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Steady oscillations in aggregation-fragmentation processes
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We report surprising steady oscillations in aggregation-fragmentation processes. Oscillating solutions are
observed for the class of aggregation kernels Ki,j = iνjμ + jνiμ homogeneous in masses i and j of merging
clusters and fragmentation kernels, Fij = λKij , with parameter λ quantifying the intensity of the disruptive
impacts. We assume a complete decomposition (shattering) of colliding partners into monomers. We show that
an assumption of a steady-state distribution of cluster sizes, compatible with governing equations, yields a
power law with an exponential cutoff. This prediction agrees with simulation results when θ ≡ ν − μ < 1. For
θ = ν − μ > 1, however, the densities exhibit an oscillatory behavior. While these oscillations decay for not very
small λ, they become steady if θ is close to 2 and λ is very small. Simulation results lead to a conjecture that for
θ < 1 the system has a stable fixed point, corresponding to the steady-state density distribution, while for any
θ > 1 there exists a critical value λc, such that for λ < λc, the system has an attracting limit cycle. This is rather
striking for a closed system of Smoluchowski-like equations, lacking any sinks and sources of mass.
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I. INTRODUCTION

Numerous phenomena in nature involve dual processes of
aggregation and fragmentation [1,2]. These processes take
place on vastly different length and time scales. A reversible
polymerization in solutions and coagulation of colloidal parti-
cles are the classical examples of such processes occurring on
the molecular scales; another peculiar example is aggregation
of prions causing the Alzheimer-like diseases [3]. On the larger
scales—in atmospheric processes, small airborne particles
coalesce into smog droplets [4]. Aggregation is also common
in systems of living organisms, from colonies of viruses [5] to
schools of fish [6]. Aggregation and fragmentation processes
occur in networks of different nature, including economic
networks [7] and internet communities [1,8]; here forums
of users nucleate, merge, and split. In turbulent cascades in
a fluid flow [9] vortices may merge forming larger ones or
decomposing into smaller vortices. The distribution of particles
size in planetary rings is also determined by a steady balance
achieved between two opposite processes, viz. aggregation and
breakage of the particles in the rings [10–14].

A. Aggregation

The aggregation takes place when two clusters, comprised
respectively of i and j monomers, merge upon collision
thereby creating a cluster of i + j monomers (see Fig. 1);
symbolically this process may be written as

[i] + [j ] −−−→ Kij [i + j ],

*Corresponding author: nb144@leicester.ac.uk

where Kij is the merging rate. Let nk be the concentration of
clusters of size k, i.e., clusters composed of k monomers. The
rate of change of nk is determined by Smoluchowski equations
[1,2]

dnk

dt
= 1

2

∑
i+j=k

Ki,jninj − nk

∞∑
i=1

Ki,kni . (1)

The first term on the right-hand side accounts for the formation
rate of k-mers from clusters of size i and j , the second term
describes the loss of k-mers due to aggregation of these clusters
with all other clusters; the factor 1/2 in the first term prevents
from double counting of the same process (i + j → k and
j + i → k).

B. Aggregation with fragmentation

Generally aggregates can suffer both spontaneous and
collision fragmentation [1–3,10,11,13]. In the former case a
cluster breaks into smaller pieces without interactions with
other aggregates [1–3], in the latter one the fragmentation is
caused by an energetic impact between two clusters [10,11,13].
Different collision fragmentation models have been studied
[10,11,13]; here we will consider a simple one of complete
shattering of two colliding partners into monomers. Symboli-
cally this process (see Fig. 1) may be written as

[i] + [j ]
Fij−−−→ [1] + [1] + . . . [1]︸ ︷︷ ︸

i+j

,

where Fij quantifies the shattering rate. Models with shatter-
ing exhibit interesting behaviors including dynamical phase
transitions [15]. It has been shown [10] that more general
fragmentation models with a large number of fragments yield
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FIG. 1. (a) A merging event. (b) A collision of clusters of size i

and j leading to decomposition into i + j monomers.

qualitatively similar size distribution provided the small-size
debris strongly dominates over the large size ones [10]. As in
Ref. [10], we assume that the fragmentation and aggregation
kernels are proportional,

Fij = λKij , (2)

as has been justified for processes in planetary rings [10]. The
parameter λ in Eq. (2) characterizes the relative frequency of
aggregative and shattering impacts.

Adding the fragmentation kinetics with kernel (2) into
kinetic equations (1) we arrive at a separate equation

dn1

dt
= −n1

∞∑
i=1

K1,ini + λ

2

∞∑
i=2

∞∑
j=2

(i + j )Ki,jninj

+ λn1

∞∑
j=2

jK1,j nj (3)

for the concentration of monomers and a set of generic
equations

dnk

dt
=1

2

k−1∑
i=1

Ki,k−inink−i − (1 + λ)nk

∞∑
i=1

Kk,ini (4)

for k � 2. The second term on the right-hand side of Eq. (3)
accounts for the gain of monomers occurring in shattering
collisions between clusters, and the third term describes the
gain of monomers in the shattering impacts between monomers
and clusters. Equation (4) differs from (1) by an extra loss term
(proportional to λ) accounting for shattering.

Equations (3) and (4) describe spatially homogeneous sys-
tems. The kernels Ki,j may be obtained from the microscopic
analysis of the aggregation and fragmentation processes (see,
e.g., [10,13,16] and the Appendix). In applications, Ki,j are
usually homogeneous functions of the masses i and j of
merging clusters. Here we will investigate the kernels

Ki,j = iνjμ + iμjν (5)

which are rather popular [1,2] and have been used for similar
aggregating-shattering systems in Ref. [17] where a source
of monomers and sink of large aggregates was present. A
stationary distribution satisfying Eqs. (3) and (4) with the
kernel (5) has been also addressed in [18].

In the following, we shall often use the sum and the
difference of the exponents μ and ν,

β = ν + μ, θ = ν − μ. (6)

(Without loss of generality, we choose ν � μ.) The exponent β
is the well-known homogeneity exponent [1,2]. The exponent

θ plays an important role in the following; it has been called a
nonlocality exponent in [17,18].

We always limit ourselves to the nongelling case β < 1. The
restrictions ν � 1 and μ � 1 are needed to avoid instantaneous
gelation (see, e.g., [19–23]). The exponent θ can exceed 1, and
never-ending oscillations are actually observed in a “nonlocal”
regime θ > 1.

In the special case of ν = −μ = a, the kernel reads

Ki,j = iaj−a + jai−a (7)

with 0 � a � 1. This kernel is known as a generalized Brow-
nian kernel [24]. In what follows we will analyze both (5)
and (7), often starting with the latter which is more tractable.
The restriction a � 1 is needed to avoid instantaneous gelation
(aggregation equations with a > 1 are ill-defined [19–23,25]).
The solutions of the aggregation-fragmentation equations
should also satisfy the natural physical requirement nk(t) � 0,
and mass conservation:

M =
∞∑

k=1

knk(t) ≡ const. (8)

Analytical time-dependent solutions to Eqs. (3) and (4), have
been obtained only for the simplest case of a constant kernel
[10]. The steady-state solutions have been found for several
other models, such as an irreversible aggregation model with
a monomer source [26], an aggregation-fragmentation model
with kernels Ki,j = (ij )μ and Fi,j = λKi,j [10], and for
an open aggregation-fragmentation system with a source of
monomers and sink of large clusters [17] for the kernels of the
form (5) and for closed systems in [18]. An open aggregating
system with the same coagulation kernel (5), driven by input of
monomers along with the removal of large clusters, has been
studied in [27]. Steady oscillations were numerically found in
this system with a finite number of aggregate species [27]. For
a closed system comprised of monomers, dimers, trimers, and
exited monomers, stable oscillations have been also reported
[28]. Similarly, steady chemical oscillations may occur in a
dimerization model (see, e.g., [29]).

In the present study we consider closed systems undergoing
aggregation and fragmentation processes, with the kinetic rates
given by Eqs. (5) and (2), that lack any source or sink of
monomers and clusters. Naively, one expects that such closed
systems with two opposite processes will relax to a steady
state where a balance between aggregation and shattering is
established. This scenario is indeed realized for θ < 1, or
a < 1/2 in the case of the kernels (7). Unexpectedly, for θ → 2
(or a → 1) and small values of λ we observe never-ending
oscillations of the concentrations. This effect has been found
numerically for the one-parameter family of kernels (7) and
reported in our recent study [30]. Here we present a more
detailed analysis of the aggregating and shattering systems,
both numerical and theoretical, and we investigate a more
general two-parameter family of kernels (5). We also provide
a qualitative theory of the stable oscillations which sheds some
light on the mechanism of this surprising phenomenon.

In what follows, we will concentrate on systems with
time-independent coefficients Kij and λ, and conserved total
mass (total number of elementary units). This is a generic
model that describes systems of very different nature. The
elements comprising a system range from grains or molecules
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to living organisms or economic agents. The interaction forces,
that determine the kinetic rates, may be of very different
nature as well. These may range from true molecular or
mechanical forces to fictious “social forces” [31], based on
informational exchange. Therefore, strictly speaking, the term
“closed” here literally means a lack of sinks and sources of
system elements. At the same time, the exchange of energy,
chemicals, nutrients, and information is implied. This is needed
to sustain elements of a system and keep the rate coefficients
steady. On the level of social agents or a living organism
this implies an interaction with the surrounding social or
natural environment. On the level of molecular or macroscopic
particles the interaction with a thermostat, or the presence
of some other source of energy, is assumed. For instance, in
aggregation-fragmentation processes in polymer or colloidal
solutions, there exists energy exchange with the solvent. This
maintains constant temperature, although energy is released
in aggregation processes and consumed in fragmentation pro-
cesses. Similarly the surrounding molecular gas plays a role of
thermostat in atmospheric processes [32] and for dust clouds
[33,34]. Another important mechanism of energy supply is
viscous heating, which arises in planetary rings [14]. In this
case the orbital motion of rings’ particles yields a sheared flow
of viscous granular fluid, which generates heat [14]. The energy
supply keeps the kinetic energy of aggregates steady, and the
rate coefficients constant.

Systems with true molecular or mechanical forces between
elements is an important subclass of systems with aggregation
and fragmentation. As it follows from the discussion above,
such systems, with constant rate coefficients, are not thermo-
dynamically closed. (Note that the notion “thermodynamics”
is meaningful only for these systems.) Hence an interesting
question arises—whether persistent concentration oscillations
exist in thermodynamically closed systems? We perform a
microscopic analysis, which resulted in a positive answer:
Never-ending oscillations do emerge in thermodynamically
closed systems, although the oscillation period permanently
increases.

The rest of the paper is organized as follows. In the next
section, Sec. II, we present simulation results obtained with
the use of fast solvers of Smoluchowski-type equations. In
Sec. III we discuss steady-state distributions using the methods
outlined in Ref. [30] and applied to Brownian kernels μ =
−ν = a. We also present a qualitative theory explaining the
mechanism leading to never-ending oscillations and analyze
oscillation behavior in thermodynamically closed systems. In
Sec. IV we summarize our findings.

II. NUMERICAL RESULTS

Kinetic equations (3) and (4) form a set of infinitely many
nonlinear coupled ordinary differential equations (ODEs),
which is a severe numerical challenge. For standard Smolu-
chowski equations, that is, when fragmentation is absent, the
average size of aggregates grows indefinitely imposing a time
limit to model these processes. Fragmentation precludes the
formation of very large clusters (in most cases and certainly
in our case when fragmentation and aggregation kernels are
proportional). This allows us to model the aggregating-and-
shattering systems with a finite number of equations Neq, which

is dictated by the requested accuracy. In Ref. [30] we present
estimates that relate the number of equations and the simulation
accuracy; in practice we use such number of equations that
a further increase of Neq does not impact the results for the
concentrations nk(t) within the numerical precision.

The structure of the kinetic kernels (7) allows us to apply
highly efficient numerical methods, in particular, the fast
and accurate method of time integration of Smoluchowski-
type equations [35–39]. The efficiency and accuracy of this
approach in solving the aggregating-and-shattering equations
has been demonstrated in Ref. [30], where the numerical results
have been compared with the available analytical solutions
[10].

A. Steady-state size distribution

Solving numerically Eqs. (3) and (4) with kernel (7) for a <

1/2, we observe that the concentrations relax monotonically
to a steady state; see Fig. 2. In Fig. 2 we also compare the
numerical results with the analytical solution for the steady-
state distribution nk , discussed below. The numerical and
analytical solutions agree fairly well.

Similar behavior is observed for the general kernel (5).
When θ = μ − ν < 1, the concentrations relax monotonically
to a steady state, and the final distribution agrees with the
one predicted theoretically; see Fig. 3. The steady-state size
distribution may be interpreted as a stable fixed point in the
language of dynamical systems [40].

B. Oscillating solutions

1. Brownian kernels (ν = −μ = a)

For a � 1/2 a relaxation to a steady-state distribution
occurs through oscillations, provided the parameter λ, quan-
tifying the shattering intensity, is relatively small. This is
illustrated in Fig. 4, where the time dependence of the total
number of aggregates, N (t) = ∑

k�1 nk(t), is shown; the figure
also demonstrates that the oscillations are more pronounced
and persist for longer time as a increases, while λ decreases.

We found the oscillations independently of initial condi-
tions; here we use the monodisperse initial conditions, nk(0) =
Mδ1,k , and stepwise initial conditions

nk(t = 0) =
{

0.1 k = 1,2, . . . 10

0 k > 10
, (9)

with the same total mass M = 5.5. Unless explicitly stated,
the reported results refer to the initial conditions (9). For
a → 1 and relatively small λ we observe stable, seemingly
never-ending oscillations, see Fig. 5, where the temporal
behaviors of the total density N (t) and the second moment
M2(t) = ∑

k�1 k2nk(t) are depicted.
Making the time averaging of the densities over the os-

cillation period, one obtains the distribution of the averaged
quantities 〈nk〉osc, which has a form of the power law with a
cutoff at k ∼ k0; see Fig. 6:

〈nk〉osc ∼ k−α, α � 5/4, k < k0. (10)

2. General kernels (5)

We observed oscillations for the general kernel (5) when
θ = ν − μ > 1 (which corresponds to a > 1/2 of the Brow-
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FIG. 2. Steady-state distributions obtained numerically by solv-
ing Eqs. (3) and (4) for the Brownian kernel (7). Analytical results,
Eq. (29), are also shown. The model parameters are set as (a) a =
0.05, λ = 0.002, (b) a = 0.05, λ = 0.003, (c) a = 0.1, λ = 0.003,
(d) a = 0.1, λ = 0.005.

nian kernel). However, if θ is not close to θ = 2, the system
relaxes to a steady distribution through the damped oscilla-
tions, even for rather small λ; see Fig. 7.

When θ → 2 (which corresponds to a → 1), steady os-
cillations emerge for small λ. The larger the exponent θ , the
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FIG. 3. Steady-state distributions obtained numerically by solv-
ing Eqs. (3) and (4) for kernels (5) with θ = ν − μ < 1. Analytical
results, Eq. (26), are also shown. The model parameters are set
as (a) ν = 0.2, μ = −0.1, λ = 0.004, (b) ν = 0.2, μ = −0.1, λ =
0.002, (c) ν = 0.3, μ = −0.1, λ = 0.002, (d) ν = 0.3, μ = −0.1,
λ = 0.003.

larger the shattering rate λ where steady oscillations emerge;
see Fig. 8.

Our simulations imply the existence of a critical value λc(θ )
such that for λ < λc(θ ) in the long time limit the system
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FIG. 4. Time dependence of the total density for a = 0.7 (a) and
a = 0.75 (b) and different λ. The system relaxes to a steady state
through damped oscillations which are more pronounced for larger a

and smaller λ.

approaches a limit cycle, viz. concentrations exhibit never-
ending oscillations. This has been checked for the Brownian
kernel and for the general kernel (5). Although for a < 0.9
we have observed only damped oscillations, we believe that
never-ending oscillations would emerge for all a > 1/2 and
sufficiently small λ. This is seemingly true for the general
case: The steady oscillations would be observed for any θ > 1
if λ is small enough. We cannot prove this numerically due
to an unaccessible number of equations needed to simulate the
systems with such small λ. For instance, to simulate the system
with a = 0.9 and λ = 0.005 depicted in Fig. 5, more than
250 000 equations have been used. Our estimates (discussed
in Ref. [30]) indicate that the number of equations Neq needed
to guarantee a requested accuracy rapidly grows with the
decreasing λ. To simulate a system with λ < λc for a < 0.9
one needs more than a million equations which is too large for
practical implementation. Nevertheless, based on our results,
we formulate the following.

Conjecture. (i) When θ = μ − ν < 1, the system has a
single stable fixed point for all values of λ; the steady-state
distribution of cluster sizes nk corresponds to this stable point.
(ii) When θ > 1, there exists a critical λc, such that for λ � λc

the system possesses a stable fixed point with the according
distribution nk . This may be a stable focus for some values of
λ manifesting in damped oscillations. (iii) When θ > 1 and
λ < λc, the system possesses a stable limit cycle.

As it follows from our numerical results, the critical shat-
tering λc strongly depends on the exponent θ ; its dependence
on the other exponent β = μ + ν seems to be weak (if any),
but is still to be studied.
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FIG. 5. Time dependence of the clusters density N (t) (top) and
the second moment M2(t) = ∑

k�1 k2nk(t) (bottom), for the kernel (7)
with a = 0.9 and different λ. Seemingly never-ending oscillations are
observed for λ = 0.005.

III. THEORETICAL ANALYSIS

To explain theoretically the observed behavior of the
aggregation-and-shattering systems we analyze separately the
systems that attain a steady-state distribution and those that
demonstrate never-ending oscillations. For the former case we
apply the asymptotic analysis, while in the latter situation we
analyze oscillations qualitatively.

A. Asymptotic analysis of a steady-state cluster size distribution

In Ref. [30] we gave a condensed account of the derivation
of the steady-state distribution; here we present a more detailed
derivation.

When the system reaches a steady state, differential equa-
tions (3) and (4) become algebraic equations,

n1

∞∑
i=1

K1,ini − λ

2

∞∑
i=2

∞∑
j=2

(i + j )Ki,jninj

− λn1

∞∑
j=2

jK1,j nj = 0,

1

2

k−1∑
i=1

Ki,k−inink−i −(1 + λ)nk

∞∑
i=1

Kk,ini =0, k � 2. (11)

To analyze these equations we introduce the generating func-
tions

Cγ (z) =
∞∑

k=1

kγ nkz
k (12)
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FIG. 6. Top: Stable oscillations of nk for a = 1.0, λ = 0.01.
Bottom: The concentration distribution after averaging over the oscil-
lation period for a = 0.95, λ = 0.005. The averaged concentrations
follow a power-law distribution with exponent close to 5/4 for not
too large masses.

and the moments

Mγ =
∞∑

k=1

kγ nk.

Multiplying (11) by zk and summing over all k � 1 we arrive
at

Cμ(z)Cν(z) + (1 + λ)zn1(Mμ + Mν)

−(1 + λ)[MμCν(z) + MνCμ(z)] = 0. (13)
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FIG. 7. The exponent θ = ν − μ = 1.2 > 1 and ν = 1, μ =
−0.2 is in a regime where never-ending oscillations are conjecturally
possible for very small λ, but in the shown examples λ is not small
enough and the cluster size distribution relaxes to a steady state
through the damped oscillations (which are more pronounced for
smaller λ).
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FIG. 8. Oscillating behaviors when θ > 1. Never-ending oscil-
lations emerge for rather small values of λ; overall, the larger the
exponent θ , the larger the critical λc(θ ) separating never-ending
from damped oscillations. The model parameters are set as (a)
ν = 1, μ = −0.75, (b) ν = 1, μ = −0.7, (c) ν = 0.85, μ = −0.85,
(d) ν = 1, μ = −0.4.

Using Cγ (1) = Mγ and specializing (13) to z = 1 we obtain

MμMν = 1 + λ

1 + 2λ
n1(Mμ + Mν). (14)

To analyze nk for k 	 1 we will use the above equations and
exploit standard methods of asymptotic analysis to extract
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the behavior of the generation functions Cγ (z). We consider
separately kernels with θ < 1 and θ > 1.

1. Kernels with θ < 1 (a < 1/2).

It is known [10] that for μ = ν = 0, the tail of the steady-
state distribution reads nk � λπ−1/2k−3/2e−λ2k . Let us assume
that for k 	 1 our steady-state distribution has a similar form:

nk � Ck−τ e−ωk for k 	 1 (15)

with yet unknown τ , ω, and C. Equation (15) implies

Cγ (z) �
∞∑

k=1

Ckγ−τ (z/z0)k =
∞∑

k=1

Ckγ−τ (z′)k, (16)

where z0 = eω and z′ = z/z0. Obviously, Cγ (z′) diverges for
z′ > 1 and converges for z′ < 1 for all γ and τ . We assume
that Cγ (z′ = 1) exists, that is,

∑
k�1 kγ−τ converges.

The tail ofnk is reflected in the behavior ofCγ (z′) when z′ →
1 − 0. Suppose

∑
k�1 kγ−τ+1 diverges. Still,

∑
k�1 kγ−τ+1(z′)k

converges for z′ < 1. The closer z′ is to 1, the larger the size of
the clusters k that make the main contribution to Cγ (z′). Hence
the dependence of Cγ (z′) on z′ for z′ → 1 characterizes the
dependence of nk on k for k 	 1. To quantify this relation we
differentiate Cγ (z) with respect to z:

dCγ

dz
� C z−1

0

∞∑
k=1

kγ−τ+1(z′)k−1

� C z−1
0

∫ ∞

0
dk kγ−τ+1ek log z′

� C z−1
0

∫ ∞

0
dk kγ−τ+1e−k(1−z′)

= C z−1
0 �(γ − τ + 2)(1 − z′)τ−γ−2,

where �(x) is the gamma function and we use z′ → 1 − 0.
Integrating with respect to z we obtain

Cγ (z) = Cγ (z0) + C�(1 + γ − τ )(1 − z′)τ−γ−1. (17)

Substituting Cγ (z) with γ = ν and γ = μ into Eq. (13) we
obtain terms with different powers of (1 − z′). To satisfy this
equation we equate to zero all these terms separately. The zero-
order terms yield

Cν(z0)Cμ(z0) − (1 + λ)[MνCμ(z0) + MμCν(z0)]

+ (1 + λ)z0n1(Mν + Mμ) = 0. (18)

The terms of the order (1 − z′)τ+γ−1 with γ = ν and γ = μ

imply

Cμ(z0)C�(1 + ν − τ ) − (1 + λ)MμC�(1 + ν − τ ) = 0,

(19)

Cν(z0)C�(1 + μ − τ ) − (1 + λ)MνC�(1 + μ − τ ) = 0.

(20)

Finally, the rest of the terms should satisfy

C2�(1 + ν − τ )�(1 + μ − τ )(1 − z′)2τ−ν−μ−2

− (1 + λ)z0n1(Mν + Mμ)(1 − z′) = 0 (21)

from which 2τ − ν − μ − 2 = 1, or

τ = 3 + β

2
, (22)

where β = ν + μ. Now we substitute

Cγ (z0) = (1 + λ)Mγ , (23)

which follows from (19) and (20) into (18) to obtain

MνMμ = z0

1 + λ
n1(Mν + Mμ). (24)

From Eqs. (24) and (14) we get

z0 = eω = (1 + λ)2

(1 + 2λ)
. (25)

We have ω � λ2 − 2λ3 + · · · � λ2 for small λ leading to

nk � C

k(3+β)/2
e−λ2k for k 	 1. (26)

To estimate the constant C we utilize the distribution (26)
together with mass conservation to yield

M =
∞∑

k=1

knk ≈
∫ ∞

1
dk

C

k(1+β)/2
e−λ2k

� Cλβ−1�

(
1 − β

2

)
(27)

resulting in

C � Mλ1−β

�[(1 − β)/2]
∼ λ1−βM. (28)

In the nongelling β < 1 region, the major contribution to the
integral in (27) comes from k 	 1, so the usage of (26) is
justified. For the Brownian kernel ν = −μ = a and β = 0, so
the amplitude is C � λM/

√
π and

nk � λM√
πk3/2

e−λ2k for k 	 1. (29)

2. Kernels with θ > 1 (a > 1/2)

Applying the same analysis for θ � 1 (or a � 1/2), one
arrives at Eqs. (18)–(21), which however do not lead to con-
sistent results. Indeed, from Eq. (21) it follows that τ = (3 +
ν + μ)/2, then substituting τ = (3 + ν + μ)/2 into Eq. (16)
we conclude that the generation functions Cν(z0) converges
only for ν − μ = θ < 1 (recall that ν � μ). Hence Eq. (19)
may not be satisfied to cancel the terms corresponding to the
factor (1 − z′)τ+ν−1. The failure of this asymptotic analysis
seemingly manifests the change of the evolution regime,
which has been observed in the numerical simulations: For
θ > 1 the oscillations of concentrations emerge—the systems
either relax to a steady state through damped oscillations, or
demonstrate never-ending oscillations.

B. Qualitative analysis

To understand the mechanism of the stable oscillations let
us consider a special Brownian kernel with ν = −μ = a = 1.
The monomer density satisfies

dn1

dt
= λ(N + M2M−1) − (1 + λ)n1(1 + M−1) (30)
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FIG. 9. Top panel: Time dependence of nk(t). The effective slope
of the distribution and the effective cutoff size kmax periodically
change with time. Middle and bottom panels: The real and coarse-
grained cluster size distributions. The smooth cutoff of the real dis-
tribution is approximated by the abrupt model cutoff. The simulation
data are shown for the kernel (7) with a = 0.95 and λ = 0.005.

and the rate equation for the cluster density is

dN

dt
= λ(N + M2M−1) − (1 + 2λ)M−1. (31)

(We set M = 1.) These equations are not closed as they involve
the moments M−1 and M2. One can write the rate equation for
M2, but it involves the third moment M3. This continues ad
infinitum leading to an analytically unsolvable hierarchy.

Note that on the right-hand side of Eq. (30) one term is
negative and the other one is positive; the first is of the order
of n1 and the second is of the order λM2. Initially only small
clusters are present in the system, so that λM2 is small for
λ  1 and n1 decreases. Due to the conservation of mass the
decrease of n1 implies the increase of other concentrations.
Hence, after some time a wider cluster size distribution is
established, such that λM2 increases. When it exceeds n1, the
right-hand side of Eq. (30) becomes positive and n1 starts to
grow. Due to the conservation of mass, the growth of n1 implies

the decay of other concentrations, which leads to the decrease
of M2 and eventually to the negative sign of the right-hand side
of Eq. (30). Then the cycle repeats.

Let us try to put the above narrative picture into somewhat
more quantitative terms. First, we notice that the oscillations
of concentrations correspond to the periodically varying dis-
tribution of cluster sizes, as illustrated in Fig. 9. Roughly
speaking, the size distribution nk(t) behaves in such a way
that the effective slope of this distribution α(t) and the effective
cutoff kmax(t) periodically change in time. Averaging over these
oscillations we obtain the distribution 〈nk〉osc depicted in Fig. 6.

To understand the nature of the observed behavior of the
system, we develop a qualitative theory. To this end we
approximate the real distribution nk(t) by a model distribution
nmod

k (t) which reflects the most prominent features of the real
distribution. Namely we assume that nk(t) may be character-
ized by a power-law distribution with a varying slope α(t) and a
large-size cutoff kmax(t); it should obey the mass conservation.
Namely, we assume the following model distribution:

nmod
k (t) =

{
n1(t)
kα(t) for k � kmax(t)

0 for k > kmax(t)
. (32)

The real distribution of the aggregate sizes nk(t) may be
approximated by the model distribution (32) applying a coarse
graining. For the qualitative analysis addressed here we ex-
ploited the simplest approach. Namely, we use the value of
n1(t), obtained in the simulations, and find the parameters
α(t) and kmax(t) from the conservation of mass. That is, we
numerically find the pair (α, kmax) with integer kmax, that
minimizes the difference, |n1 Hkmax,α − 1|, where Hkmax,α =∑kmax

i=1 i−α are the generalized harmonic numbers. The variation
with time of the model distribution (32), which mimics the
real distribution, is shown in Fig. 9. In Fig. 10 we show the
periodic variation on the model parameters α(t) and n1(t) and
demonstrate that the variation of the slope is limited by the
interval 1 < α(t) < 2.

To perform a qualitative analysis we focus on the qualitative
dependence of the moments M−1, N , M , and M2 on n1, α, and
kmax and approximate the summation by integration:

Mi =
kmax∑
k=1

kink � bi

∫ kmax

1
kinkdk, (33)

 0
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 0.12

 0.18

 55  60  65  70  75
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FIG. 10. Periodic variation of the model parameters α(t) and n1(t)
for a = 0.95 and λ = 0.005. Only two periods of oscillations are
shown. The simulation data are the same as for Fig. 9.
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where we introduce the coefficients bi . These coefficients
(assumed to be constant), are of the order of 1 and account
for the difference between integration and summation. Hence
we obtain

M−1(t) � b−1
n1(t)

α(t)
, N (t) � b0

n1(t)

α(t) − 1
,

(34)

M2(t) � b2
n1(t)

3 − α(t)
[kmax(t)]3−α(t),

where we use the condition kmax 	 1. Similarly, the conserva-
tion of mass yields the relation between n1(t), α(t), and kmax(t):

M =
kmax∑
k=1

knk � b1n1k
2−α
max (2 − α)−1 = 1. (35)

Using (34) and (35), we recast (30) and (31) into

ṅ1 = λn1

[
b0

α − 1
+ b2b−1n1

(3 − α)α

(
2 − α

b1n1

)(3−α)/(2−α)
]

− (1 + λ)n1

(
1 + b−1n1

α

)
, (36a)

α̇ = λ(b0 + 1 − α)

[
1 + b2b−1(α − 1)n1

b0(3 − α)α

×
(

2 − α

b1n1

)(3−α)/(2−α)]
+ (α − 1)2(1 + λ)

α

×
[

(1 + 2λ)b−1

(1 + λ)b0
− α + b−1n1

α − 1

]
. (36b)

To show that never-ending oscillations are possible we
perform the linear stability analysis of Eqs. (36a) and (36b).
We consider the coefficients bi (i = −1, 0, 1, 2) as known and
of the order of unity. Further, we assume that there is a fixed
point, n1 = n

(0)
1 and α = α0. At the fixed point G1(n(0)

1 ,α0) =
G2(n(0)

1 ,α0) = 0 where G1(n1,α) and for G2(n1,α) denote the
right-hand sides of (36a) and (36b), respectively. We also
shortly write

g1n = ∂G1

∂n1

∣∣∣∣
n

(0)
1 ,α0

, g1α = ∂G1

∂α

∣∣∣∣
n

(0)
1 ,α0

,

g2n = ∂G2

∂n1

∣∣∣∣
n

(0)
1 ,α0

, g2α = ∂G2

∂α

∣∣∣∣
n

(0)
1 ,α0

(37)

and deduce the linearized equations

d

dt

(
δn1

δα

)
=

(
g1n g1α

g2n g2α

)(
δn1

δα

)
(38)

for the deviations δn1 = n1 − n
(0)
1 and δα = α − α0. The

eigenvalues of the matrix in (38) are

ν1,2 = 1
2 [g1n + g2α ±

√
(g1n − g2α)2 + 4g1αg2n]. (39)

Oscillations may occur if the above eigenvalues possess an
imaginary part. This condition, Im(ν1/2) �= 0, requires the
negatives determinant in

D = (g1n − g2α)2 + 4g1αg2n < 0. (40)

If the real part of the eigenvalues is negative, that is (g1n +
g2α)/2 < 0, the fixed point is stable; in this case the cluster
distribution relaxes to the steady state nk . In the opposite case
of the positive real part, (g1n + g2α)/2 > 0, the fixed point is
linearly unstable and the oscillations grow and are eventually
stabilized by nonlinear terms.

The coefficients bi are unknown, so we cannot locate
the fixed point (n(0)

1 ,α0). Numerically we observe that the
coefficients bi are of the order of 1; the location of the
fixed point corresponds to n

(0)
1 = O(λ) with α0 in the interval

1 < α0 < 1.5. Variation of {bi} leads to the variation of n
(0)
1

and α0. Hence to simplify the qualitative analysis we directly
vary n

(0)
1 and α0, keeping {bi} fixed; we analyze the sign of D

and g1n + g2α in the according domain, 0.1λ � n
(0)
1 � 10λ and

1 < α0 < 1.5 for different λ. The results are shown in Fig. 11.
Figure 11 demonstrates that for λ = 0.0001 there is a

large area in the domain of the (α0,n
(0)
1 ) plane where steady

oscillations may be observed. These may be either linearly
stable oscillations or the growing ones, stabilized by nonlinear
terms. For relatively large λ = 0.1, the steady oscillations
may arise only in a tiny part of the (α0,n

(0)
1 ) plane. This

corresponds to the kinetic regimes observed for the full set
of aggregation-fragmentation equations: the emergence of the
oscillations for small values of λ and their absence for large λ.

We also note that the average slope of the concentration
distribution, α0, is located within the interval 1.05 � α0 �
1.45, see Fig. 11, with the median of 1.25. This is consistent
with the slope of the averaged over oscillations distribution
〈nk〉osc depicted in Fig. 6.

C. Concentration oscillations in thermodynamically
closed systems

As noted above, the time-independent rates Kij and Fij =
λKij imply a steady supply of energy. This follows generally
from the second law of thermodynamics, which excludes
steady cyclic processes without energy supply and may be
illustrated for a particular microscopic mechanism of a ballistic
aggregation and shattering; this happens in planetary rings or
atmospheric processes. Indeed, the conservation of momentum
of coalescing particles dictates a withdrawal of a part of their
kinetic energy, associated with the relative motion. This energy
is transmitted either to the internal degrees of freedom of
the particles (as in planetary rings), or to the surrounding
gas (as in atmospheric processes). Similarly, the total kinetic
energy of fragments is smaller than the initial kinetic energy
of the colliding aggregates, since part of the energy is spent
to break interfragment bonds. Hence, both aggregation and
fragmentation processes lead to a gradual reduction of the total
kinetic energy of the system. This causes a slowdown of both
processes, and the respective decrease of the rate coefficients.
Here we consider thermodynamically closed systems, where
the energy supply is lacking. Namely, we consider systems of
particles that suffer ballistic aggregation and fragmentation.
We chose such systems since the corresponding microscopic
rates Kij and Fij are available [10,13,16]; see the Appendix.

Physically, the decay of kinetic energy causes a perma-
nent decrease of collision frequency and the according de-
crease of the kinetic rates. Moreover, the fragmentation rates
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FIG. 11. Kinetic regimes for different location of the fixed point, (α0, n(0)
1 ), as it follows from Eqs. (39) and (40) for λ = 0.0001 (left panels)

and λ = 0.1 (right panels) and the coefficients b−1 = 2, b0 = 0.5, b1 = 1, b2 = 1 (a),(b) and b−1 = 0.25, b0 = 0.5, b1 = 1, b2 = 1 (c),(d). For
the negative determinant (D < 0) the oscillations emerge. The stability of the oscillations is determined by the sign of g1n + g2α . Note that for
large λ = 0.1 (right panels) stable oscillation, both linearly stable and linearly unstable (with the nonlinear stabilization), may arise in a very
small area of the parametric space, while for small λ = 0.0001 (left panels) the according domain is rather large.

additionally decrease, since the fraction of fast particles, which
cause shattering, also drops down. Referring for detail to the
Appendix, we present here the equations for aggregation and
shattering for thermodynamically closed systems:

dn1

dt
= −n1

∞∑
i=1

K1,ini + λ

2

∞∑
i=2

∞∑
j=2

(i + j )Ki,jninj

+ λn1

∞∑
j=2

jK1,j nj , (41)

dnk

dt
= 1

2

k−1∑
i=1

Ki,k−inink−i −(1 + λ)nk

∞∑
i=1

Kk,ini (42)

λ = exp[−A(1 + Bt)b]. (43)

Kij in the above Eqs. (41) and (42), are defined by Eq. (5). Time
is measured in collision units, τ−1

c = 2
√

2πσ 2n1,0
√

T (t)/m,
where σ , m, and n1,0 are respectively the diameter, mass, and
initial concentration of monomers and T (t) is the characteristic
temperature. The concentration of aggregates is measured
in units of the initial concentration of monomers, n1,0. The
constants A, B, and b in Eq. (43) are expressed respec-
tively in terms of the characteristic fragmentation energy and

temperature decay rate (see the Appendix for the detail). Note
that while λ is constant in Eqs. (3) and (4), it decays with time
in Eqs. (41) and (42).

The results of numerical solution of Eqs. (41)–(43) is
presented in Fig. 12. As may be seen from the figure the persis-
tent concentration oscillations emerge in thermodynamically
closed systems. Since the time for the depicted oscillations is
measured in the collision units, one concludes that the period
of these oscillations steadily increases with time; this is also
visible in the collision time scale. As one can see from Fig. 12,
in thermodynamically closed systems there exists a regime
when the oscillations first decay and then again grow.

IV. CONCLUSIONS

We have studied numerically and analytically a class
of aggregation-fragmentation models with a conservation of
mass, which lack source and sinks of particles. It is described
by the infinite set of Smoluchowski-like equations with the
homogeneous aggregation and fragmentation kernels which
respectively read Ki,j = iνjμ + jνiμ and Fi,j = λKi,j , where
the parameter λ quantifies the intensity of fragmentation. We
consider the case of a complete decomposition (shattering) of
colliding aggregates into monomers. This model and a similar
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FIG. 12. Concentration oscillation in thermodynamically closed
systems with aggregation and shattering. Time is measured in colli-
sion units, which keeps the aggregation rates Ki,j = (i/j )a + (j/i)a

with a = 0.98, steady, but corresponds to slowing down in the
laboratory time. The shattering coefficient λ = λ(t) = e−A(1+Bt)0.2

decreases with time according to Eq. (43) with b = 0.2 and different
coefficients A and B. The persistent oscillations are clearly visible.

model, with a source of monomers and evaporation (instead
of shattering) of large clusters has been studied recently in
[17,18]. For the kernels with θ = ν − μ < 1 we obtain an
analytical solution for the steady-state size distribution of
the aggregates nk and confirm numerically the relaxation of
the size distribution to this steady-state form. For kernels
with θ = ν − μ > 1, we observe that the dynamic of the
system dramatically depends on the value of the fragmentation
constant λ. While for λ < λc the system relaxes to a steady state
through damped oscillations of concentrations, for λ � λc no
steady-state distribution of the cluster size has been detected.

The emergence of stable oscillations in a closed system
of aggregating and fragmenting particles, that lacks any sinks
and sources of mass, and formally corresponds to an infinite
number of species, is surprising. Persistent oscillations have
been detected not only for systems closed with respect to the
total mass, but also for thermodynamically closed systems,
when the notion “thermodynamics” is meaningful. In Ref. [27]
stable oscillations have been detected numerically for Smolu-
chowski equations for an open system of reversibly aggregating
particles (without fragmentation) with a source of monomers
and sink of large clusters, which makes the system finite. For a
small closed system comprising monomer, dimers, trimers, and
exited monomers, stable oscillations of concentrations have
been also reported [28]. Similarly, steady chemical oscillations
have been found in a simple dimerization model (see, e.g., [29]
and references therein).

Our findings may help one to understand various phenom-
ena observed in the systems with aggregation and fragmen-
tation, in particular the periodic formation and destruction of
clumps in F Ring of Saturn [41], where particles of different
mass suffer aggregative and disruptive impacts, presumably
under the mass conservation condition. A complete under-
standing of this phenomenon is presently lacking.
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APPENDIX

General expressions for the aggregation and fragmentation
rates for a system of ballistically moving particles (molecules,
macroscopic grains, etc.) that suffer pairwise collisions have
been reported in Refs. [10,13]. These read in the present
notations

Kij = νij [1 − (1 + Bij Ẽagg)e−Bij Ẽagg ],

Fij = νij e
−Bij Efrag ,

νij = 2
√

2πσ 2
ij

√
Ti

mi

+ Tj

mj

, (A1)

Bij = m−1
i + m−1

j

Ti/mi + Tj/mj

,

where Ti are partial temperatures of aggregates of size i,
and mass mi = m1i (m1 is the mass of monomer), that
characterizes the average kinetic energy of such aggregates
[10,13,16]. Eagg and Efrag are respectively the aggregation
and fragmentation energy, Ẽagg = Eagg/ε

2, where ε is the
coefficient of normal restitution that characterizes dissipative
losses in the impacts [16]. σij = σ1(i1/D + j 1/D), where σ1 is
monomer diameter and D is the dimension of the aggregates,
which may be fractal. Based on the results of Ref. [42], we
assume that partial temperatures scale as Ti(t) = T (t)iγ , where
T (t) is the characteristic temperature of the gas mixture. (It
may be shown that after a short relaxation time the rate of
change of temperatures of all species is the same,T −1

i dTi/dt =
T −1dT /dt [42].)

It is convenient to recast the above kinetic coefficients into
the form

Kij = τ−1
0 (T/T0)1/2n−1

1,0K̃ij ,

K̃ij = (i1/D + j 1/D)2(iγ−1 + jγ−1)1/2, (A2)

Fij = λKij λ ≈ exp [−A (T0/T )],

where n1,0 is the initial concentration of monomers, which we
will use as a unit of concentration, T0 is the initial characteristic
temperature, and

τ−1
0 = 2

√
2πσ 2

0 n1,0(T0/m1)1/2 (A3)

gives the initial characteristic collision frequency. The quantity
A is the effective average ratio of fragmentation and kinetic
energy, A = (Efrag/T0)〈(i−1 + j−1)/(iγ−1 + jγ−1)〉. We also
assume for simplicity that the aggregation energy is large, so
that Bij Ẽagg 	 1.

The dimensionless kernels K̃ij are obtained by a straightfor-
ward solution of the Boltzmann equation [10,13,16]. Here we
apply a standard simplification [1,2] for these kernels, which
allows analytical analysis. It is based on the observation that the
main properties of the solutions to the Smoluchowski equations
depend on two indices β and β1, characterizing the kinetic rates
Kij . The first index quantifies the homogeneity degree of a
kernel, and the second one the size dependence at the maximal
size asymmetry. Namely,

K̃ai,aj ∼ aβK̃ij ; K̃1,j ∼ jβ1 for i,j 	 1.
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For the kernels

K̃ij = iνjμ + iμjν

introduced in Eq. (5), one has β = ν + μ and β1 = max(ν,μ).
Hence, Eqs. (A2) show that the indices ν and μ are related to
the physical parameters D and γ as (ν,μ) = (2/D,(γ − 1)/2)
for γ < 1 and (ν,μ) = (2/D + (γ − 1)/2,0) for γ > 1.

Next, we derive the equation for the characteristic temper-
ature T (t). This may be done using the approach of Ref. [16],
which yields

d

dt
NT = −

∑
ij

Qij (T )ninj +
∑

i

�ini . (A4)

Here Qij (T ) are temperature-dependent rate coefficients and
�i describes the energy input to the system due to the inter-
action of the aggregates of size i with the external sources of
energy (see also [42]). Here we do not need explicit expressions
for these quantities. We just state that the presence of the energy
sources �i in Eq. (A4) yields the solutions with a constant
temperature T = const., corresponding to the systems with
time-independent rates Kij and Fij . For thermodynamically
closed systems, the temperature commonly decreases with
time (see the discussion in Ref. [16]).

The solutions of the coupled Smoluchowski-like equations
(A2) and (A4) for concentrations and temperature is beyond

the scope of the present study. For the qualitative analysis, we
assume a power-law decay of the characteristic temperature
with time, T = T0(1 + t/τ0)−δ; such assumption is justified
by the results of Ref. [16]. The value of δ depends on the
parameters of the system and may vary in a wide interval
[16]. Using the collision frequency, τ−1

c (t) = τ−1
0 [T (t)/T0]1/2

at the current time t , we introduce a new dimensionless time t̃ ,
measured in collision units. It is related to the laboratory time
as τ−1

c (t)dt = dt̃ . The dependence of temperature on the new
time then reads

T/T0 = [1 + Bt̃ ]−b, (A5)

where b = 2δ/(2 − δ) and B is a constant. The kinetic rates
may be also expressed in terms of the collision-based time t̃ :

Kij = τ−1
c (t̃ )n−1

1,0K̃ij , (A6)

λ = exp[−A(1 + Bt̃ )b]. (A7)

In our simulations we choose b = 0.2 (which corresponds to
δ = 2/11).

Substituting the rates Kij and coefficient λ from Eqs. (A6)
and (A7) into Eqs. (3) and (4), we arrive at Eqs. (41)–(43),
where time is measured in the collision units and concentra-
tions in the units of initial concentration of monomers. For
simplicity we use in these equations the same notations as in
Eqs. (3) and (4).
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