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Abstract Fine-grained recognition is a challenging task due to small intra-category 19 
variances. Most of the top-performing fine-grained recognition methods leverage parts of 20 
objects for better performance. Therefore, part annotations which are extremely 21 
computationally expensive are required. In this paper, we propose a novel cascaded deep 22 
CNN detection framework for fine-grained recognition which is trained to detect a whole 23 
object without considering parts. Nevertheless, most of the current top-performing 24 
detection networks use N+1 class (N object categories plus background) softmax loss. The 25 
background category with much more training samples dominates the feature learning 26 
progress where the features are not suitable for object categorisation with fewer samples. 27 
To address this issue, we here introduce two strategies: 1) We leverage a cascaded structure 28 
to eliminate the background. 2) We introduce a novel one-vs-rest loss function to capture 29 
more minute variances from different subordinate categories. Experiments show that our 30 
proposed recognition framework achieves comparable performance against the state-of-the-31 
art, part-free, fine-grained recognition methods on the CUB-200-2011 Bird dataset. 32 
Meanwhile, our method outperforms most of the existing part annotation based methods 33 
and does not need part annotations at the training stage whilst being free from any 34 
annotations at the test stage.  35 
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 48 
1 Introduction    49 
 50 
Recently, a large body of computer vision research has focused on the fine-grained image 51 
recognition problem in several domains, such as animal breeds or species[1-3], plant 52 
species[4, 5] and architectural styles[6]. Fine-grained recognition concerns the task of 53 
distinguishing subordinate categories of the same superordinate category. It is a challenging 54 
task, as fine-grained subordinate categories share a high degree of visual similarity with small 55 
intra-class variances caused by factors such as poses, viewpoints or lighting conditions[7, 8]. 56 
Moreover, fine-grained recognition algorithms perform well within specific fine-grained 57 
domains that can provide valuable insight into a variety of challenging applications[9-13], 58 
such as the recommendation of relevant products in e-commerce, surveillance systems and so 59 
on.  60 

 61 
Fig.1. The top row images show the minute intra-category variances among different subordinate categories 62 
of the bird. The bottom row images show that Faster RCNN with softmax loss frequently misclassifies horses 63 
and sheep into cows, since it focus on capturing more inter-category variances rather than intra-category 64 
variances. 65 

Most of the current state-of-the-art fine-grained recognition systems [14, 15] are part-66 
based methods, as leveraging parts can capture the subtle appearance difference in specific 67 
object parts and achieve better performance. However, part annotations are more difficult to 68 
be obtained than object annotations. In this paper, we formulate the fine-grained recognition 69 
problem as the object detection problem[16, 17] without considering parts. When we train a 70 
standard Faster RCNN, the existence of many background samples makes the feature 71 
representation less discriminative between different subordinate categories and more 72 
confusing between an object category and the background. To address this concern, we 73 
introduce a cascaded structure to eliminate excessive background samples. Our cascaded 74 
framework consists of a standard Faster RCNN and a modified Fast RCNN with a one-vs-rest 75 
loss function. For simplicity, we denote the first standard Faster RCNN as SFNet and the 76 
unified recognition framework as RFNet. An overview of our proposed recognition 77 
framework for fine-grained recognition is shown in Fig.2. In our unified recognition 78 
framework, the standard Faster RCNN first generates primitive detections which usually 79 
contain many background parts. So we first eliminate primitive detections with low scores, 80 
which are more likely to be part of the background, and then use the balanced data to further 81 
train a modified Fast RCNN. Finally, the predicted label of the detected box with the highest 82 
score is used as the predicted label of the whole image. Our unified framework is trained to 83 
detect only the whole object, so it does not need part annotations at the training stage and is 84 

http://www.baidu.com/link?url=3VKpjLncoyRevlgXZLC2KOxuXWjK0zANyvr-YU4gVN6Pyl5SXhWvquXZnFhIcCWxuhEep9fg6jQd78XzZCVF7c-g8BABKm6sGOztbrATZGm
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free from any annotations at the testing stage. 85 

Fine-grained recognition tasks require distinguishing objects at the subordinate level. A 86 
good fine-grained recognition framework should be able to capture variances among different 87 
subordinate categories. However, Fast RCNN and Faster RCNN exploit the N+1 class (N 88 
object categories plus background) softmax loss function that results in an offset between 89 
detections and fine-grained recognition solutions, when referring to feature learning. The 90 
feature learning of the softmax detection network is still affected by the background class 91 
even though we have eliminated most of the background samples using the cascaded structure. 92 
Besides, it is very difficult for the softmax detection network to distinguish the objects with 93 
similar appearance or belonging to semantically related genres. For example, Faster RCNN 94 
can distinguish animals from the background, but it frequently misclassifies horses and sheep 95 
into cows (shown in Fig.1), since horse, sheep and cow are all subordinate categories of the 96 
animals and have significant intra-category variances. To bridge this gap, we replace the 97 
softmax loss function of Fast RCNN with a novel one-vs-rest loss function, which consists of 98 
N (the number of subordinate categories) two-class cross entropy losses, each of which is 99 
responsible for capturing the variances between one specific subordinate category and its 100 
similar categories. This design enables the one-vs-rest loss function to focus on capturing the 101 
variances between each category and its similar categories, suitable for fine-grained 102 
recognition tasks. 103 

 104 
Fig.2. An overview of our RFNet. Red rectangle indicates SFNet (a standard Faster RCNN) and blue rectangle 105 
indicates one-vs-rest Fast RCNN.   106 

The main contributions of this paper are as follows:  107 
1) First, we propose a novel cascaded detection framework for fine-grained recognition 108 

tasks. The unified recognition framework does not need expensive part annotations at the 109 
training stage and is free from any annotations at the testing stage.  110 

2) Second, we introduce a cascaded structure to eliminate excessive background samples, 111 
then train a better detector using the balance data. The cascaded structure enables our 112 
framework to be free from the influence of excessive background samples and the learned 113 
features are suitable for object categorisation. 114 

3) To the best of our knowledge, it is the first time to introduce one-vs-rest detection 115 
network into fine-grained recognition tasks. Due to the ability of the one-vs-rest loss function 116 
to capture intra-category variances, the cascaded detection network is well adapted to fine-117 
grained recognition tasks. 118 
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 119 

2 Related Work  120 
 121 
Fine-grained recognition. Current top-performing fine-grained recognition methods [14, 15] 122 
leverage object parts, as it is widely acknowledged that the subtle difference between objects 123 
can help deliver better performance. [18, 19] focus on localizing and describing 124 
discriminative object parts in the fine-grained domain and explicitly requires both box and 125 
part annotations during the training and testing phases. Aiming at training fine-grained 126 
classifiers without part annotations, [20] introduces co-segmentation to localize the whole 127 
object and then performs alignment across all the images. [21] also leveraged better 128 
segmentation [22, 23] to localize object parts, and proposes an efficient architecture for 129 
inference, but it requires both bounding box and part annotations in training, and even needs 130 
specific annotations during testing. Towards the goal of performing fine-grained recognition 131 
without any annotations, some unsupervised methods have emerged. [24] presented a visual 132 
attention model to support fine-grained classification without any annotations. [25] reported 133 
a method to localize parts with a constellation model, which incorporates CNN into the 134 
deformable part model. Although unsupervised methods [24, 25] are free from box and part 135 
annotations, their performance is still not comparable to part-based methods. The 136 
comparison of part-based methods, bounding box-based methods and unsupervised methods 137 
can be seen in Table 1. In order to well balance the relationship between accuracy and 138 
annotation demands, we here propose a novel cascade detection framework for fine-grained 139 
recognition.  140 
Table 1. The comparison of part-based methods, bounding box-based methods and unsupervised methods. 141 

Methods Advantage  Disadvantage 
Part-based methods High accuracy  Need part annotations 
Box-based methods Only need box annotations  Not accurate enough  
Unsupervised methods Without any annotations Low accuracy 

Object detection. RCNN[26] is one of the most notable region based frameworks for object 142 
detection. It demonstrates state-of-the-art performance on standard detection benchmarks at 143 
the early time and also inspires most of the state-of-the-art detection methods. RCNN first 144 
exploits the standard selective search algorithm[27] to generate hundreds or thousands of 145 
region proposals per image, and then trains a CNN to classify these region proposals. To 146 
further boost the detection performance, the standard Fast RCNN[28] and Faster RCNN[29] 147 
introduced a multi-task loss function simultaneously to classify region proposals and regress 148 
the bounding box coordinates. However, most of the current detection networks use the 149 
softmax loss function and produce a large number of misclassification errors. Recently, [30] 150 
introduced a one-vs-rest loss function in order to reduce misclassification errors in generic 151 
object detection. We here also use the one-vs-rest loss function for fine-grained recognition. 152 
Different from [30], we propose a novel cascaded detection framework for fine-grained 153 
recognition tasks and improve system performance. 154 
 155 
3 The proposed Method 156 
 157 
Our proposed framework consists of a standard Faster RCNN [29], followed by a modified 158 
Fast RCNN with the one-vs-rest loss function. The standard Faster RCNN first generates 159 
primitive detections which usually contain a large number of background parts. We first 160 
eliminate excessive backgrounds in the primitive detections, and then use the balanced data to 161 
further train a one-vs-rest Fast RCNN. Finally, the predicted label of the highest scored 162 
detection box is used as the predicted label of the whole image. The cascaded structure 163 
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enables the one-vs-rest Fast RCNN to be free from the influence of excessive background 164 
components and the learned features are suitable for object categorisation. Besides, the 165 
softmax loss function of the Fast RCNN is replaced by a novel one-vs-rest loss function 166 
which can capture the variances between different subordinate categories. 167 

3.1 Cascaded detection network 168 
 169 
In order to perform fine-grained recognition without part annotations, we propose a cascaded 170 
detection framework to detect the whole object in the image so that it needs only box 171 
annotations at the training stage and is free from any annotations at the testing stage. Our 172 
cascaded framework consists of a standard Faster RCNN, followed by a one-vs-rest Fast 173 
RCNN. When training the standard Faster RCNN, the existence of many background samples 174 
allows the feature representation component to capture less intra-category variance (i.e., 175 
variance between different subcategories) and more inter-category variance (i.e., between the 176 
object category and background), causing many false positives between the ambiguous object 177 
categories (e.g., people mistakenly classify horses and sheep as cows). When training a better 178 
detector, it is necessary to eliminate excessive background samples to achieve good balance. 179 
So after eliminating the background in the primitive detections of the standard Faster RCNN, 180 
we add another one-vs-rest Fast RCNN and train it with the balanced data. The cascaded 181 
structure prevents our framework from the influence of excessive background clutters. Ref. 182 
[15] shows a Fast RCNN network to refine small semantic part candidates generated from a 183 
novel top-down proposal method, a classification sub-network to extract features from the 184 
detected parts, and combines them for recognition. In the same way, our cascaded detection 185 
network can also incorporate object parts in addition to the whole object. Better system 186 
performance is expected when considering image parts. 187 

 188 
Fig.3. The salient difference between a California gull and a Ringed-billed gull lies in the pattern of their 189 
beaks. 190 

Previous work [19] reported a bottom-up selective search method to generate part and 191 
object proposals, which used RCNN to perform object detection. In the experiments, they 192 
discovered that the region proposals are the bottleneck for precise fine-grained recognition. 193 
Salient differences among different fine-grained bird species are more likely to attach to some 194 
small parts. Once the crucial discriminative small parts are lost due to the unreliable proposal 195 
methods, it is hard for the sub-classification network to further distinguish them. For example, 196 
as shown in Fig.3, it is not straightforward to distinguish between a Ringed-billed gull and a 197 
California gull without identifying the pattern of their beaks. In our method, the Faster RCNN 198 
network can generate high quality proposals, since it exploits an effective proposal generation 199 
network RPN. RPN exploits a multi-task loss function used for classification and bounding-200 
box regression of the translation-invariant anchors. The loss function is defined as: 201 
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where i  is the index of an anchor in a mini-batch and ip  is the predicted probability of 203 

anchor i  being an object. The ground truth label 1=ip if the anchor is positive, and 0=ip204 

if the anchor is negative. it  is a vector representing the four parameterized coordinates of the 205 

predicted bounding box, and *
it  is that of the ground truth box associated with a positive 206 

anchor. The classification loss clsL  is the log loss over the two classes (object vs. 207 

background). The regression loss function  regL  is of a robust L1 form, defined as: 208 
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The two terms are normalized with clsN  and regN , and a balancing weight λ .  211 

In our experiments, SFNet can achieve 82.0% accuracy only with average 10 high 212 
quality proposals per image, far less than thousands of bounding boxes produced from the 213 
selective search method [27]. 214 
 215 
3.2 Objective function 216 
 217 
3.2.1. Softmax loss 218 
 219 
Both Fast R-CNN and Faster RCNN drop the one-vs-rest SVM in the RCNN in order to 220 
obtain an end-to-end system. However, softmax loss encourages feature representation to 221 
learn inter-category variances instead of intra-category variances. This can be explained by 222 
the definition of softmax loss in Eqs. 4 and 5.  223 
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Denote , ,n c n ct and p as the ground truth label and the predicted label for the nth  sample and 225 

cth  class. , 1=n ct if the nth sample belongs to the cth class, , 0=n ct otherwise. ,n cnet is the 226 

classification prediction from the neural network. Denote θ as the parameter of the network, 227 
the derivative is : 228 

,
, ,

,

( )
δδ

δθ δθ
= −∑ n c

n c n c
n c

netL p t                                            (5) 229 

Eq.6 shows that the number of the samples belonging to class c influences the gradient of the 230 

parameters. Suppose the prediction errors , ,−n c n cp t have similar magnitudes for all the 231 

samples, then we can infer that one class which has more samples, the magnitude of the 232 
gradient from it will be much larger than the magnitude of the gradient from the other classes. 233 
This results in the network parameters dominated by the class which has much more samples. 234 
Therefore, the existence of the dominated background samples (3/4 of all the training samples) 235 
leads to better feature representation for capturing inter-category variances. 236 
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 237 
3.2.2. One-vs-rest loss 238 
 239 
For the Fast RCNN in the proposed framework, we replace the softamx loss function with a 240 
novel one-vs-rest loss, which is designed to capture variances among different subordinate 241 
categories. One-vs-rest loss consists of N (the number of subordinate categories) two-class 242 
cross entropy losses, and each two-class cross entropy loss function focuses on capturing the 243 
variances between one specific subordinate category and its similar categories. The objective 244 
function is the sum of N two-class cross entropy losses. At the training time, primitive 245 
detections with low scores, which are more likely to be the background, are discarded. This 246 
step is especially important since it makes one-vs-rest Fast RCNN network learn more 247 
discriminative features of different subordinate categories. Then each two-class cross entropy 248 
classifier is trained using the detections which have high scores on that specific category, as 249 
those high scored detections may be true positives or false positives (i.e. detections 250 
misclassified by SFNet whose ground truth labels are similar to that specific category). In this 251 
way, the negative training samples of each two-class cross entropy classifier are of the 252 
categories similar to the specific category, allowing each specific two-class cross entropy 253 
classifier to capture the variances between the specific category and its similar categories. At 254 
the test time, after non maximum suppression (NMS) operation on the primitive detections, 255 
less and higher quality detections are left. Then each of the left detections is again classified 256 
and regressed by the one-vs-rest Fast RCNN, and the output scores (N categories) are 257 
averaged (different from the multiply operation used in [30]) over the primitive scores in a 258 
category-by-category way to retrieve the final scores. Finally, the predicted label of the 259 
highest scored box is used as the predicted label of the whole image. The whole training 260 
process and the testing stage of RFNet are illustrated in Processes 1 and 2, accordingly. 261 

 262 
Process 1: RFNet training process 263 

 264 
Input: Ground truth labels and bounding boxes of the training set 265 

* * * * * *
1 1{( , ), , ( , )}, (1 )= ≤ ≤L N N i iGT L B L B B and L i N denote the ground truth bounding boxes 266 

and its labels.  267 

Output: Parameters of the SFNet sfw and the one-vs-rest Fast RCNN ovsw . 268 

Step1: Fine-tune SFNet using GT  and get the parameters of SFNet sfw . 269 

Step2: Pass the image x from training set through SFNet, and get M primitive detections 270 
( ),φ φ=

sfwD x  is the SFNet function parameterized by sfw . 271 

1 1 1{( , , ), , ( , , )}= L M M MD L B S L B S , ( , , )i i iL B S  are the predicted label, bounding box and 272 

score of the (1 )≤ ≤i th i M primitive detection in image x . 273 

Step3: Discard the primitive background detection ( , , )j j jL B S , if ,α α<jS is a constant 274 

threshold.  275 

Step4: Add primitive detection ( , , )j j jL B S into the training set of the k th two-class cross 276 

entropy losses classifier k
ovsO  (responsible for classifying the k th  subordinate category), if277 

=jL k . 278 
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Step5: Train the k th  two-class cross entropy losses classifier of one-vs-rest Fast RCNN 279 

network using the training samples in k
ovsO , and obtain the final parameters of the one-vs-rest 280 

detection network ovsw . 281 

 282 
 283 

 284 
Process 2: RFNet testing process 285 

 286 
Input: Image x in the testing set, parameters of the SFNet and the one-vs-rest Fast RCNN287 

sf ovsandw w . 288 

Output: label y of image x . 289 

Step1: Pass image x  through SFNet, and get N  primitive detections ( ),φ φ=
sfwD x is well 290 

trained SFNet function parameterized by sfw  at the training stage above. 291 

1 1{( , ), , ( , )}= L N ND B S B S . j jB and S are the predicted bounding box and the score of the 292 

j th  primitive detection in image x , here 1( , , )= L k
j j jS s s  is a −K dimensional vector, K  293 

is the number of classes( 200=K  in CUB-200-2011 dataset), each element k
js  denotes the 294 

probability of the j th  detection being an object of class ,1≤ ≤k k K .  295 

Step2: Input image x  and its N  primitive detections D  into the one-vs-rest Fast RCNN 296 

network. Get N  refined detections and ' ( , )φ=
ovswD x D corresponding to N primitive 297 

detections D . ' ' ' ' ' ' '
1 1{( , ), , ( , )},= L N N j jD B S B S B and S are the refined bounding box and the 298 

score of the j th primitive detection in image ' '1 ', ( , , )= L K
j j jx S s s . 299 

Step3: Computer the final score f
jS of the j th detection as300 

1 '1 '(( ) / 2, , ( ) / 2) ,1 .= + + ≤ ≤Lf K K
j j j j jS s s s s j N  Update the score and the label of the j th301 

detection ' 'max( ) arg max( ),= =f f
j j j jS s L Sand  then ' ' ' ' ' ' '

1 1 1{( , , ), , ( , , )}.= L N N NP L B S L B S  302 

Step4: Finally, the image x ’s label '= iy L  where ' '
1,arg max( , ).= L Ni S S   303 

 304 
                               305 
4 Experimental Results 306 
 307 
4.1 Dataset 308 
 309 
We evaluate the performance of our proposed framework for fine-grained recognition on 310 
CUB-200-2011 dataset [1], which is generally considered as the most extensive and 311 
competitive datasets in the literature. CUB-200-2011 contains 11,788 images of 200 bird 312 
species, each image has a single bounding box annotation, rough segmentations and 15 key 313 
points annotated, which is not used in our method.  314 
 315 
4.2 Implementation details 316 
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 317 
The baseline models of our two networks are based on the VGG16 model [31], as done in 318 
current state-of-the-art methods [14, 15]. All the experiments are performed on a single 319 
NVIDIA K40 GPU. Parameters of the SFNet are initialized from the model pre-trained on the 320 
ImageNet dataset. Parameters of the one-vs-rest Fast RCNN are initialized from the SFNet 321 
model, and the new one-vs-rest loss layer is initialized from a Gaussian distribution.  322 
 323 
4.3 Results and Comparisons 324 
 325 
We first conduct some ablation experiments to analyse the cascaded structure and the one-vs-326 
rest loss with regard to recognition performance, and then move on to the comparison against 327 
the previous work. 328 
 329 
4.3.1. Ablation Experiments 330 
 331 
Table 2. Recognition performance comparisons between SFNet, softmax RFNet and RFNet on CUB-200-2011, 332 
softmax RFNet consists of a standard Faster RCNN (SFNet) and a standard Fast RCNN with softmax loss. 333 

Methods Cascaded structure One-vs-rest loss Accuracy  
SFNet   82.0% 
Softmax RFNet    82.9% 
RFNet   84.0% 

How important is the cascade structure? To evaluate the effectiveness of the cascaded 334 
structure, we compare SFNet with softmax RFNet, which consists of a standard Faster 335 
RCNN (SFNet) and a standard Fast RCNN with the softmax loss function. For softmax 336 
RFNet, the baseline model of the standard Fast RCNN is VGG16 and the parameters are 337 
initialized for the SFNet model as the same as RFNet. From Table 1, we observe that 338 
softmax RFNet improves accuracy by 0.9% over SFNet, and the experiment validates the 339 
effectiveness of the cascaded structure to eliminate the influence of excessive background 340 
samples during feature learning.  341 
Sotfmax loss vs. One-vs-rest loss. The comparison between softmax RFNet and RFNet, 342 
shows that one-vs-rest loss improves accuracy by 1.1% over softmax loss. The results shown 343 
in Fig. 4 verify the ability of the one-vs-rest loss function of further capturing intra-category 344 
variances among the subordinate categories, and also reducing false positives mainly caused 345 
between ambiguous categories.  346 

 347 
Fig. 4. Examples on the CUB-200-2011 dataset of SFNet detections (blue), RFNet detections (red) and ground 348 
truth bounding box (green). Images misclassified by SFNet are rectified by one-vs-rest Fast RCNN network. 349 
 350 
4.3.2. Comparison with other state-of-the-art methods 351 
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 352 
This section shows the comparison results of our method against the previous work. For fair 353 
comparison, we report the results with varying degrees of supervision such as part annotation 354 
or bounding-boxes at the training and the testing time. 355 
Table 3. Recognition performance comparisons of the current state of the art methods on CUB-200-2011, 356 
sorted by the amount of annotation used. RFNet refers to our unified cascade detection framework. “Parts” 357 
refers to using any annotation at the level of parts at all. “BBox” and “Parts” refer to any annotation at the 358 
level of bounding box and part separately. 359 

Method Train Anno. Test Anno. Acc. 
Alignment[32] 
Attention[24] 
NAC[25] 
Bilinear[33] 

n/a 
n/a 
n/a 
n/a 

n/a 
n/a 
n/a 
n/a 

53.6% 
77.9% 
81.0% 
84.1% 

No parts[20] 
Our RFNet 

BBox 
BBox 

n/a 
n/a 

82.0% 
84.0% 

Alignment[32] 
No parts[20] 

BBox 
BBox 

BBox 
BBox 

67.0% 
82.8% 

PS-CNN[21] 
Deep LAC[18] 
SPDA[15] 

BBox+Parts 
BBox+Parts 
BBox+Parts 

BBox 
BBox 
BBox 

76.6% 
80.2% 
84.55% 

FOAF[34] 
Part RCNN[19] 
PN-CNN[14] 

BBox+Parts 
BBox+Parts 
BBox+Parts 

BBox+Parts 
BBox+Parts 
BBox+Parts 

81.2% 
82.0% 
85.4% 

The comparison results illustrated in Table 2 show that our RFNet performs much better 360 
than the previous unsupervised methods [24, 25, 32], and outperforms part-based methods 361 
[18, 19, 21, 34]. RFNet also achieves comparable performance against the state-of-the-art, 362 
part-free, fine-grained recognition method [33]. [33] presents bilinear models that exploit two 363 
CNNs to extract features while we use a single cascaded structure to extract features which is 364 
easier to train. However, our method is slightly worse than the current state-of-the art 365 
methods [14, 15], due to the significant advantage of exploring part information for bird 366 
recognition. [32] is with box level annotation at both the training and testing stages, and 367 
achieves about 13.4% higher accuracy than that without any annotation. [20] introduced box 368 
level annotation at the testing time, and also achieved better performance. All these 369 
developments verify that leveraging more additional supervision results in higher 370 
performance. It is worth emphasizing that RFNet improves the detection and the loss layers 371 
for better feature learning. We anticipate that leveraging part annotations in our cascade 372 
detection framework will result in higher performance due to the additional supervision. 373 
 374 
5 Conclusion and Discussion 375 
 376 
In this paper, we have proposed a novel cascade detection framework for fine-grained 377 
recognition tasks without considering parts. The proposed cascaded detection framework is 378 
well adapted for fine-grained recognition by introducing a one-vs-rest loss function, which 379 
can capture more intra-category variances. Experiments showed that our proposed recognition 380 
framework achieved comparable performance against the other state-of-the-art part free fine-381 
grained recognition methods on the CUB-200-2011 Birds dataset.  382 
The cascaded framework boosts the classification accuracy, but the two networks are 383 
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trained respectively and cannot meet the requirement of many real-time applications. 384 
Taking into account the speed of the proposed framework, and introducing the proposed 385 
solution to applications such as surveillance systems and the recommendation of relevant 386 
products in e-commerce become one of the future research directions. 387 
 388 
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