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A B S T R A C T

The invasive phytopathogen Phytophthora ramorum has caused extensive infection of larch forest across areas of
the UK, particularly in Southwest England, South Wales and Southwest Scotland. At present, landscape level
assessment of the disease in these areas is conducted manually by tree health surveyors during helicopter sur-
veys. Airborne laser scanning (ALS), also known as LiDAR, has previously been applied to the segmentation of
larch tree crowns infected by P. ramorum infection and the detection of insect pests in coniferous tree species.
This study evaluates metrics from high-density discrete ALS point clouds (24 points/m2) and canopy height
models (CHMs) to identify individual trees infected with P. ramorum and to discriminate between four disease
severity categories (NI: not infected, 1: light, 2: moderate, 3: heavy). The metrics derived from ALS point clouds
include canopy cover, skewness, and bicentiles (B60, B70, B80 and B90) calculated using both a static (1 m) and
a variable (50% of tree height) cut-off height. Significant differences are found between all disease severity
categories, except in the case of healthy individuals (NI) and those in the early stages of infection (category 1). In
addition, fragmentation metrics are shown to identify the increased patchiness and intra-crown height irregu-
larities of CHMs associated with individual trees subject to heavy infection (category 3) of P. ramorum.
Classifications using a k-nearest neighbour (k-NN) classifier and ALS point cloud metrics to classify disease
presence/absence and severity yielded overall accuracies of 72% and 65% respectively. The results indicate that
ALS can be used to identify individual tree crowns subject to moderate and heavy P. ramorum infection in larch
forests. This information demonstrates the potential applications of ALS for the development of a targeted
phytosanitary approach for the management of P. ramorum.

1. Introduction

UK forestry has experienced notable introductions of several sig-
nificant phytopathogens in recent decades (Brown et al., 2003; Brasier,
2008; Webber et al., 2008; Mitchell et al., 2014). Subsequent to its
identification in the UK in 2002 (Lane et al., 2003), Phytophthora ra-
morum has caused extensive infection of larch (Larix sp.) trees, parti-
cularly across forests situated in Southwest England, South Wales and
Southwest Scotland (Forestry Commission, 2016). The infection which
can present both stem and foliar symptoms in affected larch, such as
stem bleeds, foliage discolouration and defoliation (Webber et al.,
2010) has resulted in the felling of over 16,000 ha of larch across the
UK, including Japanese (Larix kaempferi), European (Larix decidua) and

hybrid species (Larix x eurolepis) (Forestry Commission, 2014).
Current efforts to assess landscape-level patterns of P. ramorum in-

fection and identify new outbreaks rely on visual aerial assessment
conducted by tree-health surveyors during helicopter surveys. In this
instance, foliar symptoms presented by infected larch aid the identifi-
cation of P. ramorum. The use of manual aerial detection highlights an
opportunity for the application of remote sensing to detect and assess P.
ramorum outbreaks in larch stands (Medcalf et al., 2011). Despite the
increased recognition of remote sensing as a tool for the assessment of
forest health and disease, visual surveys continue to dominate in the
operational management of pests and phytopathogens in the forestry
sector (Hall et al., 2016; Lausch et al., 2017). Commonly cited concerns
and barriers to the application of remote sensing techniques for the
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assessment of forest condition include the perceived insufficient re-
solution associated with optical satellite data and the costs associated
with data acquisition and processing (Suárez et al., 2005; Rullan-Silva
et al., 2013; Hall et al., 2016). Recognising the concerns of end-users is
important for implementation of the results from scientific research into
forestry management practise (Wulder et al., 2006).

In forest research, remote sensing methodologies utilising airborne
laser scanning (ALS), also known as airborne light detection and ran-
ging (LiDAR), have been extensively applied to provide information
regarding the structural character of vegetation in these landscapes
(Lim et al., 2003; Wulder et al., 2013; Sheridan et al., 2015). ALS
provides three-dimensional data that have previously been employed to
examine biophysical forest parameters (Zimble et al., 2003; Balzter
et al., 2007; Yoga et al., 2017). In addition, ALS datasets facilitate the
segmentation of individual tree crowns (ITCs) (Brandtberg et al., 2003;
Barnes et al., 2017), which can subsequently be applied to determine
ITC-based metrics such as tree height, crown diameter, canopy cover
and species (Popescu et al., 2003; Holmgren and Persson, 2004;
Reutebuch et al., 2005; Breidenbach et al., 2010).

One application of ALS for the assessment of crown condition uti-
lises parameters derived from point clouds to assess the three-dimen-
sional structure of trees and their canopies (Kwak et al., 2010). Previous
studies have useed height related metrics from ALS point clouds to
characterise tree structure and identify crown decline for an array of
applications including habitat suitability mapping (Martinuzzi et al.,
2009; Casas et al., 2016) and the assessment of insect pest outbreaks
(Bright et al., 2013; Vastaranta et al., 2013). These metrics can be ca-
tegorised into three broad categories: height-based metrics and per-
centiles, distributional metrics and cover metrics. Height-based metrics
and percentiles summarise patterns regarding the height of ALS returns.
Distributional metrics concern the distribution of returns through the
canopy profile, whilst cover metrics typically compare two subsets of
points to produce a variety of indices. (Coops et al., 2009). In addition,
ALS point cloud intensity characteristics, which concern the strength of
pulse backscattering, have also been applied to the assessment of crown
decline, largely with regards to the identification of dead trees (Kim
et al., 2009; Wing et al., 2015; Casas et al., 2016).

In the specific context of disease outbreaks in forestry, a series of
height related ALS-metrics including the number of canopy returns,
maximum height, standard deviation of height, percentage of returns
below 10%, 50%, 80% and 90% of total height and gap fraction have all
previously been applied to the assessment of defoliation from insect
pests (Solberg et al., 2006; Coops et al., 2009; Kantola et al., 2010;
Vastaranta et al., 2013). In particular, Kantola et al. (2010) and
Vastaranta et al. (2013) reported accuracies of 80.7% and 84.3% for the
respective tree- and plot-level classifications of healthy and defoliated
Scots pine (Pinus sylvestris) affected by the common pine sawfly (Diprion
pini). The success of ALS height metrics for the assessment of insect pest
defoliation can be attributed to the increased penetration of laser pulses
into the forest canopy when foliage is lost (Coops et al., 2009; Kantola
et al., 2010; Vastaranta et al., 2013). Nevertheless, the potential use of
these ALS-derived metrics has not previously been considered for dis-
ease outbreaks resulting from phytopathogens such as P. ramorum.

In addition to the three-dimensional analysis of ALS point clouds,
the impacts of dieback and defoliation of tree crowns are also evident in
ALS-derived canopy height models (CHMs) as increased irregularities in
surface elevation across individual crowns (Holdenrieder et al., 2004).
CHMs are a common raster product derived from ALS datasets to re-
present the canopy surface, typically computed via the subtraction of
the digital terrain model (DTM) and digital surface model (DSM) which
represent the rasterised last and first returns respectively (Dubayah and
Drake, 2000; Ben-Arie et al., 2009). As a result of increased penetration
of ALS pulses through defoliated canopies, crowns subject to disease
typically exhibit a patchy appearance when viewed as CHMs
(Holdenrieder et al., 2004; Barnes et al., 2017). Landscape metrics
traditionally applied to assess habitat fragmentation in the field of

landscape ecology provide a means of quantifying the characteristics
and spatial distribution of patches (Hargis et al., 1998; Kupfer, 2012).
This study applies this series of metrics to assess the increased patchi-
ness of CHMs for ITCs subject to disease.

Relationships between remotely sensed and ground-based metrics
facilitate classifications of tree crown condition, providing a spatial
representation of disease or decline throughout forested environments
and hence a useful tool for disease management (Shendryk et al., 2016).
The selection of disease severity category boundaries is particularly
important, with difficulties previously noted in the differentiation be-
tween classes across the spectrum of moderate disease severity for
forest pests (Coops et al., 2003; Leckie et al., 2005). A range of estab-
lished classifiers including k-nearest neighbour (k-NN) and random
forest (RF) have previously been applied to the classification of disease
and vegetation structure (McInerney and Nieuwenhuis, 2009; Kantola
et al., 2010; Bright et al., 2013; Ortiz et al., 2013), each presenting
advantages and limitations, with suitability largely dependent on input
data characteristics such as the quantity of training data and class se-
parability (Huang et al., 2002; Samaniego et al., 2008).

This study uses ALS in the form of point cloud metrics and frag-
mentation metrics from CHMs to identify individual tree crowns subject
to P. ramorum infection and examine the capability of these metrics to
provide separation of four disease severity classes (NI: not infected, 1:
light, 2: moderate, 3: heavy) based on differences in tree crown struc-
ture. Furthermore, the application of ALS metrics for the classification
of P. ramorum presence and disease severity were also evaluated with
the use of the k-NN and RF classifiers.

2. Material and methods

2.1. Study area

The study was conducted in Wales, United Kingdom. The two study
areas were situated at Ogmore Forest in South Wales (51.5954°N,
−3.5320°W) and Radnor Forest in Mid Wales (52.2708°N,−3.1503°W)
(Fig. 1), both managed by Natural Resources Wales. Ogmore Forest is
situated within the core P. ramorum disease zone in Wales and has been
subject to the infection since 2011. Due to the spread of the P. ramorum
across the Ogmore site, a second site, Radnor Forest, comprising of
healthy larch stands was selected outside of the core P. ramorum zone.
To aid accessibility for ground surveying, a combination of plots and
transects were established along sub-compartment edges. Table 1 pro-
vides a summary of the sample transects from both study sites, variation
in transect lengths was incurred due to differences in sub-compartment
dimensions. A total of 258 trees were surveyed, with 158 and 100 in-
dividuals from the Ogmore and Radnor Forests respectively. Test and
training datasets were subsequently identified by dividing each sample
plot in half.

2.2. Field data collection

Trees located within selected sampling areas at both study sites
were individually tagged, photographed and surveyed for species and
diameter breast height. The position of each individual was recorded
using a handheld Garmin Oregon 550t GPS. In circumstances of poor
GPS positional accuracy (> 2 m), the distance and bearing of in-
dividuals was also noted from a reference point situated outside the
forest. Larch species, which formed the majority of surveyed individuals
(84%) were subject to additional visual surveying of both the stem and
crown to ascertain the overall tree health and the occurrence and se-
verity of P. ramorum infection. The presence or absence of cankers, bark
stripping and foliage colour change were noted, as well as percentage
classes (10% intervals) of deadwood, defoliation, discolouration,
wilting and canopy cover. Visual assessments were conducted by the
same surveyor throughout the data collection to ensure consistency
(Kantola et al., 2010; Nutter et al., 2010). Surveys were conducted in
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June, July and August 2015 coinciding with the acquisition of ALS data
for both study sites by Bluesky International. At the infected study site,
larch trees which exhibited characteristic cankers associated with P.
ramorum were presumed infected. In circumstances where the presence
of P. ramorum infection was not definitive from presented symptoms, a

lateral flow device (LFD) was used to ascertain the presence of Phy-
tophthora spp. in suspect plant material (Kox et al., 2007). A total of
three LFD tests were undertaken before a tree was classified as not
infected, in order to reduce false negatives.

To evaluate the severity of P. ramorum infections the scoring system

Fig. 1. (a) Location of study areas in Wales; (b) Location of transects at the Radnor site, grey indicates forested area; (c) Location of transects and plots at the Ogmore site, grey indicates
forested area.

Table 1
Characteristics of the sample transects and plots established at the Ogmore and Radnor Forests. Tree heights have been calculated using the ALS data (June 2015) and the size, number of
trees and P. ramorum presence were recorded during field surveys (June, July and August 2015).

No. Forest Species
Composition

Max Height
(m)

Min Height
(m)

Mean Height
(m)

Transect Length (m)*/
Plot Size (m2) $

No. Trees P. ramorum Infection
confirmed

Percentage of Larch Trees with P.
ramorum Infection (%)

T1 Ogmore HL, MB 8.41 4.03 6.01 100* 22 Yes 44
T2 Ogmore HL, MB 11.54 4.98 8.82 100* 24 Yes 75
P3 Ogmore JL 18.84 10.90 16.44 900$ 22 Yes 75
T4 Ogmore JL, SS 14.48 6.87 10.00 130* 30 Yes 95
T5 Ogmore JL 16.64 9.09 13.80 30* 5 Yes 100
T6 Ogmore JL 20.30 10.18 15.82 130* 9 Yes 100
T7 Ogmore JL 21.52 11.90 18.87 50* 10 Yes 100
P8 Ogmore JL 24.59 15.55 21.73 1000$ 36 Yes 100
T9 Radnor JL, MB 21.19 14.61 19.15 60* 11 No N/A
T10 Radnor HL, MB, MC 6.88 4.69 5.44 60* 15 No N/A
T11 Radnor JL, MB 19.58 13.14 15.65 60* 20 No N/A
T12 Radnor JL 32.78 22.69 29.33 60* 7 No N/A
T13 Radnor EL, HL 33.04 26.95 30.46 100* 12 No N/A
T14 Radnor SS 25.49 21.09 23.84 60* 5 No N/A
T15 Radnor JL 18.15 14.67 16.34 100* 9 No N/A
T16 Radnor JL 26.79 11.67 21.21 100* 21 No N/A

Abbreviations: EL, European Larch; HL, Hybrid Larch; JL, Japanese Larch; SS, Sitka Spruce; MB, Mixed Broadleaves; MC, Mixed Conifers; N/A, Not Applicable.
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in Table 2 was used to separately categorise the foliar and stems
symptoms for each tree. The overall severity of P. ramorum infection
was subsequently determined based on the highest value for the foliage
and stem scores. In cases where a reliable survey could not be con-
ducted or there were difficulties sampling suspected plant material, the
individual was left uncategorised and removed from the analysis (total
of 21 individuals). The selected number and boundaries of disease se-
verity classes used in the scoring system for the study reflects the pre-
viously poor performance of remote sensing in the differentiation be-
tween classes within the spectrum of moderate disease severity for
forest pests (Coops et al., 2003; Leckie et al., 2005). In addition, the
management requirements for disease severity data for P. ramorum
cover two main areas of concern. Firstly, the identification of new in-
fections (category 1) for the issuing of a statutory plant health notice
(Tracy, 2009) and secondly, concerns of public safety regarding trees
subject to severe decline (category 3) and the associated reductions in
structural integrity (Mistretta, 2002; Forestry Commission, 2014).

2.3. ALS data collection

ALS data were acquired for both study sites by Bluesky International
via a single aircraft survey utilising the Orion M300 sensor on the 30
June 2015, with an average flight altitude of 1500 m. The scan fre-
quency was 66 Hz, laser pulse repetition frequency was 100 kHz and
field-of-view was 8°, beam divergence was 0.25 mrad, sensor range
precision was< 8 mm and elevation accuracy was 3–10 cm. Resulting
point densities for the Ogmore (infected) and Radnor (control) sites
were 20.34 points/m2 and 27.39 points/m2 respectively, with slight
differences in resulting point densities incurred due to small variations
in flight altitude.

2.4. Manual delineation

To produce reference polygons for each individual tree, tree crowns
were manually delineated. The manual delineation was performed
using the ALS-derived data, in addition to photographs and GPS posi-
tions for individual trees recorded during ground surveys (Brandtberg
and Walter, 1998; Fang et al., 2016). The polygons were applied to the
extraction of point cloud and fragmentation metrics from training
crowns and used as a basis for determining automated tree crown
segmentation accuracy (Pouliot et al., 2002).

2.5. ALS point cloud metrics

ALS point clouds for individual trees in the training dataset were
isolated using the manually delineated polygons. Subsequently, the
lascanopy module within LAStools (LAStools, 2016) was used to derive
several metrics based on the properties of ALS return pulses (Table 3)
from normalised point clouds for each tree (Hopkinson et al., 2016). For
example, the bicentiles for individual trees were calculated as the
proportion of ALS returns located below a specified percent of tree
height (Nevalainen et al., 2017). In order to remove the influence of
understorey vegetation, height cut-off values, typically between 1 m
and 2 m (Andersen, 2009; Hopkinson et al., 2016; Zellweger et al.,
2016), are specified prior to metric calculation. In this study, a static
cut-off of 1 m was employed due to the low levels of understory vege-
tation across the two study sites. In addition, ALS point cloud metrics
were also calculated using a variable cut-off height, set at 50% of tree
height, to consider just the characteristics of the upper canopy
(Vastaranta et al., 2013). This top portion of the tree canopy is of
particular interest for disease detection in the context of the study sites,
due to the higher vertical position of the live canopy in coniferous
plantation environments with limited thinning management
(Macdonald et al., 2009).

2.6. CHM fragmentation metrics

ALS normalised point clouds were used to construct a DTM (ground
points) and DSM (maximum of all points) for the two study sites. CHMs
were subsequently constructed by the subtraction of the DTM from the
DSM (Jakubowski et al., 2013) with a pixel size of 0.15 m. This pro-
cessing was undertaken in LAStools (LAStools, 2016). For the calcula-
tion of fragmentation metrics, CHMs were reclassified based on height.
In the two class reclassification, ground and non-ground pixels were
distinguished using a threshold value of 0.5 m, this value was selected
to minimise the misclassification of ground related pixels. In addition, a
three class reclassification was also performed to provide more specific
consideration to changes in the lower and upper canopy. In this in-
stance the reclassification applied the 1 m static cut-off value to remove
understory vegetation and considered the maximum tree height value
extracted from the CHM using the criteria: ≤1 m,> 1 m and ≤50%
tree height, and> 50% tree height. Following the reclassification of the
CHMs, landscape fragmentation metrics were calculated using FRA-
GSTATS (version 4.2) (McGarigal et al., 2012) for each individual tree
within the training dataset. This approach defined the individual tree

Table 2
The scoring system applied to classify P. ramorum infections.

Score Foliage Condition Stem and Branch Condition

NI: Not Infected No defoliation, discolouration or wilting No evidence of cankers, resin bleeds or deadwood
1: Light Defoliation, discolouration or wilting

in < 20% of the crown
Cankers may be visible at one or two points on the stem/branches, but a large portion (> 80%) of the stem
and branches appear healthy

2: Moderate Defoliation, discolouration or wilting in 20–80%
of the crown

Cankers present and dead branches/portions of the stem may be noted. Between 20% and 80% of the
stem/branches affected

3: Heavy Defoliation, discolouration or wilting in> 80%
of the crown

Significant proportions of the main stem/branches visibly affected by infection (cankers, resin bleeds and
deadwood)> 80% of the stem and branches affected

Table 3
ALS point cloud metrics extracted from individual trees in the training dataset.

Metric Definition

Maximum Height Maximum tree height (m)
Skewness The skewness of ALS returns above the cut-off height
Bicentiles (B), where N = 10, 20, 30, 40, 50, 60, 70, 80 and 90) The percentage of ALS returns whose heights are below N% of maximum tree height, after the subtraction of the

height cut-off value
Canopy Cover (CC) The number of first ALS returns above the cut-off height divided by the total number of first ALS returns
Canopy Density (CD) The number of all ALS returns above the cut-off height divided by the total number of ALS returns
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crown as the landscape and the height value categories as classes.
Table 4 lists all landscape metrics calculated which concern a range of
landscape fragmentation measures such as the area-edge relationships,
the integrity of core area and the aggregation and diversity of patches
within the landscape. Additional information regarding the calculation
of metrics can be located in the FRAGSTATS users guide (McGarigal,
2015). An 8-pixel neighbourhood was applied to consider diagonal
adjacencies in the definition of patches and in the case of metrics re-
lating to core area a threshold of 1 m was applied.

2.7. Disease severity discrimination

Structural variability in ALS point clouds can also arise as a result of
differences in stand age (Ørka et al., 2009). Prior to the disease severity
discrimination assessment, a linear regression analysis was conducted
to determine any relationships present between the metrics (ALS point
cloud and fragmentation) and maximum tree height for individuals
from the training dataset at the healthy Radnor Forest. Metrics which
reported a significant relationship with tree height were subsequently
removed from further analysis and not considered as input variables for
the disease severity classification.

To determine the disease severity discrimination potential of the
ALS point cloud and fragmentation metrics the Kruskal-Wallis test was
applied with Mann-Whitney post hoc tests. The results of the Mann-
Whitney post hoc testing were subject to a Bonferroni-Holm correction
to limit the overall type I error for multiple testing (Ismail et al., 2007).
In this instance, the application of the parametric analysis of variance
(ANOVA) followed by Tukey’s HSD tests (Coops et al., 2003; Ismail
et al., 2007) was not appropriate as several datasets failed to meet the
assumptions of normality (Shapiro-Wilk test) or homogeneity of var-
iances (Levene’s test). For the purpose of data analysis all individual
larch trees without P. ramorum have been grouped together to form the
not infected (NI) category to be compared with the three disease se-
verity categories (1, 2, and 3).

2.8. Automated tree crown segmentation

The selected methodology for the automated ITC segmentation of
test crowns at the study sites for the disease presence/absence and se-
verity classifications was based on the finding of Barnes et al. (2017). A
pit-free CHM was generated using the method specified by
Khosravipour et al., 2014, which requires the construction of partial
CHMs (2 m, 5 m, 10 m, 15 m and 20 m) which are then stacked in
height order and the maximum value for each pixel is used for the
generation of the CHM. CHMs were generated at three pixel sizes
(0.15 m, 0.25 m and 0.5 m), with the most suitable pixel size for each
plot selected on the basis of maximum tree height (Table 5). CHMs were
subsequently subject to a low pass smoothing filter followed by the
extraction local maxima (> 2 m in height) which were subject to a
minimum distance filter, the sizing of both filters was also adjusted in
accordance with the maximum tree height of the plot (Table 5). Finally,
a marker-controlled watershed segmentation (Wang et al., 2004) was
applied using the smoothed pit-free CHM and previously extracted local
maxima. Segments which failed to meet the minimum area threshold
(Table 5) were merged with the neighbour of the longest common
border (Koch et al., 2006). To determine the accuracy of the crown
outlines resulting from the ITC segmentation, an automated assessment
(Table 6) was conducted to determine the percentage overlap of these
automated ITCs with the manually delineated reference crowns for the
study areas (Barnes et al., 2017). Segments classified as correct or

Table 4
Landscape fragmentation metrics extracted from individuals in the training dataset.

Metric Abbrev. Description

Number of Patches NP Number of patches in the landscape
Patch Density PD Number of patches in the landscape divided by total landscape area
Largest Patch Index LPI The percentage of the landscape covered by the largest patch
Landscape Shape Index LSI Standardised measure for the total edge adjusted for the size of landscape
Total Core Area TCA Total core area across the landscape
Disjunct Core Area Density DCAD The number of disjunct core areas divided by total landscape area
Core Area (Area Weighted Mean) CORE_AM Core area for the entire landscape as a percentage of total landscape area
Euclidean Nearest Neighbour (Area Weighted

Mean)
ENN_AM Measure of patch isolation, area weighted mean of the shortest straight line distance between patches

Percentage of Like Adjacencies PLADJ Sum of like adjacencies divided by the total number of cell adjacencies in the landscape
Patch Cohesion Index COHESION Measure of physical connectedness, using patch perimeter and patch area
Landscape Division Index DIVISION The probability that two randomly selected pixels are not situated in the same patch
Patch Richness Density PRD Number of different patch types in the landscape divided by the total area of the landscape
Shannon’s Diversity Index SHDI From the field of ecology, is of indicator or patch diversity in the landscape. More sensitive to rare patch types

than Simpson’s Index
Simpson’s Diversity Index SIDI From the field of ecology, is of indicator or patch diversity in the landscape. More intuitive than the Shannon’s

Index
Aggregation Index AI The number of like adjacencies with corresponding class divided by maximum possible number of like

adjacencies with corresponding class

Table 5
Parameters for filtering and smoothing prior to ITC segmentation.

Maximum Tree
Height (m)

Local Maxima
Distance Filter
(m)

Smoothing
Filter (Pixels)

Pixel
Size (m)

Min Area
Threshold (m2)

≥15 1 5 × 5 0.15 0.5
> 15 and<30 2 5 × 5 0.25 3
≥30 3 5 × 5 0.5 7

Table 6
Assessment categories for the tree crown delineation accuracy analysis.

Category Description Percentage overlap (%)

R1 R2 A1 A2

Correct Reference crown dominated by one
automated crown

⩾ 50 <2 ⩾ 50 N/C

Satisfactory Reference crown largely associated
with one automated crown

⩾ 50 <50 ⩾ 50 <50

Oversized Reference crown only accounts for
small portion of automated crown

⩾ 50 N/C <50 N/C

Split Reference crown dominated by
more than one automated crown

N/C N/C N/C ⩾ 50

Missed Reference crown has no or poor
overlap with automated crowns

< 50 N/C N/C <50

R1: highest overlap percentage for the reference crown; R2: second highest percentage
overlap for the reference crown; A1: highest percentage overlap for the automated crown;
A2: second highest percentage overlap for the automated crown. Abbreviations:
N/C = No conditions.
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satisfactory categories (Table 6) were deemed successful for the pur-
pose of the study and overall accuracy percentages were calculated
using the ratio of successfully delineated test crowns to the total
number of test individuals in sample transects/plots (Hu et al., 2014).

2.9. Classification

Successfully delineated automated ITC polygons for test trees at the
study site were subject to classification. Two sets of classification cri-
teria were tested: presence (not infected and infected); and severity (1,
2, 3 and NI) using ALS and fragmentation metrics individually. A
combination of ALS and fragmentation metrics as input variables was
also considered but this did not yield any improvement in classification.
Two distinct classification approaches were used: k-nearest neighbour
(k-NN) and random forest (RF). For the implementation of the non-
parametric pattern recognition classifier k-NN, the K value, which re-
presents the number of samples considered for the classification of each
feature (Collins et al., 2004; Melgani and Bruzzone, 2004; Yu et al.,
2006), was established using a grid search cross validation of the
training sample testing K values ranging from 1 to 30 (Melgani and
Bruzzone, 2004; Hsu et al., 2008).

The second classification method random forest (RF) (Breiman,
2001), is a non-parametric approach which generates a series of clas-
sification and regression trees (CART). Each tree is generated using a
bootstrapped set of training samples, with the split at each regression
tree governed by a randomised subset of input variables for each node
(Hudak et al., 2008; Oliveira et al., 2012). The final classification result
is subsequently determined based of the highest mean probability es-
timate across all trees (Belgiu and Drăguţ, 2016). Two important input
parameters for the RF classification include the number of regression
trees (ntree) and the number of input variables at each split in the tree
building process (mtry). Following a preliminary grid search cross va-
lidation of the training dataset, the ntree and mtry were set to 500 and 2
respectively, similar to the values applied in previous studies (Immitzer
et al., 2012; Ortiz et al., 2013; Shendryk et al., 2016). All processing for
the two classification methods was undertaken in Python using Scikit-
learn (Pedregosa et al., 2011).

Classification input variables were selected based on the results of
the disease severity discrimination analysis and classification perfor-
mance was reviewed using the overall accuracy percentage (OA) and
Cohen’s κ coefficient (Cohen, 1960). Interpretation of κ was based on
the following categories: ≤0.20 is poor;> 0.20 to ≤0.40 is fair;>
0.40 to ≤0.60 is moderate; > 0.60 to ≤0.80 is good; and> 0.80 to
≤1 is very good (Landis and Koch, 1977). Confusion matrices were
employed to provide a more detailed evaluation of the most successful
classifications (Congalton and Green, 1999).

3. Results

3.1. Tree height

In the case of the ALS point cloud metrics significant relationships
were evident between the bicentiles B20, B30 and B50 (1 m cut-off
height) and tree height (Table 7). All other ALS point cloud metrics did
not show significant relationships with tree height. B20, B30 and B50
were therefore removed from further analysis, in addition to B40 which
was significant at the 90% confidence level. With regard to the frag-
mentation metrics (Table 8) significant relationships with tree height
were reported for all two class metrics, excluding ENN_AM. For the
three class approach, seven metrics (NP, LSI, TCA, CORE_AM, ENN_AM,
COHESION and PRD) exhibited a significant relationship with tree
height. In light of these results all two class metrics were removed from
the disease severity analysis in addition to the seven significant three
class metrics, to reduce the potential influence of tree height on the
disease severity analysis.

3.2. Disease severity discrimination

Fig. 2 shows the ALS profiles and CHMs for four individual trees
across the disease severity categories. The ALS profiles demonstrate a
larger number of ground or near ground returns for the moderate and
heavily infected individuals. In the case of the heavily infected in-
dividual, the ALS profile also demonstrates a greater spread of returns
across the height of the tree. In addition, the CHMs from diseased trees
exhibit a patchier appearance, with an increased presence of low height
values towards the centre of the crown for greater levels of infection.
The ALS and fragmentation metrics calculated provide a quantification
of these observations across all individual trees within the training
dataset.

Tables 9 and 10 present the p values from the Krustal-Wallis test for
the disease severity category discrimination for the ALS point cloud
metrics and fragmentation metrics respectively. The results from the
analysis regarding ALS point cloud metrics demonstrated significant
differences in the case of all point cloud metrics at the 50% cut-off
height, with the same for the 1 m cut-off height except for in the case of
B10. In addition, all fragmentation metrics tested also yielded sig-
nificant differences between disease severity categories.

To assess the difference in ALS point cloud and fragmentation me-
trics for the four disease severity categories (NI, 1, 2 and 3) in more

Table 7
Coefficient of determination (R2) and p values for the linear regression analysis between
the ALS metrics and tree height (m) for training data from the healthy Radnor Forest.

ALS Metric R2 value p value

1 m COH 50% COH 1 m COH 50% COH

Skewness 0.07 0.05 0.107 0.167
Canopy Cover < 0.01 <0.01 0.938 0.847
Canopy Density 0.05 0.02 0.174 0.361
B10 0.01 0.03 0.647 0.314
B20 0.11* 0.03 0.040* 0.320
B30 0.15* <0.01 0.015* 0.747
B40 0.09 <0.01 0.058 0.847
B50 0.11* 0.01 0.043* 0.470
B60 0.06 0.03 0.144 0.280
B70 0.06 0.01 0.120 0.545
B80 0.06 <0.01 0.144 0.701
B90 <0.01 0.02 0.597 0.441

Abbreviations: COH – Cut-off height.
* Significant p < 0.05.

Table 8
Coefficient of determination (R2) and p values for the linear regression analysis between
the fragmentation metrics and tree height (m) for training data from the healthy Radnor
Forest.

Fragmentation Metric R2 value p value

2 Class 3 Class 2 Class 3 Class

NP 0.27* 0.45* 0.001* 0.000*

PD 0.27* 0.10 0.001* 0.058
LPI 0.13* 0.10 0.023* 0.058
LSI 0.20* 0.41* 0.005* 0.000*

TCA 0.37* 0.20* 0.000* 0.004*

DCAD 0.18* 0.04 0.007* 0.236
CORE_AM 0.37* 0.16* 0.000* 0.012*

ENN_AM 0.07 0.20* 0.098 0.005*

PLADJ 0.51* 0.09 0.000* 0.064
COHESION 0.22* 0.42* 0.003* 0.000*

DIVISION 0.13* 0.08 0.025* 0.087
PRD 0.54* 0.59* 0.000* 0.000*

SHDI 0.11* 0.02 0.042* 0.380
SIDI 0.14* 0.06 0.021* 0.150
AI 0.17* 0.01 0.009* 0.535

* Significant p < 0.05.
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detail, Mann-Whitney post hoc tests with the Bonferroni-Holm correc-
tion for multiple comparisons were conducted. Table 11 presents the
post hoc test results for the ALS point cloud (1 m and 50% cut-off
height) and fragmentation metrics. In the case of the 1 m and 50% cut-

off height ALS metrics, significant differences were collectively ob-
served between all disease severity categories excluding not infected
(NI) and light infection (1). All ALS point cloud metrics demonstrated a
significant difference between at least one set of disease severity cate-
gories except for B10 at the 1 m cut-off height. All of the fragmentation
metrics demonstrated significant differences between the disease se-
verity category 3 (heavy infection) and all other severity categories (NI,
1 and 2), except for Disjunct Core Area Density (DCAD) which exhibited
significant differences between categories 2 and NI, categories 3 and NI,
and categories 2 and 3.

3.3. Automated tree crown segmentation

The results depicted in Table 12 demonstrate the percentage of test
crowns successfully delineated via the automated tree crown segmen-
tation. The large variation in successful delineation percentages across
the sample areas is caused by the small number of test crowns in some
of the plots.

3.4. Disease severity classification

3.4.1. ALS point cloud metrics
Table 13 presents the results from the best k-NN and RF classifica-

tion of disease presence (infected and not infected) from the ALS point
cloud metrics. Overall the best classification was achieved by the k-NN
classification of the B80 and B90 (1 m cut-off height). Whilst the re-
sulting κ of 0.32 can be interpreted as a fair classification (Landis and
Koch, 1977), the high producer’s accuracy (97.78%) for the not infected
(NI) class and low number of false negatives (1) suggest the classifi-
cation performs well for healthy individuals with most confusion re-
sulting from the classification of infected individuals.

The classification results from the k-NN and RF classifiers for dis-
ease severity using the ALS point cloud metrics are displayed in
Table 14. Both performed best using the same input variables (50% cut-
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 Not Infected  Light Infection Moderate Infection Heavy Infection 
ALS Point Cloud Metric 1 m COH  50% COH  Fig. 2. The top four point clouds demonstrates the ALS

vertical profiles for the four disease severity categories.
The bottom four images show the horizontal canopy
height model classified into three height categories
(< 1 m;<50% tree height;> 50% tree height) for in-
dividual trees across the four disease severity categories.

Table 9
Krustal-Wallis test p values for disease severity discrimination from ALS point cloud
metrics.

ALS Point Cloud Metric 1 m COH 50% COH

Skewness 0.002* 0.001*

Canopy Cover < 0.001* 0.002*

Canopy Density < 0.001* 0.006*

B10 0.487 0.005*

B60 0.014* < 0.001*

B70 0.002* < 0.001*

B80 0.001* < 0.001*

B90 <0.001* < 0.001*

Abbreviations: COH – Cut-off height.
* Significant p < 0.05.

Table 10
Krustal-Wallis test p values for disease severity discrimination
from three class fragmentation metrics.

Fragmentation Metric p value

PD <0.001*

LPI 0.001*

DCAD 0.001*

PLADJ <0.001*

DIVISION 0.001*

SHDI < 0.001*

SIDI 0.001*

AI < 0.001*

* Significant p < 0.05
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off height: Skewness, Canopy Cover, B60, B70 and B80), with the k-NN
classifier producing the highest overall accuracy (65.28%) and κ (0.27),
which indicates a fair classification (Landis and Koch, 1977). Assess-
ment of the confusion matrix demonstrated that particular difficulties
were encountered with the classification of disease categories 1 and 2
which yielded poor producer’s (14.29%, 28.57%) and user’s (28.57%,

Table 11
Mann Whitney (with Bonferroni-Holm correction) post hoc test results for the ALS point cloud metrics at the static 1 m cut-off height and variable 50% cut-off height and fragmentation
metrics calculated with the three class reclassification.

1 m COH 50% COH Fragmentation 3 Class

1 2 3 NI 1 2 3 NI 1 2 3 NI

1 Skew **** * – **** * – PD – ** –
2 **** – * **** – * – **

3 * – – * – * ** ** ****

NI – * – – * * – – ****

1 CC – **** – – * – LPI – *** –
2 – *** – – **** * – **** –
3 **** *** **** * **** ** *** **** ****

NI – – **** – * ** – – ****

1 CD – **** – – – – DCAD – – –
2 – *** – – **** – – **** *

3 **** *** **** – **** ** – **** **

NI – – **** – – ** – * **

1 B10 – – – – * – PLADJ – **** –
2 – – – – – * – *** –
3 – – – * – ** **** *** ****

NI – – – – * ** – – ****

1 B60 * – – *** *** – DIV. – *** –
2 * – ** *** – *** – **** –
3 – – – *** – *** *** **** ****

NI – ** – – *** *** – – ****

1 B70 *** – – *** **** – SHDI – *** –
2 *** – ** *** – *** – **** –
3 – – – **** – *** *** **** ****

NI – ** – – *** *** – – ****

1 B80 *** ** – *** *** – SIDI – ** –
2 *** – *** *** – *** – **** –
3 ** – *** *** – **** ** **** ****

NI – *** *** – *** **** – – ****

1 B90 ** ** – – ** – AI – **** –
2 ** – **** – – *** – *** –
3 ** – ** ** – **** **** *** ****

NI – **** ** – *** **** – – ****

Abbreviations: COH – Cut-off height; Skew – Skewness; CC – Canopy Cover; CD – Canopy Density; DIV- DIVISION.
– No significant difference.

* p < 0.10.
** p < 0.05.
*** p < 0.01.
**** p < 0.001.

Table 12
Percentage of successfully delineated test tree crowns for each of the sample
plots/transects.

No. Forest Maximum Height
(m)

Percentage of Test Crowns Successfully
Delineated (%)

T1 Ogmore 8.41 63.64
T2 Ogmore 11.54 54.56
P3 Ogmore 18.84 90.91
T4 Ogmore 14.48 42.86
T5 Ogmore 16.64 100.00
T6 Ogmore 20.30 60.00
T7 Ogmore 21.52 60.00
P8 Ogmore 24.59 44.44
T9 Radnor 21.19 80.00
T10 Radnor 6.88 75.00
T11 Radnor 19.58 70.00
T12 Radnor 32.78 100.00
T13 Radnor 33.04 100.00
T14 Radnor 25.49 100.00
T15 Radnor 18.15 25.00
T16 Radnor 26.79 50.00

Table 13
Confusion matrix for best performing k-NN and RF classification of disease presence
(infected/not infected) using ALS point cloud metrics.

k-NN RF
Inputs: 1 m cut-off height
B80 and B90

Inputs (Feature Importance): 50% cut-
off height Skew (0.18), CC (0.17), B60
(0.21), B70 (0.23), B80 (0.21)

Classified Classified

NI IN PA NI IN PA

Reference NI 44 1 97.78 26 19 57.78
IN 19 8 29.63 10 17 62.96
UA 69.84 88.89 72.22 47.22

OA (%) 72.22 59.72
κ 0.32 0.21

Abbreviations: IN – Infected; NI – Not Infected.
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40.00%) accuracies.

3.4.2. Fragmentation metrics
All the classification results in Tables 15 and 16 were achieved using

all eight three class fragmentation metrics as input variables. In the case
of the disease presence classification (Table 15), the k-NN classifier
resulted in greatest overall accuracy (65.28%), whilst the RF classifier
produced the highest κ at 0.21. The RF confusion matrix exhibited a low
number of false negatives, with the majority of confusion resulting from
false positives. In the case of the disease severity classification
(Table 16), the k-NN classifier was responsible for the best classification
(OA = 68.06% and κ= 0.24). Difficulties in identifying categories 1
and 2 were clearly apparent with producer’s and user’s accuracies for
both classes report as 0%. Consideration was given to combing the ALS
and fragmentation metrics but this did not improve the classification
accuracies of disease presence or severity.

3.4.3. Classification limitations
In the case of the disease presence/absence and severity classifica-

tions performed using both the ALS point cloud and fragmentation
metrics, several key limitations require acknowledgement. Firstly, the
small number of samples from each of the categories, especially in the
case of the categories 2 (moderate) and 3 (heavy), fell below the re-
commended minimum threshold for a statistically valid assessment
(Van Genderen and Lock, 1977; Congalton, 1991), influencing the
predictive capabilities of the classifiers (Melgani and Bruzzone, 2004;
Belgiu and Drăguţ, 2016). In addition, the number of samples in each of
the disease presence and severity categories was also unbalanced,
providing potential difficulties in the ability of the classifiers to accu-
rately separate individual classes (Muñoz-Marí et al., 2007; Belgiu and
Drăguţ, 2016).

4. Discussion

The results highlighted the presence of a linear relationship between
some of the ALS point cloud and fragmentation metrics and tree height,
demonstrating the influence of tree growth and canopy development on
the structure and character of healthy larch crowns. For example,
contrasts between crown height and density of foliage in younger and
older stands can provide a different signal in metrics calculated from
ALS for healthy individuals. The influence of tree height relationships
for disease detection purposes in larch can be avoided for the ALS point
cloud metrics when a variable cut-off height (50%) based on tree height
is applied. However, significant relationships between fragmentation
metrics and tree height were evident for both the two and three class
approaches, although less fragmentation metrics exhibited a significant
relationship in the case of the three class methodology which was se-
lected for disease discrimination analysis. Resultantly, tree height de-
monstrates a dominant influence controlling the ALS and fragmentation
metrics produced for individual trees and requires consideration in
analysis regarding disease detection and assessment.

The disease severity discrimination analysis revealed that collec-
tively, ALS point cloud metrics exhibited significantly different values
for all disease severity categories except in the case of the not infected
(NI) and light infection (1) categories. This highlights that structural
canopy changes as the result of P. ramorum infection in the later stage of
disease progression (categories 2 and 3) can be detected via the ap-
plication of ALS point cloud metrics at the individual tree crown scale.
This supports the findings of previous research regarding insect pests of
coniferous tree species, which noted an increased penetration of ALS
pulses through the canopy and a greater portion of ground returns for
canopies subject to defoliation as a result of insect attack (Coops et al.,
2009; Bright et al., 2013). The difficulties noted with regard to the
separation of not infected individuals and those in the early stages of
infection has also been previously recognised within the literature
(Bater et al., 2010; Kantola et al., 2010). The results from this study

Table 14
Confusion matrix for k-NN and RF classification of disease severity categories (1: Light; 2: Moderate; 3: Heavy; NI: Not Infected) using ALS point cloud metrics.

k-NN RF
Input: 50% cut-off height Skewness, Canopy Cover, B60, B70,
B80

Input (Feature Importance): 50% cut-off height Skewness (0.18), Canopy Cover (0.23), B60 (0.18),
B70 (0.23), B80 (0.19).

Classified Classified

1 2 3 NI PA 1 2 3 NI PA

Reference 1 2 0 0 12 14.29 5 0 2 7 35.71
2 1 2 0 4 28.57 2 1 1 3 14.29
3 0 2 3 1 50 0 0 5 1 83.33
NI 4 1 0 40 88.89 6 2 10 27 60
UA 28.57 40 100 70.18 38.46 33.33 27.78 71.05

OA (%) 65.28 52.78
κ 0.27 0.23

Table 15
Confusion matrix for k-NN and RF classification of disease presence using all three class
fragmentation metrics.

k-NN RF
Classified Classified

NI IN PA NI IN PA

Reference NI 40 5 88.89 19 26 42.22
IN 20 7 25.93 5 22 81.48
UA 66.67 58.33 79.17 45.83

OA (%) 65.28 56.94
κ 0.17 0.21

RF feature importance: PD (0.15), LPI (0.09), DCAD (0.13), PLADJ (0.16), DIV (0.11),
SHDI (0.12), SIDI (0.10), AI (0.13). Abbreviations: IN – Infected; NI – Not Infected.

Table 16
Confusion matrix for k-NN and RF classification of disease severity using all three class
fragmentation metrics.

k-NN RF
Classified Classified

1 2 3 NI PA 1 2 3 NI PA

Reference 1 0 0 0 14 0 8 1 2 3 57.14
2 0 0 0 7 0 2 0 2 3 0
3 0 0 5 1 83.33 1 0 5 0 83.33
NI 1 0 0 44 97.78 20 0 2 23 51.11
UA 0 0 100 66.67 25.81 0 45.45 79.31

OA (%) 68.06 50
κ 0.24 0.23

RF feature importance: PD (0.14), LPI (0.09), DCAD (0.11), PLADJ (0.16), DIV (0.12),
SHDI (0.12), SIDI (0.11), AI (0.15).
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indicate that even with high ALS point densities, metrics derived from
ALS point clouds are unable to detect the very slight changes in canopy
structure which are encountered in the early onset of the P. ramorum
infection. In addition, discrete return ALS biases the resulting datasets
against foliage located in the middle of the tree crown (Lovell et al.,
2003). As a result, when early stages of infection are not present in the
top of the canopy, detection via the application of discrete ALS point
cloud metrics may also be more difficult.

The results from the disease severity discrimination analysis for the
fragmentation metrics demonstrate the potential applications of this
group of metrics for the assessment of severe decline in ITC condition.
Whilst significant differences were only consistently noted to provide
separation of heavily infected individuals (category 3) with all other
severity categories, this is likely to result from the CHMs representation
of the canopy surface and the requirement of upper canopy fragmen-
tation for disease detection. Nevertheless, the results indicate the pre-
viously untested value of CHM raster data for disease assessment in the
absence of the original point cloud. Such results are also of particular
interest from the perspective of dead wood mapping in forest en-
vironments (Martinuzzi et al., 2009; Pasher and King, 2009). The pre-
sence of significant results from a range of fragmentation metrics sug-
gests in heavily infected larch trees (category 3) changes in ALS
penetration across the upper canopy (Coops et al., 2009; Bright et al.,
2013) can alter resulting height values in CHMs to a large enough ex-
tent to increase the fragmentation of height value classes in tree
crowns. This effect changes the characteristics of core areas as well as
increasing the complexity of height value patches in the tree crown
landscape. The contrast in the mosaic of height class patches between
heavily infected and healthy tree crowns is sufficient to provide a
means of separating these individuals (Du-ning and Xiu-zhen, 1999).
Nevertheless, the high point density of the ALS (24 points/m2) fa-
cilitated the generation of the high resolution CHM (0.15 m) applied in
this study. Further investigation is subsequently required to determine
whether the same level of discrimination can be achieved for CHMs of a
lower resolution (> 0.15 m).

The results of the disease presence (not infected/infected) classifi-
cation provided a straightforward indication of the value of ALS data-
sets for the detection of P. ramorum in larch species. The results in-
dicated that the application of a k-NN classifier to ALS point cloud
metrics (B80 and B90 1 m cut-off height) could provide fair classifica-
tion (κ= 0.32), with an acceptable overall accuracy (72.22%). The
greatest limitation of this classification is the poor performance of the
infected classification (producer’s accuracy 29.63%). Given the results
of the disease severity discrimination with the Mann-Whitney post hoc
analysis, it is likely that discriminating individuals within the not in-
fected (NI) and light infection (category 1) categories are causing the
greatest confusion. Kantola et al. (2010) set a defoliation level of 20%
or more for their classification of Scots pine (Pinus sylvestris) defoliated
by the common pine sawfly (Diprion pini). Acknowledging the limita-
tions of the approach for the detection of individuals in the early stages
of P. ramorum infection, a higher threshold of defoliation could be
employed for operational use during disease detection. A defoliation
threshold was not applied in this study as it was important to assess the
overall success of ALS across the spectrum of P. ramorum disease se-
verities. With regard to the superior performance of the k-NN in com-
parison the RF classifier, the less complex application of two input
variables (B80 and B90 1 m cut-off height) with a cross validated K
value (Latifi et al., 2010) provided a better binary classification of P.
ramorum infection than the more complex RF (McInerney and
Nieuwenhuis, 2009). The impacts of low sample size and an unbalanced
number of samples across the two categories may also have limited the
classification performance of the RF classifier (Belgiu and Drăguţ,
2016).

The results from the disease severity classification yielded a fair
classification (κ= 0.23–0.27), however no classifier or input metrics
(ALS point cloud or fragmentation) demonstrated a superior

performance over the other. Assessment of the confusion matrices re-
vealed that classification of the infected disease severity classes 1 and 2
were often the most problematic. Whilst classes in this study re-
presented key areas of interest during the disease progression, each
class exhibits a spectrum of crown conditions, causing difficulty in se-
parating disease severity at specified threshold levels (Coops et al.,
2003). The use of automated polygons representing tree crowns also
results in further complications with regard to the extraction ALS and
fragmentation metrics from the test crowns for classification. For ex-
ample, whilst some overlap perfectly with ITCs, those categorised as
satisfactory may incorporate returns from neighbouring vegetation,
potentially influencing the calculation of metrics employed as input
variables. This effect could be managed with more restrictive criteria,
such as 60% or 70% minimum overlap, for determining successfully
delineated automated crowns (Shendryk et al., 2016).

The overall classification accuracy of ALS metrics for discrimination
of healthy and infected individuals was slightly below the 80.7%
achieved for Scots pine (Pinus sylvestris) infected by the insect pest the
common pine sawfly (Diprion pini L) (Kantola et al., 2010). Never-
theless, the research presents the detection capabilities of ALS across
the full spectrum of P. ramorum infection, including consideration for
individuals in the early stage of infection. In addition, the characteristic
impacts of each pest and phytopathogen on canopy structure is not
uniform and direct comparison does not consider variations in pest/
pathogen host interactions, symptom expression and species crown
architecture (Lovett et al., 2006).

These results highlight the application of previously untested frag-
mentation metrics for the quantification the increased patchiness of tree
crown CHMs subject to heavy P. ramorum infection. Whilst the results
indicate the preferable application of ALS point cloud datasets for the
assessment of P. ramorum, the availability of original datasets, expertise
and resources for processing may present barriers in the operational
applications of ALS in forestry. Therefore, a range of approaches to the
application of ALS to disease assessment provides flexibility for forest
management (Suárez et al., 2005; Hall et al., 2016).

Further consideration for the application of ALS to the detection and
assessment of P. ramorum infection in larch should take into account the
point density of ALS datasets. Whilst the point density applied in this
instance (24 points/m2) can be considered high, low density datasets
cannot be presumed to provide the same results (Kantola et al., 2010).
Furthermore, as suggested by Coops et al. (2009), further under-
standing of the impact of disease on ALS point cloud metrics could be
established with the application of pre and post infection ALS datasets.
Such assessment can also be applied in the case of CHMs (Vastaranta
et al., 2012). To fully assess the potential benefits of an approach based
on remote sensing data in comparison to those presently achieved
manually by visual assessment, a comparison between the two ap-
proaches would also be valuable to provide additional merit to a remote
sensing approach.

5. Conclusion

The research demonstrates the successful application of ALS point
cloud metrics to isolate individual tree crowns of larch subject to
moderate (category 2) and severe (category 3) P. ramorum infection
based on the impacts of the disease on individual tree crown canopy
structure. The results also highlight the merits of CHMs alone for iso-
lating heavily infected individuals (category 3) via the first assessment
of fragmentation metrics to quantify the patchiness exhibited by dis-
eased tree crowns. Overall classification of disease presence and se-
verity were best achieved using a k-NN classifier with percentages of
72.22% and 65.28% respectively. κ values for disease presence and
severity of 0.32 and 0.27 respectively indicated a fair classification,
with low values as a result of poor classification for infected individuals
particularly those within the early stages of infection (category 1).
Whilst higher accuracies could be achieved by raising the threshold of
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symptomatic material for infected individuals, it was important to
highlight the performance of ALS across the whole spectrum of P. ra-
morum infection levels. For operational applications regarding disease
assessment in larch forests, the limitations of the technique in identi-
fying individual tree crowns subject to the early stages of disease es-
tablishment requires acknowledgment.
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