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1 INTRODUCTION

ABSTRACT

We investigate extremely luminous dusty galaxies in the environments around Wide-field
Infrared Survey Explorer (WISE)-selected hot dust-obscured galaxies (Hot DOGs) and
WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and 1.7,
respectively. Previous observations have detected overdensities of companion submillimetre-
selected sources around 10 Hot DOGs and 30 WISE/radio AGNs, with overdensities of ~2-3
and ~5-6, respectively. We find that the space densities in both samples to be overdense
compared to normal star-forming galaxies and submillimetre galaxies (SMGs) in the Submil-
limetre Common-User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS).
Both samples of companion sources have consistent mid-infrared (mid-IR) colours and mid-
IR to submm ratios as SMGs. The brighter population around WISE/radio AGNs could be
responsible for the higher overdensity reported. We also find that the star formation rate den-
sities are higher than the field, but consistent with clusters of dusty galaxies. WISE-selected
AGNs appear to be good signposts for protoclusters at high redshift on arcmin scales. The
results reported here provide an upper limit to the strength of angular clustering using the
two-point correlation function. Monte Carlo simulations show no angular correlation, which
could indicate protoclusters on scales larger than the SCUBA-2 1.5-arcmin scale maps.

Key words: galaxies: active —galaxies: clusters: general — galaxies: high-redshift—quasars:
general — infrared: galaxies —submillimetre: galaxies.

hardt et al. (2012), Bridge et al. (2013) and Lonsdale et al. (2015)
have shown that WISE can find different classes of interesting, lu-

Advances in infrared (IR) telescope technology like the NASA’s
Wide-Field Infrared Survey Explorer (WISE; Wright et al. 2010)
have enabled observations of luminous active galactic nucleus
(AGN) that have been difficult to find with previous IR missions.
WISE is able to find luminous, dusty, high-redshift, active galaxies
because the hot dust heated by AGN and/or starburst activity can be
traced using the WISE 12-pm (W3) and 22-pm (W4) bands. Eisen-
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minous, high-redshift, dust-obscured AGNs.

Eisenhardt et al. (2012) and Wu et al. (2012) observed galaxies
with faint or undetectable flux densities in the 3.4-um (W1) and
4.6-um (W2) bands, and well-detected fluxes in the W3 and/or
W4 bands, with a radio blind selection, giving a ‘W1W2-dropout’
selection yielding hot dust-obscured galaxies (Hot DOGs).

Another population of luminous, dusty, WISE-selected AGNs
were found by Lonsdale et al. (2015), by combining WISE and
National Radio Astronomy Observatory (NRAO) Very Large Array
(VLA) Sky Survey (NVSS; Condon et al. 1998) and/or Faint Images
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of the Radio Sky at Twenty-cm (FIRST; Becker, White & Helfand
1995). They were selected in a similar method in the mid-infrared
(mid-IR), and are a similarly high luminosity, dust-obscured popu-
lation, and in this paper are known as WISE/radio AGNs. The strong
compact radio emission could be from AGN jets (Lonsdale et al.
2015).

A sample of 10 Hot DOGs and 30 WISE/radio AGNs was ob-
served with James Clerk Maxwell Telescope (JCMT) Submillime-
tre Common-User Bolometer Array 2 (SCUBA-2), and the fields
around them were found to have an overdensity of submillimetre
galaxies (SMGs)' by a factor of ~2.4 and ~5.6, respectively, when
compared with blank-field submm surveys in Jones et al. (2014,
2015). The Hot DOGs appeared to have redder mid-IR colours and
less submm emission than WISE/radio AGNs, which could be due
to selection effects (Jones et al. 2014, 2015). They have very sim-
ilar spectral energy distributions (SEDs) and are both redder than
standard AGN templates (see fig. 5 in both Jones et al. 2014 and
2015). The typical redshift of the 10 observed Hot DOGs is z = 2.7
(Jones et al. 2014), higher than the typical redshift of WISE/radio
AGNs, z = 1.3 (Jones et al. 2015). Although only 10 out of the
30 WISE/radio AGN redshifts are spectroscopically known from
the SCUBA-2 subset, from Lonsdale et al. (2015) redshifts for 45
out of 49 WISE/radio AGNs are known, and the typical value was
z=1.7.

Follow-up Spitzer Infrared Array Camera (IRAC) imaging of
a subset of Hot DOGs found an overdensity of galaxies within
1 arcmin above the number observed in random pointings (Assef
et al. 2015). They also found that Hot DOG environments are as
dense as the clusters found by the Clusters Around Radio-Loud
AGN surveys (Wylezalek et al. 2013, 2014).

Studying the environments of Hot DOGs and WISE/radio AGNs
will help to understand the evolution of galaxies and the link with
their host galaxy. This paper will explore the clustering and surface
number density of the fields to study the environments surround-
ing the WISE-selected AGNs. Also the properties of the companion
sources around Hot DOGs and WISE/radio AGNs will be investi-
gated to determine their nature.

In Section 2, the surface number density and space density of
SMG sources in the fields around Hot DOGs and WISE/radio AGNs
are compared. In Section 3, the angular two-point correlation func-
tion is used to characterize the clustering of the companion SMGs
around the WISE/radio AGNs. In Section 4, the properties of the
companion sources in the Hot DOG and WISE/radio AGN fields
are compared using submm, SFR estimations, star formation rate
density (SFRD) estimates, mid-IR and radio data with previous sur-
veys of companion SMG sources in the Hot DOG and WISE/radio-
selected AGN fields. The nature and properties of the companion
sources around Hot DOGs and WISE/radio AGNs are described in
Section 5.

Throughout this paper, we assume a A cold dark matter cosmol-
ogy with Hy = 71 km s~! Mpc™!, Q,, = 0.27 and Q, = 0.73.
WISE catalogue magnitudes are converted to flux densities using
zero-point values on the Vega system of 306.7, 170.7, 29.04 and

I SMGs were historically defined by having a submm flux density of Sg50 1um
>2 mJy. SMGs are massive gas-rich, high-redshift galaxies with high-IR
luminosities, Lig > 10'2 L@, believed to be from starburst activity, with
star formation rates (SFRs) of several 100-1000 M, yr’1 (Smail, Ivison
& Blain 1997; Ivison et al. 1998; Eales et al. 1999; Smail et al. 2000; Blain
et al. 2002; Pope et al. 2006; Casey et al. 2014; Swinbank et al. 2014).
SMGs are enshrouded by dust and hence are faint in optical and near-IR
wavelengths.

8.284 Jy for WISE 3.4, 4.6, 12 and 22 um wavelengths, respectively
(Wright et al. 2010).

2 COMPANION SOURCE DENSITY

JCMT SCUBA-2 observations of Hot DOGs and WISE/radio AGNs
were in the ‘CV DAISY’ mode that produces a uniformly deep cov-
erage 3-arcmin diameter map (Holland et al. 2013). 17 companion
sources were detected at 3o significance or above in 10 JCMT
SCUBA-2 fields of Hot DOGs reported by Jones et al. (2014) with
an average root mean square (rms) noise of 1.8 mJy beam™!, as
shown in Table 1.

81 companion sources were detected at 3o or greater significance
in 30 WISE/radio-selected AGN fields reported by Jones et al. (2015)
with average rms noise of 2.1 mJy beam~!, see Tables 2-5. They
concluded that they have a higher density of SMGs when compared
with Hot DOGs by an additional factor of 2.4 = 0.9 (Jones et al.
2015). The WISE/radio AGNs have a lower redshift range, fewer
of the WISE-selected AGNs are submm detected and lower total IR
luminosities compared with Hot DOGs (Jones et al. 2014, 2015).
The lower redshift range and higher overdensity of SMGs around
WISE/radio AGNs can be seen in Fig. 1 . While the observed Hot
DOGs have a typically higher redshift than the WISE/radio AGNSs,
the companion sources are matched in submm luminosity (see
Tables 1-5) and they are consistent with having similar mid-IR to
submm ratios. The K-correction at wavelengths longer than 500 pm
remains approximately constant with increasing redshift. Due to this
K-correction effect, the SCUBA-2 fraction of SMG detection should
be independent of redshift.

The detection level was set at 30 or greater in order to have
completeness but reduce the chance of spurious false-positive de-
tections. However, there is controversy over whether 3¢ is reliable
(e.g. Coppin et al. 2005; Casey et al. 2012). Fig. 2 presents the
signal-to-noise ratio (SNR) of the companion sources around Hot
DOGs and WISE/radio AGNs and for the two data sets combined.
As expected, the higher the SNR the fewer the sources detected
and the less complete the sample. Jones et al. (2015) looked at the
number of SMGs in the WISE/radio AGN fields detected at greater
than 30 and 40 and compared to the LABOCA ECDFS Submm
Survey (LESS; Weil} et al. 2009), and concluded that the overden-
sity of SMGs detected above 3o is consistent with SMGs detected
above 40.

Comparing these number counts to ‘blank-field submm’ surveys
shows them to be overdense. The blank-field submm surveys used
to compare were the LESS, Cosmological Evolution Survey (COS-
MOS; Casey et al. 2013) and the SCUBA Half-Degree Extragalactic
Survey (SHADES; Coppin et al. 2006) fields. The Hot DOG fields
have an SMG overdensity by a factor of ~2-3 compared with previ-
ous blank-field submm surveys, and the WISE/radio-selected AGN
fields have an even greater overdensity, by a factor of ~5-6 (Jones
et al. 2015). However, LESS fields could be underdense by a factor
of ~2 e.g. Swinbank et al. (2014), and the overdensity factor of
the Hot DOG fields is less secure, but compared to COSMOS and
SHADES there is still an overdensity factor between 2 and 3.

The surface number density of SMGs in the Hot DOG fields is
866 + 210 deg2, and 1375 £ 152 deg~? in the WISE/radio AGN
fields, to a depth of 1.8 and 2.1 mJy beam~! (submm single dish),
respectively. These are higher than previous observations of the sur-
face number density of SMGs, as can be seen in Fig. 3 where SMG
surface number densities of different submm surveys are plotted
against rms. Toft et al. (2014) found that at z > 3 the surface density
of bright SMGs is 60 & 10 deg™ to a depth of 1.3 mJy beam™!

Downl oaded W$A§s4ﬁpéc%§g‘§f4§%7c(t%QMr)as/ articl e-abstract/ 469/ 4/ 4565/ 3815534

by University of Leicester user
on 28 March 2018



4567

Overdense environments of WISE-selected AGNs

“(T10T) 'Te 32 1preyuastg Aq panodar uadq aaey SOO 10H 38U} JO 19sqnS
(S107) 'Te 19 Tes], Aq pajtodar uaaq daey sSHO 10H 9oy} JO 12sqng,

980 S¢  6TFLY9 9688> 698 11> OYTOF LLTOT  $80°0 F9€S9T  €0TLTEOH6E SOLSETL 8 F 8 OV TI:LT:E0  LSY'SOLSIET  T—8TEOHLSETM
98°0 't 61F8S LLYS> 1€0TI> SLEOF 6L991  TITOF vLS'LT  1'TILTEO+6S 80LSETT SF 8 OP' T1:LT:€0  0£6°80:LS:€T [—8TEO+LSETM
86°0 8¢ 8TF89 V/IN V/IN V/IN V/IN palIepun FSIM LF 89 SI'61:90:C0  €IL°6T:HS0T  €—LOTO+HHSOTM
96°0 I'e  8I1F9¢ VIN VIN VIN VIN PaIARPUN FSIM TF9I $S9¥190:C0  9LEVTHSI0T  T—LOTO+PSOTM
96°0 8¢ 8TF69 V/IN VIN V/IN V/IN paroalepun FSIM TF8I 8€'87:90:C0  6S1°TTHS0T  1—LOTO+HSOTM
Pa1091opuUN 9¢  LIFI9 VIN VIN VIN VIN PaIARPUN FSIM LFTL LS€OLIILO  6£1°07:9T:0T T—91L0+9T0TM
paroaepun €v  LIFEL  ¥E06> 18L°CI> S80°0 F 65TST  8€0°0 F9EE'ST  9°0091L0+SS91920Tr ¥ FLE L'SS:ST:LO €16'91:97:0C  1—91L0+970TM
Pa109)puUn 0¢  SITFHS T6L8> €8TOFESITI  €PTOF8PL9T  080°0 F 84891  TSOTIPE+EI €THIBIL LF L9 6LTOTIHE  OETETHIBL ¢I—CIPE+PISIM
L6'0 €e TTF69 V/IN V/IN V/IN V/IN palIepun FSIM LF YL €P'SE9T:S0—  €EVTOOFTT  1—9TSO—9FTTM
6L°0 € 9IFES VIN VIN VIN VIN palARpuUN FSIM ¢ F€e €8PECHTLO  THI'9I91:TT  »T—ETLOTIITTM
080 I'e 9IF6¥ V/IN V/IN V/IN V/IN palIepun FSIM € Fog 0S90:%T:L0  0TSTTOT:TT  »I—€TLOHITTTM
paroalepu) I'c SIF9Y VIN VIN VIN VIN Pa1ARPUN FSIM 8F LL 9C'TSHSIEY 8IS 8TISC:8T  »1—SSEPTSE]TIM
€60 8¢ 8TF89 V/IN V/IN V/IN V/IN palIepun FSIM LFOL 8 SOILYLT  TTT6SE09T  »1—LYLTHEOITM
90'1 e LIFYS VIN VIN VIN VIN Pa1RpUN FSIM SF 8 THYLSETy  898°TE9C:T T [—9¢TH+9ET I M
66'0 €e  1ITF69 VIN V/IN VIN V/IN Pparoalapun FSIM €FCE 08'8S:6€:10  6680S:1€:80  €—0FI0+1£80M
66°0 Ls  TTFLL VIN VIN VIN VIN Pa1RpUN FSIM LFEL 08°0€:0¥: 10  86¥'8F:1€:80  T—OFPI0+T1E£80M
00'1 0¢  I'TFV9 V/IN V/IN V/IN V/IN pajodjepun FSIM 8 F 8L 080T TH: 10 S9S'6HT1€:80  T—0FT0+HTE80M
(| —weaq Aru)
Rl
uondAAP (09s01R)
SSAN/ (Arur) (Sew) (Sew) (Sew) (Sew) 108183 ZSTM (0002r) (00021)

LS¥LI UNS w68 wrl 77 wrl ] wrl 9 wrl ¢ sweu FSIM 0} 20UEIsI(] REl v Sweu 2IMog

(600C ‘Te 12 aurureH) siedioyunod
DJN'S JO snIpex yoreas [ed1dA) e ST YOIy ‘Pasn sem dISOIE g JO SNIPEI YOIBas i/ "UONIAP SSAN 10 9510400 L SYI] OU ST a1ay) Jey) syuasardor pajoajopun, ©_wreaq Afw ur uaAI3 st uonisod a0mos yora 10§
JIwI] UondAP LSYI 'se01nos DIAS uoruedwod /1 2y [[8 10} VHINIS Ul punoj s102[qo ou pue eiep [ ST ‘SSAN 72yos42gy oN “uml (6 e syt 1ddn aaey sHO( 10H Inoj wooq Ay o[ym ‘wrl (g8 1e
P10)3p 218 SHO 10H PAIR[As-FSIAM XIs doy oy, “sywrf 1oddn og are pajonb sopmusew oy Sofeie) 90In0S FSIMITV Y3 Ul 210Ja10y) pue 7> YNS 2Aey sywil] 1oddn 7g7mM Pim s1931e) oy, "Z-vVdNDS Wolj
sanisuop xny wrl ()68 pue So[ere) 201n0S FSIMITY 2l wotj sopmiudew wrl gg pue 71 ‘94 ‘4'¢ P ‘SO I0H (] PunoIe punoj saoinos HIAS uoruedwod /1 Y Jo Anowojoyd pue sajeuIpioo)) °J IqeL,

MNRAS 469, 4565-4577 (2017)

Downl oaded from https://academ c. oup. com rmras/articl e-abstract/ 469/ 4/ 4565/ 3815534

by University of Leicester user

on 28 March 2018



S. F. Jones et al.

4568

€6°0 3 YTFLL VIN VIN VIN V/IN PaYARpUN FSIM 9F 79 00°€€:TE0€  196'C0:61:80 1—€€0€+6780M
parRIepun 43 6TF09 V/IN V/IN V/IN V/IN parIepun FSIM LFOL LO'8T:THO0  PESSEEHHO  €—EP0+EVFOM
pardalepun 3 LEFOTI  €¥88>  0vTTI>  OvI'0F8LS'ST 6700 F LSL'SI 6TITH90+8S PECHTOL LF 89 18°60:TF90  0STHEE PO  T—EP90+EFPOM
pa1oslepun 9¢ LEFSEI V/IN V/IN V/IN V/IN palIepun FSIM vy F e 0T°0S:€#90  T8STEEHH0  T—EP90+ErHOM
pajoatepup) 43 61F19 V/N V/IN V/IN V/IN pajod3epun FSIM ¥ F ¢ 0TO0ETIIL0 998 €HH0H0  T—TILO+HOPOM
parRIepun € 6TFT9  $EI'6>  809CI> 10€°LT> SPT0 F S8T'LT 0'8STTLO+68 THH00L rFOv 0T6STI:L0  ISL'TYH0H0  1—CTILO+HH0POM
palepun 43 61F09 V/N V/IN V/IN V/IN paldapun FSIM SF S 98'80:LF:61  89€°60:TS:€0 1 —LY61+TSE0M
parRIepun S¢ ITFYL  8€6'8>  vP8IT>  LOTOF 9€09T 9S00 F I16°ST 6 T0VSLE+TT TTTHEOL ¥ F e LTSSESILE  TLROTTHEO  L—ESLETTHEOM
palepun 9¢ I'TF9L V/N V/IN VIN V/IN paydpun FSIM 9F LS 9T9TESILE  PPOSTTHEO0  9—ESLEFTHEOM
palRIepun 'y I'TF938 V/IN VIN VIN VIN Paypun FSIM 9F 8¢ 9T'SSITSILE  SLTSTTHEOD  S—ESLEHTHEOM
parvRlepun (%9 I'TF69  6668>  0b9CTI> 10L91> L9T°0 F 6T LI S'8YESLEH8SOTTHEOL 8 F 8L TO'SPESILE  OLTOITHE0  v—ESLETTHEOM
parRIepu €¢ I'TFOL V/IN VIN VIN VIN Paldpun FSIM SFTS LTITHSILE  TLROTTHED  €—E€SLETTHEOM
palepun I'¢ I'TF99 V/N V/IN VIN V/IN pajpun FSIM v F e €6TTYSILE  TISTTTNED  T—ESLEFTHEOM
paldIepun (47 I'TF88  €pL8>  L6LTT>  SSOOF €CS+T  0£0°0 F 0TS 1 8 THPSLE+TS €TTREOL 9F 09 09'LEVSILE  ILSETTHEO0  T—ESLEHTHEOM
palepun €€ 0CFS9 V/N V/IN VIN V/IN paypun FSIM LF 69 66'8Y:S0°TE  SSTHETEE0  T—SOTEHTECOM
parRIepu) TS OTFFOI  €6€88>  195TI> 0610 F 09091  190°0 F T€0'9T €'6TS0TE+9L'8TTEEOL EFIC L9'8TC0TE  68F'8TTEEO0  T—S0TE+TECOM
palepun €€ I'TF 69 V/N V/N VIN V/IN payapun FSIM LF YL 90°01:€T: 1T THE'61:4PT0  $—E€TII+HPPTom
palddapun 0¢ I'TF¥9 196>  1TI'CI>  ISOOFOPSHI  TEOOF098FT  609T+CIT+PT 61HHT0r LF 89 O OTHTIT  TTH6IPHT0  €—€TTT+HHT0M
palepun I'¢ I'TF99 V/N V/N VIN V/IN pajpun FSIM LFIL OP'8SHTIT  161°0THHT0  T—ETIT+HPPTom
parRIepu) 8¢ ITF6L V/IN V/IN VIN VIN palpun FSIM 9 F 8¢ OV SSHTIT  +8T'ETHHT0  T—€TTT+HHT0M
patepun v'e 61TFS9 16L°8>  T0I'CI>  S6C0FO0SS9T  LST'0F $9S°LI I"L1TH9T+€9°9€0100f €F €T LEOTTYOT  T9P9€:01:00  $—EP9T+0T00M
pa10a19pun 0¢ 6TFLS  0TL8> €6 TT>  8TTOFSITOT 8010 F9L89T TESTHIT+HHT°0¥0T000 ¥ F e LETSTFOT  $I90F0T:00  €—€H9T+0T00M
paepun I'¢ 6TF6S  8006>  OL6TI>  €8I'0F9IT9T  TLOOF 6¥€91 TECEPITH69THO100L ¥ F9¢ 0L'8TEF9T  ¥8TTHOI:00  T—EF9I+0T00M
paroaepun 43 6TF09 V/IN V/IN VIN VIN pajod3epun FSIM EFTe OLPPEP9T €86 TH0T:00  T—EP9T+0TO0M
ATE_B@ Arur)
Bl
uornodp (09s01R)
SSAN/ (Krur) (Seur) (Sew) (Sewr) (Sewr) 1951} FSIM (0002r) (0002r)

LS¥LI ANS wm 068 wn 7g wrl ] wrl 9 um ¢ sweu FSIM 0} 20uEIsIq EEle v Sweu 2IMog

(600 Te 12 aurfuIeH) S)iredIoiunod DS JO SNIpeI yaIeas [eo1dA) & ST YoIym ‘pasn sem d3SOIe g JO SNIPEI [oIeds Y "UOTII}op
SSAN 10 95810400 L SY[A OU SI 1Y) Jey) sjudsardar pajodjepun, | _weaq Afw Ul UIALS ST uonIsod 221N0S YO8 10§ JIWI| UONISIRP LY $2IM0s DIAS uoruedwod [g ay) [[e 10J QVIINIS Ul punoy s1oa(qo
ou pue ejep LSV ‘SSAN ‘72y2s42fy oN “simur] 1addn og ore pajonb sopmruSewr oy Sorere) 201mog SIMITY Y} UT 210JoIdY) pue 7> NS 2Aey syrwl] 1oddn FS7M s $1931) 24, “Z-VINDS WOIJ SaNISUap
xng um (g8 pue 3o[eIe) 20In0S SIMIV Yl woly sopmrudew wrl gz pue ¢ 9y “p'¢ YIM ‘SNOV OIPRI/FSIM (€ PUNOIR punoj sadinos HINS uoruedwod 18 ) Jo Anawojoyd pue sajeuIpioo) g Qe

Downl oaded W%ﬁ%“ﬁ?m%éﬁ?“éﬁc@ﬁ)H)as/ article-abstract/ 469/ 4/ 4565/ 3815534

by University of Leicester user

on 28 March 2018



4569

Overdense environments of WISE-selected AGNs

¥6°0 €€ TTFTL 6£T6> ¥86'T1> 0€€°0 F 88691 9010 F961°LT  9'85€TET+HSHTHIOSIL 9F €9 €TLSETET  TOTTHI0ST  T—HTET+TOSTAM
$6°0 e TTFIL  ITE6> 681> LOT'LT> PITOF 1108 8'0SHCEI+EC THIOSIL v F 06'LSHTEL  EILTHIOST  T—HCET+HT0STA
01 Le  61F09 V/IN V/IN V/IN V/IN pajoalepun FS7M LF 89 STILTILT  9ST00:6T:HT  T—EITT+8THIM
€60 0v  0CTF6L  65€6> LS9TI> [1€0F 80691  TIT0F9S6'LT  T8OIELI+ET]TOOVIL 9 F 6S ELLOTELT  0S6'LT60:7T  €—TELIH60VIM
85T 7€ 0TFY9  6SL8>  9TSOF 196'CT oL 91> PLUOF €09LT  L'THIELTHLE LTOOVIL ¥ F 0€ SEVPICLT  TEYIT60:FT  T—TELTH60VTM
8S'1 e 0TFY9 V/IN V/IN V/IN V/IN pajoalepun FS7M 8 €0°0T:TELT 00V TT60:7T  T—TELTH60TIM
8S'1 r'e STFYL V/IN V/IN V/IN V/N pa1oR%epun FSIM 9F €9 TTT6S9Y  OL6TT:TITT  €—6S9P+CITIM
860 e 61F09 V/IN V/IN V/IN VIN pajoalepun FSIM SF 8y 9$'PE65:9F  SI00L:TITT  T—6S9P+TITIM
660 [ STF6L  9688> 191> TITOF SLEQT €010 F0S6'9T  +'+000Ly+ST'80CTITI( ¥ F 9 €TLO00:LY  61F'80°TI:CT  T—6S9P+TITIM
660 €€ CTFLL 668> 9pSTI> LOTOF 09T ¥CI'0 FOITLL ¥ LT6VLY+H0'TITOITIT 8FSL SRLT6Y:LY  ISTITOLCT  S—0SLPHOITIM
$6'0 LY €TFLOT 60S8> Teecr> 89Y'0 F 96TLT  6T1'0 FHOE'LT 6 LESYLY+9E LTOTTIL 8 F <8 L8'8E:8YLY  9L9'9T:0T:TT  ¥—0SLP+HOITIM
L60 €€ CTFIL  1L06> 179°C1> €0T0 FTSY9T  S60°0 F TS6'91  L'9S6rLY+ES0L0ITIL €F8C 98°0S:67:Ly  SIS0E:01:TT  €—0SLP+HOITIM
96'0 0°€ €TFOL V/N VIN V/IN V/IN pajodtepun FS/M 8 F 88 1S°0€:0S:Ly  8EOLEOITI  T—OSLYHOITIM
96°0 9°¢ €TFTY  LIS8> 189°C1> PSTOF 8E99L VIO F II¥LL  0°TSOSLF+00 TE0ICIL SFov 0T'IS:0S:LYy  8PLOE0I:TL  [—0SLY+O0TTIM
06'0 e 0TFY9 V/N V/N V/N V/IN pajodtepun FS/M 8 F 88 9 ISI6THE  STHOCLOTTT  T—ITPE+HLOTIM
68°0 0¢  0TFOL V/IN V/IN V/IN V/IN pajoalepun FS7M ¥ F e €0°SS0THE  TIOTELOTT  T—ITHE+LOTIM
060 0€¢ I'CFT9 V/N V/N V/N V/N P031pUN FIM 9 F 65 0L'TE0S:T0—  TLTLEOFOT  €—0STO—970TM
06°0 ¥'E I'CFCL VIN V/IN V/IN V/IN pajoalepun FS7M 8 FSL €0 TI:6:C0—  1€6°0€:9%:01  T—0STO—9r0I M
060 [ TTFLY9  6L6'8> TESTI> €870 F 06791  9ITO F SHO'LT 8 T00SCO—80 TE9FOTL ¥ F 0€ 0L'90:0S:C0— SOV’ TIE9F:0T  T—0ST0—970TM
860 I'e  0CFI9 VIN V/IN V/IN V/IN pajoalepun FS7M 8 F 8L 9CITLTT9  69671:ST0T  €-8TI9+HSTOIM
860 0¢  0TF09 V/N V/N V/N V/N pa1oRIepuN FSIM 9 F 8¢S 9€0F:LTT9  T69CI:STOT  T—8TI9+STOIM
860 e 0TFE9 V/IN V/IN V/IN V/N pajoalepun FS7M SF¥S T067:8T:19  180°C0:ST:0I  1—8TI9+HSTOIM
60 €€ ¥YIF6L V/N V/N V/N V/N pajodtepun FS/M 8 F €8 €CTITE0E  OLTLO6Y80  €—€E0E+6780M
€60 e VvTFSL V/N V/IN V/IN V/IN pajoalepun FS7M 8 FIL €ETITE0E  8EV'SO6F:80  T—EELOE+6VS0M
(;_ueaq Arur)
|
uo1I9)ap (09so1e)
SSAN/ (Kfur) (Seur) (Seur) (Seur) (Seur) 1051e) FSIM (00020 (0002r)
LS¥IA ANS  wm g8 wr 7g wr ] um 9y um ¢ awreu FSIM 01 UBISI( geclel v QwIel 9210g

(600 'Te 12 aurfuiey) spediojunod DS JO snipel yoreas [ed1d4) e ST yorgm ‘pasn sem 03sOIe § JO SNIPEI YOILas Y "U01IA)IP SSAN 10 95810400
LSYI Ou ST 21943 18y $judsa1dor pajosjapun, ¢ _wreaq Afw ur udAIS st uonisod 90Inos Yoea 10 JIWI[ UONIAIP LSYI "$90MmMos DNS uotuedwod |8 dy3 [[e 10} QVHINIS Ul punoy s309[qo ou pue ejep LS
‘SSAN ‘7ayostayy oN “siwf Joddn og are pajonb sopmuSew oy Sofere) 2010 STV Y} U 210J2I1ay) pue 7> YNS 2Aey syt 1oddn g7 g s1981e) oy, "Z-vgNDS WOlJ Sanisuap xny wm (¢g pue
Sorere) 001mog FSIAIY oY wof sopmrudew wrl gz pue 71 ‘9 ‘4'¢ PIM ‘SNOV OIpeI/ZSIM (€ PUNOIE punoj sadinos HIAS uoruedwod 18§ ay) Jo Anowojoyd pue s9JeuIpIood Jo 9[qe) dNUNU0)) °¢ d[qe],

MNRAS 469, 4565-4577 (2017)

Downl oaded from https://academ c. oup. com rmras/articl e-abstract/ 469/ 4/ 4565/ 3815534

by University of Leicester user

on 28 March 2018



S. F. Jones et al.

4570

LLO L'e 6’1 F+69 VIN V/N VIN VIN pe3oejepun 7SIM LF YL £CY0:1C:00 GC8'1T:9T:TT  T—ST00+9TTTM
LLO 1474 6'l F1'8 VIN VIN VIN VIN pa3o9jepun FSIM LF 69 LS SEYT-00 66T0T:9T:TT  1—S200+9TTTM
980 4 0CF98 VIN V/N V/IN VIN pe3oejepun 7FSIM 9F 79 20'6¢-05-60 €66°0S°CC Tt €—1S60+TTTTM
¢80 Ly 0CF o6 698> 865CI> 06CLT> 081°0 F9LY'LT  1'800S60+C LyTTTTLL LF 8L 8€°60:05-60 [L6'9%'TTCC  T—1S60+TTTim
980 Le 0CFEL VIN V/IN V/IN VIN pe3oejepun 7FSIM 9 F 8¢ TT°81:15:60 LTy TTce  1—1S60+TTTTm
pa3d93epun) 9'¢ I'cF¢SL VIN VIN VIN VIN pa3oojepun FSIM 9 F 65 0L’ LOPSCTI—  9TT60-CI-CTC  T—ESTI—CITTM
Ppe3o919pU() 8¢ I'c+08 VIN V/IN V/IN VIN paioepun FEIM 9 F 65 €0'8€:€S:CI—  §69°00:CI:CC  [—€STI—TITTM
pa3d93epuN) 'e 0CF+L9 VIN VIN VIN VIN pa3o9jepun FSIM 8 F 98 CLYCLTEE Yy 10'C1'CT  T—9Tee+TITTM
Pp239919pU() 4 0CF6'8 VIN V/N V/IN VIN paioepun FEIM 9F €9 §E9¢:9T:¢¢ T60PSTITT  1—9TEC+HTITTIM
pa1o2epuny I'e 81TF¢¢ S65°8> 90¢Cl> 0800 F 6c6' 71  LEO'0F CO0'ST  SOv6lIvI—S9°eseeics 9 F 8¢ wovel-vl—  09L°€See I I—6IvI—CelTm
01 6'¢ 0CF8L VIN V/N V/IN VIN paioarepun FEIM SF0S 8Y'8I:¥0-10—  L8S'LI9TIC  1—€010—9CITM
96'0 0¢ STFCL VIN VIN VIN VIN po3oojepun FSIM ¥+ 0v 96°CI-€1-€S I9¥'80:LI:LT  €—CIESHLILIM
S6'0 Ly STFLIT  $09'8> [43d\ g S6T°0 F886'ST  TPEOF 8I9ST  L6ICTESHIY O0LILIL SF €S €9°CIETES TOS00:LTILT  T—EIESHLILIM
S6'0 0¢ STFCL VIN VIN VIN VIN pa3oojepun FSIM SFov 6C 16-€1-€S LIS00:LTLT  T—E€IESHLILIM
86°0 e 0C+89 VIN V/N V/IN VIN paiojepun FEIM LFO0L 8C'61:91:9¢ €L9°CECOLT  T—ST9THEOLTM
L6°0 I'e 6'1 8¢ VIN VIN VIN VIN pa3oojepun FSIM LF €L 9EV0-LT 1S PLI'0E0E€9T  T—9TISH0E9T M
960 1'e 6'1 F8¢ VIN V/N V/N VIN paiojepun FEIM 9+ 9¢ €0°CS9C1¢ PIOTH0€9T  T—9CISH0E9TM
660 I'e 6'1 F+8¢ VIN VIN VIN VIN po3oojepun FSIM LF VL 0€°6ECC6E G90°9S:LIST  S—E€TSEFTLISIM
660 0¢ 6'1FLS S6v'6>  61€0F L09TI  ¥80°0F IT9°ST  TSO'0F 8I¥9T  8TOETSE+61HSLISIL LFTL 0€720-€C-6¢ 8YEYSLIIGT  $—€TSEHLISTM
660 0¢ 6’1+ LS Y91°6> wLCI> COL'LT> 8SI'0F VLY LT 6'LTECSEH6ETSLISIL 8 F 88 S6'ceeTe COLTSLINGT  €—€TSEFHLISIM
660 0'¢ 6’1 F LS VIN VIN VIN VIN paioajepun /M €F ¢ L6'6V-€T-SE T66'9SLT:CT  T—ETSEHLISTM
6'0 I'e 6'1 +8¢ VIN VIN VIN VIN po3oojepun FSIM € FCe L6'6C-YC-SE C8TOSLIST  T—€TSEFTLISIM
76'0 1'e CCF 89 VIN VIN VIN VIN pajoajepun /M €+ 0¢ LS ECYTElL €TY'8ET0ST  P—HTET+T0STM
76'0 £'e TeFCEL VIN VIN VIN VIN po3oojepun 7FSIM LFOL 06'€e-€CEl CCO0r 10:ST  €—vTEI+I10STM
(;_ueaq Arur)
g
uondAPp (09saie)
SSAN/ (Krur) (Sew) (Sew) (Sewr) (Sewr) 198101 FSIM (0002r) (00020
LSdId ANS wrl 068 wr 7g wr ] wrl 9y um ¢ oureu 7STM 0} adueIsig 2d Vi QUIeU 32.IMOG

(6007 'Te 32 aurfuieq) spediojunod DS Jo snipel yoreas [ed1d£) e ST Yorgm ‘pasn sem 09sdIe § JO SNIPEI [OIeds Y "U01I)IP SSAN 10 95810400
LS¥IA ou st 219y} Jeyy sjudsaidar pjoslopun, | _ureaq Afur Ul USAIS st uonisod 201M0s YoBa J0J JIWI[ UOBOANIP [SYI] $90In0s DINS uoruedwod [ ays [[e 10y AVEINIS Ul punoj s109fqo ou pue e3ep [SYIA
‘SSAN ‘72yos.4apy oN “siur] 1oddn .oz are pejonb sopmuSew o) Soreie) 2010 FSTMITY Y UT 210Ja1aY) pue 7> JYNS 2Aey sywr] soddn 74 Pim s1a31e) oy, 'Z-VgNDS WOIj sanisuap xng wri 0G8 pue
Sorere) 001mog FSIAIY oy wof sapmrudew wir gz pue g ‘9'y ‘4'¢ PIm ‘SNOV OIpeI/FSIM (€ PUNOIe punoj sadinos HAS uoruedwos 18§ ay) Jo Anowojoyd pue s9JeUIpIO0d JO 9[qe) dNUNUO)) *p d[qeL,

Downl oaded m%ﬁ§s4ﬁpdc%§mf4§%7c@9”r)as/ article-abstract/ 469/ 4/ 4565/ 3815534

by University of Leicester user

on 28 March 2018



Overdense environments of WISE-selected AGNs 4571

o0 o5 B -
S @y | LTI
= = O 0 O
S > K = ®w 5 = 228
Sz NATEI|oocacso 38 8
©Zg g>3E2|222233s88 5
8§5 TZzg=t | ggg
3 3% R SRl
o < o RS2
VN5
55
o =
;ZE % NN~ S =N
<.‘:fﬁ
sE%
8k © 0w~ —=a2o
=}
& 5. S8 HHHHHHAHHTH
w03 = o~ —~0wa M
0N 8 0 ol e —
= 5] TR =RR Vo Vol SN NV RVt
2E2
.EE%
oh D =
s L 5 iA < ——
¥ ) ) o<
£57 o Lt Ldod
[Sain a E Z Z Z % Z Z © 0 Z
x| o= % Y,
a8 E
SRR
o g %a) o n
g 52 ™ o <+ 0
S g8 =2 << edgnng
NE S S S aS>SaacasS
o EE o E zzzdzzddzZ
. Q.= —_— V VV
° s ca
5]
T2z8
T3 A ) o~
sEEE g §5
= C X -
.‘:%gg ga = SESS
BgEo < LLLHLE L HHE
E’ggé © g ZZZgZZggZ
Om%.g = =N R
<R o h=t ps]
o8 =<
.—BOVJ
3 z 2
£ 5 8 < <+ <
S<8E T 23
N o O N —
SE5% |Ew b i
R ssshsshig
o8 |XE ZZZ o ZZ o~ Z
'UHEO n o N —
2 L=3 <t IR
19} o~ O ™~
Eg.gw
9 2 2
S =352 o <+ o
N ST Q9w d38F T
VG s 23388332373
> 5 Q O 0 odN 9O O —=— 0
O ~ o
exE 35 | 222522
5 = g s 2 0 09 00—~ C%9Q
25,2 |2 TEiJEE44
v
Sggg o 5 5 5:n 5 30« 5
= .2 =~ ) < <
S 2358 | = g88zg833g
“egae SESREEnYE
-] N o
OEEm a aa
== 4 ) _ -
g =
1523
£ 28 -~
583 c B
oi)é—d ;%"’S M~ 0 O M~ ~ O ®
Q
x2 82 |85 3 HHHHHHHHAH
2587 |Z4E RRAR8R%ERY
S = 2] B<INCENA
sE% 2 =
o O
2SS9
T o 9 SO oM m >
£ 23T F SRR aA S oA
S = = — Q> o 0 N
S 2w <+ <
3 5L o s 3 R A =Rl
SEQ . |[A& 2280888z a¢8
= . <3 =) [ e S = = S MRS
Saimg SSooOS ~ =&
< 4 s [ T e N !
TEE
=
ED LS
S0 .E & 0N O W W St 0
T g 2 DO RD> X T 0
5 = a QAT QY S 9 m
gE5S« = RN R R i s
sg2: |58 R
R S SS SIS —
°S 835 =E =7 A B TRl
Lz 0o 8 INESENES B el
Il AN aaAAA A
1552
< Q
=528 T97YT9114
S 50
‘Ed:%% cocooa—~o9
o Q [ S S S e B o B e B o\ BN
Uiﬁ‘a =) S —~ —
S g SO0 SO ~m e
oS e | [T 11111 ++
"= @ (5} SO OO WV — W
Q0 s 3] A @moaa ol st <
= [ IR) = AN AN NN
NE%S g AEL BB EsESESEQ NS
ESZ S | & EEZEEEBEEEZR

Downl oaded from https://academ c. oup. com rmras/articl e-abstract/ 469/ 4/ 4565/ 3815534
by University of Leicester user
on 28 March 2018

Table 6. SFRDs of Hot DOGs (top 10) and WISE/radio AGNs (bottom 30)
and their surrounding SMGs, assuming that they are at the same redshift.
The angular radius is estimated to be the size of the SCUBA-2 map, 1.5 ar-
cmin. The spectroscopically known redshifts of the WISE-selected targets
are shown. The unknown redshifts of the WISE/radio AGNs are assumed to
the average of WISE/radio AGNs, z = 1.7.

Source SFRD Redshift
Mg yr~! Mpe™)

WO08314+0140 7949 £+ 159 3.91
W1136+4236 2064 £+ 41 2.39
W1603+2747 2989 + 60 2.63
W1814+4-3412 1523 + 30 2.45
W1835+4355 2406 + 48 2.3
W20264-0716 2835 + 57 2.54
W205440207 4304 £+ 86 2.52
W2216+4-0723 2917 £ 58 1.68
W2246—-0526 5808 £ 116 4.59
W235740328 2538 £ 51 2.12
WO0010+1643 5311 £+ 106 2.855
W0244+41123 4035 + 162 Unknown
W0332+4-3205 1799 £ 72 Unknown
WO0342+4-3753 18715 + 374 0.47
W0352+1947 1045 + 42 Unknown
W04044-0712 2133 £ 85 Unknown
W04434-0643 3686 + 147 Unknown
W0849+3033 4005 4+ 160 Unknown
W1025+6128 3091 4+ 124 Unknown
W1046—-0250 2699 + 108 Unknown
W1107+43421 2119 + 42 Unknown
W1210+4750 4992 4+ 100 Unknown
W1212+4659 3178 £ 64 Unknown
W1409+1732 3454 £+ 138 Unknown
W1428+1113 1219 + 49 1.6
W1501+1324 9501 £ 190 0.505
WI1517+43523 4499 + 90 1.515
W1630+5126 2046 £ 82 Unknown
W17034-2615 1364 £+ 55 Unknown
WI1717+5313 3935 £ 157 2.717
W2126—0103 2247 + 89 0.607
W2133—1419 1132 £ 45 Unknown
W2212—1253 2931 £ 117 Unknown
W2212+3326 1799 £ 72 Unknown
W22224-0951 3149 + 63 Unknown
W2226+40025 4025 £+ 80 0.607
W2230-0720 12596 + 252 0.444
W2325-0429 2220 + 88 1.737
W2331—1411 2177 + 87 Unknown
W2345+43120 2772 £ 111 Unknown

(submm interferometry), which was found to be ~30 per cent lower
than z ~ 2 quiescent galaxies. SMGs from the LABOCA-COSMOS
survey were found to have a surface density between 34 + 14 and
54 4 18 deg? at a depth of 1.5 mJy beam™' (submm interfer-
ometry), which was higher than models predicted (Smol¢i¢ et al.
2012). In the GOODS-N field, the surface density of SMGs was
found to be >87 deg=> (Pope et al. 2005) at depths ranging from
0.3 to 4.1 mJy beam ™' (submm single dish). This was likely higher
than previous observations due to the association with a protoclus-
ter at z ~ 4.05. Geach et al. (2017) found a tentative overdensity in
the GOODS-N compared to the rest of the SCUBA-2 Cosmology
Legacy Survey (S2CLS), while combining all of the S2CLS fields,
the number counts are consistent with previous studies. Fig. 3 also
visually highlights the difference in rms between single dish and
interferometer measurements.

MNRAS 469, 4565-4577 (2017)
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Figure 1. The number of submm companion sources found in each of the
10 Hot DOG fields with known redshifts (Jones et al. 2014), and the 10
WISE/radio-selected AGN fields with known redshifts (Jones et al. 2015),
are shown by black diamonds and red asterisks, respectively. From previ-
ous blank-field submm surveys ~1 companion source is expected in each
1.5-arcmin radius SCUBA-2 field.

The space density of SMGs in the Hot DOG fields on aver-
age is 3.7 Mpc~3 (range 3.0-6.2 Mpc~?), and in the WISE/radio
AGN fields the average space density is 2.9 Mpc™> (range 0.7-
15 Mpc—3). These space densities are higher than normal star-
forming galaxies (~2 x 10~* Mpc~?) and local luminous red galax-
ies (~10~* Mpc~3) (Wake et al. 2008). Previous studies have found
SMGs have low number densities of ~1-2 x 10~> Mpc~3, and are
consistent across all redshifts (Wilkinson et al. 2017). The S2CLS
was found to have SMG number densities between 4 x 107> and
2 x 10~* Mpc~>. This confirms that the fields around Hot DOGs
and WISE/radio AGNs are overdense compared to previous studies
of SMGs and normal star-forming galaxies.

3 TWO-POINT CORRELATION FUNCTION

The angular two-point correlation function w(6) is a statistical way
to characterize the clustering of galaxies in two-dimensional (2D)
space (Efstathiou et al. 1991; Connolly, Szalay & Brunner 1998).
We detect galaxies on a 2D surface and hence we use the angular
version of the 3D spatial correlation function (Peebles 1980). Itis the
excess probability of finding galaxies separated by 6 as compared
with a random distribution. Using the one of the popular estimators
described by Landy & Szalay (1993)

@(9) = (IDD| — 2 x [DR| + |RR|)/|RR|) + ¢,

[y
o
»

* Interferometry
@ Single Dish

-
)
w
e
e

[y
o
N
*+
~o

Surface Number Density (deg?)

-
.
N
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Figure 3. The surface number density of SMGs against rms in the Hot
DOG and WISE/radio AGN fields are shown in red circles, in comparison
to the GOODS-N field single submm dish observations (Pope et al. 2005)
also in red circles. The blue stars are submm interferometry observations of
SMGs by Toft et al. (2014) and Smol¢i¢ et al. (2012). The surface number
density of the Hot DOG and WISE/radio AGN fields are higher than previous

submm surveys.

where w(#) is the angular correlation function, DD is the number of
pairs of galaxies counted in the sample, RR is the number of pairs
of galaxies expected in a random distribution, DR is the number
of pairs of galaxies counted between the sample and a random
distribution and o is the integral constraint (Groth & Peebles 1977).
The counts have been normalized by dividing by the total number
of pairs in each of the three samples; DD, DR and RR.

The angular correlation function was calculated for the
30 WISE/radio-selected AGN fields. It was not calculated for the
Hot DOG fields because there were only 10 fields and not a large
enough number of companion sources to be statistically signifi-
cant: the errors would be greater than the large errors on the 30
WISE/radio AGNs. To calculate the angular correlation function,
100 000 random fake galaxies were used and compared with the
blank-field survey from Weif} et al. (2009), which investigated clus-
tering of faint galaxies, see Fig. 4. Weil} et al. (2009) found sig-
nificant clustering on scales less than 1 arcmin and a characteristic
angular clustering scale 8y = 14 arcmin £ 7 arcsec and a spatial
correlation length of 7o = 13 & 6 2~! Mpc. We also compared to
Wilkinson et al. (2017) that analysed the largest sample of SMGs
(610) in a single field to date from the S2CLS in the redshift range
1 < z < 3. They found a marginally weaker clustering signal than
previous studies, but within 1o uncertainty the results are consis-
tent with Blain et al. (2004), Adelberger et al. (2005) and Hickox
et al. (2012). They also concluded that radio-selected SMGs were
slightly more strongly clustered.

45
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9.8 3.0 3.2 3.4 3.6 3.8 40 4.2 4.4 g.O 3.5 4.0 4.5 5.0 5.5 6.0
SNR of SMGs around Hot DOGs SNR of SMGs around WISE/radio AGNs

3.0 3.5 4.0 45 5.0 55 6.0
SNR of SMGs around Hot DOGs & WISE/radio AGNs

Figure 2. Three histograms to show the distribution of SNR of the companion sources detected around Hot DOGs (right), WISE/radio AGN (centre) and
combining both sets (left).
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Figure 4. Observed angular two-point correlation function using the Landy
& Szalay (1993) equation. The red solid curve shows the observed angular
two-point correlation function for Weif3 et al. (2009). The blue dotted line and
cyan dashed line show the observed angular two-point correlation function
for all the SMGs and the subset of radio-detected SMGs, respectively, in the
S2CLS (Wilkinson et al. 2017). Black points represent the observed angular
two-point correlation function for the companion sources detected around
WISE/radio AGNs. The dashed line represents the JCMT SCUBA-2 850-
um beam size (15 arcsec). There were not enough data for reliable results
using the Hot DOGs.

It can be seen in Fig. 4 that the results in the WISE/radio AGN
fields provide an upper limit to the strength of an angular clustering
signal, and yields a clustering angle of 6, > 80 arcsec. The clustering
signal appears to be inconsistent to previous clustering results of
SMGs; however, further observations would provide more definite
results. The results from Jones et al. (2014, 2015) found no evidence
for angular clustering when looking at the cumulative fraction of
the total number of companion sources in each field within different
radii of the WISE target and when looking at typical separations
compared to Monte Carlo simulations.

4 PROPERTIES OF THE COMPANION
SOURCES AROUND HOT DOGS AND
WISE/RADIO AGNS

4.1 Counterparts of the companion sources

A search radius of half SCUBA-2 850-pum beam size (~8 arcsec)
was used to find counterparts of these companion SMGs in other
catalogues (Lilly etal. 1999; Ivison et al. 2002; Hainline et al. 2009).
This search radius is determined from the probability of finding a
source at a given distance from the SMG position (Lilly et al. 1999;
Ivison et al. 2002). This search radius is relatively large due to the
difficulty of identifying SMGs at optical and near-IR wavelengths
because of the large submm (SCUBA-2) beam, 15 arcsec at 850 um
(Dempsey et al. 2013).

Multiple objects within the WISE AIIWISE Source Catalog had
two potential counterparts within the 8 arcsec search radius. To
reduce ambiguity in the result, the closest in WISE W1-W4 bands
object is chosen while excluding objects that have WISE colours
consistent with stars.

4.2 Mid-IR counterparts

The WISE colour—colour ([W2-W3] versus [W1-W2]) plots of the
companion sources around Hot DOGs and WISE/radio AGNs are
shown in Fig. 5. These plots can separate different populations of
galaxies because of the underlying mechanisms present in each,

Figure 5. WISE colour—colour [(4.6-12 um) versus (3.4—4.6 um) or (W2—
W3 versus W1-W2)] plot of the Hot DOGs and WISE/radio AGNs in red
crosses and black circles, respectively. Filled circles are detections. When
compared with the WISE colour—colour diagram in fig. 12 in Wright et al.
(2010) and fig. 26 in Jarrett et al. (2011), the companion sources lie in the
starburst zone and appear to be SMGs. They appear to be mid-IR bluer than
the Hot DOGs and WISE/radio AGNs.
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Figure 6. WISE colour—colour [(4.6—12 pm) versus (3.4—4.6 pm) or (W2—
W3 versus W1-W2)] plot of the Hot DOGs and WISE/radio AGNs compan-
ion sources in red triangles and black circles, respectively. When compared
with the WISE colour—colour diagram in fig. 12 in Wright et al. (2010) and
fig. 26 in Jarrett et al. (2011), the WISE-selected AGNs are extremely red
compared to other galaxy populations.

leading to different mid-IR emission. AGNs are dominated by
power-law emission at mid-IR wavelengths. In contrast, normal
and star-forming galaxies have a stellar Rayleigh—Jeans tail with
additional strong PAH emission, and a continuum that peaks at
70-170 wm due to warm dust heated by young stars (Jarrett et al.
2011).

Both sets of companion sources have similar WISE colours. How-
ever, most have upper limits in the W3 band and so have limits to
their red W2-W3 colour. When comparing with the WISE colour—
colour diagram of different galaxy populations in fig. 12 in Wright
etal. (2010) and fig. 26 in Jarrett et al. (2011), the companion sources
lie in both the starburst (star-forming) galaxy zone and AGN zone.

The Hot DOGs and WISE/radio AGNs are redder than the com-
panion sources, see Fig. 6. This is no surprise because they were
selected to be red (Eisenhardt et al. 2012; Lonsdale et al. 2015),
which could imply that they have higher dust obscuration and/or
a higher AGN contribution, and higher dust temperatures than that
of their companion sources. Hot DOGs and WISE/radio AGNs are
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predominantly powered by AGN (Wu et al. 2012; Jones et al. 2014,
2015; Lonsdale et al. 2015; Tsai et al. 2015). SMGs are predomi-
nantly powered by star formation (Alexander et al. 2005), and have
SEDs dominated by cooler dust emission (20-50 K; Hainline et al.
2009).

Hainline et al. (2009) observed 73 radio-selected SMGs with
known redshifts using Spitzer IRAC and Multiband Imaging Pho-
tometer (MIPS) and detected 91 percent at 3.6 wum, 91 per cent at
4.5 um, 78 percent at 5.8 pm, 74 percent at 8 um, 71 percent
at 24 um and 7 percent at 70 pm. They found that the detection
rate in the shortest bands is less than SMGs in deeper Spitzer Wide
Area Infrared Extragalactic Legacy Survey (SWIRE). These are
higher mid-IR detection rates than the companion SMG sources in
the AIIWISE Source Catalog presented in this paper (Jones et al.
2015); where 24 and 35 per cent companion SMG sources in the
Hot DOG and WISE/radio AGN fields, respectively, were detected.
The difference in detection rates could be due to the depth of cover-
age. Spitzer IRAC had deeper mid-IR observations with sensitivity
ranging from 0.1 to 0.9 pJy at 3.6 um and 0.4 to 1.8 pJy at 4.5 um,
which are deeper than AIIWISE Source Catalog 0.08 mJy at 3.4 pm
and 0.11 mJy at 4.6 um at 20.

4.3 Submillimetre emission, SFRs and SFRDs

The average submm flux density of SMGs around Hot DOGs is
Sssoum = 6.2 & 1.8 mly, which is comparable to SMGs around
WISE/radio AGNS, Sgsoum = 7.2 & 2.1 mJy. Submm flux densities
provide a reliable measurement of SFR (Alexander et al. 2016).
Submm flux densities can be converted to SFRs for SMGs with
z > 1.5 using

SFRg50 um = 200 X Sg50 1um

(Barger et al. 2014). The average SFR is >~ 1240 Mgyr~' for
SMGs around WISE/radio AGN:s, slightly lower than the SFR ~
1460 Myr~' for SMGs around Hot DOGs.

Cosmological simulations predict that overdense regions, ~5¢
density peak, are associated with high SFRs, ~750 Mo yr~' (Yajima
et al. 2015). Observations at redshifts z ~ 1 found that higher SFRs
are associated with higher densities (Cooper et al. 2007). The mean
SFR at the core of protoclusters have been found to be enhanced,
up to a factor of ~5.9 over the field (Alexander et al. 2016), and
outside of the central region the SFR is consistent with field galaxies.
ALMA observations of the SSA22 protocluster at redshift z = 3.09
found enhanced SFR in the densest regions (Umehata et al. 2015).
Therefore, higher SFRs of the SMGs around WISE/radio AGNs
than the SMGs around Hot DOGs is expected.

The SFRD represents the total star formation transpiring per unit
time and volume at a given redshift, as seen in Fig. 6. SFRD allows
direct comparison of the importance of IR-luminous galaxies to the
build-up of stellar mass in the Universe. From previous work, the
SFRD in clusters increases with redshift from z ~ 1 to z ~ 3 e.g.
(Hopkins et al. 2006; Bouwens et al. 2011; Magnelli et al. 2011;
Clements et al. 2014), e.g. Dannerbauer et al. (2014) measured an
SFRD of ~900 M yr~' Mpc~ in the field around the spiderweb
radio galaxy at redshift z = 2.16 in a region of 2 Mpc. However,
there are observations of high-redshift clusters with a combination
of quiescent and star-forming galaxies (Gobat et al. 2013; Strazzullo
et al. 2013), and clusters dominated by quiescent galaxies (Tanaka
et al. 2013). Therefore, higher redshift SFRDs are needed to under-
stand the history of galaxy clusters especially in the peak epoch of
star formation at redshifts 1 < z < 3, which includes this paper. The
SFRDs were calculated for each cluster, which is the WISE-selected
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Figure 7. SFRD of each Hot DOG and WISE/radio AGN and their sur-
rounding SMGs. The SFRDs are higher than field galaxies and similar to
the four HerMES clumps, other clusters with MIR/FIR measurements from
the literature, when comparing with fig. 15 from Clements et al. (2014).

source and its surrounding SMGs, assuming that the SMGs are at
the same redshift as the source. We assumed that each cluster was
spherical, and derived an angular radius from the SCUBA-2 map,
1.5 arcmin. The angular radius was converted to a proper distance
at the redshift for each cluster, where the redshift is unknown the
average redshift is assumed, z = 1.7 for WISE/radio AGNs. The
volume for each cluster was calculated by assuming that this proper
distance is the radius of the cluster. The SFRDs are presented in
Table 6, these are lower limits because faint SMGs could be missed
due to the shallow depths of the SCUBA-2 maps.

The SFRDs range for Hot DOGs from 1523 =+ 30 to 7949 +
159 M yr~!' Mpc™2, and average 3533 M yr~' Mpc~>. These
are lower than WISE/radio AGNs with a range from 1219 + 49 to
18715+ 374 Mg yr~! Mpc~3, and average 3929 Mg yr~! Mpc 3.
Our results in Fig. 7 can be compared to fig. 15 from Clements
et al. (2014) and the SFRDs calculated in this paper are higher than
field galaxies from Hopkins et al. (2006) and Bouwens et al. (2011),
with SFRDs of ~900 Mg yr~! Mpc~ and ~700 Mg yr~' Mpc™
at z = 2, respectively. Our values are similar to four Herschel
Multitiered Extragalactic Survey (HerMES) clusters of dusty, star-
forming galaxies at redshifts between z = 0.76 and 2.26, and other
clusters with mid-infrared (MIR)/far-infrared (FIR) measurements
from the literature with SFRDs ranging from ~200 M yr~! Mpc—3
to ~3000 M yr~! Mpc~>. Simulations of massive galaxy clusters
cannot account for the overdensity found by Clements et al. (2014),
which is thought to be due to insufficient peaks of star formation
activity in the simulations at early epochs, and including strong
starbursts in the simulations is required to explain the statistical
properties of SMGs (Granato et al. 2015).

Dusty star-forming galaxy (DSFG)-rich protoclusters at redshifts
2 < z < 3 were shown to have slightly higher SFRDs compared
to the field, due to their large occupying volumes (Casey 2016). In
contrast virialized clusters at redshifts z < 1 have a substantially
higher SFRD. This is in agreement with the lower redshift WISE-
selected AGNs W0342+3753, W1501+1324 and W2230—0720
that have a redshift of z = 0.47, 0.505 and 0.444, respectively,
and a significantly higher SFRD at 18715 £ 374, 9501 + 190
and 12596 =+ 252 M@ yr—! Mpc~3, respectively. This is due to
a high overdensity of SMGs in each field; seven, four and four
serendipitous SMG sources in each field, respectively.

Completeness is the rate at which a source is expected to be
detected in a map (Hatsukade et al. 2013). It is computed by sim-
ulating the detection rate of 1000 fake point sources per flux bin
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placed in the real cleaned signal map (Tamura et al. 2009). Brighter
SMGs, where the flux density is ;100 um >2.7 mly, were found not
to be significantly affected from incompleteness and false detec-
tions (Tamura et al. 2009). They found that the completeness was
~50 percentat2.7mJy and 90 per cent at 4.0 mJy. All the compan-
ion sources detected around Hot DOGs and WISE/radio AGNs have
flux densities Sgsom >4.6 mJy and Sgso .m >5.5 mJy, respectively,
see Tables 1-5. The completeness was found to range from 77 to
100 per cent reported by Hatsukade et al. (2013) from 15 SMGs
observed. It was concluded that the correction for incompleteness
and contamination has an effect on the low flux density bins (S350 ;um
<2.9mJy) and a minimal effect on the high flux density bins (Sss0 ,um
>2.9 mJy; Casey et al. 2013). This is also confirmed by Weif3 et al.
(2009) where the source extraction is complete (> 95 per cent) for
sources with flux densities Ss70,.m >6.5 mJy and 50 per cent com-
plete at ~4.0 mJy. Therefore, the SMG completeness of the fields
around Hot DOGs and WISE/radio AGNs should be between 50
and 100 per cent complete. Hence the SFRDs could be higher than
calculated here. This will also have an effect on the number count
comparison with other submm surveys, where the overdensities in
the WISE-selected Hot DOG and WISE/radio-selected AGN fields
could have an even higher4.5 overdensity.

4.4 Radio emission

None of the companion sources around Hot DOGs or WISE/radio
AGNs were detected at radio wavelengths in FIRST and/or NVSS,
where the typical 1.4-GHz detection limit was 1.0 mJy beam™',
see Tables 1-5. From previous observations ~65 per cent of SMGs
with submm flux densities Sgso.m > 5 mJy have detectable radio
emission in much deeper observations with rms ~10 pJy (range
2.3-17.4 wly) (Ivison et al. 1998, 2002; Chapman et al. 2005).

None of the 17 or 81 companion sources in the Hot DOG and
WISE/radio AGN fields, respectively, are detected in NRAO snap-
shot follow-up VLA radio maps (Lonsdale, private communica-
tion). The non-detections are consistent with SMG SEDs at relevant
redshifts.

4.5 X-ray emission

No counterparts to the companion sources from point sources were
found in the third XMM-Newton companion source catalogue,
3XMM-DRS5 (Rosen et al. 2015). However, previous deeper X-ray
observations of SMGs found only 16 with X-ray detections from
sample size of 35 (45 + 8 per cent) (Laird et al. 2009). These ob-
servations were from the 2-Ms Chandra survey with flux limits of
the order of 10~7erg cm™2 s~! and a range 1.1-17.7x 10~ '%erg
cm~2 57!, and are deeper compared with 3XMM-DRS5 of the order
of 107 erg cm™2 57! for 3¢ detections. Therefore, non-detections
from point sources are expected.

5 DISCUSSION

5.1 Companion source clustering

Fig. 4 provides an upper limit to the strength of an angular clustering
signal in the WISE/radio AGN fields, and appears to be inconsistent
with previous clustering studies of SMGs from Weil} et al. (2009),
Hickox et al. (2012) and Wilkinson et al. (2017). Weil} et al. (2009)
found consistent correlation length values of SMGs with Blain et al.
(2004) and Farrah et al. (2006) but inconsistent with Scott, Dunlop

& Serjeant (2006), this could be explained by the small significance
of the clustering signal in both studies.

Hickox et al. (2012) reanalysed SMGs from the LABOCA sur-
vey in a novel method to cross-correlate SMGs in the LABOCA
survey and galaxies from Spitzer IRAC. They found a lower cor-
relation length, ry = 7.77)% h~' Mpc at z = 2, than WeiB et al.
(2009), but one that is consistent with measurements for optically
selected quasars (QSOs). The observed clustering could depend on
the submm flux limit of the survey, presence of redshift spikes and
uncertainties in redshift selection function (Adelberger et al. 2005;
Williams et al. 2011), which could result in uncertainties in cluster-
ing estimates. Hickox et al. (2012) compared their autocorrelation
length ry to previous SMG results with a range of 850-pm flux limit
from 3 to 6 mJy, and found consistent angular clustering estimates.
They concluded that SMGs are likely to represent a short-lived tran-
sition phase from cold, gas-rich, star-forming galaxies to passively
evolving systems.

Wilkinson et al. (2017) found when analysing the largest sample
of SMGs in the S2CLS, SMGs are not as strongly clustered as pre-
viously thought. However, their measurements were in agreement
with previous studies (Blain et al. 2004; Hickox et al. 2012) within
1o errors, and found a weaker clustering signal when comparing to
Weil et al. (2009). Accounting for blending (Cowley et al. 2015)
could bring the previous studies into better agreement with Wilkin-
son et al. (2017). Alternatively, the SMG clustering could depend
on redshift, large-scale environment and merger history. They found
that the clustering of SMGs is consistent with star-forming popu-
lation and lower than passive population at the same redshift, and
tentative evidence of halo downsizing. Chapman et al. (2009) pro-
posed that SMGs do not necessarily trace the most massive dark
matter haloes.

Donoso et al. (2014) analysed the angular clustering properties
of a sample of ~170 000 WISE-selected AGNs with very red mid-
IR colours. The whole sample was found to have a similar clus-
tering strength to optically selected quasars at comparable redshifts
(z=1.1) in the Sloan Digital Sky Survey (SDSS; Porciani, Maglioc-
chetti & Norberg 2004; Croom et al. 2005; Myers et al. 2007). They
are found in denser environments when compared with all SDSS
galaxies at that redshift. Redder AGNs that are well detected at
4.6 pm (W2) have a stronger clustering bias (relationship between
the distribution of dark matter and luminous matter) than blue
AGNSs. WISE/SDSS-obscured AGNs are more strongly clustered
and inhabit denser environments than unobscured AGNs. DiPom-
peo et al. (2014) confirmed this but found a smaller difference
in angular clustering amplitude between WISE-selected obscured
quasars and unobscured quasars. However, Mendez et al. (2016)
found no significant difference between obscured and unobscured
AGNS.

There is an overdensity of SMGs with approximately two or
three SMGs per SCUBA-2 field compared with the expectation of
one SMG from blank-field submm surveys. The number of sources
for the angular two-point correlation function of Hot DOG and
WISE/radio AGN fields were not numerous enough to see an angular
clustering signal. Monte Carlo simulations of the typical separation
of the companion sources and the cumulative fraction of the total
number of companion sources within different radii from the WISE
target showed no angular clustering. This is in agreement with
Assef et al. (2015), who found no angular dependence of the IRAC
overdensities around a subset of Hot DOGs.

From previous evidence there could be clustering on scales
greater than the SCUBA-2 fields (Scoville et al. 2000; Blain et al.
2004; Greve et al. 2004; Farrah et al. 2006; Ivison et al. 2007; Weil3
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etal. 2009; Cooray et al. 2010; Scott et al. 2010; Hickox et al. 2012).
Alternatively, the clustering peak could be off-centre from the WISE
source and not on the SCUBA-2 1.5-arcmin map scale. This agrees
with Smail et al. (2014) where overdensities of the most active,
ultraluminous star-forming galaxies were offset from the assumed
protocluster centre and are situated in the lower density environ-
ments. Dannerbauer et al. (2014) observed a density of SMGs up to
four times greater than in blank-field surveys that were not centred
on the submm-bright radio galaxy.

Muldrew, Hatch & Cooke (2015) explored the structures of proto-
clusters and their relationship with high-redshift galaxies using the
Millennium Simulation. They found that protocluster structures are
very extended at the redshifts (z = 2) we are probing with 90 per cent
of their mass is dispersed across ~30 arcmin (~35 A~! Mpc co-
moving). This would imply that many observations of protoclusters
and high-redshift clusters are not imaging all of the cluster. Many
protoclusters have no central or main halo that could be classified as
a high-redshift cluster, only 10 per cent were dominated by a single
halo at redshift z = 2. This could explain why there is no evidence
or only an upper limit of angular clustering in the Hot DOG and
WISE/radio AGN fields on ~1.5-arcmin scales from Monte Carlo
simulations of typical separations. Alternatively, the cluster might
be peaked substantially off-centre from the WISE target. Further
observations of companion sources in the fields around WISE/radio
AGNs are needed to determine the angular two-point correlation
function w(#). Wide-field sub(mm) surveys are needed to cover the
total (proto)cluster structure, and is in agreement with results from
Casey (2016) and Hung et al. (2016), where Casey (2016) found
protoclusters subtend 10 arcsec to a half degree in the sky and at red-
shifts z > 2 their overdensity is difficult to detect due to their large
occupied volumes. Hung et al. (2016) found large-scale structure
around a cluster to within 10 arcsec.

Viero et al. (2013) presented observations from Herschel and
found a clustering signature from SMGs that could be decom-
posed into two-halo (linear) power from galaxies in separate haloes,
and one-halo (non-linear) power from multiple central and satellite
galaxies occupying massive haloes. It has been found that a frac-
tion of luminous sources are found within these satellite haloes, for
example, Gonzdlez et al. (2011) predict that 38 per cent SMGs and
24 per cent SMGs with Sgso,.m > 5 mly are satellites. Additionally,
star-forming galaxies in groups and clusters were found in the out-
skirts of massive cluster-scale haloes (Muldrew et al. 2015). The
lack of clustering signal of SMGs in the Hot DOG and WISE/radio
AGN fields could be because they are also in the outskirts of diffuse
massive halo and not having enough sources.

5.2 Companion source properties

Only a fraction of the SCUBA-2 companion sources are detected
in WISE. The WISE colours of the companion sources are con-
sistent with star-forming galaxies and AGNs, while their mid-IR
to submm ratios are not consistent with AGN-dominated sources
(Jones et al. 2015). The companion sources hence appear to be con-
sistent with SMGs. The SMG SFRs were estimated using their
submm flux densities and are consistent with SMGs; the aver-
age SFR is ~1240 Mpyr~' for SMGs around WISE/radio AGNs,
slightly lower than the SFR ~1460 M yr—! for SMGs around Hot
DOGs. The SMGs around WISE/radio AGNs have slightly higher
SFRs than around Hot DOGs by ~18 per cent, which is expected
that SFRs are enhanced in denser regions.

When comparing the companion SMG sources radio proper-
ties to previous SMGs, around 65-70 percent of bright SMGs

(8850 um > 7 mJy) have been detected at S| 4G, (Ivison et al. 2002;
Borys et al. 2004). It has been suggested that the radio-undetected
SMGs may have colder dust or lie at z > 3 (Ivison et al. 2002;
Eales et al. 2003; Swinbank et al. 2008). No companion sources
have radio detections in shallow NVSS or FIRST images, and the
radio data are not deep enough to assess their dust temperatures.

The SFRDs of the WISE-selected AGNs are higher than the field
but consistent with measurements of clusters of dusty galaxies from
HerMES and DSFGs or luminous AGNs. Conclusions from obser-
vations of z > 2 protoclusters suggest that the Universe’s largest
galaxy clusters are thought to be built by massive > 10 Mg galax-
ies in short-lived bursts of activity. The challenge has been to ob-
serve these structures when they have such large volumes, subtend-
ing ~0.5 deg on the sky (Casey 2016). However, the WISE-selected
AGNSs have high SFRDs with consistent values to these previous
observations of clusters of DSFGs, but are on smaller volumes, with
a SCUBA-2 map radius of 1.5 arcmin. Therefore, WISE-selected
AGNs could be used to study protoclusters at high redshift on small
volumes (arcmin scales) of the sky.

6 SUMMARY

Previously Hot DOGs and WISE-selected AGNs were found to
be extremely obscured, hyperluminous AGNs at redshifts between
0.4 < z < 4.6. Their environments were found to be overdense in
SMGs and these overdensities have been investigated here.

(i) The space densities of SMGs around the WISE-selected AGNs
were found to be overdense compared to normal star-forming galax-
ies and SMGs in the S2CLS.

(i) The SMGs around WISE/radio AGNs have ~18 per cent
higher SFRs than SMGs around Hot DOGs.

(iii) The SFRDs of the WISE-selected AGNSs are higher than field
galaxies, and consistent with values for known clusters of dusty
galaxies.

(iv) The results impose an upper limit to the strength of angu-
lar clustering of the companion SMG sources in Hot DOGs and
WISE/radio AGNs on SCUBA-2 1.5-arcmin scales. The typical
separations when compared to Monte Carlo simulations showed no
angular clustering. This is in agreement with the cumulative fraction
of companion sources in different radii from the WISE target. This
could be because they are satellite galaxies in the massive halo or
that the protocluster is on bigger scales (up to ~30 arcmin) and we
are not fully probing the protocluster.

(v) Hot DOGs and WISE/radio AGNs appear to be signposts of
overdense environments.
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