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Abstract 29 

Common single nucleotide variation in the host accounts for 25% of the variability in the plasma 30 

levels of HIV during the clinical latency stage (viral load setpoint). However, the role of rare variants 31 

and copy number variants remains relatively unexplored. Previous work has suggested copy number 32 

variation of a cluster of β-defensin genes affects HIV load in treatment-naïve sub-Saharan Africans 33 

and rate of response to anti-retroviral treatment. Here we analyse a total of 1827 individuals from 34 

two cohorts of HIV-infected individuals from Europe and sub-Saharan Africa to investigate the role of 35 

β-defensin copy number variation on HIV load at setpoint. We find no evidence of for association of 36 

copy number with viral load. We also compare distribution of β-defensin copy number between 37 

European cases and controls and find no differences, arguing against a role of β-defensin copy 38 

number in HIV acquisition. Taken together, our data argues against an effect of copy number 39 

variation of the β-defensin region in the spontaneous control of HIV infection.  40 
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Introduction 41 

Rates of HIV acquisition and progression, and levels of viral control during the clinical latency period, 42 

show differences between individuals, which are in part due to genetic variation (Shea et al., 2013). 43 

The role of gene copy number variation, where the number of copies of the same gene differs 44 

between individuals, in affecting clinical parameters of HIV infection is of interest (Hollox & Hoh, 45 

2014). In particular, sequence and copy number variation of the killer immunoglobulin receptor 46 

family (KIR) has been shown to be important in control of the progression of HIV (Pelak et al., 2011), 47 

particularly in the context of variation at its ligand HLA-B (Bashirova et al., 2011). The role of CCL3L1 48 

copy number in HIV infection and progression has been much debated (Cantsilieris & White, 2013), 49 

and most studies that used robust approaches to measure copy number failed to find any 50 

association with likelihood of infection or viral load (Hollox & Hoh, 2014, Aklillu et al., 2013, 51 

Bhattacharya et al., 2009, Carpenter et al., 2011, Field et al., 2009, Gonzalez et al., 2005, Urban et 52 

al., 2009). 53 

The β-defensins are a family of multifunctional peptides with roles in inflammation and reproduction 54 

as well as direct antiviral and antimicrobial effects (Semple & Dorin, 2012, Dorin & Barratt, 2014, 55 

Wiens et al., 2014). In humans, eight β-defensin genes show extensive copy number variation as a 56 

block, with a modal copy number of 4 per diploid genome (Hollox et al., 2008). This variation is 57 

reflected in levels of β-defensin in the serum, at least for human β-defensin 2 (hbd2), encoded by 58 

the DEFB4 gene (Jansen et al., 2009, Jaradat et al., 2013). Of the eight β-defensin genes, two (DEFB4 59 

and DEFB103 encoding hbd2 and hbd3 respectively) have been shown to encode peptides that have 60 

anti-HIV activity in vitro (Chang & Klotman, 2004). They have also been shown to have chemotactic 61 

activity, and hbd3 has been shown to stimulate the type 1 interferon-β response to the viral ligand 62 

mimic polyI:C (Semple et al., 2015). 63 

Some studies have suggested a relationship between low β-defensin copy number and increased HIV 64 

susceptibility (Milanese et al., 2009, Mehlotra et al., 2012). However, these studies had small sample 65 

sizes and used often unreliable qPCR assays, increasing the potential false positive rate (Mehlotra et 66 

al., 2016). Other work, using a more robust triplex paralogue ratio test (PRT) approach to measure β-67 

defensin copy number and much larger sample sizes, examined the association of β-defensin CNV 68 

with viral load before initiation of highly-active antiretroviral therapy, and immune reconstitution 69 

following initiation of antiretroviral therapy (Hardwick et al., 2012). This study used a cohort of 70 

Ethiopian and Tanzanian patients who were naïve to antiretrovirals and were at a late stage of HIV 71 

infection (CD4+ T cell count <200 cells/mm3), and found an association of higher copy number with 72 

higher viral load immediately prior to highly-active anti-retroviral therapy (HAART), and with poorer 73 
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immune reconstitution. This was in contrast to functional studies that together implied an anti-HIV 74 

effect of β-defensins (Quiñones-Mateu et al., 2003, Sun et al., 2006, Sun et al., 2005), but some 75 

studies used high concentrations of β-defensins in vitro, often in the absence of serum. At in vivo 76 

levels, under more realistic assay conditions, the predominant effect of β-defensins at the site of 77 

infection may be to act as a chemokine recruiting Th17 cells (Ghannam et al., 2011), which are 78 

particularly susceptible to HIV infection (Gosselin et al., 2010, Alvarez et al., 2013). 79 

Given these results, further exploration of the role of the β-defensin CNV in clinical parameters 80 

relating to HIV infection was warranted. The IAVI Protocol C (IAVI) is a prospective cohort study that 81 

follows HIV progression and transmission longitudinally since seroconversion in a cohort of sub-82 

Saharan Africans from several centres across south and east Africa. The Swiss HIV Cohort study 83 

(SHCS) is a longitudinal study of adult HIV patients recruited from across Switzerland where clinical 84 

and laboratory parameters are followed at 6-months intervals. Both differ from the initial study in 85 

that the viral load at set point (spVL) is the primary clinical variable tested for genetic association, 86 

rather than VL immediately prior to HAART or response to HAART (follow up of CD4 count). This is in 87 

common with other studies investigating the role of host genetic factors in HIV. 88 

Our aim in this study is to further explore the relationship between β-defensin copy number and HIV 89 

infection. We investigate the role of β-defensins in modifying three clinical parameters – HIV 90 

susceptibility, HIV VL at setpoint, and HIV progression. We use a method to type β-defensin copy 91 

number that has been extensively validated and is considerably more robust than alternative 92 

quantitative PCR methods.  93 

 94 

Methods 95 

Ethics and cohort details 96 

All participants from the International AIDS Vaccine Initiative (IAVI) and SHCS cohorts were HIV-1 97 

infected adults. The IAVI cohort was comprised of recent HIV-1 seroconverters (SCs) enrolled from 98 

Kenya, Rwanda, Uganda, and Zambia between 2006 and 2011, under a uniform study protocol 99 

sponsored by IAVI (Amornkul et al., 2013, Price et al., 2011). The procedures for written informed 100 

consent and multidisciplinary research activities were approved by institutional review boards at all 101 

clinical research centres and participating institutions. SHCS was approved by the local Ethics 102 

Committees of all participating centres, and written informed consent was obtained from the 103 

participants. The study has enrolled more than 18,000 HIV-infected individuals to date. 104 
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Sociodemographic and behavioural data are recorded at entry to the study, in particular year of 105 

birth, gender, and the date of the last negative HIV test. Laboratory and clinical data, including viral 106 

load and CD4+ T-cell count, are obtained at each semi-annual follow-up visit.  107 

Β-β-defensin CNV typing 108 

We used a triplex paralogue ratio test (PRT) for determining diploid copy number at the β-defensin 109 

region (Armour et al., 2007, Aldhous et al., 2010, Fode et al., 2011). Briefly, PRT is a form of 110 

quantitative PCR where test and reference loci are amplified by the same primer pair minimising the 111 

differences in amplification kinetics between them. At the endpoint of PCR, the test and reference 112 

products can be distinguished and quantified using capillary electrophoresis. With each PCR, six 113 

positive controls of known copy number are used to generate a calibration curve and normalise 114 

across experiments. In this study, we used the same six samples throughout, which were the same 115 

as used in previous studies, ensuring comparability of data. Data for each cohort were visualised 116 

using scatterplots of results from individual assays and histograms of the results from the three 117 

assays combined.  118 

Data analysis 119 

spVL was determined previously as the geometric mean of the eligible log10 viral load 120 

measurements in each individual (Fellay et al., 2007). Regression models were constructed using the 121 

generalised linear model framework in IBM SPSS Statistics v22. Normalised raw PRT copy number 122 

(i.e. not rounded nor binned) was used as a measure of real underlying copy number of the locus in 123 

logistic regression, linear regression and Cox proportional hazards regression models, as used 124 

previously (Wain et al., 2014). Covariates in the models were sex, age, and principal components of 125 

genetic variation, derived from genomewide SNP genotypes. We repeated all analyses with rounded 126 

(binned) integer copy number estimates and maximum-likelihood estimates of integer copy number 127 

(Aldhous et al., 2010) with no significant change in results. Integer copy number values presented in 128 

Table 1 are from maximum-likelihood analysis calls, consistent with previous publications (Hardwick 129 

et al., 2011, Fode et al., 2011, Wain et al., 2014). 130 

Results and Discussion 131 

We typed 387 samples from the IAVI cohort for β-defensin genomic copy number using a previously-132 

published triplex paralogue ratio test (PRT). Clear evidence of clustering of raw copy number was 133 

observed, however for the IAVI cohort there was some considerable overlap between copy numbers 134 

3 and 4 (Supplementary Figure 1), which is most likelymay to be due to heterogeneity between the 135 
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multiple locations of sample collection and extraction. Of the 387 samples, 302 had matching spVL 136 

data (Table 2). Analysis of the copy number distribution at the 9 different sampling sites showed a 137 

modal copy number of 4 or 5, ranging between 1 and 9 (Table 1), broadly consistent with previous 138 

data. There is a notable difference in frequency of the 6 copy individuals between the current 139 

sample from Lusaka and a previous sample of individuals with unknown HIV status, but this is most 140 

likely due to a sampling artefact. 141 

Using the weighted mean raw copy number values generated by PRT, we tested for association with 142 

log(spVL) using a generalised linear model, with sex, age, and the first three principal components of 143 

genomewide SNP genotype data as covariates. We found no association with β-defensin genomic 144 

copy number (β=0.007, 95%CI -0.064 to 0.077, p=0.853, table 3). 145 

We then typed 3155 individuals for β-defensin genomic copy number from the Swiss HIV cohort 146 

using triplex PRT. Clustering of raw copy numbers was equivalent to previous studies 147 

(Supplementary Figure 1, (Hardwick et al., 2012, Hardwick et al., 2011, Wain et al., 2014). Analysis of 148 

the copy number distribution showed a modal copy number of 4, ranging between 1 and 9 (Table 1), 149 

consistent with previous data. Of these samples, 1525 had matching spVL data (Table 2). Using the 150 

weighted mean raw copy number values generated by PRT, we tested for association with spVL  151 

usingspVL using a generalised linear model, with sex, age, and the first two principal components of 152 

genomewide SNP genotype data as covariates. We found no association with β defensin genomic 153 

copy number (β=-0.02, 95%CI -0.06 to 0.021, p=0.335, table 4). 154 

Previous work had also analysed the association of VL with β-defensin copy number by dividing the 155 

copy number distribution, ranging from 1 to 9, into two discrete categories, 4 or more copies and 156 

fewer than 4 copies. This has the potential to increase power, as a linear response to copy number is 157 

not assumed. However, using the same covariates as above, neither the SHCS cohort nor the IAVI 158 

cohort showed any association (reference category copy number <4, β=-0.015, 95%CI -0.117 to 159 

0.087, p=0.773 for the SHCS cohort, β=-0.22, 95%CI -0.567 to 0.127, p=0.214 for the IAVI cohort). 160 

In both cohorts we found a highly significant association between males and higher spVL values 161 

(Table 3 and Table 4), as has been observed previously (Donnelly et al., 2005, Junghans et al., 1999, 162 

Farzadegan et al., 1998). We also found a significant association with the first principal component 163 

of genetic variation in the IAVI cohort but not the SHCS cohort (Table 3 and Table 4). However, it 164 

should be noted that the first principal component of genetic variation is not comparable between 165 

the studies, and in the IAVI dataset it will measure a greater degree of variation across the 166 
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geographically-distinct populations sampled, reflecting both genetic and confounding environmental 167 

differences between these populations. 168 

An alternative clinical variable which shows evidence of association with host genetic variation is the 169 

rate of progression of HIV from seroconversion to a CD4+ T cell level of <350 cells/mm3 or to 170 

treatment start. Progression data for 229 individuals from the SHCS were available. Using a Cox 171 

regression model we found no statistically significant association with β-defensin copy number 172 

(Exp(B)=1.122, p=0.154, table 5). Similar progression data for the IAVI cohort was available for 301 173 

individuals, and, again, we found no statistically significant association with β-defensin copy number 174 

(Exp(B)=0.985, p=0.829, table 6). Both analyses found a statistically significant relationship with 175 

initial viral load, as expected, and a lower hazard ratio for women relative to men, reflecting a slower 176 

rate of progression in women, as previously observed (Jarrin et al., 2008). 177 

We finally investigated whether there was evidence of association of β-defensin copy number and 178 

risk of acquiring HIV by constructing a case-controln analysis in which the cases are from the SHCS 179 

and the controls areare compared with individuals of European descent of unknown HIV status 180 

previously typed as part of other studies. For controls, wWe used 1156 individuals from a population 181 

cohort from Nottingham, UK and 695 individuals from Leicester, UK (Wain et al., 2014), combined 182 

with 183 UK individuals from the ECACC Human Random Controls cohort (Hardwick et al., 2011). 183 

These individuals were of unknown HIV status, and are treated as controls. Using logistic regression 184 

with case/control as the binary outcome variable, we found no association with β-defensin copy 185 

number (Figure 1, β=0.009, 95%CI -0.042 to 0.061, p=0.725). 186 

Taken together, we find no evidence for association of with HIV susceptibility or spVL. We also find 187 

no evidence of a strong effect on HIV progression rate, although it should be noted that the small 188 

sample size makes it unlikely that we could detect a small- or medium-sized effect. Recent evidence 189 

has shown that common single nucleotide variation at the HLA locus and CCR5 is responsible for 25% 190 

of variability in spVL, and that further studies should be focused on other classes of variation such as 191 

rare SNVs and CNVs (McLaren et al., 2015). With increasing affordability of short read sequencing, 192 

genomewide analysis of CNV, including complex multiallelic CNVs such as the β-defensin locus, is 193 

becoming possible on larger numbers of sequences and ultimately direct genomewide typing of CNV 194 

in large cohorts will reveal the contribution to host variation in HIV response, and response to other 195 

infectious diseases. 196 
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Figure legends 242 

Figure 1 – Cumulative distribution of ββββ-defensin copy number in HIV cases and the general 243 

European population controls. 244 

Data from the Swiss HIV Cohort study (3155 cases) and UK population (2034 controls). 245 
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Tables 

Table 1 – ML integer copy number calls and comparison with other cohorts  

Location β-defensin copy number (frequency)   

1 2 3 4 5 6 7 8 9 Total 

Kigali, 

Rwanda 
0 

1 

(0.02) 

8 

(0.12) 

31 

(0.47) 

16 

(0.24) 

10 

(0.15) 
0 0 0 66 

Masaka, 

Uganda 
0 

4 

(0.09) 

12 

(0.26) 

15 

(0.32) 

8 

(0.17) 

2 

(0.04) 

3 

(0.06) 

1 

(0.02) 

1 

(0.02) 
47 

Kilifi, Kenya 
0 5 (0.2) 

4 

(0.16) 

12 

(0.48) 

3 

(0.12) 

1 

(0.04) 
0 0 0 25 

Kangemi, 

Kenya 
0 0 

1 

(0.11) 

2 

(0.22) 

5 

(0.55) 

1 

(0.11) 
0 0 0 9 

Lusaka, 

Zambia 

1 

(0.01) 

9 

(0.10) 

15 

(0.16) 

30 

(0.32) 

30 

(0.32) 

3 

(0.03) 

4 

(0.04) 

1 

(0.01) 

1 

(0.01) 
94 

Entebbe, 

Uganda 
0 0 

1 

(0.08) 

7 

(0.54) 

2 

(0.15) 

2 

(0.15) 

1 

(0.08) 
0 0 13 

Copperbelt, 

Zambia 
0 3 

10 

(0.24) 

13 

(0.32) 

11 

(0.27) 

3 

(0.07) 

1 

(0.02) 
0 0 41 

Rustenberg, 

South 

Africa 

0 0 
1 

(0.17) 

2 

(0.33) 
3 (0.5) 0 0 0 0 6 

Cape Town, 

South 

Africa 

0 0 0 1 0 0 0 0 0 1 

Lusaka, 

Zambia 

(Hardwick 

0 
3 

(0.03) 

16 

(0.13) 

44 

(0.37) 

24 

(0.20) 

25 

(0.21) 

6 

(0.05) 

1 

(0.01) 

1 

(0.01) 
120 
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et al., 2011) 

SHCS 15 

(0.00) 

118 

(0.04) 

575 

(0.18) 

1326 

(0.42) 

808 

(0.26) 

243 

(0.08) 

54 

(0.02) 

13 

(0.00) 

3 

(0.00) 
3155 

Combined 

European 

controls 

11 

(0.01) 

76 

(0.04) 

390 

(0.19) 

833 

(0.41) 

484 

(0.24) 

191 

(0.09) 

39 

(0.02) 

6 

(0.00) 

4 

(0.00) 
2034 

 

  

Page 18 of 23Annals of Human Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Table 2  Descriptive statistics of the two cohorts analysed in this study 

 Mean (sd) SHCS cohort Mean (sd) IAVI cohort 

n 1525 302 

Sex 1236 (81%) male, 289 (19%) 

female 

178 (59%) male, 124 (41%) 

female 

Year born or age 1964.84 (10.503) 31.7 (8.48) 

β-defensin copy number 4.26 (1.05) 4.18 (1.14) 

Log(spVL) copies/mL 4.36 (0.87) 4.4 (0.76) 

 

 

Table 3  Regression model for association with Log(spVL) for IAVI cohort  

 

 

B=regression coefficient 

Variable B 

95% Wald Confidence Interval for B 

p-value 

Lower Upper 

Sex: (reference=female) 0.371 0.196 0.546 3.4x10
-5

 

Age (years) 0.004 -0.006 0.015 0.392 

Genetic variation principal component 1 3.076 1.599 4.554 4.5x10
-5

 

Genetic variation principal component 2 -1.584 -3.077 -0.090 0.038 

Genetic variation principal component 3 1.094 -0.459 2.647 0.167 

β-defensin copy number 0.007 -0.064 0.077 0.853 
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Table 4 Regression model for association with Log(spVL) for SHCS cohort 

 

Table 5 Cox regression analysis of time-to-death outcome in SHCS cohort 

Variable B 

95% Wald Confidence Interval for B 

p-value 

Lower Upper 

Sex: (reference=female) 0.439 0.330 0.548 2.8x10
-15

 

Age (years) 0.002 -0.002 0.006 0.270 

Genetic variation principal component 1 0.498 -1.650 2.646 0.650 

Genetic variation principal component 2 -0.357 -2.473 1.760 0.741 

β-defensin copy number -0.020 -0.060 0.021 0.335 

Variable B 

Stan

dard 

error 

of B 

Wald-

statistic 
p-value Exp(B) 

Year of Birth 0.004 0.010 0.187 0.668 1.004 

Sex (1=male, 2=female) -0.574 0.249 5.327 0.021 0.563 

Genetic variation principal 

component 1 
2.210 4.923 0.202 0.653 9.115 

Genetic variation principal 

component 2 
-3.521 5.453 0.417 0.519 0.030 

Log (spVL) 0.669 0.117 32.717 1.1x10
-8 

 1.953 
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The Wald statistic is a measure of the departure of B from zero, calculated as the square of the 

estimate of B divided by the square of the estimated standard error of B, will have a chi-squared 

distribution, and is used to calculate the p-value. Exp(B) represents the Hazard ratio. 

 

 

Table 6 Cox regression analysis of time-to-death outcome in IAVI cohort 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Wald statistic is a measure of the departure of B from zero, calculated as the square of the 

estimate of B divided by the square of the estimated standard error of B, will have a chi-squared 

distribution, and is used to calculate the p-value. Exp(B) represents the Hazard ratio. 

 

β-defensin copy number 0.115 0.081 2.036 0.154 1.122 

Variable B SE 
Wald-

statistic 
p-value Exp(B) 

Year of Birth -0.019 0.010 3.510 0.061 0.982 

Sex (1=male, 2=female) -0.487 0.182 7.110 0.008 0.615 

Genetic variation principal 

component 1 
-0.903 1.531 0.348 0.555 0.405 

Genetic variation principal 

component 2 
-3.659 1.581 5.358 0.021 0.026 

Genetic variation principal 

component 3 
1.661 1.878 0.783 0.376 5.267 

Log (spVL) 1.222 0.151 65.055 7.3x10
-16

 3.393 

β-defensin copy number -0.015 0.068 0.047 0.829 0.985 
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Figure 1 – Cumulative distribution of β-defensin copy number in HIV cases and population controls.  

Data from the Swiss HIV Cohort study (3155 cases) and UK population (2034 controls).  
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Supplementary figure 1 

Beta-defensin copy number distributions of (a) IAVI cohort and (b) SHCS. The bar graphs on the left 

shows the distribution of integer copy numbers for each cohort calculated by two different 

approaches (maximum-likelihood and rounding). The histograms on the right show the distribution 

of the raw normalised copy numbers. 

 

a) 

 

 

 

 

b) 
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