝑢𝑖𝑖𝑖𝑖  � 𝜃𝜃� and 

log𝑝𝑝(𝑏𝑏𝑖𝑖 | 𝜃𝜃) are the log likelihoods for the distributions of the cluster-specific and patient-

specific parameters, respectively, log𝑝𝑝(𝜃𝜃) represents the log likelihood for the joint prior 

distribution across all unknown population-level parameters, 𝒟𝒟𝑖𝑖 = (𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,𝑇𝑇𝑖𝑖,𝑑𝑑𝑖𝑖; 𝑗𝑗 =

1, … , 𝐽𝐽𝑖𝑖,𝑘𝑘 = 1, … ,𝐾𝐾𝑖𝑖𝑖𝑖) denotes the observed data for the 𝑖𝑖𝑡𝑡ℎ patient, and 𝐶𝐶 is a constant.  

For the 𝑖𝑖𝑡𝑡ℎ patient, the log likelihood for the event submodel can be rewritten as  
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 log𝑝𝑝�𝑇𝑇𝑖𝑖,𝑑𝑑𝑖𝑖  � 𝑢𝑢𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖,𝜃𝜃� = 𝑑𝑑𝑖𝑖 log�ℎ𝑖𝑖(𝑇𝑇𝑖𝑖)� −  � ℎ𝑖𝑖(𝑠𝑠) 𝑑𝑑𝑠𝑠
𝑇𝑇𝑖𝑖

0
 (10) 

To approximate ∫ ℎ𝑖𝑖(𝑠𝑠) 𝑑𝑑𝑠𝑠𝑇𝑇𝑖𝑖
0  we use Gauss-Kronrod quadrature with 𝑄𝑄 nodes, such that 

 � ℎ𝑖𝑖(𝑠𝑠) 𝑑𝑑𝑠𝑠
𝑇𝑇𝑖𝑖

0
≈
𝑇𝑇𝑖𝑖
2
�𝑟𝑟𝑞𝑞ℎ𝑖𝑖 �

𝑇𝑇𝑖𝑖�1 + 𝑠𝑠𝑞𝑞�
2

�
𝑄𝑄

𝑞𝑞=1

 (11) 

where 𝑟𝑟𝑞𝑞 and 𝑠𝑠𝑞𝑞, respectively, are the standardised weights and abscissa for quadrature 

node 𝑞𝑞 (𝑞𝑞 = 1, … ,𝑄𝑄).16 

The joint model proposed here can be estimated using the ‘stan_jm’ modelling function 

within the rstanarm R package.17,18 The association structure can be based on the expected 

value and/or slope of the longitudinal biomarker. However, if both the expected value and 

slope are specified then a common summary function (i.e. summation, average, maximum, 

or minimum) must be applied to both those quantities (this restriction may be relaxed in a 

future release). The software also allows several choices for specification of the baseline 

hazard ℎ0(𝑡𝑡) as well as for the number of quadrature nodes (we use 𝑄𝑄 = 15 nodes in our 

application). In the Supplementary Materials we present a small simulation study, used to 

evaluate the performance of rstanarm with regard to estimating the proposed model. In 

general, we found that rstanarm was able to recover the true parameters used in the data 

generating model and with accurate estimates of the standard error for each parameter.  

Estimation of the model is performed using Hamiltonian Monte Carlo (HMC) via the 

software Stan. By combining the theory of Hamiltonian dynamics with information related 

to the gradient of the target distribution, HMC is able to explore the parameter space of the 

posterior distribution more efficiently than random walk Markov chain Monte Carlo 

methods. However, a review of HMC is outside the scope of this paper. Instead, the reader 
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is referred to Neal (2011) and Betancourt (2017) for a conceptual explanation of the theory 

of HMC, as well as Hoffman and Gelman (2014) for technical details on the Stan 

implementation of the method.19–21  

Estimation under HMC requires specification of prior distributions on all unknown 

parameters. In general, one can specify a variety of prior distributions for the population-

level parameters contained in 𝜃𝜃. For instance, for the regression coefficients 𝛽𝛽 and 𝛾𝛾 the 

prior distributions available in rstanarm include the normal, Cauchy, or Student-t 

distributions, as well as a variety of shrinkage priors. The specific prior distributions used in 

our application are described in the following section. 

 

5. Application 

We demonstrate the use of our modelling approach by exploring the association between 

tumor burden and the hazard of death or disease progression amongst NSCLC patients 

undergoing treatment. 

5.1 Data 

The Iressa Pan-Asia Study (IPASS) was an open label, phase 3 trial of 1,217 untreated NSCLC 

patients in East Asia randomized to: (i) gefitinib (250mg per day), or (ii) carboplatin (dose 

calculated to provide 5-6 mg per milliliter per minute) plus paclitaxel (200 mg per square 

meter of body-surface area).22 The primary endpoint was progression-free survival, 

however, the study was extended to track overall survival in the longer term. We restricted 

our analyses to the 430 (35%) patients with an available test result for epidermal growth 
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factor receptor (EGFR) mutation since this has been shown to be associated with both 

tumor dynamics and treatment response.23 We thereby defined a group covariate 

corresponding to either: (i) EGFR+, (ii) EGFR- and receiving gefitinib; or (iii) EGFR- and 

receiving carboplatin plus paclitaxel. We also include a three category physical functioning 

measure (normal activity; restricted activity; in bed >50% of the time) as a baseline 

covariate in our event submodel.24 

5.2 Model specification 

5.2.1 Longitudinal submodel 

We modelled repeated measurements of the longest diameter (in millimetres) of each 

lesion using a linear mixed effects model (identity link, normal distribution) with a linear 

predictor  

 
𝜂𝜂𝑖𝑖𝑖𝑖(𝑡𝑡) = �𝛽𝛽0 + 𝑏𝑏𝑖𝑖0 + 𝑢𝑢𝑖𝑖𝑖𝑖0� + �𝛽𝛽1 + 𝑢𝑢𝑖𝑖𝑖𝑖1�𝑡𝑡 + �𝛽𝛽2 + 𝑢𝑢𝑖𝑖𝑖𝑖2�𝑡𝑡2

+ � �𝛽𝛽3𝑔𝑔𝐺𝐺𝑖𝑖𝑔𝑔 + 𝛽𝛽4𝑔𝑔𝐺𝐺𝑖𝑖𝑔𝑔𝑡𝑡 + 𝛽𝛽5𝑔𝑔𝐺𝐺𝑖𝑖𝑔𝑔𝑡𝑡2�
2

𝑔𝑔=1
 

(12) 

where 𝑡𝑡 denotes time in months, 𝐺𝐺𝑖𝑖𝑔𝑔 takes the value 1 if patient 𝑖𝑖 (𝑖𝑖 = 1, … ,𝑁𝑁) is in EGFR 

group 𝑔𝑔 (𝑔𝑔 = 1,2) and 0 otherwise, the vector 𝛽𝛽 = (𝛽𝛽0, … ,𝛽𝛽51,𝛽𝛽52) contains the 

population-level parameters, the vector 𝑢𝑢𝑖𝑖𝑖𝑖 = �𝑢𝑢𝑖𝑖𝑖𝑖0, 𝑢𝑢𝑖𝑖𝑖𝑖1,𝑢𝑢𝑖𝑖𝑖𝑖2� contains lesion-specific 

parameters for lesion 𝑗𝑗 (𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖) within patient 𝑖𝑖, and the length one vector 𝑏𝑏𝑖𝑖 = (𝑏𝑏𝑖𝑖0) 

denotes the patient-level random intercept for patient 𝑖𝑖. The distributions for the random 

effect parameters (𝑢𝑢𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖) are the same as described in Section 3.1. This specification 

allowed for lesion-specific nonlinear (quadratic) evolutions of the longitudinal trajectory, 

while also allowing the average (i.e. population-level) estimate of the nonlinear longitudinal 

trajectory to differ between the three groups (through the group by time interaction terms). 
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5.2.2 Event submodel 

We modelled the hazard of death or disease progression using the proportional hazards 

model  

 ℎ𝑖𝑖(𝑡𝑡) = exp��𝜔𝜔𝑏𝑏𝐵𝐵𝑏𝑏(𝑡𝑡)
6

𝑏𝑏=1

+ � 𝛾𝛾𝑎𝑎𝐴𝐴𝑖𝑖𝑎𝑎
2

𝑎𝑎=1
+ �𝛼𝛼𝑞𝑞𝑓𝑓𝑞𝑞�𝛩𝛩𝑖𝑖𝑖𝑖(𝑡𝑡);  𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖�

𝑄𝑄

𝑞𝑞=1

�  (13) 

where 𝐵𝐵𝑏𝑏(𝑡𝑡) denotes the 𝑏𝑏𝑡𝑡ℎ cubic B-spline basis function evaluated at time 𝑡𝑡 and with 

associated coefficient 𝜔𝜔𝑏𝑏, 𝐴𝐴𝑖𝑖𝑎𝑎 denotes the baseline covariate for physical activity taking the 

value 1 if patient 𝑖𝑖 is in physical activity group 𝑎𝑎 (𝑎𝑎 = 1,2) and 0 otherwise, and the vector 

𝛾𝛾 = (𝛾𝛾1,𝛾𝛾2) contains population-level log hazard ratios. 

The B-spline basis terms - used to model the log baseline hazard - are evaluated with 

boundary knots placed at the earliest entry and latest exit times (0 and 22 months, 

respectively) and two internal knots placed at evenly spaced percentiles of the distribution 

of uncensored event times (3.1 and 6.8 months).  

We considered several models which each differed in terms of their association structure. 

Specifically we considered the following: (i) no association structure (i.e. no biomarker 

information in the event submodel), (ii) association structures based on the sum, average, 

maximum or minimum of the lesion-specific expected values (i.e. the association structures 

defined in equations (3) through (6)), and (iii) association structures based on both the 

lesion-specific expected value and slope, that is an association structure of the form 

 
�𝛼𝛼𝑞𝑞𝑓𝑓𝑞𝑞 �𝛩𝛩𝑖𝑖𝑖𝑖(𝑡𝑡)�
𝑄𝑄

𝑞𝑞=1

= 𝛼𝛼1 𝑓𝑓�𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡);  𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖� + 𝛼𝛼2 𝑓𝑓 �
𝑑𝑑𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

;  𝑗𝑗 = 1, … , 𝐽𝐽𝑖𝑖� 

(14) 

where the function 𝑓𝑓(. ) was taken to be either the sum, average, maximum or minimum, 
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𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡) is the size and 
𝑑𝑑𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

 is the rate of change in the size of lesion 𝑗𝑗 in patient 𝑖𝑖 at time 𝑡𝑡, 

𝐽𝐽𝑖𝑖  is the total number of target lesions identified for patient 𝑖𝑖 at baseline, and 𝛼𝛼1 and 𝛼𝛼2 are 

association parameters. 

5.3 Model estimation 

We used weakly informative prior distributions for all parameters. The weakly informative 

priors were intended to reduce support given to values of the parameters that would seem 

implausible based on the scale of magnitude of the data. They were not intended to provide 

support to specific parameter values based on prior knowledge or expert opinion. We used 

normal distributions for the regression coefficients 𝛽𝛽, 𝛾𝛾, and 𝛼𝛼𝑞𝑞 (𝑞𝑞 = 1, … ,𝑄𝑄). We used a 

half-Cauchy distribution for the standard deviation of the residual errors. We used Cauchy 

distributions for the B-spline coefficients for the log baseline hazard. We decomposed each 

of Σ𝑏𝑏 and Σ𝑢𝑢 into a correlation matrix and a vector of standard deviations. We then placed a 

half-Cauchy prior distribution on each of the standard deviations, and used an LKJ 

correlation matrix distribution (parameterised in terms of its Cholesky factor) for each 

correlation matrix.25,26 Details on the hyperparameters used for the prior distributions and 

details on the computation (e.g. number of iterations), including example code, are all 

contained in the Supplementary Materials. 

5.4 Model comparison 

An ideal feature of our model would be that it is able to inform clinical decision making by 

accurately predicting a patient’s future risk of death or disease progression in the clinical 

setting. We therefore compared different possible association structures for our proposed 

joint model using a measure of predictive accuracy for the event outcome. Specifically, we 
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used the estimated area under the (time-dependent) receiver operating characteristic curve 

(AUC) to assess how well each of the models discriminated between those patients who did 

and did not have the event.3 

To do this we first used the fitted joint model to generate conditional survival probabilities 

for each patient at some time horizon 𝑡𝑡𝐿𝐿 + 𝛥𝛥𝑡𝑡, conditional on: (i) their still being at risk at 

some landmark time 𝑡𝑡𝐿𝐿, and (ii) their longitudinal biomarker data up to the landmark time 𝑡𝑡𝐿𝐿 

(following the methods described in Rizopoulos (2012)).3 These survival probabilities were 

then used in combination with the observed event times and censoring indicators for each 

patient, taken over the interval (𝑡𝑡𝐿𝐿 ,  𝑡𝑡𝐿𝐿 + 𝛥𝛥𝑡𝑡), to calculate the time-dependent AUC 

measure. 

5.5 Results 

In our analysis, 360 (84%) of the 430 patients progressed or died prior to censoring. The 

overall Kaplan-Meier curve is shown in Figure 2. There were 1209 lesions across the 430 

patients, and 138 (32%), 101 (23%), 71 (17%) and 120 (28%) patients with 1, 2, 3 or 4+ 

lesions, respectively. A total of 6132 size measurements were observed, corresponding to a 

median number of 5 (IQR: 3 to 7; range: 1 to 17) measurements per lesion. 

Table 1 shows the estimated AUC values for the fitted models. The results are shown for a 

landmark time of 𝑡𝑡 = 5 months and a horizon time of 𝑡𝑡 + 𝛥𝛥𝑡𝑡 = 10 months. For an association 

structure based on the expected value (i.e. diameter of the lesion) only, a summary function 

based on the sum or maximum of the lesions showed better discriminatory performance 

compared with using the mean or minimum. We found that also including the slope (i.e. 

rate of change in the diameter of the lesion) in the association structure improved the 

predictive performance. When both the expected value and slope were used in the 
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association structure then summaries based on the sum, mean or maximum of the lesions 

all performed similarly. The summary based on the minimum (i.e. size of the smallest lesion, 

and rate of change in the slowest growing lesion, at time 𝑡𝑡) was the worst in terms of 

predicting the risk of death or disease progression. These results are in line with what we 

would expect from a clinical perspective, that is, those summaries that incorporate 

information on the largest and/or fastest growing lesion at time 𝑡𝑡 are likely to provide 

better predictive performance. This is because they capture information about the most 

aggressive tumor, which may have escaped treatment and is therefore likely to impact most 

severely on the risk of death disease progression and death. 

Table 2 shows the parameter estimates from the model with the best performance based 

on the AUC measure (with an association structure based on the maximum of the lesion-

specific expected values and slopes). The estimated hazard ratio corresponding to the first 

association parameter (i.e. exp(𝛼𝛼1)) was 1.011 (95% credible interval (CrI): 1.004 to 1.017), 

suggesting that a one millimetre increase in the diameter of a patient’s largest lesion was 

associated with a 1.1% (95% CrI: 0.4 to 1.7%) increase in their hazard of death or disease 

progression (conditional on the other covariates in the model). Similarly, a one millimetre 

per month increase in the rate of change of their fastest growing lesion was associated with 

a 56% (95% CrI: 42 to 75%) increase in their hazard. Figure 3 shows the fitted lesion-specific 

longitudinal trajectories and observed measurements for a selection of patients under the 

fitted model. 

6. Alternative data structure: clustering above the patient-level  

In our analysis of the IPASS data, patient represented the top level of the data hierarchy and 
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the additional clustering factor – “lesion” – occurred at a level which was lower in the 

hierarchy than patient; that is, lesions were clustered within patients rather than patients 

being clustered within lesions. An alternative situation is that in which the additional 

clustering factor(s) occur at a level which is higher in the hierarchy than the patient-level. An 

example is where repeated observation times (level 1) exist for patients (level 2) and the 

patients are clustered within clinics (level 3). Another example is an individual patient data 

(IPD) meta-analysis with repeated observation times (level 1) for patients (level 2) clustered 

within randomised clinical trials (level 3).12 

Recall however that the event time 𝑇𝑇𝑖𝑖 is measured at the patient-level and, therefore, the 

patient represents the level of the hierarchy at which our primary interest lies for 

understanding the association between the longitudinal and event processes. For this 

reason, the relative locations within the hierarchy of the patient and the additional 

clustering factor have implications for specifying the association structure of the joint 

model.  

6.1 Model formulations based on a patient-level association structure 

In Section 3.3 we proposed association structures based on a patient-level time-specific 

summary of the 𝐽𝐽𝑖𝑖  level 2 units clustered within patient 𝑖𝑖. However, with clustering above 

the patient-level, there is no need to construct such a patient-level summary.  

Suppose that the longitudinal outcome 𝑦𝑦𝑙𝑙𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑙𝑙𝑖𝑖(𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖) is measured at time point 𝑘𝑘 (𝑘𝑘 =

1, … ,𝐾𝐾𝑙𝑙𝑖𝑖) which is nested within unit 𝑖𝑖 (𝑖𝑖 = 1, … ,𝑁𝑁𝑙𝑙) of the level 2 clustering factor (the 

patient) which in turn is nested within unit 𝑙𝑙 (𝑙𝑙 = 1, … , 𝐿𝐿) of a level 3 clustering factor 

(clinic, say, for example). If we again model the longitudinal outcome in continuous time 

using a generalised linear mixed effects model where 𝑌𝑌𝑙𝑙𝑖𝑖(𝑡𝑡) is governed by a distribution in 
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the exponential family with expected value 𝜇𝜇𝑙𝑙𝑖𝑖(𝑡𝑡) = 𝑔𝑔−1(𝜂𝜂𝑙𝑙𝑖𝑖(𝑡𝑡)) we might, for example, 

consider a specification for the longitudinal submodel of the form 

 𝜂𝜂𝑙𝑙𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑙𝑙𝑖𝑖′ (𝑡𝑡)𝛽𝛽 + 𝑧𝑧𝑙𝑙𝑖𝑖′ (𝑡𝑡)𝑏𝑏𝑙𝑙𝑖𝑖 + 𝑞𝑞𝑙𝑙𝑖𝑖′ (𝑡𝑡)𝑐𝑐𝑙𝑙  (15) 

where 𝑥𝑥𝑙𝑙𝑖𝑖(𝑡𝑡), 𝑧𝑧𝑙𝑙𝑖𝑖(𝑡𝑡) and 𝑞𝑞𝑙𝑙𝑖𝑖(𝑡𝑡) are vectors of covariates, possibly time-dependent, 𝑏𝑏𝑙𝑙𝑖𝑖 still 

represents the vector of patient-specific parameters (but now patient 𝑖𝑖 is nested within the 

level 3 cluster 𝑙𝑙), and 𝑐𝑐𝑙𝑙 represents the vector of level 3 parameters such that 𝑐𝑐𝑙𝑙 ∼ 𝑁𝑁(0,𝛴𝛴𝑐𝑐). 

The corresponding specification of the event submodel may take the form 

 ℎ𝑙𝑙𝑖𝑖(𝑡𝑡) = ℎ0(𝑡𝑡) exp(𝑣𝑣𝑙𝑙𝑖𝑖′ (𝑡𝑡)𝛾𝛾 + 𝛼𝛼 𝜇𝜇𝑙𝑙𝑖𝑖(𝑡𝑡))   (16) 

Because the additional clustering occurs at a level in the hierarchy that is higher than the 

patient we can simply use an association structure based on the patient-level expected 

value of the longitudinal outcome, without any need to derive a summary quantity based on 

lower-level units. The specification in equation (16) would assume that the hazard of the 

event for patient 𝑖𝑖 at time 𝑡𝑡 is associated with the patient-specific expected value of the 

longitudinal marker at time 𝑡𝑡, incorporating the effects of any higher level clustering. Note 

that the specification in equation (16) could be easily extended to any other patient-level 

function of the longitudinal submodel parameters, such as the patient-specific rate of 

change in the marker (i.e. slope) at time 𝑡𝑡 or the area under the patient-specific marker 

trajectory (i.e. integral) up to time 𝑡𝑡. 

A possible extension would be to include a shared frailty term in the event submodel 

 ℎ𝑙𝑙𝑖𝑖(𝑡𝑡) = ℎ0(𝑡𝑡) exp(𝑣𝑣𝑙𝑙𝑖𝑖′ (𝑡𝑡)𝛾𝛾 + 𝛼𝛼 𝜇𝜇𝑙𝑙𝑖𝑖(𝑡𝑡) + 𝛿𝛿𝑙𝑙)  (17) 

where 𝛿𝛿𝑙𝑙 is, for example, assumed to follow a normal or log-Gamma distribution. The 

inclusion of the shared frailty term does not induce an association with the longitudinal 

submodel, but it does allow for correlation in the event times of patients within a level 3 
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cluster. Note that if the variance of the 𝛿𝛿𝑙𝑙 parameters is close to zero, then this would 

suggest there is little within-cluster correlation in the event times and the shared frailty 

term could be dropped from the model. Moreover, if the number of level 3 groups was 

small then another alternative would be to include the level 3 group as a fixed effect 

covariate in the event submodel or as a stratification factor for the baseline hazard. The 

benefit of these latter models is that they may be computationally simpler than specifying a 

shared frailty term as a random effect. 

6.2 Model formulation based on a higher-level association structure 

An alternative possibility is that the hazard of the event for patient 𝑖𝑖 need only be related to 

the higher-level cluster’s deviation from the average. That is, we can consider a shared 

random effects joint model of the form 

 ℎ𝑙𝑙𝑖𝑖(𝑡𝑡) = ℎ0(𝑡𝑡)exp(𝑣𝑣𝑙𝑙𝑖𝑖′ (𝑡𝑡)𝛾𝛾 + 𝛼𝛼 𝑐𝑐𝑙𝑙)   (18) 

where 𝑐𝑐𝑙𝑙 might, for example, represent the clinic-level random intercept. In this case, we 

would have a model in which we assume that the hazard of the event for patient 𝑖𝑖 is 

associated with the way in which their clinic’s biomarker measurements deviate from the 

average clinic, but not with any time-varying characteristics of the patient themselves. Here, 

the random effect 𝑐𝑐𝑙𝑙 serves two purposes in the event submodel. First, it allows for within-

cluster correlation in the event times (as previously described for the shared frailty). Second, 

it allows for dependence between the event and longitudinal processes through a shared 

parameter at the level of clustering factor 𝑙𝑙. 

7. Discussion 

Increasingly complex data structures are being accommodated under a joint longitudinal 
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and time-to-event modelling framework. In this paper we have described a new joint 

modelling approach that allows for multilevel hierarchical data, where the data structure 

includes clustering factors beyond that of the individual. Such data structures commonly 

appear in clinical and epidemiological research, however, they have not previously been 

incorporated into a joint modelling framework. Standard joint modelling approaches aim to 

model patient-level measurements of a clinical biomarker, however, greater flexibility can 

be achieved by incorporating both patient-specific and cluster-specific effects in the 

longitudinal submodel when those levels of clustering are present in the underlying data 

structure. Moreover, it allows an additional set of association structures to be used for 

modelling the association between the longitudinal biomarker and the patient-level risk of 

the event.  

We proposed a set of possible association structures that could be used in most settings, 

however, the most appropriate choice of association structure is likely to depend on the 

primary research question and data structure that is relevant to the application at hand. By 

incorporating the multilevel structure into our joint modelling approach, we are able to 

formulate a model that answers the research question appropriately. For instance, in our 

application, patient-level summaries of the lesion-specific trajectories are likely to be 

meaningful in a way that quantities obtained by ignoring the lesion level would not be.  

Luo and Wang (2014) proposed a joint model for multilevel longitudinal data and an 

associated patient-level terminal event.27 Their methodology extended upon multilevel item 

response theory, whereby multiple longitudinal outcomes were assumed to be related 

through patient-specific latent disease severity. The latent disease severity was allowed to 

vary over time (through patient-specific intercept and slope parameters) and incorporated 
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higher-level cluster-specific parameters that accounted for correlation between patients 

enrolled through the same research centre. 

Our approach differs from Luo and Wang in four key ways. First, we allow for clustering 

factors nested within patients, whereas Luo and Wang only considered additional clustering 

above the patient-level. Second, we propose association structures that are time-

dependent, for example, based on the time-varying expected value or rate of change in the 

biomarker. In contrast, Luo and Wang proposed a time-fixed association structure based on 

shared random effects (that is, they included the time-fixed patient-specific and cluster-

specific parameters from the disease severity submodel as covariates in the linear predictor 

of the survival submodel). Third, we do not consider multiple longitudinal outcomes. Fourth, 

we estimated our model using Hamiltonian Monte Carlo whereas they used Gibbs sampling. 

Another consideration is that covariates such as treatment can be included in either the 

longitudinal submodel, the event submodel, or both. For example, Ibrahim et al. describe 

how the overall effect of a treatment on the event can be partitioned into direct and 

indirect effects using a joint modelling approach.28 However, the approach used by Ibrahim 

et al. can only be applied in a straightforward manner when the association structure is a 

linear function of the longitudinal submodel parameters. In our application, we chose to 

include treatment only in the longitudinal submodel on the assumption that tumor growth 

and shrinkage are the causal pathway for treatment to influence disease progression and 

death. In general, the choice of model structure is dependent on the scientific question 

under consideration. 

A potential limitation of the modelling in our application is that the observed event times 

were subject to interval censoring. This interval censoring is evident from the “steps” that 
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can be seen in the Kaplan-Meier curve in Figure 2. This is due to clinicians in the IPASS trial 

declaring disease progression at the scheduled clinic visits. In our application we ignored 

this interval censoring and so an avenue for future work will be to accommodate this 

interval censoring within our proposed joint modelling framework. Moreover, in future 

work, we would like to separately assess the competing event outcomes of death and 

disease progression by considering cause-specific competing risks event submodels. In this 

way, we will be able to separate out the cause-specific associations between tumor burden 

and each of the competing events. 

It is also worth noting that all of the models considered in our application had a relatively 

poor AUC. For instance, none were greater than 0.7, thereby limiting the clinical utility of 

the models for the purpose of prognosis. 

Lastly, the choice of random effects structure in the longitudinal submodel warrants 

discussion (i.e. which cluster-specific and patient-specific parameters to include). In our 

application, we assumed that variation in growth rates should be primarily attributed to 

between-lesion (within-patient) variation, rather than between-patient variation. Hence, we 

only included a patient-level intercept and not a patient-level slope parameter. However, 

this was a modelling assumption and other model specifications could have been explored. 

A discussion of the most appropriate methods for choosing the random effects structure is 

beyond the scope of this paper, and in any case, such methods are open to debate.29 

Nonetheless, researchers need to be aware that they should choose patient-specific and 

cluster-specific parameters that are appropriate for the context of their study. 

A significant strength of this paper is that our proposed model, described in Section 3, has 

been implemented as part of the rstanarm R package. A benefit of having implemented this 
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model as part of that package is that researchers can easily fit the model to their data, via a 

user-friendly interface with customary R formula syntax and data frames. The back-end 

estimation of the model is carried out under a full Bayesian specification with priors on all 

unknown parameters. A variety of prior distributions are available to the user, as well as a 

variety of exponential family and link function options for the longitudinal outcome, thereby 

providing significant flexibility. In addition, the package allows users to estimate a joint 

model with multiple longitudinal outcomes (i.e. a multivariate joint model) of which one or 

more can have the multilevel structure described in Section 3. We hope that by providing 

user-friendly software and example code (Supplementary Materials) for fitting the proposed 

model, we will help to facilitate its use in a wide variety of applications.  
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Figure 1. Example of the hierarchical structure of joint model data under three possible 

scenarios: (a) one longitudinal biomarker (tumor size) where the patient is the only 

clustering factor; (b) one longitudinal biomarker (tumor size) where there are two clustering 

factors (lesions clustered within patients); (c) two longitudinal biomarkers (tumor size and 

circulating DNA), one of which has one clustering factor (the patient), and one of which has 

two clustering factors (lesions clustered within patients). 
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Figure 2. Overall Kaplan-Meier curve for progression-free survival. The values provided at 

the top of the plot are the numbers of patients still at risk for the event. 
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Figure 3. Observed longitudinal biomarker measurements (longest diameter of the lesion) 

and the fitted lesion-specific longitudinal trajectories (with 95% prediction intervals) under 

the joint model, for a selection of patients. Each panel of the figure shows a different 

patient, with some patients having multiple lesions. The dashed vertical line shows each 

patient’s event or censoring time. 

 

 

 

  



35 
 

Table 1. Estimated time-dependent AUC for the proposed joint model using various 

association structures. The AUC is calculated using a landmark time of 𝑡𝑡 = 5 months and 

horizon time of 𝑡𝑡 = 10 months.  

Association structure Time-dependent AUC 

No biomarker data (i.e. no association structure) 0.50 

  

Lesion-specific value  

  Sum 0.62 

  Average 0.56 

  Maximum 0.61 

  Minimum 0.55 

  

Lesion-specific value & slope  

  Sum 0.65 

  Average 0.64 

  Maximum 0.66 

  Minimum 0.59 

Abbreviations. AUC: area under the (receiver operating characteristic) curve. 
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Table 2. Fixed effect parameter estimates (posterior means and 95% credible interval limits) 

from the joint model. The estimates for the event submodel are hazard ratios and the 

coefficients for the B-splines baseline hazard have been omitted. 

Parameter Estimate Lower Upper 

Longitudinal submodel    

   Intercept 23.0 21.3 24.7 

   Group (ref: EGFR+)    

       EGFR-, carboplatin plus paclitaxel 4.0 0.8 7.1 

       EGFR-, gefitinib 16.9 13.2 20.4 

   Time effects    

       Linear term (orthogonalised) -0.1 -73.3 76.7 

       Quadratic term (orthogonalised) 450.3 391.6 512.5 

   Group * Linear interaction    

      EGFR-, carboplatin plus paclitaxel * Linear 315.2 195.1 438.4 

      EGFR-, gefitinib * Linear 390.0 127.5 660.4 

   Group * Quadratic interaction    

      EGFR-, carboplatin plus paclitaxel * Quadratic 23.7 -74.3 123.4 

      EGFR-, gefitinib * Quadratic -524.8 -697.0 -351.1 

    

Event submodel    

   Physical functioning (ref: in bed >50% of the time)    

       Normal activity 0.6 0.4 1.0 

       Restricted activity 0.6 0.4 1.0 

   Association parameters (exponentiated)    

       Value (diameter of largest lesion at time 𝑡𝑡) 1.011 1.004 1.017 

       Slope (rate of change in fastest growing lesion at time 𝑡𝑡) 1.56 1.42 1.75 

Abbreviations. ref: reference category; EGFR: epidermal growth factor receptor (mutation 
status). 
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