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Free Fatty Acid receptor 4 (FFA4), also known as GPR120, is a G-protein-
coupled receptor (GPCR) responsive to long-chain fatty acids that is attracting
considerable attention as a potential novel therapeutic target for the treatment
of type 2 diabetes mellitus (T2DM). Although no clinical studies have yet been
initiated to assess efficacy in this indication, a significant number of primary
publications and patents have highlighted the ability of agonists with potency at
FFA4 to improve glucose disposition and enhance insulin sensitivity in animal
models. However, the distribution pattern of the receptor suggests that target-
ing FFA4 may also be useful in other conditions, ranging from cancer to lung
function. Here, we discuss and contextualise the basis for these ideas and the
results to support these conclusions.

Receptors for Long-Chain Fatty Acids

In recent years, it has become clear that many components of foodstuffs, or metabolites
derived thereof, act as homeostatic monitors of nutrient availability [1]. In many cases, such
metabolites do so by binding to, and activating, members of the rhodopsin-like or ‘class A’
family of GPCRs [1]. Among such metabolites is the group of long-chain, nonesterified or ‘free’
fatty acids. A broad range of long-chain fatty acids of varying chain length and position and
extent of unsaturation (Box 1) are able to activate a pair of these GPCRs [2,3]. Initially
designated GPR40 [4] and GPR120 [5], upon acceptance that long-chain FFAs are indeed
the key endogenous activators of these receptors, they were systematically renamed FFA1
(GPR40) [6] and FFA4 (GPR120) [7], although the initial, colloquial terminologies remain in
widespread use. FFA1 has been validated clinically as a therapeutic target able to control blood
glucose levels. Although the potential for FFA4 to also be a therapeutic target for regulating
blood glucose levels and improving tissue insulin sensitivity appears clear from rodent model
studies, this remains to be addressed in a clinical setting. However, recent studies exploring
further roles of FFA4 in lung function and in the development of resistance to platinum-
containing chemotherapeutics suggest that interest in FFA4 should be expanded beyond
metabolic diseases and should also consider potential therapeutic applications of FFA4
antagonists as well as agonists.

FFA1

FFA1 is highly expressed by pancreatic B cells and, because fatty acids are known, at least in
acute settings, to promote insulin release from pancreatic islets, synthetic small-molecule
activators of FFA1 were initially assessed for their ability to mimic this effect. Rapid translation to
show that such ligands were also efficacious in various glucose tolerance tests, resulted in the
optimisation of potentially drug-like FFA1 agonist ligands and the introduction into first-in-
human clinical trials of fasiglifam {TAK-875, 2-[(3S)-6-({3-[2,6-dimethyl-4-(3-methylsulfonylpro-
poxy)phenyllphenylmethoxy)-2,3-dihydro-1-benzofuran-3-yljacetic acid} [8—10] as a potential
antidiabetic medication. Although substantial efficacy was noted in both Phase Il and initial
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Box 1. Fatty Acids

A fatty acid is a carboxylic acid with a linked aliphatic chain and may be either saturated or unsaturated. Most naturally
occurring fatty acids contain a linear, unbranched aliphatic chain that lacks further modifications. However, in recent
times, several modified forms, including hydroxy fatty acids [77] and branched fatty acid esters of hydroxy fatty acids
[78,79], have been suggested to have important biological roles via the activation of fatty acid-responsive GPCRs.
Although both short-chain (C2-C5) and medium-chain (C9-C11)-length fatty acids are also known to activate specific
GPCRs (short-chain fatty acids, FFA2, FFA3; medium chain fatty acids, GPR84), the longer-chain fatty acids activate
both FFA1 and FFA4. While most long-chain fatty acids can be synthesised by the body, a pair of unsaturated long-
chain fatty acids, «-linolenic acid [18:3(n-3)] and linoleic acid [18:2(n-6)] cannot, due to the lack of an appropriate
desaturase enzyme. Therefore, these are defined as being ‘essential’ fatty acids. While both a-linolenic acid and linoleic
acid contain 18 carbon atoms, they differ in the number of unsaturated bonds within the aliphatic chain (a-linolenic acid
has three, whereas linoleic acid has two). Given that different fatty acids vary in chain length, to allow consistency of
nomenclature the terminal carbon atom is designated ‘omega’ (n), after the last letter in the Greek alphabet. An ‘omega-
3’ fatty acid has the first position of unsaturation three carbon atoms from the tail, while,for an ‘omega-6’ fatty acid, this
is located six carbon atoms from the tail. As such, a-linolenic acid is coded as ‘18:3(n-3)’, while linoleic acid is coded as
18:2(n-6)’. Omega-3 fatty acids have attracted considerable attention as being beneficial for health, not least due to the
high levels of such fatty acids in ‘oily’ fish, including mackerel and salmon. Before systematic redesignation as FFA4, in
some publications this receptor (FFA4/GPR120) was highlighted as a (the) receptor for omega-3 fatty acids [80] and,
although such fatty acids are among the most potent at this receptor, other long-chain saturated and unsaturated fatty
acids are also able to activate this receptor [3].

Phase Ill studies, development of fasiglifam was discontinued in late 2013 based on concerns
of potential liver toxicity [11]. Subsequent reports have indicated that these adverse effects are
likely related to the build-up of high concentrations of fasiglifam and an acyl glucuronide
derivative of the ligand in the bile, reflecting blockage of various bile acid transporters including,
but not limited to, the bile salt export pump (BSEP) [12,13]. Given the clinical validation of
targeting FFA1, there remains significant interest in the potential of novel ligands at this receptor
for the treatment of T2DM [14-16]. Recent publications from various pharmaceutical compa-
nies several, of what appear, at least in animal models, to be highly effective and potent FFA1
ligands [17-19], support this. Clearly, issues akin to those that resulted in the removal of
fasiglifam from clinical development, including inhibition of BSEP, would need to be addressed
directly before further clinical studies commence.

FFA4

GPR120 was deorphanised as the second receptor for long-chain fatty acids in 2005 [5]. Initial
focus highlighted expression in the lower gut, the capacity of unsaturated fatty acids to promote
release of the incretin glucagon-like peptide-1 (GLP-1) from the enteroendocrine cell line STC-
1, and that both fatty acid-mediated elevation of phosphorylated extracellular regulated kinase
(ERK) 1/2 MAP kinases and internalisation of the receptor from the surface of transfected cells
could be used effectively as means to screen for, and identify, synthetic agonists at the receptor
[5]. These initial studies also highlighted the importance of the carboxylate of the fatty acids to
their function because equivalent methyl esters were inactive. Although the authors also
reported [5] the ability of a-linolenic acid [18:3(n-3); Box 1] to increase levels of both GLP-1
and insulin in both the portal vein and inferior vena cava of mice, there remains uncertainty over
the contribution of such released GLP-1 to the observed increase in circulating insulin levels
and whether this is also the case in humans. Of particular interest, although not explored further
in the initial studies, was the observation of particularly high levels of receptor mRNA in the lung
of both humans and mice [5]. The potential relevance of this is discussed below. Although only
distantly related in terms of sequence to FFA1, acceptance of GPR120 as a bona fide GPCR
responsive to long-chain fatty acids resulted in its systematic re-classification as FFA4 [7].

Although detailed and comprehensive analyses have shown that a broad swathe of saturated

as well as unsaturated fatty acids are able to activate FFA4 [20] (reviewed in [3]), initial
description of the capacity of a-linolenic acid to activate this receptor paved the way for a
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particular focus on the effects of this and other health-beneficial omega-3 fatty acids acting
either predominantly, or even exclusively, via FFA4 [21-28]. This is undoubtedly an oversimpli-
fication. For example, there have been suggestions that several beneficial effects of omega-3
fatty acids do not require FFA4 [29-33]. However, it is important to note equivalent studies
where using combinations of FFA4 expression knockout and animals that synthesise high levels
of polyunsaturated omega-3 fatty acids, resulted in the suggestion that such fatty acids
regulate beneficially vascular inflammation and neointimal hyperplasia via FFA4 [34]. A chal-
lenge for the translation of these ideas to humans is whether, even with dietary supplementa-
tion, levels of such fatty acids are likely sufficient to engage the receptor to a substantial level
[35]. This question is further complicated by the fact that quantitatively more prevalent fatty
acids are also able to activate FFA4 [20], while specific, but relatively uncommon, fatty acids or
their derivatives, which do not display substantially greater potency at FFA4 in vitro, are capable
of generating biological functions with apparent high potency and that are lacking in FFA4-
knockout animals [36] or are reduced with knock down of this receptor in model cell systems
[37].

Signalling Mechanisms of FFA4

The ability of FFA4 to elevate intracellular levels of Ca®* [5,38-40] provided early predictions of a
key role of the phosphoinositidase C-linked G proteins G, and/or G14 in transduction of signals
from this receptor, while later studies that examined production of inositol phosphates [41]
provided further support. The importance of this group of G proteins to key aspects of FFA4
function has been confirmed by the ability of selective Go/G11 inhibitors to block such signals
[41]. When expressed in HEK293 cells that had been genome-edited to lack expression of both
Ggq and G4, FFA4 was unable to induce elevation of either inositol phosphates or intracellular
Ca®" levels [41]. Although this appears to be the dominant mode of G protein-mediated
signalling for FFA4 (Figure 1), several reports suggest that treatment with pertussis toxin
eliminates the ability of this receptor to regulate the release of the satiety hormone ghrelin
[42] (Figure 1) and also the release of somatostatin from delta cells of the pancreas [43]. This
indicates a key role for Gi-family G proteins in these processes. Segerstolpe et al. [44] noted
expression of MRNA encoding FFA4 in delta cells isolated from both healthy individuals and
those with T2DM that was higher than expression of this receptor in pancreatic B cells derived
from the same individuals. Interestingly, and by contrast, FFA4 mRNA expression was not
detected in either o or vy cells [44]. This expression profile in cell subtypes may have substantial
significance and could be exploited if FFA4 agonists can be identified that show ‘bias’ between
promoting signalling via Gg11 and Gi-family G proteins. In initial deorphanisation studies,
Hirasawa et al. [5] used measures of the internalisation of FFA4 from the surface of transfected
cells. Such agonist-induced internalisation of FFA4 is both robust and extensive [39,40] and, at
least in the context of HEK293 cells, is almost entirely dependent on interactions with an
arrestin adapter protein [41] (Figure 1). Non-canonical, non-G-protein-mediated, signalling role
(s) of such a FFA4/arrestin complex remain to be fully defined. For example, although arrestins
are often linked to aspects of the temporal profile of GPCR-mediated regulation of the ERK1/2
MAP kinases, Alvarez-Curto et al. [41] did not identify a substantial role for arrestins in FFA4-
mediated phosphorylation of ERK1/2 when using HEK293 cells genome-edited to lack expres-
sion of either Gag plus Gy, or of B-arrestin 1 + B-arrestin 2. Moreover, the key role of arrestins
in FFA4 signalling in these cell backgrounds was their more traditional role in acting to
desensitise G protein-mediated signalling because their elimination resulted in Ca®* ‘spikes’
being generated repetitively with maintained exposure to an agonist [41]. Despite this, the now
well-established anti-inflammatory roles of FFA4 expressed within immune cell populations
where, in mice, particularly high levels are reported in thymus CD8" dendiritic cells and in lung-
resident macrophages (Immunological Genome Project) has focused attention on potential
contributions of interactions of FFA4-associated arrestins with the transforming growth factor
beta (TGF-B)-activated kinase 1 binding protein 1 (TAB-1). This is believed to limit TAB-1
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Figure 1. Free Fatty Acid Receptor 4 (FFA4) Can Engage Multiple Signalling Pathways to Regulate Distinct
Physiological Outcomes. Agonist-induced interactions with members of the Go/G11 G protein family, resulting in
elevated intracellular [Ca®*], are observed following expression of FFA4 in heterologous cell systems. This pathway is also
central to many effects of FFA4 in a physiological context [2]. However, release of the satiety hormone ghrelin is sensitive to
treatment with pertussis toxin [42], defining a role for Gi-family G proteins in this endpoint. Many efforts to identify synthetic
agonists at FFA4 have used receptor-B-arrestin interaction assays, and key physiological roles for such B-arrestin-
mediated interactions include regulation of production of anti-inflammatory mediators from macrophages [21]. Although
often interlinked, effects defined by agonist-induced phosphorylation of FFA4 can be resolved from effects generated
following FFA4 with arrestin [41]. Further work, potentially involving the use of novel transgenic mouse lines expressing
phosphorylation-resistant (see Figure 2 in the main text) variants of FFA4 are likely to help unravel distinct roles of these
regulatory interactions.

interacting with TGF-B-activated kinase 1 (TAK1), a complex that is important for transmitting
signals from activated cell surface Toll-like receptors (TLRs), and the receptor for tumour
necrosis factor alpha (TNFa), for the production and release of proinflammatory mediators [45].
The sustained interaction between agonist-occupied FFA4 and an arrestin is based on agonist-
promoted phosphorylation of several serine and threonine residues located in the intracellular,
C terminal of the receptor [46-48] (Figure 2). Conversion of these residues to non-hydroxyl
amino acids greatly reduces such interactions, while production of antisera that recognise
amino acids within the C-terminal region specifically only when they are phosphorylated
[41,47,48] has provided reagents able to assess the state of receptor activation. In humans,
splice variation within the third intracellular loop of FFA4 produces a ‘long’ isoform containing 16
additional amino acids [49]. Although expression of the long variant seems to be restricted, it
appears to act as a ‘biased’ receptor, unable to engage with G protein-mediated signalling
systems, but is able to interact with B-arrestins as the short isoform and to undergo internal-
isation in an agonist-dependent manner [39]. The broader implications of this remain unclear
because there is no obvious tissue situation in which the long isoform is uniquely expressed and
in which only B-arrestin- or non-G protein-mediated signalling might therefore be anticipated.

Synthetic Agonists for FFA4

Long-chain fatty acids can be rapidly converted to different biologically active species that
function at GPCRs other than FFA1 and/or FFA4. Given that such interconversion is challenging
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Figure 2. Regulation of the Phosphorylation State of Free Fatty Acid Receptor 4 (FFA4): Potential Physiological Roles. Both mouse (m) [48], as illustrated
here (red circles in the cartoon of the seven transmembrane domain organisation of the receptor structure, and red font in the sequence of specific amino acids within
the indicated region of its primary amino acid sequence) and human [47] FFA4 become rapidly phosphorylated on two groups of Ser/Thr residues within the intracellular
C-terminal tail of the receptor upon addition of an agonist ligand. Alteration to generate the phosphorylation-defective form (ph-def) results in extended maintenance of
elevated Ca®* levels when either wild-type mouse FFA4 (wt; black) or ph-def mouse FFA4 (grey) are expressed in HEK293 cells and exposed to an agonist ligand (red
arrow). Generation of transgenic mice in which wild-type FFA4 is replaced with either a C-terminally HA epitope-tagged form of FFA4 (left-hand side) or a similarly
epitope-tagged form of ph-def FFA4 (right-hand side) is allowing analysis of receptor expression patterns (see Figure 4 in the main text) and specific roles of agonist-
mediated phosphorylation of FFA4. Studies using these animals are still to be reported in the primary literature.

to limit in vivo, direct studies with fatty acids can be difficult to interpret unequivocally. As such,
the identification and characterisation of synthetic ligands with affinity for FFA4 have been
integral to better understanding the biological functions of this receptor (Table 1). However,
owing to the strongly overlapping profile of fatty acids as activators of FFA4 and FFA1, many of
the initially described synthetic ligands with activity at FFA4 are also able to activate FFA1
(Table 1). This reflects their structural similarity to fatty acids. More recently described ligands
display improved selectivity for FFA4 over FFA1 (Table 1).

The first described synthetic FFA1 active agonist, GW9508 (4-{[(3-phenoxyphenyl)methyl]
amino}benzenepropanoic acid), was immediately shown to also activate FFA4, although with
some 100-fold lower potency [38]. Therefore, in the initial absence of FFA4-selective synthetic
agonist ligands, GW9508 was used as a FFA4 agonist in several studies using cells and tissues
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Table 1. Structures of Key Ligands with Activity at FFA4
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that lacked detectable levels of co-expressed FFA1 (e.g., [21]). Probably because this ligand is
available commercially, this approach has continued (reviewed in [2]). Early efforts to produce
FFA4-selective ligands reported only modest success. For example, Suzuki et al. [50] modified
PPAR~y-active molecules to generate a ligand, 4-{4-[2-(phenyl-pyridin-2-yl-amino)-ethoxy]-
phenyl}-butyric acid, later named NCG21 (Table 1), which displayed modest selectivity for
FFA4 over FFA1, but also only modest potency [51]. With appropriate recognition that it
probably acts as a combined FFA4 and FFA1 activator, this compound has been used recently
alongside other more-selective ligands to help unravel the contribution of each long-chain fatty
acid receptor to the ability of the omega-3 fatty acid, hexadeca-4,7,10,13-tetraenoic acid [16:4
(n-3)], to generate systemic resistance to the DNA-damaging chemotherapeutic cisplatin [36]
(discussed below). In the first significant advance in developing FFA4-selective agonist ligands,
Shimpukade et al. [52] reported the ortho-biphenyl ligand 4-{[4-fluoro-4'-methyl(1,1’-biphenyl)-
2-yllmethoxy}-benzenepropanoic acid (TUG-891) (Table 1). This molecule showed good
potency at both human and mouse FFA4 and 1000-fold selectivity over human FFAT in assays
based on the induced interactions between the receptor and B-arrestin 2. These studies also
reported loss of agonist function of TUG-891 at an Arg® to GIn mutant of human FFA4 and,
alongside the parallel mutagenesis studies of Watson et al. [39], provided the first direct
evidence of the key role of this arginine residue in coordinating the carboxylate of fatty acids
and fatty acid-like synthetic ligands.

GPCRs responsive to fatty acids have been shown to display substantial variation in pharma-
cology between species orthologues [53]. More extensive studies with TUG-891 illustrated that
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selectivity reported between human FFA4 and FFA1 was significantly less pronounced at
mouse orthologues [40] and also varied when measuring G protein-mediated Ca®* elevation
versus receptor interactions with an arrestin [40]. Although there is no comprehensive analysis
of these features for many ligands, which are rarely reported beyond humans versus mice, the
major reason for the lower selectivity between the mouse orthologues is their higher potency at
mouse FFA1 rather than reduced potency at mouse FFA4. In practise, although a potent and
selective FFA4 agonist in human cells and tissues, TUG-891 is best described as a dual FFA4
and FFA1 agonist in equivalent tissues from rodents [36]. More recently reported compounds
have provided greater levels of selectivity. For example, Adams et al. [54] reported a chromane
propionic acid-based agonist series where specific members are at least 300-fold more
selective for both human and mouse FFA4 compared with FFA1. Similarly, Sparks et al.
[65] described a phenylpropanoic acid series with an exemplar compound showing between
40- and 130-fold selectivity over FFA1 across human, mouse, and rat orthologues.

Similar to free fatty acids, all of the compounds described above contain a carboxylate that has
been shown directly (or at least modelled) to interact with Arg®® of FFA4. However, a pair of
recent reports has also described sulfonamide-containing FFA4 agonists [56,57].
GSK137647A [4-methoxy-N-(2,4,6-trimethylphenyl)benzenesulfonamide] (Table 1) is reported
to have greater than 50-fold selectivity for FFA4 over FFA1 and that this is preserved across
species [56]. Similarly, a potent nonacidic sulfonamide FFA4 agonist, TUG-1197 {2-[3-(pyridin-
2-yloxy)phenyl]-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide} (Table 1) is described as having no
detectable activity at FFA1 [57]. Despite the nonacidic nature of the compound, both mutational
and modelling studies indicated that it likely binds within the same orthosteric binding pocket as
the carboxylate-containing agonists that resemble synthetic fatty acids [57]. Clearly, the more
selective nature of several recently disclosed ligands offers potential for more defined analysis of
FFA4-mediated functions, and several such ligands (e.g., GSK137647A) are now available from
commercial sources. However, not all of the more recently described ligands are suitable for in
vivo studies due to poor pharmacokinetic and pharmacodynamic properties [56]. By contrast,
although not currently available from commercial suppliers, phenylpropanoic acid ‘compound
29’ [55], nonacidic sulfonamide ‘compound 34’ [57], and chromane propionic acid ‘compound
18’ [54] have each been used for rodent in vivo studies to explore glucose handing and aspects
of regulation of insulin sensitivity. In each case, these have provided clear support for an
important role of FFA4 in the regulation of glucose homeostasis. The emergence of chemically
distinct series of FFA4 agonists allows the possibility of using pairs of compounds from different
series to provide greater support for specific roles of FFA4 [58]. Even if the full off-target profile of
each ligand is not currently available, it is reasonable to assume that compounds derived from
different chemotypes will produce varying non-FFA4-mediated effects. Although no FFA4
agonist has yet entered clinical studies, there is considerable expectation that such ligands
may offer novel combinations of benefits in T2DM [53,59].

Synthetic Antagonists for FFA4

Todate, only compounds from a single chemical series have been reported as FFA4 ‘antagonists’
(Table 1). ‘Compound 39’ (4-methyl-N-9H-xanthen-9-yl-benzenesulfonamide), now available
from commercial vendors as AH-7614, was initially reported as an antagonist at this receptor
[56]. This compound, and a closely related molecule, 4-methyl-N-(9H-thioxanthen-9-yl)benze-
nesulfonamide (TUG-15086) [60] (Table 1), act as noncompetitive, negative allosteric modulators of
the action of arange of FFA4 agonist chemotypes [60]. Although neither competitive nor displaying
more than moderate affinity (approximately 10 nM) [60] for the receptor, AH-7614 has recently
been used in arange of studies; for example, to confirm a specific role for FFA4 as the long-chain
fatty acid receptor on splenic macrophages responsible for release of a lysophosphatidic acid
species that is able to produce systemic resistance to platinum-containing chemotherapeutics
[36]; to identify a role of the receptor in activation of brown fat [61]; to explore whether various
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effects of arachidonic acid are produced via FFA4 [62]; and the contribution of FFA4 to doco-
sahexaenoic acid [20:6(n-3)]-mediated effects in GnRH-producing neurones [63]. However, as
noted by Watterson et al. [60], AH-7614 is a simple xanthene-containing chemical and, although
this molecule does not block agonist effects at FFA1 [60], other potential sites of action have not
been explored. Therefore, it is noteworthy that, in studies in rat round spermatids, AH-7614 itself
induced anincrease in [Ca®*];in the absence of FFA4 receptor-activating ligands [64], akin to those
produced by the omega-6 fatty acid arachidonic acid [20:4(n-6)]. Given such concerns, Wat-
terson et al. [60] suggested as a control the parallel use of 4-methyl-N-(9H-xanthen-9-yl)benz-
amide (TUG-1387) (Table 1), an analogue of both AH-7614 and TUG-1506 that has no activity at
FFA4. Whereas AH-7614 blocked autocrine differentiation of mouse preadipocytes towards an
adipocyte phenotype, TUG-1387 did not [60], providing stronger evidence for a direct role of FFA4
in this process.

Therapeutic Opportunities for FFA4 in Cancer

Beyond T2DM, the therapeutic area in which FFA4 has perhaps attracted greatest attention to
date is cancer. In part, this reflects appreciated roles for fatty acids and fat-rich diets in either
promoting cancer cell growth and motility or the capacity of health-beneficial fatty acids,
including omega-3 fatty acids, to reduce the growth of several types of tumour. The significance
of a number of the reported studies is hard to define, in that many have focused largely on the
effects of fatty acids alone and have frequently suggested potential contributions of both FFA4
and FFA1. Several of these studies have recently been reviewed elsewhere [65]. However,
growing appreciation of the developing pharmacology at FFA4 and at FFA1 has provided new
insights into the potential for FFA4 ligands. A key example is the contribution of FFA4 to the
development of systemic resistance to cisplatin-based chemotherapy. Mesenchymal stem
cells produce a pair of polyunsaturated fatty acids [66], 12-S-hydroxy-5,8,10-heptadecatrie-
noic acid (12-S-HHT), an activator of the leukotriene B4 receptor 2 [67], and hexadeca-
4,7,10,13-tetraenoic acid [16:4(n-3)], which, similar to many other fatty acids, can activate
both FFA4 and FFA1 with similar potency [36], at least in vitro. Recent studies used a
combination of the genetic elimination of FFA4 in mice and a range of both markedly selective
and dual-acting FFA4 and FFA1 agonists, in concert with selective antagonists of each
receptor, to show that, although both FFA4 and FFA1 are expressed by a key population
of splenic macrophages, activation by 16:4(n-3) of FFA4 on these cells specifically induced a
signalling cascade that, via activation of cytosolic phospholipase A2, resulted in the release of
several species of lysophosphatidic acid into the medium (Figure 3). Such ‘conditioned
medium’ was able to induce resistance to cisplatin-induced DNA damage in tumour cells
and, subsequently, to limit the effectiveness of cisplatin to inhibit tumour growth when injected
into tumour-bearing mice [36]. Moreover, a single lysophosphatidic acid species, C24:1, was
able to replicate the effect of 16:4(n-3)-conditioned medium, suggesting C24:1 as a likely end-
effector, although the molecular basis for the effect of lysophosphatidic acid C24:1 remains
undefined [36]. Addition of either dual-acting FFA4/FFA1 agonists, including TUG-891 [52] and
NCG21 [51], but, more importantly, also the highly selective FFA4 agonist TUG-1197 [57], to
splenic macrophages isolated from wild-type mice generated conditioned medium that was as
effective in producing chemoresistance as treatment with 16:4(n-3) [36]. By contrast, addition
of 16:4(n-3) to splenic macrophages isolated from mice lacking expression of FFA4 did not
generate conditioned medium that was able to replicate this effect. Moreover, co-addition of
the FFA4 antagonist AH-7614 blocked the ‘conditioning’ effect of 16:4(n-3) in cells isolated
from wild-type animals [36]. Together, these results suggest the potential of FFA4 antagonists
to either limit the development of resistance to platinum-containing chemotherapeutic agents
or to spare the dose of such agents required for efficacy. However, the effect of the second
platinum-induced fatty acid, 12-S-HHT, was not lost in cells isolated from FFA4 knockout mice
[36]. As such, blockade of FFA4 with a synthetic antagonist is unlikely to be fully effective in vivo
if used in isolation.
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Figure 3. A Role for Free Fatty Acid Receptor 4 (FFA4) in Mediating Resistance to Platinum-Containing
Chemotherapeutics. Cisplatin and other platinum-based therapeutics are integral to chemotherapy. However, the
development of resistance to such agents limits their effectiveness. In a mouse model, the fatty acid 16:4(n-3) was
identified to contribute to the development of resistance in a manner linked to a key subpopulation of splenocytes. 16:4(n-
3)is able to activate both FFA4 and FFA1, and these two G-protein-coupled receptors are co-expressed by this splenocyte
population. Medium ‘conditioned’ by exposure of splenocytes to 16:4(n-3) is able to induce resistance to cisplatin when
injected into tumour-bearing mice and both pharmacological and receptor ‘knockout” studies demonstrated the effect of
16:4(n-3) to be mediated specifically by FFA4 [36]. The mechanism was shown to involve FFA4-mediated activation of
splenocyte cytosolic (c)PLA,, resulting in the release of a specific lysophosphatidic acid species C24:1, with this isolated
lipid species able to mimic the effect of conditioned medium [36].

As well as the above studies, Meier and coworkers used TUG-891, alongside omega-3 fatty
acids, to show a potential role for FFA4 in inhibiting proliferation of DU145 prostate cancer cells
[68]. Given that these cells express both FFA4 and FFA1 and the current view that TUG-891
may not be sufficiently selective to fully differentiate between the two fatty acid receptors, the
fact that FFA4 knockdown prevented TUG-891-induced inhibition of growth and migration
provided extra support for a key role of FFA4 [68]. However, the obvious conclusion from these
studies is that FFA4 agonism, rather than antagonism, as suggested in limiting the development
of induced chemoresistance to cisplatin treatment, might be effective in this context. In a
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subsequent study, the same group used a pair of FFA1/FFA4-active agonists to examine
possible roles of these GPCRs in the proliferation of a pair of breast cancer cell lines. However,
although the pharmacological studies were unable to clearly discriminate between the effects of
the ligands as reflecting activation of FFA1 or FFA4, both the MCF-7 and MDA-MD-231 cell
lines appeared to express significantly higher levels of mRNA encoding FFA1 than FFA4.
Moreover, although immunoblotting studies potentially detected two variants of FFA4 in MCF-
7cells, equivalent forms were lacking in MDA-MD-231 cells. Based on these observations, the
authors concluded that the major contributions of GW9508 and TUG-891 were likely to be
mediated via FFA1 [69].

Other Potential Therapeutic Opportunities in Targeting FFA4

Both mRNA expression patterns and availability of selective FFA4 antibodies have revealed that
this receptor is expressed in a variety of tissues, pointing to a range of functions yet to be fully
defined [5]. For example, FFA4 was found to be highly expressed in murine lung [70] (Figure 4),
where clues to its function are only just beginning to emerge. Expression in this organ appears
restricted to the airway epithelium [70], which primarily comprises mucous-secreting goblet
cells and ciliate columnar epithelial cells. The role of FFA4 in these various cell types is unknown,
but it is of interest that the dietary-derived omega-3 fatty acids, docosahexaenoic acid [22:6(n-
3)] and eicosapentaenoic acid [20:5(n-3)], have been reported to be enriched in airway mucosa
[71], suggesting that there is a ‘store’ of endogenous ligands for the FFA4 receptor located at
the lung epithelium. Furthermore, a recent study suggested that FFA4, acting on epithelial club
cells, promotes bronchial epithelial repair following naphthalene-induced epithelial injury [72].
This study may provide a potential explanation for the observed benefits of clinical administra-
tion of omega-3 fatty acid-rich fish oils in human lung injury [73]. Further studies on the role of
FFA4 in lung function are clearly warranted.

Studies on the possibility that FFA4 regulates central functions are similarly in their infancy.
However, FFA4 immunoreactive neurones have been identified in the hypothalamus, where
they are thought to protect against hypothalamic dysfunction in obesity [74]. The mechanism
appears to have two distinct components. The first is a reduction in hypothalamic inflammation
mediated by downregulation of TLR4 and TNF-induced inflammatory pathways [74]. The
second is via neuropeptide Y-expressing hypothalamic neurones that co-express FFA4,
through which omega-3 fatty acids are seen to reverse obesity-induced resistance to leptin

a- actin DAPI FFA4 receptor Merge
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Figure 4. Immunohistochemical Detection of Free Fatty Acid receptor 4 (FFA4) in Mouse Lung. Antigen-retrieved, formalin-fixed paraffin-embedded lung
tissue slices obtained from wild-type mice were incubated with anti-FFA4 antibodies [48]. They were incubated subsequently with Alexa 488-conjugated secondary
antibody (green) and cy3-conjugated anti a-actin (to detect smooth muscle) (red). Following further washes, samples were placed on coverslips with a mounting
medium containing the nuclear stain DAPI (blue). Images were taken using a confocal microscope. FFA4 appears to be expressed predominantly within the epithelial
layer.
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[74]. These central FFA4-mediated mechanisms to regulate food intake and body mass likely
work in concert with peripheral pathways, as exemplified by studies on the release of ghrelin, a
key hormone that mediates food-seeking behaviour and food intake as well as adiposity.
Dietary-derived long-chain fatty acids targeting FFA4 on ghrelin-expressing cells act to inhibit
the secretion of ghrelin [75], thereby providing a negative feedback loop to reduce food intake.

Concluding Remarks

Although potential therapeutic opportunities from targeting FFA4 are currently focussed firmly
on T2DM and other metabolic indications, including nonalcoholic steatohepatitis, the broader
expression pattern of the receptor suggests wider roles in (patho)physiology. Full understand-
ing of the repertoire of physiological roles of FFA4 has been restricted by the focus on T2DM
and the beguiling prospect that it may result in an entirely novel therapeutic entity. However, the
continuing development of tool compounds, vital for detailed pharmacological analysis, in
concert with the use of novel genetically engineered mice where in vivo FFA4 signalling is
modulated (Figure 2), as used for other GPCRs (e.g., the muscarinic acetylcholine Mg receptor
[76]), is likely to highlight further opportunities (see Outstanding Questions). Two opportunities
that are beginning to emerge are the role of FFA4 in cancer and the possibility that the high level

of expression of FFA4 in lung will be linked to key physiological endpoints associated with
airway function and dysfunction.
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Outstanding Questions

Will FFA4 become a validated thera-
peutic target in T2DM? Although FFA4
is considered a candidate therapeutic
target for T2DM, to date no clinical
studies have been initiated. Key out-
standing questions include whether
agonist ligands with appropriate
drug-like characteristics can be identi-
fied, whether these will provide fea-
tures and outcomes above and
beyond glucose-lowering in rodent
models and whether potential safety
issues associated with clinically used
FFA1/GPR40 agonists can be miti-
gated against or overcome.

How important will the anti-inflamma-
tory effects of FFA4 be to clinical deliv-
ery? Although activation of FFA4
expressed by macrophages results in
the regulation of proinflammatory
mediator release via a mechanism
reported to involve interaction of the
receptor with an arrestin adaptor pro-
tein, the broader roles of both non-G
protein-mediated signaling and of acti-
vation of G protein-dependent path-
ways other than those involving the
phosphoinositidase C-linked G pro-
teins G4/G11 remains to be fully eluci-
dated and understood. Clear analysis
of these aspects of FFA4 signaling will
define whether a search for agonist
ligands that display ‘bias’ might be
useful.

Might FFA4 become a therapeutic tar-
get for treatment of nonalcoholic stea-
tohepatitis?  Although little  direct
information is yet available on this
topic, considerable interest in this pos-
sibility has been voiced

Will FFA4 antagonists provide a mean
to enhance the chemotherapeutic
index of platinum-based chemothera-
peutics? Recent studies suggest that
‘platinum’ chemotherapy induces the
generation of the fatty acid hexadeca-
4,7,10,13-tetraenoic acid and that, by
activating FFA4/GPR120 expressed
by a splenocyte subpopulation, this
fatty acid promotes release of a iso-
form of lysophosphatidic acid that
appears to act as the final mediator
of the development of resistance to
platinum-based chemotherapeutics.
Defining the molecular target for this
lysophosphatidic acid may be key in
providing novel approaches to either
limit the development of such chemo-
resistance or to allow the effective use
of lower doses.
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What therapeutic opportunities may be
identified for regulation of FFA4 in air-
way function? Early studies of the dis-
tribution of FFA4/GPR120 highlighted
that mMRNA encoding the receptor was
expressed abundantly in lung. Assess-
ment of the role of FFA4/GPR120 in
lung is currently at an early stage, but is
likely to provide a rich source of novel
insights.
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