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Abstract: Biodiversity loss remains a global challenge despite international commitment to the United
Nations Convention on Biodiversity. Biodiversity monitoring methods are often limited in their
geographical coverage or thematic content. Furthermore, remote sensing-based integrated monitoring
methods mostly attempt to determine species diversity from habitat heterogeneity somewhat reflected
in the spectral diversity of the image used. Up to date, there has been no standardized method for
monitoring biodiversity against the backdrop of ecosystem or environmental pressures. This study
presents a new method for monitoring the impact of oil pollution an environmental pressure
on biodiversity at regional scale and presents a case study in the Niger delta region of Nigeria.
It integrates satellite remote sensing and field data to develop a set of spectral metrics for biodiversity
monitoring. Using vascular plants of various lifeforms observed on polluted and unpolluted (control)
locations, as surrogates for biodiversity, the normalized difference vegetation vigour index (NDVVI)
variants were estimated from Hyperion wavelengths sensitive to petroleum hydrocarbons and
evaluated for potential use in biodiversity monitoring schemes. The NDVVI ranges from 0 to 1 and
stems from the presupposition that increasing chlorophyll absorption in the green vegetation can be
used as a predictor to model vascular plant species diversity. The performances of NDVVI variants
were compared to traditional narrowband vegetation indices (NBVIs). The results show strong links
between vascular plant species diversity and primary productivity of vegetation quantified by the
chlorophyll content, vegetation vigour and abundance. An NDVVI-based model gave much more
accurate predictions of species diversity than traditional NBVIs (R-squared and prediction square
error (PSE) respectively for Shannon’s diversity = 0.54 and 0.69 for NDVVIs and 0.14 and 0.9 for
NBVIs). We conclude that NDVVI is a superior remote sensing index for monitoring biodiversity
indicators in oil-polluted areas than traditional NBVIs.

Keywords: biodiversity monitoring; species diversity; hyper-spectral imaging; Hyperion; spectral
metrics; vegetation vigour; oil pollution

1. Introduction

A major concern over the global loss of biodiversity is that its interference with nature’s
balance may cause irreversible damage by altering key processes essential for the productivity and
sustainability of life on earth [1,2]. Natural water, carbon and other cycles are dependent on the
interactions and interdependence of various species that inhabit the earth, and as noted by [3],
the diversity and identity of organisms control the functioning of ecosystems. In their review paper
evaluating the impact of biodiversity loss on humanity, Cardinale et al. [4] showed evidence of the
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crucial role of biodiversity in sustaining ecosystem functions and services which humanity relies
for existence.

Several studies have established linear relationships between species diversity and ecosystem
productivity with the implication that biodiversity loss may lead to loss or decrease in the supply of
ecosystem goods and services [5–9]. Norris [7,9] agree that the loss of biodiversity inadvertently results
in the loss of ecosystem functions and services. The unprecedented loss of biodiversity over the years
led to the signing of convention on biological diversity (CBD) in 1992 by the United Nations member
countries. The overarching goal was the conservation and sustainable use of biological diversity in the
present and future. To achieve this, targets were set to halt or reduce biodiversity loss with the most
recent being the Aichi 2020 biodiversity targets [10,11]. As Nigeria is a signatory to the CBD, the need
to monitor the rate and extent of biodiversity loss becomes paramount, particularly in threatened
biodiversity hotspots like the Niger delta where oil spills continue to degrade the ecosystem.

The application of remote sensing technology in biodiversity monitoring has been an area of
considerable research in the recent past, for instance [12–14]. Several studies have combined remote
sensing and field data to determine the spatial and temporal distributions of biodiversity [15,16].
Motivated by the need to devise a standardized methodology for monitoring biodiversity at regional
and global scales and to overcome some limitations of conventional monitoring methods such as
in situ field surveys, researchers have developed integrated methods using remote sensing and
field data [17–21]. The Group on Earth Observations Biodiversity Observation Network (GEOBON)
have spearheaded these efforts leading to the development of the essential biodiversity variables
(EBVs). An EBV is defined as a measurement required for the study, reporting and management of
biodiversity change [22]. They provide standardized measurements and observations necessary to
calculate indicator transformations hence, are useful for monitoring biodiversity [23–25]. For instance,
changes in measurable aspects of biodiversity such as species population, abundance and distribution
can provide early warning signs of significant alteration in biodiversity of the region [22–27].

Although there are inherent challenges associated with such integrated schemes, studies [28–30],
have confirmed that they provide very useful information on the response of biodiversity to natural
and anthropogenic changes in the environment. While some studies have investigated the link between
spectral diversity and species diversity through the biochemical diversity of vegetation [31], others used
land cover classifications derived from multispectral sensors such as Landsat to estimate the species
diversity of the area of interest [32]. The land cover approach has been criticized as inadequate for
collecting fine-scale detail of vegetation structure and chemistry due to the coarse spectral and spatial
resolution [14,32] of multispectral sensors. Generally, mapping of species diversity estimates are
empirically supported by defining the relationship between variation in spectral signal and variation in
species or habitat diversity [15,33–35] and in some cases, variations in pigment concentrations [36–38].
However, this procedure may not be enough if the Aichi 2020 targets are achievable. There is need to
develop methodologies that estimate species diversity against the backdrop of environmental pressures
such as oil pollution. Such methods will not only reveal the state of the ecosystem following impact
(for instance, biodiversity change), but also reveal ecosystem resilience to particular external pressure.

Hyperspectral data not only measure vegetation biochemical and biophysical properties including
water content, leaf pigments, nitrogen, cellulose and lignin concentrations [30,39–41], but also how
these parameters vary across the ecosystem [14,38]. The Hyperion sensor on board NASA’s Earth
Observation-1 satellite is an example of a hyperspectral satellite mission [42]. It was the first satellite
hyperspectral sensor launched on-board the Earth Orbiter-1 platform by the United States National
Aeronautics and Space Administration (NASA) New Millennium Program (NMP). The Hyperion
acquire 16 bits, 30 m spatially resolved data in 220 discrete narrow-bands between the spectral range
of 400 and 2500 nm. The sensor capture about 75 times more data than multispectral sensors from
a similar area, hence providing a large volume of data that need enhanced analyzing techniques [43].

Vegetation vigour defined as active, healthy, well-balanced and robust growth of plants [44]
is recognized as an essential environmental quality index. Vigorous vegetation is characterized by
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enhanced growth and extent as well as increased productivity [45]. Several studies on vegetation
have linked the index to climate change [46]; soil erosion [47]; and biological conservation [48].
Some organizations such as [49,50] recommend the use of vegetation vigour index in tests to evaluate
the effect of chemical substances such as pesticides on the growth of various plant species.

In the present study, vegetation vigour is associated with vegetation productivity and/or biomass
production. This is in line with previous publications such as [2–9,51–57], which have also revealed
strong relationship between these parameters and vascular plant species diversity. Tillman et al. [55]
as well as [56–58], following their various experiments found a positive relationship between plant
species diversity and plant productivity (measured as above ground biomass) which they attributed to
several factors including the complementarity of resource use.

More recently, determination of vegetation vigour has been from remotely sensed images using
proxy vegetation indices such as the normalized difference vegetation index (NDVI) and net primary
productivity (NPP) [51,59–61]. Other studies have used vegetation cover as an indicator of vegetation
vigour and established a positive linear relationship between both variables [62–64]. With advancement
in earth observation technology in the way of increasing spectral and spatial resolutions, researchers
have exploited these relationships with concerted effort to identify individual species and estimate
species diversity of a given area using spectral metrics derived from satellite imagery [13,65–70].

In this study, spectral metrics were created from Hyperion bands that were sensitive and those
that were insensitive to total petroleum hydrocarbon (TPH) concentration in soil. Eigemeier et al. [71]
stated that the performance of a vegetation index is better when both most sensitive and insensitive
bands to a parameter of interest are included in the algorithm. Hence, the new index were used in this
study to investigate the capability of spectral metrics derived from Hyperion image to estimate species
diversity of vascular plants on oil polluted transects in the Niger Delta region of Nigeria. The following
research questions have been posed.

1. Are vascular plants susceptible to oil pollution and does this affect their spectral signatures?
2. Is there any relationship between plant spectral signatures and vascular plant species diversity?
3. Can this relationship be modelled to estimate the diversity of vascular plants on oil-polluted transects?

2. Materials and Methods

2.1. Study Area

The study area is around the Shell Petroleum Development Corporation (SPDC) 28”
Nkpoku-Bomu Pipeline at Kporghor located in Tai Local Government Area (LGA) of Rivers State in
Nigeria (Figure 1). Tai LGA is one of the four administrative units that make up Ogoniland. Two spill
locations were selected because they are among the few oil spill locations within Ogoniland for which
a hyperspectral image is available. The United States Geological Survey Earth Observation 1 (USGS
EO-1) Hyperion sensor acquired the image following our data acquisition request (DAR) submitted
in 2015.

The study area, Kporghor, is located in the Niger Delta region of Nigeria which is one of the
largest wetlands in the world that has substantially degraded due to oil pollution necessitating in
2011, the assessment of area by a special team of the United Nations Environment Program [72,73].
It receives some of the highest rainfall in the world of up to 3000 mm annually [74]. The temperature
ranges from 20◦ to 30 ◦C during the day. The Intertropical Front wind originating where the humid air
masses from the Gulf of Guinea and dry air masses from the north meet is constantly blowing over the
delta resulting in high levels of humidity with an average of 75% [75]. The area is also characterized by
high cloud cover which invariably affects the quality of satellite data obtained at certain times of the
year [74]. Due to the heavy rainfall experienced in this region, there is continuous vegetation growth
all year round; however, most agricultural activities occur between March and October each year.
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Figure 1. Map (A) Rivers state with the Hyperion image overlaid to show data acquisition track;  
(B) Tai LGA showing location of study area; (C) False colour composite (Red = band 20, Green = band 
36, Blue = band 45) of Hyperion image subset of the study area showing location of oil spill and control 
transects as well as features including River Bonny tributary, built-up areas and roads. 

Ecologically, Kporghor has been classified as a coastal plain and freshwater rainforest zone 
populated by forest tree species, palms, shrubs, ferns, lianas and so on [76,77]. Dominant tree species 
include the indigenous oil palm (Elaeis guineensis), raphia palm (Raphia vinifera) and timber specie 
(Symphonia globulifera) [76]. Others are Eichornia crassipies [78]; Calamus and Alchornea species, Alstonia 
boonei, Berlinia species [79]. Osuji and Ezebuiro [80] also reported the occurrence of Antidesma species, 
Paulina pinnata, Ouretea species, Chassalia species, Cuvaria species, Dryopteris species, Memsecylon 
species, Blackoides species, Agelea oblique and Psychotria manii in the study area. 

The first spill epicentre (P1S0) is located at 4.71842°N latitude and 7.22523°E longitude (WGS 84 
Datum). The landscape of the area is flat with elevation of less than 14 m above sea level. The Nigerian 
Oil Spill Monitor website [81] reported that the spill incident, which occurred on the 12th of 
September 2015, was attributed to crude oil theft (illegal bunkering). About 864 barrels of crude oil 
(137,365 litres spilled onto a land area of 4190 m2 while only about 557 barrels (88,556 litres) was 
recovered through the containment measures implemented by the company. This implied that about 
307 barrels (48,809 litres) remained in the impacted environment damaging the ecosystem. The 
second spill epicentre (P2S0) is located at 4.719906°N latitude and 7.22375°E longitude. Data about 
this site was obtained from the United Nations report on the Environmental Assessment of 
Ogoniland carried out between 2009 and 2011. According to the report, the oil spill incident occurred 
on the 1 June 2007 following sabotage and oil theft activities [72,81]. 

2.2. Establishment of Study Transects 

The study was conducted on polluted and unpolluted (control) locations. Polluted locations 
were identified from the Nigerian oil spill records website [81] while control locations were randomly 
selected from unpolluted areas determined as such from past and present oil spill records. All the 
investigated transects share similar environmental and ecological conditions as they are located 
within the same ecological zone (coastal plain and freshwater rainforest zone) [76,77] with oil 
pollution being the main distinguishing factor. Four transects of 100 m × 0.6 m were established on 

Figure 1. Map (A) Rivers state with the Hyperion image overlaid to show data acquisition track;
(B) Tai LGA showing location of study area; (C) False colour composite (Red = band 20, Green = band
36, Blue = band 45) of Hyperion image subset of the study area showing location of oil spill and control
transects as well as features including River Bonny tributary, built-up areas and roads.

Ecologically, Kporghor has been classified as a coastal plain and freshwater rainforest zone
populated by forest tree species, palms, shrubs, ferns, lianas and so on [76,77]. Dominant tree species
include the indigenous oil palm (Elaeis guineensis), raphia palm (Raphia vinifera) and timber specie
(Symphonia globulifera) [76]. Others are Eichornia crassipies [78]; Calamus and Alchornea species, Alstonia
boonei, Berlinia species [79]. Osuji and Ezebuiro [80] also reported the occurrence of Antidesma species,
Paulina pinnata, Ouretea species, Chassalia species, Cuvaria species, Dryopteris species, Memsecylon
species, Blackoides species, Agelea oblique and Psychotria manii in the study area.

The first spill epicentre (P1S0) is located at 4.71842◦N latitude and 7.22523◦E longitude (WGS 84
Datum). The landscape of the area is flat with elevation of less than 14 m above sea level. The Nigerian
Oil Spill Monitor website [81] reported that the spill incident, which occurred on the 12th of September
2015, was attributed to crude oil theft (illegal bunkering). About 864 barrels of crude oil (137,365 litres
spilled onto a land area of 4190 m2 while only about 557 barrels (88,556 litres) was recovered through the
containment measures implemented by the company. This implied that about 307 barrels (48,809 litres)
remained in the impacted environment damaging the ecosystem. The second spill epicentre (P2S0) is
located at 4.719906◦N latitude and 7.22375◦E longitude. Data about this site was obtained from the
United Nations report on the Environmental Assessment of Ogoniland carried out between 2009 and
2011. According to the report, the oil spill incident occurred on the 1 June 2007 following sabotage and
oil theft activities [72,81].

2.2. Establishment of Study Transects

The study was conducted on polluted and unpolluted (control) locations. Polluted locations
were identified from the Nigerian oil spill records website [81] while control locations were randomly
selected from unpolluted areas determined as such from past and present oil spill records. All the
investigated transects share similar environmental and ecological conditions as they are located within
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the same ecological zone (coastal plain and freshwater rainforest zone) [76,77] with oil pollution being
the main distinguishing factor. Four transects of 100 m × 0.6 m were established on polluted and
control locations. Polluted transects A, B, C and D proceeded northwards, southwards, eastwards and
westwards, respectively, starting from the spill epicentre (P1S0). Each transect was subdivided into
5 segments of 20 m each labelled SS1 to SS5. At the second spill location, field survey was done at four
20 m by 20 m segments overlaying the UNEP sampling point. These were labelled P2S0, P2S1, P2S2,
and P2S3. Control transects were randomly established in areas that were unpolluted at the time of
the survey. Locations of control transects provided in supplementary materials (Supplementary A:
Table S1). Randomization of control transects was done to remove bias. Each transect was subdivided
into segments of 20 m length. Transects were established using fibre tapes, hammer, and iron pegs
coated in white paint and a hand held GPS device. In total 33 segments were investigated, 17 on
polluted transects and 16 on control transects. Vegetation and soil TPH data were obtained from these
segments. Similarly, the spectral data analyzed in this study were extracted from pixels overlaying
these segments.

2.3. Field Survey of Vascular Plant Species

Vegetation survey was implemented through the line-intercept sampling method. The survey
was conducted in two campaigns during the months of February to March 2016 and April to May
2017. The first vegetation survey of polluted transects A, B, C, D and control transects C1 and C2
was performed in 2016, while the survey of the second polluted location (P2) and control transects
C3 and C4 was performed in 2017. The choice of using the line-intercept method was because it
offered the most potential at capturing adequate field data to determine species composition and
abundance within the unique constraints of the study area. Buckland et al. [82] affirmed that vegetation
records obtained from transects provide sufficient information with which to calculate the numerical
abundance, frequency, coverage and other relevant vegetation characteristics. It is also less time
consuming and gives relatively accurate information.

Additionally, [83] noted that this sampling method is useful for highlighting transition zones
(ecotones) in vegetation and it is well adapted for investigating the relationships between changes
in floristic compositions and environmental variables. Another advantage of using the line-intercept
method is that the ease with which species are recorded as they occur along the line gives little room
for errors [84].

Occurrence and number of individuals for each species of vascular plants was recorded per
segment of transects. Plants that occurred within 30 to 100 cm on both sides of the transect lines
were included in the count. To reduce the effect of spatial autocorrelation, only three alternating
segments were used in the analysis, namely SS1, SS3 and SS5. In situ species identification was done
with the aid of species inventory sheets compiled from previous literature [76–78,85,86]. Photographs
of unidentified species were obtained and taken to the herbarium in the local University (College
of Natural Resources and Environmental Management, Michael Okpara University of Agriculture,
Umudike Umuahia, Nigeria) for identification.

The Sorenson’s similarity index of transects, Menhinick’s species richness index (M), Shannon’s
(H) and Simpson’s (D) diversity indices were computed in the Palaeontological Statistics Software
(PAST), [87] for selected segments.

The similarity index of investigated transects was computed to measure the degree of agreement
between the species composition of polluted and control transects in order to validate their comparison.
The index is computed using the presence-absence vegetation data and range from 0 to 1 as similarity
of the units increase. Several researchers have used the Sorenson’s index as an appropriate test
to determine the similarity between the units being studied. The units may be quadrants [88] or
localities [89]. In this study, segments of polluted and control transects were assessed for similarity in
species composition.



Remote Sens. 2018, 10, 897 6 of 34

The alpha diversity (α-diversity) of vascular plant species was also computed to measure the
diversity of vascular plant species in the study area. Alpha diversity describes the number of
species present (species richness) and the distribution pattern of the individual members of these
species (species evenness or species equitability) within an ecological unit (habitat level) [90–93].
Commonly used diversity indices include those that measure only species richness (Menhinick’s and
Chao-1 index) as well as those that measure species richness and evenness (Simpson’s and Shannon’s
diversity indices).

2.4. Soil Sampling and Analysis

To determine the concentration of crude oil in the soil, soil samples were collected from each
segment at 30 cm depth with the aid of hand augurs. At each segment, three samples were taken from
random points and mixed together to form a composite sample. A portion of the composite sample was
stored in a sterilized and labelled air-tight glass bottle and taken to the laboratory in a plastic box filled
with ice packs. This was done to control further chemical reactions in the soil. Determination of TPH
in samples followed standard procedures stipulated in the United States Environmental Protection
Agency (U. S. EPA) method 8015 document involving gas chromatography (GC) technique and flame
ionization detector (FID) electrodes [94]. All analyses were carried out in International Energy Services
Limited laboratory located in Port Harcourt Nigeria, according to national and international quality
standards. Ancillary data comprising location and TPH concentration of soil samples was obtained
from a UNEP report following the environmental assessment of Ogoniland in 2011 [72].

2.5. Hyperspectral Image Description and Preparation

Researchers have established strong connections between species diversity and spectral
variation [15,34,35,95]. These studies have mostly relied on hyperspectral data with hundreds of
bands capable of detecting very subtle changes in plant attributes. Hyperspectral data not only
measure vegetation biochemical and biophysical properties including water content, leaf pigments,
nitrogen, cellulose and lignin concentrations [30,39–41], but also how these parameters vary across
the ecosystem [14,38]. Therefore, in order to achieve the aim of this study, a hyperspectral image
acquired by the Hyperion sensor on-board the Earth Orbiter 1 (EO-1) satellite launched in November
2000 by NASA was used. The sensor provides radiometrically calibrated spectral data acquired by
a push-broom system in single frames measuring 7.65 km (cross-track) by 185 km long (along-track),
acquired in NADIR position from an altitude of 705 km. Each pixel in a Hyperion image is
approximately 30 m2 on the ground and surface reflectance is measured in 242 spectral channels
ranging from 400 nm to 2500 nm. There are, however, only 196 effective and calibrated bands [96,97]
while the others suffer from the effect of bad detectors that result in ‘bad pixels’ which are set to zero
during level 1 processing. Calibrated bands include the VNIR bands 8–57 (427.55 nm to 925.85 nm)
and SWIR bands 79 to 224 (932.72 nm–2395.53 nm). Due to the strong absorption of water vapour and
oxygen at wavelengths ranging from 1356 nm–1417 nm, 1820 nm–1932 nm and >2395 nm, as well as
the overlap of wavelengths in the VNIR (band 56 and 57) and SWIR (77 and 78) regions, the list of
useful bands was limited to 176 [97].

The Hyperion image was downloaded as a Level 1T geotiff file from the United States Geological
Survey (USGS) website using the earth explorer data download tool. The image was acquired on the
23 November 2015. Due to the narrow swath width of the image of 7.65 km, only two polluted sites in
Kporghor were captured.

Generally, image pre-processing is performed to eliminate noise and other artefacts arising from
atmospheric interferences and internal sensor defects [98–100]. In this study, the Hyperion image was
pre-processed as shown in Table 1. During the atmospheric correction using the FLAASH module in
ENVI 5.3, reflectance value was scaled by 10,000 to remove decimal points and reduce computational
time. The resulting image had 68 columns and 66 lines, 4488 pixels and 164 spectral bands.
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Table 1. Pre-processing steps performed with the Hyperion image.

Procedure Purpose Module/Tool Software

Image subset Focus on study area and reduce
processing time Region of Interest (ROI) ENVI 5.3

Atmospheric correction Removal of atmospheric interference
to retrieve surface reflectance.

Fast Line-of-sight
Atmospheric Analysis of
Hypercubes (FLAASH)

ENVI 5.3 [100]

Removal of smile effect Enhance retrieval of
surface reflectance

Cross-Track Illumination
Correction (CTIC) ENVI 5.3 [101,102]

Noise reduction and
Destripping

Maximize signal to noise ratio (SNR)
and minimise data dimensionality

Minimum Noise Fraction
Transformation (MNFT) ENVI 5.3 [103,104]

2.6. Processing Landsat 8 and Sentinel 2A Images

Two other satellite datasets were used in this study during implementation of the best performing
model on randomly selected pixels to evaluate its performance. NDVI of the study area was computed
from Landsat 8 Surface Reflectance and Sentinel 2A images acquired on the 4 January 2016 and the
22 December 2015 respectively. These acquisition dates were close enough to that of the Hyperion
image. The specifications of both images are given in Table 2 below.

Table 2. Specifications of Landsat 8-OLI and Sentinel 2A Images used to compute NDVI.

Feature Landsat 8-OLI Sentinel 2A

Product ID LC08_L1TP_188057_20160104_20170404_
01_T1_LC81880572016004LGN02

S2A_OPER_MSI_L1C_TL_SGS__
20151222T100120_20151222T151903_

A002607_T32NKL_N02_01_01
Bands 9 13

Spectral 0.435–1.384 0.44–2.22
Spatial 30 m 10 m, 20 m, 60 m

Radiometric 16 bits 12 Bits
Temporal 16 days 10 days

Sensor Operational Land Imager (OLI) Multispectral Instrument (MSI)
Type Multispectral Multispectral

Satellite Landsat 8 Sentinel-2A
Mission Landsat Program Sentinel

Operator U.S. Geological Survey (USGS) European Space Agency (ESA)

The sentinel 2A dataset was preprocessed using the ESA Sentinel Application Platform (SNAP).
This toolbox provides functions for clipping the dataset to the study area, performing atmospheric
correction using the Sen2Cor plug-in and computing the NDVI using relevant bands. Details for these
procedures are provided in the Sentinel 2 documentation available at the ESA website [105–107].

The Landsat Surface Reflectance Image, on the other hand is a Level 2 processed product, hence
needed only spatial subset to the study area before the NDVI was computed in ENVI 5.3. The Level 2
product measured the fraction of incoming solar radiation reflected back from the earth’s surface to
the Landsat sensor [108] hence; atmospheric interferences are removed at level 2 pre-processing.

2.7. Vegetation Indices

Vegetation indices are derived from the spectral reflectance of plants. Plant species produce unique
spectral signatures dependent on their physiological state at the time of acquisition. Photosynthetic and
protective processes involving pigments such as chlorophylls, carotenoids, and anthocyanins are the
major determinants of plant physiological status and productivity. These pigments essentially convert
light energy to the chemical energy needed for plant productivity. The proportion of the different
pigments in the leaf determine the amount of solar radiation absorbed and reflected hence, they serve
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as valuable channels for information transfer from plants to space-based sensors. Many researchers
have used satellite derived vegetation indices to investigate, explain [109] and estimate environmental
phenomena [110]. Additionally, they have been incorporated in models developed for estimating,
monitoring, mapping and analyzing ecosystem structures such as vegetation cover and species
composition as well as functions such as productivity and biomass (for instance [111–114]. Here,
narrowband vegetation indices (NBVIs) were computed from the Hyperion bands. NBVIs are derived
from narrowband reflectance obtained from hyperspectral sensors. Several studies have applied NBVIs
to determine the structure, biochemical, biophysical and physiological or stress status of vegetation in
various habitats [111,114–117]. The main parameters measured by NBVIs include

a. Chlorophyll Content: used to monitor changes in green biomass, chlorophyll content and leaf
structure. High values indicate increased chlorophyll content, green biomass and vegetation
vigour and

b. Primary Productivity: measure changes in the photosynthetic light use efficiency of plants. High
values indicate reduced light use efficiency, hence reduced productivity.

NBVIs have been shown to overcome the saturation problem easily associated with broadband
vegetation indices such as NDVI [118]. The NBVIs and NDVI evaluated in this paper are listed in
Table 3. The indices were computed in ENVI 5.3 and index values were extracted for each segment in
polluted and control transects.

Table 3. Summary of selected vegetation indices used to investigate the impact of oil pollution
on biodiversity.

Index Formula Reference

Normalized Difference Vegetation Index (NDVI) NIR − Red/NIR + Red [119]
Red-Edge NDVI (RENDVI) (R750 − R705)/(R750 + R705) [120]

Modified Red-Edge NDVI (MRENDVI) (R750 − R705)/(R750 + R705 − 2 x R445) [121]
Modified Red-Edge Simple Ratio Index (MRESRI) (R750 − R445)/(R705 + R445) [122]

Vogelmann Red Edge Index 1 (VREI1) R740/R720 [123]
Photochemical Reflectance Index (PRI) (R531 − R570)/(R531 + R570) [124]

Structure Insensitive Pigment Index (SIPI) (R800 − R445)/(R800 + R445) [125]

2.8. Derivation of Stress-Sensitive Wavelengths by Sensitivity Analysis

Sensitivity analysis is a mathematical procedure which determines how changes in levels of
an independent variable affect changes in levels of a response variable [126]. The response level
(wavelengths of vegetation reflectance, in this study) showing the largest relative change in response to
changes in levels of the independent variable (soil TPH) is considered to be the most sensitive response
level [127]. According to [126], this procedure is necessary to evaluate the influence of variables
and rank their significance based on their influence. Sensitivity analysis was performed for both
polluted and control vegetation on the assumption that the environmental and edaphic conditions are
homogenous and that polluted vegetation would be more stressed than control vegetation due to the
influence of TPH in the soil.

To investigate the effect of oil pollution (independent variable) on vegetation reflectance (response
variable) using Hyperion data, two ideas were explored. Firstly, the wavelengths that were sensitive to
TPH concentration in the soil were identified and the reflectance at these wavelengths were compared
to determine if there was significant difference between polluted and control transects. The criterion for
identifying sensitive wavelengths was vegetation response to TPH concentration in the soil which was
expected to influence spectral reflectance [128]. Sensitivity analysis of vegetation reflectance spectrum
to soil TPH was also necessary to differentiate between the plant stress caused by TPH concentration
in the soil and other edaphic factors while also correcting for irradiance, leaf orientation, irradiance
angle and shading [129].
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Since vegetation reflectance at the VNIR generally increases with plant stress [130,131], sensitivity
to TPH-induced stress in vegetation for VNIR Hyperion wavelengths was computed by subtracting the
reflectance of control vegetation (non-stressed) from that of stressed vegetation (polluted). The resulting
difference was normalized by further dividing by the reflectance of the non-stressed vegetation to
establish the sensitivity of each wavelength to soil TPH [129]. The formulae for computing the
reflectance difference and sensitivity are as follows:

R∆ = Ru − Rn, (1)

Rs = (Ru − Rn)/Rn, (2)

where

Rn is reflectance of non-stressed vegetation
Ru is reflectance of stressed vegetation
R∆ is reflectance difference
Rs is reflectance sensitivity

Following sensitivity analysis and ranking of the VNIR Hyperion wavelengths, the most sensitive
wavelengths with the highest sensitivity values and correspondingly high reflectance difference values
positioned at the top of the rank order, while the least sensitive bands with sensitivity values closer to
zero were positioned at the bottom of the rank order. The five most sensitive and five least sensitive
wavelengths were selected and used in creating the normalized difference vegetation vigour index
(NDVVI). These wavelengths were selected and combined to create an index with maximum sensitivity
to vegetation response to soil TPH because index performance is improved when both sensitive and
insensitive wavelengths are used in its creation [71]. Additionally, vegetation sensitivity to soil TPH
appeared to be limited to specific wavelengths in the blue, red and NIR channels. To investigate the
full range of oil pollution impact on vegetation, the NDVVI variants were created from these channels.

2.9. Calculation of the Normalized Difference Vegetation Vigour Index (NDVVI)

Vegetation vigour has long been recognized as an essential environmental quality index used
in studies investigating various aspects of the environment [46,47,132]. The index has also been
recommended for use in tests to evaluate the effect of chemical substances on the growth of various
plant species [49,50]. Several studies use the vegetation vigour index derived from remote sensing
data to measure vegetation productivity and biomass production.

In the present study, a new vegetation vigour index was created to measure the response of
vegetation to the presence of TPH in the soil, and compare how the response differs on polluted and
control transects. The index referred to as the normalized difference vegetation vigour index (NDVVI)
was computed by normalizing reflectance difference at the least and most sensitive wavelengths.
The NDVVI was computed for each segment using the formula

NDVVI = (Ri − Rj)/(Ri + Rj), (3)

where

Ri = reflectance at least sensitive wavelength
Rj = reflectance at most sensitive wavelength

The most sensitive wavelengths were those which exhibited large difference in reflectance between
polluted and control transects while the least sensitive wavelengths were those whose reflectance
values hardly changed in the presence of TPH. Previous studies showed that NIR reflectance did
not vary much between healthy leaves and stressed leaves [133,134]. Since reflectance at these NIR
wavelengths is almost constant, the index thus relies on reflectance at the most sensitive wavelengths
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which occurred in the blue and red channels. Thus, NDVVI value is zero when reflectance at either the
red or blue channel is high and 1 when reflectance at these channels is low. The inclusion of the least
sensitive wavelengths in creating the NDVVI automatically corrects for reflectance from non-vegetated
areas (such as bare soils and buildings) which show high reflectance at the NIR region. Six NDVVI
variants were created combining the five most sensitive and least sensitive Hyperion wavelengths.
These were NDVVI814,437, NDVVI824,427, NDVVI844,447, NDVVI752,630, NDVVI773,641, and NDVVI844,630.
The range of index values are shown in Figure 2.
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Figure 2. Raster images of the NDVVI variants used in the model. The low index value of polluted
transects is clearly seen in the images. Additionally, roads, buildings and waterbody (areas with low
vegetation density) are clearly seen to have very low index values, which is a reflection of the new
index properties.

2.10. Statistical Analyses

The potential of the new NDVVI variants to estimate the species richness and diversity of the study
area was assessed using non parametric statistics. Vegetation indices such as the normalized difference
vegetation index (NDVI) are commonly used to predict species richness and diversity [32,95,135–137],
therefore, we compared the capability of the new NDVVI variants and traditional narrow-band
vegetation indices (NBVIs) listed in Table 3 for predicting vascular plant species diversity. As the
NDVVI is derived from Hyperion wavelengths with different levels of sensitivity to soil TPH, it is
expected that the NDVVI values will be higher for control transects than for polluted transects
and that consequently, estimated species richness and diversity indices will follow similar patterns.
Thus, underscoring the need for the application of the new index in biodiversity monitoring in oil
producing regions.

Each diversity index was modelled as a function of the spectral metrics derived from the Hyperion
image and the traditional NBVIs. We tested for differences between the median NDVVI and median
NBVIs of the polluted vs. control transects with the Mann-Whitney U test (M-W test). The Null
hypothesis is that the median index of the polluted transects is the same as the median of the
control transect. For all tests, the type I error was controlled at α = 0.05. The spectral metrics and
vegetation indices were then regressed with field measurements of biodiversity indices to determine
the strength and significance of the relationships. As the NDVVI is a good indicator of vegetation
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vigour, chlorophyll content and productivity, it is expected to have a strong positive relationship with
field biodiversity indicators in accordance with [5–9].

The spectral metrics and vegetation indices were used as predictors in models designed to
estimate various species diversity indices of investigated transects. Partial least square regression
(PLS) and non-parametric multivariate regression (NPM) procedures were employed to model the
relationship between derived spectral metrics and field-measured diversity indices (Shannon’s,
Simpson’s, Menhinick’s and Chao-1). These regression models were selected because they are not
limited by assumptions of data distribution common with parametric regression procedures.

PLS regression was applied to evaluate the predictive capability of the new spectral index (NDVVI
variants) for comparison with traditional NBVIs. The PLS technique performs multivariate regression
without the restrictions associated with the standard regression methods. It is particularly useful
when predictor variables outnumber response variables and when there is high multicollinearity
between the predictor variables. The procedure transforms the predictor data (in this case, the NDVVI
variants derived from the Hyperion data and the traditional NBVIs) into a smaller set of uncorrelated
components and performs least square regression on these components instead of the original data.
PLS has been shown to be effective for the analysis of hyperspectral data [38,138] due to high
multicollinearity of the bands. Selection of the optimum number of component is ascertained from
coefficient of determination (R2) values which refer to how much of the variance in the predictors and
between the predictors and response is explained by each component. For highly correlated predictors,
it is normal for fewer components to be used in the model.

NPM regression analysis was performed to account for any violations of the assumptions about
the distribution of the data. Non-parametric methods allow the modelling of densities and local
polynomial regression on both continuous and categorical data which do not necessary follow any
pre-defined distribution [139]. The np package in R developed by [140] was used for this analysis.
The procedure commences with selection of the optimum bandwidths estimated from second-order
Gaussian kernel densities. The bandwidth objects are then assigned to an appropriate regression
function, which determines the fitting of the curve and calculate the fitted, predicted and error values.
The np package has a multi-start function, which helps to avoid errors that occur in the presence of
local minima. Since the NPM is based on kernel density estimation, choosing the smoothing parameter
(bandwidth) is very crucial. In this study, optimum bandwidths were selected using the Akaike
information criterion (AIC), a classical method of unbiased estimation that minimizes the expected
Kullback-Leibler divergence [141].

For model validation purposes, the original dataset was randomly sub-divided into training
data and test data in the ratio of 6:4. The training data used to calibrate the models was made up of
20 observations (10 segments each from polluted and control transects) while the test data used for model
validation comprised 13 observations (7 polluted and 6 control segments). Model performance was
evaluated in terms of model type (PLS or NPM) and predictors (NDVVI variants or NBVIs). Each model
type was tested with both sets of spectral metrics (NDVVI variants and NBVIs) to determine their
performance in vascular plant species diversity estimation. In total, four different models were developed
and tested. The characteristics of each model is defined in Table 4. The coefficient of determination (R2),
residuals, bias and random error of all four models were compared to identify the subset of spectral
metrics best suited for vascular plant species diversity estimation.

Table 4. Characteristics of the models of biodiversity indices against vegetation indices.

Model ID Regression Method Predictors

1A Partial Least Squares (PLS) NDVVIs
1B „ NBVIs

2A Non-Parametric Multivariate
Regression (NPM) NDVVIs

2B „ NBVIs
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Based on the performance of the models, the NDVVI-based NPM model was selected for
implementation. Vascular plant species diversity indices of randomly selected pixels (predsites)
were estimated from their NDVVI values. The spectral values for the predsites were extracted
from the NDVVI variants (NDVVI752,630, NDVVI814,437, NDVVI824,427, NDVVI773,641, NDVVI844,447,
NDVVI844,630, as illustrated in Figure 3, using the Raster and GISTools packages in R. In total,
30 pixels were randomly selected in such a manner that all the visible land cover types (water body,
swamp, farmland, mixed vegetation and forested) within the study area were captured in the dataset.
The decision for randomly selecting pixels from within the study area is due to the fact that it has
been classified as polluted following reports of oil spills at various sites across the area in the past.
However, soil TPH concentrations are expected to be lower in the predsites than is observed at polluted
transects and consequently, higher species diversity values are anticipated from implementing the
selected model.
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Figure 3. Map of NDVVI814,437 for Kporghor displaying the locations of the randomly selected pixels
(predsites) used for evaluating the regression model. Shannon’s, Simpson’s, Menhinick’s and Chao-1
diversity indices were estimated for the predsites using the NDVVI variants.

The selected model was then applied to the new dataset of derived spectral metrics (preddata).
For this procedure, only the satellite derived spectral metrics were utilized. Each diversity index
(Shannon’s, Simpson’s, Menhinick’s and Chao1 index) was estimated separately for the predsites.
Due to the absence of field data for the predsites, estimation accuracy was determined by correlating
predicted values with corresponding NDVI values computed from a Landsat 8 and Sentinel-2A images
of the study area. NDVI was selected because it is a well-known vegetation index, which measures
vegetation health and density and is commonly used as a surrogate for measuring species diversity in
some studies. Since vegetation productivity increases with species diversity [2–9,51–57], we presume
that the NDVI values will strongly correlate with the diversity estimates of the ‘predsites’. However,
as NDVI is known to saturate at high vegetation densities, researchers have advocated for more robust
indices that can handle to range of vegetation densities frequently observed in the tropical rain forests.
The choice of a different sensor to calculate the NDVI was to minimize bias from using an NDVI
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image calculated from Hyperion data. Both the Landsat 8 and Sentinel 2A images were downloaded
from the USGS earth explorer tool and the vegetation index computed using ENVI 5.3. Additionally,
accuracy of predictions was visually evaluated using very high-resolution imagery from digital globe
freely available in Google Earth (GE, hereafter). Several researchers have utilized the GE images as
a visualization tool for land use and land cover maps [142–144].

3. Results

3.1. Sorenson’s Similarity and Diversity Indices of Transects

The similarity of polluted and control transects investigated in this study was determined using
the Sorenson’s similarity index. Results in Table 5 show that vegetation composition of polluted and
control transect were adequately similar for comparison. The Sorenson’s index for all pairs of transects
was greater than 0.5 except for observations on the second polluted location P2 which showed less
similarity with the other transects (similarity index values <0.5). The higher index values portray
greater similarity among transects; however, it is apparent that intra-transect similarity (similarity
among polluted transects or among control transects) was greater than inter-transect similarity
(similarity between polluted and control transects). The observed pattern suggest that differences in
species composition and vegetation reflectance may be attributed to soil TPH concentration.

Table 5. Sorenson’s similarity index of paired transects showing strong similarity in species composition
of polluted and control transects.

Transect A Transect B Transect C Transect D P2 Transect C1 Transect C2 Transect C3

Transect B 0.62
Transect C 0.53 0.68
Transect D 0.55 0.64 0.72

P2 0.18 0.31 0.25 0.37
Transect C1 0.57 0.55 0.58 0.69 0.32
Transect C2 0.57 0.51 0.58 0.62 0.22 0.88
Transect C3 0.50 0.51 0.53 0.62 0.32 0.86 0.78
Transect C4 0.51 0.51 0.54 0.63 0.32 0.87 0.76 0.97

In total 60 vascular plant species belonging to 31 families were recorded on polluted and control
(non-polluted) transects in the study area. The average number of vascular plant species per segment
on polluted transects was 16 while on control transects it was 34. The full list of vascular plant species
recorded on polluted and control transects in the study area is shown in Table S1 (Supplementary A).

3.2. Vegetation Data Analysis

Vegetation data was analyzed to determine the differences in characteristics of polluted and control
vegetation using the vegan and labdsv packages in R. Median values of vascular plant species richness
and diversity were greater for control vegetation than for polluted vegetation. The Mann-Whitney test
showed that this difference was significant (p < 0.05) which suggest that the presence of TPH in soil
adversely affected vegetation characteristics. The summary of the results are shown in Table 6.

Table 6. Result of Mann-Whitney test of differences between polluted and control vegetation.

Index Polluted (n1) Control (n2)
Confidence Interval (95%)

M-W U
Lower Upper

Taxa 14 37 17 26 406
Shannon’s 2.64 3.61 0.7 1.47 406
Simpson’s 0.93 0.97 0.03 0.09 406

Menhinick’s 3.74 6.08 1.75 3.1 406
Log10Chao-1 2.02 2.85 0.59 1.22 406
Abundance 1.25 1.45 0.01 0.48 329.5
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Furthermore, Figure 4 illustrates the magnitude of this difference. The species accumulation curve
shows that vascular plant species richness in polluted transects was lower than in control transects
and that species accumulated more rapidly in control transects.
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Figure 4. Species accumulation curves comparing species number on polluted and control transects in
the study area. Curves show that vascular plant species richness and rate of accumulation (rate at which
new species are observed in segments) was greater on control transects than on polluted transects.

3.3. Sensitivity Analysis and Comparison of Hyperion Wavelengths

The maximum, mean and minimum reflectance of the polluted and control transects is shown
in Figure 5A. The reflectance in the visible region was higher and the NIR reflectance was lower
for the polluted transects than for the control transects. The greatest reflectance difference between
the control and polluted transects were observed at the wavelength range 420 nm–470 nm (blue
channels) and 620 nm–670 nm (red channels, Table 7). Reflectance at these wavelengths increased
significantly (p < 0.05) on the polluted transects which can be attributed to the presence of TPH
in the soil. As chlorophyll absorption is highest at the wavelengths of 430 nm, 460 nm, 640 nm,
and 660 nm [145], the spectral absorption from chlorophyll in plants was adversely affected by
oil pollution. Median reflectance in the visible wavelengths is shown in the boxplots in Figure 5B.
They differ significantly (p < 0.05) between the polluted and control transects according to the M-W test.

The results of the sensitivity analysis indicate that reflectances at 440 ± 10 nm (blue channels)
and 640 ± 10 nm (red channels) substantially increase in the presence of soil TPH. Conversely, at the
wavelength range of 670 nm–900 nm (NIR), the reflectance of the polluted transects decreased slightly
but was not significantly different from the NIR reflectance of the control transects (p > 0.05).

Minimum reflectance difference (near zero difference) occurred at 730 nm–830 nm (Figure 5C).
The highest reflectance sensitivity to soil TPH (Figure 5D) was observed at wavelengths 440 ± 10 nm
(blue channels) and 640 ± 10 nm (red channels).

The M-W results in Table 8 reveal that blue and red reflectance from vegetation on control
transects is significantly lower than from polluted transects (p < 0.05). Vegetation reflectance at
426.8 nm (chlorophyll absorption feature in the blue range) is significantly lower (p < 0.05) for the
control than for the polluted transects. Reflectance in the NIR wavelengths does not differ significantly
between polluted and control transects. This may be due to the presence of TPH in polluted transects.
Earlier studies have reported that oil-contaminated substrates exhibit increased NIR reflectance,
which have been attributed to thickness of the crude oil [146,147]. Although hydrocarbon absorption
features occur in the 1730–2310 nm wavelengths in the SWIR region [148], in the NIR region the
absorption from oil is decreased substantially leading to increased reflectance [146]. With the increased
NIR reflectance from both polluted and control vegetation, the characteristics of reflectance in the
visible range is differentiating between polluted and non-polluted vegetation.
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Figure 5. (A) Reflectance of control (C) transects, (n = 16) and polluted (P) transects (n = 17) in
Kporghor spill site measured in November 2015 by the Hyperion EO-1 sensor. The plots displayed
are the maximum, mean and minimum reflectance of vegetation on transects at the VNIR region.
Inset: reflectance at 427 to 500 nm zoomed in to highlight differences between polluted and control
transects. (B) Comparison of median reflectance of specific wavelengths that were sensitive to soil TPH
concentration. Boxplots are for polluted and control transects. In (A,B), reflectance values are scaled
by 10,000 during atmospheric correction in ENVI 5.3 to remove decimals and reduce computational
time. (C) Reflectance difference of vegetation growing on polluted and control transects computed
by subtracting the mean reflectance of vegetation on control transects (n = 16) from that of polluted
vegetation (n = 17); (D) Reflectance sensitivity to stress or relative change in reflectance computed by
dividing the reflectance difference (Figure 5C) by the mean reflectance of the control transects. M-W
test results show that the reflectance in the most sensitive wavelengths differ significantly between the
polluted and control transects.

Table 7. Hyperion bands and wavelengths with maximum and minimum differences in reflectance
and those with least and most sensitivity to TPH-induced stress.

Maximum-Difference Bands 9 10 28 8 30

Wavelength 436.99 447.17 630.32 426.8 650
Difference 195.96 170.87 123.1 122.48 102.25

Minimum-Difference Bands 49 46 40 47 38
Wavelength 844 813.48 752.43 823.65 732
Difference 1.79 3.49 3.67 4.11 6.22

Stress-Insensitive Bands 49 46 47 40 42
Wavelength (nm) 844 813.48 823.65 752.43 772.78

Sensitivity 0.00087 0.0018 0.002 0.002 0.0034

Stress-Sensitive Bands 10 9 8 28 29
Wavelength (nm) 447.17 436.99 426.8 630.32 640.5

Sensitivity 0.77 0.68 0.48 0.19 0.16
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Table 8. Median reflectance of polluted and control transects at selected Hyperion wavelengths.
P-values were less than 0.05.

Wavelength
Polluted (n1) Control (n2)

Difference (n1–n2)
Confidence Interval (95%)

M-W U
N = 17 N = 16 Lower Limit Upper Limit

426.8 nm 372.43 238.83 118.56 75.47 164.8 406
436.99 nm 453.35 270.36 175.62 134.52 237.25 421
447.17 nm 392.74 221.87 164.2 110.1 219.4 407
630.32 nm 763.24 640.14 124.82 91.36 154.47 420
640.5 nm 725.66 624.38 115.71 83.26 140.94 402
650 nm 740.05 637.8 114.28 59.6 154.48 396

3.4. Modelling the Vascular Plant Species Diversity of the Investigated Transects

3.4.1. Model Calibration Using Training Data

NDVVI variants and NBVIs (see Table 3) were computed and extracted for selected segments in
polluted and control transects. The M-W test was applied to test for differences between the median
NDVVI of polluted and control transects. The results show significant differences between the median
NDVVI for the polluted and control transects (p < 0.05). We infer that TPH concentration affects the
vegetation vigour, composition and abundance on the polluted transects.

PLS regression commenced with an initial transformation of the predictor datasets (6 NDVVI
variants and 6 NBVIs listed in Table 3) into a smaller set of uncorrelated components with the optimum
number selected from R2 value associated with each component. A maximum of 5 components was
chosen to run the procedure; however, optimum number of components varied for different response
variables as shown Table 9 For the NDVVI dataset, only 1–2 components, which best explained the
variation in the dataset were selected for the regression analysis. For the NBVIs, 1–4 components were
used in the models. Cross-validation was performed by a leave-two-out procedure on the components
before selecting the optimal number. The NDVVI-based PLS model had larger R-squared (R2) values
than the NBVI-based PLS model. Additionally, prediction error sum of squares (PRESS) is smaller
for the NDVVI predictors than for the NBVIs. This confirms that the PLS model of NDVVI variants
have greater predictive ability than that of traditional NBVIs. The results from model calibration are
summarized in Table 9.

Table 9. Calibration parameters of NDVVI and NBVI-based models used in the PLS and NPM
regression methods.

PLS NPM

Response Components Selected R2 PRESS F p R2 RSE

NDVVIs

Shannon’s 2 0.67 12.3 17.56 <0.05 0.71 0.61
Simpson’s 2 0.66 1.11 16.25 <0.05 0.69 0.17

Menhinick’s 1 0.54 44 20.82 <0.05 0.61 1.23
Log(Chao-1) 2 0.6 8.69 12.75 <0.05 0.69 0.49

Canopy Chlorophyll 2 0.56 2181 10.92 <0.05 0.58 9.08

NBVIs

Shannon’s 3 0.39 25.28 3.38 <0.05 0.49 0.82
Simpson’s 1 0.3 1.71 8.23 <0.05 0.46 0.23

Menhinick’s 4 0.48 67.78 3.54 <0.05 0.58 1.31
Log(Chao-1) 3 0.50 11.74 5.35 <0.05 0.55 0.58

Canopy Chlorophyll 1 0.11 4355 2.12 ns 0.59 8.89

ns = not significant.
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The significance of the relationship between the predictors (NDVVI variants and NBVIs) and the
response (diversity indices) was analyzed using the F-statistic. The results show that each diversity
index was statistically related with the selected NDVVI components (R2 > 0.5, p < 0.05). Similarly,
diversity indices also significantly regressed with the NBVI components; however as stated earlier,
the R2 values were much lower (≤0.5, p < 0.05) except for the Chao-1 index (Table 9). The significant
relationship observed between satellite-based indices (NDVVIs and NBVIs) and field measured
diversity indices is in line with previous results such as [149] who reported R2 as high as 0.87 between
NDVI and plant richness; [137] who reported R2 values between 0.32 and 0.72 for NDVI and Shannon’s
diversity; and [95] who reported R2 values of 0.51 to 0.83 for first order hyperspectral indices and
diversity indices including Shannon-Weiner, Pielou, Simpson, Margalef and Gleason. The scatterplots
of observed versus predicted diversity indices are shown in Figure 6.
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Figure 6. Observed versus predicted diversity indices using PLS NDVVI-based regression model.
There appears to be a linear relationship between both sets of data leading to the high R2 values.
This result is consistent with results from previous studies predicting species diversity from
vegetation indices.

From the scatterplots in Figure 6, it is apparent that the NDVVI variants performance in estimating
species diversity is comparable to results reported in other studies. The mechanism explaining the
relationship between satellite derived indices and field measured diversity indices is not yet well
understood; however, judging from the results of this study, we infer that vegetation biochemical
parameters, particularly those strongly influenced by variations in pigment absorption at wavelengths
sensitive to soil TPH are important drivers of this relationship. The scatterplot of residuals versus
predicted diversity index from model calibration using the training data are shown in Figure 7.
The plots suggest that the PLS model provide a good fit for the data. The residuals generally satisfy
the goodness of fit requirements with randomness, homoscedasticity and linearity.
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The residual plots from NDVVI models generally fulfil the goodness of fit requirements with
randomness, homoscedastic and linearity except for Chao-1.

Similarly, the NDVVI-based NPM model has much smaller error values than the NBVI-based
NPM model. The NDVVI-based model perform better during calibration with higher R2 values
(0.61–0.71 at calibration stage) compared to NBVI-based models with R2 < 0.59. Residual standard
error (RSE) values from model calibration are smaller for the NDVVI NPM model and larger for the
NBVI model.

3.4.2. Model Validation Using Test Data

Validation of the trained models was performed using the test data (n = 13, polluted = 7,
control = 6). The predictive capability of the spectral metrics is inferred from predicted R2, RSE,
root mean square error (RMSE), bias and residual analysis of the different models. The performance of
the NDVVI-based models was uniform across both PLS and NPM model types. Analysis of residuals
following model validation also affirms the superiority of NDVVI for estimating vascular plant species
diversity over NBVI. The F-statistics, p, R2, RMSE and Bias are summarized in Table 9 for all models.
The NDVVI-based models (Models 1A and 2A) had the highest R2 as well as lowest RSE values.
Although non-parametric models are generally not as powerful as parametric ones, the spectral NDVVI
metrics derived from TPH-sensitive Hyperion wavelengths consistently outperformed the traditional
NBVIs as estimators of species diversity in all the models. Poor estimates for Simpson’s diversity index
are obtained from NDVVI and NBVIs-based models, particularly using the NPM regression method,
although the error values were very low. From the results, the best index for estimating the Menhinick’s
Richness index is the NDVVI variants. The R2 and RMSE values for NDVVI-based PLS model are 0.57
and 1.13 respectively, while for NBVIs-based PLS model, they are 0.37 and 1.58 respectively. Results of
the model validation using the test data are summarized in Table 10.

Generally, all the models underestimated the response variables (Shannon’s, Simpson’s,
Menhinick’s, Chao-1, and Canopy Chlorophyll) as evident in the negative bias scores, although
the biases were greater for the NBVI-based models. With respect to monitoring biodiversity, this effect
may be an advantage and reduces the risk of overestimating the vascular plant species diversity of an
oil affected location or a protected area.

The NDVVI-based model predictions were over 50% accurate for Shannon’s and Menhinick’s
diversity indices, and less than 50% for Simpson’s and Chao-1′s indices. The best predictions were for
Menhinick’s index as illustrated in the closeness of the fitted lines to the 1:1 lines in all four models
shown in Figure 8 for PLS models and Figure 9 for NPM models. In contrast, Simpson’s index was



Remote Sens. 2018, 10, 897 19 of 34

the least accurate as the plots showed little or no relationship between the predicted and observed
field measurements.

Table 10. Results of the species diversity and canopy chlorophyll estimation of investigated transects
using two different models for each set of predictors. Models 1 and 2 are the partial least square
(PLS) and non-parametric (NPM) regression models respectively. Letters A and B indicate the set of
predictors (spectral metrics) used in each model, A = NDVVIs and B = NBVIs, n = 13, df = 12); ns =
not significant.

Response Variable Model F p R2 RSE RMSE Bias

Shannon’s Diversity
Index

1A 12.82 <0.05 0.54 0.51 0.69 −11.4
1B 1.77 ns 0.14 0.69 0.9 −16.2
2A 13.08 <0.05 0.54 0.5 0.5 −6.2
2B 2.67 ns 0.2 0.67 0.94 −17.2

Simpson’s Diversity
Index

1A 6.66 <0.05 0.38 0.05 0.24 −15.9
1B 0.11 ns 0.01 0.07 0.22 −18.1
2A 1.163 0.3 0.1 0.07 0.14 −9.2
2B 0.09 ns 0.01 0.07 0.21 −14.9

Menhinick’s Richness
Index

1A 14.32 <0.05 0.57 1.15 1.13 −7.5
1B 6.37 <0.05 0.37 1.38 1.58 −21.6
2A 5.35 <0.05 0.33 1.42 1.32 1
2B 7.4 <0.05 0.4 1.34 1.31 −10.2

Log (Chao-1)

1A 8.55 <0.05 0.44 0.24 0.57 3.3
1B 2.12 ns 0.16 0.3 0.58 −1.1
2A 10.16 <0.05 0.48 0.23 0.56 2.1
2B 1.93 ns 0.15 0.3 0.51 3.2

Canopy
Chlorophyll

Content

1A 7.89 <0.05 0.42 7.85 7.87 6.7
1B 1.14 ns 0.09 9.79 9.29 4.7
2A 10.49 <0.05 0.49 7.36 7.59 5.5
2B 1.64 ns 0.13 9.6 13.49 9.9
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Figure 8. Observed versus predicted plots for the various PLS models. For each species diversity index,
scatterplots of observed values versus the NDVVI variants (blue) and NBVIs (red) predicted values are
shown (n = 13). The regression equations are also shown with the R2 values, y1 = response to NDVVI
variants, y2 = response to NBVIs. The line of best fit for each model is plotted to compare with the 1:1
line (in black).
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All models clearly distinguished between polluted and control transects with the diversity 
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scatterplot in Figure 10 show that the NDVVI-based model is a good fit for Shannon’s index and the 
SPAD chlorophyll estimates. However, this was absent for the other indices. 

Figure 9. Observed versus predicted plots for the NPM models. For each species diversity index,
scatterplots of observed values versus the NDVVI variants (blue) and NBVIs (red) predicted values are
shown (n = 13). The regression equations are also shown with the R2 values, y1 = response to NDVVI
variants, y2 = response to NBVIs. The line of best fit for each model is plotted to compare with the 1:1
line (in black).

All models clearly distinguished between polluted and control transects with the diversity
estimates; however, the NDVVI-based models performed better. The residual versus predicted
scatterplot in Figure 10 show that the NDVVI-based model is a good fit for Shannon’s index and the
SPAD chlorophyll estimates. However, this was absent for the other indices.Remote Sens. 2017, 9, x FOR PEER REVIEW  21 of 34 
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Using the model equations from the NDVVI PLS model, spatial maps of vascular plants species
diversity indices were created for the investigated area. Figure 11 shows the maps for the Shannon’s,
Simpson’s, Menhinick’s and log transformed Chao-1′s indices as well as the canopy chlorophyll
content. A quick look at the images for Shannon’s or Simpson’s diversity and the canopy chlorophyll
content shows that pixels with high diversity index were also high in canopy chlorophyll.
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Figure 11. Spatial maps of vascular plant species diversity estimated from NDVVI PLS model.
Location of control and polluted transects on the maps correspond with the estimated diversity
index and chlorophyll content. From the images, polluted transects are seen to have low diversity
and canopy chlorophyll values while control transects have high diversity and canopy chlorophyll
values. This further highlights the relationship between vegetation productivity indicated by canopy
chlorophyll content and vascular plant species diversity.

3.5. Model Implementation and Evaluation Using Random Pixels

The new dataset of derived spectral metrics (preddata) was used as predictors in the NPM model
in order to estimate the Shannon’s, Simpson’s, Menhinick’s and Chao1 index values for the predsites.
The estimations were done separately for each variable. Average species diversity index estimated
for each land cover type visible from high-resolution image available in google earth is shown in
Table 11. Expectedly higher diversity index values were predicted for forests and mixed vegetation,
while swamps and waterbodies had lower diversity prediction. Moderate diversity indices were
predicted for farmlands.

NDVI values computed from both Landsat and Sentinel 2A images (Figure 12) were extracted
for the predsites. The NDVI values were generally low for the different land cover types compared
to the NDVVI values. NDVVI values for forested pixels ranged from 0.53 to 0.94 while NDVI values
were 0.2 and 0.12 respectively for L8-NDVI and S2A-NDVI. Similarly, higher NDVVI values than
NDVI values were extracted from pixels categorized as farmland and mixed. Despite the large margin
between NDVVI and NDVI values, the pattern of vascular plant species diversity estimation was
similar. As evident in Table 11, the higher the index value, the higher the estimated species diversity
value and vice versa.
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Table 11. Average diversity values predicted for randomly selected pixels according to observed land
cover type. N = number of 30m pixels in each class, L8-NDVI = NDVI derived from Landsat 8 image
and S2A-NDVI = NDVI derived from Sentinel 2A image. Due to its higher spatial resolution, average
NDVI values was calculated using a 2 × 2 pixel window from the S2A-NDVI.

Land Cover Type Farmland Forested Mixed Swamp Waterbody

N 7 5 10 6 2
L8-NDVI 0.17 0.2 0.18 0.13 0.11

S2A-NDVI 0.11 0.12 0.11 0.05 0.06
NDVVI844,447 0.48 0.57 0.49 0.29 0.27
NDVVI814,437 0.73 0.83 0.76 0.61 0.57
NDVVI824,427 0.5 0.58 0.51 0.3 0.28
NDVVI752,630 0.44 0.53 0.46 0.25 0.23
NDVVI773,641 0.71 0.80 0.73 0.56 0.53
NDVVI844,630 0.85 0.94 0.88 0.73 0.7

Shannon’s 2.59 3.42 2.77 0.88 0.94
Simpson’s 0.82 0.95 0.87 0.25 0.3

Menhinick’s 3.64 5.34 4.13 1.41 1.16
LogChao-1 2.16 2.79 2.4 1 1.06

Canopy Chlorophyll 56.12 64.8 56.46 39.57 34.09

As an additional step in evaluating the performance of the NDVVI-based model, NDVI was used
as surrogates for the vascular plant species diversity index. Since NDVI has been shown to correlate
strongly with species diversity, it is expected to exhibit similar behaviour with the predicted vascular
species diversity indices if the predictions were correct. Due to the higher spatial resolution of the
Sentinel 2A image, average NDVI values was computed for each segment using a 2 × 2 pixel window.
The result of the correlation analysis in Table 12 suggests that the estimated values have a strong linear
relationship with NDVI values from both images. The correlation coefficients ranged from 0.73 to 0.85
for the diversity indices.Remote Sens. 2017, 9, x FOR PEER REVIEW  23 of 34 
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Figure 13. A high-resolution Digital Globe 2006 true color image of the study area extracted from
Google Earth showing the location of predsites. This image was selected because it depicted the land
cover types in the study area better than more recent high-resolution images. From the estimated
Shannon’s diversity index shown next to the predsites, it is obvious that most of the predictions
correspond with the visible land cover type.

Visual evaluation of high resolution Google Earth imagery (Figure 13) shows that most predicted
values correspond with the land cover type on the ground surface. For instance, the predsites that were
located on swamps and water bodies had low estimated values for vascular plant species diversity.
However, the location of the predsite P2 with predicted Shannon diversity index of 2.68 appears to be
bare soil in this image (acquired by Digital Globe in December 2006), the most current image acquired
in January 2016 (not used due to cloud obstruction) shows the presence of vegetation regrowth at the
location. This may explain the predicted high diversity values for the pixel.

Table 12. Pearson’s correlation coefficients of NDVI and estimated species diversity indices for predsites.
All the results are significant (p < 0.05).

Diversity Index NDVILandsat-8 NDVISentinel-2A

Shannon’s 0.77 0.78
Simpson’s 0.73 0.75

Menhinick’s 0.78 0.79
Chao-1 0.84 0.84
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4. Discussion

TPH pollution in soil amplifies the difference between the reflectance of polluted and control
transects in wavelengths associated with chlorophyll absorption in the blue (440 ± 10 nm) and
red (640 ± 10 nm) spectral channels. These wavelengths are most sensitive to TPH concentration
in the soil. Since chlorophyll absorption occurs in the wavelength range of 430 nm–460 nm and
650 nm–680 nm [133,150], the presence of TPH in the soil affects the absorption of chlorophyll in
vegetation, which is also supported by occurrence of the most sensitive wavelength at 447.17 nm
(sensitivity = 0.77). Previously, [133] found that the reflectance at 420 ± 5 nm varies little with stress in
plants, and they reported increased sensitivity to plant stress for reflectances at 600 nm and 695 nm.

Although there was a significant difference in the NIR reflectance (700 nm–900 nm) of polluted
and control vegetation, the sensitivity analysis using mean reflectance showed that this region was least
sensitive to TPH-induced stress. Other researchers reported similar patterns in the NIR reflectance
of stressed vegetation. For instance, [133] reported that at 730 nm, reflectance in stressed plants
did not significantly change, while [151] found that NIR reflectance did not vary between healthy
leaves and stressed leaves. They attributed this phenomenon to the increase in the size and length
of the assemblages in the spongy parenchyma in stressed leaves. Moreover, [147,148,152] analyzed
polluted substrates and attributed the increased NIR reflectance in polluted vegetation to the presence
of hydrocarbons.

Other factors may have contributed to this response. Firstly, as suggested by [38,130,153] there may
have been increased presence of invasive species, which are tolerant to hydrocarbons. Secondly, it may
also be that the plant assemblages (cell walls, mesophyll cells and intercellular spaces) responsible
for NIR reflectance in vegetation were yet to succumb to the stress caused by TPH in the soil. This is
most likely the case along polluted transects as soil TPH concentration decreased, thereby delaying the
onset of physiological damage in plants tissues.

Results of the sensitivity analysis differentiated the response of chlorophyll pigments a (Chl-a)
and b (Chl-b) to TPH concentration in the soil. The most sensitive wavelength in the blue range
occurred at the Chl-a absorption maximum (447.17 nm) and in the red range at the Chl-b absorption
maximum (630.32 nm). Although these wavelengths showed sensitivity to soil TPH concentrations,
Chl-a absorption in the blue range was most affected as the reflectance difference between polluted
and control vegetation at that wavelength was up to 300%. In contrast, [98] found that the wavelength
around 650 nm was more sensitive to chlorophyll content in vegetation than the chlorophyll absorption
features in the blue range.

Since Chl-a is the principal pigment for photosynthesis, this may explain the severe effect
associated with oil pollution in plants. Arellano et al. [114,154,155] reported that increasing crude
oil contamination caused a significant decrease in the chlorophyll content, which sometimes led to
plant mortality.

Several researchers have propounded theories on how TPH influences chlorophyll content in
affected plants. Investigations of crude oil effect on plant anatomy such as [155–157] discovered
structural deformations in the form of thickening of the epicuticular region, compression of the
palisade and spongy parenchyma, compression of the vascular bundles, reduction of intercellular
air spaces, distortion and reduction of the stomata. These changes generally inhibit chlorophyll
synthesis thereby affecting plant growth and productivity [155]. Considering the response of the
Chl-a absorption features to soil TPH concentration, these physiological effects have been linked
to oil pollution in various environments, causing a decrease in Chl-a production and consequently
vegetation growth, health and productivity.

The modelling results of vascular plants species diversity indices provide strong evidence of
a relationship with narrowband chlorophyll-related vegetation indices. This relationship is stronger
when hyperspectral wavelengths sensitive to soil TPH are used in calculating the vegetation index
as is the case with the NDVVI. This further emphasizes the need for incorporating the new index in
biodiversity monitoring and conservation schemes.
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NDVVI is indicative of chlorophyll content and is hence an important plant biochemical parameter
for vegetation productivity and health [131,155,158]. Not only did NDVVI significantly differ between
polluted and control transects, it also strongly correlated with the vascular plants species diversity.
This result is consistent with [159] who reported changes in vegetation pattern in polluted fields
and [160] who found lower diversity indices for contaminated sites than for uncontaminated sites.
Additionally, reports from [14,161,162] were in agreement with our results. Hence, the low NDVVI
values found over polluted transects can be attributed to reduced species composition, reduced
abundance and deteriorating health of the vegetation. Since vegetation vigour is characterized by
vegetation productivity and health [63], the presence of TPH in soils adversely affected both traits.

As stated earlier, the need to clarify the mechanism defining relationships between vegetation
reflectance and species diversity remains primal, several researchers have linked it to variations in
vegetation biochemical parameters. For instance, [38] following their study on airborne spectranomics
reported that plant species have unique chemical fingerprints which correspond with spectral and
species diversity. The chemical fingerprints are exhibited via differences in photosynthetic and
photo-protective pigments, water and leaf structure and remotely measurable. Similarly, [34] observed
that interspecific variability in pigment (chlorophyll, anthocyanins, and carotenoids) levels in plants
contributed in species differentiation using spectral metrics. Additionally, [163] successfully classified
seven tree species using hyperspectral metrics derived from wavelengths sensitive to vegetation
chemistry and structure.

In view of these, we infer that the NDVVI variants superior performance in estimating species
diversity is attributed to the selection of wavelengths sensitive to soil TPH which is known to affect
vegetation chemistry. Thus, making it the ideal index for use in known crude oil polluted regions.
The superior performance of the NDVVI variants in estimating vascular plants species diversity may be
attributed to the selection of particular wavelengths that strongly responded to changes in vegetation
pigments due to oil pollution. This procedure not only extracted relevant wavelengths from hundreds
of hyperspectral wavelengths that are potentially redundant, but also reduced the presence of noise
from the data. Jacquemond et al. [38,41] stated that plant spectra may contain additional information
unrelated to pigment concentration.

Previous studies have shown that changes in vegetation productivity and species diversity
are common symptoms of ecosystem stress. Rapport, Regier and Hutchinson [164] reported that
environmental stress including oil pollution induces changes “in the size of dominant species,
species diversity and a shift in species dominance to opportunistic shorter-lived forms”. Accordingly,
NDVVI-based models identify low species diversity indices for polluted transects and higher indices
for unpolluted transects.

High NDVVI values extracted from predsites following implementation of the best performing
model contrasted with the very low NDVI values and suggest that the new index is more capable
of detecting vegetation presence than the NDVI in oil polluted regions. Due to the adverse
effect of oil pollution on vegetation (reduced growth [165–167] and increased mortality [168–170],
the NDVVI designed to have maximum sensitivity to soil TPH, appears to be a more suitable index
to measure vegetation characteristics because of its ability to detect even sparse areas of vegetative
growth/presence. Furthermore, the NDVVI variants successfully predicted the diversity indices for
the randomly selected sites from the satellite image of the study area. The low index values predicted
for the swamps and water bodies are consistent with expectations. According to [171], the waterways
of the Niger delta harbour invasive species, particularly the water hyacinth (Eichornia crassipes (Mart.)
Solms). In their work, [172] asserted that invasive species adversely affect species richness, diversity
and composition of invaded habitats. Hence, it is not surprising that the diversity indices are low for
those pixels even though there is abundance of green vegetation.

As vascular plants are the common biodiversity indicators in an ecosystem, any condition that
leads to drastic changes in vegetation characteristics (such as oil pollution) is bound to interfere with
the composition, structure and functions of the entire ecosystem. Due to its ability to detect oil-induced
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stress in vegetation, the new NDVVI has potential as a spectral metric for measuring changes in
ecosystem functions, an essential biodiversity variable as well as providing information about the
condition and vulnerability of ecosystems, a biodiversity indicator.

When incorporated in a temporal analysis, the NDVVI can reveal the extent of habitat degradation
resulting from oil pollution. Since the variants are derived from remote sensing data, their application
is standardized, scalable and repeatable making it a very useful tool to achieve some of the Aichi 2020
targets set by the United Nations Convention on Biological Diversity (CBD) [173].

At local or regional scales, routine application of the NDVVI over areas with oil installations
will facilitate detection of oil seepages, unreported spills and illegal bunkering activities. In essence,
the index will facilitate effective biodiversity monitoring and conservation by providing decision
makers with relevant information on areas of high or low biodiversity. This information will ensure
the efficient management of meagre resources by reducing the frequency and scale of cost intensive
field surveys.

5. Conclusions

A new index, known as the NDVVI, is introduced. The index and its variants are better at
discriminating between oil-polluted and natural vegetation and are more strongly related to vascular
plant species diversity indices than traditional NBVIs. NDVVIs have potential as an essential
biodiversity variable (EBV) for monitoring biodiversity and offer better solutions than NBVIs for
assessing oil-polluted vegetation.

The performance of the NDVVI in this study provides evidence of the deleterious effect of oil
pollution on the chlorophyll systems in vegetation. Given that vegetation productivity is intricately
linked to plant species richness and diversity, these effects potentially extend to the biodiversity of
the area.

The adverse effect of oil pollution on ecosystem function, structure and composition is evident in
the NDVVI values over the polluted and control transects. The differences between these transects
were significant. Changes in vegetation characteristics observed in the field data were manifest in
spectral reflectance signals and were detected by the Hyperion sensor.
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