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Spiking Neural Networks through Winner-Take-All
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Abstract—Hidden Markov Models (HMMs) underpin the solu-
tion to many problems in computational neuroscience. However,
it is still unclear how to implement inference of HMMs with a
network of neurons in the brain. The existing methods suffer
from the problem of being non-spiking and inaccurate. Here
we build a precise equivalence between the inference equation of
HMMs with time-invariant hidden variables and the dynamics of
spiking winner-take-all (WTA) neural networks. We show that
the membrane potential of each spiking neuron in the WTA
circuit encodes the logarithm of the posterior probability of the
hidden variable in each state, and the firing rate of each neuron is
proportional to the posterior probability of the HMMs. We prove
that the time course of neural firing rate can implement posterior
inference of HMMs. Theoretical analysis and experimental results
show that the proposed WTA circuit can get accurate inference
results of HMMs.

Index Terms—Hidden Markov models, Winner-take-all cir-
cuits, spiking neural network, posterior inference, neural im-
plementation

I. INTRODUCTION

H IDDEN Markov models (HMMs) are a kind of dy-
namic probabilistic graphical model [1], which have

been widely used in computational neuroscience [2], [3], [4],
[5], [6], computational biology [7], [8], statistical physics
[9], [10] and machine learning [11], [12], [13], [14]. In
computational neuroscience, HMMs are used to detect hidden
regularities with sequential sensory inputs. In particular, they
have been proved extremely useful in modeling inference and
decision making in the cognitive process of the human brain
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when the state of the hidden variable is time–invariant [15].
Despite its accurate and powerful computing performance with
experimental data, it remains an open question how a network
of spiking neurons can implement probabilistic inference of
HMMs at the neural circuit level. This problem is of great
importance to brain science and artificial intelligence. On the
one hand, it can build the bridge between the process of
inference and decision making of the human brain at high
level and the dynamics of spiking neural networks at low level.
One the other hand, one can build the machine that is able to
perform inference and make decision like the human brain
with these mechanisms.

Various schemes of neural networks have been proposed
over the last 15 years to tackle the problem above. Rao [3] built
the relationship between the dynamic equation of recurrent
neural networks and the inference equation of HMMs, and
suggested that the dynamic process of a recurrent neural net-
work is a process of probabilistic inference. However, since the
two equations are not exactly equivalent, a sum-of-logs is used
to approximate a log-sum, which leads to inaccurate inference
results. Beck and Pouget [16] took a further step and built a
precise relationship between the inference equation of HMMs
and the dynamic equation of a first-order quadratic nonlinear
recurrent network. Both methods only focus on non-spiking
neural networks while the spike in neuron is the key for
computation [17], [18], [19]. Recently some researchers have
considered biophysically plausible spike-based networks. For
example, Deneve [20] demonstrated that each leaky integrate-
and-fire neuron can compute the probability of one hidden
variable of HMMs, but it was limited to a binary variable. In
summary, most of the previous studies suffer from the problem
of being non-spiking, and the existing spiking neural network
cannot obtain accurate solution.

In this paper, by focusing on HMMs with time-invariant
hidden variables, we found that there is a precise equivalence
between their inference equations and the dynamical equations
of spiking neurons when the underlying circuit is organized
by a winner-take-all (WTA) fashion. Typically, there are two
coupled operations during each update of the inference process
of HMMs, namely evidence accumulation and normalization,
in which the result of normalization in each step serves
as the past evidence for the next step. However, we found
a WTA spiking neural network with self-connections can
naturally decouple these two operations while keeping the
precise inference of HMMs. We proved that the inference
result of the HMM remains unchanged if the normalization
of posterior probabilities is carried out only at the last step
instead of each step during evidence accumulation. Based
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Fig. 1. The scheme of a general hidden Markov model. xi are hidden variables
and yi are observation variables (i = 1, 2, ..., t). Here we consider a special
case of HMM with time-invariant hidden variables, i.e., x1 = x2 = ... = xt.

on this theory, we can decompose the corresponding neural
circuits into two parts: one for updating the posterior with
new evidence, and the other for computing the normalization
of the distribution.

Furthermore, we showed that the membrane potential of
each spiking neuron in the WTA circuit encodes the logarithm
of posterior probability of the hidden variable in each state,
and the neural firing rate is proportional to the posterior
probability of HMM. In addition, we proved that the time
course of neural firing rate can implement posterior inference
of HMMs. Experimental results with simulation demonstrate
that the proposed WTA network can get accurate inference
results of HMMs.

The rest of the paper is organized as follows. Section II
derives the inference equation of HMMs. In section III we
introduce WTA neural network with self-connections and show
how it can implement inference of HMMs. We show the
experimental results in section IV and conclude in section V.

II. INFERENCE OF HIDDEN MARKOV MODELS

HMMs are a kind of directed graphical model [21], [22]
composed of a hidden variable sequence X = {x1, x2, ..., xt}
and an observation variable sequence Y = {y1, y2, ..., yt} [21]
(shown in Fig. 1). The hidden variable sequence X is a first-
order Markov chain, and each observation variable yt is only
governed by the corresponding hidden variable xt through
conditional probability p(yt|xt). Thus, the joint distribution of
a HMM in Fig. 1 can be written as a product of conditional
distributions:

p(x1, x2, ..., xt, y1, y2, ..., yt)

= p(x1)
[∏t

n=2 p(xn|xn−1)
]∏t

n=1 p(yn|xn).
(1)

In this paper, we consider the HMMs with time-invariant
hidden variables, that is, x1 = x2 = ... = xt. This means
the values for the hidden variables will be the same no matter
what time they are observed. This model is important to many
inference and decision making problems [23], [24], [25] since
in many cases we have the prior knowledge where the state of
the environment doesn’t change or changes very slowly with
respect to time [15].

The inference problem is to infer the most probable state
of the hidden variable at time t with the observations from 1
to t, that is,

arg maxxt
p(xt | y1, y2, ..., yt)

= arg maxxt

∑
x1,x2,...,xt−1

p(x1, x2, ..., xt | y1, y2, ..., yt).
(2)

Equation (2) can be calculated by computing the posterior
distribution p(xt | y1, y2, ..., yt) and then choosing the state of

xt with maximum probability. In order to implement inference
of HMMs with spiking neural networks, a direct idea is to
rewrite equation (2) into a dynamic equation and then build the
relationship between this equation and the dynamic equation
of spiking neural networks. In fact, we can use a difference
equation to implement inference of equation (2), and we have
the following theorem:

Theorem 1: Supposing that F (x0 = xi) = ln p(x1 = xi)1,
and

F (xt = xi) = ln p(yt|xt = xi) + F (xt−1 = xi)− ln Zt
(3)

holds for t ≥ 1, with F (xt) denoting a function of xt,
xt = xi denoting that random variable xt is in state xi,
and Zt being the normalizing constant of exp(F (xt)) to keep∑
i exp(F (xt = xi)) = 1, that is, Zt =

∑
i p(yt|xt =

xi) exp(F (xt−1 = xi)), then we conclude that for t ≥ 1:

F (xt) = ln p(xt|y1, y2, ..., yt), (4)

and

arg max
xt

eF (xt) = arg max
xt

p(xt | y1, y2, ..., yt). (5)

The proof of Theorem 1 (with all other theorems) is provided
in Supplemental Materials. Theorem 1 shows that we can
use a difference equation to compute the posterior distri-
bution ln p(xt|y1, y2, ..., yt). To be specific, supposing that
F (x0 = xi) = ln p(x1 = xi), it follows from equation (3)
that ln p(x1|y1) can be computed as F (x1). Likewise, then
we can compute ln p(x2|y1, y2) with equation (3), and so on.
Note that there exist two operations in equation (3): evidence
accumulation as

F (xt = xi) = ln p(yt|xt = xi) + F (xt−1 = xi), (6)

and normalization as

F (xt = xi) = F (xt = xi)− lnZt. (7)

The result of normalization in each step serves as the past
evidence for the next step. This means the computations of
evidence accumulation and normalization are coupled to each
other. This coupling is a challenge for graphical models as well
as computational neuroscience, since it is difficult to design
a spiking neural circuit to implement accurate inference of
HMMs with the coupled equations.

Here we show in the following theorem that the operations
of evidence accumulation and normalization can be decoupled.
The distribution eF (xt), namely, p(xt|y1, y2, ..., yt) is left
unchanged if the operation of normalization is carried out at
the last step instead of each step.

Theorem 2. Supposing that G(x0 = xi) = F (x0 = xi) =
ln p(x1 = xi) and

G(xt) = ln p(yt|xt) +G(xt−1) (8)

holds for t ≥ 1, then we conclude that the normalization of
eG(xt) equals the distribution p(xt|y1, y2, ..., yt), that is,

eG(xt) ∝ p(xt|y1, y2, ..., yt), (t ≥ 1). (9)

1Note that the hidden variable sequence of the HMM is X =
{x1, x2, ..., xt} while the variable sequence of the function F (.) is
x0, x1, x2, ..., xt. Here x0 can be seen as an auxiliary variable.



IEEE TRANSACTIONS ON CYBERNETICS 3

Combing equation (9) and equation (4), one can find that
the normalization of eG(xt) is the same as the normalization
of eF (xt). Now we can conclude that even if the operation
of normalization is carried out at the last step instead of
each step, the distribution of eF (xt) is unchanged. Thus, we
can use the difference equation (8) and the initial condition
G(x0 = xi) = ln p(x1 = xi) to implement posterior
inference, and we have 1

Zt
eG(xt) = p(xt | y1, y2, ..., yt), where

the normalization constant becomes Zt =
∑
xt
eG(xt). The

benefit of this theorem is that we can decouple the operation
of evidence accumulation and normalization, specifically, the
result of normalization in current step doesn’t need to be
the input of the next step. Thus, when we design the cor-
responding spiking neural network to implement inference of
HMMs, we can separate the neural network into two parts:
one for updating the posterior with new evidence, that is,
G(xt) = ln p(yt|xt) + G(xt−1), and the other for computing
the normalization of the posterior distribution eG(xt). The
problem now is whether there exists a plausible spiking neural
circuit that can implement these computations of HMMs.

III. EMERGENT INFERENCE IN SPIKING NEURAL NETWORK
THROUGH WINNER-TAKE-ALL

In this section, we show that a spiking neural network of
WTA circuit with self-connections can naturally implement
inference of HMMs. The membrane potential of spiking
neurons in WTA circuits with self-connections can accumulate
evidence, namely, update the posterior with new evidence. The
competitive mechanism of WTA circuits can normalize the
firing rate of each neuron.

We first introduce spiking neural networks and WTA cir-
cuits, and then derive the dynamic equations of a spiking
neural network of WTA circuit with self-connections. At
last we demonstrate that inference of HMMs can be easily
implemented by this spiking neural network.

A. Spiking neural network

Spiking neural networks are thought as the third gener-
ation of artificial neural network models, which is closer
to biological neurons in the brain [26]. In a spiking neural
network, each neuron can receive current from other neurons
and the membrane potential of which will change. When
the membrane potential exceeds a threshold value, an output
signal, which is called a spike (or an action potential), will
be generated and be delivered to other neurons. Together with
neuronal and synaptic state, spike timing is also considered in
spiking neural networks model.

Here we consider a network of K spiking neurons
z1, . . . , zK and denote the output spike train of neuron zk
by zk(t) defined as a sum of Dirac delta pulses positioned
at the spike times t(1)k , t

(2)
k , . . . , i.e., zk(t) =

∑
f δ(t − t

(f)
k ),

where f = 1, 2, .... It means zk(t) = 1 if neuron zk spikes at
time t = t

(f)
k and zk(t) = 0 otherwise. Neurons z1, . . . , zK are

modeled by a standard stochastic variant of the spike response
model [27], which is a generalization of leaky integrate-and-

Fig. 2. A scheme of a WTA spiking neuronal circuit with self-connections.
There are K output excitatory neurons (blue) and one inhibitory neuron
(pick). The temporal sequences of observation variables of HMM are fed by
efferent neurons (green). In the end, the hidden state variable of HMM will
be represented by one of output neurons due to the competition mechanism
of WTA when evidence is cumulated over time.

fire neuron. In this model, the membrane potential of a neuron
zk at time t is given by:

uk(t) =
∑
f

η(t− t(f)k ) +

∫ ∞
0

κ(s)Ik(t− s)ds+ urestk , (10)

where Ik(t) denotes the time-dependent current of neuron k at
time t, and urestk is the rest potential of neuron zk. η(t− t(f)k )
is the kernel that describes the reset of the membrane potential
of neuron zk after the spike at t(f)k . κ(s) represents the voltage
response to a short current pulse. In this paper, we use standard
exponential kernels η(t− t(f)k ) and κ(s):

η(t− t(f)k ) = −η0 exp

(
−
t− t(f)k

τ

)
, (11)

κ(s) = ε0 exp
(
− s
τ

)
, (12)

with the reset potential η0 = 5 mV, the membrane time
constant τ = 20 ms, and the voltage response amplitude as
ε0 = 5 mV. The parameters set here are similar to that of
[28]. Here we consider the escape noise model of spiking
neurons, which replaces the strict firing threshold by a noisy
threshold [27]. This means that a neuron can fire stochastically.
To be specific, the instantaneous firing rate (firing intensity) of
neuron zk is supposed to be stochastic, which is often modeled
by an exponential function [29]:

ρk(t) = ρ exp(uk(t)− θ), (13)

with θ representing the firing threshold and ρ scales the firing
rate of the neuron. It has been shown by experiments that
this model is in good agreement with real neurons [30]. One
can find that the instantaneous firing rate (firing intensity)
increases as the distance between membrane potential and
firing threshold decreases.

B. Winner-take-all circuit

WTA circuit has been suggested as a ubiquitous motif of
cortical microcircuits [31], which is widely used to implement
normalization [32], visual attention [33] and classification
[34]. We consider a WTA circuit of K output spiking neurons
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(blue triangles) z1, . . . , zK and an inhibitory neuron (pink
circle) as in Fig. 2. The output spiking neurons z1, . . . , zK
mutually inhibit each other through the inhibitory neuron.
Thus, all the neurons in the output layer are in competition
against each other so that they cannot fire simultaneously.

In this paper, we consider the WTA model used in [2], [35],
where all neurons are allowed to fire with non-zero probability.
Considering all the neurons in WTA circuit are subject to the
same lateral inhibition 2 [2], the instantaneous firing rate (firing
intensity) of neuron zk in WTA circuit at time t is determined
by [2]:

ρk(t) =
ρ

Q(t)
exp(uk(t)− θ), (14)

where ρ scales the firing rate of neurons. Q(t) represents the
lateral inhibition between the neurons in the WTA circuit,
which is defined as:

Q(t) =
∑
k

exp(uk(t)− θ). (15)

Substituting equation (15) into (14) obtains:

ρk(t) =
ρ∑

k exp(uk(t)− θ)
exp(uk(t)− θ) (16)

= ρ
exp(uk(t))∑
k exp(uk(t))

.

This WTA circuit works like a soft-max function. At each
time, all neurons can fire with non-zero probability, but the
neuron with the highest membrane potential has the highest
firing probability.

C. Implement inference with spiking neural network

In this subsection we demonstrate that the dynamics of
spiking neural network of WTA circuits with self-connections
can naturally implement inference of HMMs. We show how
the spiking neurons in WTA circuits with self-connections
can update the posterior probabilities with new evidence in
Theorem 3 and how the competitive mechanism of WTA
circuit can normalize the posterior distribution in Theorem 4.

In the WTA circuit with self-connections in Fig. 2, the time-
dependent current to the network includes two parts: external
afferent current Iextk (t) to the network and internal current
Iintk (t) =

∑
f δ(t − t

(f)
k ) from itself by the self-connections.

Thus, equation (10) can be rewritten as:

uk(t) = urestk +
∑
f

η(t− t(f)k )

+

∫ ∞
0

κ(s)
(
Iextk (t− s) + Iintk (t− s)

)
ds.

= urestk +
∑
f

η(t− t(f)k )

+

∫ ∞
0

κ(s)

Iextk (t− s) +
∑
f

δ(t− s− t(f)k )

 ds.

(17)

2lateral inhibition is the capacity of an excited neuron to reduce the activity
of its neighborhood neurons.

Then, equation (17) can be reduced to:

uk(t) = urestk +
∑
f

η(t− t(f)k )

+

∫ ∞
0

κ(s)

Iextk (t− s) +
∑
f

δ(t− s− t(f)k )

 ds

(18)

= urestk +

∫ ∞
0

η(s)
∑
f

δ(t− s− t(f)k )ds

+

∫ ∞
0

κ(s)

Iextk (t− s) +
∑
f

δ(t− s− t(f)k )

 ds

=

∫ ∞
0

κ(s)Iextk (t− s)ds+ urestk

=

∫ t

−∞
κ(t− s)Iextk (s)ds+ urestk

The second equality holds as
∑
f η(t − tfk) =∫∞

0
η(s)

∑
f δ(t − s − t

(f)
k )ds. The third equality holds

due to the definition η(s) = −κ(s) in Section III-A. Note that
an ideal model of spiking neurons is assumed here where the
internal currents from self-connections do not lag behind the
spike response. We show in the following theorem that the
membrane potential of spiking neurons in WTA circuit with
self-connections can accumulate afferent current. In other
words, if the afferent current encode some variable, then the
membrane potential of spiking neurons can compute the sums
of a sequence.

Theorem 3. Considering the spiking neural network shown
in Fig. 2, the rest potential urestk ≤ 0, and the external

current Iextk (t) =
∑
j
Ijk
ε0τ

Θ(t − Tj) (j = 1, 2, 3...), where Ijk
represents the jth constant current to neuron zk and Ijk ≤ 0,
Tj represents the arriving time of jth current Ijk, Θ(·) denotes
the Heaviside step function, i.e. Θ(x) = 1 for x ≥ 0 and 0
otherwise. The voltage response amplitude ε0 and membrane
time constant τ are defined similar to equation (12). Then for
arbitrary m ≥ 1, if Tm+1−Tm ≥ 3τ holds, we conclude that:∣∣∣∣∣∣

uk(Tm+1)−
(
urestk +

∑m
j=1 I

j
k

)
urestk +

∑m
j=1 I

j
k

∣∣∣∣∣∣ < 0.05 (19)

holds for all k, and:

lim
Tm+1−Tm→+∞

uk(Tm+1) = urestk +

m∑
j=1

Ijk. (20)

Theorem 3 shows that if the time interval Tm+1−Tm is large
enough, uk(Tm+1) can approximate the sums of a sequence,
that is, uk(Tm+1) = urestk +

∑m
j=1 I

j
k. In fact, if Tm+1−Tm ≥

3τ holds for m = 0, 1, 2, ..., this result can also be rewritten
as:

uk(T0) = urestk (21)
uk(Tm+1) = uk(Tm) + Imk (m = 0, 1, 2, ...).
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One can find that equation (21) is similar to inference equation
(8). Thus if WTA circuit receive appropriate external current,
the spiking neurons in WTA circuit with self-connections can
accumulate evidence. The problem now is to determine the ap-
propriate input current and demonstrate that this spiking neural
network can also implement normalization of the distribution.
We have the following theorem.

Theorem 4. Consider the spiking neural network shown
in Fig. 2, the rest potential urestk ≤ 0, and the external

current Iextk (t) =
∑
j
Ijk
ε0τ

Θ(t − Tj) (j = 1, 2, 3...), where
Ijk = ln p(yj |xj = xk), Tj represents the arriving time of
jth current Ijk, Θ(·) denotes the Heaviside step function, i.e.
Θ(x) = 1 for x ≥ 0 and 0 otherwise. Then for arbitrary
t ≥ 1, if urestk = ln p(x1 = xk), Tt+1 − Tt ≥ 3τ holds, we
can conclude that:

uk(Tt+1) = bt ln p(xt = xk| y1, y2, ..., yt), (22)

with bt denoting a constant (bt 6= 0), and

ρk(Tt+1) = ρ p(xt = xk|y1, y2, ..., yt). (23)

Corollary 1. Consider the spiking neural network shown
in Fig. 2, the rest potential urestk ≤ 0, and the external

current Iextk (t) =
∑
j
Ijk
ε0τ

Θ(t − Tj) (j = 1, 2, 3...), where
Ijk = ln p(yj |xj = xk), Tj represents the arriving time of
jth current Ijk, Θ(·) denotes the Heaviside step function, i.e.
Θ(x) = 1 for x ≥ 0 and 0 otherwise. T is defined as the
minimum time interval, namely T = mint {Tt+1 − Tt}. Then
for all t ≥ 1, if urestk = ln p(x1 = xk), T ≥ 3τ holds, we can
conclude that:

uk(Tt+1) = bt ln p(xt = xk| y1, y2, ..., yt), (24)

with bt denoting a constant (bt 6= 0), and

ρk(Tt+1) = ρ p(xt = xk|y1, y2, ..., yt). (25)

It is easy to prove with theorem 4.
Theorem 4 and Corollary 1 build the relationship between

the dynamics of WTA circuit and the inference equations of
HMMs. When the new observation yt of the HMM comes,
an external current of Ik = 1

ε0τ
ln p(yt|xt = xk) is added to

the input current of neuron zk in WTA circuit at time Tt. The
membrane potential of each spiking neuron in WTA circuit
encodes the logarithm of posterior probability of the hidden
variable being in each state (see equation (22)), and the firing
rate of each neuron is proportional to the posterior probability
of hidden variable in each state (see equation (23)). Moreover,
the time course of neural firing rate can implement posterior
inference of HMMs. One can read out the inference result
by counting spikes from each neuron within a behaviorally
relevant time window of a few hundred milliseconds, which
is similar to the experimental results of monkey cortex [36],
[37].

It is worthwhile to note that for arbitrary t, equation (22)
and (23) hold only on the condition that Tt+1 − Tt is large
enough, which has nothing to do with T1, T2, .., Tt. Thus, if we
want to conduct inference of HMM at time t, i.e. to calculate
p(xt|y1, y2, ..., yt), we only need to start from Tt, then wait
some time to make Tt+1−Tt ≥ 3τ and read out the inference
result.

IV. EXPERIMENTS

In this section, we conduct a series of experiments to
validate the proposed spiking neural network. Firstly, we gen-
erate data to compare the performance of our spiking neural
network with that of belief propagation (optimal solution).
Then we move on to demonstrate the convergence of our
method by extending the time interval between two evidences.
The robustness and applicability of the method to different
settings of parameters are provided in Supplemental Materials.
At last we scale up the spiking neural network to solve a
biologically more realistic task.

A. Testing on the accuracy of our method

We use the data generated from a five-state HMM. The
initial distribution p(x1) is created by randomly generating
five numbers from a uniform distribution on [0, 1] and then
normalizing them. As the hidden state doesn’t change with
respect to time, the transition matrix A is set to the identity
matrix. With initial distribution p(x1) and transition matrix A,
it is convenient to generate the hidden variables x1, x2, ..., xm.
The observation data yi(i = 1, 2, ...,m) is chosen from a
Gaussian distribution with mean value being xi and variance
being 1. We set m = 8 in the following experiments.

A spiking neural network of WTA circuit with self-
connections is used to implement inference of the HMM that
is generated with the method above. Here we test the accuracy
of our method. Fig. 3a shows how the external current changes
with respect to time. The input current for all neurons remains
zero before the first evidence y1 of the HMM comes. Every
150 ms an external current of Ik = 1

ε0τ
ln p(yi|xi = xk)

(i = 1, 2, ..., 8, k = 1, 2, ..., 5) is added to the input current of
neuron k to indicate the new evidence yi. Note that here we
use different colors to denote the currents to different neurons.

The input current will change the membrane potential and
the firing activities of the five neurons (shown at the top of
Fig. 3b). At the beginning all the neurons can fire. After 700
ms, only neurons 2 and 3 can fire, which indicates that through
recurrent accumulation of evidence over time, the state of the
hidden variable is most likely to be 2 or 3. At the bottom of
Fig. 3b we show the total firing rates of each neuron in the
windows of 100 ms (shaded area of Fig. 3b) before each new
input current. Note that here we only show four examples. One
can find that the firing rate of neuron 3 increases with respect
to time and is always larger than that of the other four neurons,
which also implies that the state of the hidden variable is most
likely to be 3.

In Figs. 3c–3g, we compare the normalized firing rates of
spiking neurons (averaged over 500 trials) during inference
with the posterior probabilities computed by belief propagation
(BP) [38], a commonly used algorithm in machine learning
that can get accurate inference results for HMMs [1]. One can
find that the spiking neural network can get comparable results
as that of BP, which indicates the accuracy of our methods.

B. Testing on the convergence of our method

In Theorem 3 and 4, we proved that our method can
converge to the accurate solution as the interval time between
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Fig. 3. (a) The external input currents of the five neurons in WTA circuit change with respect to time. Every 150 ms, a new current is added to the input
current of each neuron due to the coming of the new evidence of HMM. (b) Top: the firing activities of 5 neurons during inference. Bottom: The total firing
rates of different neurons in the windows of 100 ms (shaded area). (c)–(g) Comparison of the normalized firing rate of each spiking neuron (averaged over
500 trials) and accurate inference of HMM with BP.
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Fig. 4. Kullback-Leibler divergence between the distribution of firing probabilities of all neurons in WTA circuit and the distribution of accurate posterior
probability with respect to the interval time. (a) i = 1 represents the inference problem of MM with only one evidence, that is, p(x1 | y1). (b)–(h), the same
as (a), but with more evidences.

two evidences increases to infinity. In this experiment we
verify this conclusion. The interval time between every two
evidences is set as a constant T , ranging from 10 ms to 220 ms.
At the beginning of each new external current, we computed
the Kullback-Leibler (KL) divergence between the distribution
of firing probabilities of all neurons in WTA circuit and
the distribution of accurate posterior probability computed by
BP, that is, KL

(
exp(uk(Ti+1))∑
k exp(uk(Ti+1))

, p(xi | y1, y2, ..., yi)
)

(i =

1, 2, ..., 8). The results are shown in Fig. 4. We found that the
KL divergence decreases as the interval time T increases and
converges exponentially to zero when the interval time tends
to infinity. These results demonstrate that if the interval time
is large enough, our method can implement optimal inference.
Also, we can see that the KL divergences are less than 10−10

if the interval time is larger than 200 ms. This means T = 200
ms is long enough for accurate inference.

C. Cue combination in spiking neural network
Here we investigate whether the spiking neural network can

scale up to biologically more realistic task. To do this, we
applied the spiking neural network to the task of cue com-
bination. Cue combination is fundamental to our perception
[24], which integrates the cues received from multiple sensory
modalities in an optimal way. It has been shown by numerous
experiments that the process of cue combination is the process
of Bayesian inference [39], [40], [41]. We explore whether
such process of cue combination can be obtained through our
spiking neural network. We consider the simple spiking neural
network of WTA circuit with self-connections and currents
received from different cues, where the task is to integrate the
cues from different sensory modalities.

We first considered the two-cue integration problem, which
could be a combination of visual cue and haptic cue. The prob-

lem can be modeled by a Bayesian network shown in Fig 5a,
in which S represents the location of the stimulus, SV and SH
denote visual cue and haptic cue respectively. This Bayesian
network can also be seen as a HMM with time-invariant hidden
variable S, to which the evidences SV and SH are given in
sequence. Similar to [15], [23], the prior distribution p(S) is
supposed to be a uniform distribution, p(SV |S) and p(SH |S)
are Gaussian distributions with means being S and variances
being σ2

SV
and σ2

SH
respectively. The network receives visual

cue and haptic cue in sequence and the problem is to infer
the posterior distribution p(S|SH , SV ). The spiking network
to solve this problem is similar to that in Fig. 2. Here the input
currents are set to Iextk (t) =

I1k
ε0τ

Θ(t−T1)+
I2k
ε0τ

Θ(t−T2) with
I1k = ln p(SV |S) and I2k = ln p(SH |S). The parameters are
set as follows: SV = 55, SH = 65, σ2

SV
= 16 and σ2

SH
= 4.

The interval time between every two evidence is supposed to
be a constant, which is represented by T . Note that variable
S is discretized from 40 to 80 by step 0.5. Thus we need
81 neurons to represent hidden variable S. The results are
shown in Fig. 5b–d. The red curve represents the posterior
distribution p(S|SH , SV ), which is the combination of visual
cue (green curve) and haptic cue (fuchsia). The blue plus signs
are the experimental results of the spiking neural network. One
can find that as the interval time T becomes larger, the result
of spiking neural network tends to be closer to the accurate
curve (red curve). When T = 100, the experimental curve is
almost the same as the accurate curve, which demonstrates the
accuracy of our method.

Next we go a further step and discuss the multi-cue inte-
gration. The problem now is to integrate four cues. Similar to
two-cue integration problem, we can use a Bayesian network
to model it (shown in Fig 5e). Here we use S1, S2, S3 and S4

to represent four different cues. Supposing that the prior distri-



IEEE TRANSACTIONS ON CYBERNETICS 8

Fig. 5. (a) Bayesian model of two-cue integration. (b)–(d) The performance of spiking neural network with respect to the interval time T . (e) Bayesian model
of four-cue integration. (f)–(h) The performance of spiking neural network with respect to the interval time T .

bution p(S) is supposed to be a uniform distribution, p(S1|S),
p(S2|S), p(S3|S) and p(S4|S) are Gaussian distributions with
means being S and variances being σ2

S1
, σ2

S2
, σ2

S3
and σ2

S4

respectively. Then we can use spiking neural network to infer
the posterior distribution of S given S1, S2, S3 and S4, that is,
p(S|S1, S2, S3, S4). The results are shown in Fig. 5f–h, here
S1 = 55, S2 = 65, S3 = 53, S4 = 60, σ2

S1
= 16, σ2

S2
= 4,

σ2
S3

= 64 and σ2
S4

= 36. The red curve is the theoretical result
and the blue plus signs are the experimental results by spiking
neural network. Again, we found that as the interval time T
becomes larger, the blue plus signs tend to be closer to the
accurate curve (red curve). When T = 100, the experimental
curve is almost the same as the accurate curve, which show
the accuracy of our method.

V. CONCLUSION

In this paper, we show that the dynamics of WTA circuit
with self-connections can implement inference of HMM with
time-invariant hidden variables. We prove that the membrane
potential of each spiking neuron in WTA circuit encodes the
logarithm of posterior probability, and the firing intensity of
each spiking neuron encodes posterior probability. Theoretical
analysis and experimental results demonstrate that our method
can get accurate inference result of HMM.

Future work is needed to extend our approach to a more
general case of HMM. A possible way is to implement Viterbi
algorithm with spiking neural networks. Note that the WTA
model used in this paper is a soft WTA model [2], [35], it’s
interesting to see if other WTA models also work [42], [43].
In addition, one also need to find a biologically plausible

way to learn the parameters of HMM. Besides, our present
results have suggested to take WTA circuit as the basic unit
of computation, which is consistent with previous studies that
propose to represent probability distribution with a population
of neurons [44], [45], [46]. However, how to implement large-
scale Bayesian inference by composition of the basic units of
neural circuit is another important yet elusive problem.
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