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ABSTRACT
A star approaching a supermassive black hole (SMBH) can be torn apart in a tidal disruption
event (TDE). We examine ultra-deep TDEs, a new regime in which the disrupted debris
approaches close to the black hole’s Schwarzschild radius, and the leading part intersects
the trailing part at the first pericentre passage. We calculate the range of penetration factors
β versus SMBH masses M that produce these prompt self-intersections using a Newtonian
analytic estimate and a general relativistic (GR) geodesic model. We find that significant self-
intersection of Solar-type stars requires β ∼ 50–127 for M/M� = 104, down to β ∼ 5.6–5.9 for
M/M� = 106. We run smoothed particle hydrodynamic (SPH) simulations to corroborate our
calculations and find close agreement, with a slightly shallower dependence on M. We predict
that the shock from the collision emits an X-ray flare lasting t ∼ 2 s with L ∼ 1047 erg s−1

at E ∼ 2 keV, and the debris has a prompt accretion episode lasting t ∼ several minutes. The
events are rare and occur with a rate Ṅ � 10−7 Mpc−3 yr−1. Ultra-deep TDEs can probe the
strong gravity and demographics of low-mass SMBHs.

Key words: black hole physics – relativistic processes – stars: kinematics and dynamics –
galaxies: nuclei – X-rays: bursts.

1 IN T RO D U C T I O N

Stars can be destroyed by the gravitational field of a supermassive
black hole (SMBH) if they reach its tidal radius rt � R∗(M/M∗)1/3,
where the SMBH has mass M and the star has mass M∗ and radius
R∗. Within the tidal radius, the tidal gravity of the SMBH exceeds
the self-gravity of the star, and the star is stretched into a stream
of debris (Kochanek 1994; Coughlin et al. 2016). This process of
stellar destruction by a black hole is known as a tidal disruption
event (TDE).

The qualitative timeline of a canonical TDE likely proceeds
as follows. If the disrupted star originates near or beyond the
sphere of influence of the SMBH, which constitutes the most
likely radius from which Solar-like stars are scattered into the
loss cone (e.g. Stone & Metzger 2016), then the star’s centre
of mass (CM) is effectively on a parabolic orbit. At disruption,
the stellar debris acquires a range of binding energies due to the
tidal potential of the SMBH (Lacy, Townes & Hollenbach 1982),
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which binds half of the debris to to the black hole and unbinds
the other half (Rees 1988). The event is likely ‘dark’ in this early
phase, characterized by the radial expansion of the stream with
relatively little emission, though there are some potential signatures
(Carter & Luminet 1982; Kobayashi et al. 2004; Guillochon et al.
2009; Kasen & Ramirez-Ruiz 2010; Yalinewich et al. 2019). When
the debris returns to pericentre, general relativistic (GR) apsidal
precession causes the debris apocentre to deviate from its Keplerian
value. This deflection causes the outgoing and incoming material
to intersect, dissipate kinetic energy through shocks, and form an
accretion disc after several orbits (Cannizzo, Lee & Goodman 1990;
Kochanek 1994; Lee, Kang & Ryu 1996; Kim, Park & Lee 1999;
Hayasaki, Stone & Loeb 2013, 2016; Guillochon, Manukian &
Ramirez-Ruiz 2014; Bonnerot et al. 2016; Shiokawa et al. 2015).
When the black hole mass satisfies M � 107M�, the fallback
rate is super-Eddington (for full disruptions of Solar-like stars;
Evans & Kochanek 1989; Wu, Coughlin & Nixon 2018), which
can lead to the production of radiation driven winds (Strubbe &
Quataert 2009) and jets (Coughlin & Begelman 2014). The accretion
(and associated outflows) produces a highly luminous, short-lived
emission event, in which the lightcurve rapidly rises, reaches a peak,
and decays as a power law.
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While this timeline is likely upheld for most TDEs, the detailed
appearance of a given TDE depends on the properties of the
disrupted star, the SMBH, and the specifics of the stellar orbit
(e.g. the pericentre). The event horizon of a non-rotating black hole
is determined by the Schwarzschild radius, rS = 2rg, where rg =
GM/c2 is the gravitational radius. The encounter strength can be
parametrized by the penetration factor β = L2

t /L
2
cm, where L2

t =
2GMrt and Lcm is the specific angular momentum of the stellar
CM. In Newtonian encounters, the stellar CM angular momentum
is L2

cm = 2GMrp, where rp is the CM pericentre distance, and the
penetration factor becomes β = rt/rp (Carter & Luminet 1982). We
can also define rp in this way even for relativistic encounters, though
in this case it is simply a parameter and has diminished physical
significance; the true GR pericentre (rp)GR will be different here,
and will even be undefined if the star is captured by the SMBH.

The general picture of a canonical TDE given above has been
confirmed numerically for large tidal radii (rt � rS) and shallow
encounters (β ∼ 1, with rp ∼ rt). Simulations using smoothed
particle hydrodynamics (SPH) and grid-based methods have ob-
served the predicted spread in energies (for early work, see Evans &
Kochanek 1989; for more recent work, see Lodato, King & Pringle
2009; Guillochon & Ramirez-Ruiz 2013; Coughlin & Nixon 2015),
and the stream–stream collisions leading to debris circularization
(Bonnerot et al. 2016; Hayasaki et al. 2016; Jiang, Guillochon &
Loeb 2016). Analytic estimates (Lodato & Rossi 2011) and detailed
radiative transfer calculations (Strubbe & Murray 2015; Roth et al.
2016; Roth & Kasen 2018) have supported the expected behaviour
of the light curve and characterized its spectral features.

However, the situation can change dramatically for large tidal
radii (rt � rS) when the star undergoes an ultra-deep encounter (β
� 1, with (rp)GR ∼ rS). In this case, the star is tidally stretched for a
long duration as it approaches the BH; indeed, when its CM reaches
(rp)GR, the star’s leading and trailing edges can be displaced much
farther apart than the initial stellar radius R∗. In addition, since the
apsidal precession angle �φ � 2π when (rp)GR ∼ rS, the leading
edge of the extremely stretched star can conceivably intersect the
trailing edge before the latter reaches its pericentre. In this case,
the stream will intersect itself roughly at pericentre, the debris will
shock heat and dissipate orbital energy, and some fraction of the
star will accrete onto the SMBH almost instantaneously at this
first pericentre passage. These extreme TDEs will thus exhibit no
delay between disruption and accretion and, consequently, show a
very different rise-peak-decay signature. This distinct signature may
allow us to probe the tidal deformation of the star near pericentre
and the debris dynamics in strong gravity.

There have been efforts to examine the signatures of deep
encounters of main-sequence stars on SMBHs (Bicknell & Gingold
1983; Laguna et al. 1993; Brassart & Luminet 2008, 2010; Evans,
Laguna & Eracleous 2015; Sa̧dowski et al. 2016; Tejeda et al. 2017),
though not in the ultra-deep regime that produces prompt self-
intersections. The results still reveal interesting features that may
also occur in our case. For instance, Evans et al. (2015) examine
disruptions of main-sequence stars in deep encounters (β = 10, 15)
with SMBHs of mass M = 105M�. Their simulations exhibit an
early accretion burst followed by a flat accretion rate at later times;
strong GR effects modify the Ṁ ∼ t−5/3 late-time accretion rate
expected of canonical TDEs.

There has been greater focus on deep encounters of white
dwarfs (WDs) on stellar and intermediate-mass BHs (Luminet &
Pichon 1989b; Frolov et al. 1994; Rosswog, Ramirez-Ruiz & Hix
2009; Haas et al. 2012; MacLeod et al. 2016; Tanikawa et al.
2017; Kawana, Tanikawa & Yoshida 2018; Anninos et al. 2018),

since these are more promising as sites of nuclear ignition near
pericentre and as sources for gravitational wave (GW) emission.
As in the case of main-sequence stars, much of this work has not
directly examined the prompt self-intersection regime. One notable
exception is Kawana et al. (2018), who study deep encounters using
3D SPH simulations coupled with a nuclear reaction α-network, and
observe prompt self-intersections at pericentre for encounters with
a WD of mass MWD = 0.6 M�, an SMBH of mass M = 10 M�,
and penetration factor β = 5. They label these ‘Type III TDEs,’ and
find that these energetic collisions heat the debris and efficiently
circularize it, but the heating is not sufficient to ignite nuclear
reactions; they note, though, that their simulations likely do not
fully resolve the collision numerically.

In this paper, we investigate the possibility of prompt self-
intersections from ultra-deep TDEs of main-sequence stars. In
Section 2, we outline our parameter regime and present two
models to calculate the range of encounter depths for which we
expect prompt self-intersections to occur; first, we derive a simple,
order-of-magnitude estimate in Newtonian gravity (Section 2.1),
and second, we model the geodesics of debris elements in the
Schwarzschild metric under the impulse (or ‘frozen-in’) approx-
imation (Section 2.2). In Section 3, we use SPH simulations to
corroborate our estimated range of encounter depths for which
prompt self-intersections occur. In Section 4, we conclude and
discuss the possible signatures from these extreme TDEs.

2 MO D E L S

We defined the tidal radius rt, the penetration factor β, and the
Schwarzschild radius rS in the Introduction. These parametrize the
nature of the encounter. We use the Newtonian expression for rt,
which differs from the relativistic expression only marginally for the
parameters that we examine below (Kesden 2012a; Servin & Kesden
2017). We note that some authors adopt the definition β = rt/(rp)GR

when studying relativistic TDEs (e.g. Guillochon & Ramirez-Ruiz
2013; Tejeda et al. 2017); this is different from our definition above,
so one must exercise care when making comparisons.

We examine TDEs whose parameters satisfy the hierarchy R∗, rS

� rt. The condition rS � rt permits deep (β � 1) encounters, and
can be expressed as

rS

rt
� 9.1 × 10−3M

2/3
5 m1/3

∗ r−1
∗ � 1 (1)

where m∗ ≡ M∗/ M�, r∗ ≡ R∗/R�, and M5 ≡ M/(105 M�). The
condition R∗ � rt allows us to use first-order expressions for the
spread in coordinates, energy, and angular momentum across the
star, and can be expressed as

R∗
rt

� 2.2 × 10−2M
−1/3
5 m1/3

∗ � 1 (2)

We restrict our attention to ratios � 5 × 10−2. For Solar-type
stars, this implies SMBH masses in the range M ∼ (104–106) M�.
For stars of mass M∗/M� = 10 and radius R∗ = R�(M∗/M�)α

with α = 0.57, which holds for main-sequence stars with masses
M∗/M� � 1 (Torres, Andersen & Giménez 2010), this implies
SMBH masses in the range M ∼ (5 × 104–5 × 106) M�.

For highly penetrating encounters (β � 1), the stellar debris
experiences strong tidal compression near pericentre, which leads
to a rapid pressure increase and the generation of a shock during the
bounce phase (Carter & Luminet 1982, 1983; Bicknell & Gingold
1983). Carter & Luminet (1982) used geometrical arguments and
the adiabatic approximation to estimate that, for a γ = 5/3 polytrope,
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the central stellar density ρ∗ and temperature T∗ are compressed to
maximum values of ρm � β3ρ∗ and Tm � β2T∗ near pericentre, and
argued that this would ignite nuclear reactions. This process has
been explored in subsequent work using detailed hydrodynamic
simulations, and there remains uncertainty over the extent of
compression, the plausibility of nuclear reactions, and the effects on
the debris orbits approaching pericentre (Carter & Luminet 1983;
Bicknell & Gingold 1983; Laguna et al. 1993; Kobayashi et al.
2004; Guillochon et al. 2009; Brassart & Luminet 2008, 2010;
Stone, Sari & Loeb 2013; Evans et al. 2015; Tejeda et al. 2017).
Most recently, Tejeda et al. (2017) ran extensive SPH simulations
for TDEs by Kerr BHs and found strong compression in encounters
with β � 10; Evans et al. (2015), in contrast, performed GR
hydrodynamic simulations, and did not observe strong compression
in encounters with β ∼ 10–15 (for Solar-type stars and M = 105 M�
SMBHs), and instead found that the star has a large spatial spread
before pericentre passage due to tidal stretching in the orbital plane.

In this section, we seek simple estimates for the range of β for
which the disrupted debris promptly self-intersects. We thus ignore
hydrodynamic effects at pericentre, namely strong compression,
shock generation, and nuclear detonation. While these effects
could alter the qualitative behaviour of the debris following self-
intersection, and thus the appearance of the event, they should not
drastically impact the ability of the star to promptly self-intersect
in the first place.

2.1 Analytic model

In this subsection, we derive an order-of-magnitude expression in
Newtonian gravity for the values of β for which we expect the star
to undergo self-intersection prior to leaving pericentre.

Prior to reaching pericentre, we can effectively model the stellar
CM on a purely radial orbit since its pericentre is very small relative
to the tidal radius. For a parabolic orbit, the energy of the CM is
ε = 0. If we take the CM to be at the tidal radius rt at time t = 0,
then we can write its position as an explicit function of time as

rcm = rt

(
1 − 3

2
t̃

)2/3

, (3)

where t̃ = t/
√

r3
t /2GM . The CM thus reaches its pericentre rp at

time

t̃p = 2

3
(1 − β−3/2). (4)

The tidal field stretches the star in the radial direction and com-
presses it in the two orthogonal directions. If R is the radial extent
of the stretched star, then for R � rcm, the tidal acceleration in the
radial direction is

R̈ =
(

rt

rcm

)3

R = R

(
1 − 3

2
t̃

)−2

(5)

where the overdot denotes differentiation with respect to t̃ . With
the initial conditions R(0) = 2R∗ (the stellar radius is R∗ at the tidal
radius) and Ṙ(0) = 0 (the star is in hydrostatic equilibrium at the
tidal radius) the solution for the radial extent of the star as a function
of time is

R = R∗

[
8

5

(
1 − 3

2
t̃

)−1/3

+ 2

5

(
1 − 3

2
t̃

)4/3
]

. (6)

By the time the CM reaches rp, the condition R � rcm is no longer
satisfied; nevertheless, if we apply our result to obtain a rough

estimate, then the star at this point has a radial extent of

Rp = R∗

(
8

5
β1/2 + 2

5
β−2

)
� 8

5
R∗β1/2, (7)

where the last line follows from the assumption β � 1. We note
that the leading order scaling Rp ∼ β1/2 is equal to that found in
equation (B6) of Stone et al. (2013) for the long principal axis
of a tidally deformed star on a parabolic orbit. The higher order
terms differ, though, likely because we evaluate the deformation at
different points along the orbit.

As the stretched star passes through pericentre, it will become
long enough to intersect itself if Rp ≥ 2πrp; using the expressions
for β and rt, this becomes

β ≥ βc �
(

5π

4

)2/3 (
M

M∗

)2/9

� 32M
2/9
5 m−2/9

∗ (8)

which is independent of the stellar radius and only depends weakly
on the mass of the SMBH.

Equation (8) does not explicitly incorporate GR effects. In
particular, (1) some or all of the star may be captured by the
BH, (2) the relative precession angle of uncaptured debris must
be �φ > 2π for a self-intersection to occur, and (3) the GR tidal
deformation is stronger (in a static, spherically symmetric space–
time) than the Newtonian tidal field at a given radial coordinate
(Luminet & Marck 1985; Servin & Kesden 2017). Nevertheless,
stars will become stretched appreciably as above only in ultra-deep
encounters, for which we also expect large apsidal precession, and
thus this expression provides a rough, order-of-magnitude estimate
of the β required to achieve a prompt self-intersection.

2.2 Geodesic model

In this subsection, we model the disrupted debris on independent
Schwarzschild geodesics to estimate the range of encounter depths
for which it promptly intersects itself. Here and for the remainder of
this paper, we use geometric units G = c = 1 and a metric signature
(−, +, +, +). We often express tensors by their symbols alone. We
also use early Latin indices a, b, . . . to label tensors in abstract index
notation, and Greek indices to labels components. In addition, we
use Greek indices to refer to spacetime components μ = 0, 1, 2, and
3, and middle Latin indices i, j , . . . to refer to spatial components
i = 1, 2, and 3.

We integrate the geodesics using the Runge–Kutta–Fehlberg 78
integrator from the C+ + BOOST libraries, setting the absolute and
relative errors to εabs = 10−12 and εrel = 10−10. This is a high-order
adaptive integrator that has been used to accurately model null and
time-like geodesics for GR ray tracing in strong gravity (Vincent
et al. 2011; Grould, Paumard & Perrin 2016).

The tidal force at large radii (compared to the gravitational radius)
varies as ∼1/r3, where r is the radial coordinate from the SMBH. The
strength of the SMBH’s tidal force compared to a star’s gravitational
self-force thus increases rapidly as the star crosses rt, which suggests
that the tidal force can be modelled as an impulsive effect that is
activated at rt. Specifically, for r � rt, tidal effects are negligible and
we can model the star as if it retains perfect hydrostatic balance; for
r � rt, tidal effects are dominant and we can model the motion of
stellar gas parcels as independent orbits in the gravitational field of
the SMBH. The orbital elements (e.g. specific energy and angular
momentum) of a given gas parcel are therefore ‘frozen-in’ once the
stellar CM reaches the tidal radius (Lodato et al. 2009).

Recently, Steinberg et al. (2019) showed that the ‘frozen-in’
approximation does not adequately capture the energy distribution
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of the debris, which is modified by self-gravity throughout the
encounter, though the gas parcels are still well modelled by
individual orbits, a result validated by our simulations (Section 3).
In addition, the star likely experiences strong tidal compression
and shock generation at pericentre, and thus the ‘frozen-in’
approximation is not strictly valid at this point. The star also
experiences additional tidal deformations prior to reaching the
tidal radius (Lodato et al. 2009; Coughlin & Nixon 2015). It is
sufficient, though, for our estimates in this subsection to ignore
these difficulties. We will address the importance of the latter in
Section 3 with the aid of hydrodynamic simulations. The assumption
of geodesic orbits should also be particularly well maintained for
the equatorial plane of the star, about which the tidal compression is
symmetric.

The gravity of a non-spinning and chargeless SMBH of mass M
is described by the Schwarzschild metric, which is the general
exterior solution for a static, spherically symmetric space–time
(Birkhoff & Langer 1923; Hawking & Ellis 1973). The metric g
has the associated line element (Chandrasekhar 1983)

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dθ2

+ r2 sin2 θdφ2 (9)

where we express it in Schwarzschild coordinates xμ = (x0, x1, x2,
x3) = (t, r, θ , φ). A timelike geodesic γ has four velocity u =
γ ′(τ ) = ẋμ∂μ, where we parametrize the geodesic by the proper
time τ and where the overdot denotes differentiation with respect
to τ , ẋμ ≡ d(xμ◦γ )

dτ
. The four velocity satisfies gμνẋ

μẋν = −1. The
spatial motion of a geodesic is restricted to a 2D plane, which we can
set equal to the equatorial plane (θ = π/2, θ̇ = 0) due to spherical
symmetry.

The Lagrangian for a free particle in geodesic motion is L =
1
2 gμνẋ

μẋν , and the corresponding Hamiltonian is H = pμẋμ −
L = 1

2 gμνpμpν , where pμ = ∂L
∂ẋμ are the (covariant) canonical

momenta. The equations of motion can be obtained from Hamilton’s
equations, ẋμ = ∂H

∂pμ
and ṗμ = − ∂H

∂xμ . The Hamiltonian is indepen-
dent of t and φ, so ṗt = ṗφ = 0, leading to the conserved quantities
E = −pt (the specific energy) and L = pφ (the specific angular
momentum). The equations of motion can thus be written as

ṫ =
(

1 − 2M

r

)−1

E (10)

φ̇ = L

r2
(11)

ṙ =
(

1 − 2M

r

)
pr (12)

ṗr = −M

r2
p2

r − ME2

(r − 2M)2
+ L2

r3
(13)

The radial momentum can be written explicitly as

p2
r =

(
1 − 2M

r

)−2 [
E2 − 2V (r)

]
(14)

V (r) = 1

2
− M

r
+ L2

2r2
− ML2

r3
(15)

where V(r) is the 1D effective potential.
Let α be the CM geodesic parametrized by τ , with four velocity

ucm = α′(τ ) = ẋμ
cm∂μ. The CM has angular momentum Lcm, which

must satisfy Lcm � 2Mrt for a disruption to occur, and energy

Ecm = 1, since the incident unbound stars approach the SMBH on
roughly parabolic orbits (though these can change under different
physical circumstances; Stone & Loeb 2011; Coughlin et al. 2017;
Darbha et al. 2018). The stellar gas parcels around the CM have
a range of coordinates, energies, and angular momenta at the
moment of disruption. These can be calculated rigorously and
self-consistently in terms of Fermi Normal Coordinates (FNCs)
defined along α (Manasse & Misner 1963). We construct the FNCs
using the general approach of previous work (Luminet & Marck
1985; Brassart & Luminet 2010; Kesden 2012b), which we briefly
summarize.

Let λ(μ) be an orthonormal tetrad (ONT) defined along α, where
the circular brackets label the tetrad elements. The timelike vector
λ(0) is equal to the tangent of α (i.e. the four velocity) and the tetrad
is parallel-propagated along α(τ ). All together,

g(λ(μ), λ(ν)) = η(μ)(ν) (16)

λ(0) = ucm (17)

∇λ(0)λ(μ) = 0 (18)

where η is the Minkowski metric. The indices in circular brackets
are raised and lowered using η, and those not in circular brackets
are done so using g (Chandrasekhar 1983; Wald 1984). We use the
tetrad given by Luminet & Marck (1985) (corrected in Brassart &
Luminet 2010), and present them in Appendix A. We note that
these were obtained from the more general expressions calculated
by Marck (1983) in the Kerr metric.

Consider a debris element at a point q in the neighbourhood of α.
We take α(0) = p0 as an arbitrary reference point. There is a unique
spacelike geodesic χ that passes through q and is orthogonal to α

at some point α(τ ) = p, where we parametrize χ by the proper
distance s. We take χ (0) = p, so χ (s) = q for some s. Let X =
X(i)λ(i) be the space-like vector that is tangent to χ at p such that the
proper distance to q along χ is s = ‖X‖, where ‖X‖ = [g(X, X)]1/2 =
[X(i)X(i)]1/2. The FNCs of the debris element at q are defined to be
(τ , X(i)).

We take the reference point p0 to be the point at which the CM is
at the tidal radius. We note that X is parallel-propagated along α by
construction, and so the stellar gas parcels do not accelerate relative
to the CM geodesic before disruption. The gas parcels fall in the
range ‖X‖ ≤ R∗. For convenience, we define the unscaled vector X̃

by X = R∗X̃, where ‖X̃‖ ≤ 1.
To first order, the debris element with FNCs (0, X(i)) has

Schwarzschild coordinates xμ = xμ
cm + X(i)λ

μ
(i), and energy and

angular momentum

E(X(i)) = Ecm + �E(X(i)) (19)

L(X(i)) = Lcm + �L(X(i)) (20)

with deviations given by (Kesden 2012b)

�E(X(i)) = ∇XEcm = −gμνλ
μ
(0)X

(i)λ
β

(i)�
ν
βt (21)

�L(X(i)) = ∇XLcm = gμνλ
μ
(0)X

(i)λ
β

(i)�
ν
βφ (22)

where ∇ is the Levi–Civita connection and � are the Christoffel
symbols. We can write these as

�E(X(i)) = M

r2
cm

∑
i=1,3

X(i)
(
ṫcmλr

(i) − ṙcmλt
(i)

)
(23)

�L(X(i)) = rcm

∑
i=1,3

X(i)
(
−ṙcmλ

φ
(i) + φ̇cmλr

(i)

)
(24)
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(a) (b)

Figure 1. The debris in the equatorial plane (X(2) = 0) for M/M� = 5 × 104, Solar-type stars, Ecm = 1, and Lcm = 4.1M, described in terms of (a) the
coordinates (X̃(1), X̃(3)) and (b) the parameters (E, L). The black dashed line shows the curve separating captured (below) and uncaptured (above) debris
elements. The black circle marks the CM. The red (blue) dot shows the geodesic with the smallest (largest) value of L.

We note that these do not depend on X(2) explicitly, only through the
constraint ‖X‖ ≤ R∗. We only need the first order expressions due to
the parameter regime that we consider (equations 1 and 2), though
the extension to a more general regime would require higher order
corrections (Ishii, Shibata & Mino 2005; Cheng & Evans 2013;
Cheng & Bogdanović 2014).

In our setup, we set the stellar CM to move in the equatorial plane
(θ = π/2, θ̇ = 0) and to be at the tidal radius along the x-axis (r,
θ , φ) = (rt, π/2, 0). We restrict our attention to the post-disruption
debris geodesics also in the equatorial plane (X(2) = 0). This is the
symmetry plane around which the debris moves. This restriction
to equatorial debris reduces the degrees of freedom to the (t, r, φ)
coordinates, which simplifies the condition for self-intersection. The
equatorial geodesics are uniquely identified by the coordinates (X(1),
X(3)), which map in a linear, one-to-one fashion to the parameters
(E, L) for a given Ecm, Lcm, and rt.

The ultimate fate of a debris element with parameters (E, L)
can be determined from V(r). If L2 < 12M2, the debris will
undoubtedly be captured by the SMBH. If L2 ≥ 12M2, the debris
will be captured (including stalling indefinitely) if V (r−) ≤ E2

2 ,

where r−(L) ≡ L2

2M
[1 − (1 − 12M2

L2 )1/2] is the radius of the unstable
circular orbit, and the angular momentum for capture Lcap is defined

from V (r−(Lcap)) = E2

2 . In particular, geodesics with E = 1 will be
captured if L2 ≤ L2

cap = 16M2.
Fig. 1 shows the coordinates and parameters of the equatorial

debris, and the regions which are captured and uncaptured, for one
set of SMBH and stellar parameters. The geometry of the regions
can be understood simply. The debris elements in the equatorial
plane have coordinates in the domain ‖X̃‖2 = X̃(i)X̃(i) = (X̃(1))2 +
(X̃(3))2 ≤ 1. The linear map in equations (19)–(24) maps this circle
in the X̃(1)X̃(3)-plane to the ellipse A(E − Ecm)2 + B(E − Ecm)[(L −
Lcm)/M] + C[(L − Lcm)/M]2 ≤ 1 in the EL-plane, where A, B, and C
each depend on Ecm, Lcm, and rcm. Since Ecm = 1 and �E/Ecm � 1,
the curve V(r−) = E2/2 in the EL-plane that separates the captured

and uncaptured debris is roughly a horizontal line at L = Lcap = 4M,
and is mapped in inverse to the line shown in the X̃(1)X̃(3)-plane.

The debris domains in Fig. 1 do not take stellar structure into
account. In particular, the geodesic model treats all points in these
domains equally, whereas in any physical star, the density profile
is peaked at the centre and decays towards R∗. This difference
becomes particularly important for Lcm in the range Lcm < Lcap <

Lcm + (�L)max. In the geodesic model, the CM will be captured in
this range, but there will be uncaptured debris that may produce a
self-intersection. However, in a physical star, this uncaptured debris
will have low density since it arises from the stellar envelope, and
will thus only weakly self-intersect.

To express the prompt self-intersection condition for the equa-
torial debris, let ψ(u, τ ) be the collection of equatorial debris
geodesics, ψ : R2 × R → M, where u = (X̃(1), X̃(3)) ∈ R2 labels
a geodesic in the collection by its (unscaled) spatial FNCs before
disruption, τ ∈ R gives the proper time along a geodesic, and M
is the spacetime manifold. A self-intersection will occur if there
exist two distinct points u1 and u2 and some times τ 1 and τ 2 such
that (xμ◦ψ)(u1, τ 1) = (xμ◦ψ)(u2, τ 2), where equivalence in the
φ-coordinate is defined such that the two expressions differ by at
least 2π.

However, this mathematical relation is cumbersome to implement
numerically, so we instead adopt an approximate condition for self-
intersection. If V(r−(Lmax)) ≤ E(Lmax), then all of the debris will
be captured. If V(r−(Lmax)) > E(Lmax) and V(r−(Lmin)) ≤ E(Lmin),
then some (but not all) of the debris will be captured, and some of
the uncaptured debris must promptly self-intersect. This is because
the EL parameter space is smooth, so there will be geodesics with
pericentres arbitrarily close to the event horizon that will rapidly
precess and intersect the geodesics that have larger pericentres. If
V(r−(Lmin)) > E(Lmin), then none of the debris will be captured.
In this case, we select the debris elements with the smallest and
largest values of L, which we label as γ (Lmin) and γ (Lmax). These
two have among the smallest and largest values of (rp)GR, and will

MNRAS 488, 5267–5278 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/488/4/5267/5531769 by Leicester U
niversity Library user on 24 Septem

ber 2019



5272 S. Darbha et al.

(a) (b)

Figure 2. Orbit snapshots at a coordinate time t showing the self-intersection behaviour of the equatorial debris geodesics, for M/M� = 5 × 104, Solar-type
stars, Ecm = 1, and two different values of Lcm. The black circle shows the Schwarzschild radius rS = 2M, the location of the event horizon. The red (blue)
curve shows the geodesic with the smallest (largest) value of L. The grey curves show 100 geodesics with randomly selected values of E and L. (a) Lcm =
4.1M. This falls in the regime V(r−(Lmax)) > E(Lmax) and V(r−(Lmin)) ≤ E(Lmin), in which some of the geodesics are captured and some of the uncaptured
geodesics must promptly self-intersect. (b) Lcm = 4.72M. This falls in the regime V(r−(Lmin)) > E(Lmin), in which none of the geodesics are captured. Here,
�φ ≡ φ(Lmin) − φ(Lmax) > 2πfor some t, so the debris promptly self-intersects.

be among the leading and trailing geodesics to reach the SMBH. We
integrate these geodesics, and classify the outcome as a prompt self-
intersection if there is a coordinate time t at which �φ ≡ φ(Lmin)
− φ(Lmax) ≥ 2π. If this condition is met, then there likely exist
two geodesics that satisfy the exact condition above. We note that
this approximate condition is neither necessary nor sufficient for
the exact condition. If (xμ◦ψ)(u1, τ 1) = (xμ◦ψ)(u2, τ 2), then it is
possible that �φ < 2πsince γ (Lmin) and γ (Lmax) are not rigorously
the leading and trailing geodesics. If �φ ≥ 2π, then it is possible
that (xμ◦ψ)(u1, τ 1) �= (xμ◦ψ)(u2, τ 2) because γ (Lmin) fails to catch
up to any of the other geodesics. These two possibilities, though,
are unlikely. Fig. 2 shows the trajectories of geodesics for one set
of SMBH and stellar parameters and two different values of Lcm,
which produce prompt self-intersections in these two regimes.

Fig. 3 shows the range of β over which we expect prompt self-
intersections as a function of the SMBH mass, for Solar-type stars.
The minimum (maximum) penetration factor is βmin � 50 (βmax

� 560) for M/M� = 104, and decreases to βmin � 5.6 (βmax �
6.2) for M/M� = 106. The event horizon sets the length-scale for a
given black hole mass. The curves for βmin and βmax thus converge
at higher masses, and the condition R∗ � rt breaks down at lower
masses M/M∗ � 104. Fig. 4 shows the same for stars with M∗/M� =
10.

The four black curves in Figs 3 and 4 divide the space into five
regimes of interest: (1) below βmin, uncap (solid), there are no prompt
self-intersections because Lcm is too large, which leads to a large
rp and thus to a relative precession angle δφ < 2π; (2) between
βmin, uncap (solid) and βmax, uncap (dashed), none of the debris gets
captured, and it precesses sufficiently to produce a self-intersection;
(3) between βmax, uncap (dashed) and β(Lcm = Lcap) (dotted), some
of the debris gets captured but the CM does not, and the remainder
necessarily self-intersects; (4) between β(Lcm = Lcap) (dotted) and
βmax, cap (dotted–dashed), some of the debris gets captured including

the CM, and the remainder necessarily self-intersects; and (5) above
βmax, cap (dotted–dashed), all of the debris gets captured.

Not all of the prompt self-intersections will lead to energetic
collisions. The observationally significant self-intersections will
occur in regimes (2) and (3), where the CM is not captured. The
colliding debris has more mass and a higher density here relative
to the other regimes, since the stellar density profile is peaked at
the centre and decays towards R∗. It is these energetic collisions
that will lead to qualitatively different behaviour and new emission
signatures. In contrast, the events in regime (4) will produce weaker
self-intersections.

The scaling of βmin with M/M∗ calculated here exhibits the
opposite trend to that found in our order of magnitude, analytic
estimate in equation (8). For M∗ = 1 M�, the two roughly agree
for M/M� ∼ (0.6–1) × 105; for M∗ = 10 M�, they roughly agree
for M/M� ∼ (2–4) × 105. The analytic estimate is inaccurate for
SMBH masses above and below this. For masses above this, though,
the range of β for a self-intersection shrinks rapidly.

For comparison, Evans et al. (2015) examined deep encounters
with β = 10 and 15 of Solar-type stars incident on an SMBH of
mass M = 105 M�. These values of β lie below the range β �
22–35 that we find are required for prompt self-intersection. For
these shallower encounters, though, the above authors still observe
efficient debris circularization due to apsidal precession and the
rapid formation of an accretion disc.

3 H Y D RO DY NA M I C S I M U L AT I O N S

In this section, we perform hydrodynamic simulations of deep
TDEs of Solar-type stars (M∗ = 1 M� and R∗ = 1R�) by SMBHs
of masses M/M� = (0.6, 1, 1.4) × 105 (selected from Fig. 3) to
validate the range of β that will produce prompt self-intersections.
We use the SPH code PHANTOM (Price et al. 2018), which has been
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(a) (b)

Figure 3. The range of β = L2
t /L

2
cm over which the debris will promptly self-intersect (black curves). The solid (dashed) curve shows the minimum (maximum)

value βmin, uncap (βmax, uncap) for which there is a self-intersection and in which none of the debris is captured. The dotted curve shows the GR boundary for
the star’s CM to get captured by the BH, β(Lcm = Lcap). The dotted–dashed curve shows the value βmax, cap at which all of the debris gets captured. The blue,
solid lines show the Newtonian boundaries for the star to absorb the BH, β(L2

cm = 2MR∗), the star’s CM to get captured by the BH, β(L2
cm = 2Mrs ), and

the star to avoid disruption, β(Lcm = Lt). The red, dotted, vertical lines show the SMBH masses at which L2
cap = 2MR∗ and R∗ = rS. The disrupted stars are

Sun-like (M∗/M� = 1 and R∗/R� = 1). (a) β versus M/ M� for the range of BH masses for which our approximations hold. (b) The ‘TDE triangle’ (adapted
from Luminet & Pichon 1989a). The grey, solid, vertical lines show the boundary of the mass range in panel (a).

(a) (b)

Figure 4. The same as Fig. 3, but for stars with M∗/ M� = 10 and a mass–radius relation of R∗ = R�(M∗/ M�)α where α = 0.57, which holds for
main-sequence stars with masses M∗/ M� � 1 (Torres et al. 2010).

successfully used to study a range of TDE phenomena (Coughlin &
Nixon 2015; Coughlin et al. 2016; Bonnerot et al. 2016; Golightly,
Coughlin & Nixon 2019). In contrast to these previous studies,
we primarily seek to model the orbit and tidal deformation of the
debris, and do not seek to accurately model the strong compression,
shock, and collision physics. Unlike the geodesic model, though,
the simulations incorporate pressure and self-gravity, and the star
can experience tidal distortions prior to reaching the tidal radius.

We model the gravity of the SMBH using the generalized
Newtonian potential developed by Tejeda & Rosswog (2013),
which accurately reproduces several features of the Schwarzschild
metric. In particular, it captures the orbital frequencies with an error
�6 per cent and exactly reproduces the apsidal precession angle
for zero-energy orbits, making it well suited for studying TDEs.
Bonnerot et al. (2016) successfully used this potential in PHANTOM

to examine debris circularization and accretion disc formation. We
set the accretion radius of the SMBH to be 1 per cent larger than
the Schwarzschild radius; the SPH particles that cross this radius
are captured and removed from the simulation.

We model the star as a polytrope with γ = 5/3 (Hansen,
Kawaler & Trimble 2004). To generate the polytrope, we follow
the procedure outlined in Coughlin & Nixon (2015), and place the
SPH particles on a tightly packed sphere, stretch the sphere towards
a polytropic distribution, and relax the configuration for 10 sound-
crossing times to produce a static initial state, which closely matches
the known analytical solution.

To simulate an encounter with a penetration factor β, we place
the relaxed star on a Newtonian parabolic orbit at an initial
distance ri = 3rt and with pericentre rp = rt/β (we also ran a
few encounters with ri = 5rt and found only small differences).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. The column density in the xy-plane of the disrupted debris near pericentre for Solar-type stars and different values of M/M� and β. The xy-axes are
in units of rg = GM/c2, and the colour bar gives the column density on a logarithmic scale. The top row shows M/M� = 0.6 × 105, the middle row shows
M/M� = 105, and the bottom row shows M/M� = 1.4 × 105. From left to right, the columns show: (a), (e), (i) the debris does not self-intersect; (b), (f), (j) the
debris self-intersects; (c), (g), (k) the CM of the star is captured and the remaining debris weakly self-intersects; and (d), (h), (l) most of the debris is captured.

This setup is equivalent to initializing the Newtonian orbit of the
stellar CM with the same angular momentum as the corresponding
GR orbit; the generalized Newtonian potential should then recover
the correct GR orbit. We note, though, that there are several ways
to identify a GR orbit with a Newtonian orbit (Servin & Kesden
2017).

We use ∼106 SPH particles for each simulation. We do not
account for shock heating, which is essential for capturing the
evolution of the debris after self-intersection. However, our goal
here is to test for the existence of the self-intersection, prior to which
shock heating should not be important in the midplane. The self-
gravity of the SPH particles is implemented using a tree algorithm;
we adopt an opening angle criterion of θ = 0.5 to adequately capture
the short-range forces (Gafton & Rosswog 2011). We produce
images of the encounters using the visualization tool SPLASH (Price
2007).

Fig. 5 shows the column density in the xy-plane of the disrupted
debris near pericentre for Solar-type stars and different values of
M/M� and β. For M/M� = (0.6, 1, 1.4) × 105, the SPH simulations
give βmin � 27, 22, and 19 for self-intersection. These values are
in close agreement with those from the geodesic model (βmin � 28,
22, and 19; Fig. 3), with a slightly shallower scaling of βmin with
M/M�. The SMBHs in the simulations begin capturing the stellar
CM around β = 38, 28, and 22 and capture most of the debris
by β = 44, 32, and 24, which are again in close agreement with

the values of β(Lcm = Lcap) and the region between β(Lcm = Lcap)
and βmax predicted by the geodesic model. The simulations also
confirm that the higher mass SMBHs require a smaller range of β

for self-intersection.
These simulations confirm the basic predictions of the geodesic

model of Section 2.2 and the more crude, analytic estimates of
Section 2.1. The initial tidal distortion of the star before it reaches
the tidal radius could explain the slightly smaller values of β for
low SMBH masses for which the SPH simulations yield self-
intersections; the star is slightly elongated at the time it reaches
rt, so it does not need to be subsequently stretched by the amount
predicted by the ‘frozen-in’ approximation in order to self-intersect.
We note, however, that the minimum penetration factor for self-
intersection that we find here (βmin � 22 for M = 105 M�) is still
well above the value of β = 10 found numerically by Evans et al.
(2015). The origin of this discrepancy is unclear, though it may
be due to the softer polytropic equation of state that those authors
employed.

4 D ISCUSSION

In this paper, we examined a new regime of ultra-deep TDEs
of main-sequence stars in which the disrupted debris promptly
intersects itself at the first pericentre passage. This is in contrast
to canonical TDEs in which the debris gradually intersects itself
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following the return of the debris to pericentre (Rees 1988). We
calculated the range of SMBH masses M and penetration factors
β for which these prompt self-intersections occur, using (1) a
rough, order-of-magnitude, analytic estimate (Section 2.1); (2) a
geodesic model under the impulse and ‘frozen-in’ approximations
(Section 2.2); and (3) SPH simulations (Section 3). In all three of
these approaches, we demonstrated that one needs a combination
of large penetration factor (β � 10) and small black hole mass
(M � 106M�) in order for the debris to experience extreme tidal
distortion as it plunges within the tidal sphere, to travel through
large precession angles at pericentre (�2π), and to avoid plunging
into the SMBH.

These ultra-deep TDEs will produce observable electromagnetic
(EM) and GW signals closely spaced in time. We provide rough
estimates for the multimessenger signatures of such an event here,
but leave a detailed analysis to a future study. We then briefly discuss
the detection prospects for these events.

We begin with an estimate of the prompt radiation emitted in
the self-intersection. We model the debris stream as a cylinder
of length l ∼ rp and radius r ∼ R∗. A smaller portion lc <

l of the debris stream is shocked in the intersection. This is a
strong shock, which deposits a thermal energy density of order
ρv2

s , where ρ ∼ 3M∗/4πR3
∗ is the debris mass density (assumed

constant) and vs is the shock velocity, which roughly equals the
debris velocity at pericentre, vs ∼ vp ∼ (GM/rp)1/2. The stream
is optically thick, so only thermal energy in the surface layers can
diffuse out before the remainder is degraded by adiabatic expansion.
The optical depth of the surface layer is τ = ρκ�R, where �R is
its thickness and κ ∼ 0.4 cm2g−1 is the opacity, assumed to be
dominated by electron scattering. If we impose the condition that
the photon diffusion time through the layer, tdiff ∼ τ�R/c, must
be shorter than the debris expansion time, texp ∼ R∗/vp, then we
obtain �R � (cR∗/ρκvp)1/2. The thermal energy in the surface
layer is then �E ∼ (2πR∗lc�R)(ρv2

s ) ∼ 2πlc(R3
∗v

3
pcρ/κ)1/2. For

M ∼ 105 M�, Solar-type stars, rp ∼ 5rg, and an interaction length
of lc ∼ R∗, this is �E ∼ 1.3 × 1048 erg. The light crossing time, tlc

∼ R∗/c ∼ 2.3 s, is much larger than the photon diffusion time, tdiff ∼
1.2 × 10−5 s; the former thus determines the time-scale over which
the energy will appear to be radiated to a distant observer, which
gives an observed luminosity of order L ∼ 5.5 × 1047 erg s−1. The
effective temperature T can also be estimated by L = (2πR∗lc)σT4,
giving T ∼ 2.4 × 107 K (kT ∼ 2.1 keV, where k is the Boltzmann
constant). The collision will thus produce a short, bright flare in
X-ray wavelengths.

As discussed above, the strong shock from self-intersection
converts much of the kinetic energy (∼ ρv2

p) into thermal energy,
which is comparable to the gravitational binding energy. Following
this, the fate of the debris is uncertain; some will plunge into the
black hole, some will form a disc and accrete onto the black hole
through viscous processes, and some will be ejected. The debris
that plunges into the black hole will not emit an observable EM
signature. The debris that accretes will have a prompt accretion
phase over the initial viscous time-scale, tvisc, and a delayed
accretion phase over a longer time-scale. For the prompt phase,
we can roughly estimate the viscous time tvisc using the α-viscosity
prescription for thin discs developed by Shakura & Sunyaev (1976),
which gives tvisc ∼ α−1(h/r)−2P where the debris has scale height
h, radial extent r, orbital period P, and dimensionless viscous
parameter α, though we note that the accreting debris is well outside
the thin disc regime. For h ∼ R∗, r ∼ rp, P ∼ 2π(r3

p /GM)1/2, α ∼
0.1, and the stellar and black hole parameters above, we find tvisc

∼ 6.5 min. The accretion rate is then Ṁ ∼ ηM∗/tvisc, where η is
the fraction of debris that is promptly accreted. For η ∼ 0.1–0.5,
this yields Ṁ ∼ (0.8–4) × 104 M�yr−1. Evans et al. (2015) found
similar accretion rates and time-scales for the prompt accretion
episodes in their simulations, though for shallower encounters
than considered here. We can estimate the accretion luminosity
as L ∼ εṀc2 erg s−1, where ε is the radiative efficiency. For
even a modest ε ∼ 0.1, the emission is highly super-Eddington,
L/LEdd ∼ 107–108. The radiation may drive an outflow from the
disc, yielding an observed luminosity that is Eddington-limited,
or it may be highly beamed in the form of a jet that does not
unbind the disc, yielding an intrinsic accretion rate close to Ṁ

(Coughlin & Begelman 2014). For the delayed phase, it is unclear
whether the debris accretes with the characteristic t−5/3 decay of
conventional TDEs (Kawana et al. 2018; Anninos et al. 2018),
or at a roughly constant rate (Evans et al. 2015), or exhibits an
altogether different behaviour. The debris that is ejected, both from
the self-intersection and the super-Eddington accretion, can produce
an afterglow when it collides with matter surrounding the galactic
nucleus.

There is another potential EM signature that may occur in a
deep encounter even before the initial pericentre passage. A star
approaching a SMBH in a deep encounter may experience strong
tidal compression as it approaches pericentre, which will generate
a shock wave that propagates to the surface, heats the outer
layers, and produces an X-ray signature (Kobayashi et al. 2004;
Guillochon et al. 2009; Yalinewich et al. 2019). If compression
does occur, it may ignite nuclear reactions (Carter & Luminet 1982;
Bicknell & Gingold 1983). Early studies of the X-ray breakout
examined encounters with black hole masses M ∼ 106 M�, Solar-
type stars, and β ∼ 5–10, and found luminosities L ∼ 1042–1044

erg s−1 at average photon energies E ∼ 1–4 keV (Kobayashi et al.
2004; Guillochon et al. 2009). Recently, Yalinewich et al. (2019)
lowered this prediction to L ∼ 1041 erg s−1 at E ∼ 1–10 keV, the
reduction arising from a more rapid drop in the shock velocity
with increasing distance (decreasing density) from the midplane.
For ultra-deep encounters, the debris may even spread sufficiently
before pericentre to prevent X-ray breakout altogether (Evans et al.
2015).

It is interesting to compare the two types of X-ray flares discussed
above: one from self-intersection in ultra-deep encounters, and
one from tidal compression in general deep encounters. The self-
intersection flare is ∼3 orders of magnitude brighter than the
compression flare. The higher brightness arises because the specific
kinetic energy budget available for shock heating is much larger
for self-intersection, v2

p ∼ GM/rp, than tidal compression, v2 �
β2(GM∗/R∗) (Carter & Luminet 1982). Even if the self-intersection
shock degrades by ∼2–3 orders of magnitude like the compression
shock, it will still produce an X-ray flare at least as bright as the
most optimistic estimates from the compression shock.

Deep encounters will also produce two types of GW signatures.
The first signature arises from the orbital motion of the debris near
pericentre (Kobayashi et al. 2004; Guillochon et al. 2009), including
when the debris is fully captured (East 2014). The GW frequency
and strain for these events are roughly (Kobayashi et al. 2004;
Guillochon et al. 2009)

f ∼
(

GM

r3
p

)1/2

∼ (6.3 × 10−4 Hz)β3/2m1/2
∗ r−3/2

∗ (25)

h ∼ GM∗rS

c2drp
∼ 4.4 × 10−23βd−1

10 m4/3
∗ r−1

∗ M
2/3
5 (26)
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where d10 ≡ d/(10 Mpc) with d being the distance to the event. For
the distance d10 = 1 and the parameters in Fig. 3 (i.e. the stellar
parameters, the range of SMBH masses, and the values of βmin), we
find f ∼ (2.2–0.06) × 10−1 Hz and h ∼ (0.47–1.1) × 10−21. These lie
outside the sensitivity of both the Advanced Laser Interferometer
Gravitational-Wave Observatory (LIGO, LIGO Scientific Collab-
oration et al. 2015) and the Laser Interferometer Space Antenna
(LISA, Amaro-Seoane et al. 2017), but are accessible to currently
proposed GW detectors (Moore, Cole & Berry 2015), notably those
in the decihertz range (Kawamura et al. 2006; Sato et al. 2017). For
the parameters in Fig. 4, we find f ∼ (4.7–0.17) × 10−2 Hz and h ∼
(0.49–1.1) × 10−20. These fall marginally within the sensitivity of
LISA. The second GW signature arises from the tidal deformation
of the star itself (Guillochon et al. 2009; Stone et al. 2013). For our
parameter range, the frequency and strain are roughly (Stone et al.
2013)

f ∼ (3.8 × 10−5 Hz)β4m1/2
∗ r−3/2

∗ (27)

h+ ∼ 1.2 × 10−24β−2d−1
10 m11/6

∗ r−1
∗ M

1/3
5 (28)

These signals are not detectable by advanced LIGO or LISA, and
fall only marginally within the sensitivity of future GW detectors.

Ultra-deep TDEs are statistically rare due to the large penetration
factors required to achieve them. The probability of a prompt self-
intersection depends on the BH mass function over our mass range
and the state of the stellar loss cone at a given BH mass, namely the
degree to which it is ‘full’ (‘pinhole’ regime) or ‘empty’ (‘diffusive’
regime) (Frank & Rees 1976; Lightman & Shapiro 1977). We
assume a uniform distribution for the BH mass function over our
mass range, though we note that the scaling depends on the model
assumptions used to construct it (Stone & Metzger 2016; Kochanek
2016; van Velzen 2018). The TDE rate is then ṄTDE ∼ 10−5

Mpc−3 yr−1 for SMBHs with masses M ∼ (104–106) M� (Stone &
Metzger 2016). We also assume that the loss cone is ‘full’ over
our mass range, which likely holds for SMBHs with masses
M ∼ (105–106) M� (Stone & Metzger 2016). The incident stars
will then have penetration factors distributed according to the
probability density function (PDF) fB(β) = β−2 (Luminet & Barbuy
1990; Stone & Metzger 2016; Kochanek 2016). The probability
of a significant prompt self-intersection over our mass range is
then simply PSI � β−1

min − β(Lcm = Lcap)−1 � 1 per cent, yielding
an ultra-deep TDE rate of ṄUD � 10−7 Mpc−3 yr−1.

The X-ray flare from self-intersection evolves quickly, akin to
a gamma-ray burst (GRB), and distinguishes ultra-deep TDEs
from conventional ones. We estimate its detectability. We use
the current parameters for a flat � cold dark matter cosmology
(Hinshaw et al. 2013). For simplicity, we round the numbers in
our emission estimate above, and consider a monochromatic source
with emitted luminosity Le ∼ 5 × 1047 erg s−1, energy Ee ∼ 2 keV
(frequency νe = Ee/h, where h here is the Planck constant), and
duration �te ∼ 2 s. If the source is at redshift z, the detector will
observe the event with energy Eo = Ee/(1 + z) (frequency νo =
νe/(1 + z)) over a duration �to = (1 + z)�te. The flux at the
detector is So = Le/4πD2

L, where DL is the luminosity distance.
We take the integration time at the detector to be �tint ∼ �te. The
number of counts measured at the detector is then n = So�tintA/Eo,
where A is the effective area of the detector. The background
is low since our integration time is short, so a signal of n =
10 counts provides a ∼3σ detection. The maximum luminosity
distance DL that can be observed at this level is given by DL/(1 +
z)1/2 = (Le�tintA/4πnEe)1/2, which yields a corresponding comoving

volume VC. The event rate within this volume is R = ṄUDVC. For
detectors with a narrow field of view �, the detection rate is then
Rdet = R�/4π.

We estimate the detection rate using parameters characteristic of
two X-ray missions with the required energy range and narrow fields
of view: the Swift X-ray Telescope (XRT, Burrows et al. 2005),
and the upcoming extended Roentgen Survey with an Imaging
Telescope Array (eROSITA, Merloni et al. 2012). The X-ray flare
is below the energy range of the Swift Burst Alert Telescope (BAT,
Krimm et al. 2013). For Swift XRT (A ∼ 125 cm2, and � = 23.6
arcmin2), we find a limiting distance DL ∼ 9 Gpc with Eo ∼ 0.9 keV,
�to ∼ 4 s, R ∼ 2 × 104 yr−1, and Rdet ∼ 0.1 yr−1, which makes a
serendipitous detection unlikely. For eROSITA (A ∼ 1000 cm2, and
� = 0.833 deg2), we find DL ∼ 36 Gpc with Eo ∼ 0.4 keV, �to ∼
10 s, R ∼ 2 × 105 yr−1, and Rdet ∼ 3 yr−1, which is slightly more
promising. A higher detection rate can be achieved using an all-
sky monitor with the appropriate energy range and time resolution,
such as the Monitor of All-sky X-ray Image Solid-State Slit Camera
(Matsuoka et al. 2009; Tomida et al. 2011).

Recently, several groups have discovered X-ray transients with
the Chandra X-ray Observatory that exhibit a prompt, high lumi-
nosity precursor flash followed by a longer term, power-law decay
(Jonker et al. 2013; Glennie et al. 2015; Bauer et al. 2017). The
above authors suggest several possible progenitors, including the
tidal disruption of a WD and an off-axis short GRB. To these, we
can add ultra-deep disruptions of main-sequence stars, which our
predictions suggest have similar behaviour, time-scales, energies,
and luminosities. The above authors also estimate similar all-sky
event rates as ours, one finding ∼10−7 Mpc−3 yr−1 at z ∼ 1 (Bauer
et al. 2017), and another finding ∼1.4 × 105 yr−1 for Chandra
(Glennie et al. 2015), though these have large uncertainties.

In addition, the potential late-time dynamics may be observable in
wide-field optical surveys. Though ṄUD is small, current wide-field
surveys such as the Zwicky Transient Facility (Bellm et al. 2019)
and upcoming surveys like the Large Synoptic Survey Telescope
(Ivezić et al. 2019) should collectively detect hundreds to thousands
of TDEs, yielding a few to dozens of these rare events.
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A P P E N D I X A : O RTH O N O R M A L T E T R A D

In Section 2.2, we modelled the debris elements as independent
geodesics in the Schwarzschild metric, and used an ONT λ(μ)

that is parallel propagated along the time-like, CM geodesic to
define FNCs. In this appendix, we give the components of the
tetrad elements in the Schwarzschild coordinate basis; these were
presented in earlier work (Luminet & Marck 1985; Brassart &
Luminet 2010), and obtained from the more general expressions
derived by Marck (1983) in the Kerr metric.

The zeroth element of the tetrad is simply the four velocity of
the CM of the star, λ(0) = ucm = ṫ∂t + ṙ∂r + φ̇∂φ . We considered
the CM geodesic to move in the equatorial plane (θ = π/2, θ̇ = 0)
without loss of generality, so the second element is simply λ(2) =
1
r
∂θ . The first element is

λt
(1) = (rṙ cos ψ − EL sin ψ)

(
1 − 2M

r

)−1

(r2 + L2)−1/2 (A1)

λr
(1) = (Er cos ψ − ṙL sin ψ)(r2 + L2)−1/2 (A2)

λθ
(1) = 0 (A3)
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λ
φ
(1) = − (r2 + L2)1/2

r2
sin ψ (A4)

The third element is

λt
(3) = (rṙ sin ψ + EL cos ψ)

(
1 − 2M

r

)−1

(r2 + L2)−1/2 (A5)

λr
(3) = (Er sin ψ + ṙL cos ψ)(r2 + L2)−1/2 (A6)

λθ
(3) = 0 (A7)

λ
φ
(3) = (r2 + L2)1/2

r2
cos ψ (A8)

The angle ψ is calculated from

ψ̇ = EL

r2 + L2
(A9)

We take ψ = 0 at r = rt, since we chose the point of disruption
to be the reference point for our FNCs. This simplifies the above
expressions at the tidal radius; in particular, λ

φ
(1) vanishes.
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