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a b s t r a c t

A new stochastic collocation finite element method is proposed for the numerical solution
of elliptic boundary value problems (BVP) with random coefficients, assuming that the
randomness is well-approximated by a finite number of random variables with given
probability distributions. The proposed method consists of a finite element approximation
in physical space, along with a stochastic collocation quadrature approach utilizing the
recent Multilevel Sparse Kernel-Based Interpolation (MuSIK) technique (Georgoulis et al.,
2013). MuSIK is based on a multilevel sparse grid-type algorithm with the basis functions
consisting of directionally anisotropic Gaussian radial basis functions (kernels) placed at
directionally-uniform grid-points.We prove thatMuSIK is interpolatory at these nodes, and,
therefore, can be naturally used to define a quadrature scheme. Numerical examples are
also presented, assessing the performance of the new algorithm in the context of high-
dimensional stochastic collocation finite element methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty is often embedded in the mathematical modelling of physical systems via introducing randomness in the
coefficients of continuummodels involving partial differential equations (PDEs). Uncertaintymay come from incompleteness
of understanding the nature and/or the difficulty of accurately modelling a phenomenon. Several approaches have appeared
in addressing these challenges, such as worst-case scenario analysis (see, e.g., [1]), or via the introduction of various
probabilistic expansions. Popular families of methods of the latter kind are so-called the polynomial chaos expansions [2–5]
and the Karhunen–Loève expansions [6–16] for parametrization of the random fields. In this work, we focus on elliptic PDEs
with random diffusion and load coefficients which are modelled as random fields with given spatial correlation structure.
Typically, numerical methods for this class of problems seek to predict statistical moments of the numerical solution (such
as mean, variance, etc.) with a given probability distribution of random field which, if unknown, is approximated by a
Karhunen–Loève-type expansion [6,7] as a combination of a finite number of random variables. This is done either by
resorting to high-dimensional deterministic settings, see, e.g., [8–14,17–20] and the references therein, or using quasiMonte-
Carlo or Multi-level Monte-Carlo techniques, see, e.g., [21–28] and the references therein.

This work is concerned with a new stochastic collocation finite element method, whereby the collocation step is
based on a novel sparse-type quadrature scheme utilizing the recent Multilevel Sparse Kernel-Based Interpolation (MuSIK)
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technique [29]. To focus on this novel quadrature, we consider a fairly standard setting for the finite element discretization
and noise approximation in the context of stochastic collocation. We believe, nevertheless, that the new collocation step is
also applicable in more elaborate stochastic collocation approaches. We also mention [30], which contains an interesting
computational verification of the proposed approach.

MuSIK is a low complexity interpolation scheme, constructed via a sparse grid-type combination technique [31,32],
with the basis functions consisting of directionally anisotropic Gaussian kernels (radial basis functions) centred at uniform
grid-points in each spatial direction. The use of Gaussian kernels, instead of polynomials (as typically done in the litera-
ture [11,13,14],) enables, crucially, the use of directionally uniform grids. Therefore, the proposed MuSIK-type quadrature
is both multilevel and hierarchical with respect to the quadrature nodes between consecutive levels. This means that
improvement of the quadrature accuracy is done in a ‘‘multiresolution’’ fashion, whereby the next level improves only on
higher frequencies than the previous levels, i.e., adding ‘‘details’’. Hence, if higher accuracy is found to be needed after the
(typically lengthy) computation, more levels are added to further improve the accuracy without the need to discard and
restart the computation.

To ensure the suitability of MuSIK in the context of numerical quadrature, we prove that MuSIK is, indeed, an interpolant
at the directionally uniform (hierarchical) sparse-grid nodes. We stress, however, that, contrary to the standard polynomial
or piecewise polynomial/spline sparse-grid interpolants [11,33,34], the respectiveMuSIK basis functions do not form nested
linear spaces at each level. Indeed, we show that the nestedness of the nodes along with tensor-type basis functions is
sufficient for a sparse-grid/combination-type scheme to be interpolatory. This result could be of independent interest.

Another key attribute of the proposed approach is the unified treatment of random variables with both bounded and
unbounded ranges. Indeed, as MuSIK employs globally supported Gaussian kernels, they are suitable to approximate also
unbounded random variables (e.g., Gaussian random variables) upon suitable selection of the kernel centre locations. In
contrast, polynomial stochastic collocation approaches employ special polynomial expansions (e.g., Hermite polynomial
expansions) to treat Gaussian randomvariables, which are, crucially, not hierarchical. In this context, the proposed stochastic
collocation based on MuSIK, which is naturally hierarchical by construction renders itself as an attractive alternative.

The probability space is determined by the random variables retained in the truncated Karhunen–Loève expansions [6,7].
The proposed method is tested numerically for an elliptic problem with up to 21 dimensions in probability space, and for
both bounded and unbounded random variables. The numerical results, highlight the good performance of the proposed
method in terms of accuracy versus degrees of freedom and dimension.

The remainder of thiswork is organized as follows. In Section2, themodel problem is introduced, alongwith the stochastic
collocation FEM framework. In Section 3, the MuSIK is reviewed and we also prove that MuSIK scheme is interpolatory on
the grid points, while in Section 4 the MuSIK-based stochastic collocation FEM is introduced. Numerical examples are given
in Section 5, while some conclusions and further directions of research are discussed in Section 6.

2. Problem setting

2.1. Model problem

Let D ⊂ Rd be an open polygonal domain, henceforth termed as the physical domain. Let also (Ω,F, P) be a complete
probability space, withΩ being the set of outcomes, F ⊂ 2Ω the corresponding σ -algebra of events, and P : F → [0, 1] the
probability measure. We consider the stochastic elliptic boundary value problem: find the random field, u : Ω × D → R,
such that

− ∇ · (a(ω, x)∇u(ω, x)) = f (ω, x) for x ∈ D, u(ω, x) = h(x) for x ∈ ∂D, (1)

ω ∈ Ω , P-almost everywhere inΩ , with a denoting the diffusivity coefficient, whose detailed properties are given below and
h ∈ H1/2(∂D) := {v ∈ L2(D) : ∥v∥H1/2(∂D) < +∞} where ∥v∥H1/2(∂D) := infv=γw∥w∥H1(D) and γ denotes the classical Sobolev
trace operator. We stress, however, that more general elliptic problems involving lower order terms and mixed boundary
conditions are by all means possible to be included in the present framework. We refrain from doing so in the interest of
simplicity of the presentation.

To ensure ellipticity, we assume that

∃amin, amax ∈ (0,∞), s.t. P(ω ∈ Ω : a(ω, x) ∈ [amin, amax] ∀x ∈ D) = 1, (2)

i.e., a(ω, ·) is uniformly bounded and coercive. Also, we introduce the Hilbert spaces

VP,a := {v ∈ L2P (Ω) ⊗ H1(D) :

∫
D
EP [a|∇v|2]dx < ∞},

with respective norm ∥v∥P,a :=
(∫

D EP [a|∇v|2 +|v|2]dx
)1/2, where EP denotes the P-mean of a random field. From the above

assumptions, we can see that VP,a ⊂ VP,1, and that ∥v∥P,1 ≤ C(amin, amax)∥v∥P,a. The weak form of the problem (1) then
reads: there exists a unique u ∈ VP,a, such that, for all v ∈ L2P (Ω) ⊗ H1

0 (D), we have∫
D
EP [a∇u · ∇v]dx =

∫
D
EP [f v]dx.

The well-posedness of (1) follows from the Lax–Milgram lemma, by assuming
∫
D EP [f 2]dx < ∞. Then, the problem has a

unique solution u ∈ VP,a. For brevity, we also set E ≡ EP .
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2.2. Finite dimensional noise assumption

A central question for this class of PDE problems is the parametrization of the randomness in the diffusion a and in the
forcing term f . This has been studied in a number of works (see, e.g., [8,9,35] and the references therein). When randomness
can be completely described through a finite number of random variables of known probability densities, the original
(stochastic) problem (1) can be transformed into a deterministic one. When randomness is not completely defined through
such a finite number of random variables, the predominant way forward in the literature has been to represent the random
coefficients as expansions of infinitely many random variables and truncate these expansions.

A widely used tool in this context is the Karhunen–Loève expansion [6,7], which can be used to represent the random
diffusion a and load f coefficients as an expansion of infinite number of random variables, whose careful truncation after N
terms, say, results in approximations aN and fN , defined through a finite family of known random variables.

More specifically, let g be a second order random field, with covariance cov[g] : D × D → R. We introduce the compact
and self-adjoint operator Tg : L2(D) → L2(D) by

Tgv(·) :=

∫
D
cov[g](x, ·)v(x) dx , v ∈ L2(D),

which admits a sequence of non-negative, decreasing eigenvalues {λk}
∞

k=1. The corresponding sequence of orthonormal
eigenfunctions is denoted by {φk}

∞

k=1.
Using the above orthonormal set, we define a family of mutually uncorrelated real random variables, given by

Yk(ω) :=
1
λk

∫
D
(g(w, x) − E[g](x))φk(x) dx, (3)

k ∈ N, with E[Yk] = 0 and E[YiYj] = δij for i, j, k ∈ N. We can now further define the N-term partial sum of the Karhunen–
Loève expansion gN of g , by

gN (ω, x) := E[g](x) +

N∑
k=1

√
λkφk(x)Yk(ω), (4)

P-a.e. inΩ , with N ∈ N. Mercer’s theorem [7] then implies

lim
N→∞

{
sup
D

E[(g − gN )2]
}

= lim
N→∞

{
sup
D

( ∞∑
k=N+1

λkφ
2
k

)}
= 0.

We stress that the practical construction of eigenpairs (λk, φk), along with the study of the eigenvalue decay are involved
topics, which we shall refrain from exploring in detail in this work; instead, we refer to [36,37].

For the remainder of this work, we shall assume that we have at our disposal known approximations aN and fN of the
random diffusion a and load f random fields, respectively. We shall be seeking to find a random field uN : Ω ×D → R, such
that

− ∇ · (aN (ω, x)∇uN (ω, x)) = fN (ω, x) for x ∈ D, uN (ω, x) = g(x) for x ∈ ∂D, (5)

P-almost everywhere inΩ , such that uN ∈ VP,a is unique and is described by a set of N random variables [Y1, . . . , YN ], viz.,
uN (ω, x) ≡ uN (Y1(ω), . . . , YN (ω), x).

As the focus of this work is in proposing a new framework for sparse high-dimensional stochastic collocation procedures,
we shall make use of the Karhunen–Loève expansion for the log(a−amin) under the assumption that a > amin ∀x ∈ D, almost
surely inΩ to guarantee the diffusivity coefficient is bounded away from zero [13,14], thereby constructing an aN as in (4),
with

log(aN − amin)(ω, x) = φ0(x) +

∑
1≤n≤N

√
λnφn(x)Yn(ω), (6)

with φ0(x) denoting the mean. For conditions on the well-posedness of (5), we refer to [38,39]. We stress, however, that the
new stochastic collocation technique presented below is independent of the expansion used for a. The right hand-side of (1)
is also assumed to be well approximated by a truncated Karhunen–Loève expansion:

fN (ω, x) = c0(x) +

∑
1≤n≤N

√
µncn(x)Yn(ω).

The diffusion tensor a and forcing term f are often independent. In such a situation, the truncated Karhunen–Loève
expansions of a and f will depend on a distinct subset of [Y1, . . . , YN ] each. Nonetheless, we retain the same index N for
both in the interest of notational simplicity.

Denoting by Γk(Ω) the images of the random variables Yk (which may be unbounded), we set Γ N
=

∏N
n=1Γn(Ω). On Γ N ,

we define ρ : Γ N
→ R+, with ρ ∈ L∞(Γ N ) to be the joint probability density function of the random variables [Y1, . . . , YN ],

and we denote by L2ρ(Γ
N ) the ρ-weighted L2-space over Γ N .
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Hence, (5) can be transformed to the deterministic problem: find uN ∈ L2ρ(Γ
N ) ⊗ H1(D), such that∫

Γ N
ρ(y)

∫
D
aN∇uN · ∇v dxdy =

∫
Γ N
ρ(y)

∫
D
fNv dxdy, (7)

for all v ∈ L2ρ(Γ
N )⊗H1

0 (D). The proof of existence and uniqueness for the first two statistical moments can be found in [11].
Also, in [40] the discretization of different statistical moments for nonlinear parametric operator equations is discussed.

2.3. Stochastic collocation FEM

The next step is to design a numerical method to approximate the solution to (7), taking into account that dim(Γ N ) can
be large.

To this end, we consider a standard finite element space Vh ⊂ H1
0 (D) of degree p, with total dimension Nh, defined on a

regular triangulation Th with maximummesh-diameter h > 0 (see, e.g., [41]).
To arrive at a practical numerical method, one needs to approximate the integral over the probability space also. The

stochastic collocation and related approaches [8–14] proceed by approximating the integral via carefully selected quadrature
rules for high dimensional problems. A typical such quadrature rule is of the form∫

Γ N
G(y)dy ≈

∑
q∈N

wqG(yq),

for some integrable integrand G, where N is an index set, {yq : q ∈ N } is the set of abscissae and {wq : q ∈ N } the set
of weights, respectively. Such quadrature rules can arise from considering a corresponding interpolation problem for the
integrand G on {yq : q ∈ N }.

Indeed, let {θq : q ∈ N } be a Lagrange basis for the class of interpolants S at the points {yq : q ∈ N }. The interpolation
problem for the integrand seeks a function S from the space spanned by {θq : q ∈ N }, such that G(yq) = S(yq) for all q ∈ N .
Hence, we have

S(y) =

∑
q∈N

G(yq)θq(y).

Therefore, going back to the integral over Γ N , we consider the approximation∫
Γ N

G(y)dy ≈

∫
Γ N

S(y)dy =

∑
q∈N

wqS(yq) =

∑
q∈N

wqG(yq), (8)

with

wq :=

∫
Γ N
θq(y) dy. (9)

Using this quadrature formula on both sides of (7), we deduce formally∑
q∈N

wq ρ(yq)
∫
D

(
aN (yq, x)∇uN (yq, x) · ∇v(x) − fN (yq, x)v(x)

)
dx ≈ 0. (10)

These formal considerations give rise to the stochastic collocation finite element method, whereby we require (10) to hold
with strict equality. This is satisfied upon finding uh,q

N ∈ Vh approximations to uN (yq, ·), such that∫
D
aN (yq, x)∇uh,q

N (x) · ∇v(x) dx =

∫
D
fN (yq, x)v(x) dx ∀v ∈ Vh,

for each q ∈ N ; the respective approximate solution to (7) is, thus, given by

uh
N (y, x) :=

∑
q∈N

uh,q
N (x)θq(y).

A crucial numerical challenge in this approach is the cardinality of N . If we use tensor-product-type quadrature rules
based on univariate quadratures with r points in each direction, say, then the cardinality ofN will be rN , i.e., the cardinality
of the finite element problems to be solved grows exponentially with the dimension of Γ N . This is a manifestation of what
is typically referred to in the literature as curse of dimensionality. To address this, reduced-complexity quadrature rules
have been employed in the literature. Prominent methods in this setting are the Smolyak-type quadratures [42], based
on sparse tensor products of Gauss–Lobatto or Clenshaw–Curtis univariate rules [11,13,14], for bounded Γ N . The sparse
quadrature node distribution of Gauss-type rules is non-hierarchical as the number of nodes increases in each direction,
while Clenshaw–Curtis based rules are hierarchical upon doubling of the nodes in each direction. For unbounded Γ N ,
Smolyak-type quadratures based on univariate Hermite polynomials have been typically used [11]. The latter do not give rise
to hierarchical nodes. If more resolution is found to be required for aforementioned quadrature rules with non-hierarchical
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node distributions, one has to recompute essentially a completely different set of nodal values. Thus, within an adaptive
quadrature stochastic collocation setting, Clenshaw–Curtis typemethods are preferred for boundedΓ N in the literature [13];
for unbounded Γ N , the nested Gauss–Hermite rule in [43,44] is preferred.

In the next section, we shall introduce a new sparse quadrature rule based on the recent multilevel sparse kernel-based
interpolation (MuSIK) method [29], which uses Gaussian kernels instead of polynomials and can be applied to both bounded
and unbounded Γ N . An attractive attribute of theMuSIK approach is its ability to provide stable interpolation on hierarchical
directionally-uniform interpolation nodes. In particular, MuSIK is able to interpolate in a stable fashion on the standard
sparse-grid node sequences for piecewise linear sparse interpolation (cf., Fig. 3 for an illustration of two dimensional node
distributions at different levels.) Crucially, these sparse grid node distributions are hierarchical between two consecutive
levels of refinement and are uniform in each axiparallel direction.

This hierarchical configuration of the interpolation nodes is combined within a multilevel iteration, whereby a more
accurate interpolant is computed by adding ‘‘detail’’ to the previous one. Recalling that standard Gaussian kernels are able
to interpolate at an exponential rate of convergence [45], such good performance is not counter-intuitive or unexpected.

3. Multilevel sparse kernel-based interpolation

3.1. Review of MuSIK

Here we review the multilevel sparse kernel-based interpolation method (MuSIK) introduced in [29] (where it was
abbreviated as MLSKI). We point out that the proposed MuSIK algorithm in this work is different from the original MuSIK
algorithm, and is more suitable for high-dimensional quadrature (cf. Remark 3). Moreover, we shall prove that the MuSIK
method is, indeed, interpolatory at the respective nodes.

Definition 1. A continuous functionΦ : RN
→ R is said to be a positive definite kernel if

∑M
i,j=1cicjΦ(xi − xj) > 0 for anyM

pairwise different points xi, i = 1, . . . ,M and for any c := [c1, . . . , cM ]
T with c ̸= 0. Moreover,Φ is said to be radial, if there

exists a function φ : [0,∞) → R such thatΦ(x) = φ(∥x∥) for all x ∈ RN , for some norm ∥ · ∥ of RN . Finally, a radial positive
definite kernelΦ will be referred to as radial basis function (RBF).

Examples of widely used positive definite RBFs are the Gaussians with φ(r) := exp(−c2r2), inverse multiquadrics
φ(r) := 1/

√
c2 + r2, and the family of compactly supported RBFs [46]. We shall focus on Gaussian kernels in this work,

due to their spectral accuracy in conjunction with their tensor product nature: multivariate Gaussians are tensor products
of univariate Gaussian kernels. The interpolation of data with anisotropic distribution of data sites in the domain should be
considered specially.

Definition 2. Given an RBF ϕ(∥ · −xi∥) centred at xi ∈ RN and an invertible matrix A ∈ RN×N , we define the anisotropic RBF
ϕA by ϕA(∥ · −xi∥) = ϕ(∥A(· − xi)∥).

For any given data sites X := {x1, . . . , xM} contained in a bounded domain Γ ⊂ RN , we consider the interpolation data
{(xi, zi) : xi ∈ X, i = 1, . . . ,M}. Then, for ϕ positive-definite radial function, the anisotropic RBF interpolant SA is given by

SA(x) =

M∑
i=1

ciϕA(∥x − xi∥), x ∈ Γ ;

the ci are chosen to satisfy the interpolation condition SA(xi) = zi, i = 1, . . . ,M . The invertibility of the scaling matrix A
guarantees the well-posedness of the interpolation problem for positive definite kernels [47].

To address the computational challenge posed by high dimensionality, the MuSIK is constructed as a multilevel
interpolation method on sparse grids in the sense of [33], whose node cardinality grows favourably with dimension N; see
Fig. 3 for an illustration of the node distribution in standard sparse grids in two dimensions. To ensure the well-posedness
of the interpolation problem, a multivariate Boolean interpolation procedure [31], also known as combination technique in
sparse grid terminology [32], is employed.

The idea behind such classical combination/extrapolation procedures is to construct an interpolant on sparse grids as
a linear combination of smaller interpolation sub-problems. To illustrate this, we refer to Fig. 1, depicting a sparse grid as
the union of directionally uniform partial grids. In the present context, anisotropically scaled Gaussians are employed by
the proposed MuSIK method as interpolants of each partial grid; the anisotropic scaling used is such to make the mapped
interpolation nodes to be globally uniform on the mapped domain. The use of Gaussian kernels, although not crucial for the
MuSIK method [29], is preferable as their tensor-product nature results to the combination technique being interpolatory
at the nodes; this is proven in Theorem 5.

Once each partial grid interpolant is computed, all such interpolants are linearly combined in an appropriate fashion (to
be specified below) to form a sparse kernel-based interpolant (SIK). Due to the essentially stationary nature of the SIKmethod
with Gaussians, convergence is accelerated via a multilevel procedure: the SIK is computed on the coarsest grid used in the
computation, which is subsequently enriched by SIK computations of the residuals at the sparse grid nodes on the next level.
The hierarchical nature of the sparse grids of different levels is particularly convenient at this point; cf., Fig. 1.
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Fig. 1. Sparse grid X̃4,2 via (11).

Fig. 2. The construction of the sparse kernel-based S̃4 interpolant on X̃4,2 .

We start by defining SIK on a bounded domain Γ := [0, 1]N , to aid accessibility; the discussion on how these results can
be extended to general, possibly unbounded, tensor-product domains Γ is postponed until Section 4.2. To this end, consider
a function u : Γ → R to be interpolated. For a multi-index ℓ = (l1, . . . , lN ) ∈ NN , we define the family of directionally
uniform grids {Xℓ : ℓ ∈ NN

} consisting of the nodes xℓ,i := (xl1,i1 , . . . , xlN ,iN ), with xlj,ij = ij2−(lj−1), for ij = 0, 1, . . . , 2lj−1,
j = 1, . . . ,N , with the convention that lj = 1 contains 1 node at the centre of the jth direction for j = 1, . . . ,N . We also
define the vector of directional meshsizes of Xℓ by hℓ = 2−(l−1)

:= (2−(l1−1), . . . , 2−(lN−1)). Hence, if hli = 2−(k−1), for all
i = 1, . . . ,N , Xℓ is the uniform full grid of level k; this will be denoted by Xk,N . We consider the subset of Xk,N , given by

X̃k,N
:=

⋃
|ℓ|1=k+N

Xℓ, (11)

with |ℓ|1 := l1 + · · · + lN , which will be referred to as the sparse grid of level k in N dimensions, for k = 0, 1, . . . . We refer to
Fig. 1 for an illustration of (11) for k = 4 and N = 2.

We want to evaluate the interpolant at the constituent partial grids Xℓ. As the constituent grids admit different density
in each coordinate direction, we shall make use of the anisotropic RBFs. To this end, for each multi-index ℓ = (l1, . . . , lN ),
we consider the transformation matrix Aℓ ∈ RN×N with

Aℓ := diag(2l1−1, . . . , 2lN−1).

The anisotropic RBF interpolant SAℓ
of uh

N at the points of Xℓ is then given by

SAℓ
(x) :=

Mℓ∑
j=1

cjϕ(∥Aℓ(x − xj)∥), (12)

for x ∈ Γ N , whereMℓ is the cardinality of Xℓ and cj ∈ R are chosen so that the interpolation conditions

SAℓ
|Xℓ

= uh
N |Xℓ

,

are satisfied.
To construct the sparse kernel-based interpolant (SIK) S̃k on the sparse grid X̃k,N , the partial grid interpolants SAℓ

are linearly
combined using the formula

S̃k(x) =

N−1∑
q=0

(−1)q
(
N − 1

q

) ∑
|ℓ|1=k+N−q

SAℓ
(x). (13)

We refer to Fig. 2 for an illustration when N = 2 and k = 4; the interpolant, then, reads

S̃4(x) =

∑
|ℓ|1=6

SAℓ
(x) −

∑
|ℓ|1=5

SAℓ
(x).

Formore details on the combination formula (13), we refer to [31,32,48].Moreover, in Section 3.3, we shall prove that (13)
is an interpolant at the sparse grid nodes for the case of Gaussian kernels, or, indeed, any other basis function constructed
as tensor-product of univariate basis functions.
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Fig. 3. Nested-ness of sparse grids X̃k,2 , k = 0, 1, . . . , 5.

It is important to note that the SIK can be implemented in a straightforward fashion using the existing standard RBF
interpolation algorithms. Each of the O(kN−1) such partial-grid constituent RBF problems can be solved independently. The
size of each partial-grid problem is O(2k), where k is the number of levels; in particular, it is independent of the dimension N .

The next step is to consider a multilevel implementation of SIK [49,50], in order to accelerate convergence and to
overcome the essentially stationary nature of the SIK interpolant with Gaussians.

The MuSIK algorithm is initialized by computing the SIK S̃k0 at the coarsest designated sparse grid X̃k0,N and setting
∆0 := S̃k0 . Then, for j = 1, . . . k, we compute ∆k to be the SIK of the residual uh

N −
∑k−1

i=0∆j on X̃k,N . The resulting MuSIK is
then given by

S̃ML
k :=

k∑
j=0

∆j. (14)

Remark 3. The MuSIK method defined above is a variant to the original one presented in [29]. Indeed, as we shall be
concerned with devising a quadrature formula below, it is possible to start the MuSIK at level 0, involving one point only;
we refer to Fig. 3 for an illustration. This means that the computational overhead is reduced significantly, allowing for more
levels of the multi-level methods in high dimensional problems, than for the respective interpolation problem, leading to,
potentially, greater accuracy.

The numerical stability of RBF interpolation is, generally speaking, quite challenging due to the ill-conditioning of the
respective interpolation matrices in standard bases; we refer to [45,51–53] for detailed discussions on this issue. Never-
theless, in the MuSIK setting, the resulting partial-grid interpolation problems are typically sufficiently well conditioned
for computations, due to the anisotropic scaling introduced [29]. Indeed, this anisotropic scaling exactly counteracts the
anisotropy of the grid points of each partial-grid, resulting in quasi-uniform grids in themapped domains, onwhich classical
radial basis functions are employed. The situation is more favourable in the current setting of Gaussian kernels, as we shall
see below, whereby the tensor product nature of the kernel can be utilized to accurately construct Lagrange (cardinal) bases
efficiently.
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3.2. Tensor products of univariate cardinal functions

Gaussian kernels on Rd can be viewed as tensor products of univariate Gaussians; this is evident also for the anisotropic
versions of Gaussians. This crucial property of Gaussians will be instrumental in both the proof of interpolation of theMuSIK
algorithm, and the development of fast procedures to evaluate the respective MuSIK interpolants.

We begin by considering the set of cardinal (also known as Lagrange) functions for each interpolation sub-problem in
the SIK interpolant SAℓ

(·) in (13), with the particular choice of Gaussian RBFs on the set Xℓ. Let χℓ,i be the cardinal function
on the grid indexed by ℓ for the point xℓ,i ∈ Xℓ. Let also χlj,ij denote the univariate cardinal function in one variable for the
node xlj,ij , with respect to the set of nodes {xlj,ij : ij = 0, 1, . . . , 2lj−1

}. Note that χlj,ij is not necessarily cardinal on a grid of
different level lk, k ̸= j. Hence, for j = 1, . . . , d, there exist blj,ij ∈ R, such that

χlj,ij (y) =

2lj−1∑
ij=0

blj,ij exp(−c2h2
lj (y − xlj,ij )

2),

for y ∈ [0, 1]. Then, we have

z(y) :=

d∏
j=1

χlj,ij (yj) =

∑
xℓ,i∈Xℓ

bℓ,i exp(−c2
d∑
j=i

h2
lj (yi − xlj,ij )

2),

where bℓ,i =
∏d

j=1blj,ij . This is exactly the form of the cardinal function based on the points in the grid Xℓ, which implies
z(y) = χℓ,i, due to the uniqueness of Gaussian interpolation.

Hence, it is possible to compute the cardinal functions for multivariate approximation by computing ab initio (to
arbitrarily high precision, e.g., by using symbolic calculators) the cardinal functions for univariate approximation up to (for
instance) 5, 9, 17, . . . , 129 equally spaced points, and store these. The approximation processwould then require no solution
of linear systems, thereby,massively increasing the speed of the algorithm.

3.3. Tensor product kernels give interpolatory schemes

The combination formula (13) for polynomial-based sparse grid schemes has been proven to be interpolatory [54];
crucially, the proof relies on the nestedness of polynomial spline subspaces. Classical (isotropic) radial basis functions on
sparse grids have also been shown to be interpolatory in [52], albeit in a non-multilevel setting. Themultilevel sparse kernel-
based interpolation algorithm considered in the present work, however, is characterized by multilevel spaces which are not
nested, as they are generated by different dilations of an infinitely differentiable function, in particular, the Gaussian on
each level. Note that the interpolation nodes are nested, but in the case of kernel-based interpolation, nestedness of nodes
does not imply nestedness of spanned approximation spaces. Therefore, in order to prove that the multilevel sparse kernel-
based interpolation algorithm is interpolatory, we will generalize the aforementioned earlier results by showing that the
tensor-product nature of the kernel only is sufficient to obtain interpolation on the directionally uniform sparse-grid nodes.

In what follows, we will need to compute sums of products of binomial coefficients in a number of different situations.
One will be where we are applying the full (N − 1)th order difference operator in the definition of Sk to the number of ways
of filling r ≤ N positions in the multiindex with components which sum to j. This number is(

j + r − 1
j

)
=

(j + 1) · · · (j + r − 1)
(r − 1)!

,

which is a polynomial of degree r−1with respect to j, with leading term jr−1/(r−1)!. Hence, the difference operator applied
to this will result in 0 if r < N and be equal to 1, if r = N . On the other hand, wemight be in the situation where the point in
question only appears for the first time in some intermediate partial grid within the MuSIK scheme. In this case, we might
not get the full difference operator applied. Let us suppose we only get a partial operator applied:

CN,s :=

N−1∑
j=s

(−1)N−1−j
(
N − 1

j

)(
r − 1 + j − s

j − s

)
.

The second binomial coefficient is in this form because the point will appear once in the first grid (j = s) and in the number
of ways multi-indices of length j − s can be put into r positions thereafter.

Let us rewrite

CN,s = (−1)N−1−t
N−1−t∑
j=0

(−1)j
(
N − 1
j + t

)(
r − 1 + j

j

)
. (15)

If we now set

aj := (−1)j
(
N − 1
j + t

)(
r − 1 + j

j

)
,
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we have

bj =
aj+1

aj
= −

(r + j)(N − 1 − j − t)
(j + t + 1)(j + 1)

,

so that, since aj = 0 when j > N − 1 − t ,
N−1−t∑
j=0

aj = a0
∞∑
j=0

j∏
n=0

bn

=

(
N − 1

t

) ∞∑
j=0

(r)j(t + 1 − N)j
j!(t + 1)j

=

(
N − 1

t

)
2F1(r, t + 1 − N; t + 1; 1), (16)

where (a)j = a(a + 1) · · · (a + j − 1) is the Pochhammer symbol, and 2F1 is the Gauss hypergeometric function; see [55,
Chapter 15]. Using [55, 15.1.20]

2F1(a, b; c; 1) =
Γ (c)Γ (c − a − b)
Γ (c − a)Γ (c − b)

, c − a − b > 0,

we have

2F1(r, t + 1 − N; t + 1; 1) =
Γ (t + 1)Γ (N − r)
Γ (t + 1 − r)Γ (N)

. (17)

Substituting this into (15) and (16) we see that
N−1∑
j=t

(−1)N−1−j
(
N − 1

j

)(
r − 1 + j − t

j − r

)
= (−1)N−1

(
N − 1

t

)
Γ (t + 1)Γ (N − r)
Γ (t + 1 − r)Γ (N)

.

If t ≤ r − 1, then Γ (t + 1 − r) = ∞, and the sum is equal to zero. If r = N , then we also have a Γ (0) in the numerator,
and then by using continuity of the Γ functions, we have

lim
ϵ→0

Γ (ϵ)
Γ (t + 1 − N + ϵ)

= (−1)N−1−t (N − 1 − t)!;

here we have used the Euler’s reflection formula; see, e.g., [55, 6.1.17]. Thus, with a slight (valid) abuse of the applicability
of (17),

N−1∑
j=t

(−1)N−1−j
(
N − 1

j

)(
N − 1 + j − t

j − t

)
= (−1)N−1−t (−1)N−1

(
N − 1

t

)
t!(N − 1 − t)!

(N − 1)!
= 1.

We summarize the above development in the following result.

Lemma 4. If 0 ≤ t < r ≤ N, then
N−1∑
j=t

(−1)N−1−j
(
N − 1

j

)(
r − 1 + j − t

j − t

)
=

{
1, r = N,
0, 1 ≤ r < N.

We also refer to [56] for a related result.
We will say m < n for two multi-indices m,n ∈ Nd

0 if mj < nj for j = 1, . . . , d, and analogously for >,≤,≥. The key
challenge we face in demonstrating that the combination scheme is interpolatory is that cardinal functions for points on one
gridmay not be equal to zero at points on a different grid. So let us fix a gridXm and compute the value of the SIK interpolant
Sk(xm,i) for some 0 ≤ i ≤ 2m.

For ℓ ∈ Ik,N = {ℓ ∈ Nd
0 : k ≤ |ℓ| ≤ k + N − 1}, consider the cardinal functions χℓ,k at the point xℓ,k for some k ≤ 2ℓ. In

order that χℓ,k(xm,i) be non zero we require that

χlj,kj (xmj,ij ) ̸= 0, j = 1, 2, . . . ,N,

which implies that

kj = ij2lj−mj , lj ≥ mj.

If mj < lj, χlj,kj (xmj,ij ) can be non zero.
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Since xm,k ∈ Xm̃ for all m̃ ≥ m if ℓ ≥ m, then the only non-zero cardinal function we get at xm,k ∈ Xℓ is χℓ,k̃, where
k̃j = kj2lj−mj , j = 1, 2, . . . ,N , which takes the value 1, since xm,k = xℓ,k̃.

We will need to consider different subsets of indices as suggested above. Let A = {1, 2, . . . ,N}. Furthermore, suppose
that ω = {ω1, . . . , ωs}, s ≤ N , is an enumeration of ω, and ℓ(ω) = (lω1 , lω2 , . . . , lωs ) ∈ Ns

0. Let ω̃ = A \ω, i.e., all the elements
of A that are not elements of ω.

Given c ∈ Ns
0, with c := |c|1, we fix a point y ∈ Ik,N , with y(ω) = c; y is the grid point which we are interested to know in

howmany grids it belongs to. To do so, we seek the lowest index grid that y is in. To this end, there is a unique ℓy ∈ NN
0 with

minimum size such that y = xℓy,ky ∈ Xℓy , for some ky ∈ NN
0 with ky ≤ 2ℓy . Let |ℓy|1 = u ≥ 0. Then, y ∈ Xℓ for all ℓ ≥ ℓy,

with ℓ(ω) = c, and in what follows we compute the contribution at xm,i from cardinal (Lagrange) functions at y arising from
all grids containing y. If we only vary elements indexed by elements of ω (recall that ω has length s), then, at level u+ 1, we
have multi-indices which sum to 1 in N − s positions, i.e., N − s grids. For the next level we have multi-indices which sum
to 2 in N − s positions, i.e., (N − s + 1)(N − s)/2 grids, and so on. Letting

K (m, ω, c, j) = {ℓ ∈ Ik,N : ℓ(ω) = c, ℓ(ω̃) ≥ m(ω̃), |ℓ|1 = m̃ + c + j}, j = 0, 1, . . . ,

where m̃ = |m(ω̃)|1, we seek to compute its cardinality, denoted by card K (m, ω, c, j). When we get to level m̃ + c + j we
are restricting ourselves to the part of the sumwithout cwhich sums to c andwithout ℓy which sums up to u, because this is
the first level we are looking at. Since k is the level of the initial grid we are interested in, hence k− c − u is the multi-index
size we initially have for the number of grids at this level with y ∈ Ik,N . Then, we add one each time with j. Then, we can see
that

card K (m, ω, c, j) =

(
N − s − 1 + k − c − u + j

N − s − 1

)
, (18)

since we are selecting multi-indices which sum to k − c − u + j to put in the N − s positions where ℓ(ω̃) ≥ m(ω̃).
The contribution to Sk,N coming from the point y from grids indexed by elements of K (m, ω, c, j) is

(−1)N−1f (y)χℓy,ky (xm,i)
N−1∑
j=0

(−1)j
(
N − 1

j

)
card K (m, ω, c, j)

= (−1)N−1f (y)χℓy,ky (xm,i)
N−1∑
j=0

(−1)j
(
N − 1

j

)(
N − s − 1 + k − c − u + j

N − s − 1

)
,

using (18).
We now have two situations. Either c + u ≤ k, or c + u > k. In the former case, card K (m, ω, c, j) is a polynomial of

degree N − s − 1 in j. Therefore, Lemma 4 with t = 0, yields that the interpolant vanishes in this case. In the latter case, we
set t = c + u − k in Lemma 4. Then, the above sum becomes

N−1∑
j=t

(−1)j
(
N − 1

j

)(
N − s − 1 + j − t

N − s − 1

)
,

which is equal to zero by Lemma 4 if t < N−s. Since ci ≤ mωi −1, i = 1, 2, . . . , s, we have c ≤
∑s

i=1(mωi −1) =
∑s

i=1mωi −s.
Thus, |m|1 − s ≥ c + u, and since |m|1 ≤ k + N − 1, we have c + u + s ≤ k + N − 1. Rearranging we have
t = c + u − k ≤ N − 1 − s < N − s as required. Hence, in either situation, those contributions to the interpolant coming
from points different to xm,k are zero.

We are left with computing the contribution to the interpolant at y = xm,k from grids containing xm,k. As before, we look
for grid of lowest multi-index size ℓy ∈ NN

0 , such that xm,k ∈ Xℓ. Suppose that |ℓy|1 = u. Let

K (y, j) = {|ℓ|1 = j : y ≥ ℓy}.

Then y ∈ K (y, j), for all j ≥ u and, hence

card K (y, j) =

(
N − 1 + j − u

N − 1

)
.

Then, since for ℓ ∈ K (y, j) there is unique iy ≤ 2ℓ such that xℓ,iy = y, and

χℓ,iy (y) = 1,

we have the contribution to Sk,N from cardinal functions centred at y as

f (y)
N−1∑
j=0

(−1)N−1−j
(
N − 1

j

)
card K (y, k + j)

= f (y)
N−1∑
j=0

(−1)N−1−j
(
N − 1

j

)(
N − 1 + k + j − u

N − 1

)
.



Please cite this article in press as: Z. Dong, et al., A multilevel sparse kernel-based stochastic collocation finite element method for elliptic problems with
random coefficients, Computers and Mathematics with Applications (2018), https://doi.org/10.1016/j.camwa.2018.07.041.

Z. Dong et al. / Computers and Mathematics with Applications ( ) – 11

As before we have two cases, and similarly, by Lemma 4 the sum is 1. Hence the contribution coming from y is f (y).
Thus we have already proven the following result.

Theorem 5. Assuming that the interpolation kernel has the form

ψ(y) =

d∏
i=1

φ(yi),

then SIK and the respectiveMuSIK with this kernel are interpolatory.

4. Stochastic collocation based on MuSIK

4.1. Bounded random variables

If we wish to apply MuSIK in the context of (8), we only need to calculate the weights for the anisotropic Gaussian
interpolants for each partial grid. This is an immediate consequence of the linearity of both the combination (13) and of
the multilevel enrichment procedures (14).

To this end, let Γ N
:=

⨂N
i=1[αi, βi], and we consider the interpolant

SAℓ
(y) =

Nℓ∑
j=1

cjϕ(∥Aℓ(y − yj)∥), (19)

of G(y) in (8) onto a (generic) partial grid. Using the tensor form of the N-variate Gaussian Lagrange basis, we deduce∫
Γ N

SAℓ
(ξ)dξ =

Nℓ∑
j=1

cj
N∏
i=1

∫ βi

αi

e−a2i c
2(ξi−yij)

2
dξi =

Nℓ∑
j=1

cj
N∏
i=1

gij, (20)

with Aℓ is the N × N scaling diagonal matrix with diagonal elements ai, ξi is the ith dimensional component of ξ, yij is the
ith dimensional component of yj, and gij stands for the integral from the ith dimensional component of jth basis function. A
simple calculation reveals that gij is given by

gij =
1
aic

·

√
π

2

[
erf

(
aic(βi − yij)

)
− erf

(
aic(αi − yij)

)]
, (21)

with erf(x) :=
2

√
π

∫ x
0 e−t2dt .

Therefore the integral on the left-hand side of (20) can be constructed by the linear combination of products of gij’s, from
which the quadrature weights can be calculated.

4.2. Unbounded random variables

We now discuss the possible extension of the above MuSIK stochastic collocation method to random variables with
unbounded ranges Γ N and, in particular for Gaussian random variables. To this end, let {Yi(w) ∼ N (µi, σ

2
i )}

N
i=1 to be N

independent Gaussian random variables.
The key observation is the probability density function of Gaussian distribution decays exponentially fast on tails.

Therefore, the MuSIK quadrature rule for (10) over Γ N
= RN , with ρ involving Gaussian functions, can be arbitrarily well

approximated by interpolating the integrand on MuSIK nodes contained in the hypercubes Hk :=
⨂N

i=1[µi − rσi, µi + rσi],
instead, with r ∈ N a user-defined constant. The resulting interpolant SAℓ

is a good approximation to the integrands over
Γ N

= RN : multivariate Gaussians used by MuSIK also decay exponentially fast outside Hk. In this context, we set αi = −∞

and βi = ∞ for i = 1, . . . ,N , in (20).
Therefore, the proposed MuSIK stochastic collocation approach results to hierarchical node distributions also in the case

of unbounded random variables. To substantiate further this claim,we present a numerical example for theMuSIK stochastic
collocation method for Gaussian random variables in Section 5.2.

5. Numerical examples

We present a series of numerical examples highlighting the good performance of the proposed MuSIK stochastic
collocation method for the approximation of elliptic PDEs with random coefficients.
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5.1. Example 1

We shall now illustrate the convergence of the new stochastic collocation method based on MuSIK for the stochastic
linear elliptic boundary value problem with two physical spatial dimensions (d = 2). The example here is taken from [14],

− ∇ · (a(ω, x1, x2)∇u(ω, x1, x2)) = f (ω, x1, x2) in Ω × D,
u(ω, x1, x2) = 0 on Ω × ∂D, (22)

with D = [0, 1]2, a deterministic load f (ω, x1, x2) = cos(x1) sin(x2) and the random diffusion coefficient aN (ω, x1) is
independent of spatial variable x2, constructed by:

log(aN (ω, x1) − 0.5) = 1 + Y1(ω)(
√
πL
2

)1/2 +

N∑
i=2

ξiφi(x1)Yi(ω), (23)

where

ξi := (
√
πL)1/2 exp(

−(⌊ i
2⌋πL)

2

8
), if i ≥ 1, (24)

and

φi(x1) :=

⎧⎪⎪⎨⎪⎪⎩
sin(

⌊
i
2⌋πx1
Lp

), for i even;

cos(
⌊

i
2⌋πx1
Lp

), for i odd,
(25)

for {Yn(ω)}∞n=1 independent random variables, uniformly distributed in the interval [−
√
3,

√
3], with zero mean and unit

variance, viz., E[Yn] = 0 and E[YnYm] = δmn for n,m ∈ N. The corresponding joint probability density function is denoted by
ρ and (23) is the truncation of a one-dimensional random field with stationary covariance

cov[log(aN − 0.5)](ξ, η)

= E[(log(a)(ξ ) − E[log(a)(ξ )])(log(a)(η) − E[log(a)(η)])] = exp(
−(ξ − η)2

L2c
).

For x1 ∈ [0, 1], let Lc be the desired physical correlation length for the coefficient a, meaning that for |ξ − η| ≫ Lc two
random variables a(ξ ) and a(η) become uncorrelated. Then, set Lp := max{1, 2Lc} in (25), and L := Lc/Lp in (23) and (24).

For the solution of each independent finite element problem, standard cubic Lagrange elements over a uniform triangu-
lation of D with 4225 unknowns are used. To study the convergence rate of the MuSIK stochastic collocation method, we
consider the problem with a fixed dimension N and investigate the error behaviour with respect to the different levels k.
The implementation of this algorithm is performed in MATLAB using the ALICE high performance computing facility at the
University of Leicester. We shall focus only on the quadrature-induced part of the error.

To estimate the L2(D)-norm of the computational error ϵ in the kth level of MuSIK, we use the approximation

∥E[ϵ]∥L2(D) ≈ ∥E[M(K ,N)ΠhuN − M(k,N)ΠhuN ]∥L2(D), (26)

with M(k,N) denoting the MuSIK collocation projection at level k over dimension N probability space with k =

0, 1, 2, . . . , K , andΠh denoting finite element projection over the spatial domain D. We begin by assessing the performance
of the method with respect to the probability space dimension N for N = 5, 10, 14, 21, selecting correlation length
Lc := 1/64. The L2(D)-norm of the computational error ϵ against ‘Dof’ (standing for the total number of collocation
points) is given in Fig. 4. As the level k increases, the observed convergence rate appears to be (at least) algebraic. We also
observe the (expected) slow deterioration of convergence rate asN increases (cf. [11,14] for the corresponding computations
using polynomially exact quadratures). Further, to investigate the performance of MuSIK approximation under different
correlation lengths Lc , we set Lc = 1/64, 1/16, 1/2 for N = 5,10. The results are given in Fig. 5.

The Gaussian building blocks of MuSIK include a user-defined so-called shape parameter c which affects the convergence
of the MuSIK method as well as the numerical stability of the Lagrange function computations. For a detailed discussion
on this issue we refer to [29] and the references therein. All the above results are based on the set of chosen shape
parameters {0.01, 0.01, 0.03, 0.06, 0.085, 0.09, 0.1} for levels 1, 2, . . . , 7, which result to good convergence rate and
sufficient numerical stability. We have found that a good practical range for c to guarantee both good convergence and
numerical stability is [0.01, 0.4]. This range can be enlarged if one uses higher precision arithmetic for the calculation of
the Lagrange basis, thereby circumventing the effect of bad conditioning of the cardinal function computations. Fig. 6 shows
convergence plots for the method for N = 5,10 with two different choices of shape parameter c: one choice is the variable
shape parameter detailed above, with the second choice being selecting a uniform shape parameter c = 0.1 for all levels.
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Fig. 4. Convergence for N = 5, 10, 14, 21 with Lc = 1/64.

Fig. 5. N = 5 (left) and N = 10 (right) with Lc = 1/64, 1/16, 1/2.

Fig. 6. Uniform against variable shape parameter for N = 5,10, Lc = 1/64.
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Fig. 7. The error decay in expectation and variance under shape parameter c = 0.2 and c = 0.3.

Fig. 8. The error decay in expectation and variance under shape parameter c = 0.1 and c = 0.2.

5.2. Example 2

Next, we consider the elliptic boundary value problem (22), over the L-shaped domain D =: (−1, 1)2 \ [0, 1) × (−1, 0],
with random diffusion coefficient and load function given by:

log(aN (ω, x1, x2) − 0.5) = 1 + Y1(ω) sin(πx1) + Y2(ω) sin(πx2)
+ Y3(ω) cos(πx1) + Y4(ω) cos(πx1), (27)

and f (ω, x1, x2) = 1+ exp{Y5(ω) sin(πx1) sin(πx2)+ Y6(ω) cos(πx1) cos(πx2)}, respectively. Wemake two different choices
of independent identically distributed random variables {Yn(ω)}6n=1: a) uniform random variables with zero mean and unit
variance distributed over the interval [−

√
3,

√
3], and b) Gaussian random variables satisfying the normal distribution

N (0, 1), respectively. Note that the diffusion coefficient depends on 4 random variables and the forcing term on 2 random
variables.

The solution u has low regularity at the D-origin, reflecting the typical (singular) behaviour in the vicinity of re-entrant
corners. To resolve this, we use 1536 cubic elements with the physical space mesh geometrically graded towards the origin.
We are interested in the numerical results for the L2(D) approximation error of the expected value E[uN ] and of the variance
Var[uN ], with N = 6, under different choices of shape parameter c; the error is computed in a completely analogous fashion
to (26). We set r = 3 for the domain truncation for the case of Gaussian random variables.

As the level k of theMuSIK algorithm increases, the observed convergence rate in both expected value and variance are at
least algebraic for a number of choices of shape parameters for both uniform and Gaussian random variables, respectively;
the respective convergence histories are given in Figs. 7 and 8. As expected, the smaller shape parameter gives smaller error
independent of the levels. Nonetheless, the shape parameter appears to have an influence on the convergence rate of the
proposedMuSIK algorithmwhen the level is low,which appears to gradually diminish as the level grows. The choice of shape
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parameter in this numerical example is such that the univariate Lagrange basis computations admit condition numbers of
105 or less.

6. Concluding remarks

A new stochastic collocation finite element method based on the recent multilevel sparse kernel-based interpolation
for the, typically high-dimensional, quadrature step for the solution elliptic PDEs with random coefficients is proposed and
tested. The implementation of the method is fully parallelizable, while an interesting attribute in the use of directionally
uniform multilevel nested quadrature nodes for the approximation of both bounded and unbounded random variables. As
such, the development of adaptive anisotropic versions of the MuSIK-based quadrature rule, which could lead to further
complexity reduction, is feasible, since adding new (anisotropic) levels can reuse lower level finite element computations.
This, of course, could be combined with the tremendous advances in finite element adaptive algorithms to lead to a fully
adaptive hierarchical algorithmic framework; we refer to [17,18] for some recent results in this direction for stochastic
Galerkin finite element methods. This is an interesting future direction of research.
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