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Abstract—Locating the destination address block is key 
to automated sorting of mails. Due to the characteristics of 
Chinese envelopes used in mainland China, we here 
exploit proximity cues in order to describe the investigated 
regions on envelopes. We propose two proximity 
descriptors encoding spatial distributions of the connected 
components obtained from the binary envelope images. To 
locate the destination address block, these descriptors are 
used together with Cooperative Profit Random Forests 
(CPRF). Experimental results show that the proposed 
proximity descriptors are superior to two component 
descriptors which only exploit the shape characteristics of 
the individual components, and the CPRF classifier 
produces higher recall values than seven state-of-the-art 
classifiers. These promising results are due to the fact that 
the proposed descriptors encode the proximity 
characteristics of the binary envelope images, and the 
CPRF classifier uses an effective tree node split approach. 

 
Index Terms—Postal automation, postal address block 

location, proximity, random forests, cooperative game 
theory. 

 

I. INTRODUCTION 

OMPUTER vision [4], [21], [25] and pattern recognition 

[9], [35], [41] algorithms have been widely applied to 

various industrial automation systems. Particularly, automated 

sorting of mails [2] plays an important role in mail delivery 

systems. The current automated sorting systems used in 

mainland China were mainly designed based on recognizing 

the postcode. However, recognition of postcodes [2] encounters 

problems as postcodes cover various sizes of regions in 

different countries and territories. For example, a postcode is 
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allocated to a town rather than a building in mainland China. 

Hence, recognition of postcodes cannot lead to a specific 

address. In this situation, an optical character recognition (OCR) 

module [2] is required to recognize the destination address on 

letters or parcels. Ideally, a sorting system needs to precisely 

locate the destination address block in real time [22], [37] and 

send it to the OCR module [2]. An incorrectly located address 

block leads to immediate rejection of the mail. 

In this study, we aim to develop an automated method for 

locating the destination address block on Chinese postal 

envelopes used in mainland China. In an OCR-based automated 

mail sorting system [2], binary images are normally used as 

inputs. Therefore, we use a method deliberately designed for 

Chinese envelope image segmentation [16] before address 

block location is performed. The envelopes (see Fig. 1) used in 

mainland China are different from those used in other countries 

and territories. The significant difference is that the Chinese 

envelopes contain two different addresses, one is for the sender 

and the other is for the addressee. The presence of stamps and 

postmarks (see Fig. 1) also makes the locating task challenging. 

However, the destination address block normally lies far from 

that of the sender (more details can be found in the China 

National Standard for Postal Envelope Writing/Printing [8]). 

Evidence shows that the spatial layout of local image features is 

important to texture perception [15]. In addition, objects or 

shapes tend to form a single group when they stay close to each 

other, according to the Gestalt Law of Grouping [1].  

Inspired by the characteristics of Chinese envelopes and the 

importance of proximity cues to perceptual grouping [1], we 

here propose two proximity descriptors computed using 

connected components (or components) within a local region. 

The computational complexity and sensitivity to noise can be 

reduced using components instead of pixels. One descriptor is a 

variant of Shape Context [3] which is originally designed based 

on contour points. The other descriptor is created by capturing 

local self-similarity characteristics [32]. However, we exploit 
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Fig. 1.  Presence of parasitic objects with the destination address block 
on a Chinese envelope. 
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the self-similarity based on the shape of components rather than 

the appearance of local image patches. Both the descriptors 

encode the proximity characteristics over a local region. To our 

knowledge, component-wise proximity descriptors have not 

been used in locating postal address blocks. 

Over the past decades, random forest (RF) classifiers [5], [12] 

have been applied to various tasks. The merits of using a RF 

classifier include that: (1) it is efficient; (2) it does not require 

tuning of parameters; and (3) it minimizes the chance for 

overfitting. However, the tree node split functions that existing 

RF classifiers use only utilize strong discriminant attributes 

while ignoring weak discriminant attributes. As known, the 

solution to the cooperative game theory [6] is able to produce a 

reasonable approach that allows analyzing the payment ability 

or the power of players without an assumption. As a result, this 

approach can explore the contributions of all the players. 

Therefore, we propose a new RF classifier, i.e., Cooperative 

Profit Random Forests (CPRF), using a split method based on 

the Shapley value [31] used in cooperative game [6]. This split 

method exploits both strong and weak discriminant attributes. 

The contributions of this paper include that: (1) the 

application of proximity cues to locating postal address blocks 

on Chinese envelopes; (2) the introduction of two new 

component-wise proximity descriptors for encoding binary 

images; (3) the proposal of a Shapley value based CPRF 

classifier; and (4) the comparison between the CPRF and seven 

state-of-the-art classifiers. The rest of the paper is organized as 

follows. In Section II, we review the related work. In Section III, 

we outline our framework. The proposed proximity descriptors 

and CPRF classifier are detailed in Sections IV and V 

respectively. In Sections VI and VII, we describe the 

experimental setup and report the results, respectively. Finally, 

conclusions are provided in Section VIII. 

II. RELATED WORK 

Automatic extraction of postal address blocks has been 

widely studied. Jain and Bhattacharjee [22] treated an envelope 

image as a combination of textured regions and converted 

postal address block location to texture classification. The 

method proposed by Yu et al. [42] concentrates on address 

block location for complex postal items with an arbitrary layout 

of printed entities. Xue et al. [37] used geometric constraints to 

segment strings and proposed an optimization-based address 

interpretation method. Govindaraju and Tulyakov [18] applied 

the features computed from the contours of the connected 

components labeled in images to address block location. The 

method of Kagehiro et al. [23] consists of two stages: address 

block candidate nomination and candidate evaluation. 

An address block location method based on hierarchical 

graph coloring and the pyramidal organization of data was 

presented by Gaceb et al. [17]. A clustering method was then 

applied to these features to separate the address cluster from the 

other clusters. In the same year, Menotti and Borges [26] 

developed image segmentation and address block location 

methods based on feature selection. Schmidt et al. [30] 

proposed a website business address extraction method using 

both the patterns and gazetteers derived from freely available 

knowledge sources. Radha and Aparna [28] developed an 

automatic Indian postal address block detection method based 

on text block extraction. Recently, Cheng and Xu [7] located 

Chinese postal address blocks using a binary classifier. 

In contrast, text (line) detection [43], [39] has been given 

more attention than address block location in the literature. 

Zhang et al. [43] conducted text line detection in natural scene 

images by using the symmetry characteristic of character lines. 

An extensive survey has been performed by Ye and Doermann 

[39], in which analysis and comparison of various challenges, 

approaches, as well as the performance of text detection and 

recognition studies were investigated. However, text (line) 

detection cannot be applied to locating Chinese postal 

destination address blocks as the address of the sender is 

written or printed on the envelopes used in mainland China. 

To summarize, the aforementioned methods do not exploit 

proximity cues. It has been shown that, however, these cues are 

important to the perceptual grouping used by the human visual 

system [1]. We therefore introduce two proximity descriptors 

for locating postal address blocks. Compared with local image 

features, the proposed descriptors encode the proximity 

characteristics manifested in large spatial regions. 

III. THE FRAMEWORK OF THE PROPOSED METHOD 

The proposed Chinese postal address block location method 

is conducted in five stages. Fig. 2 shows the pipeline of the 

proposed method. We will describe the five stages in detail.  

A. Image Segmentation 

The application of image segmentation to original images 

will reduce the interference of the background information to 

address block location. It is also necessary to remove the boxes 

surrounding the postcodes on the Chinese envelopes before 

address block recognition is conducted. We hence use the 

method that Dong et al. [16] proposed to perform envelope 

image segmentation. The advantage of this method over the 

other approaches [27], [38] is that it does not require 

post-processing and is also efficient. The Wiener filter [36] was 

first applied to an image in order to reduce the interference of 
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Fig. 2. Pipeline of the proposed postal address block location method. 
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noise. Only gray level images are used for efficiency purposes. 

Finally, a binary envelope image is derived. 

B. Connected Component Labeling 

Since we aim to locate the postal address blocks containing 

various Chinese characters, we therefore take the connected 

components obtained from the binary envelope images as basic 

elements. In this case, the extracted features based on the 

components will encode the context information and be less 

sensitive to the noise contained in the binary images than the 

features computed based on pixels. Besides, the computational 

speed of feature extraction, model training and address block 

prediction is enhanced. After connected component labeling 

[13] is complete, we obtain a set of component labels. Each of 

these labels is associated with a foreground pixel subset.  

C. Feature Extraction 

Due to the characteristics of Chinese envelopes and the 

importance of proximity cues to perceptual grouping [1], we 

propose two proximity descriptors whose details are presented 

in Sections IV-C and IV-D respectively. In addition, the two 

descriptors introduced in Section VI-A-1 are used for baselines. 

For each component, four sets of features are computed. 

D. Model Training 

We use “-1” and “1” as class labels where “1” represents a 

destination address component (positive sample) while “-1” 

denotes a non-address component (negative sample). Since the 

address blocks contained in training images have been labeled 

using a bounding box, the connected components that locate in 

this box are labeled as “1”; otherwise they are labeled as “-1”. 

After feature extraction is complete, we create a training dataset 

for the training images, including feature vectors and class 

labels. We use this training dataset to train our classifier. 

E. Destination Address Block Prediction 

Once the model is trained, it can be used for locating address 

blocks by predicting the class label (“-1” or “1”) of the 

connected components labeled in the test images. At this stage, 

the same type of features are used as that used in the model 

training stage. We traverse the whole test image in a 

component-by-component manner for prediction. Only the 

class label of one component is predicted every time. After the 

labels of all the components have been predicted, the location 

corresponding to a component whose class label is “1” is 

assigned the gray level of 0; otherwise it is set to the gray level 

of 255. The locations with the gray level of 0 are considered as 

the destination address block predicted in the test image. 

IV. COMPONENT-WISE PROXIMITY DESCRIPTORS 

Evidence [8] shows that destination address blocks usually 

position at the top-left region of Chinese envelopes (see Fig. 1). 

As discussed in [1], the human visual system uses proximity 

cues to separate a region from others. Here, we develop two 

proximity descriptors by encoding the proximity characteristics 

of the connected components extracted from a local region, 

which are described in Sections IV-C and IV-D respectively. 

A. Connected Component Labeling 

We analyze binary envelope images based on connected 

components (or components) rather than image pixels. The 

advantages of using components over pixels include that (1) 

locating address blocks becomes more efficient because in an 

image, the number of the components is significantly less than 

that of the pixels. Compared to image patches, the components 

are more perceptually intuitive; and (2) the locating operation is 

immune to noise. To this end, we conduct connected 

component labeling [13] on the binary envelope images.  

B. Describing Connected Components Using a Set of 
Reference Points 

Connected components containing a set of pixels normally 

present different shapes. Different image properties can be used 

to describe connected components, e.g., size of the bounding 

box, perimeter and centroid. We use the coordinates of the 

centroid and eight extrema points to represent a component. 

That is to say, each component is described by nine points, i.e., 

the “centroid”, “left-top”, “left-bottom”, “top-left”, “top-right”, 

“right-top”, “right-bottom”, “bottom-left” and “bottom-right” 

points. These points are referred to as “Reference Points”. Fig. 

3 shows the reference points of two components in detail.  

C. Component-wise Shape Context 

The original shape context descriptor [3] was designed to 

represent the shape of contours via encoding the co-occurrence 

of the distance and orientation of contour point pairs. Since the 

appearance of the destination address block on Chinese 

envelopes is different from that of other regions, we describe 

local regions rather than contours by exploiting the proximity 

characteristics of these regions. We here use an improved shape 

context algorithm by computing shape context co-occurrence 

histograms based on connected components.  

To be specific, for each of the nine types of reference points, 

we obtain a reference point map. Given this reference point 

map, we compute an     shape context histogram at the 

location of each reference point. A shape context histogram is 
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Fig. 3. The illustration of the reference points (red points) of two 
different connected components (blue regions). 
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Fig. 4. The computation process of component-wise shape context 
features in terms of: (a) a “centroid” reference point (the center of the 
disks), and (b) a “top-right” reference point (the center of the disks). 
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computed based on a circular neighborhood with the radius of 

  pixels, whose center locates at the current reference point. 

Before the histogram is computed, we pad the reference map 

with a blank surrounding boundary area (whose thickness is 

equal to  ) in order to guarantee that the shape context can be 

computed at the original boundary locations. Given a     

image, the size of the padded image is (    )  (    ). 

The distance and orientation between the current reference 

point and the other reference points within the circular 

neighborhood are calculated. All the distance and angle values 

are quantized into a 2D co-occurrence matrix, i.e., the shape 

context histogram, which consists of   distance bins and   

angle bins. Similar to the method that Belongie et al. [3] 

proposed, we use the log space to quantize the distances in 

order to amplify the influence of the closer reference points. Fig. 

4 shows two examples in which the component-wise shape 

context histograms are calculated in terms of a “centroid” point 

and a “top-right” point respectively. Eventually, the shape 

context histogram captures the spatial relationship between the 

central reference point and its neighboring reference points.   

For each connected component, we compute nine shape 

context histograms in total (with regard to its nine reference 

points). These histograms are then concatenated into a single 

feature vector in order to generate a representation of the 

proximity characteristics of the local region surrounding the 

current component. This feature vector is referred to as 

“Component-wise Shape Context” or “CWSC”. The 

dimensionality of the CWSC feature vector is      .  

D. Component-wise Local Self-Similarity 

The component-wise shape context descriptor considers the 

nine reference points of a connected component individually 

and enables a single representation in terms of each reference 

point to be calculated. Hence, this descriptor does not take into 

consideration the local shape of the components. However, we 

have observed that the font size of the characters in a block is 

usually similar to each other. We thus propose a second 

proximity descriptor: component-wise local self-similarity. 

According to [32], local self-similarity is computed based on 

the Euclidian distance between the local circular neighborhood 

of a pixel   and the neighborhoods of the other pixels in the 

surrounding region (with the radius of   pixels) of this pixel. 

After the distance computation is performed, a distance surface 

  (   ) is obtained. This surface is normalized and converted 

to a correlation surface   (   ) . The correlation surface is 

mapped to the log-polar space whose center locates at the pixel 

 . This space is quantized into   orientation angle bins and   

distance bins. The maximal correlation value in each bin is 

concatenated into an     dimensional feature vector and is 

further normalized to the range of [0, 1] using linear stretching. 

The normalized feature vector is referred to as “Local 

Self-Similarity Descriptor” of the pixel  . This descriptor 

encodes the spatial layout of the local self-similarity data.  

In this study, we modify the original local self-similarity 

descriptor in order to encode the local self-similarity of 

connected components instead of local neighborhoods. Each 

component is represented by its nine reference points (see Fig. 

3). All the reference points of each component are comprised of 

a reference point map. We pad the reference point map using a 

blank boundary area (whose thickness is equal to   pixels). The 

padding operation guarantees that the local self-similarity can 

be fully computed at each original boundary location. 

In terms of the “centroid” reference point (see Fig. 3) of a 

given component  , a circular region with the radius of   pixels 

is defined (see Fig. 5 (a)), whose center locates at this point. 

Each component whose “centroid” reference point falls in this 

region is considered. The Sum of Square Differences (SSD) 

between the nine reference points of the central component (i.e., 

 ) and those of each neighboring component is computed. It 

should be noted that the coordinates of the reference points are 

subtracted from the coordinates of the “centroid” reference 

point, to remove the influence of the position. In fact, only the 

eight boundary reference points are used for computing the 

SSD. All the SSD values computed from the overall 

neighboring components are comprised of a distance surface 

 (   ) . This surface is further converted to a correlation 

surface  (   ) (see Fig. 5 (b)). The remaining computation 

procedures (see Figs. 5 (c) and (d)) are the same as those used to 

compute the original local self-similarity descriptor [32]. 

Finally, an     dimensional descriptor is derived to 

represent the component  . We refer to this descriptor as 

“Component-wise Local Self-Similarity” or “CWLSS”.  

V. THE COOPERATIVE PROFIT RANDOM FORESTS BASED 

ON THE SHAPLEY VALUE 

In this section, we introduce the proposed Cooperative Profit 

Random Forests (CPRF) classifier in detail. 

Given a binary decision tree   (           ), it classifies a 

sample       (  =1,…,  ) via traversing the tree till 

encountering a leaf node. A binary split function is associated 

with the tree node  . The split function is expressed as: 

 (     )       , (1) 

where    is a parameter. If  (     )   ,    is considered as a 

left child; otherwise it is treated as a right child. This process is 

repeated till a leaf node is reached. In terms of   , the output of 

 ̂ (  ) is the prediction label            of    and is stored at 

a leaf node. Regarding the split function  (   ) , a simple 

implementation is fulfilled based on thresholding  : 

  (   ), and (2) 

 (   )    ( )    ,        , (3) 

c(x,y)

R
c

c(x,y) in Log Space

CWLSS

 

          (a)               (b)            (c)       (d) 

Fig. 5. The computation pipeline of the component-wise local 

self-similarity descriptor in terms of the connected component  . In (a), 
red points mean the reference points of different components. 



5 
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

where     denotes the indicator function. 

A decision forest contains a series of independent decision 

trees   (           ). In terms of a sample       ( =1,…, ), 

an ensemble model is used to integrate all the predictions  ̂ (  ) 

(            ) obtained using these trees for individual 

predictions. Majority voting is a popular ensemble model for 

classification applications. Since the variance of the predictions 

of different decision trees is high, the overfitting issue is usually 

encountered [5]. In this situation, decision forests allow us to 

train a set of de-correlated decision trees and combine their 

predictions using an ensemble model in order to reduce the 

overfitting possibility. This type of decision forests is referred 

to as random forests [5]. 

The Gini index or information gain ratio [5] split functions 

are normally used by random forests algorithms. However, 

these functions only select strong discriminant attributes. We 

therefore propose a new random forests classifier by using a 

split method based on the Shapley value [31] known in the 

cooperative game theory [6] in order to exploit the merits of 

both weak and strong attributes.  

A cooperative game   (   )  consists of a player set 

            and a characteristic function       . 

Given a subset    ,  ( ) is interpreted as the profit achieved 

by the players in  . One of the key problems in the cooperative 

game theory is how to allocate the total income  ( ) to each 

player   (   ) in the grand player coalition   in a fair and 

reasonable way. The advantages of the Shapley value [31] were 

demonstrated for feature selection [33] because it not only 

measures the distribution of the incomes allocated to players, 

but also estimates the contributions of players [6]. Given the 

Shapley value is denoted as  ( )    , the payoff to the i-th 

player:   ( ) can be computed as [31]: 

  ( )  ∑   ( )  
| | (  | |  ) 

     , and (4) 

  ( )   (   )   ( ), (5) 

where   represents the total number of players and   ( ) 

denotes the contribution of player   to the coalition    . 

The Shapley value considers possible intrinsic and intricate 

correlative interactions between players. It can be incorporated 

into random forests to estimate the best split point and the 

corresponding attributes. Specifically, we traverse every 

possible split point corresponding to each candidate attribute. 

The best split point is selected as that which produces the 

greatest sum of the Shapley values with regard to the attributes 

at both left and right children nodes. From the perspective of a 

cooperative game, the formation of cooperation between the 

parent and children nodes yields the maximum income.  

In order to guarantee that the proposed split method owns 

good discriminant ability for target classes, we use mutual 

information [29] to estimate the contribution of each attribute 

(player) in Equation (5). By convention, if more than a half of 

the attributes of the coalition   are interdependent with    , 

then   joining the coalition   produces 1 for the total income of 

 ; otherwise it yields 0. Also, conditional mutual information 

[29] is used to measure the interdependence between a single 

attribute     and the other attributes    . Let  (   ) denote 

an interdependence index which is expressed as: 

  (   )  {
   (       | )   (       )

           
, (6) 

  ( ) can be calculated as: 

  ( )  {
   (       | )        ∑  (   )  

| |

    

           
, (7) 

where conditional mutual information is computed as 

 (       | )   (         )    
 (       | )

 ( | ) (     | )
, (8) 

and mutual information is computed as 

 (       )   (       )    
 (       )

 ( ) (     )
. (9) 

We can obtain the Shapely value of each attribute according to 

Equations (4) and (6). The proposed CPRF classifier is 

described in Algorithm 1 in great detail. Given a test sample   

(i.e., an connected component labeled in a binary envelope 

image in our experiment), the class label predicted using the 

CPRF classifier is obtained as  ̂( ). The procedure described 

in Section III-E is used to fulfill address block location. 

VI. EXPERIMENTAL SETUP 

In this section, we introduce the experiments for locating 

Chinese postal address blocks. In addition to the proposed 

descriptors, we implement two component descriptors. These 

descriptors and seven different classifiers are used as baselines. 

A. The Baseline Descriptors and Classifiers 

1) The Baseline Descriptors 
For comparison purposes, we implement two different 

descriptors for representing the single component. First, we use 

Algorithm 1: Shapley Value Based Cooperative Profit Random Forests 
 

Given   labeled training samples:    (     )  (     )     (   ) with 

each attribute variable    (           ),        , 

For each decision tree  ,            , do: 

1. Take a bootstrap sample subset    of size   from   with a replacement;  
2. Extending tree nodes: 

While 

i. At each node, randomly select   (   ) attribute variables 

from the   available attribute variables; 

ii. Compute the “best” binary splitting points      among all possible 

splits on the   attributes, where 

     
           

 
           (     ); 

iii. For the split point     of each attribute    ,   (    ), do: 

       Compute:  

 (     )  ∑    
( ) 

   ,          (  )
, and 

 (     )  ∑    
( ) 

   ,          (  )
, 

where       (  )
  (       )     

            and  

       (  )
  (       )     

           . 

Then, 

     ( ̂    ̂  )         ( (     )   (      )), 

where       ( ̂ )
  (       )    ̂ 

        ̂    and 

       ( ̂ )
  (       )    ̂ 

        ̂   . 

Until the minimal number of samples in a node is reached; 

3. Making a classification prediction for a test sample   based on 

 ̂( )          ∑  ( ̂ ( )   ) 
   , 

where  ̂ ( ) is the classification prediction of the response variable at   using 

the  -th decision tree. The proposed random forests algorithm predicts the 

class at   as that receives the greatest vote from individual trees. 
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 (     )  ∑    
( ) 

   ,          (  )
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 (     )  ∑    
( ) 

   ,          (  )
, 

where       (  )
  (       )     

            and  

       (  )
  (       )     

           . 

Then, 

     ( ̂    ̂  )         ( (     )   (      )), 

where       ( ̂ )
  (       )    ̂ 

        ̂    and 

       ( ̂ )
  (       )    ̂ 

        ̂   . 

Until the minimal number of samples in a node is reached; 

3. Making a classification prediction for a test sample   based on 

 ̂( )          ∑  ( ̂ ( )   ) 
   , 

where  ̂ ( ) is the classification prediction of the response variable at   using 

the  -th decision tree. The proposed random forests algorithm predicts the 

class at   as that receives the greatest vote from individual trees. 
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the coordinates of the nine reference points (see Fig. 3) to 

describe a component. We normalize the   and   coordinates 

via dividing these by the width and height of the image 

respectively. This removes the influence of the image size. The 

normalized coordinate descriptor is named “Component-wise 

Positions” or “CWP”. Second, we compute a set of shape 

measurements for each component, including “Area”, “Convex 

Area”, “Eccentricity”, “Equiv Diameter”, “Euler Number”, 

“Extent”, “Filled Area”, “Major Axis Length”, “Minor Axis 

Length”, “Orientation”, “Perimeter” and “Solidity”. The 

descriptor that comprises these measurements is termed as 

“Component-wise Shape Measurements” or “CWSM”. 

2) The Baseline Classifiers 
Support Vector Machines (SVM) We test SVM [11] using 

three kernel functions: linear (SVM-LIN), radial basis function 

(SVM-RBF) and histogram intersection (SVM-HI). Parameters 

are obtained using cross-validation on the validation dataset. 

Extreme Learning Machines (ELM) We use 1000 hidden 

neurons and the sigmoid function for the ELM classifier as 

proposed by Huang et al. [20]. 

Decision Trees (DT) The optimal subset is selected for each 

split based on exact search [10]. We use the Gini impurity 

measure [5] as the criterion. 

Naive Bayes (NB) The multinomial distribution is used for a 

naive Bayes classifier [14]. Prior probabilities are estimated 

from the frequencies of the training class labels. 

Random Forests (RF) Given an   dimensional feature vector, 

a subset of  √   features are randomly selected as Breiman [5] 

proposed. We use the Gini impurity measure [5] to conduct 

feature and decision boundary selections for each branch node 

of the subset. In total, 200 decision trees are used. 

When the proposed cooperative profit random forests (CPRF) 

classifier is used, feature vectors are quantized into [1, 8] for 

CWSC and CWLSS, as the computation of mutual information 

only accepts discrete inputs. Considering the dimensionality of 

CWSC feature vectors is high, a subset of  √     features is 

randomly selected for efficiency purposes. The other setup is 

the same as that used for the original random forests. 

B. Dataset 

To our knowledge, there is no publicly available Chinese 

envelope image dataset. One possible reason is due to the 

privacy issue. In our experiments, we captured 800 envelope 

images in total. These images contain handwritten and/or 

machine-printed text, various spatial layouts, different sizes 

and orientations of fonts, and the text with different watermarks 

or shading. The destination address block in each binary 

envelope image is manually labeled using a bounding box as 

the ground-truth data. The 800 images are randomly divided 

into three subsets: training, validation and test, which contain 

300, 300 and 200 images respectively. 

C. Performance Measures 

We use Precision and Recall as performance measures. In the 

context of binary (positive or negative) classification, (1) True 

Positives (TP) mean the positive samples which are classified 

into the positive class; (2) False Positives (FP) stand for the 

negative samples which are labeled as the positive class; and (3) 

False Negatives (FN) denote the positive samples which are 

classified into the negative class. Precision (      ) is defined 

as the fraction of the number of true positives and the total 

number of true positives and false positives (see Equation (10)), 

while Recall (      ) is defined as the fraction of the number 

of true positives and the total number of true positives and false 

negatives (see Equation (11)). These measures are computed 

across all the test images in this study. 

          
  

     
, (10) 

       
  

     
. (11) 

VII. EXPERIMENTAL RESULTS 

In this section, we report the results obtained for destination 

address block location. First, our method is assessed in five 

experiments. In Experiment I, we test the proposed proximity 

descriptors using different region radii. In Experiments II and 

III, we examine the proposed proximity descriptors using 

different numbers of distance and angle bins quantized for 

computing these descriptors, respectively. We report the 

computational time cost and examine the noise resistance 

ability of our method in Experiments IV and V respectively. 

Then, we compare the results derived using the proposed 

method with those obtained using five popular baseline 

classifiers, those reported in existing studies [7], [37], those 

obtained using convolutional neural networks (CNN) [24], [34] 

features, and those derived using our method after text line 

detection is applied to the images. In addition, we generalize 

the proposed method to a new Chinese envelope image dataset. 

A. Address Block Location Using Proximity Descriptors 

1) Using Different Region Radii ( ) 
We examine the two proximity descriptors using different 

region radii. The angle and distance of both the descriptors are 

quantized into six and four bins respectively. The CPRF and 

seven baseline classifiers are tested along with each descriptor. 

Fig. 6 (a) shows the precision values derived using different 

combinations of proximity descriptors and classifiers. It shows 

that: (1) the CWSC descriptor normally outperforms CWLSS 

when the same classifier is used; (2) the proposed CPRF 

classifier performs comparably to, or slightly worse than, the 

original random forests classifier [5]; (3) the two random 

forests and the ELM classifiers [20] perform better than their 

counterparts; (4) the performances of the histogram intersection, 

linear and radial basis function SVM classifiers distribute in a 

descending order; (5) the combination of the CWSC descriptor 

and the original RF classifier [5] performs the best while the 

CWLSS descriptor and naïve Bayes [14] performs the worst; 

and (6) the performance obtained using different combinations 

of descriptors and classifiers normally increases when large 

regions are used. However, the performance becomes relatively 

stable when the region radius is over 680 pixels.  

Furthermore, the recall values produced by different 

combinations of proximity descriptors and classifiers are 

shown in Fig. 6 (b). We observe that: (1) the CWSC descriptor 

yields the similar performance to that it generates when the 

precision measure is applied, while the performance of CWLSS 

greatly varies; (2) the CWLSS descriptor performs better, when 

the radial basis function or linear SVM is used, than the case 
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when the histogram intersection SVM is used; (3) the proposed 

CPRF classifier outperforms its counterparts in most of the 

cases, when the same descriptor is used; (4) the ELM classifier 

[20] normally outperforms the decision trees [10] and three 

SVM classifiers [11]; (5) different combinations of descriptors 

and classifiers perform stably when the region radius is over 

680 pixels; and (6) the recall values derived are normally higher 

than the precision values obtained in the same condition.  

Finally, Table I reports the best precision and recall values 

obtained across varying region radii. Meanwhile, the 

performance of the two baseline descriptors is also shown. As 

can be seen, the two proposed descriptors always significantly 

outperform the baseline descriptors. The best recall value: 0.94 

is obtained using the proposed CPRF classifier while the best 

precision value 0.77 is provided by the original RF classifier [5]. 

Fig. 7 shows two groups of binary envelope images and 

destination address block images obtained using the CWSC 

descriptor with the CPRF classifier. It can be seen that this 

combination yields good location results.  

2) Using Different Numbers of Distance Bins ( ) 
In this experiment, we investigate the effect of the number of 

distance bins on the proposed descriptors. Only the region 

radius of 680 pixels is considered as the performance of the 

proposed descriptors becomes stable when the used radius is 

larger than this value in the previous experiment. We test four 

different distance bin numbers, i.e.,   (             ), while 

keeping the number of angle bins constant (    ). The 

precision and recall values obtained using the CWSC and 

CWLSS descriptors are plotted in Fig. 8. It shows that: (1) the 

recall values obtained become relatively stable, or even drop, 

when over 12 distance bins are quantized while this does not 

stand when the precision values are considered; (2) given that 

the same classifier is used, the CWSC descriptor normally 

outperforms CWLSS when precision is considered; (3) the 

recall values obtained are higher than the precision values for 

the same combination of descriptors and classifiers; (4) the two 

random forests and ELM classifiers [20] normally outperform 

the other approaches no matter which proximity descriptor is 

used; and (5) the proposed CPRF classifier produces better 

recall values than its counterparts.  

3) Using Different Numbers of Angle Bins ( ) 
We also examine the effect of the number of angle bins (i.e., 

 ) on the CWSC and CWLSS descriptors. Here,       is 

TABLE I 
THE BEST PERFORMANCE OBTAINED USING DIFFERENT COMBINATIONS OF 

DESCRIPTOR AND CLASSIFIER ACROSS DIFFERENT REGION RADII WHEN TWO 

MEASURES ARE CONSIDERED SEPARATELY 
 SVM-HI SVM-RBF SVM-LIN ELM 

Precision 

CWP 0.20 0.22 0.21 0.25 

CWSM 0.21 0.17 0.17 0.28 

CWSC 0.70 0.60 0.61 0.73 

CWLSS 0.55 0.46 0.48 0.57 

Recall 

CWP 0.06 0.77 0.83 0.36 

CWSM 0.77 0.48 0.48 0.71 

CWSC 0.89 0.90 0.89 0.91 

CWLSS 0.90 0.92 0.90 0.92 

 DT NB RF CPRF 

Precision 

CWP 0.24 0.20 0.00 0.24 

CWSM 0.43 0.23 0.63 0.16 

CWSC 0.72 0.58 0.77 0.75 

CWLSS 0.56 0.42 0.60 0.54 

Recall 

CWP 0.09 0.60 0.00 0.33 

CWSM 0.21 0.34 0.14 0.38 

CWSC 0.87 0.88 0.92 0.94 

CWLSS 0.84 0.86 0.93 0.94 

Bold fonts indicate the best result when each performance measure is 
considered (this continues in the following tables). 

  

Precision: 1 and Recall: 1 

(a) 

  

Precision: 1 and Recall: 0.99 

(b) 

Fig. 7. Two groups of binary envelope images and the corresponding 
address block location resultant images obtained using CWSC and 
CPRF. In each group, the image displayed at the left side is the binary 
image while the image shown at the right side is the resultant image. 
The precision and recall values are shown below the images. 

  

(a) 

  

(b) 

Fig. 6. The performance measures: precision (a) and recall (b) 

obtained using different combinations of proximity descriptors (    
and    ) and classifiers when various region radii are used. 

 
Fig. 8. The values of the precision and recall obtained using different 
combinations of proximity descriptors and classifiers when different 

numbers of distance bins ( ) are used (   ). 
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used. The number of angle bins is set to 3, 6, 9 and 12. On the 

other hand, the number of distance bins is set as    . Fig. 9 

illustrates the precision and recall values obtained using the 

CWSC and CWLSS descriptors. As can be seen, (1) the 

precision or recall values look similar, or even drop, when more 

than six angle bins are used; (2) given a classifier, CWSC 

normally performs better than CWLSS when precision is 

considered while this is not the case when recall is considered; 

(3) in terms of a combination of descriptors and classifiers, the 

recall values obtained are higher than the precision values; (4) 

the performance of the other classifiers is inferior to that of the 

two random forests and ELM classifiers [20] when each of the 

two proposed descriptors is used; and (5) the CPRF classifier 

usually yields higher recall values than the other classifiers. 

4) Computational Time Cost 
The experiments have been conducted on a laptop with a 

64-bit, 2.50 GHz Intel(R) i7-4710MQ CPU and 16.0 GB 

memory. The total training time and the average test time per 

image required by CWSC and CWLSS (     ,     and 

    ) along with different classifiers are reported in Table II. 

As can be seen, the test time required by CPRF is reasonable 

even if the training of this classifier is time-consuming. 

However, the training can be off-line performed. Therefore, the 

CPRF classifier provides a proper efficiency and effectiveness 

for our application.  

5) Noise Resistance 
In order to examine the noise resistance ability of the 

proposed postal address block location methodology, we add 

four different levels (SNR or Signal-to-Noise Ratio) of 

Gaussian noise to the training and test images. The address 

block location experiment is performed on these images. For 

simplicity, only the CWSC descriptor with the “optimal” 

parameters (i. e.,      ,     and     ) is tested 

together with both the RF and CPRF classifiers. Table III 

presents the results in detail. Compared to the precision: 0.79 

and recall: 0.96 obtained using the original images, the 

proposed address block location methodology manifests strong 

noise resistance ability when no less than 25 dB Gaussian noise 

is added to the images. Although when the noise level: SNR 

reaches to 0, the recall obtained using the proposed 

methodology is almost not affected.  

B. Comparison with Popular Baseline Classifiers 

We also test the proposed CWSC and CWLSS descriptors 

along with the free classifier tool: Weka [19]. For simplicity, 

only the “optimal” parameters:      ,     and      

are used for both descriptors. In total, five baseline classifiers 

provided by Weka [19] are tested, including C4.5, ZeroR, 

REPTree, LMT (Logistic Model Trees) and RandomForest. 

The results are shown in Table IV. Compared with the results 

displayed in Fig. 8, it can be seen that Weka’s random forest 

classifier generates almost the same result as that we have 

obtained. However, the other Weka’s classifiers usually 

produce inferior results to those derived using the random 

forest classifier.  

C. Comparison with Existing Chinese Postal Address 
Block Location Studies 

In this study, both the highest recall values obtained using the 

proposed CWSC and CWLSS descriptors are 0.96 (see Fig. 8). 

In contrast, the highest recall values (which are identical to the 

accuracy [7] and the extraction rate [37]) reported in [7] and [37] 

are 0.88 and 0.82 respectively. Although we cannot use these 

values as the baselines, our experimental results suggest that 

the proposed destination address block location methods, i.e., 

the combinations of the CWSC or CWLSS descriptors and 

cooperative profit random forests, produce better results than 

those derived in the existing studies [7], [37].  

D. Comparison with Convolutional Neural Networks 
Features 

We extract features from the penultimate fully-connected 

layer of two different pre-trained CNN models: Alex-Net [24] 

and GoogLeNet [34]. Also, we fine-tune these models using 

our labeled dataset. Correspondingly, two additional sets of 

features are extracted from the fine-tuned Alex-Net [24] and 

GoogLeNet [34] models. The CPRF classifier is used because 

its advantage over the other classifiers has been shown. The 

TABLE III 
THE PRECISION AND RECALL VALUES OBTAINED USING RF AND CPRF 

TOGETHER WITH THE BEST CWSC FEATURES WHEN FOUR DIFFERENT 

LEVELS (SNR: DB) OF NOISE IS ADDED TO IMAGES 
 SNR (dB) 0 25 50 100 

RF 
Precision 0.38 0.80 0.80 0.80 

Recall 0.94 0.94 0.95 0.94 

CPRF 
Precision 0.37 0.77 0.77 0.77 

Recall 0.96 0.95 0.96 0.95 

 

TABLE II 
THE TOTAL TRAINING TIME (SECONDS) AND AVERAGE TEST TIME PER IMAGE 

REQUIRED BY CWSC AND CWLSS (     ,     AND     ) WHEN 

DIFFERENT CLASSIFIERS ARE USED 
  SVM-HI SVM-RBF SVM-LIN ELM 

CWSC 
Training 590.02 2452.23 926.28 14.09 

Test 2.42 10.55 3.77 0.26 

CWLSS 
Training 256.17 481.77 209.83 20.89 

Test 0.43 1.38 0.55 0.29 

  DT NB RF CPRF 

CWSC 
Training 34.40 3.76 1117.50 5736.13 

Test 0.01 0.06 0.03 0.18 

CWLSS 
Training 2.29 0.14 125.64 4537.68 

Test 0.004 0.04 0.02 0.07 

 

 
Fig. 9. The values of the precision and recall obtained using different 
combinations of proximity descriptors and classifiers when different 

numbers of angle bins ( ) are used (   ). 

TABLE IV 
THE PRECISION AND RECALL VALUES OBTAINED USING THE CWSC AND 

CWLSS DESCRIPTORS (     ,     AND     ) TOGETHER WITH 

DIFFERENT WEKA’S [19] BASELINE CLASSIFIERS 
 Classifier C4.5 ZeroR REPTree LMT RandomForest 

CWSC 
Precision 0.78 0.00 0.74 0.81 0.80 

Recall 0.90 0.00 0.93 0.92 0.95 

CWLSS 
Precision 0.72 0.00 0.72 0.73 0.75 

Recall 0.91 0.00 0.93 0.92 0.96 
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training and prediction operations are the same as those 

performed for the proposed descriptors. The precision and 

recall values obtained using the four sets of CNN features are 

shown in Table V. It is observed that fine-tuning improves the 

performance of the CNN features; while the best performance 

of these features is close to the best results obtained using the 

proposed CWSC descriptor. One possible reason is that the 

insufficient number of the envelope images may limit the 

performance of Alex-Net [24] and GoogLeNet [34]. 

E. Using Text Line Detection as Pre-processing 

Since text line detection techniques normally detect the text 

information only, we use the method that Zhang et al. [43] 

proposed as a pre-processing step. This method is used before 

the image segmentation operation is performed. We use all the 

default parameters excepting “Maximum sliding window 

scale”, which is tuned. We only test the CWSC descriptor using 

its “optimal” parameters (i.e.,      ,     and     ) 

along with the CPRF classifier. Table VI reports the precision 

and recall values obtained using this combination. It can be 

seen that the best performance is obtained when “Maximum 

sliding window scale” is set to 4. In this case, the precision and 

recall values obtained are 0.76 and 0.95 respectively. 

Correspondingly, these performance values obtained without 

using the text line detection pre-processing are 0.79 and 0.96 

respectively. This result shows that the pre-processing of text 

line detection does not boost the performance of the proposed 

CWSC descriptor. This may be due to the fact that the text line 

detection model is trained over limited samples.  

F. Generalization to a New Dataset 

To augment the results that we have derived, we further 

collect 600 Chinese envelope images. We randomly divide 

these images into two equal-sized subsets: training and test. 

The CWSC and CWLSS descriptors with the “optimal” 

parameters:      ,     and      are then applied to 

the new dataset along with different classifiers. We report the 

results obtained using the new dataset in Table VII. It can be 

observed that the performance values are higher than those (see 

Fig. 8) obtained using the original images. By checking the new 

dataset, it is found that the proportion of machine-printed 

envelope images is higher than that of those images included in 

the original dataset. Since the destination address blocks shown 

on machine-printed envelopes are more compact and standard 

than those occur on hand-written envelopes, it is more effective 

to train a classifier using the new dataset than the original one. 

This fact should account for the better results shown in Table 

VII. It can also be seen that the CPRF classifier still produces 

higher recall values than its counterparts. This finding is 

consistent with that we observed in the original experiments.  

VIII. CONCLUSIONS 

In this paper, we introduced two proximity descriptors to 

represent the specific regions on Chinese envelope images. We 

also proposed a random forests classifier by using a new split 

method based on the Shapley value [31] known in the 

cooperative game theory [6]. This classifier is referred to as 

“Cooperative Profit Random Forests” or “CPRF”. The 

proposed descriptors were applied to locating destination 

address blocks on Chinese envelope images along with the 

CPRF classifier. The results showed that both the proposed 

descriptors were superior to two baseline descriptors. The joint 

use of each of the proposed descriptors and CPRF generated the 

best recall performance. This performance was even higher 

than those derived using four sets of CNN features at the same 

conditions. The promising performance should be attributed to 

the fact that the proposed descriptors are able to encode the 

spatial layout of the components contained in a local region by 

exploiting proximity cues rather than only capturing the shape 

characteristics of individual components. Besides, the proposed 

CPRF classifier produced higher recalls than those yielded by 

seven state-of-the-art classifers. This result should be due to the 

effective tree node split method that the CPRF classifier uses.  
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