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to Inform Decision Making: A Case Study in
Metastatic Hormone-Refractory Prostate

Cancer
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Abstract

In health technology assessment, decisions are based on complex cost-effectiveness models that require numerous
input parameters. When not all relevant estimates are available, the model may have to be simplified. Multiparameter
evidence synthesis combines data from diverse sources of evidence, which results in obtaining estimates required in
clinical decision making that otherwise may not be available. We demonstrate how bivariate meta-analysis can be used
to predict an unreported estimate of a treatment effect enabling implementation of a multistate Markov model, which
otherwise needs to be simplified. To illustrate this, we used an example of cost-effectiveness analysis for docetaxel in
combination with prednisolone in metastatic hormone-refractory prostate cancer. Bivariate meta-analysis was used to
model jointly available data on treatment effects on overall survival and progression-free survival (PFS) to predict the
unreported effect on PFS in a study evaluating docetaxel with prednisolone. The predicted treatment effect on PFS
enabled implementation of a 3-state Markov model comprising stable disease, progressive disease, and dead states,
while lack of the estimate restricted the model to a 2-state model (with alive and dead states). The 2-state and 3-state
models were compared by calculating the incremental cost-effectiveness ratio (which was much lower in the 3-state
model: £22,148 per quality-adjusted life year gained compared to £30,026 obtained from the 2-state model) and the
expected value of perfect information (which increased with the 3-state model). The 3-state model has the advantage
of distinguishing surviving patients who progressed from those who did not progress. Hence, the use of advanced
meta-analytic techniques allowed obtaining relevant parameter estimates to populate a model describing disease path-
way in more detail while helping to prevent valuable clinical data from being discarded.
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In health technology assessment (HTA), reimbursement
decisions for new health technologies are made based on
cost-effectiveness models. Such often complex models
are implemented using estimates of effectiveness, health-
related quality of life (HRQoL), and cost. Effectiveness
estimates are usually obtained from the systematic litera-
ture review and meta-analysis of randomized controlled
trials (RCTs), which are designed to give an estimate of
the treatment effect on the primary clinical outcome. The
choice of the outcome measures for RCTs and reporting
of findings rarely take into consideration what is

important from the HTA perspective. There is often a lot
of heterogeneity in reporting of clinical outcomes due to,
for example, variety of scales on which effectiveness can
be measured, different time points at which different
studies report their outcomes, or different control arms.
Relevant outcomes may not be reported due to poor
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study design, outcome reporting bias, or problems with
outcome measurement. Although one would expect the
outcome reporting bias (or other mechanisms for not
reporting important information) to have decreased over
the years as trials are the subject of increased scrutiny,
there is still a nonnegligible issue with reporting of the
outcomes of RCTs. For example, a systematic review of
pharmacological treatments in advanced colorectal can-
cer by Ciani et al.1 found that only 41 of 101 studies
reported the treatment effect on progression-free survival
(PFS). Among 75 studies published between 2003 and
2010, 36% did not report the treatment effect on PFS,
and 54% of 26 studies published between 2011 and 2012
also did not report the treatment effect on this outcome.
Another example is a meta-analysis in advanced non–
small cell lung cancer (NSCLC) by Créquit et al.2 where
it was not possible to obtain the treatment effect on PFS
in 17 of 102 studies, 9 of them published between 2000
and 2010 and 8 of them published between 2011 and 2016.
Such problems with reporting important outcomes may
lead to difficulties with populating a cost-effectiveness
model with appropriate parameters.

Bayesian statistics provides a flexible framework for
modeling complex data structures by allowing multiple
parameters to be modeled simultaneously. This is particu-
larly useful when multiple data sources need to be brought
together, which can be achieved by the use of multipara-
meter evidence synthesis. Network meta-analysis (NMA)
facilitates simultaneous comparison of multiple treatment
options with an aim of obtaining effectiveness estimates
for all possible treatment contrasts, including those that
may not be directly reported by any RCTs.3 Multivariate
meta-analysis (MvMA) allows joint modeling of treatment
effects on multiple outcomes with the aim of obtaining
pooled effects on all the outcomes while taking into
account the correlation between them.4–6 There are many
advantages of MvMA, including 1) potentially increased
precision of effectiveness estimates, which can lead to

increased precision of other estimates, such as HRQoL7;
2) inclusion of all relevant evidence from studies reporting
relevant outcomes (other than the main outcome of inter-
est), preventing valuable data from being discarded7; and
3) potentially reduced outcome reporting bias.8 In this arti-
cle, we propose the use of bivariate random-effects meta-
analysis (BRMA) for the purpose of predicting unreported
treatment effects in individual studies, rather than obtain-
ing overall pooled effects,6,9,10 aiming to inform a complex
HTA modeling framework.

A multistate Markov model is one of the most fre-
quently used decision models in HTA. The number of
health states in the model depends on the disease area,
and the states should be chosen to represent clinically
and economically important events and be mutually
exclusive, such as a 3-state model, including asympto-
matic state, progressive disease state, and dead state.11

To populate a 3-state model in cancer, the transition
probabilities between the states are obtained from data
on both overall survival (OS) and PFS. When data are
not available to estimate all parameters of the model, the
model may need to be simplified, which conflicts with its
purpose to simulate real-life scenarios.

We illustrate how multiparameter evidence synthesis
can be applied to fully utilize all available evidence to
inform parameters of a Markov model. To demonstrate
this methodology, we apply the methods to inform cost-
effectiveness analysis of docetaxel in prostate cancer. In
the technology assessment of docetaxel, Collins et al.12

constructed a 2-state Markov model consisting of the
alive and dead states. Reviewing the evidence on the
effectiveness of docetaxel made it apparent that relevant
evidence of the treatment effect on PFS was not avail-
able for docetaxel at the HTA submission stage, limiting
the development of the decision model to the two states
only. We demonstrate how the use of MvMA can lead
to obtaining relevant estimates necessary to populate a
3-state Markov model, including a progression state.

Modeling the natural course of the disease through
the relevant number of states corresponding to the asso-
ciated utility, cost, and transition probabilities (rather
than merely modeling available data) is very important
from the point of view of the structural uncertainty of
the health economic model.13 In other disease areas,
Markov models may include a different number of
unique states related to the stages specific to the particu-
lar disease. Transition probabilities will then be based on
multiple effectiveness parameters related to those states,
which can be modeled jointly through the multivariate
meta-analysis, taking into account of missing data6 likely
present when several outcomes are involved.

Biostatistics Research Group, Department of Health Sciences,

University of Leicester, University Road, Leicester, UK (SHT, KRA,

SB), and Division of Clinical Trials and Epidemiological Sciences,

National Cancer Centre Singapore, Singapore (SHT). The research

described in this manuscript was conducted in the Department of

Health Sciences, University of Leicester. Financial support for this

study was provided in part by a grant from the Medical Research

Council (MRC) (S. Bujkiewicz, Methodology Research Programme,

New Investigator Research Grant MR/L009854/1) and in part by the

National Institute for Health Research (NIHR) (K. R. Abrams was

partially supported by the NIHR as a Senior Investigator NF-SI-0512-

10159). The funding agreement ensured the authors’ independence in

designing the study, interpreting the data, writing, and publishing the

report.

2 Medical Decision Making 00(0)



We present the use of the methodology for one spe-
cific case study of prostate cancer, but we believe that its
applicability can be much broader, extending to a range
of different disease areas, potentially other than cancer
or to predict treatment effect on outcomes other than
PFS. For example, in early assessment of new therapies,
treatment effect on PFS may be recorded but more data
may need to be collected before the treatment effect on
OS can be measured. Bivariate meta-analysis can be used
to predict unmeasured treatment effect on OS to inform
a cost-effectiveness model in a similar manner as demon-
strated in our case study in this article.

Methods

Motivating Example and Sources of Evidence

In 2007, the National Institute for Health and Care
Excellence (NICE) carried out a technology appraisal
of docetaxel in combination with either prednisone or
prednisolone (D + P) as treatments for metastatic
hormone-refractory prostate cancer (mHRPC).12 The
technology appraisal aimed to evaluate the clinical and
cost-effectiveness of the combination therapy. The evi-
dence base for the meta-analysis in this HTA included 4
studies that investigated interventions that were licensed
at the time of the HTA submission: D + P, mitoxan-
trone plus prednisone (M + P), prednisolone alone (P),
mitoxantrone plus hydrocortisone (M + H), and hydro-
cortisone alone (H). Data from the 4 RCTs,14–17 listed in
Table 1, are included in our example and referred to as
the HTA set. None of the studies reported the effect of
docetaxel on PFS, required to populate a 3-state Markov
model, and only 1 trial reported the effect of docetaxel
on OS (TAX 32716). The details of the systematic review
conducted by Collins et al12 are included in Supplemental
Appendix A, which also includes a set of studies of unli-
censed treatments used to inform some of the model
parameters in this article.

Methods of Evidence Synthesis

Figure 1 shows schematically the evidence base and the
procedures of obtaining the estimates of effectiveness for
all relevant treatment comparisons for the HTA 2-state
model and for the reproduced 2-state model on the
left-hand side (LHS) as well as the 3-state model on the
right-hand side (RHS) of the diagram. Collins et al.12

obtained the estimates of the hazard ratios (HRs) for OS
for the HTA (LHS diagram) in the following way. The
authors conducted a meta-analysis combining 3 trials of
mitoxantrone with a corticosteroid (P or H) v. corticos-
teroid alone by grouping the corticosteroids P and H.
We denote them here as P and the resulting HR as M +
P v. P. The HR for the treatment effect of D + P v.
M+P was obtained directly from the TAX 327 trial.
The NMA model of all 4 trials was used to obtain the
HR comparing D + P v. P. No evidence on PFS was
used in the HTA model.

In our analysis, represented in the RHS diagram of
Figure 1, we used similar methods to obtain the effective-
ness estimates for OS (top of the graph) as in the HTA
report (HR for M + P v. P from meta-analysis of the 3
trials of M + P v. P, HR for D + P v. M + P from trial
TAX 327 and for D + P v. P using NMA). However, to
unify the scale across all studies for both OS and PFS
and to be able to use comparable estimates between 2-
state and 3-state models, where possible, we used the
HRs obtained from the reconstructed individual patient
data (IPD) from Kaplan-Meier curves. To obtain the
HR for PFS for M + P v. P, we also used meta-analysis
of the same 3 trials as for OS but this time combining the
estimates of the treatment effect on PFS. Unlike for OS,
the effect of D + P v. M + P on PFS was not available
in trial TAX 327. This estimate was vital to populate the
3-state model. To obtain it, the bivariate meta-analysis of
data from the 4 trials in the HTA set was used by model-
ing jointly log HRs on PFS and OS, with HR on PFS for
TAX 327 coded as a missing effect, which was then

Table 1 Randomized Controlled Trials Used as an Evidence Base for the Clinical Effectiveness Analysis in the HTA Report.

Trial Year
No. of
Arms

Reference
Treatment

Comparative
Treatment(s)

Total No. of
Patients OS Data PFS Data

CCI-NOV2217 1996 2 M + P P 161 Yes Yes
CALGB 918215 1999 2 M + H H 242 Yes Yes
Berry et al.14 2002 2 M + P P 120 Yes Yes
TAX 32716 2004 3 M + P D + P 1006 Yes No

D1+ P

D + P, 3-weekly docetaxel plus prednisone or prednisolone; D1+P, weekly docetaxel plus prednisone; H, hydrocortisone alone; HTA, health

technology assessment; M + H, mitoxantrone plus hydrocortisone; M + P, mitoxantrone plus prednisone or prednisolone; OS, overall survival;

P, prednisolone or prednisolone alone; PFS, progression-free survival.
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predicted from the model. For uniformity across the
treatment effects on OS and PFS, we used the recon-
structed IPD on both outcomes in the BRMA. The pre-
dicted HR on PFS for trial TAX 327 was then used in
the NMA (similarly as for the OS) to obtain the estimate
of the effect of D + P v. P on PFS.

Methods for obtaining the summary trial data for this
analysis on an appropriate scale are described in the
Data extraction and reconstruction section. The meta-
analytic method for combining the evidence on PFS and
OS for the purpose of predictions is described in the
Bivariate meta-analysis section, while the Network meta-
analysis section discusses briefly NMA.

Data extraction and reconstruction. For the purpose of
evidence synthesis, summary data on effectiveness mea-
sured on OS and PFS were analyzed on the log HR

scale, to allow for assumption of normality of the treat-
ment effect estimates. To obtain the estimates on this
scale, IPD on OS and PFS for each of the RCTs were
reconstructed from their Kaplan-Meier survival curves,
if reported, using the method by Guyot et al.18

Reconstructed IPD allow log HRs and corresponding
standard errors (SEs) to be estimated using survival anal-
ysis instead of crude estimation using median survival
times and log-rank test P-values reported in the RCTs.
Survival analyses, using the Cox model, were performed
on the reconstructed IPD of the 4 RCTs in the HTA set
for OS and 2 RCTs in the HTA set for PFS (only
CALGB 918215 and Berry et al.14 reported Kaplan-
Meier survival curves for PFS) to estimate the log HRs
for the meta-analysis. The estimate of log HR on PFS
for trial CCI-NOV2216 was obtained from the HTA
report12 as it was not reported in the trial paper. Trial
TAX 327 did not report the PFS endpoint.

Figure 1 Diagram for the clinical effectiveness analysis. Left-hand side represents the evidence used in the health technology
assessment (HTA) report by Collins et al.12 and the WinBUGS 2-state model, while the right-hand side represents the evidence

used in the WinBUGS 3-state model. The rectangles with straight corners represent the data, ellipses represent the meta-analytic
methods (MA, NMA, and BRMA), and the rectangles with rounded corners show resulting pooled effects for different treatment
contrasts. Purple color is used to denote estimates and methods for OS (top part of the diagram) and green for the PFS (bottom
part). BRMA, bivariate random-effects meta-analysis; D + P, docetaxel plus prednisone or prednisolone; HR, hazard ratio;
HTA, health technology assessment; M + P, mitoxantrone plus prednisone or prednisolone; MA, meta-analysis; NMA, network
meta-analysis; OS, overall survival; P, prednisolone or prednisolone alone; PFS, progression-free survival.
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Bivariate meta-analysis. Bivariate random-effects meta-
analysis was used for the purpose of predicting the treat-
ment effect on PFS in the docetaxel trial (TAX 327) by
modeling treatment effects measured by log HRs on OS
and PFS jointly. In this model, YOS and YPFS, the treat-
ment effects on OS and PFS on the log HR scale, are
assumed to be normally distributed and correlated:

YOS, i

YPFS, i

� �
; Normal

mOS, i

mPFS, i

� �
,Si

� �
; ð1Þ

with the within-study variance-covariance matrices

Si =
s2

OS, i sOS, isPFS, irw, i

sPFS, isOS, irw, i s2
PFS, i

� �
comprising the

within-study standard errors of the estimates, sOS, i and
sPFS, i, and the within-study correlations rw, i between the

estimates in each study i. The treatment effects YOS, i and
YPFS, i are the estimates the true effects, mOS, i and mPFS, i,

which are also correlated and can be modeled in the
form of the product of univariate conditional normal
distributions, the product normal formulation6,9,10:

mOS, i ; Normal hOS ,c
2
OS

� �
mPFS, ijmOS, i ; Normal hPFS, i,c

2
PFS

� �
hPFS, i = l0 + l1 mOS, i � mOS, i

� � ð2Þ

where c2
OS is equal to the between-studies variance t2

OS

(heterogeneity parameter) of the treatment effects on OS,
and c2

PFS is the conditional between-studies variance of
the treatment effect on PFS conditional on the treatment
effect on OS, which is related to the heterogeneity
parameter t2

PFS ; c2
PFS = t2

PFS � l2
1t

2
OS: The slope

l1 = rbtPFS=tOS and rb is the between-studies correlation.
Prior distributions are placed on the between-studies cor-
relation and variances: for example, rb ; Uniform �1, 1ð Þ
and half normal distributions for the standard deviations,
tOS ; HNormal 0, 103

� �
and tPFS ; HNormal 0, 103

� �
,

which give implied prior distributions on l1, cOS and
cPFS obtained using the above relationships between the
parameters. Prior distributions are also placed on the
intercept l0 ; Normal 0, 103

� �
and the within-study corre-

lations rw, i ; Uniform �1, 1ð Þ. The pooled treatment
effects are HROS =exp(hOS) and HRPFS =exp l0ð Þ.
Further assumption about the exchangeability of popula-
tion variances was made, as in Bujkiewicz et al.,6 to pre-
dict the standard error corresponding to the missing log
HR on PFS, comparing D + P v. M + P, in TAX 327.

The unreported effect on PFS in trial TAX 327,
YPFS,TAX 327, is predicted directly from the Markov chain
Monte Carlo (MCMC) simulation. In the ordinary
approach to MvMA, predicted effects (on outcomes that

are not reported) are by-products of the analysis that
contribute to the pooled effects.6 Here we exploit this by
using the predicted value directly to inform the decision
model.

Network meta-analysis. NMA allows for the compari-
sons of interventions when there is no head-to-head RCT
that compared them directly by evaluating the difference
between the interventions through at least 1 common
comparator.19,20 It combines both direct and indirect evi-
dence from multiple studies of multiple interventions.3

NMA was used in this study to obtain HRs for both OS
and PFS comparing D + P v. P, which is an alternative
contrast that can be used in a health economic model, as
done by Collins et al.12 for OS in the 2-state model.

Methods of Cost-Effectiveness Analysis

Figure 2 shows schematically the evidence base in
the form of network diagrams for both OS and PFS on
the LHS and the structure of the Markov model on the
RHS. The top part of the figure corresponds to the HTA
model by Collins et al.12 The bottom part summarizes
the analysis developed in this article. Collins et al.12 spec-
ified a 2-state Markov model, including the alive and
dead states, which assessed the cost-effectiveness of D +
P for the treatment of mHRPC. To model the natural
pathway of the disease in more detail, we used the pre-
dicted estimate for the treatment effect of D + P on PFS
to populate the 3-state model, which distinguished the
alive patients with the disease between those who are sta-
ble and those who progressed by assigning them 2 sepa-
rate states: stable disease (StD) and progressive disease
(PD) states, which together with the dead state amount
to the 3-state model.

For the comparison of the results of the proposed 3-
state model with the results of the 2-state model reported
in the HTA, the 2-state model was reproduced to ensure
that the models (2-state and 3-state) are comparable in
terms of the software used (Excel software was used to
implement the original HTA model). For clarity, the
reproduced 2-state model will be called the ‘‘WinBUGS
2-state model,’’ and the original 2-state model in the
HTA report will be called the ‘‘HTA 2-state model’’ in
this article. Similar to the HTA 2-state model, both the
WinBUGS 2-state model and WinBUGS 3-state model
were run for 180 cycles, where 1 cycle represented 1
month and the time horizon was 15 years. A cohort size
of 10,000 was used in each of the models. When con-
structing the 3-state model, where possible, we used the
same parameters as in the HTA 2-state model. In the
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remainder of this section, we highlight the methods most
relevant for the extension of the 2-state model to the 3-
state model and report the full set of modeling tech-
niques in the supplementary materials for completeness.

Transition probabilities. Similar to the HTA 2-state
model, the transition probabilities for the WinBUGS 2-
state model were estimated using the Weibull parameters
(reported in the HTA report) obtained from the trial
TAX 327 (using M + P as the baseline treatment). For
the 3-state model, which incorporated a PD state, the
transition probabilities for transition from the StD state
to the PD state needed to be estimated using data on
PFS, which the trial TAX 327 did not report. We esti-
mated these transition probabilities for M + P by apply-
ing the Weibull survival model to reconstructed PFS IPD
from a Southwest Oncology Group (SWOG) trial.21 The
SWOG trial was one of the RCTs of unlicensed drugs
used in the sensitivity analysis in the HTA report and
was the most comparable trial with TAX 327. This was
particularly apparent when examining the Kaplan-Meier
curves for OS (corresponding to the baseline treatment
M + P, which the 2 trials had in common), obtained
from the reconstructed IPD and shown in Supplemental

Figure SC1. The Kaplan-Meier curve for the SWOG trial
was comparable to the one obtained for the TAX 327
trial. Further details about the studies are included in
Supplemental Appendix A and the justification of the
choice of the SWOG trial in Supplemental Appendix
C.2. The transition probability for D + P was in turn
calculated by applying the predicted PFS HR of D + P
v. M + P to the transition probability of M + P. The
transition probability for transition from the StD state to
the dead state (for deaths due to causes other than pros-
tate cancer) was obtained from the cost-effectiveness
analysis for advanced hormone-dependent prostate can-
cer by Lu et al.22 and was applied to the model with no
uncertainty as 0.005. The parametric survival (Weibull)
model was used to implement time dependency of the
transition probabilities in the economic models. Details
of this analysis are included in Supplemental Appendix
B.1.1.

Although IPD were reconstructed for both PFS and
OS for the trial selected for estimating the transition
probability from the StD state to PD state, the IPD were
not paired by patient. Therefore, it would not be possible
to estimate the transition probabilities from the PD state
to the dead state using parametric survival analysis

Figure 2 Original HTA model (top) and proposed Bayesian evidence synthesis with BRMA to predict PFS for the specification
of a 3-state economic Markov model (bottom). BRMA, bivariate random-effects meta-analysis; D + P, docetaxel plus prednisone
or prednisolone; HTA, health technology assessment; M + P, mitoxantrone plus prednisone or prednisolone; NMA, network
meta-analysis; OS, overall survival; P, prednisolone or prednisolone alone; PFS, progression-free survival.
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performed using reconstructed IPD as was the case for
the transition probability for the StD state to the PD
state (which only required data on PFS). To overcome
this issue, the transition probabilities were estimated by
assuming that the mean total survival time was equal to
the weighted sum of combined survival time from stable
disease to progression and then to death and the survival
time from stable disease to death when death occurred
from other causes. The method is described in more
detail in Supplement Appendix B.1.2.

Once the transition probabilities were obtained for the
baseline treatment M + P, the HRs (obtained using
methods described earlier) were applied to them to obtain
the transition probabilities for the other 2 interventions
(D + P and P alone). For the 2-state model, HR for OS
was used to obtain the transition probabilities from alive
to dead states. For the 3-state model, HRs for PFS were
used to obtain the transition probabilities from the StD
to the PD state.

Costs. Cost data comprise the drug acquisition and the
administration cost for each intervention, cost of the
management of adverse events, and the subsequent
follow-up cost that included cost of further chemother-
apy after disease progression, management of side
effects, and palliative care. Costs for each intervention
used in the WinBUGS 2-state and 3-state models were
extracted from the HTA report. In the report, costs were
categorized into 3 components: 1) the drug acquisition
and administration cost, 2) the follow-up cost, and 3) the
terminal care cost. In the 3-state model, the follow-up
costs were divided into 2 portions corresponding to the
StD state and PD state by taking into account that
costs of subsequent chemotherapy and hospitalizations
accounted for between 70% and 80% of follow-up costs,
which most likely occurred after progression, and the
remaining follow-up costs (20% to 30%) were related to
side effects likely to occur prior to progression (but may
also be associated with the subsequent chemotherapy
after progression). An annual discount rate of 3.5% was
applied from cycle 13 onward, as in the HTA report by
Collins et al.12 Details of the cost analysis are included in
Supplemental Appendix B.2.

Quality-adjusted life years. Quality-adjusted life years
(QALYs) were used as a measure of effect in the cost-
effectiveness analysis. To estimate the QALYs, utility
data in the form of HRQoL were required to quantify
the health status of patients with mHRPC, as well as the
impact the interventions had on the HRQoL (in terms of

disease progression and serious adverse events).
Quality-of-life data used in the HTA 2-state model by
Collins et al.12 were extracted from a study conducted by
Sandblom et al.23 The study was appropriate as it
reported HRQoL values using a generic HRQoL
instrument, the EuroQoL 5-dimensional (EQ-5D) ques-
tionnaire, which is required in submissions for technol-
ogy assessment by NICE; it used the population
representative of the target population of the HTA and
provided end-of-life HRQoL values of patients with
prostate cancer in their last year before death. Sandblom
et al. reported an EQ-5D score of 0.538 6 0.077 for
patients who died of prostate cancer, which was an aver-
age value recorded during the last 12 months of a
patient’s life. This value was used in the HTA 2-state
model as a utility in the alive state. We used the same
value in our WinBUGS 2-state model. Since the data
were collected from the individuals who were diagnosed
at least 9 months earlier and considering that the median
survival time is 18 months and the median PFS time is 6
months, these patients (who then died of prostate cancer)
were most likely in progressive disease. Consequently,
when constructing a 3-state model that distinguished
between alive patients in stable disease from those who
progressed, we considered this utility value appropriate
for the PD state (UPD = 0:538) and expected the utility
corresponding to the StD state to be higher. Sandblom
et al.23 also reported EQ-5D values for patients who
were still alive after a 12-month follow-up, which was
USurviving = 0:77060:015, and for those who died of other
causes: UOther causes = 0:56460:067. Considering that in
each cycle, patients in the StD state stay in that state,
progress, or die of other causes, we assigned to this state
the utility corresponding to the average of the above 3
utilities reported by Sandblom et al.23 weighed by the
transition probabilities:

UStD = TPStDUSurviving + TPStDtoPDUPD

+ TPStDtoDeadUOther causes:

For further details, see Supplemental Appendix B.3.
Similar to cost, an annual discount rate of 3.5% was
used for discounting the utilities after the first year.

Cost-effectiveness analysis. For the assessment of the
cost-effectiveness of the interventions in each model, the
mean costs and mean QALYs gained for the interven-
tions and the incremental cost-effectiveness ratios
(ICERs) for the comparison of the 2 interventions of
interest (M + P and D + P) were estimated. Cost effec-
tiveness acceptability curves (CEACs) were generated to
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compare the 3 interventions. The CEAC and the cost-
effectiveness plane were used to compare the proposed 3-
state model with the WinBUGS 2-state model (expected
to be comparable to the HTA 2-state model) when evalu-
ating the difference between D + P and M + P. To
assess the value of further research, population expected
value of perfect information (EVPI) was calculated for
both the 2-state and the 3-state model.24 Population
EVPI was estimated from WinBUGS output25 assuming
a time horizon of the drugs of 12 years, an annual inci-
dence of 9000 patients,26 and a discount rate of 3.5%.27

Software Implementation

IPD were reconstructed from the Kaplan-Meier curves
using the DigitizeIt28 and R29 software. Survival analyses
were conducted using Stata.30 BRMA and the cost-
effectiveness models were implemented using MCMC
simulations in WinBUGS,31,32 with 30,000 MCMC itera-
tions and 15,000 burn-ins (iterations that were discarded)
for BRMA and 50,000 iterations and 30,000 burn-ins for
the cost-effectiveness models. Output data were pro-
cessed using R.29

Results

Clinical Effectiveness

Kaplan-Meier curves for OS were reported for the 4 trials
in the HTA set. PFS was not reported for TAX 327, and
PFS Kaplan-Meier curve was not reported for CCI-
NOV22. Hazard ratios calculated using the reconstructed

IPD for individual trials were comparable with the results
reported in the trials’ publications. HRs on OS and PFS
reported in the original articles and those obtained from
the survival analyses of reconstructed IPD are presented
in Supplemental Appendix C (Suppl. Tables SC1 and
SC2).

Table 2 presents all pooled HRs for OS and PFS
reported in the HTA report and those obtained by
synthesizing HRs from the reconstructed IPD. Summary
estimates for the HR of OS comparing M + P with P
obtained using fixed-effect and random-effects meta-
analysis were 0.903 (95% credible interval [CrI], 0.751–
1.084) and 0.901 (95% CrI, 0.405–2.023) respectively.
The estimates differed slightly from those in the HTA
report, which were 0.99 (95% confidence interval [CI],
0.82–1.20) for both fixed-effect and random-effects. The
difference in the pooled HRs was largely due to the
lower HRs obtained using the reconstructed IPD for
trials CCI-NOV2217, CALGB 918215, and Berry et al.,14

compared to the HRs reported in the HTA report.
However, the 95% CrI estimated using fixed-effect meta-
analysis was comparable to the 95% CI reported in the
HTA report. Hazard ratios comparing the effect of D +
P v. P on OS were 0.688 (95% CrI, 0.523–0.907) and
0.688 (95% CrI, 0.300–1.604) using fixed-effect and
random-effects NMA, respectively, while the HR from
random-effects NMA published in the HTA report was
0.75 (95% CI, 0.57–0.99). Similarly, as for the compari-
son of M + P v. P, the estimates of HRs obtained from
the reconstructed IPD were lower than those reported in
the HTA report.

Table 2 Overall Survival and Progression-Free Survival HRs Estimated from Traditional and Network Meta-Analysis Using
Reconstructed IPD.

HR (95% CI/CrI)

Overall Survival Progression-Free Survival

Evidence Synthesis
Reported in
HTA Report

Estimated Using
Reconstructed IPD

Estimated Using
Reconstructed IPD

Meta-analysis (M + P/P)
Fixed-effect analysis 0.99 (0.82–1.20) 0.903 (0.751–1.084) 0.641 (0.532–0.772)
Random-effects analysis 0.99 (0.82–1.20) 0.901 (0.405–2.023) 0.619 (0.170–2.048)

Relative estimate (D + P/M + P) 0.76 (0.62–0.94)a 0.76 (0.620–0.936)a 0.619 (0.393–0.924)b

NMA (D + P/P)
Fixed-effect analysis Not performed 0.688 (0.523–0.907) 0.397 (0.318–0.496)
Random-effects analysis 0.75 (0.57–0.99) 0.688 (0.300–1.604) 0.383 (0.108–1.290)

CI, confidence interval; CrI, credible interval; D + P, docetaxel plus prednisone or prednisolone; HR, hazard ratio; HTA, health technology

assessment; IPD, individual patient data; M + P, mitoxantrone plus prednisone or prednisolone; NMA, network meta-analysis; P, prednisolone

or prednisolone alone.
aHRs estimated using TAX 327 trial IPD/reconstructed IPD.
bHR predicted using bivariate random-effects meta-analysis model.
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HRs for PFS comparing M + P v. P, obtained from
fixed-effect and random-effects meta-analyses of estimates
from the reconstructed IPD, were 0.641 (95% CrI, 0.532–
0.772) and 0.619 (95% CrI, 0.170–2.048) respectively. No
summary estimate for this comparison was reported in the
HTA report. The PFS HR for the comparison of D + P
v. M + P (for TAX 327), predicted using BRMA, was
0.619 (95% CrI, 0.393–0.942). The HRs comparing the
effect of D + P v. P on PFS were 0.397 (95% CrI, 0.318–
0.496) and 0.383 (95% CrI, 0.108–1.290) from fixed-effect
and random-effects NMA respectively.

Cost-Effectiveness

The net benefit for each intervention, the probability
that each intervention was cost-effective, and the popula-
tion EVPI at £20,000 and £30,000 are presented in Table
3. In terms of the net benefit and the probability of each
treatment being cost-effective, there was considerable
uncertainty, with the highest probability only being 0.52
for D + P in the 3-state model compared to 0.44 in the
2-state model. Estimated population EVPI was particu-
larly high; at both £20,000 and £30,000, it was above
£139 million for both the 2-state and the 3-state model
but was higher for the 3-state model, further indicating a
high level of uncertainty in the decision problem.

Figure 3 shows CEACs, over a range of willingness-
to-pay thresholds, comparing all the interventions using
the 2-state and the 3-state model. For the willingness-to-
pay thresholds above £20,000, D + P had the highest
probability of being cost-effective among all 3 interven-
tions in both models. Fully incremental analysis of
cost and QALY in Table 3 shows that P is dominated by
M + P in both the 2-state and the 3-state model.

Table 4 and Figure 4 show results of the incremental
cost-effectiveness analysis. Table 4 presents the differences
in mean cost and QALYs along with the ICERs for D +
P compared to M+ P for all 3 models. Details of the cost
of interventions and the mean QALY per patient for each
of the interventions in the economic models are presented
in Supplemental Appendix C.3. Results showed that the
ICER obtained from the proposed 3-state model, using a
predicted PFS HR of 0.619 (0.393–0.924) for D + P v. M
+ P, was £22,148 compared to £30,026 obtained from the
WinBUGS 2-state model (£32,706 in the HTA report).
Hence, by implementing the 3-state model and taking into
account the cost and QALYs in the PD state, the esti-
mated ICER was considerably lower than that of the
HTA (or WinBUGS) 2-state model.

Figure 4 shows CEACs and the cost-effectiveness
plane for the comparison of the WinBUGS 2-state model

with the 3-state model (using comparison of D + P with
M + P). The CEACs showed that above approximately
a £10,000 willingness-to-pay threshold, the probability
that D + P was cost-effective was higher in the 3-state
model than in the 2-state model. The cost-effectiveness
plane showed that D + P was more effective (in terms of
utility) than M + P for both the 2-state and 3-state mod-
els, although the uncertainty of its effectiveness was lower
in the 3-state model than the 2-state model. However, the
degree of uncertainty for the difference in cost of the 2
interventions was comparable for both models.

Discussion

Summary of Findings

We have investigated the use of multiparameter evidence
synthesis, and in particular BRMA, for the purpose of
synthesizing all relevant evidence to inform the health
economic decision model. The methodology was applied
to a motivating example of cost-effectiveness of doce-
taxel in combination with either prednisone or predniso-
lone (D + P) in mHRPC. At the time of the technology
appraisal of docetaxel, only its effectiveness measured on
OS but not PFS was reported, limiting the implementa-
tion of the Markov model to a 2-state model (alive and
dead). We carried out research that investigated how
inclusion of a predicted estimate of the effect of docetaxel
on PFS would affect the cost-effectiveness estimates. We
showed how such predicted estimate can be obtained
from the BRMA and how it can enable implementation
of a 3-state Markov model comprising stable disease
state, separate progressive disease state, and dead state.
By distinguishing alive patients between those who were
stable and those who progressed, the model described the
natural pathway of the disease in greater detail.

Discussion of the Evidence Synthesis Methods

We used BRMA to predict the unreported treatment
effect of docetaxel on PFS. This method assumes that
the estimates of treatment effects on 2 outcomes, in our
case log HR on OS and log HR on PFS, are correlated
and follow a common bivariate normal distribution, as
described by equation (1). These effects are estimates of
true treatment effects in the population, which in the
random-effects model for bivariate meta-analysis are also
correlated and follow common bivariate normal distribu-
tions. The assumption of normality in the bivariate
model is equivalent to assuming a linear relationship
between the treatment effects on these 2 outcomes.
Bivariate random-effects meta-analysis in the normal
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form has the advantage of borrowing strength between
the treatment effects on the 2 outcomes, provided that
the assumption of normality is reasonable. However,
when such assumption cannot be made, using bivariate
normal distribution can lead to ‘‘overshrinkage’’ and
potentially to biased results.33 An alternative approach
that can be used is a model developed by Daniels and
Hughes34 for surrogate end point evaluation. This model
assumes a bivariate normal distribution for the estimates
of the treatment effect on the 2 outcomes and a linear
relationship between the true treatment effects in the
population. In contrast to the bivariate random-effects
meta-analysis model, it does not make the assumption of
the common distribution for the treatment effects on the
first outcome (which is used to make the prediction from,

in our case, the log HR on OS). Instead, it assumes fixed
treatment effects on this outcome by placing separate
prior distributions on these effects in each study, and a
common normal distribution is only assumed for the sec-
ond outcome. This relaxes the assumption of normality
made in the random-effects but limits the borrowing of
strength. Another approach that allows relaxing the
exchangeability assumption is to use the t distribution
(with low degrees of freedom) for the random-effects
instead of the bivariate normal distribution in the bivari-
ate meta-analysis,9,35 which can help when overshrinkage
occurs. We discourage the use of simple meta-regression.
Unlike the bivariate meta-analysis, it assumes that the
treatment effect on the first outcome (in the case of our
analysis, HR on OS) is measured without error (treats it

Figure 3 Cost-effectiveness acceptability curves for all 3 interventions: 2-state (left) and 3-state (right) model using direct hazard
ratio of P v. M + P. D + P, docetaxel plus prednisone or prednisolone; M + P, mitoxantrone plus prednisone or prednisolone;
P, prednisolone or prednisolone alone.

Table 4 Cost-Effectiveness of the HTA 2-State Model and Proposed 3-State Model.

2-State Model
3-State Model

HTA WinBUGS WinBUGS

Difference in cost, mean (SE) £5049 £4624 (4407.83) £5349 (4243.53)
Difference in QALY, mean (SE) 0.15437 0.154 (0.0676) 0.242 (0.0526)
ICER £32,706 £30,026 £22,148

HTA, health technology assessment; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life year; SE, standard error.

Tan et al. 11



as a fixed covariate) while in fact there is uncertainty
associated with this effect related to the sample size of
the RCT.7 This can lead to underestimating the uncer-
tainty of the predicted treatment effect on PFS and, in
consequence, the uncertainty of the cost-effectiveness
estimates.

There were some limitations of our research. One
was the variability in the definitions of the progression
endpoints (for details, see Suppl. Appendix A.1).
Standardizing the definition of the progression endpoint
for all the RCTs, however, would require IPD from each
of the trials, which is not achievable within the resources
of this project.

Another limitation was a small number of studies in
the BRMA. However, careful analysis of the results
indicated that the predicted effect on PFS in TAX 327
had converged in the MCMC simulation. To further
evaluate the validity of the method, we have carried out
an analysis considering a scenario where the TAX 327
trial was replaced by the SWOG trial, for which treat-
ment effects on both OS and PFS were reported. We
conducted the analysis using data without the estimate
of the treatment effect on PFS, and we predicted this
effect in the same manner as we did for the TAX trial.
This time, we were able to compare the results with the
treatment effect reported by this trial. A full set of
results is presented in Supplemental Appendix C.4.
Although the treatment effect on PFS was overesti-
mated (predicted HR, 0.623; 95% CrI, 0.397–0.927) in

terms of the point estimate compared to the observed
estimate (HR, 0.73; 95% CI, 0.627–0.860), the credible
interval included the full range of values of the CI of
the observed effect. Further investigation, reported in
detail in Supplemental Appendix C.4, showed that one
of the studies in the meta-analysis was an outlier (only
with respect to PFS but not OS and therefore this did
not affect any other results). Removing this study led
to predicted HR PFS of 0.70 (0.46–1.04). The valida-
tion using the SWOG trial gave a similar result,
which appears not very biased when compared to the
observed estimate (see Suppl. Table SC7).

Discussion of the Cost-Effectiveness Modeling

The cost-effectiveness analysis resulted in a much lower
ICER obtained from the 3-state model compared to the
2-state model. This was due to combining stable and pro-
gressed patients into a single state in the 2-state model,
which likely underestimated the average utility. The 2-
state model used utility reported by Sandblom et al.,23

who measured the EQ-5D 12 months prior to death. As
discussed earlier, this utility value corresponds primarily
to patients who progressed. Hence, the utility of the alive
state in the 2-state model seems underestimated because
some of the patients in this state, for a considerable
amount of time, were progression-free and therefore
should have higher utility. In the 3-state model, we used
the same utility in the PD state as in the original 2-state

Figure 4 Cost-effectiveness acceptability curves (left) and cost-effectiveness plane (right) for WinBUGS 2-state and 3-state
economic models. D + P, prednisone or prednisolone; M + P, mitoxantrone plus prednisone.

12 Medical Decision Making 00(0)

https://journals.sagepub.com/doi/suppl/ 10.1177/0272989X18788537
https://journals.sagepub.com/doi/suppl/ 10.1177/0272989X18788537
https://journals.sagepub.com/doi/suppl/ 10.1177/0272989X18788537
https://journals.sagepub.com/doi/suppl/ 10.1177/0272989X18788537


model and allow for the utility in the StD state to vary
over time, allowing a proportion of patients remaining in
the StD state in each cycle to have higher utility, leading
to higher average utility.

In addition, most patients leaving the StD state in the
3-state model transition to progression, and the differ-
ence in the transition probabilities between the treat-
ments is defined by the HR of PFS. This difference is
higher than in the 2-state model, where the transition
probabilities correspond to the transition between alive
and dead states and differ according to HR for OS
(which is closer to 1 compared to HR for PFS).
Therefore, the difference between treatments in rates of
patients leaving the StD state in the 3-state model is also
higher than the difference in the rates of patients leaving
the alive state in the 2-state model. This leads to a larger
average difference in utility, which is relatively larger
than the difference in average incremental cost, as sub-
stantial care costs are still required after progression rela-
tive to the cost of treatment before progression. This
substantial increase in the QALYs gained led to the
much smaller ICER obtained from the 3-state model
compared to the 2-state model. However, use of the 3-
state model increased the overall level of uncertainty in
the decision problem, as evidenced by a higher popula-
tion EVPI. This was mainly driven by the increased
uncertainty in the HR for D + P v. M + P for PFS
compared to that for OS (used in the 2-state model).
Further elaboration of the decision problem via use of a
3-state model could therefore enable more refined priori-
tization of future research that would not be otherwise
possible with a 2-state model and could be formally
assessed by the expected value of partial perfect informa-
tion (EVPPI).36

As discussed earlier, the predicted HR for PFS for
trial TAX 327 was likely to be an overestimate. We car-
ried out a sensitivity analysis in which we used the pre-
dicted effect obtained from the sensitivity analysis,
removing an outlier from the data used in the BRMA.
Using this HR of 0.7 (0.46–1.04) led to a smaller differ-
ence in QALY (0.18 [0.05]), as well as a smaller differ-
ence in cost (£5258 [4238.03]), which resulted in an ICER
of £29,601. More details can be found in Supplemental
Appendix C5.1. This result highlights the sensitivity of
the final result to the parameters of the model and in
particular the predicted HR.

We also investigated the impact of the distribution of
utility among the patients. To do so, we carried out a
sensitivity analysis by implementing a new 2-state model
with the cost and utility calculated in a more detailed
way, similar to the 3-state model, allowing for some

differences between stable and progressed patients to be
taken into account. This led to a reduced ICER from
£30,026 to £27,401. The details of the methods used and
the results obtained from this sensitivity analysis are
included in Supplemental Appendix C5.2. This method,
however, did not model the natural pathway of the dis-
ease but only redistributed the data on utility in a more
detailed way.

Final Remarks and Conclusions

Ideally, when conducting an analysis for HTA decision
making, analysts can contact the trialists to obtain the
unreported estimates of effectiveness, which are needed
to populate a decision model. However, this is not
always possible. In the case of trial TAX 327, PFS was
not set out to be reported in the trial. Occasionally, the
treatment effect may not be reported due to outcome
reporting bias or for other reasons, and it is not always
possible to obtain estimates from the investigators, as
found in the review of RCTs in NSCLC2 (see also the
introduction). There are a number of initiatives under
way to make data from clinical trials more accessible.37

Meanwhile, if obtaining IPD (or summary statistics) is
not possible, our proposed method can serve to obtain
relevant unreported estimates.

In conclusion, we have illustrated that a careful synth-
esis of all relevant evidence can allow valuable data on
all outcomes, otherwise discarded, to be used to better
inform the decision-making process. In the case study
described here, although none of the studies included in
the meta-analysis reported PFS for docetaxel, other stud-
ies investigating treatment effects of other treatments did
report PFS, but these valuable data were not used to
inform the health economic model. We would like to
stress that our goal was not to critique the original
approach to decision making by Collins et al.12 or to
argue any particular result to be superior. In fact, there
are many sources of uncertainty in the decision problem
presented here. We would recommend that at least a sen-
sitivity analysis to the structural assumptions of the
model should be carried out, as recommended by
Roberts et al.,38 particularly when data needed to popu-
late the model are limited. We demonstrated that multi-
variate meta-analysis is a valuable tool in the synthesis
of evidence for medical decision making that allows for
inclusion of all or at least a wider range of available evi-
dence on clinical effectiveness of interventions under
assessment, potentially reducing the structural uncer-
tainty of the decision model.
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