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Abstract 

The effect of a linearly heated left sidewall on natural convection flows in a cavity filled with 

nanofluid-superposed porous layers is investigated numerically using the Galerkin finite 

element method. Two cases, which use the vertical and horizontal directions for the porous–

nanofluid layers, are considered to investigate the natural convection in the flow inside a square 

enclosure. In both cases, the left wall is linearly heated, whereas the right wall is isothermally 

cooled. The horizontal walls are assumed to be thermally insulated. The Darcy–Brinkmann 

model is used to solve the governing equations in the porous layer. The results show that the 

nanofluid produces more enhancement of heat transfer compared to the base fluid. Increasing 

the Rayleigh number (𝑅𝑅𝑅𝑅) values caused the intensity of the streamlines in case 2 to be stronger 

than that in case 1. Lower values of the thermal conductivity ratio (𝐾𝐾𝑟𝑟) imply greater heat 

transfer enhancement than for the high thermal conductivity ratios. At the low values of the 

thermal conductivity ratio (𝐾𝐾𝑟𝑟 < 1) and  Darcy number values  (𝐷𝐷𝐷𝐷 < 10−3), the heat transfer 

is more enhanced for case 2 compared to case 1 while higher Darcy number produced case 1 

overcome case 2.  
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1 Introduction 

Convective heat transfer in a confined enclosure filled partly with a porous layer and 

partly with a fluid layer has received a great deal of attention from both the scientific and 

engineering communities due to its numerous applications, for instance heat exchangers, 

electronic cooling and solar collectors [1, 2]. These confined layers may be categorised as 

having vertical or horizontal orientations; additionally, the interface between the composite 



layers may be permeable or impermeable. The selection of the model for the porous layers 

depends on the application type; however, due to the range of applications, the multilayer 

cavity (porous medium – fluid layers) in the vertical and the horizontal directions with a 

permeable interface has received increasing attention in the literature. The horizontal 

orientation of the porous media has been considered in publications that deal with free 

convection like  [1]. The flow stability may be increased through the presence of a porous  
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medium. This situation also occurs when increasing the solid to fluid thermal conductivity ratio 

in the porous medium; however, increasing the Darcy number led to a reduced stability 



envelope due to an increase in permeability. Thermal-driven flow in confined vertical porous-

fluid layers has also received a great deal of attention in the scientific community. A 

considerable number of studies have been published on the two-dimensional natural convection 

that occurs in enclosures with deferentially heated vertical walls and adiabatically insulated 

horizontal walls where the porous layer is disposed vertically. Sathe, et al. [3] showed that 

increasing the porous layer thickness and the aspect ratio could minimize the heat transfer in 

the cavity if the fluid/solid (porous) thermal conductivity ratio is less than one. However, the 

effect of increasing the porous layer thickness on convective heat transfer could be also 

minimized by increasing the Darcy number.  

Several methods have been used to control the flow and heat tranfer inside the 

enclosure. This includes the use of the lid-driven sidewall as reported in [4-6] or by using the 

effect of maganetic field as reported in [7-10] or by using fins as reported in [11]. In addition 

of using these controls, the use of nanoparticles with the base fluid can significantly enhance 

the physical properties of the base fluid and, therefore, improve the heat transfer characteristics 

[12-16]. This is because nanoparticles have a thermal conductivity that is higher than the base 

fluid. This important property of the nanofluid led to that the use of nanofluid in the convective 

flow within porous media has a wide range of practical engineering applications such as solar 

collectors, heat exchangers, material processing, heat preservation of thermal transport circuits, 

and the cooling of electrical units; these applications are listed in reference [17]. Furthermore, 

the use of a porous medium can improve convective heat transfer inside enclosures [1, 2]. A 

considerable number of studies [18-26] have been published on the effects of addition 

nanoparticles to the pure fluid. Hassan and Ismael [27] studied lid-driven square cavity effects 

on mixed convection within superposed nanofluid and porous layers. They concluded that the 

addition of nanoparticles led to a decrease in the rate of heat transfer when the Darcy number 

≥ 10-4. Nguyen, et al. [28] completed a numerical investigation into the natural convection of 



a Cu-water nanofluid in a non-Darcy, differentially heated porous cavity. The authors found 

that the addition of nanoparticles into the porous medium enhanced the rate of heat transfer, 

while the latter decreased or remained nearly constant through the porous region with 

increasing the nanofluid solid volume fraction at high and low values of both Rayleigh and 

Darcy numbers. Natural convection in a two-dimensional cavity arranged such that the layers 

lay vertically and were filled partly with porous medium and partly with Cu-water nanofluid 

was studied by Chamkha and Ismael [29]. The authors concluded that the convective heat 

transfer enhanced by using the nanofluid even with a low permeability porous medium, and 

that this decreased rapidly with increasing porous layer thickness. Alsabery, et al. [30] 

investigated the heatline visualization of natural convection in a trapezoidal cavity partly filled 

with a porous layer saturated with nanofluid and a non-Newtonian fluid layer. Some 

conclusions of this study suggested that the increased nanofluid thermal conductivity led to a 

rise in the circulation strength. It was also found that a higher value of the Nusselt number 

occurred at the volume fraction 𝜙𝜙 = 0.2; however, the Nusselt number dropped so that it was 

lower than other values of volume fraction 𝜙𝜙 = 0, 0.05 and 0.1 when the Darcy number was 

limited between 10-4 - 10-3.  

In addition to conventional uniform heating boundary conditions in natural convection 

enclosures, several studies have focussed in detail on non-uniformly heated wall thermal 

boundary conditions. This idea attracted researchers due to the fact that a heated wall may be 

subject to non-uniform thermal boundary conditions in a significant number of engineering 

applications, such as solar collector systems  [31, 32], as well as the cooling of electronic 

components [32, 33] . This is due to the fact that non-uniform heating is likely to disguise or 

shade the heat transfer inside enclosures. Therefore, it is important to study the effect of non-

uniform heated walls on convective heat transfer inside appropriate enclosures. There is an 

interested literature that focusses on the effects of non-uniform heating and magnetic field on 



the convective heat transfer inside enclosures filled with a pure fluid like [34-37]. The effect 

of a linearly heated wall on the convective heat transfer in a square cavity filled with pure fluid 

has also been reported in the literature [38]. The influence of various thermal boundary 

conditions on the convective heat transfer in a cavity filled with a porous medium saturated 

with pure fluid has been reported [39-41] . Sathiyamoorthy, et al. [41] studied the influence of 

linear thermal boundary conditions on the natural convection inside a porous cavity. They 

observed that the rate of heat transfer oscillated at high Rayleigh and Darcy numbers due to the 

formation of secondary circulation. Wu [42] numerically examined the effects of sinusoidal 

heating applied to both vertical walls on natural convection in a porous rectangular enclosure 

using a thermal non-equilibrium model. They concluded that the rate of heat transfer in a porous 

enclosure can be enhanced by using sinusoidal heating. The effect of a magnetic field on fluid 

flow and heat transfer in a nanofluid-filled cavity with walls having sinusoidal temperature 

distribution was studied [43-46], while linearly heated vertical walls were examined in 

reference [47]. The influence of sinusoidal heating on the natural convection in a square cavity 

filled with nanofluid invesigated by [48, 49]. The study of  natural convection in a square 

porous enclosure saturated with a nanofluid and partly heated from the bottom wall was 

numerically investigated by Bourantas, et al. [50]. They concluded that the rate of heat transfer 

is enhanced for different values of Rayleigh number in the presence of a porous medium, while 

there is no apparent sensitivity of the heat transfer to the presence or absence of a porous 

medium at low Rayleigh number. Sheremet and Pop [51] numerically examined the effect of 

sinusoidal heating on both sidewalls in a square porous enclosure saturated with nanofluid 

using Buongiorno’s mathematical model. Recently, they also studied the use of the same model 

of natural convection in a wavy porous cavity with a sinusoidal temperature distribution on 

both sidewalls when the cavity is filled with a nanofluid. Very recently, Alsabery, et al. [52] 

studied the effect of inclination angle on the buoyancy-driven force inside an enclosure filled 



partly with a porous medium and partly with a nanofluid and employing sinusoidal heating on 

the vertical walls using a finite difference methodology. The results showed that a higher 

enhancement was gained with a thin porous layer using Ag nanoparticles, whereas the use of 

Al2O3 enhanced heat transfer with increasing thickness of the porous layer. However, although 

the interested studies that mentioned above, a careful review of this literature reveals that there 

is a lack of fundamental information regarding the characteristics of the natural convection in 

a square enclosure filled by vertical or horizontal nanofluid-superposed porous layers with 

linear thermal boundary conditions on the left sidewall. The aim of the present study is to 

investigate the effects of linear heating of the left sidewall on the natural convection within an 

enclosure filled with nanofluid-superposed porous layers saturated with the same nanofluid.  

2 Mathematical formulation and solution procedure 

Natural convection is considered in a two-dimensional square enclosure with length L, 

filled by nanofluid-superposed porous layers in two cases, as shown schematically in Figure 1. 

Figure1 illustrates the first case considered in the study where the vertical porous layer is 

localized at the left-hand section of the cavity in the vertical direction, while in the second case 

the porous layer is localized at the bottom part of the cavity in the horizontal direction. The 

porous layer is saturated with a nanofluid and the remainder of the cavity is filled by the same 

nanofluid. The porous and nanofluid layers are simulated as having thicknesses 𝑆𝑆 and 𝐿𝐿 − 𝑆𝑆, 

respectively. In both cases considered in the present investigation, the left vertical wall of the 

cavity is assigned linearly heated boundary conditions, while the right vertical wall is 

isothermally cooled; the top and bottom walls are thermally insulated. The interface between 

the nanofluid layer and porous layer is proposed to be permeable, while all outer boundaries 

are assumed to be impermeable. The nanofluid is composed of water-based fluid containing 

Cu nanoparticles. The thermophysical properties of the nanofluid are illustrated in Table 1. The 



 
Figure 1: Physical domain of vertical (case 1) and horizontal (case 2) directions of the 
composite nanofluid-porous medium layers. 

 

base fluid and nanoparticles are taken to form a homogeneous mixture and thermally 

equilibrium with no slip condition occurs between them. In addition, a thermal equilibrium 

between the solid matrix of the porous medium and the nanofluid is assumed. The flow is 

considered to be steady, laminar, and incompressible with constant physical properties except 

for the density, where the latter is assumed to vary with temperature according to the 

Boussinesq approximation. 

Table 1: Thermo-physical properties of water and Cu nanoparticles [29]. 

Physical properties 𝑪𝑪𝑪𝑪 (J/Kg. k) 𝝆𝝆 (kg/m3) 𝒌𝒌 (W. m-1K-1) 𝜷𝜷 *10-5 (1/K) 

Water 4179 997.1 0.613 21 

Cu 385 8933 401 1.67 

 

The convective heat transfer was simulated using a Navier-Stokes model for the nanofluid layer 

while the Darcy–Brinkman model is invoked to model the porous layer. Based on these 

assumptions, the dimensionless governing equations of the nanofluid and porous layers can be 

written as follows:  



The dimensionless governing equations for the nanofluid layer are [14]:  
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On the other hand, the dimensionless governing equations for the porous layer are:  
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The dimensionless dependent and independent variables and parameters are as 

follows: 
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These relations are combined with the adopted relations that prescribe the physical 

properties of the nanofluid that are considered to depend on the nanoparticles’ 

volume fraction, 𝜙𝜙, as follows [53]: 

 

𝜌𝜌𝑛𝑛𝑛𝑛 = (1 − 𝜙𝜙)𝜌𝜌𝑏𝑏𝑏𝑏 + 𝜙𝜙𝜌𝜌𝑛𝑛𝑛𝑛 (10) 

𝜇𝜇𝑛𝑛𝑛𝑛 = 𝜇𝜇𝑏𝑏𝑏𝑏
(1−𝜙𝜙)2.5    (11) 

(𝜌𝜌𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛 = (1 − 𝜙𝜙)(𝜌𝜌𝜌𝜌𝜌𝜌)𝑏𝑏𝑏𝑏 + 𝜙𝜙(𝜌𝜌𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛 (12) 

𝛽𝛽𝑛𝑛𝑛𝑛 = (1 − 𝜙𝜙)(𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛 + 𝜙𝜙(𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛 (13) 

(𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛 = (1 − 𝜙𝜙)𝜌𝜌𝑏𝑏𝑏𝑏 + 𝜙𝜙𝜌𝜌𝑛𝑛𝑛𝑛 (14) 

𝑘𝑘𝑛𝑛𝑛𝑛 =
�𝑘𝑘𝑛𝑛𝑛𝑛 + 2𝑘𝑘𝑏𝑏𝑏𝑏� − 2𝜙𝜙�𝑘𝑘𝑏𝑏𝑏𝑏 − 𝑘𝑘𝑛𝑛𝑛𝑛�
�𝑘𝑘𝑛𝑛𝑛𝑛 + 2𝑘𝑘𝑏𝑏𝑏𝑏� + 𝜙𝜙�𝑘𝑘𝑏𝑏𝑏𝑏 − 𝑘𝑘𝑛𝑛𝑛𝑛�

𝑘𝑘𝑏𝑏𝑏𝑏 
(15) 

𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐾𝐾𝑟𝑟 ∗
𝑘𝑘𝑛𝑛𝑛𝑛
𝑘𝑘𝑏𝑏𝑏𝑏

 
(16) 

where 𝐾𝐾𝑟𝑟 is the porous/nanofluid thermal conductivity ratio, 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 is the effective 

thermal conductivity, and 

 

      𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑘𝑘𝑛𝑛𝑛𝑛
(𝜌𝜌𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛

 ,     (17) 

       𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

(𝜌𝜌𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛
 

(18) 

The boundary conditions for each case (vertical and horizontal orientation of the 

porous medium –nanofluid layers) are: 

 

At the left hot wall     U=0, V=0,  𝜃𝜃 = 1 − 𝑌𝑌  

At the right cold wall   U=0, V=0,  𝜃𝜃 = 0  

At the top and bottom insulated walls   U=0, V=0,   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 (19) 



The interface boundary conditions of the nanofluid-porous medium layers are 

assumed permeable with equally values of tangential and normal velocities, shear 

and normal stresses and temperature which can be written as: 

 

𝜇𝜇𝑃𝑃 = 𝜇𝜇𝑛𝑛𝑛𝑛 ,      𝜃𝜃𝑝𝑝 = 𝜃𝜃𝑛𝑛𝑛𝑛 ,     𝜓𝜓𝑝𝑝 = 𝜓𝜓𝑛𝑛𝑛𝑛 (20) 

𝜕𝜕𝜃𝜃𝑛𝑛𝑛𝑛
𝜕𝜕𝜕𝜕

= 𝐾𝐾𝑟𝑟
𝜕𝜕𝜃𝜃𝑝𝑝
𝜕𝜕𝜕𝜕

 
(21) 

where 𝐾𝐾𝑟𝑟 is the ratio of the effective thermal conductivity of the porous medium to 

the thermal conductivity of the nanofluid. 

 

2.1 Stream function and Nusselt number 
 

 Stream function 
 

The fluid motion within the porous medium-nanofluid layers can be 

simulated using the stream function Ψ produced from the velocity components U and 

V  [40]where,  

 

𝑈𝑈 = 𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

,      𝑉𝑉 = −𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

 (22) 

These relations of the velocity components for two dimensional flows yield to a 

single equation as follows  

 

𝜕𝜕2𝛹𝛹
𝜕𝜕𝑋𝑋2 +

𝜕𝜕2𝛹𝛹
𝜕𝜕𝑌𝑌2

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 
(23) 

According to this equation, the positive sign of Ψ represents the flow in the 

counter-clockwise direction while the negative sign denotes the clockwise direction.   

 



 Nusselt number 
 

Along the left heated wall, the local and average Nusselt numbers are defined by the 

following relations [29]: 

 

𝑁𝑁𝑁𝑁 = −𝑘𝑘𝑛𝑛𝑛𝑛
𝑘𝑘𝑓𝑓

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (24) 

where 𝑛𝑛 refers to the normal direction on a plane.  

𝑁𝑁𝑁𝑁𝑙𝑙 = 𝑘𝑘𝑛𝑛𝑛𝑛
𝑘𝑘𝑓𝑓
�𝜕𝜕𝜃𝜃𝑝𝑝
𝜕𝜕𝜕𝜕
�
𝑋𝑋=0

  (25) 

𝑁𝑁𝑁𝑁𝑟𝑟 = 𝑘𝑘𝑛𝑛𝑛𝑛
𝑘𝑘𝑓𝑓
�𝜕𝜕𝜃𝜃𝑛𝑛𝑛𝑛

𝜕𝜕𝜕𝜕
�
𝑋𝑋=1

  (26) 

𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 = ∫ 𝑁𝑁𝑁𝑁𝑙𝑙  𝑑𝑑𝑑𝑑
1
0   (27) 

3 Numerical solution 

The Galerkin Finite Element Method (GFEM) is used to solve the dimensionless 

governing equations (2.1-2.8) with the boundary conditions for the assumed problem using the 

Computational Fluid Dynamics (CFD) solver in the COMSOL 5.1 software suite. The SIMPLE 

algorithm [54] was used to couple the continuity and momentum equations. The nonlinear 

residual equations were solved using the Galerkin finite element method, where the velocity 

components (𝑈𝑈, 𝑉𝑉), and temperature 𝜃𝜃 are subjected to the basis set as illustrated in [55]. To 

evaluate the integrals of these equations, three-point Gaussian quadrature is used.  In addition, 

the Newton-Raphson method is used to evaluate the expansion coefficients of the non-linear 

residual equations.  

The iteration is terminated when the dependent variables reach steady state and satisfy the 

criterion: 



∑ ∑ �Φ𝑖𝑖,𝑗𝑗
𝑟𝑟+1−Φ𝑖𝑖,𝑗𝑗

𝑟𝑟 �𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1

∑ ∑ �Φ𝑖𝑖,𝑗𝑗
𝑟𝑟+1�𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

≤ 10−6                                                                                (3.1) 

where Φ represents the velocity components (U, V), temperature 𝜃𝜃, or the pressure in the 

domain. The subscripts 𝑖𝑖 and 𝑗𝑗 indicate the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ grid in the 𝑥𝑥 and 𝑦𝑦 directions, 

respectively. The superscript 𝑟𝑟 refers to the rth iteration. 𝑚𝑚 and 𝑛𝑛 represent the total number 

of nodes. The biquadratic quadrilateral element is used in the present study to discretize the 

solution domain. This element has nine nodes, four of which are located at the vertices and one 

more is centred between every two vortices as well as at the centre of the element. 

3.1 Code Validation 

The present study is validated by comparing its predictions with the results determined 

by Chamkha and Ismael [29]. The validation test case domain is that of a two-dimensional 

laminar flow for steady natural convection inside an enclosure superposed in a vertical 

direction by the nanofluid and porous layers, which are filled partly with nanofluid and partly 

with a porous medium saturated with the same nanofluid, as shown in Figure 2. The vertical 

walls of the cavity consisted of two opposing isothermal boundary conditions while the  

    

  (a) Chamkha and Ismael [29]  (b) Present study 

Figure 2: Streamlines (left) and isotherms (right), for a square cavity with uniform hot left sidewall 
and cold right sidewall and adiabatic top and bottom walls at 𝑅𝑅𝑅𝑅 = 105, 𝐷𝐷𝐷𝐷 =10-5, aspect ratio=1, 
porous layer thickness=0.3, 𝜙𝜙 = 0 (solid lines) and 𝜙𝜙 = 0.05 (dashed lines). The left panel 
corresponds to (a) Chamkha and Ismael [29] and the right panel corresponds to (b) the present 
study.                    

 

 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚 = −8.17  

𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚 = −8.7  
 

 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚 = −7.83  

𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚 = −8.37  
 



horizontal walls were kept insulated. The results of the comparison of the stream function and 

isotherms are investigated for 𝑅𝑅𝑅𝑅 = 105, 𝐷𝐷𝐷𝐷 = 10-5, aspect ratio = 1 and a porous layer thickness 

equal to 0.3. The nanofluid is composed of water as a base fluid and copper nanoparticles at a 

volume fraction 𝜙𝜙 of 0.05. In addition, Figure 3 shows a comparison between the results of this 

study and those was presented by Sathiyamoorthy, et al. [41]. The cavity was entirely filled 

with a porous medium saturated by air with linearly and uniformly heated left and bottom walls, 

whilst the right wall was uniformly cold and the upper wall was kept isolated. The selected 

parameters of the comparison were 𝑅𝑅𝑅𝑅 =  106, 𝐷𝐷𝐷𝐷 =10-3 and 𝑃𝑃𝑃𝑃 = 0.7. The Brinkman-extended 

Darcy model was used to solve the equations governing the fluid flow in the porous media for 

each of the selected comparisons. The results can be seen to be in a good agreement, and give 

further confidence as to the accuracy of the currently selected FEM solver.6 

    
(a) Sathiyamoorthy, et al. [41] (b) Present study 

Figure 3: Streamlines (left) and isotherms (right), for the case 𝜃𝜃 = 1-y on the left wall and 
𝜃𝜃 = 0 on the right wall and adiabatic top and bottom walls at 𝑅𝑅𝑅𝑅 =106, 𝐷𝐷𝐷𝐷 =10−5 and 𝑃𝑃𝑃𝑃 = 
0.7. The left panel corresponds to (a) Sathiyamoorthy, et al. [41] and the right panel 
corresponds to (b) the present study.                       

 

To increase confidence in the results produced by this program, Figure 4 shows a further 

validation with the numerical and experimental results that were presented by Beckermann, et 

al. [56] for the natural convection inside superposed enclosure with pure fluid - porous medium 

layers. The validation is examined for the Brinkman-Forchheimer with Darcy extended model 

for experiment 2 by using the water as a working fluid in the layers. A considerable difference 

between the numerical and the experimental results attributed to the inaccuracies in 



determining of the exact position of the thermocouple probe and the non-uniformities of the 

porosity at the walls. The average percentage of the discrepancies between the experimental 

and numerical solution is about 7%, however; the comparison of the present results showed 

good agreement between our results and those reported in the literature. 

 
Figure 4: Validation  of numerical and experimental results presented by Beckermann, et al. 
[56] with the present result. 

 

3.2 Grid Independence Test 

Several independent grid tests were performed with the grid sizes of 6400, 10,000, 

14,400, 16,900, 19,600 and 25,600 to determine the proper size of this study. Figure 5 

illustrates the calculated average Nusselt number at different grid sizes for an enclosure partly 

filled with nanofluid and partly filled with a porous layer saturated with the same nanofluid for 



cases 1 and 2, where 𝑅𝑅𝑅𝑅 = 107, 𝐷𝐷𝐷𝐷 = 10-3, 𝐾𝐾𝑟𝑟 = 1, 𝜙𝜙 = 0.1 and 𝑆𝑆 = 0.3. A grid size of 16,900 

was used to assess the analysis cost and the accuracy and of the numerical procedure due to 

obtaining the convergence solution values of the average Nusselt number that started at this 

value for the grid testing.  

 
Figure 5: Grid testing for the average Nusselt number at different mesh numbers 

4 Results and discussion   

Two cases of the vertical and horizontal directions of porous–nanofluid layers are 

considered to investigate the natural convection of the flow inside a square enclosure. Case 1 

and case 2 deal with vertical and horizontal porous-nanofluid layers, respectively. The current 

work shows the characteristics of the numerical results for the contours of the streamlines and 

isotherms, as well as selected profiles for the velocity components (𝑈𝑈, 𝑉𝑉, 𝑅𝑅) and temperature 

at the interface between the porous and nanofluid layers. In addition, the local Nusselt number 

on the left and right walls and the average Nusselt number on the left heated wall are presented 

graphically for different dimensionless parameters. The selected parameters that affect flow 

and heat transfer are 𝑅𝑅𝑅𝑅 = 103 - 107, 𝐷𝐷𝐷𝐷 = 10-7 - 10-1, 𝜙𝜙 = 0.1 and 𝐾𝐾𝑟𝑟 = 0.1 - 100. A detailed 

discussion of the heat transport based on natural convection for the two cases is presented in 

the following sections. 



4.1 Streamlines and isotherms 

 Vertical porous-nanofluid layers (case 1)  

Figure 6 illustrates the contours for the streamlines (upper row) and isotherms (lower 

row) that depict the numerical results for different effects of dimensionless parameters such as 

𝑆𝑆, 𝑅𝑅𝑅𝑅, 𝐷𝐷𝐷𝐷, and 𝐾𝐾𝑟𝑟 when the porous and nanofluid layers lie in a vertical direction (case 1). 

Figure 6(a-c) illustrates the effect of the porous layer thickness (𝑆𝑆) on the flow behaviour and 

temperature distribution inside the cavity for 𝑅𝑅𝑅𝑅 = 106, 𝐷𝐷𝐷𝐷 = 10-3, and 𝐾𝐾𝑟𝑟 = 1. Due to the 

application of linear heating to the left wall and uniform cooling across the right wall, the 

nanofluid inside the porous layer rises along the left sidewall and flows down along the cooled 

right wall in the nanofluid layer, forming two circulations. One of these, as the main vortex, 

covered most of the cavity in a clockwise direction while the secondary circulation appears at 

the top left corner of the cavity and moves in an anticlockwise direction. For all values of 𝑆𝑆, 

the addition of 10% of copper nanoparticles to the pure fluid (water) causes the streamlines’ 

strength for the main cell to be stronger than the pure fluid. This is because the nanofluid has 

the ability to absorb more thermal energy than the pure fluid. This gives an indication that the 

addition of nanoparticles to the pure fluid contributes to an increase in various physical 

properties such as the density, viscosity and thermal conductivity of the nanofluid, as shown in 

equations (10), (11) and (15). It is interesting to note that as the value of 𝑆𝑆 increases, the centre 

of the main cell moves from a location close to the interface line towards the right cold 

wall.Another interesting point that may be noted in Figure 6(a-c) is that the streamlines for 

porous layers with low thicknesses are more effective than thick porous layers. This can be 

clearly seen from the stream function values, |𝛹𝛹𝑚𝑚𝑚𝑚𝑚𝑚|, where for 𝑆𝑆 = 0.1, 0.3 and 0.5, the 

percentage gain of |Ψ𝑚𝑚𝑚𝑚𝑚𝑚| values are 13%, 7.9% and 6.7%, respectively. The effects of 

increasing porous layer thickness on the reduction of circulation strength are attributed to the 

hydrodynamic resistance provided by the porous layer. The isotherm lines are parallel to the 



cold right-hand wall, whereas they cross the left-hand heated wall. The temperature contour 

with 𝜃𝜃 = 0.31 was pushed towards the upper left corner of the cavity, which gradually became 

denser at 𝑆𝑆 = 0.1, and more so than at 𝑆𝑆 values of 0.3 and 0.5. The vertical pattern of the 

majority of the isotherm lines within the porous layer indicates the dominance of conduction 

as the mechanism of heat transfer, whereas the horizontal isotherm pattern indicates convective 

heat transfer within the nanofluid layer. It is interesting to note that the spot produces by the 

isotherm  
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(d) Ra = 104 (e) Ra = 105 (f) Ra = 107 

Figure 6: Streamlines (upper row) and isotherms (lower row) for case 1 with 𝜙𝜙 = 0 (sold lines) 
and 𝜙𝜙 = 0.1 (dashed lines) at different dimensionless parameters, (a-c) 𝑆𝑆 effect when Ra = 106, 
Da = 10-3 and 𝐾𝐾𝑟𝑟 = 1, (d-f) 𝑅𝑅𝑅𝑅 effect when Da = 10-3, 𝑆𝑆 = 0.3 and 𝐾𝐾𝑟𝑟 = 1. 

contours when 𝜃𝜃 ≥ 0.31 in the upper part of the cavity decreases with increasing porous layer 

thickness. Therefore, this gives an indication that increasing porous layer thickness leads to a 

decrease in the rate of heat transfer. The effects of the accelerated flow parameter 𝑅𝑅𝑅𝑅 on the 

streamline and isotherm contour maps for 𝐷𝐷𝐷𝐷 = 10-3, 𝑆𝑆 = 0.3 and 𝐾𝐾𝑟𝑟 = 1 are shown in Figure 

6(d-f). The streamlines appear denser at high values of 𝑅𝑅𝑅𝑅 due to the high stream function 

intensity of the main cell. At 𝑅𝑅𝑅𝑅 =104, as shown in Figure 5d, the circulation map indicates the 

porous layer has some effect on the transport flow from nanofluid layer to the porous layer 

with low flow penetration. The intensity of the secondary circulation is very low compared to 

the primary circulation, which filled most of the cavity area with vertical elongation parallel to 

the interface. It is interesting to note that adding 10% from the nanoparticles to the water leads 

to a reduction in the circulation strength due to increased viscous forces opposing the inertial 

force at any specified value of 𝑅𝑅𝑅𝑅. In contrast at higher Rayleigh numbers, as shown in Figures 

5e and f, the intensity of the secondary cell increases, showing greater elongation, pushing the 

primary cell towards the lower part of the cavity to a noticeable extent, and with high 

penetration of the porous layer. The higher values of Rayleigh number strengthen the natural 

convection due to an increase in buoyancy inside the cavity, which leads to a reduction of the 

temperature of the heat source. Isothermally, the increase in convective heat transfer is 

noticeable with increasing Rayleigh number, especially for the nanofluid layer with denser 



isotherms. In addition, a high spot at 𝜃𝜃 ≥ 0.31 occurs in the upper part of the cavity. This 

indicates that the diffusion of heat from the left heated source increases due to the strong 

circulation strength within the main cell.  

Figures 7(a-c) depict the variation of the streamlines and isotherms with dimensionless 

permeability (Darcy number) for 𝑅𝑅𝑅𝑅 = 106, 𝑆𝑆 = 0.3, and 𝐾𝐾𝑟𝑟 = 1. These figures show that the 

susceptibility of the porous layer to penetration by the nanofluid depends on the Darcy number 

value. At 𝐷𝐷𝐷𝐷 = 10-5, as shown in Figure 7a, the main cell is confined to the region around the 

nanofluid layer, with lower penetration of the porous layer. Figure 7b and c shows that 

increasing 𝐷𝐷𝐷𝐷 to 10-2 and 10-1, respectively, results in an increase in the intensity of the main 

cell accompanied by the appearance of a weak secondary cell at the upper left corner of the 

cavity. The main cell centre at high values of 𝐷𝐷𝐷𝐷 moves from the nanofluid layer towards the 

porous layer close to the left heated wall, whilst conversely remaining in the region of the 

nanofluid layer for 𝐷𝐷𝐷𝐷 = 10-3, as shown in Figure 6b. It is interesting to note that the streamlines 

with low Darcy number are more effective with the addition of 10% of nanoparticles to the 

pure fluid than the higher values. This can be illustrated by the |Ψ𝑚𝑚𝑚𝑚𝑚𝑚| values, where for 𝐷𝐷𝐷𝐷 =  
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(d) 𝐾𝐾𝑟𝑟=0.1 (e) 𝐾𝐾𝑟𝑟=5 (f) 𝐾𝐾𝑟𝑟= 100 

Figure 7: Streamlines (upper row) and isotherms (lower row) for case 1 with 𝜙𝜙 = 0 (sold 
lines) and 𝜙𝜙 = 0.1 (dashed lines) at different dimensionless parameters, (a-c) 𝐷𝐷𝐷𝐷 effect when 
𝑅𝑅𝑅𝑅 = 106, 𝑆𝑆 = 0.3 and 𝐾𝐾𝑟𝑟 = 1, and (d-f) 𝐾𝐾𝑟𝑟 effect when 𝑅𝑅𝑅𝑅 = 106, 𝐷𝐷𝐷𝐷 = 10−3and 𝑆𝑆 = 0.3. 

 

10-5, 10-2 and 10-1, the percentage variations in |Ψ𝑚𝑚𝑚𝑚𝑚𝑚| are 25%, 10.4% and 11%, respectively. 

The isotherm figures show how the Darcy number can be used as a controlling parameter to 

translate the convection from the nanofluid layer to the porous layer. The high density of the 

isotherm lines appearing close to the vertical walls due to the increasing in magnitude of 𝐷𝐷𝐷𝐷 is 

indicative of the convective heat transfer within the enclosure. This causes the temperature of 



the heat source to be reduced with an increasing permeability of the porous layer matrix. The 

effect of thermal conductivity ratio, 𝐾𝐾𝑟𝑟, on the streamlines and isotherms counters for 𝑅𝑅𝑅𝑅 = 

106, 𝐷𝐷𝐷𝐷 = 10-3 and 𝑆𝑆 = 0.3 is illustrated in Figure 7(d-f). Streamlines appear with two different 

cells when 𝐾𝐾𝑟𝑟 = 0.1, as shown in Figure 7d. The centre of the clockwise primary cell is located 

adjacent to the right cold wall with steeper streamlines on the left-hand heated and right-hand 

cooled walls while the weak, anticlockwise-circulating secondary cell is located at the upper 

left corner of the cavity. At 𝐾𝐾𝑟𝑟 = 5 (see Figure 7e), the stream function of the main clockwise 

and the upper left counter-clockwise cells is higher values than that at 𝐾𝐾𝑟𝑟 = 0.1 and also 

compressing the primary cell by the secondary cell towards the lower right corner of the cavity. 

The centre of the primary and secondary cells moves away from the left-hand heated source 

wall towards the right-hand cold wall results in reduced penetration of the nanofluid flow into 

the porous layer. This pattern increases up to 𝐾𝐾𝑟𝑟 =100, with a lower density in the streamlines 

in the region of the left-hand heated wall. This augmentation in the circulation strength is 

attributed to an increased thermal conductivity ratio (porous/nanofluid). At higher 𝐾𝐾𝑟𝑟, the 

increasing strength and cell size of the upper, anticlockwise-circulating secondary cell causes 

the hot nanofluid to return the heat towards the upper part of the heat source, which leads to a 

decrease in heat transfer. However, at lower values of 𝐾𝐾𝑟𝑟, the convection heat transfer is 

dominant within the cavity. Isothermally, the convection is transmitted from the nanofluid layer 

to the porous layer at the lower thermal conductivity ratio of 𝐾𝐾𝑟𝑟=0.1, whilst when the isotherm 

lines crosses the left-hand heated wall at higher values of 𝐾𝐾𝑟𝑟, signifying conductive heat 

transfer 

  Horizontal porous-nanofluid layers (case 2)    

Figure 8 illustrates the contours of streamlines (upper row) and isotherms (lower row) 

for different effective dimensionless parameters when the nanofluid layer is overlying the 



porous layer. Figure 8(a-c) shows the variation of flow and isotherm patterns inside the 

enclosure with varying porous layer thickness, 𝑆𝑆, as 𝑅𝑅𝑅𝑅 = 106, 𝐷𝐷𝐷𝐷 = 10-3, and 𝐾𝐾𝑟𝑟 = 1. As in the 

previous case, due to the linear thermal boundary conditions applied to the left-hand sidewall 

of the cavity, the nanofluid inside both layers rises along the left-hand heated wall and flows 

down along the cooled right-hand wall, causing two circulating regions. The primary 

circulation covered most of the cavity, rotating in a clockwise direction, while the secondary 

circulation ran in an anticlockwise direction and appeared in the upper region of the left-hand 

heated wall. Figure 8a illustrates the low penetration of the streamlines into the porous layer as 

compared with case 1, which gives an indication of effect of the porous-nanofluid layers’ 

orientation. It is interesting to note that the centre of the main cell remains close to the left-

hand heated wall while the secondary cell tends to compress the main cell towards the porous 

layer, which is in contrast with case 1 where the upper circulation tends to push the main cell 

towards the right-hand cooled wall. |Ψ𝑚𝑚𝑚𝑚𝑚𝑚| shows that the intensity of circulations, in this case, 

is stronger than for case 1 for different thicknesses of the porous layer. However, the addition 

10% of nanoparticles to the pure fluid leads to a lower increase in the percentage of |Ψ𝑚𝑚𝑚𝑚𝑚𝑚| 

values compared to case 1 except at 𝑆𝑆 = 0.3, where for 𝑆𝑆 = 0.1, 0.3 and 0.5, the gain in 

percentages of |Ψ𝑚𝑚𝑚𝑚𝑚𝑚| are 10.8%, 8.3% and 5.5%, respectively. Although the increases in 

percentage are lower in this case, it is expected that the intensity of circulation might actually 

increase convective heat transfer. The isotherms in the vicinity of the heat source, in this case, 

are denser than in case 1. The temperature contour with 𝜃𝜃 ≥ 0.31 is also pushed towards the 

top left corner of the cavity with a relatively lower thickness of the thermal boundary (steeper 

lines) compared to case 1, and this thickness increases with increasing thickness of the porous 

layer, especially for the nanofluid contour. Figure 8(d-f) shows the effect of Rayleigh number 

on the streamline and isotherm contour maps for case 2 with 𝐷𝐷𝐷𝐷 = 10-3, 𝑆𝑆 = 0.3 and 𝐾𝐾𝑟𝑟 = 1. 

The contour map for the streamlines in the upper panel of Figure 8d depicts the flow inside the 



cavity at 𝑅𝑅𝑅𝑅 = 104. It is clear that the porous layer has an effect on the transport flow within 

the porous layer, with low penetration of the nanofluid. The intensity of the secondary cell is 

very low as compared with the main cell strength. The intensity of the main circulation is also 

low, with horizontal elongation in a semi-circular shape parallel to the interface between the 

porous and nanofluid layers when compared with case 1. A significant change in the flow 

pattern inside the cavity occurs with increasing Rayleigh number when 𝑅𝑅𝑅𝑅 = 105 up to 𝑅𝑅𝑅𝑅 = 

107, as shown in Figure 8e and f, respectively. The secondary cell at the upper left corner 

appears with high intensity above the primary cell, which has relatively more intensity than in 

case 1 (see Figure 6f). The secondary cell tends to compress the main cell, leading to the 

generation of two poles whose  

          �𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = −𝟐𝟐𝟐𝟐.𝟕𝟕
𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟑𝟑.𝟗𝟗 �

𝒏𝒏𝒏𝒏
,  �𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = −𝟐𝟐𝟐𝟐.𝟗𝟗

𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟓𝟓.𝟔𝟔𝟔𝟔 �𝒃𝒃𝒃𝒃
         �𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = −𝟐𝟐𝟐𝟐.𝟐𝟐

𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟑𝟑.𝟔𝟔𝟔𝟔 �𝒏𝒏𝒏𝒏
,  �
𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = −𝟐𝟐𝟐𝟐.𝟐𝟐
𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟓𝟓.𝟒𝟒𝟒𝟒 �𝒃𝒃𝒃𝒃

          �
𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = −𝟏𝟏𝟏𝟏.𝟐𝟐
𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟓𝟓.𝟎𝟎𝟎𝟎 �𝒏𝒏𝒏𝒏

, �𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = −𝟏𝟏𝟏𝟏.𝟐𝟐
𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟔𝟔.𝟖𝟖𝟖𝟖 �𝒃𝒃𝒃𝒃

 

   

   
(a) 𝑆𝑆 = 0.1 (b) 𝑆𝑆 = 0.3 (c) 𝑆𝑆 = 0.5 

�
𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = −𝟏𝟏.𝟗𝟗𝟗𝟗

𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟐𝟐.𝟒𝟒𝟒𝟒 ∗ 𝟏𝟏𝟏𝟏−𝟑𝟑�𝒏𝒏𝒏𝒏
,�

𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = −𝟐𝟐.𝟑𝟑𝟑𝟑
𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟓𝟓.𝟓𝟓 ∗ 𝟏𝟏𝟏𝟏−𝟑𝟑�𝒃𝒃𝒃𝒃

          �𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = −𝟗𝟗.𝟐𝟐𝟐𝟐
𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟎𝟎.𝟏𝟏𝟏𝟏 �𝒏𝒏𝒏𝒏

, �𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = −𝟗𝟗.𝟏𝟏𝟏𝟏
𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟎𝟎.𝟐𝟐𝟐𝟐 �𝒃𝒃𝒃𝒃

         �𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = −𝟓𝟓𝟓𝟓.𝟔𝟔
𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟏𝟏𝟏𝟏.𝟏𝟏 �𝒏𝒏𝒏𝒏

,  �𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = −𝟒𝟒𝟒𝟒.𝟏𝟏
𝚿𝚿𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟐𝟐𝟐𝟐.𝟖𝟖 �𝒃𝒃𝒃𝒃

 



   

   
(d) Ra=104 (e) Ra=105 (f) Ra=107 

Figure 8: Streamlines (upper row) and isotherms (lower row) for case 2 with 𝜙𝜙 = 0 (sold lines) 
and 𝜙𝜙 = 0.1 (dashed lines) at different dimensionless parameters, (a-c) 𝑆𝑆 effect when 𝑅𝑅𝑅𝑅 = 106, 
𝐷𝐷𝐷𝐷 = 10−3and 𝐾𝐾𝑟𝑟 = 1, (d-f) 𝑅𝑅𝑅𝑅 effect when 𝐷𝐷𝐷𝐷 = 10−3, 𝑆𝑆 = 0.3 and 𝐾𝐾𝑟𝑟 = 1. 

 

centres are close to the cooled right-hand and hot left-hand walls. Isothermally, the thickness 

of the thermal boundary layer is less in case 2 as compared with case 1 due to the augmentation 

of circulation intensity when the circulation centre is closer to the left and right vertical walls.  

Figure 9(a-c) illustrates streamline (upper row) and isotherm (lower row) contours as 

𝑅𝑅𝑅𝑅 = 106, 𝑆𝑆 = 0.3 and 𝐾𝐾𝑟𝑟 = 1 for different values of 𝐷𝐷𝐷𝐷. It can be observed from the streamline 

contour map that the nanofluid flow circulation is strongly dependent on the Darcy number. At 

𝐷𝐷𝐷𝐷 = 10-5, as shown in Figure 9a, two cells are observed in the cavity. One is the strong main 

cell with a clockwise flow circulation, and which is dominant across the majority of the cavity, 

while the weak anticlockwise flow circulation appears at the upper left corner of the cavity 

with low penetration into the porous layer. It is interesting to note that the streamlines at 𝐷𝐷𝐷𝐷 

=10-5 for this case have a higher value of |Ψ𝑚𝑚𝑚𝑚𝑚𝑚| = 20.5 for nanofluid and |Ψ𝑚𝑚𝑚𝑚𝑚𝑚| = 18.7 for the 



pure fluid, where the streamlines behave in a different manner than in case 1, as seen in Figure 

7a. As 𝐷𝐷𝐷𝐷 increases, the penetration of the nanofluid flow increases with higher circulation 

intensities. The addition of 10% Cu nanoparticles by volume to the pure fluid result in 

percentage gains in |Ψ𝑚𝑚𝑚𝑚𝑚𝑚| for 𝐷𝐷𝐷𝐷 = 10-5, 10-2 and 10-1 of 9.6%, 11.37% and 11.53%, 

respectively. Although the percentage gain for this case at Da = 10-5 is lower than in case 1, it 

seems that a higher density in the temperature gradient forms within the thermal boundary layer 

in the nanofluid layer along the left and right walls as compared to the vertical walls in case 1. 

Another comparison between these cases is that the isotherm 𝜃𝜃 ≥ 0.31 for 𝐷𝐷𝐷𝐷 = 10-2 and 10-1 

has more spots in the upper part of the cavity compared to case 1 with greater diffusion of the 

heat from the heat source, signifying that the enhancement of the convective heat transfer for 

case 2 is greater than for case 1.  

Figure 9(d-f) displays the streamlines (upper row) and isotherms (lower row) with 𝑅𝑅𝑅𝑅 

= 106, 𝐷𝐷𝐷𝐷 = 10-3 and 𝑆𝑆 = 0.3 for different thermal conductivity ratios (𝐾𝐾𝑟𝑟). Common streamline 

patterns of the flow within the cavity show a similar trend to the primary and secondary cells 

inside the cavity. The location of the main cell core centre is close to the left-hand heated 

sidewall while the secondary circulation is confined to the upper left corner of the cavity. The 

intensity of the primary and secondary circulations increases with increasing thermal 

conductivity ratio. At 𝐾𝐾𝑟𝑟 = 0.1, the primary cell covered most of the cavity area with low 

penetration of the porous layer, as shown in Figure 9d. It is interesting to note that the stream 

function strength of the primary cell is significantly greater than for case 1 at lower values of 

𝐾𝐾𝑟𝑟. In addition, the core centre of the primary cell moves towards the left-hand heated wall 

causes denser streamlines along the vertical walls in the nanofluid layer. Figure 9e shows the  
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Figure 9: Streamlines (upper row) and isotherms (lower row) for case 2 with 𝜙𝜙 = 0 (sold lines) 
and 𝜙𝜙 = 0.1 (dashed lines) at different dimensionless parameters, (a-c) 𝐷𝐷𝐷𝐷 effect when Ra = 106, 
𝑆𝑆 = 0.3 and Kr = 1,and (d-f) 𝐾𝐾𝑟𝑟 effect when Ra = 106, Da = 10-3 and 𝑆𝑆 = 0.3. 

streamlines of the fluid flow inside the cavity for 𝐾𝐾𝑟𝑟 = 5 have greater intensity and elongation 

of the secondary cell, causing the compression of the primary cell towards the porous layer. 



Another significant point is that the core centres of the nanofluid cells, due to the additional 

10% Cu nanoparticles present, tend to remain in the nanofluid layer compared to the pure fluid 

cells, which leads to the stream function of the nanofluid having greater strength than the pure 

fluid. As 𝐾𝐾𝑟𝑟 increases, the pattern of the fluid flow within the cavity continues up to 𝐾𝐾𝑟𝑟 = 100 

though with greater elongation of the secondary cell, which causes the rotation of the flow 

towards the left-hand heated wall. Isothermally, the horizontal isotherm lines indicate 

convective heat transfer, while the vertical isotherm lines indicate conductive heat transfer. The 

isotherm lines are denser and closer to the left and right vertical walls due to the elongation of 

the cells towards the vertical walls with the reduced thickness of the thermal boundary layer  

along the vertical walls. At 𝐾𝐾𝑟𝑟 = 0.1 with the isotherm 𝜃𝜃 ≥ 0.25, the convective heat transfer 

is dominant in the cavity, even at the porous layer, and the heat transport at the top portion of 

the cavity is more diffused compared to case 1. As 𝐾𝐾𝑟𝑟 increases towards 100, the convective 

heat transfer remains confined to the nanofluid layer, while the conductive heat transfer appears 

in the porous layer when the thermal boundary layer is relatively thick. The high density of the 

isotherms close to the left and right walls in the nanofluid layer resulted in significant 

temperature diffusion from the heat source when compared to case 1. However, negative heat 

transfer occurs due to the secondary cell effects that lead to the transmission of the heat energy 

from the nanofluid towards the heat source. As expected, the heat transfer decreases with 

increasing 𝐾𝐾𝑟𝑟, especially in case 1. 

4.2 Velocity components (U, V and R) 

The distributions of the velocity components 𝑈𝑈, 𝑉𝑉 and 𝑅𝑅, are examined at the interface 

between the porous-nanofluid layers along the Y-axis and X-axis for case 1 and case 2, 

respectively, at 𝑆𝑆 = 0.3, 𝜙𝜙 = 0.1 and 𝐾𝐾𝑟𝑟 = 1 with 𝑅𝑅𝑅𝑅 = 104 and 106 for different 𝐷𝐷𝐷𝐷 values, as 

shown in Figure 10. 



  Vertical porous-nanofluid layers (Case 1) 

Figure 10a shows the variation of velocity profile components for different 𝐷𝐷𝐷𝐷 values 

at the interface between the porous-nanofluid layers for case 1 as 𝑆𝑆 = 0.3, 𝜙𝜙 = 0.1 and 𝐾𝐾𝑟𝑟 = 1 

when 𝑅𝑅𝑅𝑅 = 104 and 106. Increasing the Rayleigh number causes a significant augmentation in 

the velocity components within the cavity due to the strong effect of the buoyancy force. The  
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Figure 10: Variation of velocity profile components (i) U, (ii) V, and (iii) R at the interface line 
of (a) case 1 and (b) case 2 for different Darcy numbers as 𝑆𝑆 =0.3 , 𝜙𝜙 = 0.1 and 𝐾𝐾𝑟𝑟 =1 at 𝑅𝑅𝑅𝑅 = 
104 and 𝑅𝑅𝑅𝑅 =106.  

 

flow strength of the nanofluid increases and the maximum and minimum velocity components 

at the interface of the enclosure with 𝐷𝐷𝐷𝐷 =10-1 become greater than those for 𝐷𝐷𝐷𝐷 = 10-5. This 

is attributed to the increased permeability of the porous layer causing a reduction in the 

resistance offered by the porous layer on nanofluid flow, resulting in an increase in velocity. 

Figure 10ai depicts the effects of the Darcy and Rayleigh numbers on the horizontal velocity 

component at the interface for case 1. It is interesting to note that for the velocity profile at 𝑅𝑅𝑅𝑅 

= 104, it appears that the velocity of the nanofluid flow towards the upper part of the interface 

is lower than the flow at the bottom of the interface. This is because of the hydrodynamic 

resistance offered by the porous layer. However, this pattern takes the opposite trend with 

increasing 𝑅𝑅𝑅𝑅 values because of the density of the streamlines at approximately Y = 0.7. The 

negative value of the horizontal velocity close to the upper adiabatic wall attributes to the 

anticlockwise motion of the secondary cell. Figure 10aii shows the effect of the permeability 

of the porous layer on the vertical velocity component along the interface for case 1 with 

different values of 𝑅𝑅𝑅𝑅. Monotonic parabolic curves are observed at 𝑅𝑅𝑅𝑅 = 104. Increasing 𝑅𝑅𝑅𝑅 to 

106 causes a disturbance in this behaviour due to the non-uniform pattern of the streamlines at 

the interface with higher values of 𝑅𝑅𝑅𝑅 at approximately Y = 0.7 and 0.8 for 𝐷𝐷𝐷𝐷 = 10-3 and 10-1, 

respectively. This attributes to the high buoyancy force that introduced due to increasing the 

Rayleigh number and high penetrating through the porous layer due to increasing the Darcy 

number. This leads to that, the main cell moves strongly towards the porous layer. The local 

distribution of the resultant velocity component for case 1, as shown in Figure 10aiii, clarifies 

the effect of the Darcy number on the nanofluid flow inside the cavity. The velocity resultant 

at 𝐷𝐷𝐷𝐷 =10-5 is almost zero compared to the higher value of 𝐷𝐷𝐷𝐷, which means less hydrodynamic 

resistance with high permeability of the porous matrix. At 𝑅𝑅𝑅𝑅 = 104 with 𝐷𝐷𝐷𝐷 = 10-1, the resultant 



of the velocity component reaches a maximum at about Y = 0.1 and 0.7 while its minimum 

occurs at about Y = 0.4. Increasing 𝑅𝑅𝑅𝑅 causes the minimum values to approach zero between Y 

= 0.4 and 0.6 due to the localization of the cell core at this height inside the cavity. 

 Horizontal porous-nanofluid layers (Case 2) 

Figure 10b shows the effect of the permeability parameter (𝐷𝐷𝐷𝐷) on the velocity 

components 𝑈𝑈, 𝑉𝑉 and 𝑅𝑅 for case 2 as S = 0.3, 𝜙𝜙 = 0.1 and 𝐾𝐾𝑟𝑟= 1 when 𝑅𝑅𝑅𝑅 = 104 and 106. At 

𝑅𝑅𝑅𝑅 = 104, as shown in Fig 10bi, the monotonic curves with negative horizontal velocity values 

appear at the interface between the porous-nanofluid layers. The symmetric behaviour with 

negative values results from the main circulation streamlines being undisturbed where the flow 

turns towards the left wall, with a maximum value at 𝑋𝑋 = 0.5. Increasing the Rayleigh number 

to 106 leads to an increase in velocity along the interface with considerable disturbance due to 

the non-uniform paths of the main vortex streamlines in this region.  

Figure 10bii shows the variation of the vertical velocity profile for case 2 for different 

Da values along the horizontal interface line at 𝑌𝑌 = 0.3 for 𝜙𝜙 = 0.1 and 𝐾𝐾𝑟𝑟 = 1 when 𝑅𝑅𝑅𝑅 = 104 

and 106. The effect of changing the Darcy number values seems clearer at lower values of 𝑅𝑅𝑅𝑅. 

Increasing 𝐷𝐷𝐷𝐷 causes the vertical velocity component to increase near the vertical walls where 

the velocity near the left wall is relatively greater than near the right wall. This is due to the 

increase of the buoyancy force close to the heated wall. The increase in Ra value causes a 

change in the trend of the vertical velocity profile at the interface from an oscillatory to a 

uniform pattern with zero values between 𝑋𝑋 = 0.2-0.6, with large velocities near the vertical 

walls. This is because of the elongation of the main cell along the interface line. Figure 10biii 

illustrates the velocity resultant of the nanofluid flow for different Da values along the 

horizontal interface for case 2 as 𝜙𝜙 = 0.1 and 𝐾𝐾𝑟𝑟 = 1 when 𝑅𝑅𝑅𝑅 = 104 and 106. It seems that the 

pattern seen for the velocity resultant in this case is similar to the previous case, though with a 



relatively greater strength than for case 1. However, this pattern breaks with increasing 𝑅𝑅𝑅𝑅, 

with a uniform velocity distribution between 𝑋𝑋 = 0.2 - 0.8 with large velocities near the vertical 

walls of the cavity. This is due to dominant and elongated main circulation pattern along the 

interface. In general, the resultant velocity for case 2 is greater than for case 1. This may be 

because of the effect of the direction of the porous-nanofluid layers. Therefore, it is expected 

that the heat removal from the left-hand heated wall for case 2 will be greater than for case 1.  

4.3  Dimensionless temperature distribution, 𝜽𝜽 

In this section, the dimensionless temperature distribution 𝜃𝜃 along the interface at 𝑋𝑋 = 

0.3 for (i) case 1 and Y = 0.3 for (ii) case 2 will be examined in terms of various effective 

dimensionless parameters such as (a) 𝑅𝑅𝑅𝑅 effect, (b) 𝐾𝐾𝑟𝑟 effect, and (c) 𝑆𝑆 effect, as shown in 

Figure 11. 

  Vertical porous-nanofluid layers (Case 1) 

Figure 11i (a-c) illustrates the dimensionless temperature distribution versus distance 

along the vertical interface for case 1 at X = 0.3. In Figure 11ia, the temperature distribution 

shows a higher value at the lower value of 𝑅𝑅𝑅𝑅 when Y = 0 due to conductive heat transfer and 

a minimum value at the upper part of the interface while this pattern is reversed for high values 

of 𝑅𝑅𝑅𝑅 due to the increase in buoyancy, which in turn dominants the convective heat transfer. 

The effect of increasing the thermal conductivity ratio (porous to nanofluid) on the temperature 

distribution along the interface for case 1 is illustrated in Figure 11ib. At 𝑌𝑌 = 0, the temperature 

increases with increasing 𝐾𝐾𝑟𝑟 due to the density of the isotherms at the bottom of the vertical 

interface line. The temperature increases monotonically along the interface for low values of 

𝐾𝐾𝑟𝑟 up to 𝑌𝑌 = 1, while this behaviour is reversed for high values of 𝐾𝐾𝑟𝑟. This gives an indication 

that the temperature of the heat source for the heated wall is decreased with a reducing thermal 

conductivity ratio. The effect of increasing the porous layer thickness on the temperature 



profile along the interfaces line for case 1 is illustrated in Figure 11ic. The temperature 

decreases with increasing 𝑆𝑆 at 𝑌𝑌 = 0 - 0.8 because of the walls’ distances from the thermal 

source. However, at 𝑌𝑌 ≥ 0.8, the temperature profile behaves in the opposite manner due to the 

vertical interface being further away from the left-hand heated wall, where there is a high 

temperature at the upper part of the enclosure. Increasing the porous layer thickness 𝑆𝑆 means 

increasing the flow resistance, which results in a reduced heat removal from the left-hand 

heated wall. 

(i) 

   

(ii) 

   

       (a)       (b)           (c) 

 Figure 11:  Local distribution of dimensionless temperature along the interface line for (i) case 
1 and (ii) case 2 with different dimensionless parameters (a) 𝑅𝑅𝑅𝑅 effect, (b) 𝐾𝐾𝑟𝑟 effect, and (c) 
𝑆𝑆 effect.     

 



 Horizontal porous-nanofluid layers (Case 2) 

Figure 11ii (a-c) illustrates the dimensionless temperature distribution versus distance 

along the interface for case 2 at 𝑌𝑌 = 0.3 for various parameter effects. At 𝑋𝑋 = 0, 𝜃𝜃 = 0.7 for all 

values of 𝑅𝑅𝑅𝑅 because the base of the horizontal interface is located on the left-hand heated wall 

at 𝑌𝑌 = 0.3, as shown in Figure 10iia. At 𝑋𝑋 ≤ 0.3, the temperature distribution sharply decreases 

with increasing 𝑅𝑅𝑅𝑅, with a minimum value at 𝑅𝑅𝑅𝑅 = 107, while the opposite can be seen for 𝑋𝑋 >

 0.3. This indicates that the removal of heat from the heat source increases with increasing 

Rayleigh number. The variation in the temperature profile along the interface with different 

values of thermal conductivity ratio for case 2 is illustrated in Figure 11iib. The temperature 

profile sharply decreases at 𝑋𝑋 < 0.2 with decreasing 𝐾𝐾𝑟𝑟 values. Low 𝐾𝐾𝑟𝑟 values result in a 

decrease in the temperature distribution along the interface due to the dominance of the main 

circulation along the interface with the convective heat transfer mode at the porous layer. At 

high values of 𝐾𝐾𝑟𝑟, a linear temperature distribution appears along the interface. Figure 11iic 

shows the effect of changing 𝑆𝑆 values on the temperature distribution along the interface 

between the nanofluid and the porous layers. It is interesting to observe that the temperature 

distribution for case 2 is greater than for case 1 at 𝑋𝑋 = 0 for all values of 𝑆𝑆 due to the linear 

heating. Increasing 𝑆𝑆 leads to a rise in the temperature inside the enclosure due to an increase 

in the effects of the area resistance on the nanofluid flow offered by the porous layer, which 

leads to a decrease in the stream function strength of the main cell. This also causes an increase 

in the thermal boundary layer thickness as shown in Figure 8(a-c). At a constant value of 𝑆𝑆, the 

temperature distribution decreases along the interface due to the distance from the left-hand 

heated wall. It is clear that in case 2, the temperature along the interface will be a maximum at 

𝑋𝑋 = 0 when S = 0.1, while the opposite behaviour is seen along the interface up to 𝑋𝑋 = 1. 

Conversely, this pattern satisfies only at the upper part of the interface in case 1 where the 

temperature increases with decreasing porous layer thickness along the interface up to 𝑌𝑌 = 0.7. 



This change in the temperature distribution pattern can be attributed to the effect of the porous-

nanofluid layers’ orientation, which causes results in different behaviour of the streamlines in 

the cavity. 

4.4 Heat transfer rate: Local Nusselt number 

The distribution of the local Nusselt number is illustrated in Figure 12 under the different 

effects of selected parameters such as Darcy number (a) and thermal conductivity ratio (b). The 

left columnn represents the local Nusselt number on the left-hand heated wall (𝑁𝑁𝑁𝑁𝑙𝑙) while the 

right columnn represents the local Nusselt number on the right-hand cooled wall (𝑁𝑁𝑁𝑁𝑟𝑟). The 

upper and lower panels represent case 1 and case 2, respectively. 

The upper panel plots of Figure 12a show the local Nusselt number as a function of 

distance along the left and right walls for case 1 when 𝑅𝑅𝑅𝑅 = 106, 𝜙𝜙 = 0.1, 𝐾𝐾𝑟𝑟 = 1 and 𝑆𝑆 = 0.3 

for different values of 𝐷𝐷𝐷𝐷. The maximum value of the local Nusselt number 𝑁𝑁𝑁𝑁𝑙𝑙 on the left 

heated wall (left column) is located at the bottom portion of the left heated wall that is having 

a maximum temperature of the enclosure due to the linearly heated left sidewall. At 𝑌𝑌 = 0, the 

positive value of the local Nusselt number (heat transport from the wall towards the nanofluid) 

increases with increasing 𝐷𝐷𝐷𝐷 due to an increase in the porous layer’s permeability with high 

streamline strength due to the convective heat transfer mode within the cavity. At 𝑌𝑌 ≥ 0.4,  𝑁𝑁𝑁𝑁𝑙𝑙 

is negative (heat is transported from the nanofluid towards the wall) signifying the reverse heat 

transfer with a minimum 𝑁𝑁𝑁𝑁𝑙𝑙 at the top portion of the hot left-hand sidewall of thy enclosure. 

The minimum change in 𝑁𝑁𝑁𝑁𝑙𝑙 is obtained with low Darcy number (𝐷𝐷𝐷𝐷 = 10-5) due to the high 

resistance offered by the porous matrix. A comparison of effects of changing 𝐷𝐷𝐷𝐷 values on the 

local Nusselt number under the same conditions between case 1 and case 2 can be seen in the 

left-hand column and lower panel plot in Figure 12a, which represents case 2; and it seems a 

similar trend in 𝑁𝑁𝑁𝑁𝑙𝑙 is observed for case 1. However, the maximum value of 𝑁𝑁𝑁𝑁𝑙𝑙 for 𝐷𝐷𝐷𝐷 = 10-



2 when Y = 0 in case 2 is greater than the equivalent value for case 1 under the same conditions. 

This attributes to that, the stream function value in case 2 is higher strength than case 1. Another 

significant point that can be determined from this figure is that some retarding of 𝑁𝑁𝑁𝑁𝑙𝑙 values 

along the vertical left sidewall at 𝐷𝐷𝐷𝐷 = 10-5 which is observed that more receiving heat from 

the heat source in case 2 compared to case 1. Increasing 𝐷𝐷𝐷𝐷 from 𝐷𝐷𝐷𝐷 = 10−5-10−1causes the 

right-hand cold sidewall to receive more heat from the nanofluid, which leads to the local 

Nusselt number taking a negative value. The maximum heat that received by the right-handside 

wall is focused at  𝑌𝑌 = 0 in the case1 while it is maximum values at 𝑌𝑌 = 1 in case 2. This 

difference is due to the main cell effects on the guidance of the hot nanofluid along the right-

handside wall. At 𝐷𝐷𝐷𝐷 = 10-5, 𝑁𝑁𝑁𝑁𝑟𝑟 appears as a different behaviour as shown in the right column 

of Figure 12a. In case 2, 𝑁𝑁𝑁𝑁𝑟𝑟 is almost constant values up to 𝑌𝑌 = 0.3 due to the dominance of 

the conductive heat transfer mode at the porous layer. 𝑁𝑁𝑁𝑁𝑟𝑟 values smoothly increase when 𝑌𝑌 

> 0.3 with maximum values at the top portion of the right-hand cold wall due to the high 

convective heat transfer inside the enclosure. 
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(b) 

      

 Figure 12: Variation of the local Nusselt number along the left hot wall (left column) and 
the right cold wall (right column) with different dimensionless parameters (a) Da effect and  
(b) 𝐾𝐾𝑟𝑟 effect. 

 

Figure 12b shows the effect of 𝐾𝐾𝑟𝑟 on the local Nusselt number along the left and right 

walls of the cavity for case 1 and 2, as shown in the left and right columns of the figure at 𝑅𝑅𝑅𝑅 

= 106, 𝐷𝐷𝐷𝐷 = 10-3, 𝜙𝜙 = 0.1 and 𝑆𝑆 = 0.3. The upper panel plot and left column of Figure 12b 

depicts the effect of 𝐾𝐾𝑟𝑟 on 𝑁𝑁𝑢𝑢𝑙𝑙  along the left-hand hot wall. The trend for 𝑁𝑁𝑁𝑁𝑙𝑙 is similar in 

behaviour to that of the effects of 𝐷𝐷𝐷𝐷 due to the linearly heated left-hand wall. Increasing 𝐾𝐾𝑟𝑟 

value results in a decrease in the heat transfer rate that results from the dominance of the 

conductive heat transfer along the left-hand heated wall up to the upper part of the heated wall 

with a negative value of 𝑁𝑁𝑁𝑁𝑙𝑙. The negative value of 𝑁𝑁𝑁𝑁𝑙𝑙 implies the reverse heat transfer that 

results from increasing the strength of the secondary cell.  In case 2, 𝑁𝑁𝑁𝑁𝑙𝑙 behaves in a similar 

manner to the variation for case 1 except some difference at the top portion of the left wall due 

to the high dense of the isotherm lines for case 2 compared to case 1. The upper panel plot of 

Figure 12b in the right column represents the variation of 𝑁𝑁𝑁𝑁𝑟𝑟 for case 1 along the right-hand 

cold wall at 𝑅𝑅𝑅𝑅 = 106, 𝐷𝐷𝐷𝐷 = 10-3, 𝜙𝜙 = 0.1 and 𝑆𝑆 = 0.3 for different 𝐾𝐾𝑟𝑟. The largest negative 

values for 𝑁𝑁𝑁𝑁𝑟𝑟 are located at the bottom section of the right wall especially at the high value 

of 𝐾𝐾𝑟𝑟.This is die to the moving of the main cell center location at the lower part of the right-



handside wall. 𝑁𝑁𝑁𝑁𝑟𝑟 increases with increasing 𝐾𝐾𝑟𝑟, and vice-versa, as compared to 𝑁𝑁𝑁𝑁𝑙𝑙. This is 

because, with increasing 𝐾𝐾𝑟𝑟, the density of the isotherms is greater along the right-hand cold 

wall, especially at the top of the wall. The oscillatory behaviour of 𝑁𝑁𝑁𝑁𝑟𝑟 at 𝐾𝐾𝑟𝑟 = 100 may stem 

from the effect of the plume of isotherm lines towards the dense lines of the thermal boundary 

layer along the right-hand cold wall (see Figure 7f). In case 2 (lower panel of the right column 

of Figure 12b), under the same conditions and compared with case 1, the maximun values of 

𝑁𝑁𝑁𝑁𝑟𝑟 appear at the top portion of the right-handside wall which is relatively constant values 

when Y < 0.3 for different 𝐾𝐾𝑟𝑟 values. This is due to the porous layer effects on the isotherm 

distribution along the wall which stems from the dominant of the conductive heat transfer (see 

Figures 9(d-f)). However, it is nteresting to note that 𝑁𝑁𝑁𝑁𝑟𝑟 in case 2 has a greater value than for 

case 1.This may be attributed  to the main cell in case 2 having a greater elongation along the 

right-hand cold wall and greater penetration into the porous layer than for case 1. In addition, 

due to the horizontal arrangement of the porous layer under the nanofluid layer, convective 

heat transfer is still dominant in the nanofluid layer, with greater penetration through the porous 

layer for different 𝐾𝐾𝑟𝑟 values compared to case 1. This due to the heat received from the heat 

source for case 2 is augmented over that in case 1.  

4.5 Overall heat transfer and average Nuav 

Figures 13a and b show the variation of the average Nusselt number 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 versus Ra 

along the left-hand heated sidewall for different values of  𝑆𝑆 and 𝐾𝐾𝑟𝑟, respectively. The upper 

and lower panels of the plots represent case 1 and case 2, respectively. It seems that 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 

increases as a logarithmic function of 𝑅𝑅𝑅𝑅 regardless of other parameters. Figure 13a shows the 

relationship between 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 and 𝑅𝑅𝑅𝑅 for various 𝑆𝑆 values as 𝐷𝐷𝐷𝐷 = 10-5, 𝜙𝜙 = 0.1 and 𝐾𝐾𝑟𝑟 = 1. 

Increasing 𝑆𝑆 causes 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 to decrease with 𝑅𝑅𝑅𝑅. This is because at higher values of 𝑆𝑆, the 

resistance area of the porous matrix increases, which leads to the suppression of the convective  



  

   (a)        (b) 

Figure 13: Variation of the average Nusselt number versus Ra, (a) S effect and (b) 𝐾𝐾𝑟𝑟 effect. 
In each plot, the upper panel corresponds to case 1, and the lower panel corresponds to case 2. 

 

heat transfer mode within the porous layer compared to the nanofluid layer. The heat transfer 

rates appear to take constant values at 𝑅𝑅𝑅𝑅 ≤ 104 due to dominant effect of the conductive heat 

transfer regardless of the porous layer thickness, implying there is no effect of the porous layer 

thickness for values of 𝑅𝑅𝑅𝑅 up to 104. At constant value of 𝑆𝑆, it is interesting to note that 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 

increases in a more monotonic manner for case 2 than case 1, indicating that the heat transfer 

rate for case 2 is greater than for case 1. This stems from the fact that the higher intensity of 

the streamlines and denser isotherms along the vertical walls with a wide spot of the isotherm 

lines at the upper region of the cavity, as shown in Figures 8(a-c) and 6(a-c), respectively. 

  Figure 13b shows the variation of heat transfer rates versus Ra along the left-hand 

heated wall as 𝐷𝐷𝐷𝐷 = 10-5, 𝑆𝑆 = 0.2, and 𝜙𝜙 = 0.1 for different 𝐾𝐾𝑟𝑟 values. It seems that there is no 

significant effect of increasing 𝐾𝐾𝑟𝑟 on the rate of heat transfer when 𝐾𝐾𝑟𝑟 >1 and at a low Darcy 

number, 𝐷𝐷𝐷𝐷 = 10−5. This indicates that the lower value of 𝐷𝐷𝐷𝐷 produces considerable resistance 

to any natural convection, despite the higher value of 𝑅𝑅𝑅𝑅 = 107. However, in the nanofluid 

layer, increasing 𝐾𝐾𝑟𝑟 causes the convective heat transfer to increase monotonically with 𝑅𝑅𝑅𝑅. At 



𝑅𝑅𝑅𝑅 = 107, significant increases in 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 for all values of 𝐾𝐾𝑟𝑟 were found in case 2 compared to 

case 1, signifying the importance of the porous-nanofluid layer arrangement in the vertical or 

horizontal direction to heat transfer enhancement inside the cavity. 

  

(a) (b) 

Figure 14: Variation of the average Nusselt number with (a) Da number for different 𝑆𝑆 and 
with (b) porous layer thickness 𝑆𝑆 for different Ra. In each plot, The upper panel corresponds 
to case 1, and the lower panel corresponds to case 2. 

 

Figures 14a and b depict the rate of heat transfer versus the Darcy number and porous 

layer thickness, respectively, along the left-hand heated wall with different parameter values 

for case 1 (upper panel) and case 2 (lower panel). Examination of the different values of porous 

layer thickness 𝑆𝑆 on the average Nusselt number versus 𝐷𝐷𝐷𝐷 as 𝜙𝜙 = 0.1 and 𝐾𝐾𝑟𝑟 = 1 is illustrated 

in Figure 14a. For case 1 (upper panel), at the higher value of 𝑅𝑅𝑅𝑅 used in the current study 

(𝑅𝑅𝑅𝑅=107) the effect of the porous layer’s thickness vanishes at 𝐷𝐷𝐷𝐷 > 10-3, signifying that the 

porous layer behaves as a nanofluid layer, and that the porous matrix essentially has no effect 

in the cavity. 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 decreases suddenly with decreasing 𝐷𝐷𝐷𝐷 values from 𝐷𝐷𝐷𝐷 = 10-3 to 10-5 due 

to the decrease in permeability of the porous layer, though this decline is significantly reduced 

when 𝑆𝑆 = 0.1. This is because the porous layer thickness causes an increase in the resistance 

area produced by the porous layer itself. At values of 𝐷𝐷𝐷𝐷 < 10-5, 𝐷𝐷𝐷𝐷 has no effect on heat 



transfer rate for each value of 𝑆𝑆. For case 2 (lower panel of Figure 14a), it is interesting to 

observe that 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 at 𝐷𝐷𝐷𝐷 = 10-3 for case 1 is higher than case 2 for all values of 𝑆𝑆. Conversely, 

at 𝐷𝐷𝐷𝐷 > 10-3, there is a differential decrease of 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 with more effect of changing 𝑆𝑆 values 

compared to case 1 at 10-5 ≤ 𝐷𝐷𝐷𝐷 ≤ 10-3. This pattern causes 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 to show a greater 

enhancement of heat transfer for case 2 than case 1, especially at low Darcy numbers, 𝐷𝐷𝐷𝐷 < 

10-3, for each value of 𝑆𝑆, indicating the effect of the porous-nanofluid layer direction.  

Plots of the average Nusselt number versus 𝑆𝑆 are used to illustrate the effect of various 

values of 𝑅𝑅𝑅𝑅 on the heat transfer rate, as shown in Figure 14b. The upper and lower panels 

represent case 1 and case 2, respectively. Figure 14b illustrates the effect of 𝑅𝑅𝑅𝑅 for 𝐷𝐷𝐷𝐷 = 10-5, 

𝜙𝜙 = 0.1 and 𝐾𝐾𝑟𝑟 = 1 for case 1 (see the upper panel). As expected, a higher 𝑅𝑅𝑅𝑅 results in higher 

rate of heat transfer. For a given 𝑅𝑅𝑅𝑅, the fluid flow resistance increases with increasing 𝑆𝑆, which 

leads to reduced convection and results in a lower value of 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎. For 𝑅𝑅𝑅𝑅 = 105, the convective 

heat transfer mode is almost entirely suppressed when 𝑆𝑆 ≥ 0.6, while there is no effect of 𝑆𝑆 at 

𝑅𝑅𝑅𝑅 = 104. In case 2 ( see the lower panel of Figure 14b), the enhancement in heat transfer rate 

is more pronounced for case 2 compared to case 1, especially at 𝑆𝑆 = 0.1 for different values of 

𝑅𝑅𝑅𝑅 . 

Figure 15 illustrates the variation of average Nusselt number along the left-hand heated 

wall with logarithmic values of (a) Rayleigh number and (b) Darcy number for case 1 and case 

2 when 𝐷𝐷𝐷𝐷 = 10-3, 𝑆𝑆 = 0.2, 𝜙𝜙 = 0.1, and 𝐾𝐾𝑟𝑟 = 0.1. 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 increases with increasing 𝑅𝑅𝑅𝑅 in both 

cases, as shown in Figure 15a. A slight change occurs for the linear heating for both cases, 

where it behaves in a changeable manner with 𝑅𝑅𝑅𝑅. At 𝑅𝑅𝑅𝑅 > 106 and 𝑅𝑅𝑅𝑅 < 104, 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎values for 

case 1 are greater than in case 2, while the opposite behaviour is seen for 104 ≤ 𝑅𝑅𝑅𝑅 ≤ 106. 

Figure 15b illustrates the variation of heat transfer rate with 𝐷𝐷𝐷𝐷 as 𝑅𝑅𝑅𝑅 = 106, 𝑆𝑆 = 0.2, 𝜙𝜙 = 0.1, 



and 𝐾𝐾𝑟𝑟 = 0.1 for case 1 and 2. At 𝐷𝐷𝐷𝐷 > 10-3, 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 for case 1 is greater than for case 2, whereas 

the opposite pattern, with relatively higher changes  

  
       (a)      (b) 

Figure 15:  Variation of the average Nusselt number with (a) 𝑅𝑅𝑅𝑅, and (b) 𝐷𝐷𝐷𝐷, for case 1 (blue 
line) and case 2 (black line) with linear heating on the left vertical sidewall.  

to the Nusselt number is apparent when 𝐷𝐷𝐷𝐷 < 10-3. In general, at low values of 𝐷𝐷𝐷𝐷, 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 for 

case 2 is greater than for case 1, while the opposite is seen at higher values of 𝐷𝐷𝐷𝐷. 

5 Conclusion 

 The current study analyses the details of fluid flow and heat transfer due to natural 

convection within square enclosures for two cases depending on the alignment of the porous-

nanofluid layers. Case 1 corresponds to the vertical direction, while case 2 corresponds to the 

horizontal direction. In case 1, the porous layer is positioned on the left of the enclosure while 

it is located at the bottom of the enclosure for case 2. In both cases, linear heated boundary 

conditions are applied to the left vertical wall of the cavity while the right vertical wall is 

isothermally cooled; the horizontal walls are kept insulated. The nanofluid is assumed a pure 

fluid (water) with Cu nanoparticles, forming a homogeneous mixture. The interaction between 

the nanofluid layer and porous layer is taken to be permeable. The Galerkin finite element 

method has been used and smooth results have been obtained in terms of streamlines, isotherms 



and heat transfer over wide ranges of the governing parameters such as 𝑅𝑅𝑅𝑅 (103 ≤ Ra ≤ 107), 

𝐷𝐷𝐷𝐷 (10-7 ≤  𝐷𝐷𝐷𝐷  ≤ 1), 𝑆𝑆 (0.1 ≤ 𝑆𝑆 ≤ 0.9), 𝐾𝐾𝑟𝑟 (0.1 ≤ 𝐾𝐾𝑟𝑟 ≤ 100) and 𝜙𝜙 = 0.1. Some of the 

important conclusions can be summarised as follows: 

• Due to the linearly heated left-hand wall and the cold right-hand wall of the cavity, two 

circulating regions were observed, where the main cell moved in the clockwise direction, 

covering most of the cavity area, while there was also a secondary cell moving in the 

anticlockwise manner in the upper left corner of the cavity. 

• In case 1, increasing the porous layer thickness 𝑆𝑆 produced an increase in flow resistance, 

which caused a reduction in the rate of heat removal from the left-hand heated wall, 

especially at low values of 𝐷𝐷𝐷𝐷. 

• Increasing 𝑅𝑅𝑅𝑅 caused the intensity of the streamlines in case 2 to be stronger than in case 

1. 

• Lower values of the thermal conductivity ratio imply greater heat transfer enhancement 

than for high thermal conductivity ratios. 

• The variation of the rate of heat transfer with Ra showed that when 𝐷𝐷𝐷𝐷 = 10-3, 𝑆𝑆 = 0.2, 𝜙𝜙 = 

0.1, and 𝐾𝐾𝑟𝑟 = 0.1 at 𝑅𝑅𝑅𝑅 > 106 and 𝑅𝑅𝑅𝑅 < 104, 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎values for case 1 were greater than for 

case 2, though the opposite behaviour was observed for 104 ≤ 𝑅𝑅𝑅𝑅 ≤ 106, indicative of the 

importance of the alignment of the porous-nanofluid layers in either the vertical or 

horizontal direction.  

• At the low value of 𝐾𝐾𝑟𝑟 , 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 was more enhanced for case 2 compared to case 1, especially 

at the low values of Darcy number 𝐷𝐷𝐷𝐷 < 10−3 whereas the opposite behaviour of 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 

was observed for high values of 𝐷𝐷𝐷𝐷. This indicates to the importance of the alignment of 

the porous-nanofluid layers in eithewr the vertical or the horizontal directions. 
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