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a b s t r a c t 

This paper investigates trends in asthma and COPD by using multiple data sources to help 

understanding the relationships between disease prevalence, morbidity and mortality. GP 

drug prescriptions, hospital admissions, and deaths are analysed at clinical commission- 

ing group (CCG) level in England from August 2010 to March 2011. A Bayesian hierarchical 

model is used for the analysis, which takes into account the complex space and time de- 

pendencies of asthma and COPD, while it is also able to detect unusual areas. Main find- 

ings show important discrepancies across the different data sources, reflecting the different 

groups of patients that are represented. In addition, the detection mechanism that is pro- 

vided by the model, together with inference on the spatial, and temporal variation, provide 

a better picture of the respiratory health problem. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ). 
1. Introduction 

Asthma and chronic obstructive pulmonary disease 

(COPD) are the most common chronic respiratory con- 

ditions worldwide, contributing to heavy social and eco- 

nomic burden ( World Health Organization, 2012 ). 

The number of people suffering from asthma in 2014 

was estimated to be 334 million around the world ( World 

Health Organization, 2014 ) and this number is projected to 

rise to 400 million by 2025. Around 250,0 0 0 deaths per 

year are caused by the disease, with the majority of them 

considered to be preventable ( Masoli et al., 2004 ). COPD 

has a lower prevalence of 64 million people but much 

higher mortality, with 3 million deaths annually, an esti- 

mated 6% of all deaths worldwide. COPD is predicted to 
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become the third leading cause of death by 2030 ( World 

Health Organization, 2014 ). In the UK, asthma affects 1 

in 5 households, and COPD is the fifth leading cause of 

death after cancer and cardiovascular disease ( Masoli et al., 

2004 ). 

Asthma and COPD have similarities in symptoms and 

treatment and there may be considerable overlap between 

these conditions making them difficult to distinguish clin- 

ically ( Drazen et al., 2015 ). Asthma commonly starts in 

childhood and is often allergic in origin, while a large 

proportion of COPD is caused by smoking and the con- 

dition starts in mid to later life. Common symptoms in 

both conditions are shortness of breath and wheeze, with 

worsening of symptoms with respiratory infections, with 

similarities in treatments of bronchodilators, steroids and 

antibiotics for infections. Triggers for exacerbations, the 

major determinants of admissions and possibly deaths are 

likely to be influenced by infectious disease trends and 

by common environmental factors with a spatio-temporal 

structure, such as air pollution ( Eeftens et al., 2012 ). 
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A study of trends of these chronic respiratory diseases

is important, as it allows a better understanding of the

characteristics of the disease, to determine whether health

policies or preventive measures are effective, and to iden-

tify high-risk populations that might require additional

care and treatments. A challenge, however, is the choice of

data to use for asthma and COPD analyses. Studies on mor-

tality ( Sin et al., 2006 ) investigate only the highest degree

of severity and findings may differ from those for hospital

admissions particularly for asthma ( Hansell et al., 2003 ),

which is a more heterogeneous condition. Most studies

have used data from secondary and tertiary care, such as

hospital admissions and emergency care data, but these

will not capture milder cases seen in primary care. It is

estimated that only 20% of asthmatic patients and less

than half of COPD patients suffer from severe symptoms

( Lindebeg et al., 2006 ). 

A useful addition to asthma and COPD research is the

use of General Practice (GP) drug prescription data which

consist in the numbers of items that are prescribed in Eng-

land by GPs and are dispensed anywhere in UK or Europe.

GP drug prescriptions can be very relevant for asthma and

COPD as these are long-term conditions that are controlled

by regular medication. These capture patients of any sever-

ity of the disease, from mild to severe, and hence they can

provide a general picture of the respiratory health of the

population at small area level. Only a few authors have

used GP drug prescriptions to investigate asthma and COPD

trends ( Hansell et al., 2003; Laurent et al., 2009; Naureckas

et al., 2005; Sofianopoulou et al., 2013; Vegni et al., 2005 ).

In addition, the geographical trends of asthma and

COPD have only been studied by a few authors. Hansell

et al. (2003) found COPD mortality, hospital admissions

and GP prescriptions for COPD were higher in urban ar-

eas and northern regions of England, but less clear pat-

terns were seen for asthma in comparisons using age-sex

standardised event ratios. Holt et al. (2011) analysed hospi-

talisations within a Bayesian hierarchical framework, while

other examples include Centers for Disease Control and

Prevention (2008) , Joo et al. (2007) , Lipton and Banerjee

(2006) and Nandram et al. (2000) . Sofianopoulou et al.

(2013) explored geographical patterns of GP drug prescrip-

tions, considering the Newcastle and North Tyneside area

in the UK as a study region. Studies ( Hacking et al., 2011;

Hansell et al., 2003; Wells and Gordon, 2008 ) suggest that

there is a significant difference of morbidity and mortal-

ity within and between regions of the UK over the last

40 years. This needs to be taken into account in order

to both provide reliable statistical estimates, as well as to

help public health policy makers more clearly identify tar-

get areas with great needs and improve disease prevention

and treatment. 

The objective of this study is to investigate trends in

asthma and COPD at the population level across England

by using multiple data sources to help understanding the

relationships between disease prevalence, morbidity and

mortality. We explore spatial and temporal patterns of GP

drug prescriptions, hospital admissions and deaths, and

we evaluate if different behaviours can be seen for differ-

ent data sources which underline different condition sever-

ity. We also focus on the detection of unusual areas, i.e.
characterised by a temporal trend which deviates from

the general one, suggesting the presence of a policy or

an emerged localised factor. In this analysis we combine

information on asthma and COPD, given the similarities

in these conditions, issues distinguishing between them

( Drazen et al., 2015 ) and the fact that the GP prescription

dataset used does not provide information on diagnosis. 

The remainder of the paper is structured as follows.

Section 2 describes the study design and the data sources

used for the analysis, and Section 3 describes the statis-

tical modelling framework. In Section 4 the results of the

study are presented, followed by a discussion, and finally,

Section 5 summarises the main findings of the paper, and

suggests recommendations for future research. 

2. Data sources 

To gain a better understanding of asthma and COPD,

we make use of three different data sources: ( i ) General

practice (GP) drug prescription data of treatments used

for these conditions, which capture patients with mild to

severe symptoms and will give a general picture of the

disease prevalence across the study region; ( ii ) Hospital

Episode Statistics (HES) admissions with primary diagno-

sis of asthma or COPD; ( iii ) mortality data with asthma

and COPD disease as cause of death. The latter two data

sources will inform on cases characterised by higher sever-

ity. We are going to describe each data source in the rest

of this section. 

2.1. GP drug prescription data 

The Prescription Cost Analysis (PACT) data are ac-

cessed from the NHS Business Services Authority. These

include the monthly prescriptions of all drugs from 8003

general practices across England from August 2010 on-

wards at a monthly temporal resolution. In this study we

use the prescriptions on Salbutamol, Ventolin and Cle-

nil Modulite,with corresponding British National Formu-

lary (BNF) codes 1011R0AAAPAP, 0301011R0BEAIAP and

03020 0 0C0BPABBF respectively. These account for more

than 90% of the total prescription of short acting beta2-

agonist (SABA), a class of drugs that relieves patients from

bronchospasm which characteristically occurs in acute

symptoms ( Drazen et al., 2015 ). Every GP is part of a local

clinical commissioning group (CCG), which is the author-

ity responsible for local healthcare services including local

hospitals and NHS services, according to the 2012 Health

and Social Care Act. GPs of the same CCG collaborate to

evaluate local needs, monitor services, set priorities and

make area-specific decisions to promote healthcare ser-

vices for local residents. This suggests that GPs within the

same CCG should share similarities. Therefore, the available

GP data are aggregated at CCG (211 in England) level to be

used for the analysis. The PACT data also contain the num-

ber of patients registered within each GP, with information

on age group and sex. These are also aggregated at CCG

level and they are used for the calculation of the expected

number of drugs which will be the offset for the analysis

of GP drug prescriptions. 
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2.2. HES and mortality data 

Health data for England from August 2010 to March 

2011 were obtained from the Small Area Health Statistics 

Unit (SAHSU) at Imperial College London. Hospital Episode 

Statistics (HES) admission data, supplied by the Health and 

Social Care Information Centre contain the number of ad- 

missions with a primary diagnosis of asthma or COPD, and 

may also include readmissions of the same patient. Mortal- 

ity data were also obtained from SAHSU, supplied by the 

Office for National Statistics (ONS), derived from the na- 

tional mortality registrations. The number of deaths with 

underlying cause of death (UCD) of asthma or COPD was 

collected. International Classification of Disease coding ver- 

sion 10 (ICD-10) was used for admission and mortality 

coding throughout this time period and asthma and COPD 

were defined as ICD-10 codes 4 90–4 96. Linkage between 

HES and mortality data to identify individual patients was 

not possible. Population data were also obtained from the 

Office for National Statistics, with individual-level informa- 

tion on age and sex and these were used for the calcula- 

tion of the expected number of cases. HES, mortality, and 

population data were all aggregated to CCG level. 

We have considered the same time period of August 

2010 to March 2011 across all three datasets. 

3. Statistical analysis 

The analysis is conducted within a Bayesian hierarchi- 

cal framework that takes into account the complex depen- 

dence patterns of asthma and COPD over space and time. 

Bayesian methods have been extensively applied in epi- 

demiological studies, in order to summarise the spatial and 

temporal variations of the disease risk ( Best et al., 2005 ). 

Approaches within the spatio-temporal setting have been 

suggested by many authors ( Abellan et al., 2008; Bernar- 

dinelli et al., 1995; Knorr-Held, 20 0 0; Knorr-Held and Be- 

sag, 1998; Waller et al., 1997 ). 

The spatio-temporal model that we use in this paper, 

known as BaySTDetect, is a recently developed method by 

Li et al. (2012) that is able to estimate spatial and temporal 

patterns, and to also detect areas whose temporal pattern 

deviates from the general one. 

3.1. Model specification 

The first level of the hierarchical model is given by 

Y it ∼ Poisson (μit E i ) (1) 

where Y it and E i are the observed and expected counts in 

CCG i = 1 , . . . , 211 at time points t = 1 , . . . , 8 , correspond-

ing to months August 2010, September 2010,..., March 2011. 

In the second level of the hierarchy, the rate μit follows 

a mixture of two components as follows: 

log (μit ) = z i log 
(
μC 

it 

)
+ (1 − z i ) log 

(
μAS 

it 

)
(2) 

where 

log 
(
μC 

it 

)
= α0 + h i + γt (Common Model) (3) 

and 

log 
(
μAS 

it 

)
= u i + k it (Area-Specific Model) (4) 
The Common Model (3) consists of spatial and temporal 

effects, h i and γ t respectively, that are combined additively 

on the log scale, thus estimating the temporal pattern to 

be the same for all areas. An overall intercept α0 is also 

included. 

To incorporate unusual temporal patterns that may oc- 

cur in any particular month, we allow for the selection of 

an alternative Area-Specific Model (4) , which estimates the 

temporal effects k it independently for each area. An area- 

specific intercept u i is also included in the model. 

In the third level of the hierarchy, priors are specified 

for all model parameters as follows: 

α0 ∼ U (−∞ , + ∞ ) u i ∼ N (0 , 10 0 0) 

h i ∼ N (v i , σ 2 
h ) and v i ∼ ICAR ( W , σ 2 

v ) k i,t ∼ ICAR ( Q , σ 2 
ik ) 

γt ∼ ICAR ( Q , σ 2 
γ ) log (σ 2 

ik ) ∼ N (α, β2 ) 

. 

For the Common Model, a spatial convolution prior based 

on the standard Besag–York–Mollie formulation ( Besag 

et al., 1991 ) is assigned to the spatial random effects. This 

combines a spatially structured component that follows a 

conditional autoregressive prior (ICAR) ( Besag, 1974 ), ac- 

counting for spatial correlation in the data, and a spatially 

unstructured component following a Gaussian prior, ac- 

counting for heterogeneity in the data. For the spatial ICAR 

prior, we specify the neighbourhood structure by defining 

an adjacency matrix W of size N × N such that the diago- 

nal entries w i, j = 0 and the off-diagonal entries w i, j = 1 if 

areas i and j share a common boundary, and 0 otherwise. 

The temporal effects are assigned the temporal analogue of 

the ICAR prior, thus accounting for the temporal correla- 

tion in the data. Similar to the spatial ICAR prior, the tem- 

poral neighbourhood structure is defined through a matrix 

Q, where q h,t = 1 if | h − t| = 1 and q h,t = 0 otherwise, with

h and t indexing units of time. For the Area-Specific Model, 

the same ICAR prior is assigned to the temporal compo- 

nent k it . In addition, a prior is assigned to the area-specific 

variances σ 2 
ik 

as an extra hierarchical level for identifiability 

reasons. For the overall intercept α0 and the area specific 

intercept u i , vague priors are specified. 

A weakly informative half Normal prior N(0,1) is as- 

signed to each of the parameters σ h , σ v and σγ ( Gelman, 

2006 ), while a N( α, β2 ) prior is assigned to the log (σ 2 
ik 
) 

with parameters α and β2 following priors N(0, 10 0 0) and 

N(0, 2.5 2 ), based on the specification by Li et al. (2012) . As

the latter prior is somewhat informative, sensitivity analy- 

sis is carried out to assess the robustness of the results. 

The model indicator z i follows a Bernoulli (0.95) prior, 

selecting estimates from either the Common Model (z = 1) 

or the Area-Specific Model (z = 0). The parameter 0.95 re- 

flects our expectations that only a small number of areas 

express an unusual temporal pattern. 

To classify areas as unusual, we use the posterior esti- 

mates of the indicator z i representing how likely it is for 

area i to follow the Common Model, i.e. to exhibit a usual 

pattern in the risks, and we select the ones that satisfy the 

following condition: r j ≤ 0.05, where r j is the j th ordered 

posterior z . 
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3.2. Applications 

The model is fitted to all three datasets described in

Section 2 . In the prescription model, Y it is the number of

GP drug prescriptions in CCG i at month t and E i are the

expected counts. Appropriate covariates are also included

in (2) to adjust for age and sex. As an indicator of age, we

use the percentage of active population (age group 15 to

64), while as an indicator of sex, we use the male to fe-

male ratio. 

In the admission model, Y it are the observed cases of

asthma and COPD admissions in CCG i at month t and E i
are the expected ones based on age and sex direct stan-

dardisation using the whole of England as standard pop-

ulation. Similarly, in the mortality model, Y it is the ob-

served number of deaths due to asthma or COPD in CCG

i at month t and E i is the corresponding expected num-

ber based on age and sex direct standardisation using the

whole of England as standard population. 

The models are implemented in OpenBUGS using

Markov Chain Monte Carlo (MCMC) integration algorithms

( Gilks, 2005 ). Three chains are run for each parameter

per model with different initial values for 80,0 0 0 itera-

tions, from which 20,0 0 0 are discarded as burn-in, and es-

timates are based on the remaining samples using only

every 5th iteration to limit autocorrelation. The simula-

tions took around 17 h per model on an Intel Xeon pro-

cessor 2.50 GHz with 23.4 RAM. Convergence was assessed

through trace plots, BGR statistic, and Monte Carlo error. 

4. Results & discussion 

4.1. Spatial patterns 

We provide maps of posterior rates to investigate the

geographical patterns of asthma and COPD across the three

different data sources and evaluate whether these share

any similarities or differences. Fig. 1 a shows the residual

relative risk of the spatial component exp( h i ) of the Com-

mon Model (2) for the GP drug prescriptions across Eng-

land during the period August 2010 to March 2011, while

Fig. 1 b and c show the corresponding risk for HES admis-

sions, and deaths respectively. 

A clear pattern is observed across all datasets with a

strong increasing effect from south to north. High risk

is focused mainly on the region that includes Liverpool,

Manchester, Leeds, and Sheffield, as well as on the region

Newcastle and Durham, with the highest risks being ob-

served in the north east of England. Potential shared risk

factors may include deprivation, which is highest in ur-

ban areas of the north-east and north-west, environmen-

tal factors such as air pollution and smoking prevalence

( Andersen et al., 2011; Lopez et al., 2006; Prescott and

Vestbo, 1999 ). The north-west is the areas with the highest

prevalence of smokers ( HSCIC, cited October 2015 ). 

By comparing the risk distribution across different data

sources, we observe that for admissions and deaths, these

are somewhat consistent ( Fig. 1 b and c), while for pre-

scriptions important differences are highlighted ( Fig. 1 a).

This observation is confirmed by the heatmap in Fig. 1 d

which shows the correspondence across the three data
sources using the spatial relative risk; the area in light grey

represents the CCGs in England that share a low relative

risk while the area in dark grey represents the ones with

a high relative risk. It is clear that the proportion of areas

with a low/high relative risk across all three data sources is

relatively small compared to the proportion of areas with a

low/high relative risk among HES admissions and mortality

data. The correlation of the latter two was estimated to be

0.77, while the corresponding correlations of GP drugs and

mortality, and GP drugs and HES admissions were close to

0.5. 

Low risk is observed for admissions and deaths ( Fig. 1 b

and c) in the south of England, and in the coastal areas. At

the same time these areas exhibit high prescription rates

( Fig. 1 a). This suggests a number of hypotheses for further

investigation e.g. that higher prescription rates are a causal

factor in lower morbidity and mortality, that there are

more patients with milder disease in the south-east poten-

tially related to lifestyle factors (lower smoking) and en-

vironmental factors (lower air pollution), that deprivation

results in higher morbidity and mortality but lower use of

primary care. Age-sex effects could also explain these dif-

ferences; these are accounted for at an aggregate level for

drugs, through the inclusion of appropriate covariates at

the GP practice level in the model, since information was

not available at an individual level, while direct standardi-

sation was used for admissions and mortality. 

Only a few CCGs in the south appear to have high

admission and mortality rates ( Fig. 1 b and c), including

Portsmouth and Southampton CCGs. Increased smoking

prevalence and high deprivation can be related to this. Un-

like the rest of big cities in England, London appears to

have low prescription rates ( Fig. 1 a) potentially related to

the low number of smokers in the area ( HSCIC, cited Oc-

tober 2015 ). Comparing between mortality and admission

spatial patterns, a stronger south to north effect can be

seen for mortality ( Fig. 1 c), showing the south eastern and

central west parts of England as the least risky for disease

death. Another region which potentially represents a group

of patients with mild symptoms is around the Yorkshire

area, where national parks are, and this area clearly stands

out in the admissions map ( Fig. 1 b). 

4.2. Temporal patterns 

The general temporal patterns in England from August

2010 to March 2011 under the different datasets consid-

ered in the study can be seen in Fig. 2 , which plots the

component exp( γ t ) of the Common Model (2) . 

Generally, there was a seasonal pattern in the monthly

risk for asthma and COPD across all data sources over

the period August 2010 to March 2011 however the

trends show important discrepancies. The highest risk was

recorded around Christmas across all data sources. This is

likely to represent peaks in respiratory infections, espe-

cially influenza and respiratory syncytial virus (RSV) that

peak around this year. These result in increased respira-

tory symptoms from mild to severe and cause exacerba-

tions of disease that are occasionally fatal ( Fleming et al.,

2015 ). The lowest peak was recorded in August for all

three data sources, a period when people are on holidays,
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Fig. 1. Spatial patterns of chronic respiratory disease across England for GP drugs (a), admissions (b), and deaths (c); heatmap showing correspondence 

across the three data sources (d). 
away from their homes. The raise in the rates across all 

datasets around September coincides with the start of term 

at schools. 

By comparing temporal trends across different data 

sources, we observe that there is a high temporal variation 

for mortality, whereas this is lower for admissions and pre- 

scriptions. Interestingly, a time lag is apparent between ad- 

missions and mortality. The highest peak for admissions is 

December, whereas for mortality is January and this might 

reflect the group of admissions which were then followed 

by death. 
4.3. Detection of unusual areas 

Finally, we obtain the posterior estimates of the indi- 

cator z i for each model and we classify areas as unusual 

based on the rule described in Section 3.1 . 

For GP drug prescription and mortality data, no areas 

were detected as unusual, meaning that all posterior esti- 

mates of the parameter z i were above our a priori thresh- 

old value of 0.05. When ranking areas by probability, the 

Isle of Wight was the area with the smallest probabil- 

ity of following either the common prescriptions temporal 
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pattern (with a probability of 0.13), or the common mor-

tality temporal pattern (with a probability of 0.11). Look-

ing at the temporal patterns for this area in Fig. 3 , we see

that for prescriptions, a flat pattern is apparent, indicating

low rates with no peaks throughout the whole time period

( Fig. 3 a), while for mortality, a near exponential increase is
Fig. 3. Temporal trend across different
observed, which after December 2010 exceeds the national

death rates importantly ( Fig. 3 c). The corresponding plot

for the admissions shows a stable pattern ( Fig. 3 b), similar

to the one for prescriptions ( Fig. 3 a). 

After investigating the CCG of Isle of Wight, we found

that an intervention was implemented in order to reduce

the high prevalence of long respiratory diseases in the

area, which was combined with an excess expenditure on

respiratory medication. The project entitled ‘Isle of Wight

Respiratory Inhaler Project’, led by the National Institute

for health and Clinical Excellence (NICE), involved train-

ing of healthcare professionals in the use of the inhaler,

patient training, and assessment of the inhaler technique.

According to the results reported in 2009, the costs on

selective beta-agonists fell by 22.7%, the number of pre-

scriptions fell by 25.2%, the emergency admissions due to

asthma were reduced by 50%, and associated deaths by

75% ( NICE, cited October 2015; The Pharmaceutical Journal,

2011 ). 

Given the above, the flat pattern in prescriptions seen

in Fig. 3 a is well supported, as well as the one for admis-

sions ( Fig. 3 b). However, the increasing temporal trend in

deaths in Fig. 3 c which peaks in the last month of the

study period generates questions. Since the findings re-

ported by NICE consider only asthmatic patients, mean-

ing that COPD patients that use the same medication are
 data sources for Isle of Wight. 
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Fig. 4. Unusual temporal trends under HES admissions data. 
not represented, further analysis is required for the CCG 

of Isle of Wight separately on asthma and COPD in or- 

der to understand the underlying causes of the mortality 

trend. Additional data need to be also analysed in order 

to see the progression of the rates long after the interven- 

tion was implemented. Moreover, COPD is often misdiag- 

nosed as asthma due to the similar symptoms that these 

two diseases share, and also depending on the availabil- 

ity of spirometry ( Walker et al., 2006 ). This calls for fur- 

ther investigation into the misdiagnosed cases of COPD as 

asthma in the CCG of Isle of Wight which might be an ad- 

verse effect of the project. 

On the other hand, four areas were detected as unusual 

using a 0.05 threshold level for hospital admissions model: 

Harrow, Hillingdon, Redbridge and Southampton. The time 

plots in Fig. 4 show the temporal trends for each unusual 

area, compared to the general temporal trend. 

As it can be seen, the corresponding areas do not fol- 

low particularly extreme patterns, but there are discrep- 

ancies from the common one that the model identifies as 

important. For instance, although Harrow in general ex- 

hibits lower than the average national admission rates due 

to asthma or COPD, an unusual high peak is observed in 

August, as well as one in November, which months are 

considered safe for the rest of England. Hillingdon, on the 

other hand appears to have an extreme decrease in March 

2011. Redbridge shows a different pattern in prescriptions 

from the other areas in that prescriptions increase in early 

November. London is a city known for its diversity, and for 
the population movements within it, hence it is not easy to 

make conclusions as to what has happened in those CCGs. 

Factors such as differences in local population characteris- 

tics, or differences in the quality of hospital care and the 

support people receive to manage their condition across 

time could be responsible. 

The fourth area that was detected as unusual in terms 

of admission trends is Southampton. This is one of the 

few areas on the South Coast that show an increased risk 

for severe symptoms and deaths due to asthma and COPD 

( Fig. 1 ). Interestingly, it seems that the low risk observed 

in Fig. 4 from December onwards is the outcome of an in- 

tervention that was implemented in order to address the 

excess number of admissions in the CCG of Southampton. 

Wilkinson et al. (2014) found that 34 patients were respon- 

sible for 22% of the total COPD admissions over a 3-year 

period. The authors present an admission avoidance strat- 

egy that was constructed for this group of patients, and as 

a result the readmission rate fell from 13.4 to 1.9%. 

5. Conclusions & further recommendations 

In this paper we have investigated the spatial and tem- 

poral patterns of asthma and COPD, with a special focus on 

the detection of areas that follow an unusual temporal pat- 

tern compared to the general one, by using effective high 

quality datasets, aggregated by CCG which is meaningful 

for healthcare practices. There are two main conclusions 

we have drawn from our study. 
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First, we have shown that multiple data sources repre-

senting different degrees of disease severity give a more

comprehensive picture of the respiratory health problem

with potential implications for healthcare. Some similari-

ties across the different datasets both in the spatial and

temporal variation are indicated, however also important

discrepancies are apparent reflecting the different groups

of patients that are represented. 

Second, the detection mechanism that is provided by

the model we used, together with inference on the spatial,

and temporal variation, can aid health care professionals

and public health practitioners identify target areas, assess

a policy impact or the quality provided by hospitals, and

hence develop effective prevention programs to improve

population health. 

A strong aspect of the modelling approach is that it

identifies unusual behaviour not only in terms of increased

risk, but also in terms of any risk pattern that deviates

from the expected one. Additionally, it only detects areas

when a certain criterion is met, and the specification of

this depends on how conservative we want to be. In the

original paper the model was applied on annual data by Li

et al. (2012) , while here we used monthly data as we were

interested in the seasonal pattern of asthma and COPD.

A great advantage of the additive model specification is

that it allows for such flexibility, through the temporal ran-

dom effects which account for unmeasured covariates that

vary across time. Li et al. (2012) chose a Bayesian False

Discovery Rate (FDR) to adjust for multiple testing, fol-

lowing Newton et al. (2004) . Alternative FDR approaches

have been suggested by other authors ( Catelan et al., 2010;

Muller et al., 2006; Storey, 2003; Whittemore, 2007 ). Here,

we chose to adopt a standard classification rule, as we be-

lieve that the above FDR rule does not apply in our case,

given the small number of positives we have. Besides, it is

argued whether there is a need to perform multiple test-

ing correction within a Bayesian framework ( Gelman et al.,

2012 ). 

Asthma and COPD are jointly considered in the analy-

sis, as the indication of the disease was not possible for

the prescriptions, and one of our objectives was to com-

pare between the different data sets. A next step is to sep-

arately explore asthma and COPD trends for all ages and

for children, adults and elderly to see if our findings hold

for these conditions individually, and to better understand

the temporal patterns of the areas found to be unusual.

Further analysis should formally investigate possible con-

founders, effect modifiers and causal factors such as de-

privation, smoking, seasonal respiratory virus activity and

service access, and to also adjust for socio-economic status,

as this is likely to affect the spatial patterns. It is relatively

easy to introduce covariates into the BaySTDetect model to

start to explore some of the hypotheses as to why some

CCGs differ from national trends. As an example we in-

troduced a variable to represent deprivation — the Index

of Multiple Deprivation (IMD) score, which was initially

available at LSOA level for England. This was aggregated at

CCG level, and then converted into a categorical variable of

5 levels (quintiles) which was introduced into the model

through dummy variables. The results showed no impor-

tant effect; the exponential of the posterior estimates of
the coefficients of the dummy variables varied from 0.99

to 1.02 with all credible intervals including 1. The inclusion

of deprivation in the model did not affect the posterior es-

timates of the other parameters, nor the areas that were

detected as unusual. 

In addition, a multivariate modelling approach will

be considered, which could provide a more comprehen-

sive picture of the trends and potential outbreaks of the

disease, by borrowing information across different data

sources. Finally, it would be useful to know the exact tem-

poral point at which an unusual observation occurs, and

the model should be modified to adjust for this. 
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