

No evidence for association of β -defensin genomic copy number with HIV susceptibility, HIV load during clinical latency, or progression to AIDS

Journal:	Annals of Human Genetics
Manuscript ID	AHG-MS-16-0165.R1
Manuscript Type:	Regular manuscript
Date Submitted by the Author:	14-Nov-2016
Complete List of Authors:	Abujaber, Razan; University of Leicester, Department of Genetics Shea, Patrick; Columbia University, Institute for Genomic Medicine McLaren, Paul; Public Health Agency of Canada, National HIV and Retrovirology Laboratory; University of Manitoba, Department of Medical Microbiology and Infectious Diseases Lakhi, Shabir; International Aids Vaccine Initiative; Zambia-Emory HIV Research Project Gilmour, Jill; International Aids Vaccine Initiative; Imperial College London, IAVI Human Immunology Laboratory Allen, Susan; Emory University, Rollins School of Public Health Fellay, Jacques; Ecole Polytechnique Federale de Lausanne, School of Life Sciences Hollox, Edward; University of Leicester, Genetics
Keywords:	β -defensin, copy number variation, CNV, HIV-1, AIDS
	·

SCHOLARONE[™] Manuscripts

1		
2		
3		
4 5		Page 1 of 16
6 7	1	No evidence for association of β -defensin genomic copy number with HIV susceptibility, HIV load
8 9	2	during clinical latency, or progression to AIDS
10 11	3	
12 13	4	Razan Abujaber (1), Patrick Shea (2), Paul J McLaren (3,4), Shabir Lakhi (5,6), Jill Gilmour (5,7), Susan
14	5	Allen (5,8), Jacques Fellay (9), Edward J Hollox (1), IAVI Africa HIV Prevention Partnership, Swiss HIV
15 16	6	Cohort Study
17 18	7	1. Department of Genetics, University of Leicester, Leicester, UK
19 20	8	2. Institute for Genomic Medicine, Columbia University, New York, New York, USA
21 22	9	3. National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg,
23 24	10	Canada
25	11	4. Department of Medical Microbiology and Infectious Diseases, University of Manitoba,
26 27	12	Winnipeg, Canada.
28 29	13	5. International AIDS Vaccine Initiative (IAVI), New York, New York, USA
30 31	14	6. Zambia-Emory HIV Research Project, Lusaka and Copperbelt, Zambia.
32 33	15	7. IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom.
34 35	16	8 School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
36 37	17	9. Emory University, Atlanta, Georgia, United States of America.
38 39 40	18	
41 42	19	Corresponding author
43 44	20	Dr Ed Hollox,
45 46	21	Department of Genetics, Adrian Building
47 48	22	University of Leicester
49 50	23	Leicester LE1 7RH, UK
51 52	24	Ejh33@le.ac.uk
53 54 55 56	25	+44 116 252 3407
57 58		
59 60		

1		
2 3 4 5		Page 2 of 16
6 7	26	
8 9	27	Keywords
$\begin{array}{c} 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 021\\ 22\\ 34\\ 25\\ 26\\ 27\\ 28\\ 9\\ 03\\ 12\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 04\\ 12\\ 34\\ 45\\ 67\\ 89\\ 05\\ 15\\ 23\\ 45\\ 56\\ 7\\ 89\\ 0\end{array}$	28	β-defensin, copy number variation, CNV, HIV-1, AIDS

1		
2		
3 ⊿		
5		rage 3 01 10
6 7	29	Abstract
8 9	30	Common single nucleotide variation in the host accounts for 25% of the variability in the plasma
10	31	levels of HIV during the clinical latency stage (viral load setpoint). However, the role of rare variants
11 12	32	and copy number variants remains relatively unexplored. Previous work has suggested copy number
13	33	variation of a cluster of β -defensin genes affects HIV load in treatment-naïve sub-Saharan Africans
14 15	34	and rate of response to anti-retroviral treatment. Here we analyse a total of 1827 individuals from
16	35	two cohorts of HIV-infected individuals from Europe and sub-Saharan Africa to investigate the role of
17 19	36	β -defensin copy number variation on HIV load at setpoint. We find no evidence of for association of
10 19	37	copy number with viral load. We also compare distribution of eta -defensin copy number between
20	38	European cases and controls and find no differences, arguing against a role of eta -defensin copy
21 22	39	number in HIV acquisition. Taken together, our data argues against an effect of copy number
23	40	variation of the β -defensin region in the spontaneous control of HIV infection.
24 25		
23 26		
27		
28		
29 30		
31		
32		
33		
34 35		
36		

Page 4 of 16

Introduction

Rates of HIV acquisition and progression, and levels of viral control during the clinical latency period, show differences between individuals, which are in part due to genetic variation (Shea et al., 2013). The role of gene copy number variation, where the number of copies of the same gene differs between individuals, in affecting clinical parameters of HIV infection is of interest (Hollox & Hoh, 2014). In particular, sequence and copy number variation of the killer immunoglobulin receptor family (KIR) has been shown to be important in control of the progression of HIV (Pelak et al., 2011), particularly in the context of variation at its ligand HLA-B (Bashirova et al., 2011). The role of CCL3L1 copy number in HIV infection and progression has been much debated (Cantsilieris & White, 2013), and most studies that used robust approaches to measure copy number failed to find any association with likelihood of infection or viral load (Hollox & Hoh, 2014, Aklillu et al., 2013, Bhattacharya et al., 2009, Carpenter et al., 2011, Field et al., 2009, Gonzalez et al., 2005, Urban et al., 2009). The β -defensins are a family of multifunctional peptides with roles in inflammation and reproduction as well as direct antiviral and antimicrobial effects (Semple & Dorin, 2012, Dorin & Barratt, 2014, Wiens et al., 2014). In humans, eight β -defensin genes show extensive copy number variation as a

block, with a modal copy number of 4 per diploid genome (Hollox et al., 2008). This variation is reflected in levels of β -defensin in the serum, at least for human β -defensin 2 (hbd2), encoded by the DEFB4 gene (Jansen et al., 2009, Jaradat et al., 2013). Of the eight β -defensin genes, two (DEFB4 and DEFB103 encoding hbd2 and hbd3 respectively) have been shown to encode peptides that have anti-HIV activity in vitro (Chang & Klotman, 2004). They have also been shown to have chemotactic activity, and hbd3 has been shown to stimulate the type 1 interferon- β response to the viral ligand mimic polyI:C (Semple et al., 2015).

Some studies have suggested a relationship between low β -defensin copy number and increased HIV susceptibility (Milanese et al., 2009, Mehlotra et al., 2012). However, these studies had small sample sizes and used often unreliable qPCR assays, increasing the potential false positive rate (Mehlotra et al., 2016). Other work, using a more robust triplex paralogue ratio test (PRT) approach to measure β -defensin copy number and much larger sample sizes, examined the association of β -defensin CNV with viral load before initiation of highly-active antiretroviral therapy, and immune reconstitution following initiation of antiretroviral therapy (Hardwick et al., 2012). This study used a cohort of Ethiopian and Tanzanian patients who were naïve to antiretrovirals and were at a late stage of HIV infection (CD4+ T cell count <200 cells/mm³), and found an association of higher copy number with higher viral load immediately prior to highly-active anti-retroviral therapy (HAART), and with poorer

1 2		
2 3		
4 5		Page 5 of 16
6 7	74	immune reconstitution. This was in contrast to functional studies that together implied an anti-HIV
8	75	effect of β -defensins (Quiñones-Mateu <i>et al.,</i> 2003, Sun <i>et al.,</i> 2006, Sun <i>et al.,</i> 2005), but some
9 10	76	studies used high concentrations of β -defensins in vitro, often in the absence of serum. At <i>in vivo</i>
11	77	levels, under more realistic assay conditions, the predominant effect of β -defensins at the site of
12 12	78	infection may be to act as a chemokine recruiting Th17 cells (Ghannam et al., 2011), which are
13 14 15	79	particularly susceptible to HIV infection (Gosselin et al., 2010, Alvarez et al., 2013).
16	80	Given these results, further exploration of the role of the β -defensin CNV in clinical parameters
17 10	81	relating to HIV infection was warranted. The IAVI Protocol C (IAVI) is a prospective cohort study that
19	82	follows HIV progression and transmission longitudinally since seroconversion in a cohort of sub-
20	83	Saharan Africans from several centres across south and east Africa. The Swiss HIV Cohort study
21 22	84	(SHCS) is a longitudinal study of adult HIV patients recruited from across Switzerland where clinical
23	85	and laboratory parameters are followed at 6-months intervals. Both differ from the initial study in
24 25	86	that the viral load at set point (spVL) is the primary clinical variable tested for genetic association,
26	87	rather than VL immediately prior to HAART or response to HAART (follow up of CD4 count). This is in
27 28	88	common with other studies investigating the role of host genetic factors in HIV.
29 30	89	Our aim in this study is to further explore the relationship between β -defensin copy number and HIV
31	90	infection. We investigate the role of β -defensins in modifying three clinical parameters – HIV
32	91	susceptibility, HIV VL at setpoint, and HIV progression. We use a method to type β -defensin copy
33 34	92	number that has been extensively validated and is considerably more robust than alternative
35 36	93	quantitative PCR methods.
37	94	
38 30		
39 40	95	Methods
41 42	96	Ethics and cohort details
43 44	97	All participants from the International AIDS Vaccine Initiative (IAVI) and SHCS cohorts were HIV-1
45	98	infected adults. The IAVI cohort was comprised of recent HIV-1 seroconverters (SCs) enrolled from
46	99	Kenya, Rwanda, Uganda, and Zambia between 2006 and 2011, under a uniform study protocol
47 48	100	sponsored by IAVI (Amornkul et al., 2013, Price et al., 2011). The procedures for written informed
49	101	consent and multidisciplinary research activities were approved by institutional review boards at all
50 51	102	clinical research centres and participating institutions. SHCS was approved by the local Ethics
52	103	Committees of all participating centres, and written informed consent was obtained from the
53 54 55	104	participants. The study has enrolled more than 18,000 HIV-infected individuals to date.

Page 6 of 16

Sociodemographic and behavioural data are recorded at entry to the study, in particular year of
birth, gender, and the date of the last negative HIV test. Laboratory and clinical data, including viral
load and CD4+ T-cell count, are obtained at each semi-annual follow-up visit.

108 <u>*B-*</u>*β*-defensin CNV typing

We used a triplex paralogue ratio test (PRT) for determining diploid copy number at the β -defensin region (Armour et al., 2007, Aldhous et al., 2010, Fode et al., 2011). Briefly, PRT is a form of quantitative PCR where test and reference loci are amplified by the same primer pair minimising the differences in amplification kinetics between them. At the endpoint of PCR, the test and reference products can be distinguished and quantified using capillary electrophoresis. With each PCR, six positive controls of known copy number are used to generate a calibration curve and normalise across experiments. In this study, we used the same six samples throughout, which were the same as used in previous studies, ensuring comparability of data. Data for each cohort were visualised using scatterplots of results from individual assays and histograms of the results from the three assays combined.

119 Data analysis

spVL was determined previously as the geometric mean of the eligible log10 viral load measurements in each individual (Fellay et al., 2007). Regression models were constructed using the generalised linear model framework in IBM SPSS Statistics v22. Normalised raw PRT copy number (i.e. not rounded nor binned) was used as a measure of real underlying copy number of the locus in logistic regression, linear regression and Cox proportional hazards regression models, as used previously (Wain et al., 2014). Covariates in the models were sex, age, and principal components of genetic variation, derived from genomewide SNP genotypes. We repeated all analyses with rounded (binned) integer copy number estimates and maximum-likelihood estimates of integer copy number (Aldhous et al., 2010) with no significant change in results. Integer copy number values presented in Table 1 are from maximum-likelihood analysis calls, consistent with previous publications (Hardwick et al., 2011, Fode et al., 2011, Wain et al., 2014).

131 Results and Discussion

9 132 We typed 387 samples from the IAVI cohort for β-defensin genomic copy number using a previously133 published triplex paralogue ratio test (PRT). Clear evidence of clustering of raw copy number was
134 observed, however for the IAVI cohort there was some considerable overlap between copy numbers
135 3 and 4 (Supplementary Figure 1), which is most likelymay to be due to heterogeneity between the

1 2		
3		
4 5		Page 7 of 16
6 7	136	multiple locations of sample collection and extraction. Of the 387 samples, 302 had matching spVL
8	137	data (Table 2). Analysis of the copy number distribution at the 9 different sampling sites showed a
9 10	138	modal copy number of 4 or 5, ranging between 1 and 9 (Table 1), broadly consistent with previous
11	139	data. There is a notable difference in frequency of the 6 copy individuals between the current
12	140	sample from Lusaka and a previous sample of individuals with unknown HIV status, but this is most
13 14 15	141	likely due to a sampling artefact.
16	142	Using the weighted mean raw copy number values generated by PRT, we tested for association with
17	143	log(spVL) using a generalised linear model, with sex, age, and the first three principal components of
18 19	144	genomewide SNP genotype data as covariates. We found no association with β -defensin genomic
20 21	145	copy number (β=0.007, 95%Cl -0.064 to 0.077, p=0.853, table 3).
22	146	We then typed 3155 individuals for eta -defensin genomic copy number from the Swiss HIV cohort
23 24	147	using triplex PRT. Clustering of raw copy numbers was equivalent to previous studies
25	148	(Supplementary Figure 1, (Hardwick et al., 2012, Hardwick et al., 2011, Wain et al., 2014). Analysis of
26 27	149	the copy number distribution showed a modal copy number of 4, ranging between 1 and 9 (Table 1),
28	150	consistent with previous data. Of these samples, 1525 had matching spVL data (Table 2). Using the
29	151	weighted mean raw copy number values generated by PRT, we tested for association with spVL
30 31	152	usingspVL using a generalised linear model, with sex, age, and the first two principal components of
32	153	genomewide SNP genotype data as covariates. We found no association with β defensin genomic
33 34 25	154	copy number (β=-0.02, 95%Cl -0.06 to 0.021, p=0.335, table 4).
36	155	Previous work had also analysed the association of VL with β -defensin copy number by dividing the
37	156	copy number distribution, ranging from 1 to 9, into two discrete categories, 4 or more copies and
38 39	157	fewer than 4 copies. This has the potential to increase power, as a linear response to copy number is
40	158	not assumed. However, using the same covariates as above, neither the SHCS cohort nor the IAVI
41 42	159	cohort showed any association (reference category copy number <4, β =-0.015, 95%CI -0.117 to
42 43 44	160	0.087, p=0.773 for the SHC <u>S</u> cohort, β =-0.22, 95%Cl -0.567 to 0.127, p=0.214 for the IAVI cohort).
45	161	In both cohorts we found a highly significant association between males and higher spVL values
46	162	(Table 3 and Table 4), as has been observed previously (Donnelly et al., 2005, Junghans et al., 1999,
47 48	163	Farzadegan et al., 1998). We also found a significant association with the first principal component
49	164	of genetic variation in the IAVI cohort but not the SHCS cohort (Table 3 and Table 4). However, it
50 51	165	should be noted that the first principal component of genetic variation is not comparable between
52	166	the studies, and in the IAVI dataset it will measure a greater degree of variation across the
53 54	I	

Page **8** of **16**

167 geographically-distinct populations sampled, reflecting both genetic and confounding environmental
 168 differences between these populations.
 169 An alternative clinical variable which shows evidence of association with host genetic variation is the

rate of progression of HIV from seroconversion to a CD4+T cell level of <350 cells/mm³ or to treatment start. Progression data for 229 individuals from the SHCS were available. Using a Cox regression model we found no statistically significant association with β -defensin copy number (Exp(B)=1.122, p=0.154, table 5). Similar progression data for the IAVI cohort was available for 301 individuals, and, again, we found no statistically significant association with β -defensin copy number (Exp(B)=0.985, p=0.829, table 6). Both analyses found a statistically significant relationship with initial viral load, as expected, and a lower hazard ratio for women relative to men, reflecting a slower rate of progression in women, as previously observed (Jarrin et al., 2008).

We finally investigated whether there was evidence of association of β -defensin copy number and risk of acquiring HIV by constructing a-case-controln analysis in which the cases are from the SHCS and the controls areare compared with individuals of European descent of unknown HIV status previously typed as part of other studies. For controls, wWe used 1156 individuals from a population cohort from Nottingham, UK and 695 individuals from Leicester, UK (Wain et al., 2014), combined with 183 UK individuals from the ECACC Human Random Controls cohort (Hardwick et al., 2011). These individuals were of unknown HIV status, and are treated as controls. Using logistic regression with case/control as the binary outcome variable, we found no association with β -defensin copy number (Figure 1, β =0.009, 95%CI -0.042 to 0.061, p=0.725).

Taken together, we find no evidence for association of with HIV susceptibility or spVL. We also find no evidence of a strong effect on HIV progression rate, although it should be noted that the small sample size makes it unlikely that we could detect a small- or medium-sized effect. Recent evidence has shown that common single nucleotide variation at the HLA locus and CCR5 is responsible for 25% of variability in spVL, and that further studies should be focused on other classes of variation such as rare SNVs and CNVs (McLaren et al., 2015). With increasing affordability of short read sequencing, genomewide analysis of CNV, including complex multiallelic CNVs such as the β -defensin locus, is becoming possible on larger numbers of sequences and ultimately direct genomewide typing of CNV in large cohorts will reveal the contribution to host variation in HIV response, and response to other infectious diseases.

198 Acknowledgements

1		
2 3		
4		Page 9 of 16
5 6		
7	199	Study design: EJH, RA, JF. Data collection and analysis: RA, EJH. Contribution of reagents: PS, PJM, SL,
8 9	200	JG, SA, JF. Manuscript preparation: EJH, JF, PS.
10	201	We would like to thank the Royal Hashemite Court of Jordan for funding a PhD studentship for RA,
11 12	202	Emmanuel Cormier and Matt Price for facilitating the study, and Gurdeep Matharu Lall for technical
13	203	support.
14 15	204	This study has been portly supported by the Cuice Netional Crispes Foundation (Cuice UN/ Cohort
16	204	This study has been party supported by the Swiss National Science Foundation (Swiss Hiv Conort
17	205	study, grant #148522), by SHCS project #651, the SHCS research foundation and NIAID Center for
18 19	206	HIV/AIDS Vaccine Immunology (CHAVI) grant AI06/854.
20	207	Members of the Swiss HIV Cohort Study: Aubert V, Battegay M, Bernasconi E, Böni J, Braun
21 22	208	DL, Bucher HC, Burton-Jeangros C, Calmy A, Cavassini M, Dollenmaier G, Egger M, Elzi L, Fehr J, Fellay
23	209	J, Furrer H (Chairman of the Clinical and Laboratory Committee), Fux CA, Gorgievski M, Günthard H
24	210	(President of the SHCS), Haerry D (deputy of "Positive Council"), Hasse B, Hirsch HH, Hoffmann M,
25 26	211	Hösli I, Kahlert C, Kaiser L, Keiser O, Klimkait T, Kouyos R, Kovari H, Ledergerber B, Martinetti G,
27	212	Martinez de Tejada B, Marzolini C, Metzner K, Müller N, Nadal D, Nicca D, Pantaleo G, Rauch A
28	213	(Chairman of the Scientific Board), Regenass S, Rudin C (Chairman of the Mother & Child Substudy),
29 30	214	Schöni-Affolter F (Head of Data Centre), Schmid P, Speck R, Stöckle M, Tarr P, Trkola A, Vernazza P,
31	215	Weber R, Yerly S.
32 33	24.6	Marchan of MM Destand C. Drive MA. Circula M. Allen C. Karita F. Kingda M. Lakki C. Jacobso M.
34	216	Kemeli A. Genders El. Assels Q. Edward V. Balderski, G. Tang L. Cilward K.
35 36	217	Kamali A, Sanders EJ, Anzala O, Edward V, Bekker L-G, Tang J, Gilmour J
37	218	IAVI Africa HIV Prevention Partnership:
38 20	210	Kigali, Bwanda (Broject San Francisco): Etionne Karita, Brincipal Investigator: Susan Allen, Brincipal
39 40	219	Investigator: Poger Pavingana, Investigator: Kaviteri Kaviterkere, Investigator, Susan Allen, Finicipal
41	220	investigator, koger bayingana, investigator, kayitesi kayitenkore, investigator
42 43	221	Nairobi, Kenya (Kenya AIDS Vaccine Initiative): Omu Anzala, Principal Investigator; Gaudensia Mutua,
44	222	Principal Investigator
45 46	223	Kilifi, Kenya (Center for Geographic Medicine Research—Coast & Kenya Medical Research Institute):
47	224	Eduard L Sanders, Principal Investigator: Peter Mugo, Investigator
48 40	·	
49 50	225	Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) Uganda Research Unit on
51	226	AIDS, Entebbe, Uganda: Anatoli Kamali, Principal Investigator; Rogers Twesigye, Study Coordinator,
52 53	227	John Byabagambi, Study Physician; Florence Babirye, Nurse
54		
55 56		
50 57		
58		
59 60		

1 2		
3 4		Page 10 of 16
5 6		
7	228	Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) Uganda Research Unit on
8 a	229	AIDS, Masaka, Uganda: Anatoli Kamali, Principal Investigator; Eugene Ruzagira, Study Coordinator,
10	230	Agnes Bwanika, Ubaldo Bahemuka, and Freddie Mukasa Kibengo, Study Physicians; Peter Hughes,
11 12	231	Laboratory Manager; Vincent Basajja, Community Liaison Officer
13	232	Lusaka, Ndola and Kitwe, Zambia (Zambia Emory HIV Research Project): William Kilembe, Principal
14 15	233	Investigator; Susan Allen, Principal Investigator; Shabir Lakhi, Principal Investigator; Mubiano
16	234	Inambao, investigator;
17 18	235	Rustenburg, South Africa (Aurum Institute): Mary H. Latka, Principal Investigator; Gavin J
19	236	Churchyard, Investigator; Petra I Kruger, Investigator; Heeran Makkan, Study Coordinator; Candice
∠∪ 21	237	M Chetty-Makkan, Study Coordinator; Ben Makhoana, Community Liaison Officer; Tiro Dinake,
22	238	Nurse; Matsidi Malefo, Senior Research Assistant; Ireen Mosweu, Research Assistant
23 24	239	Cape Town, South Africa (Desmond Tutu HIV Foundation): Linda-Gail Bekker, Principal Investigator;
25 26	240	Keren Middelkoop, Investigator; Surita Roux, Investigator
27 28	241	
20 29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
56		
57 58		
59		
60		

1		
2		
3		
4		Page 11 of 16
5		
6	2/12	Figure legends
1	272	
8	2/12	Figure 1 – Cumulative distribution of B-defensin convinumber in HIV cases and the general
9 10	245	rigure 1 - cumulative distribution of proceeds in copy number in the cases and <u>are general</u>
10	244	<u>European</u> population- controls .
12		
12	245	Data from the Swiss HIV Cohort study (3155 cases) and UK population (2034 controls).
14		
15	246	
16		
17		
18		
19		
20		
21		
22		
23		
24		
20 26		
20 27		
28		
29		
30		
31		
32		
33		
34		
35		
27		
38		
39		
40		
41		
42		
43		
44		
45		
40 ⊿7		
47 18		
49		
50		
51		
52		
53		
54		
55		
56 57		
5/ 50		
00 50		
60		
00		

2		
3 ⊿		
5		Page 12 01 16
6		
7	247	References
8	248	
9	249	Aklillu, E., Odenthal-Hesse, L., Bowdrey, J., Habtewold, A., Ngaimisi, E., Yimer, G., Amogne, W.,
10	250	reconstitution in sub-Saharan Africans <i>BMC infectious diseases</i> 13, 536
11	252	Aldhous, M.C., Bakar, S.A., Prescott, N.J., Palla, R., Soo, K., Mansfield, J.C., Mathew, C.G., Satsangi, J.
12	253	& Armour, J.A. (2010) Measurement methods and accuracy in copy number variation: failure
13	254	to replicate associations of beta-defensin copy number with Crohn's disease. Human
14	255	molecular genetics, 19, 4930-4938.
15	256	Alvarez, Y., Tuen, M., Shen, G., Nawaz, F., Arthos, J., Wolff, M.J., Poles, M.A. & Hioe, C.E. (2013)
16	257	Preferential HIV infection of CCR6+ Th17 cells is associated with higher levels of virus
17	258	receptor expression and lack of CCR5 ligands. J VIPOL 87, 10843-54.
10	259	Cormier F Anzala O Latka MH Bekker LG Allen SA Gilmour L Fast P.F.&
20	261	Partnership, I.a.H.P. (2013) Disease progression by infecting HIV-1 subtype in a
20 21	262	seroconverter cohort in sub-Saharan Africa. Aids, 27, 2775-86.
22	263	Armour, J. a A.L., Palla, R., Zeeuwen, P.L.J.M., Den Heijer, M., Schalkwijk, J. & Hollox, E.J. (2007)
23	264	Accurate, high-throughput typing of copy number variation using paralogue ratios from
24	265	dispersed repeats. Nucleic acids research, 35, e19-e19.
25	266	Bashirova, A.A., Thomas, R. & Carrington, M. (2011) HLA/KIR restraint of HIV: surviving the fittest.
26	267	Annual review of Immunology, 29, 295-317. Rhattacharva T. Stanton I. Kim EX. Kunstman K.I. Phair I.P. Jacobson I.P. & Wolinsky, S.M.
27	269	(2009) Ccl3l1 and hiv/aids suscentibility. <i>Nature medicine</i> , 15, 1112-1115.
28	270	Cantsilieris, S. & White, S.J. (2013) Correlating multiallelic copy number polymorphisms with disease
29	271	susceptibility. Human Mutation, 34, 1-13.
30	272	Carpenter, D., Walker, S., Prescott, N., Schalkwijk, J. & Armour, J.A. (2011) Accuracy and differential
31	273	bias in copy number measurement of CCL3L1 in association studies with three auto-immune
32	274	disorders. BIAL genomics, 12, 418.
33 24	275	Donnelly, C.A. Bartley, I.M. Ghani, A.C. Le Feyre, A.M. Kwong, G.P. Cowling, B.L. Van Sighem, A.L.
34	277	De Wolf, F., Rode, R.A. & Anderson, R.M. (2005) Gender difference in HIV-1 RNA viral loads.
36	278	HIV Med, 6, 170-8.
37	279	Dorin, J.R. & Barratt, C.L. (2014) Importance of beta-defensins in sperm function. <i>Molecular human</i>
38	280	reproduction, 20, 821-6.
39	281	Farzadegan, H., Hoover, D.R., Astemborski, J., Lyles, C.M., Margolick, J.B., Markham, R.B., Quinn, T.C.
40	282	& Vianov, D. (1998) Sex differences in HIV-1 Viral load and progression to AIDS. Lancet, 352,
41	283	Fellay I Shianna K.V. Ge D. Colombo S. Ledergerber B. Weale M. Zhang K. Gumbs C.
42	285	Castagna, A., Cossarizza, A., Cozzi-Lepri, A., De Luca, A., Easterbrook, P., Francioli, P., Mallal,
43	286	S., Martinez-Picado, J., Miro, J.M., Obel, N., Smith, J.P., Wyniger, J., Descombes, P.,
44	287	Antonarakis, S.E., Letvin, N.L., Mcmichael, A.J., Haynes, B.F., Telenti, A. & Goldstein, D.B.
45	288	(2007) A whole-genome association study of major determinants for host control of HIV-1.
46	289	Science, 317, 944-7.
47	290	Field, S.F., Howson, J.M., Maier, L.M., Walker, S., Walker, N.M., Smyth, D.J., Armour, J.A., Clayton,
48	291	Med 15 1115-7
49 50	293	Fode, P., Jespersgaard, C., Hardwick, R.J., Bogle, H., Theisen, M., Dodoo, D., Lenicek, M., Vitek, L.,
50 51	294	Vieira, A. & Freitas, J. (2011) Determination of beta-defensin genomic copy number in
52	295	different populations: a comparison of three methods. PLOS one, 6, e16768.
53	296	Ghannam, S., Dejou, C., Pedretti, N., Giot, JP., Dorgham, K., Boukhaddaoui, H., Deleuze, V., Bernard,
54	297	FX., Jorgensen, C. & Yssel, H. (2011) CCL20 and β -defensin-2 induce arrest of human Th17
55		
56		
57		
58		

1		
2		
3		
4		Page 13 of 16
5		
6		
7	298	cells on inflamed endothelium in vitro under flow conditions. The Journal of Immunology,
2 2	299	186, 1411-1420.
0	300	Gonzalez, E., Kulkarni, H., Bolivar, H., Mangano, A., Sanchez, R., Catano, G., Nibbs, R.J., Freedman,
9	301	B.I., Quinones, M.P. & Bamshad, M.J. (2005) The influence of CCL3L1 gene-containing
10	302	segmental duplications on HIV-1/AIDS susceptibility. Science, 307, 1434-1440.
11	303	Gosselin, A., Monteiro, P., Chomont, N., Diaz-Griffero, F., Said, E.A., Fonseca, S., Wacleche, V., El-Far,
12	304	M., Boulassel, M.R., Routy, J.P., Sekaly, R.P. & Ancuta, P. (2010) Peripheral blood
13	305	CCR4+CCR6+ and CXCR3+CCR6+CD4+ T cells are highly permissive to HIV-1 infection. Journal
14	306	of immunology (Baltimore, Md. : 1950), 184, 1604- <u>16</u> 16.
15	307	Hardwick, R.J., Amogne, W., Mugusi, S., Yimer, G., Ngaimisi, E., Habtewold, A., Minzi, O., Makonnen,
16	308	E., Janabi, M., Machado, L.R., Viskaduraki, M., Mugusi, F., Aderaye, G., Lindquist, L., Hollox,
17	309	E.J. & Aklillu, E. (2012) β -defensin Genomic Copy Number Is Associated With HIV Load and
18	310	Immune Reconstitution in Sub-Saharan Africans. Journal of Infectious Diseases, 206, 1012-
19	311	1019.
20	312	
21	313	Hardwick, R.J., Machado, L.R., Zuccherato, L.W., Antolinos, S., Xue, Y., Shawa, N., Gilman, R.H.,
22	314	Cabrera, L., Berg, D.E. & Tyler-Smith, C. (2011) A worldwide analysis of beta-defensin copy
23	315	number variation suggests recent selection of a high-expressing DEFB103 gene copy in East
24	316	Asia. Human Mutation, 32, 743-750.
25	317	Hollox, E.J., Barber, J.C.K., Brookes, A.J. & Armour, J.a.L. (2008) Defensins and the dynamic genome:
20	318	what we can learn from structural variation at human chromosome band 8p23. 1. Genome
20	319	Research, 18, 1686-1697.
21	320	Hollox, E.J. & Hoh, BP. (2014) Human gene copy number variation and infectious disease. <i>Human</i>
20	321	Genetics, <u>133</u> , 1 <u>217-1233</u> 17 .
29	322	Jansen, P.A., Rodijk-Olthuis, D., Hollox, E.J., Kamsteeg, M., Tjabringa, G.S., De Jongh, G.J., Van
30	323	Vlijmen-Willems, I.M., Bergboer, J.G., Van Rossum, M.M. & De Jong, E.M. (2009) β-Defensin-
31	324	2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically
32	325	relevant concentrations in lesional skin. <i>PLOS one,</i> 4, e4725.
33	326	Jaradat, S., Hoder-Przyrembel, C., Cubillos, S., Krieg, N., Lehmann, K., Piehler, S., Sigusch, B. &
34	327	Norgauer, J. (2013) Beta-defensin-2 genomic copy number variation and chronic
35	328	periodontitis. Journal of dental research, 0022034513504217<u>92, 1035-1040</u>.
36	329	Jarrin, I., Geskus, R., Bhaskaran, K., Prins, M., Perez-Hoyos, S., Muga, R., Hernandez-Aguado, I.,
37	330	Meyer, L., Porter, K. & Dei Amo, J. (2008) Gender differences in Hiv progression to AIDS and
38	331 222	ueach in industrialized countries: slower disease progression following HIV seroconversion in
39	332 222	women. Am J Epidemillo, 108, 532-240.
40	22V 222	(1999) Sey differences in HIV-1 viral load and progression to AIDS. The Lancet 252 590
41	225	Mclaren P Coulonges C Bartha Lenz T Deutsch A Bashirova A Buchhinder S
42	338	Carrington M.N. Cossarizza A. Dalmau I. De Luca A. Goedert I.I. Gurdasani D. Haas
43	330	DW Herbeck IT Johnson FO Kirk GD Lambotte O Luo M Mallal S Van Manen
44	338	D. Martinez-Picado I. Meyer I. Miro I.M. Mullins II. Obel N. Doli G. Sandhu M.S.
45	339	Schuitemaker, H., Shea, P.R., Theodorou, L. Walker, R.D., Weintrob, A.C., Winkler, C.A.
46	340	Wolinsky, S.M., Ravchaudhuri, S., Goldstein, D.R. Telenti, A. De Rakker, P.I. Zagury, J.F. &
47	341	Fellay, J. (2015) Polymorphisms of large effect explain the majority of the host genetic
48	342	contribution to variation of HIV-1 virus load. Proc Natl Acad Sci U S A 112, 14658-14663
<u>⊿0</u>	343	Mehlotra, R.K., Dazard, J.E., John, B., Zimmerman, P.A., Weinberg, A. & Jurevic, R.I. (2012) Conv
-+3 50	344	Number Variation within Human beta-Defensin Gene Cluster Influences Progression to AIDS
50	345	in the Multicenter AIDS Cohort Study. Journal of AIDS & clinical research, 3, 1000184-
51	346	Mehlotra, R.K., Zimmerman, P.A. & Weinberg, A. (2016) Defensingene variation and HIV/AIDS: a
52	347	comprehensive perspective needed. J Leukoc Biol. 99. 687-692.
53		
54		
55		

1		
2		
3		
4		Page 14 of 16
5		
6 7	348	Milanese, M., Segat, L., Arraes, L.C., Garzino-Demo, A. & Crovella, S. (2009) Copy number variation of
8	250	cundromac (1000) 50, 221, 222
9	250 251	Syllui Ulles (1999), 50, 551- <u>55</u> 5. Dolak K. Nood A.C. Folloy, J. Shianna, K.V. Fong S. Urban T.L. Go D. Doluca A. Martinoz
10	227	Pelak, N., Neeu, A.C., Feliay, J., Shidhina, K.V., Felig, S., Olbah, T.J., Ge, D., De Luca, A., Maltinez-
11	252	Latvin N. Memichael A. Havner, P. Telenti A. Carrington M. Goldstein D. Alter G. 8
12	222	Immunology" N.C.E.H.a.V. (2011) Conv. Number Variation of KIR Cones Influences HIV 1
13	334 255	Control Bloc hiology 0 a1001209
14	356	Drice MA Wallis CI Lakhi S Karita E Kamali A Anzala O Sanders El Bekker I.G
15	350	Twesigve R Hunter F Kaleehu P Kavitenkore K Allen S Ruzagira F Mwangome M
16	358	Mutua G Amornkul P.N. Stevens G Pond S.L. Schaefer M. Panathanasonoulos M.A.
17	359	Stevens W. Gilmour, J. & Group, J.F.L.C.S. (2011) Transmitted HIV type 1 drug resistance
18	360	among individuals with recent HIV infection in East and Southern Africa. AIDS research and
10	361	human retroviruses 27, 5-12
20	362	Ouiñones-Mateu, M.E., Lederman, M.M., Feng, Z., Chakraborty, B., Weber, L., Rangel, H.B., Marotta
20	363	M.L. Mirza, M., Jiang, B. & Kiser, P. (2003) Human epithelial [beta]-defensins 2 and 3 inhibit
21	364	HIV-1 replication. <i>Aids</i> , 17, F39-F48.
22	365	Semple, F. & Dorin, J.R. (2012) beta-Defensins: multifunctional modulators of infection,
23	366	inflammation and more? J Innate Immun, 4, 337-348.
24	367	Semple, F., Macpherson, H., Webb, S., Kilanowski, F., Lettice, L., Mcglasson, S.L., Wheeler, A.P., Chen,
25	368	V., Millhauser, G.L., Melrose, L., Davidson, D.J. & Dorin, J.R. (2015) Human beta-D-3
26	369	Exacerbates MDA5 but Suppresses TLR3 Responses to the Viral Molecular Pattern Mimic
27	370	Polyinosinic:Polycytidylic Acid. PLoS Genet, 11, e1005673.
28	371	Shea, P.R., Shianna, K.V., Carrington, M. & Goldstein, D.B. (2013) Host genetics of HIV acquisition and
29	372	viral control. Annual review of medicine, 64, 203-217.
30	373	Sun, L., Demasi, L., Lafferty, M., Goicochea, M., Lu, W. & Garzino-Demo, A. (2006) CCR6 mediates the
31	374	intracellular HIV inhibitory activity of human beta-defensin 2. Retrovirology, 3, S77.
32	375	Sun, L., Finnegan, C.M., Kish-Catalone, T., Blumenthal, R., Garzino-Demo, P., La Terra Maggiore,
33	376	G.M., Berrone, S., Kleinman, C., Wu, Z., Abdelwahab, S., Lu, W. & Garzino-Demo, A. (2005)
34	377	Human beta-defensins suppress human immunodeficiency virus infection: potential role in
35	378	mucosal protection. J Virol, 79, 14318- <u>143</u> 29.
36	379	Urban, T.J., Weintrob, A.C., Fellay, J., Colombo, S., Shianna, K.V., Gumbs, C., Rotger, M., Pelak, K.,
37	380	Dang, K.K., Detels, K., Martinson, J.J., O'brien, S.J., Letvin, N.L., Micmichael, A.J., Haynes, B.F.,
38	381	Carrington, M., Telenti, A., Michael, N.L. & Goldstein, D.B. (2009) CCL3LI and Hiv/AIDS
39	382	Susceptionity. Nat Mea, 15, 1110-1112.
40	383 201	Walli, L.V., Odentilal-Resse, L., Abujaber, K., Sayers, I., Beardsmore, C., Gallard, E.A., Chappell, S.,
41	204 205	M.D. & Holloy, E.L. (2014) Conving number variation of the bota defension genes in our opeans:
42	386	no supporting evidence for association with lung function, chronic obstructive nulmonary
43	387	disease or asthma PLOS one 9 e8/192
44	388	Wiens M.F. Wilson S.S. Lucero C.M. & Smith L.G. (2014) Defensing and viral infection: dispelling
45	389	common misconceptions. <i>PLoS Pathoa</i> . 10. e1004186.
46		······································
47	390	
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
52		
50		
60		
00		

Tables

Table 1 – ML integer copy number calls and comparison with other cohorts

Location	β-defensin copy number (frequency)									
	1	2	3	4	5	6	7	8	9	Total
Kigali,	0	1	8	31	16	10	0	0	0	
Rwanda	0	(0.02)	(0.12)	(0.47)	(0.24)	(0.15)	0	0	0	66
Masaka,	0	4	12	15	8	2	3	1	1	47
Uganda	0	(0.09)	(0.26)	(0.32)	(0.17)	(0.04)	(0.06)	(0.02)	(0.02)	47
Kilifi, Kenya	0	5 (0.2)	4	12	3	1	0	0	0	25
	0	5 (0.2)	(0.16)	(0.48)	(0.12)	(0.04)	0	0	0	25
Kangemi,			1	2	5	1				
Kenya	0	0	(0.11)	(0.22)	(0.55)	(0.11)	0	0	0	9
Lusaka,	1	9	15	30	30	3	4	1	1	~ ~
Zambia	(0.01)	(0.10)	(0.16)	(0.32)	(0.32)	(0.03)	(0.04)	(0.01)	(0.01)	94
Entebbe,			1	7	2	2	1			
Uganda	0	0	(0.08)	(0.54)	(0.15)	(0.15)	(0.08)	0	0	13
Copperbelt,			10	13	11	3	1			
Zambia	0	3	(0.24)	(0.32)	(0.27)	(0.07)	(0.02)	0	0	41
Rustenberg,			1	2						
South	0	0	(0 17)	2 (0 22)	3 (0.5)	0	0	0	0	6
Africa			(0.17)	(0.55)						
Cape Town,										
South	0	0	0	1	0	0	0	0	0	1
Africa										
Lusaka,		3	16	44	24	25	6	1	1	
Zambia	0	(0.03)	(0.13)	(0.37)	(0.20)	(0.21)	(0.05)	(0.01)	(0.01)	120
(Hardwick										

et al., 2011)										
SHCS	15	118	575	1326	808	243	54	13	3	3155
	(0.00)	(0.04)	(0.18)	(0.42)	(0.26)	(0.08)	(0.02)	(0.00)	(0.00)	
Combined European	11	76	390	833	484	191	39	6	4	2034
controls	(0.01)	(0.04)	(0.19)	(0.41)	(0.24)	(0.09)	(0.02)	(0.00)	(0.00)	2034

Table 2Descriptive statistics of the two cohorts analysed in this study

	Mean (sd) SHCS cohort	Mean (sd) IAVI cohort		
n	1525	302		
Sex	1236 (81%) male, 289 (19%)	178 (59%) male, 124 (41%)		
	female	female		
Year born or age	1964.84 (10.503)	31.7 (8.48)		
β-defensin copy number	4.26 (1.05)	4.18 (1.14)		
Log(spVL) copies/mL	4.36 (0.87)	4.4 (0.76)		

Table 3Regression model for association with Log(spVL) for IAVI cohort

		95% Wald Confide	ence Interval for B	
Variable			p-value	
		Lower	Upper	
Sex: (reference=female)	0.371	0.196	0.546	3.4x10 ⁻⁵
Age (years)	0.004	-0.006	0.015	0.392
Genetic variation principal component 1	3.076	1.599	4.554	4.5x10 ⁻⁵
Genetic variation principal component 2	-1.584	-3.077	-0.090	0.038
Genetic variation principal component 3	1.094	-0.459	2.647	0.167
β -defensin copy number	0.007	-0.064	0.077	0.853

B=regression coefficient

Table 4 Regression model for association with Log(spVL) for SHCS cohort

		95% Wald Confide	ence Interval for B	
Variable				p-value
		Lower	Upper	
Sex: (reference=female)	0.439	0.330	0.548	2.8x10 ⁻¹⁵
Age (years)	0.002	-0.002	0.006	0.270
Genetic variation principal component 1	0.498	-1.650	2.646	0.650
Genetic variation principal component 2	-0.357	-2.473	1.760	0.741
β-defensin copy number	-0.020	-0.060	0.021	0.335

Table 5 Cox regression analysis of time-to-death outcome in SHCS cohort

Variable	В	Stan dard error of B	Wald- statistic	p-value	Exp(B)
Year of Birth	0.004	0.010	0.187	0.668	1.004
Sex (1=male, 2=female)	-0.574	0.249	5.327	0.021	0.563
Genetic variation principal component 1	2.210	4.923	0.202	0.653	9.115
Genetic variation principal component 2	-3.521	5.453	0.417	0.519	0.030
Log (spVL)	0.669	0.117	32.717	1.1x10 ⁻⁸	1.953

β -defensin copy number	0.115	0.081	2.036	0.154	1.122
-------------------------------	-------	-------	-------	-------	-------

The Wald statistic is a measure of the departure of B from zero, calculated as the square of the estimate of B divided by the square of the estimated standard error of B, will have a chi-squared distribution, and is used to calculate the p-value. Exp(B) represents the Hazard ratio.

Variable	В	SE	Wald- statistic	p-value	Exp(B)
Year of Birth	-0.019	0.010	3.510	0.061	0.982
Sex (1=male, 2=female)	-0.487	0.182	7.110	0.008	0.615
Genetic variation principal component 1	-0.903	1.531	0.348	0.555	0.405
Genetic variation principal component 2	-3.659	1.581	5.358	0.021	0.026
Genetic variation principal component 3	1.661	1.878	0.783	0.376	5.267
Log (spVL)	1.222	0.151	65.055	7.3x10 ⁻¹⁶	3.393
β -defensin copy number	-0.015	0.068	0.047	0.829	0.985

Table 6 Cox regression analysis of time-to-death outcome in IAVI cohort

The Wald statistic is a measure of the departure of B from zero, calculated as the square of the estimate of B divided by the square of the estimated standard error of B, will have a chi-squared distribution, and is used to calculate the p-value. Exp(B) represents the Hazard ratio.

Figure 1 – Cumulative distribution of β -defensin copy number in HIV cases and population controls. Data from the Swiss HIV Cohort study (3155 cases) and UK population (2034 controls).

Supplementary figure 1

Beta-defensin copy number distributions of (a) IAVI cohort and (b) SHCS. The bar graphs on the left shows the distribution of integer copy numbers for each cohort calculated by two different approaches (maximum-likelihood and rounding). The histograms on the right show the distribution of the raw normalised copy numbers.

