
Title Page 1 

Title: The backwards comparability of wrist worn GENEActiv and waist worn ActiGraph accelerometer 2 

estimates of sedentary time in children 3 

Authors: Lynne M. Boddy1, Robert J. Noonan2, Alex V. Rowlands3,4,5, Liezel Hurter1, Zoe R. 4 

Knowles1, Stuart J. Fairclough2. 5 

 6 

Institution and affiliations: 7 

1Physical Activity Exchange, Research Institute for Sport and Exercise Sciences, Liverpool John 8 

Moores University, Liverpool, UK 9 

2Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK 10 

3Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK; 11 

4NIHR Leicester Biomedical Research Centre, UK;  12 

5Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health 13 

Research, Division of Health Sciences, University of South Australia, Adelaide, Australia. 14 

 15 

Corresponding author: Dr Lynne M. Boddy, L.M.Boddy@ljmu.ac.uk. 16 

  17 



Abstract 18 

Objectives: To examine the backward comparability of a range of wrist-worn accelerometer estimates 19 

of sedentary time (ST) with ActiGraph 100 count∙min-1 waist ST estimates.   20 

Design: Cross-sectional, secondary data analysis 21 

Method: One hundred and eight 10-11-year-old children (65 girls) wore an ActiGraph GT3X+ 22 

accelerometer (AG) on their waist and a GENEActiv accelerometer (GA) on their non-dominant wrist 23 

for seven days. GA ST data were classified using a range of thresholds from 23-56 mg. ST estimates 24 

were compared to AG ST 100 count∙min-1 data. Agreement between the AG and GA thresholds was 25 

examined using Cronbach’s alpha, intraclass correlation coefficients (ICC), limits of agreement (LOA), 26 

Kappa values, percent agreement, mean absolute percent error (MAPE) and equivalency analysis.  27 

Results: Mean AG total ST was 492.4 minutes over the measurement period. Kappa values ranged from 28 

0.31-0.39. Percent agreement ranged from 68-69.9%. Cronbach’s alpha values ranged from 0.88-0.93. 29 

ICCs ranged from 0.59-0.86. LOA were wide for all comparisons. Only the 34 mg threshold produced 30 

estimates that were equivalent at the group level to the AG ST 100 count∙min-1 data though sensitivity 31 

and specificity values of ~64% and ~74% respectively were observed. 32 

Conclusions: Wrist-based estimates of ST generated using the 34 mg threshold are comparable with 33 

those derived from the AG waist mounted 100 count∙min-1 threshold at the group level. The 34 mg 34 

threshold could be applied to allow group-level comparisons of ST with evidence generated using the 35 

ActiGraph 100 count∙min-1 method though it is important to consider the observed sensitivity and 36 

specificity results when interpreting findings.  37 

 38 
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Introduction  41 

Sedentary behaviour (SB) has received increased attention across recent years as a behaviour that may 42 

detrimentally affect children’s health. Whether SB influences health independent of physical activity 43 

(PA) is deemed to be a controversial topic, with some studies demonstrating the negative effects of 44 

reallocating moderate-to vigorous PA (MVPA) to SB 1, 2, and others reporting limited evidence that SB 45 

is associated with health independent of MVPA 3. Nonetheless, researchers are interested in measuring 46 

youth movement behaviours including SB to explore health associations, investigate secular trends, and 47 

establish intervention effects.  48 

 49 

Sedentary behaviour is defined as any waking behaviour characterised by an energy expenditure of ≤1.5 50 

metabolic equivalents (METs) while in a sitting, reclining or lying posture 4. Despite the SB definition 51 

referring to posture, many researchers use accelerometers to classify SB as an absence of, or little, 52 

registered dynamic acceleration 5. While widely used, it should be noted that this approach does not 53 

consider posture.   54 

 55 

Historically children’s SB or sedentary time (ST: the time spent for any duration or in any context in 56 

sedentary behaviours 4) was assessed using waist-worn ActiGraph accelerometers with a threshold of 57 

≤100 vertical axis count∙min-1 used as the upper boundary for ST. This approach has demonstrated 58 

acceptable agreement with measures that classify posture such as the activPAL 6 and those that provide 59 

an estimate of energy expenditure, for example indirect calorimetry7. Recently the field has moved 60 

towards that of wrist accelerometry due to superior wear compliance 8. Despite observing better 61 

compliance, and moderate-to-strong correlations between acceleration data collected using wrist 62 

GENEActiv and waist ActiGraph accelerometer placements9, wrist placements generally result in 63 

higher estimates of physical activity, therefore wrist and hip data are not directly comparable without 64 

correcting for these differences 8. Researchers have also begun to make use of raw acceleration signal 65 

analysis to remove the proprietary nature of counts-based data and improve comparability between 66 

different devices 10. Although this is advantageous for studies moving forward, a wealth of SB data 67 

exists using the ≤100 count∙min-1 threshold applied to data from hip-worn ActiGraphs (for example: 11, 68 



1). Therefore, the ability to compare new raw acceleration derived estimates with those generated using 69 

the ≤100 count∙min-1 method would be useful for researchers in the field.  70 

 71 

In a previous study authors generated and cross-validated a GENEActiv (GA) wrist threshold of 51 mg 72 

with the intention of providing comparable estimates of ST to those generate using the traditional 73 

ActiGraph waist-worn ≤100 count∙min-1 method. The open source R package GGIR was used to 74 

calculate average magnitude of dynamic acceleration, known as the Euclidean Norm Minus One 75 

(ENMO),  from raw acceleration data12, applying the newly generated (51 mg) and published thresholds 76 

for SB 13, 14. The comparability of ST estimates between the newly generated 51 mg threshold, the other 77 

empirical GA raw acceleration thresholds, and ActiGraph waist-worn ≤100 count∙min-1 data was 78 

examined.  Results demonstrated a lack of equivalence for the 51 mg threshold and existing GENEActiv 79 

empirical wrist ST thresholds 15, 16. The study provided some preliminary evidence of group-level 80 

agreement for the 36 mg empirical threshold13 which was originally intended to classify wrist-worn 81 

ActiGraph data. A study limitation, however, was that the individual level agreement was 82 

undetermined. At the study conclusion, the authors called for the backwards compatibility of ST 83 

estimates to be examined further, both at the individual and group levels covering a broad range of 84 

ENMO thresholds between the lowest (23 mg) and highest (56 mg) thresholds used to date by 85 

researchers in the field. This would enable researchers to establish the most comparable threshold to 86 

use when comparing to earlier estimates of ST from ActiGraph data. The lack of evidence related to the 87 

comparability of ST estimates currently presents a challenge for researchers when attempting to 88 

compare data to those previously recorded using hip and count methods. More investigation is required, 89 

therefore, to confirm whether the 36 mg proposed in the previous study represents the optimal threshold 90 

to use for this purpose. 91 

 92 

The backwards comparability of wrist generated ENMO assessed MVPA with traditional accelerometer 93 

counts-based data using a range of waist-worn ActiGraph MVPA thresholds has been recently 94 

demonstrated. The study proposed wrist ENMO thresholds that gave estimates of MVPA that are 95 

comparable with waist measured counts-based data classified using empirical ActiGraph thresholds 17. 96 



To date, the backwards comparability for the range of ENMO-derived sedentary behaviour/time 97 

estimates has not been comprehensively examined. The aim of this secondary data analysis was 98 

therefore to extend previous work by using a wide range of both empirical and arbitrary ST thresholds 99 

to examine the backwards comparability of wrist-worn accelerometer estimates of ST with waist-worn 100 

ActiGraph 100 count∙min-1 ST. The study also develops previous work by investigating the extent of 101 

backwards compatibility at both the individual and group levels.   102 

 103 

Methods 104 

This is a secondary data analysis, and the methods for the study have been previously published 105 

elsewhere 8, 12, 15. Briefly, after gaining institutional ethical approval, parental/carer consent and child 106 

assent, 108 10-11-year-old children were involved in this study (65 girls). Body mass was assessed to 107 

the nearest 0.1 kg (Seca, Birmingham, UK) and stature was assessed to the nearest 0.1 cm using a 108 

portable height meter (Leicester Height Measure, Seca, Birmingham, UK) during school-based data 109 

collection sessions conducted between January - May 2014.  110 

 111 

Two tri-axial accelerometers (GENEActiv; Activinsights, Cambs, Uk and ActiGraph GT3X+; 112 

ActiGraph, Pensacola, FL) were used to assess sedentary time. The GENEActiv (GA) was worn on the 113 

non-dominant wrist, and the ActiGraph (AG) worn on the right hip for waking hours over seven 114 

consecutive days. Participants were instructed to remove the monitors when engaging in water-based 115 

activities and also when sleeping. Both monitors were initialised to record at a sampling frequency of 116 

100 Hz using the same computer.  117 

 118 

Data generated by the AG devices were processed using ActiLife v 6.11.4 software (ActiGraph, 119 

Pensacola, FL). Consistent with previous research 15, 18, for the AG devices, non-wear was defined as 120 

20 minutes of consecutive zero counts (1-minute spike tolerance) and was subtracted from daily wear 121 

time. A valid day was defined as ≥540 min for weekdays 19 and ≥480 min for weekend days 20. 122 

Consistent with a previous study 15, the valid weekend and weekdays with the longest wear for each 123 

participant were retained for analysis. Where participants did not have a valid weekend day, only their 124 



longest valid weekday was retained for analysis. Data for the included days were converted into 1 125 

second csv files, with non-wear times manually removed at a later step in data reduction described later. 126 

Sedentary time was defined as ≤100 count∙min-1 21 and coded accordingly. Data generated by the GA 127 

monitors were saved as binary files after being downloaded using GENEActiv v 2.2 software 128 

(Activinsights, Cambs, UK). GA data were processed in R using the GGIR package version 1.1-4 to 129 

calculate the ENMO-derived average magnitude of dynamic acceleration. ENMO is vulnerable to 130 

calibration errors, therefore to correct for sensor calibration errors, autocalibration was completed 22. 131 

Non-wear for the GA data was scored using 60 minutes moving windows with 15 minutes increments 132 

and imputation was completed 23. ENMO values were expressed in average mg per 1 second epoch 23, 133 

and GA data for the corresponding AG week and/or weekend days were retained for further analysis. 134 

 135 

Time stamps for the GA and AG were synchronised, and data were merged resulting in one csv file for 136 

each participant. Periods of non-wear were manually removed from both the AG and GA data according 137 

to the wear details generated by the ActiLife AG analysis. Therefore all epochs remaining in the dataset 138 

contained ‘wear’ data for both devices. After non-wear periods were removed, data were then reduced 139 

to 1-minute epochs and AG data were scored as sedentary or active using vertical axis 100 count∙min-1 140 

as the reference value for ST 21. In the previous study ST thresholds of 23 mg (obtained by solving the 141 

Hildebrand et al., (2014) regression equation), 36 mg 13, 51 mg (newly generated and cross-validated 142 

threshold), and 56 mg 13 were used. In Step 1 of the analysis for the current study we extend these results 143 

to examine comparability of GA ST data classified using a wider range of thresholds. This included a 144 

recently published ST threshold of 52 mg that was generated by a child-specific calibration circuit24 and 145 

arbitrary thresholds of 30 mg, 40 mg and 45 mg which were chosen to cover the range of thresholds. 146 

The final thresholds included in Step 1 were therefore: 23 mg, 30 mg, 36 mg, 40 mg, 45 mg, 52 mg and 147 

56 mg. This approach resulted in a range of ST thresholds with which to compare to the AG vertical 148 

axis 100 count∙min-1 reference.  149 

 150 

Following calculation of descriptive statistics to describe the participant group, the GA ST estimates 151 

were compared to the AG 100 count∙min-1 estimates at the group level by calculating Cronbach’s alpha, 152 



intraclass correlation coefficients (ICC), Kappa values and percent agreement. Individual level 153 

estimates were compared by calculating limits of agreement (LOA), correlations between bias and mean 154 

sedentary time (AG and GA) and mean absolute percent error (MAPE, %). Null hypothesis testing is 155 

not appropriate when considering the comparability between estimates 25, therefore equivalency 156 

analysis was also performed to establish the equivalence of group level estimates of ST on average. A 157 

95%equivalence test was completed to establish whether the 90% confidence intervals for the range of 158 

GA ST thresholds completely fell within the zone of equivalence, defined as ±10% of the mean AG 159 

100 count∙min-1 classified ST.  160 

In Step 2 of the analysis, results from step 1 were used to identify the likely range of most comparable 161 

thresholds, and further thresholds within this range were then added to the analysis to attempt to find 162 

the optimal threshold. Analyses were also completed separately by sex to further examine the 163 

comparability of estimates. To provide a more stringent comparison, for the second step in analysis, the 164 

zone of equivalence for the group-level equivalence test was reduced to ±5% of the mean AG 100 165 

count∙min-1 classified ST. Analysis was completed using IBM SPSS Statistics v.24 (IBM, Armonk, NY) 166 

and Microsoft Excel 2016 (Microsoft, Redmond, WA).  167 

 168 

Results 169 

Participant characteristics, the number of days included in analyses, weekday and weekend day wear 170 

times for boys and girls have been published previously for this population 15, and are displayed in 171 

Table 1.  172 

[TABLE 1 ABOUT HERE]  173 



 174 

 175 

Analysis Step 1. Table 2 summarises the comparisons between the AG ≤100 count∙min-1 and various 176 

GA ST estimates. Kappa values ranged from 0.31-0.39, representing ‘fair’ agreement 26. Percent 177 

agreement ranged from 68-69.9%. Cronbach’s alpha values were 0.88 for the 23 mg threshold, 178 

suggesting a good level of consistency, where all other Cronbach’s alpha values were >0.9, suggesting 179 

excellent levels of consistency. ICCs ranged from 0.59 for the 23 mg threshold (moderate reliability) to 180 

0.86 for the 36 mg threshold (good reliability). Supplementary content A displays the Bland-Altman 181 

plots for the comparisons. LOA were wide for AG - GA comparisons, with the narrowest limits 182 

observed for the AG v 36 mg comparison (lower LOA = -230.47 upper LOA = 194.81 minutes), with 183 

systematic bias apparent. All thresholds from 36 mg and above showed negative bias illustrated by 184 

mean bias and the correlation results (i.e. higher GA ST estimates than AG). The highest negative bias 185 

observed for the 56 mg threshold.  MAPE (%) ranged from 15.8% for the 36 mg threshold to 40.7% for 186 

the 56 mg.  The results of the equivalency analysis found that only the ST estimates generated by the 187 

36 mg threshold could be considered statistically equivalent to the AG ≤100 count∙min-1 on average at 188 

the group level with 90% CI’s falling completely within the ±10% zone of equivalence. Thresholds ≤30 189 

mg appeared to underestimate and ≥40 mg appeared to overestimate ST in comparison to the ST 190 

reported using AG ≤100 count∙min-1. Therefore, for analysis Step 2 thresholds of 34 mg and 35 mg 191 

were included to examine the optimum threshold and analyses were repeated for the whole cohort and 192 

separately by sex. The zone of equivalence was reduced to ±5% for the group-level equivalency 193 

analysis. Table 3 summarises the comparisons between the AG ≤100 count∙min-1 and 34 mg and 35 mg 194 

GA ST estimates and includes sensitivity and specificity information. Mean bias was low for the 34 mg 195 

threshold though wide limits of agreement were observed for both thresholds and MAPE% was similar 196 

to that observed for the 36 mg threshold at 16.2% (34 mg) and 15.8% (35 mg). Sensitivity values (true 197 

positive) were similar between the thresholds, at 63.6% and 64.8% for 34 mg and 35 mg respectively. 198 

Specificity values (true negative) were also similar, at 74.2% and 73.4% for the 34 mg and 35 mg 199 

thresholds respectively. Boys’ data displayed wider limits of agreement, higher MAPE% and slightly 200 



higher sensitivity values for both thresholds in comparison to girls, though % agreement, Cronbach’s 201 

alpha, ICC, Kappa and and  specificity values were similar. The results of the equivalence analysis for 202 

all threshold comparisons are displayed in Figure 1. Only the ST estimates generated by the 34 mg 203 

threshold were statistically equivalent to the AG ≤100 count∙min-1 on average at the group level with 204 

90% CI’s falling completely within the ±5% zone of equivalence. 205 

 206 

[TABLE 2 ABOUT HERE] 207 

 208 
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 210 
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Discussion 212 

A wealth of existing accelerometer data has used the threshold of ≤100 count∙min-1 applied to waist-213 

worn ActiGraphs to determine time spent sedentary (for example large studies using the International 214 

Children’s Accelerometry Database 11, 1). As the discipline moves increasingly towards raw 215 

acceleration data processing and wrist-worn monitors, the ability for researchers to compare data 216 

between studies that have used counts-based processing methods and waist-worn monitors is important. 217 

The aim of this study was therefore to examine the backwards comparability of wrist-worn 218 

accelerometer estimates of sedentary time (ST) with ActiGraph 100 count∙min-1 waist ST estimates 219 

using a range of empirically determined and arbitrary raw acceleration thresholds for wrist-worn 220 

monitors.  221 

This study has demonstrated moderate to excellent ICC values, and moderate to good Cronbach’s alpha 222 

values at the group level for all the GA thresholds. Despite these results, Kappa values were ‘fair’ and 223 

large MAPE values (individual level) were observed. In addition, wide limits of agreement (individual 224 

level) were observed between all GA thresholds and the AG standard. Systematic bias was evident, 225 

indicating that as estimates of ST increased so did the bias. Equivalency analysis found no thresholds 226 

produced estimates of ST that could be considered statistically equivalent on average at the group level 227 

in comparison to the AG standard with the exception of the 34 mg threshold. The wide limits of 228 

agreement, MAPE and bias results, in the presence of high consistency, as evidence by high ICC and 229 

Cronbach’s alpha, highlights the importance of considering a range of analyses at the individual and 230 

group levels when examining the comparability of ST estimates.  231 

Our previous work called for studies to investigate the backwards compatibility of ST estimates 15. In 232 

the present study this was addressed by examining a broad range of thresholds, both empirically 233 

determined and arbitrary, and out of the selected thresholds the 34 mg threshold provided the ST 234 

estimates most comparable to the ActiGraph 100 count∙min-1 waist ST at the group level.  Despite this, 235 

the limits of agreement showed that ST estimates generate using the 34 mg threshold ranged from ±~-236 

3 hrs in comparison to the AG estimates, therefore suggesting the 34 mg should not be used for 237 

individual level comparison. In our previous study we established that the 36 mg threshold, provided 238 



equivalent estimates of wrist ST for the GENEActiv as the ≤100 count∙min-1 standard at the group level 239 

when using a ±10% zone of equivalence. The present study that used a more stringent ±5% zone of 240 

equivalence suggests that 34 mg may provide a more accurate comparison at the group level, and 241 

furthermore suggests that lower and higher thresholds across the range are not appropriate for this 242 

purpose. ActiGraph accelerometers are known to produce lower ENMO values than GA devices 8, 243 

though recent evidence suggests the GA and AG devices provide equivalent estimates between the 30-244 

50 mg range 16. Irrespective of potential differences between devices, at the group level the 34 mg 245 

threshold provided the most comparable estimates of ST to the AG hip ≤100 count∙min-1 standard, so 246 

could be used for comparative purposes across studies moving forward.  247 

Despite exhibiting group level equivalency, the sensitivity and specificity values suggest that for every 248 

100 minutes of ST classified by the ActiGraph, the GA 34 mg threshold would classify ~64 minutes of 249 

ST. Therefore any comparisons between studies using the wrist worn 34 mg threshold and studies using 250 

the waist worn AG ≤100 count∙min-1 method should bear the sensitivity and specificity results in mind 251 

when interpreting findings. Furthermore, the 5% zone of equivalence provides a range of ~50 minutes 252 

of sedentary time which the 34 mg estimates fell within. Whether a potential difference of ±~50 minutes 253 

is clinically meaningful or whether that would provide estimates that are sensitive to change is open to 254 

debate. Recent evidence suggests that the reallocation of 15 minutes of sedentary time to moderate to 255 

vigorous physical activity (MVPA) predicted changes in obesity and fitness outcomes in children2. 256 

However, such evidence relies on sedentary time to be reallocated to MVPA, and the impact of 257 

reallocation of time to light intensity physical activity or stationary behaviours independent of MVPA 258 

remains unclear. Where group-level comparisons with data collected using the AG hip ≤100 count∙min-259 

1 standard are useful the 34 mg threshold can be applied, though where precise estimates of sedentary 260 

time or behaviour are required to demonstrate intervention effectiveness or individual level changes 261 

alternative methods may be required. Whether the estimates of ST from the GA and AG reflect actual 262 

ST remains open to debate. Indeed it is questionable whether the absence or low levels of acceleration 263 

should be used in isolation to classify ST, especially considering the postural component that is integral 264 

to the definition of sedentary behaviour. Examining the accuracy of measuring ST was not the aim of 265 



the present study per se, and as such represents a different research question to be addressed in the 266 

future. There are, however, ways of processing accelerometer data to classify posture that do not require 267 

the use of additional devices or monitoring periods. One example is the sedentary sphere 27, which 268 

classifies assumed postural changes based on acceleration signals, arm orientation and wrist orientation. 269 

Although this approach has shown promise in adult populations, it has not yet been validated in children 270 

and so its utility in this population has not been established. Nonetheless, estimates based on new 271 

approaches, irrespective of the method, still raises questions regarding the comparability with the large 272 

volume of existing literature therefore a pragmatic solution is warranted. 273 

There are some limitations to the present study. We used a 1-minute epoch to determine time spent 274 

sedentary to allow a comparison to the AG hip ≤100 count∙min-1 standard. The majority of children’s 275 

ST data using AG hip ≤100 count∙min-1 utilises 1-minute epochs, therefore this approach was necessary 276 

to address the study aims. It is well established that children’s physical activity behaviours are sporadic 277 

in nature 28, 29 and though high frequency monitoring is required to detect movement at higher 278 

intensities, the 1 minute epoch is unlikely to influence recorded ST which is generally accrued in bouts 279 

lasting >2 minutes 30. In addition, the group of participants involved in this study were all from the same 280 

geographical location in North-West England and a narrow age-range, therefore their ST behaviours 281 

may not be representative of different populations and groups. We included a maximum of 2 days of 282 

data (one weekend and one weekday) for each participant, therefore the sedentary levels of participants 283 

are not reflective of their habitual patterns. However, the volume of data included allows for comparison 284 

between devices and signal classification, where 7 day’s data would have been prohibitive in terms of 285 

file size. Furthermore, a waking hours accelerometer protocol was used. Therefore recent studies using 286 

24-hour protocols may require further investigation to examine the backward compatibility of data, 287 

including sleep classification in addition to ST estimates. 288 

To the best of our knowledge, this is the first study to examine the backward comparability of wrist 289 

assessed sedentary time with ActiGraph 100 count∙min-1 waist ST estimates. The results of the study 290 

suggest that the 34 mg threshold produced the most comparable estimates of ST and could be used to 291 



classify data for group-level comparison with previously published studies that used the 100 count∙min-292 

1 threshold. 293 

 294 

Conclusions 295 

Despite observing high ICC and Cronbach’s alpha values, the results suggest that the all but one of the 296 

wrist mounted, raw acceleration derived ST estimates should not be directly compared with those 297 

derived from the 100 count∙min-1 waist mounted AG threshold. The 34 mg threshold may provide 298 

comparable ST estimates at the group level, and future studies could use the 34 mg threshold when 299 

comparing ENMO derived ST estimates group level estimates previously published using the 100 300 

count∙min-1 approach though it is important to consider the observed sensitivity and specificity results 301 

when interpreting findings.  302 

 303 

Practical Implications 304 

• Many previous studies estimated children’s sedentary time using waist-mounted ActiGraph 305 

accelerometers and the 100 count∙min-1 threshold. 306 

• The backward comparability of wrist-worn raw acceleration derived sedentary time estimates with 307 

the wealth of data collected using waist-mounted ActiGraphs is unknown. 308 

• This study found that the 34 mg threshold could be applied to wrist accelerometer data to provide 309 

estimates of sedentary time that are equivalent to the ActiGraph waist-worn 100 count∙min-1 on 310 

average at the group level, though the sensitivity and specificity values observed in this study should 311 

be considered when interpreting findings.  312 



Acknowledgements 313 

The authors would like to thank the children and schools that were involved this research. AR is 314 

with the National Institute for Health Research (NIHR) Biomedical Research Centre based at 315 

University Hospitals of Leicester and Loughborough University, the National Institute for Health 316 

Research Collaboration for Leadership in Applied Health Research and Care – East Midlands 317 

(NIHR CLAHRC – EM) and the Leicester Clinical Trials Unit. The views expressed are those of 318 

the authors and not necessarily those of the NHS, the NIHR or the Department of Health. 319 

  320 



References 321 

1. Hansen BH, Anderssen SA, Andersen LB, et al. Cross-Sectional Associations of Reallocating 322 
Time Between Sedentary and Active Behaviours on Cardiometabolic Risk Factors in Young 323 
People: An International Children's Accelerometry Database (ICAD) Analysis. Sports Med. 324 
2018; 48(10):2401-2412. 325 

2. Fairclough SJ, Dumuid D, Mackintosh KA, et al. Adiposity, fitness, health-related quality of 326 
life and the reallocation of time between children's school day behaviours: A compositional 327 
data analysis. Preventive Medicine Reports. 2018; 11:254-261. 328 

3. Cliff DP, Hesketh KD, Vella SA, et al. Objectively measured sedentary behaviour and health 329 
and development in children and adolescents: systematic review and meta-analysis. Obes 330 
Rev. 2016; 17(4):330-344. 331 

4. Tremblay MS, Aubert S, Barnes JD, et al. Sedentary behavior network (SBRN)- Terminology 332 
Consensus Project process and outcome. International Journal of Behavioural Nutrition and 333 
Physical Activity. 2017; 14(75). 334 

5. Lubans DR, Hesketh K, Cliff DP, et al. A systematic review of the validity and reliability of 335 
sedentary behaviour measures used with children and adolescents. Obes Rev. 2011; 336 
12(10):781-799. 337 

6. Ridgers ND, Salmon J, Ridley K, E. OC, Arundell L, Timperio A. Agreement beween activPAL 338 
and ActiGraph for assessing children's sedentary time. Int J Behav Nutr Phys Act. 2012; 339 
9(1):15. 340 

7. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective 341 
measures of physical activity for children. J Sports Sci. 2008; 26(14):1557-1565. 342 

8. Fairclough SJ, Noonan R, Rowlands AV, Van Hees V, Knowles Z, Boddy LM. Wear Compliance 343 
and Activity in Children Wearing Wrist- and Hip-Mounted Accelerometers. Med Sci Sports 344 
Exerc. 2016; 48(2):245-253. 345 

9. Rowlands AV, Fraysse F, Catt M, et al. Comparability of measured acceleration from 346 
accelerometry-based activity monitors. Med Sci Sports Exerc. 2015; 47(1):201-210. 347 

10. Rowlands AV, Olds TS, Hillsdon M, et al. Assessing sedentary behavior with the GENEActiv: 348 
introducing the sedentary sphere. Med Sci Sports Exerc. 2014; 46(6):1235-1247. 349 

11. Cooper AR, Goodman A, Page AS, et al. Objectively measured physical activity and sedentary 350 
time in youth: the International children's accelerometry database (ICAD). Int J Behav Nutr 351 
Phys Act. 2015; 12:113. 352 

12. Noonan RJ, Boddy LM, Kim Y, Knowles ZR, Fairclough SJ. Comparison of children's free-living 353 
physical activity derived from wrist and hip raw accelerations during the segmented week. J 354 
Sports Sci. 2017; 35(21):2067-2072. 355 

13. Hildebrand M, Hansen BH, van Hees VT, Ekelund U. Evaluation of raw acceleration sedentary 356 
thresholds in children and adults. Scand J Med Sci Sports. 2016. 357 

14. Hildebrand M, VT VANH, Hansen BH, Ekelund U. Age group comparability of raw 358 
accelerometer output from wrist- and hip-worn monitors. Med Sci Sports Exerc. 2014; 359 
46(9):1816-1824. 360 

15. Boddy LM, Noonan RJ, Kim Y, et al. Comparability of children's sedentary time estimates 361 
derived from wrist worn GENEActiv and hip worn ActiGraph accelerometer thresholds. 362 
Journal of science and medicine in sport / Sports Medicine Australia. 2018. 363 

16. Rowlands AV, Mirkes EM, Yates T, et al. Accelerometer-assessed Physical Activity in 364 
Epidemiology: Are Monitors Equivalent? Med Sci Sports Exerc. 2018; 50(2):257-265. 365 

17. Rowlands AV, Cliff DP, Fairclough SJ, et al. Moving Forward with Backward Compatibility: 366 
Translating Wrist Accelerometer Data. Med Sci Sports Exerc. 2016; 48(11):2142-2149. 367 

18. Catellier DJ, Hannan PJ, Murray DM, et al. Inputation of missing data when measuring 368 
activity by accelerometry. Med Sci Sports Exerc. 2005; 37(Suppl 11):S555-S562. 369 



19. Rich C, Geraci M, Griffiths L, Sera F, Dezateux C, Cortina-Borja M. Quality control methods in 370 
accelerometer data processing: defining minimum wear time. PloS one. 2013; 8(6):e67206. 371 

20. Rowlands AV, Pilgrim EL, Eston RG. Patterns of habitual activity across weekdays and 372 
weekend days in 9-11-year-old children. Prev Med. 2008; 46(4):317-324. 373 

21. Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for 374 
predicting activity intensity in youth. Med Sci Sports Exerc. 2011; 43(7):1360-1368. 375 

22. van Hees VT, Fang Z, Langford J, et al. Autocalibration of accelerometer data for free-living 376 
physical activity assessment using local gravity and temperature: an evaluation on four 377 
continents. Journal of applied physiology. 2014; 117(7):738-744. 378 

23. van Hees VT, Gorzelniak L, Dean Leon EC, et al. Separating movement and gravity 379 
components in an acceleration signal and implications for the assessment of human daily 380 
physical activity. PLoS One. 2013; 8(4):e61691. 381 

24. Hurter L, Fairclough SJ, Knowles ZR, Porcellato LA, Cooper-Ryan AM, Boddy LM. Establishing 382 
Raw Acceleration Thresholds to Classify Sedentary and Stationary Behaviour in Children. 383 
Children (Basel). 2018; 5(12). 384 

25. Dixon PM, Saint-Maurice PF, Kim Y, Hibbing P, Bai Y, Welk GJ. A primer on the use of 385 
equivalence testing for evaluating measurement agreement. Medicine and Science in Sports 386 
and Exercise. 2017; Ahead of Print. 387 

26. Altman D. Practical Statistics for Medical Research, London, Chapman and Hall; 1991. 388 
27. Rowlands AV, Yates T, Olds TS, Davies M, Khunti K, Edwardson CL. Sedentary Sphere: Wrist-389 

Worn Accelerometer-Brand Independent Posture Classification. Med Sci Sports Exerc. 2016; 390 
48(4):748-754. 391 

28. Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of 392 
children's physical activities: an observational study. Med Sci Sports Exerc. 1995; 27(7):1033-393 
1041. 394 

29. Baquet G, Stratton G, Van Praagh E, Berthoin S. Improving physical activity assessment in 395 
prepubertal children with high-frequency accelerometry monitoring: a methodological issue. 396 
Prev Med. 2007; 44(2):143-147. 397 

30. Verloigne M, Ridgers ND, Chinapaw M, et al. Patterns of objectively measured sedentary 398 
time in 10- to 12-year-old Belgian children: an observational study within the ENERGY-399 
project. BMC Pediatr. 2017; 17(1):147. 400 

 401 

  402 



Table and Figure Legends 403 

Table 1. Mean (SD) anthropometric, wear time and number of days included within analysis for boys 404 

and girls  405 

 Boys N = 43  Girls N = 65 

 Mean or 

Frequency 

SD  Mean or 

Frequency  

SD 

Age (y) 10 0.4  10 0.3 

Height (cm) 139.5 7.9  138 7.4 

Body mass (kg) 35.6 8.2  34.2 8.6 

BMI (kg∙m.2)  18.2 3.00  17.8 3.2 

ActiGraph weekday wear (min∙day-1) 739.9 115.6  738.8 100.4 

ActiGraph weekend day wear (min∙day-1) 631.8 110.8  661.5 108.3 

ActiGraph valid weekdays included 41 N/A  64 N/A 

ActiGraph valid weekend days included 30 N/A  46 N/A 

Total valid included days  71 N/A  110 N/A 

 406 

 407 

 408 

  409 



Table 2. Comparisons between the ActiGraph ≤100 count∙min-1 standard and GA thresholds 410 

 411 

412 

Criterion GA 
threshold 

Sedentary 
time 
(mins/included 
days) 

Mean Bias 
(mins) 

Bias vs 
Mean ST 
correlation 

Cronbach’s 
Alpha 

ICC 
(Single 
measures) 

Limits of 
agreement 
Lower 

Limits of 
Agreement 
upper 

Mean absolute 
percent error 
% (SD) 

% 
agreement 

Kappa 

ActiGraph 
≤100 
count∙min-1 

 492.4          

 23mg 342.6 149.8 -.11 0.88 0.59 -88.38 387.94 35.5 (18.2) 68 0.31 

 30mg 440.4 52 -.33** 0.91 0.82 -166.41 270.45 20.2 (16.5) 69.4 0.36 

 36mg 510.2 -17.8 -.49** 0.93 0.86 -230.47 194.81 15.8 (15.7) 69.8 0.38 

 40mg 554.8 -62.4 -.58** 0.93 0.83 -276.22 151.36 18.2 (16.3) 69.9 0.39 

 45mg 603.6 -111.2 -.67** 0.93 0.77 -327.29 104.95 25.1 (16.4) 69.5 0.39 

 52mg 660 -167.6 -.75** 0.93 0.69 -391.09 55.91 34.9 (16.7) 68.8 0.39 

 56mg 692.3 -199.9 -.79** 0.93 0.63 -430.48 30.7 40.7 (18) 68.2 0.38 



  413 



Table 3. Comparisons between the ActiGraph ≤100 count∙min-1 standard and 34 mg and 35 mg GA thresholds. 414 

  415 
Criterion GA 

threshold 
Sedentary 
time 
(mins) 

Mean 
Bias 
(mins) 

Bias vs 
Mean ST 
correlation 

Cronbach’s 
Alpha 

ICC 
(Single 
measures) 

Limits of 
agreement 
Lower 

Limits of 
Agreement 
upper 

Mean 
absolute 
percent error 
% (SD) 

% 
agreement 

Kappa Sensitivity 
% 

Specificity 
% 

ActiGraph 
≤100 
count∙min-1 

 492.4            

 34 mg 489.6 2.8 -.38** 0.92 0.86 -219.51 216.18 16.2 (15.8) 69.8 0.38 63.6 74.2 

 35 mg 501 -8.6 -.47** 0.93 0.86 -220.88 203.71 15.8 (15.7) 69.8 0.38 64.8 73.4 

Boys              

ActiGraph 
≤100 
count∙min-1 

 499.7            

 34 mg 494.7 5 -.47** 0.93 0.87 -236.3 246.3 19 (16.8) 70.4 0.40 65.6 74.2 

 35 mg 505.5 -5.8 -.52** 0.93 0.87 -247.3 235.6 19 (16.2) 70.4 0.40 66.7 73.3 

Girls              

ActiGraph 
≤100 
count∙min-1 

 487.6            

 34 mg 486.1 1.4 -.31** 0.92 0.85 -193.2 196 14.4 (14.9) 69.4 0.37 62.3 74.2 

 35 mg 498 -10.4 -.42** 0.92 0.86 -202.9 182.1 13.7 (15) 69.4 0.37 63.6 73.5 



Figure 1. ActiGraph ≤100 count∙min-1 ±5% zone of equivalence (467.7 minutes- 517 minutes, dotted 416 

lines) and 90% confidence intervals for the GENEActiv sedentary time estimates classified using nine 417 

thresholds 418 
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