
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tpmr20

Production & Manufacturing Research
An Open Access Journal

ISSN: (Print) 2169-3277 (Online) Journal homepage: http://www.tandfonline.com/loi/tpmr20

Heuristics for solving a multi-model robotic
assembly line balancing problem

Mads Kammer Christensen, Mukund Nilakantan Janardhanan & Peter
Nielsen

To cite this article: Mads Kammer Christensen, Mukund Nilakantan Janardhanan & Peter Nielsen
(2017) Heuristics for solving a multi-model robotic assembly line balancing problem, Production &
Manufacturing Research, 5:1, 410-424, DOI: 10.1080/21693277.2017.1403977

To link to this article:  https://doi.org/10.1080/21693277.2017.1403977

© 2017 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 27 Nov 2017.

Submit your article to this journal 

Article views: 360

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tpmr20
http://www.tandfonline.com/loi/tpmr20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/21693277.2017.1403977
https://doi.org/10.1080/21693277.2017.1403977
http://www.tandfonline.com/action/authorSubmission?journalCode=tpmr20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tpmr20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/21693277.2017.1403977&domain=pdf&date_stamp=2017-11-27
http://crossmark.crossref.org/dialog/?doi=10.1080/21693277.2017.1403977&domain=pdf&date_stamp=2017-11-27


Production & Manufacturing research, 2017
VoL. 5, no. 1, 410–424
https://doi.org/10.1080/21693277.2017.1403977

Heuristics for solving a multi-model robotic assembly line 
balancing problem

Mads Kammer Christensena, Mukund Nilakantan Janardhananb and Peter Nielsenb 
adepartment of Mathematical sciences, aalborg university, aalborg, denmark; bdepartment of Materials and 
Production, aalborg university, aalborg, denmark

ABSTRACT
Topic of balancing assembly lines is of great interest for researchers and 
industry practitioners due to the significant impact it has on increasing 
productivity and efficiency of manufacturing systems. Robots are 
widely applied in manufacturing industries for assembly processes. 
Wide literature has been reported on balancing of robotic assembly 
lines with single and mixed models. Researchers have extensively used 
heuristics and metaheuristics to solve these problems due to their NP-
hard nature. However, no work has been reported on how to balance 
a robotic assembly line with multiple models (MuRALB) with batch 
production. This problem is highly relevant for large-scale assembly of 
products found, e.g. the automotive industry. To authors’ knowledge, 
this is the first attempt to solve this problem. This research proposes 
a novel heuristic to solve type II MuRALB problem. Type II problem 
deals with minimizing the cycle time for a fixed set of robots. Heuristic 
is implemented, and method for scheduling batched production 
with related setup times for a robotic assembly line is presented, 
and based on the analysis conducted, advantage of batching is 
presented. Proposed heuristic is tested on a set of new five datasets, 
and performance of this heuristic and batching is presented in detail.

1. Introduction

Assembly lines are considered a critical part of most production systems that assemble a 
wide variety of products (Hu et al., 2011). Balancing of assembly lines arises as an impor-
tant problem when a new assembly line is designed, or an existing assembly line needs to 
be redesigned/reconfigured (Battaïa & Dolgui, 2013; Liao, 2014). The process of balancing 
lines of various configurations has an extensive history in the literature and is still consid-
ered a significant field of study with new variations – such as systems allowing for rapid 
reconfiguration – still gaining in interest (Gyulai, Kádár, Kovács, & Monostori, 2014). Due 
to the dynamic nature of the demand for different product variants that are required to be 
assembled, it is very necessary to adjust the assembly line setup regularly, which results in 
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increased assembly line operation cost (Altemeier, Helmdach, Koberstein, & Dangelmaier, 
2010).

Assembly lines comprise a set of workstations connected by a conveyor system or sim-
ilar type of material transport system. The assembly of a product is divided into different 
tasks, and each of these tasks is executed on the available workstations (Sivasankaran & 
Shahabudeen, 2014) based on a predetermined precedence relationship. The simple assem-
bly line balancing (ALB) problem primarily aims at allocating tasks equally to all work-
stations in such a manner that all tasks are completed without violating the precedence 
relationships (Becker & Scholl, 2006; Nilakantan, Ponnambalam, Jawahar, & Kanagaraj, 
2015). An assembly line taxonomy has been proposed and classified according to five ele-
ments (Battaïa & Dolgui, 2013):

•  Number of lines to be balanced,
•  Task attributes,
•  Workstation attributes,
•  Constraints to be respected by a feasible solution,
•  Criteria used to distinguish better or when possible the best (optimal) solutions.

The size and complexity of the problem are influenced mainly by the first three elements, 
while the latter two influence the basic nature of the solution method. In addition to these 
classification elements, we propose to add one related to whether humans or robots per-
form the assembly tasks. Due to the specialization in capabilities for robots, this distinction 
seems highly relevant (Levitin, Rubinovitz, & Shnits, 2006). This single-model taxonomy is 
seamlessly integrated with the classification system based on the number of different models 
produced, which distinguishes between single-, mixed-, and multi-model assembly line 
balancing (Liao, 2014; Sivasankaran & Shahabudeen, 2014). In single-model assembly lines, 
the assembly of a single product is considered, whereas mixed- and multi-model assembly 
lines deal with the assembly of more than one product at the same time. In mixed-model 
assembly lines, the assembly of different products is carried out in a chosen intermixed 
sequence with a lot size of one (Bukchin, Dar-El, & Rubinovitz, 2002). In the case of mul-
ti-model assembly lines, the assembly of products in a sequence of batches with intermediate 
setup operations is carried out (van Zante-de Fokkert & de Kok, 1997).

A selection of different high-quality products is one of the criteria widely considered 
when implementing robotic assembly lines (Çil, Mete, & Ağpak, 2016a; Gao, Sun, Wang, & 
Gen, 2009). The emphasis on product diversity makes mixed- and multi-model assembly 
line problems highly relevant for the industry (Boysen, Fliedner, & Scholl, 2008). Multi-
model assembly lines are used primarily to assemble a variety of similar products which 
differ in the task precedence sequence. Different products are assembled in batches, and 
before each batch is assembled, a setup takes place, thereby incurring a setup time (Liao, 
2014). A detailed review of mixed- and multi-model assembly line balancing problems is 
found in (van Zante-de Fokkert & de Kok, 1997) who also present a detailed comparison 
of heuristics used for balancing. Updated reviews of line balancing problems are found in 
(Battaïa & Dolgui, 2013; Boysen et al., 2008). Due to the increasing demand for product 
variety from customers, industry has had to increase the flexibility of assembly line systems. 
Thus, robots are extensively replacing human labor in assembly lines to reduce the increas-
ing costs of greater customizability, and such systems are referred to as robotic assembly 
lines (RAL). Robots can perform a variety of tasks without tiring or requiring breaks and 
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can be equipped with different tools to perform different tasks. Assembly lines with robots 
improve the production rate as well as the quality of the products assembled (Levitin et al., 
2006). Allocating the best fit robot is one of the important questions addressed in an RAL 
(Çil, Mete, & Ağpak, 2016b). Balancing of the robotic assembly line (RALB) mainly deals 
with assigning tasks to workstations and allocating the robot best fit to perform these tasks 
(Rubinovitz, Bukchin, & Lenz, 1993). The literature on balancing a manual single-, mixed-, 
or multi-model assembly line considers various assumptions to facilitate the process’s ease 
of execution or its likeness to reality, as described in Sivasankaran and Shahabudeen (2014). 
One of the most common and inaccurate assumptions for classic assembly line balancing 
(ALB) is that of deterministic production and setup times, an assumption being more pru-
dent when considering robotic assembly line balancing (RALB) (Rubinovitz et al., 1993).

With the advent of RALB and continuous improvements within the field of robotics, 
the assumption of deterministic production and setup times becomes even more plausible. 
As assembly line balancing procedures reduce their variance by implementing robotics 
(Rubinovitz et al., 1993), the relevance of good balancing methods increases. Over the years, 
literature based on RALB with respect to different objectives has grown substantially. The 
literature has addressed two main types of RALB problems extensively. They are the type 
I RALB problem which deals mainly with minimizing the number of workstations for a 
given cycle time and the type II RALB problem dealing with minimizing the cycle time for 
a given number of workstations (Nilakantan et al., 2015). However, most of the focus has 
been on single- and mixed-model robotic assembly lines and the type II RALB problem 
(Rabbani, Mousavi, & Farrokhi-Asl, 2016). Over the years, researchers have addressed 
different objectives, such as minimizing energy consumption and assembly line cost of 
RALB (Li, Janardhanan, Tang, & Nielsen, 2016, in press; Nilakantan, Li, Tang, & Nielsen, 
2017; Nilakantan, Ponnambalam, & Jawahar, 2016). A limited number of contributions 
are reported for robotic assembly line mixed-model setup, and most of those focused on 
minimizing the cycle time (Çil et al., 2016a).

Although both mixed- and multi-model ALB are covered widely in the literature, mul-
ti-model assembly lines with robots have not been treated in any considerable manner, and 
thus, we face a gap in production scheduling. With the increasing interest in low-volume 
construction of customized products, it seems ever more prudent to consider production of 
low-volume batches (Scholl & Becker, 2006). The primary difference between batched and 
individual production runs is found when considering the need for changing the setup of 
the robots when changing their tasks, which is a key focus point of the RALB problem (Gao 
et al., 2009). By allowing multiple identical products to undergo the same set of assembly 
processes without having to reconfigure the robots between single process executions, we 
intend to reduce the time needed to produce each product, while still allowing the produc-
tion of a range of different products. Based on the workflow of the production line, RALB 
problems are categorized in the literature as either straight (traditional) types or U-shaped 
(Mukund Nilakantan & Ponnambalam, 2016).

Due to the complexity of assembly line balancing problems being NP-hard, optimizing 
such problems is computationally difficult for large problem instances (Becker & Scholl, 
2006). In last few decades, heuristics and exact solution procedures have been widely applied 
to solve the ALB and RALB problems (Scholl & Voß, 1997). The advent of metaheuristics and 
its ability to arrive quickly at acceptable solutions to complex problems enabled the timely 
solution of the NP-hard assembly line balancing problems (Nilakantan et al., 2015). We 
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likewise know from literature that the typical company must aggregate and batch (Eriksen 
& Nielsen, 2016) demand for products to achieve a stable input to their manufacturing 
system. The need to aggregate and thus batch products in production context has long been 
known to be a challenging problem (Axsäter, 1981; Wijngaard, 1982). The topic is highly 
significant but has not received much attention in recent research. However, it is well known 
that to stabilize input to manufacturing systems, one wants to reduce the demand variation. 
Demand variation occurs naturally, but batching demand can reduce the impact of vari-
ation while simultaneously reducing the number of setups and thus indirectly increasing 
line efficiency. From the literature study, it can be seen that no work has been reported 
for balancing a robotic assembly line with multi-models and batching. This paper mainly 
presents the following contributions to the field of RALB.

(1)  A mathematical model is developed to minimize cycle time of a multi-model 
robotic assembly line, hereafter referred to as (type II MuRALB).

(2)  A novel heuristic is developed to solve the proposed problem.
(3)  A set of benchmark problems is developed to test the proposed heuristic, and 

computational performance of the heuristic has been tested.

The remainder of this paper is structured as follows: Section 2 describes the problem 
assumption and mathematical model for the proposed MuRALB problem. Section 3 
presents the heuristic proposed to solve the problem along with pseudocode of the 
proposed algorithm. Section 4 illustrates the solving procedure for MuRALB problem 
using a small-sized problem. Section 5 presents the detailed experimental study and 
the results obtained for the proposed problem with different types of dataset problems 
generated and presents the details on how the proposed algorithm handles problems 
of increased sizes. Section 6 summarizes the findings of the paper with possible future 
research directions.

2. Problem formulation and assumptions

An assembly line setup with R robots available to perform T tasks is considered. In this 
paper, we are interested in developing a scheduling heuristic for assembling product batches 
of size B. In this paper, we assume the assembly line to be arranged in a straight line to 
allow full mobility of the robots in question, and precedence relationship (prc) of the tasks 
is considered. For our deliberations on batched production runs in robotic assembly line 
balancing, we consider a single-objective type II MuRALB problem. We are concerned with 
minimizing the total time required to produce a given number of different batches of iden-
tical products. We consider both setup and production times for performing different tasks 
for different robots. Sharing of the tasks among the workstation is not considered. Robots 
used are free to move between the assembly tasks. Spatial restrictions are disregarded in 
this paper for the development of the heuristic for assigning batched assembly tasks. One of 
the major issues while considering production batches instead of single product production 
is the tracking when the first product of the batch has passed through a process and when 
the entire batch has passed. In this paper, we are concerned with enabling the intermixing 
of tasks for different product batches in order to attain the fastest possible production of a 
given number of batches of a certain size.
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2.1. Assumptions

The following assumptions for the MuRALB heuristic are based on those made by Rabbani 
et al. (2016); however, it is different with respect to the robot availability assumption, and 
the assumption with regard to spacing is not considered. Since this study is the first attempt 
to solve a multi-model robotic assembly line balancing problem, and it is well known that 
problem of this nature is NP-hard Rabbani et al. (2016)and computationally hard to solve. 
This study will act as a starting platform for further researches in this area. Hence, due to 
additional complexities involved by adding these constraints, they are not included in this 
paper.

•  Assembly tasks cannot be subdivided. The precedence relations among the tasks are 
distinctive and constant. The precedence graph describes the precedence relations.

•  The processing time of an assembly task is deterministic and depends on the assigned 
robot.

•  Setup times between tasks are deterministic and depend on the assigned robot.
•  Robots are fully mobile, eliminating the need to consider transport time between tasks.
•  The line is balanced for multiple different products.
•  The line is balanced for batches of identical products.
•  The same robot performs the same task in each cycle.
•  One assembly task per product per robot is undertaken at a time.
•  Only one of each type of robot is available for task allocation.

2.2. Mathematical model

The mathematical formulation for the MuRALB problem is developed with the aim of 
minimizing cycle time, and the mathematical formulation is presented. The underlying 
mathematical considerations of the MuRALB heuristic are described by Equations (1), (2), 
(3), and (4), with notation presented.

•  Indices
 t :   Set of assembly tasks t = 1, 2,…..,T
 rt : Set of required tasks rt = 0, rt < t
 r :  Set of robots r = 1, 2…, R

•  Parameters
 Prc : T × T binary matrix of predecessors for tasks t
 sr,t :   Setup time of robot r for processing task t
 pr,t :   Processing time of task i by robot r
 B :     Product batch size

•  Decision variables
 xr,t : 1, if the common task I is assigned to robot r, 0, otherwise
 Ct :  Total cycle time for all products
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Objective: 

Subject to: 

 

 

Equation (1) minimizes the cycle time for all models. Equation (2) is the precedence con-
straints. Equation (3) ensures that each robot is assigned only one task at a time. Equation 
(4) indicates the binary assignment variables.

3. Heuristic Algorithm for MuRALB problem

Heuristic is defined as a technique which seeks good (i.e. near optimal) solutions at rea-
sonable computational cost without being able to guarantee either feasibility or optimality 
(Reeves, 1993). Over the years, heuristics have been used quite often to solve complex real-
world optimization problems. Heuristics can also help to create a solution or improve an 
existing solution by exploring the neighboring solutions based on certain rules or strategies 
(Erel & Sarin, 1998). Scholl and Voß (1997) proposed two types of heuristics for simple 
assembly line balancing problems. Over the years, different researchers have applied heu-
ristics for solving assembly line balancing problems and problems of similar type (Hosseini 
Nasab, Tavana, & Yousefi, 2014). Applying heuristics provides a quick feedback or solution 
in a design process. This helps industry practitioners to modify the required design in a 
reasonable amount of time. The results from heuristic can act a benchmark for a problem 
that is proposed for the first time in the literature. These are the few reasons why heuristics 
have been selected to solve the problem of this nature (Jawahar, Ponnambalam, Sivakumar, & 
Thangadurai, 2014). The assembly line balancing problem has been classified as an NP-hard 
problem (Becker & Scholl, 2006), and the problem considered in this paper also falls under 
this category due to additional constraints included because of the multi-batch production 
and robots used for the assembly. To solve the NP-hard MuRALB problem within a rea-
sonable computation time, we develop a heuristic to solve the problem. Algorithm 1 and 
Algorithm 2 present the two functions of the proposed heuristic algorithm.

Algorithm 1 presents the function OPTIMISER that takes the following inputs: binary 
precedence matrix, a matrix of setup times, and one with the processing times for each task 
for each robot, the size of the production batches, the number of different tasks involved in 
the production, and the number of assignable robots. The OPTIMISER loops until all tasks 
are assigned, incrementing the time index by one for each loop. In the loop, the function 
cycles through all robots for all tasks, checking whether the task in question is available for 
assignment and afterward checking whether any robots are available to complete a task batch 

(1)min C =

T
∑

t=1

R
∑

r=1

xt,r ⋅ (st,r + B × pt,r)

R
∑

r=1

xs,r −

R
∑

r=1

xt,r ≤ 0, ∀s ∈ Prc(t),

(3)
R
∑

r=1

xt,r ∀t ∈ T ,

(4)xt,r ∈ {0, 1}

(2)
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within the time specified by the time counter updated in the outer loop. If a suitable robot 
is found, the robot assignment matrix is updated with the time of completion for the batch; 
the counters for number of assigned tasks, occupancy of the robot, and task readiness are 
updated as well. When all tasks are assigned a robot, the function returns the assignment 
matrix of time of completion.

Algorithm 2 presents the ELIGIBILITY CHECKER function that receives the same inputs 
as the OPTIMISER function and also the trackers for task number, robot number, the 
robot assignments, and the task readiness tracker. The function checks if the precedence 
requirements for the task are met and, if so, proceeds to check if the task can be completed 
in time by the robot in question; this includes considerations of whether the first product 
of the batch has its precedence requirements met and whether the last product of the batch 
will before undergoing the task.

Changing the sequence of products produced is a simple matter of editing the prece-
dence matrix, for example, by requiring the last task of product one to be assigned before 
assigning the first task of product two. If we wish to consider a small setup time between 
identical products, this can be included in our processing times matrix. In the case of 
certain robots being unable to handle a specific assembly task, this can be accounted for 
by assigning an unreasonably high value to the relevant processing time matrix entry. The 
proposed MuRALB heuristic algorithm is coded in C++ and examines the performance by 
implementing it in R using the Rcpp package.

Algorithm 1: Optimiser Function

function oPtiMiser (Precedence requirements, setup times, Processing times
Batch size, no. of robots, no. of tasks)
 while assigned tasks ! tasks do increment time
   for first task,…., last task do
    for first robot,….., last robot do
     if task is eligible then
      if robot is available at ‘time’ then
       update robot assignment entry to time of completion
       increment the ‘assigned tasks’ counter
       update the robot occupancy
       update when the task will be ready for further processing
     end if
     end if
   end for
  end for
 end while 
return robot assignment matrix
end function

Algorithm 2: Eligibility Checker Function

function eLigiBiLitY checKer (task, robot, time, no. of robots, no. of tasks, robot assignment, Precedence matrix, task 
readiness tracker, Batch size, setup times, Processing times)

 construct a vector of precedence requirements from the precedence matrix
 construct a vector of assigned tasks from the robot assignment matrix
 if not all necessary tasks have been assigned previously then return false
 end if 
  if time to complete task in question by robot in question exceeds value of time
    variable then return false
 end if
 return true
 end function
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4. Illustrative example

To illustrate the procedure of assigning robots to tasks, and tasks to workstations, we con-
sider two models assembled by three robots. Each model requires five tasks to complete, 
and their precedence relationships are as shown in Figure 1. All the tasks t are considered 
unique to account for whichever small differences may arise from handling different prod-
ucts. Thus, no combined precedence graphs are possible. In this example, we consider a 
fixed batch size of B = 5. The data we use for our illustrative example are adapted from the 
data used by Rabbani et al. (2016). Data for large size problems are generated using R code 
presented in Appendix 1 since there is no literature available. Table 2 presents the process-
ing times for each task by each robot, and Table 1 shows the setup times for each new task.

Table 3 presents the assignment of batched tasks to robots which Figure 2 illustrates. The 
yellow blocks represent setup time for the assembly tasks represented as blue blocks which 
belong to product one. The red blocks represent the setup time for the assembly tasks for 
product two represented as green blocks. A significant benefit of going forward with the 
batching of robots is the reduction in time spent reconfiguring the robots between tasks. The 
temporal benefit of producing in batches decreases when the batch size increases, which is 
illustrated in Figure 3 in the next section. Figure 3 shows the average production time for 
one product when using the robot specifications of Tables 1 and 2, dependent on the batch 
size. The bottom blue line indicates the average production time for one product when 
disregarding the setup time. As can be understood from Figure 3, the cycle-time benefit of 
batching production arises from the resulting decrease in setup time, thereby approaching 
the simple RALB situation already described in (Gao et al., 2009; Levitin et al., 2006). The 
decrease in time per product is not entirely smooth, which may arise from the reduced 
flexibility introduced by increasing the batch size. The exact benefit of increasing the batch 
size depends on the specific setup and production times for the tasks and robots in question, 
but the general reduction in cycle time per production set is evident.

Figure 1. Precedence relations for the illustrative example.

Table 1. setup time for each robot and task.

Robot

Task

1 2 3 4 5
1 4 8 4 8 4
2 7 6 5 8 7
3 8 5 6 3 3
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5. Experimental study

The computational experiments test the performance of the proposed MuRALB heuristic. 
Since the literature survey showed there is not much work reported, different datasets of 
different sizes are generated to test the heuristic. Different datasets ranging from 10 to 50 
tasks are generated with different combinations of robots available for the assembly process. 

Figure 2. solution for the illustrative example.

Figure 3. average production time for one of each product based on batch size.

Table 2. Processing times for the tasks by robots.

Robot

Task model

1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2
1 13 7 13 7 14 6 5 6 9 14
2 14 8 10 12 12 6 11 13 6 14
3 7 13 11 5 6 7 7 6 9 14

Table 3. assignment of tasks to robots based on algorithm 1.

Robot Task Production time
1 3.2 × B 4.1 × B 5.2 × B 172
2 1.2 × B 2.1 × B 5.1 × B
3 2.2 × B 4.2 × B 1.1 × B 3.1 × B
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The experiments show how the heuristic performs when the problem size changes. The 
study proves (refer Figures 4–8) that the proposed heuristic MuRALB approach remains 
applicable even when the problem size increases. Different sets of precedence relations, setup 
times, and the processing times used for testing are generated randomly using the statistical 
programming language R. In the data generation, setup times are considered higher than 
the production times. Appendix 1 shows the code used for generating Figure 4. Figures 
5, 6, and 7 are also generated using the same procedure. When generating the precedence 
graphs, we require that no batch has tasks from other batches as precedents, the first task 
has no precedents, the final task has all previous tasks as precedents, and no task has the 
final task as precedent. The proposed heuristic is tested on different problem sizes such as a 
20-task problem, 30-task problem, 40-task problem, and 50-task problem. These problems 
are generated with different combinations of products and robots used for the assembly. The 
first problem consists of 20 tasks for two different products assembled by five robots, the 
second problem consists of 30 tasks for three different products assembled by seven robots, 
the third problem consists of 40 tasks for three different products assembled by nine robots, 
and the last problem consists of 50 tasks for four different products assembled by ten robots.

The effect of batch size on production time per product set appears similar across the four 
production setups, with the benefit of batching decreasing as the batch size increases. This 
tendency seems reasonable, as the influence of the setup time decreases when the fraction 
of time spent on setting up becomes smaller relative to the total cycle time. If we were to 
increase the batch size even further, the average set cycle time would tend toward what it 
would be if we disregard the setup time, notwithstanding any obstructions that might occur 
due to the lack of flexibility, as in the case shown in Figure 7 with batch size 4 and 15, Figure 
6 with batch size 9, and Figure 5 with batch size 6. Table 4 displays the performance data 
for batch sizes 1, 4, and 8, with the batch sizes chosen to reflect the greatest variety in the 
set cycle time. The decrease in set cycle time is substantial, which is related to the choice 
of using high setup times, but still underlines the prudence of using MuRALB instead of 
mixed robotic assembly line balancing when striving to minimize cycle time. Table 4 also 
displays the computational times for an Intel(R) Core(TM) i7–4810MQ CPU at 2.80 GHz. 

Table 4. an overview of the performance of the MuraLB heuristic.

Number of tasks Size of batches
Number of 

models
Number of 

robots
Avg.set cycle 

time
Computational 

time, ms
10 1 2 3 50 <1

4 35.5 2
8 32.75 3

20 1 2 5 792 35
4 386 69
8 329 117

30 1 3 7 988 99
4 535 219
8 447 357

40 1 3 9 1098 166
4 539.5 326
8 430 529

50 1 4 10 1067 263
4 500.5 508
8 428 869
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The computational times listed in Table 4 indicate a substantial increase when increasing 
the size of the problem, which, based on Algorithm 1, is related to the increase in total cycle 
time, as the algorithm loops for each time unit increase.

6. Conclusion and managerial implications

In this paper, we study the type II MuRALB problem, for which we strive to minimize the 
total cycle time for the set of different products. The cycle-time minimization is based on 
reducing the number of times a robot must be configured for a new task on a new product. 
We present the mathematical framework for the cycle-time minimization and convert it to a 
conceptual algorithm. This paper proposes a heuristic algorithm for solving the multi-model 

Figure 4. average production time for 20 tasks, five robots.

Figure 5. average production time for 30 tasks, seven robots.
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assembly line balancing problem and has reported how the proposed heuristic algorithm 
works for robotic assembly lines with 10, 20, 30, 40, and 50 tasks with different combina-
tions of batch sizes and robots. The algorithm is implemented in C++ and is applied to solve 
the considered datasets which are generated randomly. This problem serves to visualize 
the concept of configuring a robotic assembly line for batched production. The MuRALB 
heuristic proves to work well on problems beyond illustrative size and provides a signifi-
cant decrease in the average cycle time for one product set when batching a few tasks. The 
benefit of batching tasks fades as the batch size increases, which relates to the setup times 
becoming a smaller fraction of the total cycle time. The MuRALB heuristic performs well 
while solving large problems within a practical time frame but does not consider either 
spatial requirements or reduction in idle time for the robots.

Figure 6. average production time for 40 tasks, nine robots.

Figure 7. average production time for 50 tasks, ten robots.
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Using the MuRALB heuristic algorithm allows production managers to schedule mass 
production of batches of customized products, which gives rise to better-tailored product 
lines to specific consumer groups. The drawbacks of implementing a batched production 
are the increased spatial requirements and the reduced flexibility at the production site. 
The increase in spatial requirements stems from the reduced flexibility, as the products 
may tend to move in bulk, dependent on the setup and production times. We recommend 
the application of metaheuristic algorithms or hybrid optimization approaches (Relich & 
Pawlewski, 2017; Sitek & Wikarek, 2016) to solve the proposed MuRALB problem, as this 
may further improve the efficiency of batched production. Moreover, to account for any 
spatial needs in connection to the batched production, it may prove prudent to add further 
objectives or constraints to the problem at hand.
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Appendix 1. Larger Example Data Sets

#MuRALB for 20 tasks with Five Robots ####
set. Seed (40)

Precedence10.1<- rbinom (100, c (0, 1), c (0.9, 0.5))
Matrix 10.1 <- matrix (Precedence10.1, nrow= 10, ncol= 10)
for (i in 1:10) {
 Matrix10.1 [i, 1] <- 0
 Matrix10.1 [i, 10] <- 1
 Matrix10.1 [10, i] <- 0
 Matrix10.1 [i, i] <- 0
}
Precedence10.2 <- rbinom (100, c (0, 1), c (0.9, 0.5))
Matrix 10.2 <- matrix (Precedence10.2, nrow= 10, ncol= 10)
for (i in 1:10) {
 Matrix10.2 [i, 1] <- 0
 Matrix10.2 [i, 10] <- 1
 Matrix10.2 [10, i] <- 0
 Matrix10.2 [i, i] <- 0
}
Matrix10.0 <- matrix (0, nrow= 10, ncol= 10)

Precedence2 <- as.vector (rbind (cbind (Matrix10.1, Matrix10.0),
cbind (Matrix 10.0, Matrix 10.2)))
Tasks2 <- 20
Robots2 <- 5
Solution2 <- 1:15
microbenchmark. solution2 <- microbenchmark (for (Batch2 in 1:15) {
 Solution2 [Batch2] <- max (Optimizer (Precedence2, Production2, Setup2, Batch2, Tasks2, 
Robots2))
} )
For (Batch2 in 1:15) {
 Solution2 [Batch2] <- max (Optimizer (Precedence2, Produciton2, Setup2, Batch2, Tasks2, 
Robots2))
}

Normalized2 <- Solution2 [1:15] / (1:15)

plot (Normalized2, type = “b”, main= “20˽tasks ˽ with˽Five˽Robots”,
xlab = “Batch˽Size”, ylab =”Time ˽ per ˽ product ˽ set “ )
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