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Abstract

This thesis focuses on examining potential impacts that structural breaks impose

on volatility modelling via GARCH models. After incorporating structural breaks

detected by the modified ICSS of Sanso et al. (2004) into conventional GARCH

models, reduced volatility persistence is obtained for stock and foreign exchange

returns in both China and the UK. A unidirectional volatility spillover is found going

from stock to foreign exchange market for both countries, and ignoring structural

breaks can lead to biased spillover patterns. These findings are well supported by

comprehensive Monte Carlo simulations.
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Thesis Introduction

Volatility has widely been used as one of the most important indicators in many fi-

nancial activities, including asset pricing, hedging and devising other trading strate-

gies; it also provides economic implications for regulatory policies. As a result,

volatility has become one of the most crucial factors that have drawn considerable

attention to both academics and practitioners. Moreover, according to Ross (1989),

in an arbitrage free economy, the volatility of prices is directly related to the degree

to which the information flows to the market. Therefore, by studying the volatility

of financial markets, it also helps to better understand and forecast how markets

react by the arrival of new information.

It is well known that volatility measures the variation of individual observation from

its average in one data series; high-volatility indicates a more volatile financial mar-

ket than low-volatility of which a market is recognized as relatively stable. One

stylized feature of this time-varying volatility is the volatility clustering, describ-

ing a phenomenon where large movements tend to be followed by ones with similar

scale, forming temporal clusters within certain length of time. This feature is com-

monly captured by the Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) model introduced by Bollerslev (1986). Developed on the basis of the Au-

toregressive Conditional Heteroskedasticity (ARCH) model (Engle, 1982), GARCH

not only takes account of the previous error terms as the way in an ARCH model,

it is also built conditionally on the previous volatilities when modelling the current

volatility. This entitles GARCH with more attractive properties permitting a parsi-

monious structure yet providing convincing statistical inferences. Literature in this

area is substantial (see, for instance, Mandelbrot, 1963; Oh et al., 2008; Tseng and

Li, 2011).

On the other hand, it is necessary not only to study one single financial asset, but

also to perceive the interactions across various financial markets. Due to the rising

interdependence between financial markets, the impacts caused by significant events

or shocks to one market can be passed onto another market in the form of volatility.

Such volatility spillover effects can be described as the causality-in-variance in the

1



CHAPTER 0. THESIS INTRODUCTION 2

sense of Granger (1969), which defines the causality between two variables as how

much of the current value of one variable can be explained by the past values of

the other variable (Mantalos and Shukur, 2010). Therefore, by investigating such

transmission of information, it can directly benefit investors holding multiple assets

positions to gain alternative strategies to manage the potential exposures. In this

context, a large number of research has been carried out on investigating this type

of linkage between two financial markets. One type of interest lies in evaluating

the transmission of influences between stock markets in different nations. Chou

et al. (1999) studied the interactions between stock markets of Taiwan and the US;

analysing the daily close-to-open and open-to-close stock returns from 1991 to 1994

by GARCH models and a bivariate BEKK model of Engle and Kroner (1995), a

one-way causality was pinned to flow from the US market to Taiwan, especially for

the case using open-to-close returns. Using similar approach, Lee (2009) assessed

daily stock prices over the period from 1985 to 2004 of six Asian countries, namely,

Taiwan, Japan, Singapore, India, Hong Kong and South Korea; volatility spillover

effects were found within five countries except India, the reason of which was pos-

tulated to be geographic. Moreover, Moon and Yu (2010) investigated the spillover

effects of stock markets between the US and China via variations of a GARCH

(1,1)-M model (Engle and Granger, 1987); results from examining daily stock prices

from 2005 to 2007 showed evidences of volatility spillovers in both direction between

markets in study. They further noted that the more volatile the US market tended

to lead to a less volatile market in China.

With respect to the recent studies, focuses have extended to study such causal re-

lationship between stock markets and foreign exchange markets. In addition to the

fact that both stock prices and foreign exchange rates are important indicators of

economic strengths and degree of development, it is believed that a causal relation-

ship exists between the two assets based on two models for determination of the

exchange rate (see Ali and Anwar, 2012; Tsai, 2012). One is the Portfolio Balance

Model, which takes currency as an asset, thereby the price of which is determined

by the demand. Thus, as a sign of increasing growth of wealth, an increase of the

stock prices would trigger an increasing demand for money, leading to an increase of

interest rate; more capital inflows are attracted under such circumstances, boosting

an increase in foreign demand for this currency in the short-term, which eventually

leads to an appreciation of this currency. The other is the Balance of Trade Model,

which states that the changes in the exchange rate affect the stock market by af-

fecting the incomes of companies. A depreciation of the domestic currency means

more competitive advantages for an export-focused company, while less than good

news to an import-oriented company; either case will affect their stock prices. Such
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theoretical evidences can be found in Dornbusch and Fischer (1980); Solnik (1987);

Koseoglu and Cevik (2013).

Based on the theoretical models, a great number of empirical studies have been car-

ried out on investigating the volatility spillover effects between stock markets and

foreign exchange markets, in order to determine whether they are causal-related and

the behaviour of such causation. Richer literature in this area can be found in, for

example, Yang and Doong (2004); Francis et al. (2006); Tai (2007); Yang and Chang

(2008).

It is worth noting that, most of the techniques involved in such subject are in the

framework of GARCH models; however, it is argued that a considerate upward bias

of the estimations derived from the conventional GARCH models could be produced

due to the ignorance of the structural breaks in the volatility of the examined finan-

cial series (Bollerslev and Engle, 1993; Ding et al., 1993; Ding and Granger, 1996;

Andersen and Bollerslev, 1997; Engle and Sheppard, 2001; Mikosch and Stǎricǎ,

2004). The occurrence of structural breaks has long been conjectured in volatility

of financial markets, the trigger of which may involve with the mechanism change

of exchange rate systems, evolution of the stock markets, or a global financial crisis.

Induced by these significant economic or political events, the shocks may cause the

behaviour of financial time series to deviate from its tranquil time (Andreou and

Ghysels, 2002; Wang and Moore, 2009). As is further confirmed through the likeli-

hood ratio test, a decrease of the sum of the parameters in GARCH models happened

after the structural change effects are eliminated (Lamoureux and Lastrapes, 1990;

Arago-Manzana and Fernandez-Izquierdo, 2007; Wang and Nguyen Thi, 2007; Ew-

ing and Malik, 2010). In addition, by Monte Carlo simulations, Hillebrand (2005)

further documents that this error would occur for all common estimators of GARCH.

Meanwhile, Wang and Nguyen Thi (2007) examine the sudden changes in volatility

in the stock markets of new EU members by adopting an ICSS (Iterative Cumula-

tive Sum of Squares) algorithm developed by Inclan and Tiao (1994) and point out

that the persistence of volatility could be reduced dramatically when taking into

account the sudden shifts in the GARCH models. They further suggest that overes-

timation of the degree of volatility persistence may have happened in many previous

studies. In such circumstances, as Rodrigues and Rubia (2007) argues, failure to

accommodate the structural breaks could eventually lead to biased causality results.

Moreover, based on an extensive set of Monte Carlo simulations, Dijk and Sensier

(2005) provide evidence that the causality-in-variance test developed by Cheung and

Ng (1996) and Hong (2001) suffers from considerable size distortions when structural

breaks are ignored. Therefore, it is absolutely necessary to detect possible structural
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breaks before examining the causality in variance.

So far, extensive evidences have been found supporting that equity markets and

currency markets are causal-related, yet no consensus has reached either theoreti-

cally or empirically. Nevertheless, the spotlight of the majority of existing literature

has been put on the developed financial markets, leaving few studies targeting such

causality towards the emerging markets. Among the scarce research of the latter,

even fewer have concentrated on the markets in the mainland of China. Motivated

as such, this research will investigate the volatility spillover with consideration of

the potential presence of structural breaks between two financial time series, namely,

stock prices and foreign exchange rates, over the recent two decades; moreover, it

will be conducted in both the UK and China, offering a comparison between markets

with different levels of development. Proposed as such, this research will employ the

causality in variance test of Hong (2001), taking into consideration the structural

breaks in the targeted series, which will be identified by the modified ICSS algo-

rithm of Sanso et al. (2004). Moreover, in order to well understand the mechanism

of the selected models, Monte Carlo simulation study will be adopted prior to the

application to the research data. Designed as such, the contribution of this thesis is

twofold. First, by targeting the financial markets in two countries discussed above,

this research not only can help to establish insightful knowledge on the fundamen-

tals of financial markets, it also seeks the possibility to build customized models

dealing with markets with specific characteristics. Next, through a comprehensively

well-designed simulation study, this research attempts to produce more accurate es-

timates of structural change dates and volatility spillover pattern, in order to make

efforts for the further investigation on exploring any particular volatility patterns

as potential early warnings of any forthcoming fluctuations in the targeted finan-

cial markets. Therefore, this research is of interest to both investors and financial

managers to devise proper investment strategies especially over the period such as

a financial crisis; it can also provide policy makers with invaluable information and

advanced econometric techniques to ensure economic stability.

The remainder of this thesis proceeds as follows: Chapter 1 provides an overview of

several well applied methods in the area of structural breaks detection and volatility

spillover investigation, together with a general discussion on the empirical applica-

tions; Chapter 2 examines stock returns in China and the UK for potential structural

breaks, and provide detailed analysis on the modification of GARCH model with

structural breaks; Chapter 3 focuses on studying the volatility spillover between

stock and foreign exchange markets in China and the UK, especially evaluates the

influence of structural breaks toward the detected volatility spillover pattern.



Chapter 1

Structural Breaks in Volatility

Modelling

1.1 Introduction

This chapter introduces several popular techniques in the area of structural breaks

detection and volatility spillover investigation. To be more specific, the methods of

Bai and Perron (2003), Andrews (1993), Inclan and Tiao (1994) and Sanso et al.

(2004) are discussed with regard to identify the presence of structural breaks; Che-

ung and Ng (1996), Hong (2001), Hafner and Herwartz (2006) and Engle and Kroner

(1995) are reviewed in the topic of studying the volatility spillover pattern. By doc-

umenting the construction of each selected model and its empirical application, this

chapter aims at creating a collection of the most popularly applied methods with

respect to structural breaks in volatility modelling. Moreover, by discussing each

model, this chapter justifies the choice of methods selected for the later chapters.

This chapter proceeds as the following: Section 1.2 briefly reviews the conventional

GARCH specifications; Section 1.3 introduces several widely employed methods for

identifying the structural breaks; Section 1.4 discusses a few popular techniques

for determining the volatility spillover pattern; Section 1.5 provides the concluding

remarks of this chapter.

1.2 Overview of the Conventional GARCH (p,q)

Process

GARCH models have been widely applied to model the time-varying nature of

volatility in empirical finance. Introduced by Bollerslev (1986), GARCH grants

a more flexible lag structure of the ARCH (Engle, 1982) class models. The standard

5
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GARCH (p, q) for the return series rt can be reviewed as:

rt = µ+ εt, εt|It−1 ∼ N(0, σ2
t ) (1.1)

εt = zt
√
σ2
t , zt ∼ N(0, 1) (1.2)

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i (1.3)

σ2
t is the conditional variance, with ω > 0, αi > 0 and βi > 0 to ensure the positivity

of σ2
t . zt is an independent and identically distributed error term with zero mean and

unit variance. Moreover, p ≥ 0, q > 0; it is an ARCH (q) process when p = 0. The

volatility persistence is measured by the sum of αi and βi; the more it approaches

unity the greater the persistence of shocks to the volatility. Moreover, according to

Hansen and Lunde (2005), GARCH (1,1) is recognised to perform quite sufficiently

when forecasting volatility. Consider the GARCH (1,1) process and rewrite (1.3):

σ2
t = ω + αε2t−1 + βσ2

t−1 + ασ2
t−1 − ασ2

t−1 (1.4)

σ2
t = ω + α(ε2t−1 − σ2

t−1) + (α + β)σ2
t−1 (1.5)

Thus, from (1.5), let vt−1 = ε2t−1 − σ2
t−1 represent the shock, and λ = α + β, then

σ2
t = ω + αvt−1 + λσ2

t−1 (1.6)

Continue decomposing σ2
t−1 in the form shown in (1.6) and then replace σ2

t−1 in (1.6)

with its new form in the following manner:

σ2
t−1 = ω(1 + λ+ λ2 + λ3 + · · · ) + α(vt−1 + λvt−2 + λ2vt−3 + · · · )

σ2
t−1 = ω

1− λt

1− λ
+ α(vt−1 + λvt−2 + λ2vt−3 + · · · ) (1.7)

Therefore, in (1.7), ω 1−λt
1−λ = ω

1−λ is the unconditional variance when λ < 1. When

λ = 1, the variance contains a unit root, thus the process has no unconditional

variance and is defined as an integrated GARCH or I-GARCH process (Engle and

Bollerslev, 1986). Furthermore, it can also be noticed from (1.7) that, the effect

imposed by the shock on the conditional variance σ2
t relies on the degree of λ; that

is to say, the larger the sum of α and β, the longer the shock lasts, i.e. the more

persistent of the volatility. Therefore, the volatility persistence for a certain shock is
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measured by the sum of α and β, and it is argued that the high volatility persistence

of financial assets series is caused by the structural breaks in the unconditional

variance in terms of ω
α+β

from the conventional GARCH models. More specifically,

this biased volatility persistence implies that the current information will still impose

significant impacts on the conditional variance forecast for all horizons because of

the very close to permanent influence on volatility. In this sense, this phenomenon

can be defined as the spurious IGARCH effects (Hillebrand, 2005). Under such

circumstances, many tests have been developed in order to identify the structural

breaks in the conditional volatility process.

1.3 Structural Breaks Detection

The occurrence of structural breaks has long been conjectured in the volatility of

financial markets. The trigger of such structural breaks may involve with the in-

troduction of new currency, the mechanism change of exchange rate systems, the

evolution of the stock markets, or a global financial crisis, see, for instance, (see,

for instance, Aggarwal et al., 1999; Andreou and Ghysels, 2002). Induced by these

significant economic or political events, the “shocks” may trigger an abrupt change

in the volatility structure and thus cause parameters inconsistency of the model.

Ignoring such effect can lead to biased volatility forecasting. This section will in-

troduce several of the most popular methods in the literature on structural breaks

detection, along with their empirical applications.

1.3.1 Structural Breaks Test of Bai and Perron (2003)

For a data series Yt, t = 1, ..., T , consider a system of linear regression equations re-

garding a set of segments determined by the locations of potential structural breaks,

namely, [T1, ..., Tm], with m being the number of potential breaks:

Yt = ϕ′
tβ + z′tδ

′
1 + εt, t = 1, ..., T1, (1.8)

Yt = ϕ′
tβ + z′tδ

′
2 + εt, t = T1 + 1, ..., T2, (1.9)

... (1.10)

Yt = ϕ′
tβ + z′tδ

′
m+1 + εt, t = Tm + 1, ..., T. (1.11)

where Yt in each equation represents a segment of observations from the total se-

ries Yt, t = 1, ..., T . ϕ′
t and z′t are two vectors of covariants, with dimensions of

p × 1 and q × 1 respectively. The former has a dimension of p × 1, indicating the

start of one segment; while the latter is of q × 1, q = 1, ..., T , and it indicates the
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end of that segment. In each equation in the system above, the coefficients β and

δ′i, i = 1, ...,m + 1 are then obtained by minimizing the sum of squared residuals
m+1∑
i=1

t=Ti−1+1∑
Ti

[Yt−ϕ′
tβ−z′tδ′1]. And the estimates of the locations of structural breaks

are [T̄1, ..., T̄m], which makes the smallest sum of these minimized sum of squared

residuals obtained in each segment. Moreover, Tm will be determined via an algo-

rithm which is designed by the authors to calculate the estimates of break points

as global minimizers of the sum of squared residuals (SSR) in each of the m segment.

With this key concept discussed above, Bai and Perron (2003) develop several ap-

proaches to test each partition choice to find the breaks. One is via a Supremum

F-test with the null hypothesis of no break versus the alternative of the presence

of break with a number of a fixed finite positive integer. That means the number

of breaks needs to be known in advance. Another approach is through a double

maximum procedure, with the null hypothesis of no break and the alternative of

an unspecified number of breaks. This approach consists of two tests, one is called

the UD max test with all weights equal to unity, and the other is the WD max

test with varying weights. The last approach is known as the sequential test, with

the null hypothesis of m break(s) against m+ 1 break(s). More detail can be found

in Bai and Perron (1998) and Bai and Perron (2003), including the construction of

confidence intervals and information on optimisation methods. Most research usu-

ally adopts one or more of these approaches, and refer to their methods as “the test

of Bai and Perron (2003)”; we use “the BP test” hereafter to avoid over referencing.

Kirkulak-Uludag and Lkhamazhapov (2016) investigate Russian gold market for

potential structural breaks from June 2008 to May 2013 using the BP test. Each

of the spot and futures return series under study is found to experience one break

very close to the 2007-2008 financial crisis. The possible cause of these breaks

could be the largely increased gold reserves made by the Russian Central Bank

in 2009. Particularly, the break found in the futures returns occurred two weeks

earlier than that found in the spot returns. It can be inferred that Russian futures

gold market reacts faster than its spot market to the negative world news induced

by the recent global financial crisis. Caporale et al. (2018) examine bonds series

from the EMBI (Emerging Market Bond Index) from January 1997 to June 2015

for Argentina, Brazil, Mexico, and Venezuela. Via the BP test, several breaks

are found in all the countries corresponding to the country-specified factors, for

instance, GDP growth, the establishment of new economic policies, presidential

election. More applications of BP test involve Mongi and Haj Ali (2016), where the

stock and commodity markets in the US are checked for structural breaks. From
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January 2000 to March 2014, a number of breaks are found in each of the return

series. Also, Tule et al. (2017) study the bond and oil markets in Nigeria from March

2011 to April 2016. The BP test finds one break for each return series, and these

breaks can be associated with events that relate to oil supply. Moreover, Ahmed

(2017) investigates the major stock index in Egypt along with its oil and gas markets

over the sample period from February 2006 to June 2016. Several breaks are found

via the BP test in all the series; most of these breaks are clustered around 2008-

2009, indicating the huge influence this country received from the recent financial

crisis. More studies can be found in, for instance, Huang and Yang (2001); Jouini

and Boutahar (2003); Christopher and Wohar (2006); Rapach and Wohar (2006);

Belkhouja and Boutahar (2009); Budd (2018); Antonakakis et al. (2018).

1.3.2 Lagrange Multiplier Tests of Andrews (1993)

Andrews (1993) proposes a structural break test based on the Lagrange Multiplier

(LM) to locate a one-time unknown change point in non-linear parametric models.

Consider an econometric model that fits to time series Yt, t = 1, ..., T with parameter

vector θt; define π as the location of a potential break near the known events with

π ∈ (0, 1); take [πT ], where [·] is the integer part operator, as the proportion of

sample observations before the break occurs at the [πT ]th observation. In this way,

the model parameters before and after the break then become θ1 for t = 1, ..., [πT ]

and θ2 for t = [πT ] + 1, ..., T respectively. Thus the null hypothesis of no structural

break with alternative being the presence of such at [πT ] in the parameter are

formulated as below:

H0 : θt = θ0 (1.12)

versus

HA : θt =

θ1(π), for t = 1, ..., [πT ]

θ2(π), for t = [πT ] + 1, ..., T
(1.13)

In particular, for a normal linear regression model, if the location of structural break

is known, the LM test that is constructed under the above hypotheses is equivalent

to F test, which is also referred to as Chow test (Chow, 1960) in the literature.

Moreover, under the null hypothesis of no structural break, there is only one set of

the parameter vector and it can be estimated via maximum likelihood; when there

is one structural break, in other words, HA is true, and the location of it is known

at [πT ] in a non-linear model, then the LM test statistic LM(π) is calculated as
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below:

LM(π) =
T

π(1− π)
g1T (θ̂, π)′ST

−1DT (DT
′ST

−1DT )−1DT
′ST

−1g1T (θ̂, π)(1.14)

where

g1T (θ̂, π) =
1

T

πT∑
t=1

g(Yt; θ̂) (1.15)

ST =
1

T

T∑
t=1

[g(Yt; θ̂)− gT (θ̂)][g(Yt; θ̂)− gT (θ̂)]′ (1.16)

DT =
1

T

T∑
t=1

∂(Yt; θ)

∂θ̂
′ (1.17)

In (1.15), g(Yt; θ̂) = ∂logf(Yt; θ̂)/∂θ̂ is the score in terms of the partial derivative of

the log density with respect to the parameter vector θ̂. DT in (1.17) is the restricted

estimator that is used to construct weight matrices for LM test statistics. And in

(1.16), gT = 1
T

∑T
t=1 g(Yt; θ̂). Constructed as such, the LM(π) statistic asymptot-

ically follows a chi-squared distribution with degrees of freedom of the number of

the parameters in the model.

Often the location of the break is unknown and the standard distributional theory is

no longer applicable to financial time series. Therefore, based on the work of Davies

(1977) and Davies (1987), Andrews (1993) modifies the LM test to a supLM(π)

form that requires π ∈ Π, defining Π as a pre-specified subset of [0, 1] that is not

close to the boundary value zero and one. In fact, according to Andrews (1993),

supLM(π) would perform badly when Π ∈ [0, 1], as supLM(π) test statistic di-

verges as the sample size increases to the boundary region. Such drawback could

be amended by choosing a proper π0, which is the proportion of observations that

are taken out from two ends of the sample. Therefore, when the subset proportion

is selected far away from zero and one, it is possible to calculate a well defined

asymptotic distribution for the supLM(π) test statistic. In fact, Andrews (1993)

suggest a restricted interval for Π as Π = [0.15, 0.85] to avoid unnecessary reduction

of test power. Since the supLM(π) test can only check the presence of structural

break within a pre-determined sample period, therefore, this requirement restricts

Andrews (1993)’s method to only be applicable to the cases where an event is known

to have caused a structural break in the data series.

Empirical studies of LM type tests of Andrews (1993) can be found in Smith (2008).
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The author tests for structural breaks in twelve financial return series from 1990

to 2002 including one stock exchange index, five foreign exchange series, and seven

company stocks. With the supLM(π) test of Andrews (1993), strong evidence is

found for the presence of structural breaks in the unconditional volatility of GARCH

models for eight return series. Moreover, Moon and Yu (2010) investigate the daily

returns from the major stock index in China via the structural break test of Andrews

(1993). Over a sample period January 1999 to June 2007, one structural break is

identified on 2 December 2005. This break is very likely induced by the reform on

the non-tradable shares of the state-owned company in December 2005. This break

might also be associated with the RMB appreciation against the US Dollar since

December 2005 due to the adoption of new Chinese exchange rate regime. More

research with regard to Andrews (1993) can be found in Bec and Bastien (2007),

Morales-Zumaquero and Sosvilla-Rivero (2010), Chen et al. (2017), Georgiev et al.

(2018).

1.3.3 Iterative Cumulative Sum of Squares of Inclan and

Tiao (1994) and the Modified Version of Sanso et al.

(2004)

Consider a series of uncorrelated random variables Yt, t = 1, ..., T with mean 0 and

variance σ2
t , t = 1, 2, ..., T . Define the following expression:

Dk = Ck/CT − k/T, k = 0, 1, 2, ..., T (1.18)

Dk is the centred and normalized cumulative sum of squares; Ck+1 =
∑k

i=1 Y
2
t , k =

0, 1, 2, ..., T is the cumulative sum of k + 1 squares of the data observations. The

underlying concept of this Iterated Cumulative Sums of Squares (ICSS) algorithm

of Inclan and Tiao (1994) is to assume the variability of σ2
t , t = 1, 2, ..., T is made

of constant σ2 at different time periods over the whole sample period T . In other

words, the variance stays constant for some time, until it takes up a new value

at k∗; the variance then stays at this new value for some other time until another

variance value occurs. It is then said that one structural break has occurred at k∗.

Within this context, the construction of Dk in expression (1.18) will oscillate around

zero until the occurrence of a structural break where Dk varies away distinguishably

from zero. Therefore, an IT test is developed to find the variation of Dk that is

statistically significant, which takes the form as below:
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IT = max
√
T/2|Dk| (1.19)

where
√
T/2 is to standardize the distribution. Under a null hypothesis of no struc-

tural break against the alternative of presence of one break, when IT exceeds the

critical value at a selected confidence level, one structural break is detected in the

variance or volatility of this data series. In order to find multiple unknown breaks in

the whole series, an iterative scheme is specifically designed to systematically search

for change points by applying the IT test to sub-samples created consecutively after

a possible change point is identified.

As Inclan and Tiao (1994) further point out, this Iterative Cumulative Sum of

Squares algorithm (ICSS hereafter) has certain advantages over other alternative

methods such as a Bayesian approach or a likelihood ratio test, since it is free of the

heavy computations required by the latter methods, yet provides adequately pow-

erful inferences. In addition, according to Andreou and Ghysels (2002), ICSS can

provide good statistical inference when applying to even strongly dependent data

with minor size distortions. Therefore, ICSS has been widely employed in the liter-

ature. Earlier studies involve Aggarwal et al. (1999), where the large shifts in the

volatility of emerging stock markets were examined. By investigating daily returns

covering the period May 1985 to April 1995 for ten emerging markets in Asia and

Latin America, several structural breaks were detected around the significant eco-

nomic or political events via ICSS. In particular, for three targeted stock markets,

one break was located two days later after the occurrence of stock market crash

on 19 October in 1987. More recent research can be found in Malik and Hassan

(2004), who examine the volatility for five Dow Jones sector indices, namely, finan-

cial, industrial, consumer, health and technology. Via the ICSS algorithm, they

conclude that most detected structural breaks are associated with big events. Wang

and Nguyen Thi (2007) investigate the major stock indices in Taiwan and the US

over a period from January 1997 to October 2001. Via ICSS algorithm, structural

breaks are found in all the series in study. Moreover, Kang and Yoon (2010) inves-

tigate the exchange rates in Singaporean Dollar, Korean Won, New Taiwan Dollar

and Thai Baht series by the ICSS algorithm. Sudden change is detected immedi-

ately after the 1997 Asian currency crisis and the 2008 financial crisis in all the series.

Despite that the ICSS of Inclan and Tiao (1994) has received its popularity for

its straightforward implementation and satisfactory statistical inferences, however,

recent studies have argued that the IT test would deliver false detections especially
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when applied to financial time series (Andreou and Ghysels, 2002; Sanso et al., 2004).

The underlying assumption of IT test is that the disturbances of the targeted series

are independent and normally distributed, which is highly unlikely for financial

time series as they evidently show fat-tailed distributions comparing to a normal

distributed data sequence. Known as being leptokurtic, this fat-tailed distribution

manifests greater chances for large fluctuations to occur. When dealing with data

of such distribution, IT test tends to overestimate the number of change points. In

light of such situation, Sanso et al. (2004) modified the ICSS by proposing a κ2 test

substituting the IT test shown in (1.19), under the same iteration procedure as of

ICSS. κ2 is defined as in Equations (1.20):

κ2 = sup |
√

1/TGk| (1.20)

Gk =
√

1/ω̂4(Ck −
k

T
CT )

ω̂4 =
1

T

T∑
t=1

(ε2t − σ̂2)2 +
2

T

m∑
l=1

ω(l,m)
T∑

t=l+1

(ε2t − σ̂2)(ε2t−1 − σ̂2)

where ω(l,m) = 1− l
m+1

(Newey and West, 1994).

Sanso et al. (2004) further provide simulation evidence to show much appealing

properties of this modified version of ICSS algorithm of Sanso et al. (2004) (MICSS

hereafter). In particular, MICSS is proved to be able to correctly detect the num-

ber of simulated breaks in data series with conditional heteroskedasticity for most

scenarios. On the contrary, under the same scenario, ICSS shows severe size distor-

tion. Moreover, they re-examine the work of Aggarwal et al. (1999), where several

structural breaks are identified by ICSS. However, no break is found when apply-

ing MICSS on the same data series. Thus, it is confirmed that MICSS can correct

the overestimation issue of ICSS. Empirical applications of MICSS can be found

in McMillan and Wohar (2011), where the FTSE All-share index is selected along

with eight economic sectors over the period from 01/01/1986 to 31/03/2008. Sev-

eral breaks are found in seven out of the eight selected sectors with the number of

which ranging from two to eight. It is further pointed out that, more mature sectors

experienced fewer breaks comparing to that of rather newer ones. For the whole

market index FTSE All-share, four breaks are identified, the number of which are

found to lie between the extremes of the other sectors. This could be the result

of averaging out across all the sectors. Lee (2015) chooses MICSS over ICSS as a

result of the latter cannot work with the data observations with strong conditional

dependence. From January 1998 to February 28, two structural breaks are identi-

fied for the major stock index returns in Korea, and both of them corresponds to
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either regional or global financial crisis. Surprisingly, no break is found for the US

over the same sample period. He further comments that those breaks could be the

reason for the long range dependence observed in the volatility. Most importantly,

the break-accounted GARCH model shows significant performance in out-of-sample

forecasting.

1.3.4 Volatility Persistence under the Influence of Struc-

tural Breaks

A well-received critic for the conventional GARCH model is its misspecification due

to the neglect of structural breaks in the volatility (Brooks et al., 2000; Nwogugu,

2006). Diebold (1986), Hendry (1986) and Lamoureux and Lastrapes (1990) are

among the first to question the spurious persistence of volatility obtained by a con-

ventional GARCH model with the presence of structural breaks. In particular, Lam-

oureux and Lastrapes (1990) intentionally set up 13 mutually independent change

points for a series of daily stock return data, and construct the dummy variables

accordingly, which then partitions the sample of 4228 observations in total into 14

non-overlapping intervals with 302 observations in each interval. After incorporat-

ing these dummy variables into a conventional GARCH (1, 1), the estimates of this

modified GARCH (1, 1) yield a dramatically decrease of the volatility persistence

comparing with a conventional GARCH (1, 1) model, even under the circumstances

where no structural breaks are facilitated through a formal test. Nevertheless, given

the changing economic conditions, such as the transition of an exchange rate system,

or the financial crises, recognisable shifts in the unconditional variance of asset re-

turns can be provoked, and consequently leads to a different structure in a GARCH

data generating process (Wang and Moore, 2009; McMillan and Wohar, 2011). As

a result, failure to accommodate the structural breaks in the unconditional variance

of the examined financial series could lead to a considerable upward bias in the

GARCH parameters and thus affect the accuracy of modelling the volatility persis-

tence (Ding et al., 1993; Ding and Granger, 1996; Andersen and Bollerslev, 1997;

Engle and Sheppard, 2001; Mikosch and Stǎricǎ, 2004). Moreover, recent literature

has also suggested that the degree of volatility persistence derived from a GARCH

model could have been overestimated in most of the previous studies due to this

ignorance of structural breaks in volatility (Malik, 2003; Hillebrand, 2005; Wang

and Nguyen Thi, 2007).

Under such circumstances, extensive studies have focused on taking into consid-

eration the structural breaks while modelling volatility via GARCH model. One

popular approach is to modify GARCH model by incorporating the breaks detected
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via ICSS as dummy variables. Wen et al. (2018) study the oil and currency markets

in the US from January 2000 to July 2014. Via the ICSS test, five break dates

are found for the oil market, and four are for the latter. They further compare the

estimates obtained from the univariate GARCH models, one with structural breaks

incorporated and the other without. Significantly reduced volatility persistence is

found after the incorporation of breaks for both markets in study. Dahiru et al.

(2017) examine the stock market volatility dynamics in eight countries, namely,

Mexico, Indonesia, Nigeria, Turkey, Japan, USA, Germany and France. A number

of structural breaks are identified via the ICSS test from January 1994 to March

2014, and many of them occur around the 2008 financial crisis. They also find

decreased volatility persistence in every series after the detected breaks are accom-

modated in the corresponding GARCH-type models. Lian and Liao (2015) inves-

tigate the volatility dynamics of Light-Sweet oil futures returns from August 1997

to July 2007. Using ICSS, eleven breaks are found; by incorporating the detected

breaks as dummy variables in the GARCH models, reduced volatility persistence is

found. Zhu et al. (2015) examine the European carbon futures between 2005 and

2012. Three breaks are found via ICSS, namely, on 17/11/2008, 22/06/2011 and

10/11/2011. They can be related to the 2008 financial crisis, the 2011 European

debt crisis, and the economic recession in European countries. Mansur et al. (2007)

study four foreign exchange rate series, namely, the British Pound, Canadian Dol-

lar, Japanese Yen, and Swiss Franc, from January 1975 to September 2002. All four

currency returns contain a number of structural breaks detected via ICSS, and the

volatility persistence decreases via ICSS-GARCH model where the breaks are accom-

modated. Moreover, based on the in-sample analysis, ICSS-GARCH model shows

more effective hedging performance comparing to the standard GARCH; the out-

of-sample analysis further reveals much significant variance reduction when using

ICSS-GARCH instead of GARCH. Therefore, the authors stress that the structural

breaks should not be ignored. Using the same ICSS-GARCH model but in a bi-

variate framework, Huang (2014) estimates the optimal hedge ratio for spot/futures

portfolio. Spot and futures returns are selected from the major stock indices of the

US, the UK and Japan from January 1989 to December 2006. A bivariate ICSS-

GARCH model is constructed by modifying a bivariate GARCH model of Kroner

and Sultan (1993) with structural breaks, which are detected by ICSS, as dummy

variables. This bivariate ICSS-GARCH model is proved to outperform its standard

form in all the three countries in study. Tokat (2009) examines ISE 30 and ISE 100

stock indices in Istanbul from January 1990 to April 2007. Via ICSS, two breaks are

found in ISE 30 and six in ISE 100; and the timing of these breaks can be associated

with EU membership, domestic announcements of new fiscal or monetary policies,

and the 1997 Asian financial crisis. More importantly, reduced volatility persistence
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is obtained in both series after incorporating the breaks into GARCH models. The

author comments that it is important to consider the effect of structural breaks to

improve the accuracy of volatility estimation.

1.4 Volatility Spillover Investigation

According to Ross (1989), a change in the volatility indicates the arrival of new

information. Particularly in the financial department, volatility spillover effect de-

scribes the Granger causality between two asset series in the volatilities. Studying

such spillover effect in the volatilities of financial markets not only can reveal how

the new information travels across markets, but it also helps us to understand how

markets respond to information originated from another market. When such effect

exists, it is said that a change in the volatility of one market would cause a change

in the volatility of the other causal-related market; moreover, the past innovations

in the former market could help predict the behaviour of the latter. Therefore, in

the context of a more and more integrated world market, by tracking this volatility

transmission between financial markets, investors that hold international portfolios

could greatly benefit from this subject. In the event of insufficient information

when analysing one financial asset, it is still possible to predict the behaviour of

this market using the information of other markets if a volatility spillover pattern is

detected between them. Additionally, investors can also take advantage of the lack

of such causation pattern since they can construct diversified portfolios to manage

their financial exposure. Moreover, the insights gained by studying this causality

in volatility/variance can also help the government to formulate and implement

new policies to supervise financial markets much properly. Therefore, it is of both

importance and necessity to investors, financial managers and policy makers to bet-

ter understand the dynamics of financial markets via studying volatility spillover,

in order to construct much proper portfolios, to better manage financial risks and

to establish monetary or political policies to better maintain short term financial

stability.

1.4.1 Causality in Variance Test of Cheung and Ng (1996)

and the Modified Version of Hong (2001)

Cheung and Ng (1996) develop a two-stage approach to test causality pattern in vari-

ance by extending the procedures in Haugh (1976) and McLeod and Li (1983). After

the first stage of estimating the univariate time series models, the cross-correlation

function (CCF) is then constructed based on the squared model residuals standard-

ised by the estimated conditional variances, in order to test the null hypothesis of
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no causality in variance.

Based on the Granger Causality definition of Granger (1969) and Granger (1980),

the hypotheses of causality in variance test are proposed by Hong (2001) as below:

H0 : E{V ar(Y1t|It−1)|I1t−1} = V ar(Y1t|It−1) (1.21)

vs.

HA : E{V ar(Y1t|It−1)|I1t−1} 6= V ar(Y1t|It−1) (1.22)

where Y1t, Y2t, t = 1, ..., T are two strictly stationary time series. Define individual

information set I1t, I2t, and the union information set It = (I1t, I2t). Each of the

first two sets contains information of each series available at t, and It contains infor-

mation of both series available at t. When the null hypothesis in (1.21) holds, the

variance of Y1t based on the union past information set It−1 equals to that of its own

past information set I1t−1. In other words, including past information from I2t does

not affect the variance of Y1t. Hong (2001) describes such situation as Y2t does not

Granger-cause Y1t in the variance. When the alternative in (1.22) holds, including

past information from Y2t does affect the variance of Y1t, thus, Hong (2001) describes

this relationship as Y2t Granger-causes Y1t in the variance.

In order to check the volatility spillover pattern between two stationary time series

Yit, i = 1, 2, consider their conditional variances hit, i = 1, 2, each of which follows a

GARCH(p,q) process:

Yit = µit + εit, t = 1, ..., T ; i = 1, 2 (1.23)

hit = ωi +

p∑
j=1

αijε
2
it−j +

q∑
j=1

βijhit−j, t = 1, ..., T ; i = 1, 2 (1.24)

Set

ut = ε21t/h1t (1.25)

vt = ε22t/h2t (1.26)

The jth cross correlation coefficient of the squared standardized residuals ut and vt

is

ρuv(j) = {Cuu(0)Cvv(0)}−1/2Cuv(j) (1.27)

where Cuu(0) = T−1
∑T

t=1 u
2
t and Cvv(0) = T−1

∑T
t=1 v

2
t are the variances of Y1t and

Y2t respectively. Moreover, Cuv(j) calculates the jth sample cross covariance, which
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takes the form

Cuv(j) =


T−1

T∑
t=j+1

utvt−j, j ≥ 0

T−1
T∑

t=−j+1

ut+jvt, j < 0

(1.28)

Test statistics S is then constructed based on the first M squared cross correlations:

S = T
M∑
j=1

ωjρ
2
uv(j) (1.29)

This test is asymptotically χ2 under the null hypothesis of no causality; also ωj

is the sample finite correction when sample size T is small. According to Haugh

(1976) and McLeod and Li (1983), two forms can be considered: ωj = T/(T − j) or

ωj = (T + 2)/(T − j). This correction enables the test to have better performance

when dealing with small samples (Ljung and Box, 1978).

According to Cheung and Ng (1996), this CCF approach is much easier to imple-

ment comparing to methods which are built upon a multivariate framework, since

CCF requires no simultaneously modelling of either intra or inter series dynamics.

Nevertheless, as the main feature of volatility clustering, the recent past volatility is

observed to have greater impact on current volatility comparing to that of distant

past volatility. In this sense, the recent volatility of one asset or financial market is

said to have more influence on the current volatility of the other asset or market. It

can also be confirmed by the recent empirical studies, where the cross-correlations

between financial assets gradually decay to zero as the lag j increases (Cheung and

Ng, 1996). Therefore, when using a large M, the S test may be less efficient since

it gives equal weighting to each of the M sample cross-correlations. Furthermore,

strong cross-correlation may exist for some financial time series during some period,

which leads to situation where the cross-correlation at each lag is small; however,

the joint effect might be too significant to neglect. Therefore, it is desirable to let M

grow with T or to take into consideration all T − 1 sample cross-correlations. Based

on the discussion, a Q test is proposed by Hong (2001) as shown in Equation (1.30):
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Q =
T
∑T−1

j=1 k
2(j/M)ρuv(j)− C1T (k)√

2D1T (k)
(1.30)

C1T (k) =
T−1∑
j=1

(1− j/T )k2(j/m) (1.31)

D1T (k) =
T−1∑
j=1

(1− j/T ){1− (j + 1)/T}k4(j/m) (1.32)

where k(.) is Bartlett kernel (Priestley, 1981), such weighting function is defined as

below

k(z) =

1− |z| , if |z| ≤ 1

0, otherwise
(1.33)

Also, C1T (k) and D1T (k) are the mean and variance of Equation (1.30). The finite

sample corrections of (1− j/T ) and (1− j/T ){1− (j + 1)/T} give better matches

to the aforementioned mean and variance. Under the null hypothesis, Q follows an

N(0,1) distribution, and it is a one-sided test, and the critical value at the 5% is

1.645.

Hu et al. (1997) carry out an investigation on the stock markets in one particular

geographical region, which is the South China Growth Triangular (SCGT) contain-

ing Shanghai, Shenzhen, Hong Kong and Taiwan. To be more specific, the volatility

spillover effects are examined across stock markets, both within the SCGT, and

between the SCGT and the US and Japan. This comparison study can help us

not only to understand the relationship of the stock markets in the same economic

region but also to investigate the co-movement across international stock markets

from a comparison approach between the emerging and mature markets. By ex-

amining daily returns from 05/10/1992 to 15/02/1996 via the causality in variance

test of Cheung and Ng (1996), evidence is found for a causal relation in the volatil-

ities from the Japanese stock market to the US stock market, and from Hong Kong

market to the US market. Meanwhile, volatility spillover effects are found from

the Hong Kong market to the US market; also, for the emerging markets located

in the South China Growth Triangular, the US market is identified as the primary

influence when compared to that of Japan. Moreover, within the SCGT, Shanghai

and Shenzhen markets have stronger interactions with the US and Japanese markets

than they do with markets in Hong Kong and Taiwan, emphasizing the fact that

geographical proximity is not necessary to form a strong causal relationship in the

volatility of stock markets. Last but not least, after adding the conditional variances



CHAPTER 1. STRUCTURAL BREAKS IN VOLATILITY MODELLING 20

of the developed markets as explanatory variables to the conditional variances of the

emerging markets in the SCGT, the volatility persistence of the emerging markets

decreased dramatically. This finding shows us the potential to capture the arrival

of new information to one market more accurately when the source is identified and

accommodated appropriately. Moreover, this econometric evidence also reveals that

the volatility of the developed markets can explain the excess kurtosis of the volatil-

ity of the emerging markets, in particular for those with less degree of openness.

Similarly, Xu and Hamori (2012) adopt the causality in variance test of Hong (2001),

on stock markets in the BRIC countries and the United States. The BRIC countries

include Brazil, Russia, Indian and China, these four countries together constitute

almost half of the world population, and in the meantime, geographically cover more

than a quarter of the world. The major stock price indices are selected and the daily

return series are created over a period from 02/08/2004 to 30/04/2010, consisting

of 1194 observations for each country in question. Moreover, in order to evaluate

the potential impact of the 2008 financial crisis on the target causal relationship

in question, the sample period is divided into pre-crisis and post-crisis by the date

of 28/09/2008, forming subsamples of 876 and 318 observations respectively. For

the pre-crisis period, the fitted models are AR(1)-EGARCH(1,1) for the US, Brazil,

Russia, and India, and AR(3)-EGARCH(1,1) for China; while for the post-crisis

period, the AR(1)-EGARCH(1,1) is selected for the US, Russia, India and China,

and the AR(8)-EGARCH(1,2) fits the data series from Brazil. Empirical results

show there is causality in mean from the US to Russia, and from the US to India

in both subperiods. A two-way causality in mean exists between the US and China

only in the pre-crisis period, whilst in the post-crisis period, there is no causality

in mean between these two countries. It also reveals that there is no causality in

mean between the US and Brazil in neither of the sub sample period. Meanwhile,

the causality in variance only exists from the US to India before the 2008 financial

crisis. Therefore, it can be seen that the relationship of stock markets between the

US and BRIC countries varies before and after the 2008 financial crisis. Moreover,

the interactions appear much stronger before the crisis. Thus it can be said that the

2008 financial crisis has weakened the transmission of stock prices in both the mean

and variance between BRIC countries and the US. It can also be seen that India is

the country that interacts with the US the most, while Brazil is the one interacting

with the US the least. These results could imply that investment strategies should

be adjusted accordingly during pre and post-crisis periods.
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1.4.2 Lagrange Multiplier Test of Hafner and Herwartz (2006)

To examine the causal relationship in variance of financial returns, Hafner and Her-

wartz (2006) adapt the Lagrange Multiplier (LM) principle to analyse the second

order causality, which is also known as causality in variance. Consider two station-

ary data series {Yit, i = 1, 2} with the conditional variances {hit, i = 1, 2} following

a GARCH(p,q) process expressed as below:

Yit = µit + εit, εit ∈ RN, t ∈ N (1.34)

εit = ξith
1/2
it

hit = ωi +

q∑
j=1

αijε
2
it−j +

p∑
j=1

βijhit−j

where each of the {ξit, i = 1, 2} is a sequence of independent and identically dis-

tributed random variables with ξit ∼ N(0, 1). Moreover, the corresponding informa-

tion sets are I1t and I2t respectively, with It as the information set containing all the

information that is available at time t. When the information in the series of {ε2t−1}
has no influence on the series of {ε1t}, it is said that there is no causality in the

variance from series {ε2t} to {ε1t}. Therefore, the null hypothesis of the causality

in variance test is formed as follows:

H0 : V ar(ε1t|I1t−1) = V ar(ε1t|It−1) (1.35)

As expression (1.35) refers, no causality is found from the variance of Y2t to the vari-

ance of Y1t when the null hypothesis holds. Based on the formulation in expression

(1.35), the Lagrange multiplier approach of Hafner and Herwartz (2006) firstly con-

structs an alternative parametric model to take into consideration the values from

data series Y1 at time t along with the values from data series Y2 at time t − 1 as

below:

ε1t = ξ1t[hit(1 + v′2π)]1/2 (1.36)

v′2 = (ε22t−1, h2t−1)
′

Under this new specification shown in expression (1.36), one sufficient condition for

the null hypothesis shown in expression (1.35) to hold is to have π = 0. Thus, the

null hypothesis of no causality in variance can be reformulated as below:
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H0 : π = 0 (1.37)

vesus the alternative

HA : π 6= 0 (1.38)

Therefore, with the score of the Gaussian log-likelihood function of ε1t calculated

as x1t(ξ
2
1t − 1)/2, where x1t = h−11t (∂h1t

∂θ1t
) with θ1t = (ω1t, α1t, β1t)

′, the Lagrange

multiplier test statistic is formed as below:

λLM = (4T )−1[
T∑
t=1

(ξ21t − 1)v′2t]V (θ1t)
−1[

T∑
t=1

(ξ21t − 1)v2t] (1.39)

where

V (θ1t)
−1 =

κ

4T
[
T∑
t=1

v2tv
′
2t −

T∑
t=1

v2tx
′
1t(

T∑
t=1

x1tx
′
1t)
−1

T∑
t=1

x1tv
′
2t] (1.40)

where

κ = T−1
T∑
t=1

(ξ21t − 1)2 (1.41)

The asymptotic distribution of λLM follows an asymptotic chi-square distribution,

and the number of freedom is two, which is determined by the number of misspeci-

fication indicators in v2t = (ε22t−1, h2t−1)
′.

The causality in variance test of Hafner and Herwartz (2006) is argued to outper-

form the cross-correlation functions (CCF) approach when investigating volatility

spillover, as the latter method tends to suffer from oversize greatly in small samples

especially dealing with data processes that are leptokurtic. Besides, the robustness

of the findings from the CCF approach is under question due to the selection of the
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order of leads and lags in the test procedure, leading to a less accurate CCF test

statistic (Hafner and Herwartz, 2006; Zhang et al., 2013; Yang et al., 2014; Nazlioglu

and Gupta, 2015). The Monte Carlo study in Hafner and Herwartz (2006) confirms

the robustness of the LM approach against asset return series that is fat-tailed or

leptokurtic in small samples.

Nazlioglu and Gupta (2015) investigate the volatility spillover effect between Islamic

stock market and the global markets via the causality in variance test of Hafner and

Herwartz (2006) that is developed from the Lagrange multiplier test. The study is

carried out from two angles; one is to investigate the volatility transmission pattern

between Islamic stock market and three global major stock markets from the United

States, Europe and Asia; the other is to examine the causal linkage between Islamic

stock market and the global factors including the oil prices, the US economic un-

certainty index, the index of volatility and fear in the US equity market, and the

federal funds rate. Moreover, apart from the full sample period of 04/01/1999 to

20/09/2013, two sub sample periods are created around the 2008 financial crisis,

which are the pre-crisis period dating from 04/01/1999 to 31/12/2007, and the in-

and post-crisis period dating from 01/01/2008 to 20/09/2013 to be put under inves-

tigation. By examining the relationship between the Islamic stock market and each

of the other global stock markets in question, a two-way volatility spillover effect is

found in all the pairs of stock markets in all the three sample periods; this finding

evidently points out the possibility to consider investing in the Islamic stock market

when investors perceive higher volatility in the global markets especially during a

financial crisis period. This finding questions the studies of Dridi and Hasan (2010)

where it is argued that it is not possible for the Islamic stock market to transmit

risk in terms of volatility to and from the global markets, as the structure of this

market is fundamentally different from that of those global markets. Furthermore,

there is no volatility spillover from any of the global variables to the Islamic stock

market in any of the sample periods; however, volatility spillover is found from the

Islamic stock market to all of the chosen global factors only in the in- and post-crisis

period. This result strongly suggests the domestic investors could have a wide win-

dow to better respond to the financial turbulence originated from the global market.

Yang et al. (2014) study the volatility spillover effects between the major stock

markets in Chinese regions taking into consideration the level of development. The

market capitalization of listed companies is one major indicator in the evaluation of

the development of a stock market. In this context, the interaction between three

stock markets, namely, Shanghai, Hong Kong and Taiwan, are under study. As the

rapid growth in the mainland of China, the market capitalization of Shanghai stock
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market exceeded that of Hong Kong and Taiwan by 2000, leading towards 3.8 times

of the market capitalization of Hong Kong, and 5.33 times of that of Taiwan in

2011. Moreover, the growing economy in the mainland of China also stimulated the

growth of the Hong Kong stock market as many large Chinese firms rushed to go

public in Hong Kong. This led to the exceeding market capitalization of Hong Kong

than Taiwan from 1999. Therefore, targeting the period from July 1995 to March

2012, the study of Yang et al. (2014) employ the causality in variance test of Hafner

and Herwartz (2006) on the selected stock markets, in order to understand how

the market capitalization would affect the volatility transmission pattern between

these markets. Empirical results show that the null hypothesis of no causality in the

volatility is rejected in two pairs of stock markets out of six pairs in total, revealing

a one-way volatility spillover from Shanghai stock market to Taiwan stock market,

and a one-way volatility spillover from Hong Kong stock market to Taiwan stock

market. This finding establishes that the larger the market capitalization is, the

more influence it will pass onto the stock markets with lower market capitalization.

Zhang et al. (2013) contribute to the existing literature by investigating the volatility

spillover between the domestic equity and bond markets from both the G7 (Japan,

USA, Germany, Italy, UK, France, Canada) and BRICS (China, Russia, India,

Brazil, South Africa) countries as to also study any different volatility transmission

pattern due to different levels of development. The causality in variance test of

Hafner and Herwartz (2006) is chosen over the CCF approach of Cheung and Ng

(1996) and the approaches with a multivariate setting, i.e. the BEKK-GARCH of

Engle and Kroner (1995), or the DCC-GARCH of Engle and Sheppard (2001). This

choice overcomes the drawbacks of the decreased robustness of small samples and the

inappropriate choice of lags in the former method, and the curse of dimensionality

in the latter. In this regard, daily returns of stock and bond are first evaluated and

GARCH(1,1) is determined to be the best model for each data series. After examin-

ing the volatility spillover effects in the G7 countries, a significant one way causality

in the volatility is found to go from the bond series to the stock series in the US, the

UK and Germany; a feedback volatility spillover is found between the two classes

of return series in France. As for the BRICS countries, there is a two-way volatility

spillover in Brazil and South Africa. No significant volatility spillover effect is found

between the equity and bond markets in Japan, Italy, Canada, Russian, or China.

These findings suggest idiosyncratic volatility spillover effect in individual countries;

also, the authors argue that the developed countries tend to show more evidence

for the efficiency of cross market information transmission and the integration of

financial markets.
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The study of Okur and Cevik (2013) takes consideration the influence of structural

breaks when determining the volatility spillover between leptokurtic asset return

series, so that the results can be more accurate. However, no clear comment nor

further statistical investigation is found to mention the tendency that the causality

in variance test of Hafner and Herwartz (2006) seems to be less influenced when the

presence of structural breaks in the conventional GARCH (1,1) model is ignored. If

this tendency could be verified, then it could mean that the causality in variance test

of Hafner and Herwartz (2006) is a more suitable approach when the market was

experiencing many shocks thus increasing the possibility to have many structural

breaks in the volatility in a very short period of time. Without the extra effort

to construct models accommodating the structural breaks and re-estimate the new

model, it could save much time and resources to evaluate the causality pattern in the

volatility between financial markets especially during turbulent times. Therefore,

further validation of such possibility is worth pursuing in the future work.

1.4.3 BEKK Model of Engle and Kroner (1995)

The establishment of the BEKK model stems from the VEC model and the DVEC

(diagonal VEC) of Kroner and Ng (1998). The VEC model was among the first

to explore the relationship between financial assets in a multivariate setting, as

specified below:

vech(Ht) = C + Avech(εt−1ε
′
t−1) +Gvech(Ht−1) (1.42)

where Ht is the conditional variance-covariance matrix, εt−1 is the error terms ma-

trix, A and G are matrices of the corresponding parameters. The vech represents

the vector-half operator, where the lower triangular half in a symmetric d × d ma-

trix is stacked into a single vector with the length of d(d + 1)/2. Therefore, each

element of Ht is a linear function combining the lagged values of squared errors

and cross-products of errors, as in Avech(εt−1ε
′
t−1), and lagged values of Ht, as in

Gvech(Ht−1). For one thing, the general VEC model requires estimating a large

number of parameters; besides, according to Gourieroux (1997), the positivity of Ht

could not be guaranteed without heavy restrictions on the parameters. Kroner and

Ng (1998) also design the DVEC with the purpose of reducing the number of param-

eters to be estimated, however, the diagonal matrices A and G lead to the elements

of Ht depending only on the previous values of shocks and Ht, therefore, DVEC fails

to detect the volatility spillover effects across different series. In order to address

the aforementioned issues, the BEKK of Engle and Kroner (1995) is proposed as:
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Ht = C ′C + A′εt−1ε
′
t−1A+G′Ht−1G (1.43)

where C,A,B are parameters matrices, with C as an n×n lower triangular matrix,

and A,B as n×n matrices. By using the quadratic forms, the BEKK model promises

positive semi-definiteness under very week conditions. Moreover, in matrix A, the

coefficients measuring the effect of shocks imposed on the volatility of its own coun-

try locate at the diagonal, in other words, the own ARCH effect, whilst the effect

of shocks from country i on the volatility of country j are the off-diagonal elements.

In matrix G, the diagonal elements measure the effect of the past volatility on the

volatility of its own country, put it differently, the own GARCH effect, while the

effect of past volatility of country i on the volatility of country j are the off-diagonal

parameters. Therefore, in order to check whether there is volatility spillover from

country i to country j, it is to check whether the off-diagonal estimated parameters

are significant or not at the chosen confidence level. Normally, according to Engle

and Kroner (1995) and Kroner and Ng (1998), the appropriate estimation technique

for BEKK model is maximum likelihood estimation.

Studying the integration of international stock markets is critical for individual in-

vestors and financial institutions, as the rapidly spread of technology and the grow-

ing scale of cross-border trading opportunities ensures the integration of markets in

the global economy. Moreover, the recent research focus tends to be looking into

the volatility spillover between developed and emerging markets, in order to extract

useful information for devising hedging strategies. For instance, if the causal linkage

from the developed markets to the emerging markets is weak, this indicates that the

emerging markets tend to be less influenced by the external shocks originated from

the developed markets, therefore, the investors holding assets from the developed

markets could diversify their position by including assets from emerging markets in

the portfolio. In this context, Li and Giles (2015) investigate the volatility causality

linkages between stock markets across the USA, Japan, China, India, Indonesia,

Malaysia, the Philippines and Thailand. The targeted countries are divided into

six groups, each of which contains the two developed countries and one developing

market, and the sample period is from 01/01/1993 to 31/12/2012 covering both the

1997 Asian financial crisis and the 2008 sub prime financial crisis. In particular,

as the stock market is more sensitive to negative shocks than to positive ones, the

asymmetric BEKK-GARCH(1,1) of Kroner and Ng (1998) is employed in this study

in the sense of the GJR (Glosten, Jagannathan and Runckle) model in Glosten
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et al. (1993), in order to accommodate the asymmetric responses of volatility in the

multivariate case. The specifications of the asymmetric BEKK-GARCH(1,1) are as

below:

Ht = C ′C + A′εt−1ε
′
t−1A+G′Ht−1G+D′εt−1ε

′
t−1D (1.44)

where εt−1 equals εt−1 when εt−1 is negative, and zero otherwise. Moreover, D

measures the asymmetric response to the negative news. Empirical findings reveal

strong one-way volatility spillover effects from the US stock market to both the stock

markets in Japan and Asia. Particularly, during the 1997 Asia financial crisis, the

volatility spillover grows more significantly between the US market and the Asian

markets, and the volatility spillover becomes bidirectional.

Chkili (2012) investigate the short run causal relationship in the second moment

between series of exchange rate changes and series of stock market returns between

a selection of developing countries over the period of 30/12/1994 to 13/03/2009.

Weekly return series are generated from the major indices in Hong Kong, Singapore,

Malaysia, South-Korea, Indonesia, Argentina, Brazil and Mexico. The multivariate

BEKK-GARCH (1,1) model of Kroner and Ng (1998) is adopted as suggested in Li

and Majerowska (2008) and Saleem (2009) to measure the level of market integration

indicated in volatility. A bidirectional volatility spillover is found between the stock

and currency markets in Malaysia, Korea, Indonesia and Brazil, as indicated by the

statistically significant coefficients of both g12 and g21. Moreover, a unidirectional

volatility spillover is found from the stock markets to the foreign exchange markets

in Singapore, Argentina and Mexico, as indicated by the significant g12 with the

insignificant g21. These results reveal that the stock market has great impact on the

foreign exchange markets in all of the selected emerging countries; moreover, four

out of seven of the selected emerging countries show a strong connection between

these two financial markets. In particular, the finding in the former sets the differ-

ence against the conclusion drawn from the existing literature that in the developed

countries the foreign exchange markets show greater influence on the stock markets

(Kanas, 2000; Yang and Doong, 2004; Aloui, 2007); possible explanations include

the more effective use of derivatives for hedging currency risk (Kanas, 2000); also

both Bodnar et al. (1995) and Grant and Marshall (1997) mention that the wide

use of financial hedging by multinational firms could significantly weaken the impact

that the exchange market imposes on the stock market, as those companies are the

major components of national stock market indices. As Chkili (2012) state, since
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the BEKK model is able to address not only the conditional volatility dynamics,

but also the conditional covariance between the two selected financial assets, thus

their empirical findings can contribute to the establishment of the optimal weights

of currency and stock to minimize risk in the portfolio.

Chou et al. (1999) studied the interactions between stock markets of Taiwan and the

US; analysing the daily close-to-open and open-to-close stock returns from 1991 to

1994. Under the bivariate BEKK-GARCH framework of Engle and Kroner (1995),

a one-way causality was pinned to flow from the US market to Taiwan, especially

for the case using open-to-close returns.

A well known drawback of BEKK is that the number of estimated parameters in-

creases as the number of the financial assets considered in the BEKK model in-

creases,. This has been widely agreed in many studies; however, very few study has

shown comparison investigation between the performance of the major methods and

of the BEKK. In other words, when the volatility spillover is considered between

only two financial assets, few study has shown any evidence that the BEKK in the

bivariate setting would have less satisfactory performance. Therefore, in this sense,

another direction of future research could be to set up simulation studies in a way

that the time of the evaluation of both methods could be compared.

1.4.4 Volatility Spillover under the Influence of Structural

Breaks

From the above discussion it can be seen that most of the techniques involved in

investigating volatility spillover are in the framework of GARCH models. Moreover,

Section 1.3 has documented that neglecting structural breaks can lead to spurious

GARCH model estimation. Such misspecification of GARCH models can eventu-

ally cause biased volatility spillover results (Rodrigues and Rubia, 2007). Moreover,

based on an extensive set of Monte Carlo simulations, Dijk and Sensier (2005) pro-

vide evidence that the causality-in-variance test developed by Cheung and Ng (1996)

and Hong (2001) suffers from considerable size distortions when structural breaks

are ignored. Therefore, it is absolutely necessary to detect possible structural breaks

before examining the causality in variance.

Huang (2012) studies the futures returns of S&P 500, FTSE 100 and Nikkei 225

from January 1989 to December 2006. All three series show structural breaks in

each volatility via ICSS, also reduced persistence is obtained when those breaks are

controlled for. Most importantly, via the BEKK-GARCH model, a unidirectional
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spillover is found from FTSE 100 to Nikkei 225, and from S&P 500 to Nikkei 225;

in addition, a bidirectional volatility spillover exists between FTSE 100 and S&P

500. Nevertheless, all these spillover effects no longer exist after the incorporation of

structural breaks. This very extreme finding agrees with Ewing and Malik (2005),

Arago-Manzana and Fernandez-Izquierdo (2007), and Miralles Marcelo et al. (2008)

that, neglecting structural breaks could significantly cause overestimation of volatil-

ity transmission scale.

Shahrazi et al. (2014) investigate volatility spillover between Iranian gold and for-

eign exchange markets during a period from 2007 to 2013. Using MICSS of Sanso

et al. (2004), one break is found in the gold market series, and two in the foreign

exchange. Via the BEKK-GARCH model pf Engle and Kroner (1995) with detected

breaks as dummy variables, a bidirectional volatility spillover is found between these

two markets; however, no linkage is found when these breaks are ignored. Therefore,

the authors strongly advise researchers to avoid the misleading implication caused

by the ignorance of structural breaks when evaluating volatility spillover effects.

Oil prices are usually considered as a critical economic indicator. Ewing and Malik

(2016) study the volatility spillover effect between daily return series of the crude oil

prices and the US stock prices from 01/07/1996 to 30/06/2013. In particular, the

effect of structural breaks in the volatilities of two data series is taken into consider-

ation. MCSS method of Sanso et al. (2004) is first employed to identify the presence

of possible structural breaks in the unconditional variance in each of the series.

Empirical evidence indicates four change points for the oil series, and eight change

points for the stock series. After taking account of the structural breaks in the cor-

responding conventional GARCH models, the volatility persistence has decreased

in each series; to be more precisely, from 0.985 to 0.809 for the oil series and from

0.989 to 0.958 for the stock series. This significant drop is further supported by the

likelihood ratio statistic, which shows the GARCH model with breaks outperforms

the original one without breaks. After that, the detected structural breaks are then

accommodated in the BEKK-GARCH model of Engle and Kroner (1995) to test the

volatility spillover effects. Empirical findings show a bidirectional volatility spillover

between these two asset series; more interestingly, in the BEKK-GARCH model

where the effects of structural breaks are ignored, no significant volatility spillover

is found in either direction. This finding highlights the importance of accommodat-

ing the structural breaks in the unconditional variance of financial asset series to

accurately determine the volatility transmission pattern between financial markets,

as well as the accurate estimation of the volatility persistence in constructing hedg-

ing strategies and derivative valuations. Moreover, in Ewing and Malik (2005), same
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techniques are employed on investigating the volatility dynamics between gold and

oil futures over a period of 01/07/1993 to 30/06/2010. Nine breakpoints are found

in the gold series and seven in the oil futures; after those change points are incor-

porated in the GARCH model, reduced volatility persistence is found in both cases;

moreover, a two-way volatility spillover effect is found between these two series with

consideration of the structural breaks in the unconditional volatilities, yet only a

one way volatility spillover is found from the oil futures to the gold market when the

structural breaks are ignored. One common procedure in the methodology in both

studies worth pointing out is that, residuals from both types of GARCH models

pass the standard diagnosis tests, suggesting the standard diagnostic test fails to

reveal the misspecification of the conventional GARCH model when the structural

breaks in the volatility are ignored. This can also provide evidence for the argument

in the existing literature in this area that the conditional variance could be incor-

rectly estimated in many studies. Furthermore, although these two studies detect

a different volatility spillover pattern after the break points are taken account of,

there is little empirical evidence showing the BEKK-GARCH model with structural

breaks outperforms the conventional BEKK-GARCH model.

More studies combining structural breaks detection and volatility spillover inves-

tigation can be found as follows: Okur and Cevik (2013) focus on studying the

volatility transmission between futures and spot markets in Turkey. This topic has

been widely discussed in the literature of finance because determining the causal link

in the variance between future prices and the underlying spot prices can help with

hedging and budget planning, therefore, it attracts attention from not only investors

but also regulators and academics. In addition, the investigation on the intra-day

data set can help investors to capture the market dynamics more accurately, and

thereby help them hedging their risks more efficiently so to prudently devise their

investment strategies. The study of Okur and Cevik (2013) firstly detects the pres-

ence of structural breaks in the volatility of the return series of the selected future

and spot prices. Via the ICSS of Inclan and Tiao (1994), sixteen structural change

points are found for the spot return series, while forty are detected for the future

return series. After a GARCH (1,1) is determined to be the appropriate model for

both return series, the conventional GARCH (1,1) is modified by including dummy

variables corresponding to the detected structural change points in both series, and

empirical results show the decreased volatility persistence in both series after the

accommodation of structural breaks. This is consistent with the existing literature,

see, for instance, Lamoureux and Lastrapes (1990); Arago-Manzana and Fernandez-

Izquierdo (2007); Ewing and Malik (2010), where it is argued to have overestimated

volatility persistence when the presence of structural breaks in the volatility is ig-
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nored in the conventional GARCH model. Moreover, Okur and Cevik (2013) prove

that the modified GARCH (1,1) has better explanatory power than the conventional

GARCH (1,1) by a likelihood ratio (LR) test. Eliminating the effect of structural

breaks is essential for the later on causality in variance test because the test statistics

are based on the parameters estimated from GARCH models; as a result, misleading

causality results can be produced if the structural breaks exist in the volatility and

are not accounted for. Next, the cross correlation function (CCF) based causality

in variance test of Hong (2001) is adopted to investigate the information transmis-

sion mechanism between the two return series with two case scenarios with respect

to whether the structural breaks are considered in the conventional GARCH (1,1)

model. A two-way volatility spillover effect is detected between the returns of spot

and the futures series when the structural breaks are taken into consideration; in

addition, according to the size of cross-correlation coefficient at different lag selec-

tion, it can be determined that the spot market influences the futures market within

10 minutes, while the futures market influences the spot market within 5 minutes.

When the presence of the structural breaks is ignored, only a one way volatility

spillover is found from the spot market to the futures market, and the influence

begins within 15 minutes. The finding of a new volatility spillover direction is con-

sistent with the study of Dijk and Sensier (2005) and Rodrigues and Rubia (2007)

that the ignorance of structural breaks will lead to the size distortion in the causal-

ity in variance test of Cheung and Ng (1996) and Hong (2001). Moreover, in order

to assure the robustness of the causality results from the aforementioned test, the

Lagrange multiplier based causality in variance test of Hafner and Herwartz (2006)

is also employed, which is proved to overcome the lag selection problems and the

small sample problems from the causality in variance test of Cheung and Ng (1996)

and Hong (2001). Results of Hafner and Herwartz (2006) show a unidirectional

volatility spillover from the spot to the futures market no matter the structural

breaks are accommodated or not. Therefore, Okur and Cevik (2013) comment that,

empirical results from both causality in variance methods can at least confirm the

volatility spillover from the spot market to the futures market in Turkey over the

sample period from 01/05/2006 to 31/05/2010; therefore, comparing to the futures

market, the spot market plays a more dominant role in the intra-day spillover effect

in Turkey. Another study considers structural breaks in volatility spillover inves-

tigation is Mensi et al. (2016). The volatility transmission patterns are examined

of daily stock indices between the US and each of the BRICS countries, which in-

cludes Brazil, Russia, India, China and South Africa, over a sample period dated

from September 1997 to October 2013. In order to check the impact of the 2008

financial crisis, they first examine the presence of structural breaks in each of the

selected stock indices using MICSS of Sanso et al. (2004), one shared break date is
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found on 15 September 2008. Based on this date, two sub-sample periods are cre-

ated, and a DCC-FIAPARCH model is developed based on the FIAPARCH model

of Tse (1998) under the DCC framework of Engle (2002), and adopted to the daily

return series. A stronger bi-directional volatility spillover is found between the US

and Brazil, India, China, and South Africa after 15 September 2008, indicating the

outburst of financial crisis has increased the linkage between these markets after

the financial crisis; however, volatility spillover is no longer found between the US

and Russia after the crisis, implying the possibility that financial crisis has caused

a disconnection of Russian stock markets from the US. This information is of great

value to investors to exploit portfolio diversification benefits and risk managers to

manage financial exposure and policy makers to sustain market stability.

Moreover, Güloǧlu et al. (2016) examine the volatility spillover pattern between

five LA stock markets Argentina, Brazil, Colombia, Chile and Mexico. The DCC-

GARCH model of Engle (2002) is selected and incorporated with structural breaks

detected via MICSS algorithm of Sanso et al. (2004), so to eliminate the model

misspecification caused by the overlook of structural breaks. Examining the daily

stock index returns over a period from January 2008 to May 2015, causality pattern

is found to be very significant from Mexico to Argentina, yet very weak from Brazil

to Mexico; no volatility spillover is found between the other pairs of stock markets

in question. These findings suggest an independence structure between LA stock

markets, which agrees with the argument raised in Korkmaz et al. (2012) that the

lack of volatility spillover could be the evidence of independence between markets

to some extent.

1.5 Conclusion

The ICSS test of Inclan and Tiao (1994) and its modified version of Sanso et al.

(2004) are the most popular techniques when testing for structural breaks in the

volatility. Although the underlying assumption of normality and i.i.d causes over-

estimation problems for the application of ICSS test of Inclan and Tiao (1994) to

financial time series, Sanso et al. (2004) develop a modified version of ICSS (MICSS)

in order to overcome such problem. In particular, both tests can be used to test for

multiple structural breaks without any knowledge of the potential locations of break-

points. This feature makes ICSS and MICSS more preferred than the supLM(π) test

of Andrews (1993), as the latter method can only detect the presence of structural

break in some pre-selected time period. Despite the better size and power properties

than ICSS and MICSS, the application of the supLM(π) test could be very restric-

tive due to the high dependency on the choice of sample period. Therefore, it can
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only produce relatively accurate timing of a structural break around known events,

such as change of fiscal policy, financial crisis, or a change of CEO in a company.

Nevertheless, less satisfactory results can be expected when there is no sufficient

information on big events. For circumstances like this, the ICSS or MICSS test

would be more reliable since it is designed to test multiple change points without

asking for a specifically pre-determined time period. Also, the amount of computa-

tion required seems to make supLM(π) less popular in the literature as not much

research is found for this method. However, it is very attractive for the supLM(π)

test to have the ability to test structural breaks in the dynamics of volatility; with

the appropriate design of certain algorithm in terms of a rolling window, it could be

possible for supLM(π) to find multiple breaks in the unconditional variance as well

as the dynamics of volatility in GARCH models, and moreover, to create augmented

models taking into consideration these breaks. This can be a future research direc-

tion in this area.

When examining volatility spillover, this chapter finds extensive applications with

methods that are constructed based on GARCH models. And ignoring structural

breaks in the volatility will eventually lead to incorrect spillover results. Among the

selected volatility spillover tests, the causality in variance test of Cheung and Ng

(1996) and its modified version of Hong (2001) are widely employed for its straight-

forward implementation and free of heavy computation. Moreover, the modified

causality in variance test gives non-union weights when examining sample cross cor-

relations, which is more advanced to the causality in variance test of Cheung and

Ng (1996). With these considerations, this thesis will adopt the modified ICSS of

Sanso et al. (2004) for structural breaks detection in stock returns in Chapter 2, and

use the causality in variance test of Hong (2001) to investigate potential volatility

spillover pattern between stock and foreign exchange markets in Chapter 3.



Chapter 2

Volatility Persistence: Do

Structural Breaks Matter?

2.1 Introduction

The volatility of financial time series has become a popular research topic in asset

pricing, portfolio selection, and investment strategy development. The accuracy of

volatility modelling is a critical input in making investment decisions. The GARCH

family is best known for modelling volatility of financial assets. However, recent

studies have cast doubt on the accuracy of GARCH model estimation due to the

presence of structural breaks in the volatility. Significant political or financial events

can affect the behaviour of asset series and thereby cause parameter instability of

a GARCH model, hence, a structural break in the variance/volatility. This phe-

nomenon is also referred to as sudden changes or shifts in the variance, or in the

mean level of unconditional variance. The result of neglecting such factor in a con-

ventional GARCH model is the size distortion in volatility persistence. Thus, it

is necessary to eliminate the structural breaks effect in volatility modelling. As a

result, many tests are constructed to identify such breaks and accommodate them in

the conventional GARCH models. Among others, the Iterative Cumulative Sums of

Squares (ICSS) algorithm of Inclan and Tiao (1994) has received much attention for

its simple implementation and moderate statistical power. Studies using the ICSS

algorithm is substantial, see, for instance, Aggarwal et al. (1999); Malik and Hassan

(2004); Wang and Nguyen Thi (2007); Wang and Moore (2009); Kang and Yoon

(2010).

Nevertheless, recent studies question the robustness of this ICSS algorithm of Inclan

and Tiao (1994); many studies have reported an overestimated number of structural

breaks when applying ICSS to financial series (Andreou and Ghysels, 2002; Sanso

34
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et al., 2004). According to Sanso et al. (2004), such overestimation is caused by the

underlying assumption of ICSS being data series follows an independent and normal

distribution. Therefore, they propose a modified version of ICSS (MICSS), which

takes account of both the excess kurtosis and the time-varying dependence within

the data observations. Simulation experiments further reveal severe size distortion

of ICSS while good power and size properties of MICSS when employed on simu-

lated series following a GARCH(1,1) process. Particularly, both ICSS and MICSS

are adopted in Araghi and Ghazani (2015) and Koseoglu and Cevik (2013); both

studies point out that more change points are found by ICSS algorithm than that of

the MICSS algorithm for all data series in all the countries in question. More empir-

ical applications of MICSS can be found in Mirovic et al. (2017); Kirkulak-Uludag

and Lkhamazhapov (2017); Shahzad et al. (2017). Furthermore, extensive attempts

have been made at modifying the conventional GARCH model after identifying any

structural breaks in the volatility; one leading strand is to incorporate the detected

structural breaks as dummy variables in a conventional GARCH model. Substantial

evidence has been found that a decreased volatility persistence can be obtained after

eliminating the effects caused by structural breaks (see, for instance, Lamoureux and

Lastrapes, 1990; Arago-Manzana and Fernandez-Izquierdo, 2007; Ewing and Malik,

2010).

Although existing studies have well explored the topic of modelling volatility in the

presence of structural breaks in various countries, however, few studies in this area

have investigated the Chinese stock market. Some exceptions include the work of Ni

et al. (2016), where MICSS of Sanso et al. (2004) is employed on the weekly stock

returns from two major stock indices in China. Still, no research has been found to

study the Chinese stock market in a comparison study with a developed country. In

addition, the literature is scarce on the subject of evaluating the performance of the

above mentioned two algorithms. Apart from in Inclan and Tiao (1994) and Sanso

et al. (2004) where the tests are created, only two papers, Andreou and Ghysels

(2002) and Kumar and Maheswaran (2012), are found to compare the two methods

in a simulation study. Nevertheless, their studies are more focused on examining the

size and power of the main tests from the two algorithms in the event of one struc-

tural break, leaving a gap for the case of multiple breaks. Besides, no simulation

study has been done on the performance of modified GARCH models with structural

breaks. Motivated as such, this chapter will carry out a comparison investigation on

the stock markets in China and the UK. Whether to choose ICSS of Inclan and Tiao

(1994) or MICSS of Sanso et al. (2004) will be decided after running a comprehen-

sive Monte Carlo simulation study. Any detected structural breaks afterwards will

be incorporated into the GARCH model for further evaluation on model estimation.
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Also, the timing of each break will be associated with significant events. Designed

as such, this chapter aims at adding a richer context to the existing literature. First

of all, the identification of structural breaks allows for further analysis on the associ-

ations between break dates and significant events; moreover, it can provide insights

on whether events from a particular source are more influential on the market with

a certain level of development. Next, including the structural breaks in GARCH not

only can improve volatility estimation, but it also builds tailored volatility models

according to the unique structure of that market. Last but not least, the compre-

hensive simulation study can contribute to the existing literature more statistical

evidence on the performance of two widely used tests for structural breaks detection.

This chapter proceeds in the following structure: Section 2.2 provides an overview

of the literature regarding structural breaks detection and accommodation; Section

2.3 highlights the main research question; Section 2.4 introduces the methods, and

Section 2.5 describes the research data; Section 2.6 presents the empirical results

with discussions; limitation of this research and future efforts can be found in Section

2.7, followed by which is the concluding remarks in Section 2.8.

2.2 Literature Review

A vast body of empirical studies has emerged in the subject of volatility mod-

elling for financial time series in the presence of structural breaks in the volatility.

Many studies adopt the approach to first detect the occurrence of any structural

break(s) in the studied financial series, then incorporate the detected breakpoint(s)

as dummy variables into the variations of conventional GARCH of Bollerslev (1986).

Empirical applications of ICSS are mainly found in investigating stock index series

and foreign exchange rates across various nations. Early studies can be found in

Aggarwal et al. (1999), who investigates weekly stock returns from ten of the largest

emerging markets at that time over the 10-year period from 1985 to 1995. Several

breaks are detected via ICSS and are associated more with the local events, such

as the Mexican Peso crisis, the time of hyperinflation in Latin America, and the

stock market scandal in India. They further agree with the conclusion in Bailey and

Chung (1995) and Bekaert and Harvey (1997) that the emerging markets are more

likely to be influenced by local events.

Todea and Petrescu (2012) share similar conclusion when studying Romania stock

markets. They examine weekly stock returns from five Financial Investment Com-

panies listed on the Bucharest Stock Exchange in Romania over a period from
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05/01/2000 to 30/03/2011; structural breaks are found via the ICSS in all selected

company stocks. Among the significant events that are associated with the detected

breaks, most are either company-specific matters or domestic financial and political

policies. For instance, the decrease of inflation in 2004, the transition to a new

currency, the change of the Board of Directors, the change of capital market legis-

lation, the integration in the European Union. The 2008 financial crisis is the only

global event linked to the breaks. These findings indicate that local events are most

influential to these big companies in Romania’s emerging stock market. Moreover,

after taking account of the detected breaks in each return series, their study reports

decreased volatilities in all cases. They also remove the breaks having insignificant

coefficients, which correspond to events that are less influential, from each return se-

ries’ best GARCH model; results show a less deducted persistence for all the sample

series. Therefore, they argue that it is necessary to filter out the insignificant breaks

when modifying GARCH models; otherwise, it could lead to an overestimation of

the decrease in volatility persistence.

Using the same approach as Todea and Petrescu (2012), Hammoudeh and Li (2008)

also leave out the breaks with insignificant coefficients when incorporating them into

the best GARCH model; a less reduced volatility persistence is obtained for all the

series. However, they find that the global events play a more important part with

respect to the structural breaks. Several structural breaks are identified via the ICSS

for five emerging stock markets in Gulf area Arab from 1994 to 2001. Comparing

to domestic or regional events, the dates of the detected breaks are much closer to

those in the global context; to name a few, the 1997 Asian crisis, the collapse of oil

prices in 1998, the adoption of the price band mechanism by OPEC in 2000, and

the 9/11 attacks.

Kang et al. (2009) also find evidence that developed markets are more likely to

be affected by global events. Investigating weekly stock returns in Japan and Ko-

rea from 1986 to 2008, structural breaks are found via ICSS in both markets and

are linked to global financial and political events. After incorporating the detected

breaks into a fitted GARCH model and FIGARCH of Baillie et al. (1996), not only a

reduced volatility persistence is observed in the modified GARCH model, long mem-

ory property also no longer exists in the modified FIGARCH model. In addition

to that, smaller values are obtained from skewness, kurtosis and Jarque-Bera nor-

mality tests on the residuals from both models with breaks. This evidence suggests

that including the structural breaks in the GARCH-type model can also improve its

model estimation.
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More application can be found in Malik and Hassan (2004) in five major Dow Jones

stock indices representing five major sectors in US market from 1992 to 2003; in

Malik et al. (2005) in two stock indices in Canada from 1992 to 1999, in Kasman

(2009) in the stock markets of the BRIC countries (Brazil, Russia, India, China)

from 1990 to 2007; in Kang and Yoon (2010) in four Asian exchange rates from 1990

to 2008; in Todea and Platon (2012) in the foreign exchange markets of four new

EU countries from 1999 to 2009. All these studies have shown successful detection

of structural breaks via ICSS, and reduced volatility persistence are obtained from

GARCH models incorporated with structural breaks.

Despite its popularity, however, the validity of the ICSS of Inclan and Tiao (1994)

has been questioned, for it is constructed under the assumption of independent and

normally distributed data. This assumption is apparently contradictory to financial

time series, which are with heavy-tailed distributions and also show heteroskedas-

tic volatility. Therefore, the null hypothesis of constant variance of ICSS test is

rejected too often when applied to financial time series; as a result, the number of

breakpoints is very likely to be overestimated. To overcome such issue, Sanso et al.

(2004) modify the ICSS test so to address the conditional heteroskedasticity.

Empirical applications of MICSS of Sanso et al. (2004) can be found in C. aǧli et al.

(2012), where the sudden changes in the volatility are investigated in Turkish stock

market. In fact, both ICSS and MICSS are employed on daily return series of the

stock market index along with three major sector indices from 1997 to 2009; struc-

tural breaks are found via both tests for all the indices. However, ICSS tends to

overestimate the number of change points comparing to MICSS; for instance, in re-

turn series of ISE 100 stock market index, twenty points are detected via ICSS, while

only three change points are identified via MICSS. This result further supports the

argument that the ICSS test suffers size distortion when applied to financial time

series. They also mention that both global and local events play an influential part

in these volatility shifts, for instance, government elections, changes in the monetary

and fiscal policies, and improvements in the EU adaptation process. Moreover, after

incorporating the detected structural breaks as dummy variables in the EGARCH

model of Nelson (1992), a significant decrease in the volatility persistence is reported

in all return series. Another application of MICSS can be found in Kumar and Mah-

eswaran (2012), where weekly data of six indices in Indian stock markets are exam-

ined over a period from 1994 to 2011. Structural breaks are found in all return series

and are associated with global macroeconomic and political events. Moreover, after

incorporating the structural breaks in GARCH (1,1) and GJR-GARCH (1,1), both

the volatility persistence and volatility asymmetry are significantly decreased. Also,
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the analysis of out-of-sample forecasts suggests accommodating sudden changes in

the volatility can present more satisfactory one-step-ahead forecast than that with-

out considering regime shifts for Indian stock markets.

From the above review of the literature over the past two decades, no doubt that

it is of critical importance for structural breaks detection when modelling volatility

of financial time series. And clearly, MICSS algorithm of Sanso et al. (2004) is pre-

ferred over the ICSS algorithm of Inclan and Tiao (1994) when examining financial

time series, since the latter method often reports more breaks than there should

be. Nevertheless, of this extensive literature, few studies choose to carry out an

extended investigation with respect to the performance of the discussed tests for

structural breaks; only exceptions being Inclan and Tiao (1994), Sanso et al. (2004),

Andreou and Ghysels (2002) and Kumar and Maheswaran (2012). Andreou and

Ghysels (2002) are among the first to question the validity of the ICSS algorithm.

In their study, both the size and power of the ICSS test are examined. When ap-

plied to a simulated GARCH(1,1) data sequence with no break, ICSS test is found

to have size distortion. That is to say, ICSS test tends to falsely reject the null

hypothesis of no break too often when no structural break is actually simulated.

Regardless of the poor size property, ICSS test shows adequate power when there

is one break simulated in the middle of a GARCH(1,1) data sequence. In addition,

ICSS test is also able to detect very small changes in the variance of the error terms

as long as the sample size is large, for example, T = 3000. This finding is consis-

tent with Inclan and Tiao (1994), where simulation study shows ICSS has relatively

decent power to detect structural breaks in the residuals, given that the financial

series are properly modelled with very large samples. Moreover, via Monte Carlo

simulations, Sanso et al. (2004) find satisfactory size and power properties for both

ICSS and MICSS when applied to a normally distributed data. When the simu-

lated data series is an ARCH(1), both algorithms still show good power property,

but significant improvement in the size property is found in MICSS, and a severe

size distortion is found in ICSS. Kumar and Maheswaran (2012) also evaluate the

performance of ICSS and MICSS via Monte Carlo simulation study. Various scenar-

ios are considered, including different data generating processes, such as GARCH

(1,1) and stochastic volatility (SV), and different probability distributions for the

error terms, such as the standard normal distribution and the Student t distribution

with 5 degree of freedom. The size and power of each method are compared, where

MICSS shows a more desirable overall performance while a severe size distortion is

found for ICSS when applied to financial time series. Moreover, both tests show

decent power properties on GARCH(1,1) series especially the change in the variance

is significant.
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However, one particular finding in both Sanso et al. (2004) and Kumar and Ma-

heswaran (2012) is that, for a small sample, such as T = 100, both tests are less

responsive to the simulated break when the change in the variance is small; yet

this finding is not addressed in either study. Particularly, none of the known stud-

ies has investigated the performance of these two algorithms when more than one

structural break is in presence. Furthermore, no study has conducted simulations to

examine the validity and efficiency of GARCH model incorporated with the detected

structural breaks. Inspired by such, this chapter will complement the literature by

taking a closer look at the performance of both ICSS and MICSS by analysing the

detected change points via a series of carefully designed Monte Carlo simulations.

The experiments are designed to consider more factors than in the study of Ku-

mar and Maheswaran (2012), such that the performance of both algorithms can be

studied in a much broader setting. Also, a simulation study will be employed to

examine GARCH models with structural breaks, in order to provide empirical evi-

dence on the validity of such modification. Moreover, substantial studies are found

to investigate stock market volatility across a number of regions, yet few research

has been conducted on the Chinese stock market. One of the few exceptions is in

Ni et al. (2016), where the MICSS of Sanso et al. (2004) is employed to investigate

the presence of structural breaks in the volatility in Chinese stock market. In their

study, weekly stock returns are obtained from two major stock indices, one of which

is listed on Shanghai stock exchange and the other on Shenzhen stock exchanges,

from 1990 to 2011. Three significant break dates are identified for each stock index.

More importantly, the authors are able to identify the link between these dates and

government policies; thus, they point out that the Chinese stock market is signifi-

cantly influenced by government regulations.

To fill the gaps above, this chapter will focus on the Chinese stock market, and

form a comparison study by also looking into the UK stock market, in order to

compare different volatility structures because of the different level of development.

More importantly, Monte Carlo simulation study will be firstly carried out, in or-

der to comprehensively evaluate the performance of both ICSS and MICSS before

application. Detailed methods of such can be found in Section 2.4.

2.3 Research Question

The primary research question of this chapter is formed as below:

Do the stock markets in China and the UK experience structural breaks in the
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volatilities? And to what extent do the identified structural breaks affect volatility

persistence in each stock market?

By investigating such issues, not only the timing of each structural break will be

determined, but it can also reveal the relationship between break(s) and significant

events, i.e. whether it is the domestic or global event that would be more likely to

induce a structural break. Taking into consideration of such factor can provide in-

vestors and financial managers with insightful information when creating investment

strategies. Moreover, re-examining the volatility persistence by taking account the

identified structural breaks can help to obtain a more accurate volatility persistence

than that obtained via the conventional GARCH models. Accurately estimated

volatility persistence is of great importance since it is the detrimental factor in

volatility forecasting. In addition, the comparison study conducted on one emerging

and one mature market can explore the differences between volatility structure of

markets of different level of development.

2.4 Methodology

This section will describe the empirical framework of this study. For structural break

detection, both ICSS algorithm of Inclan and Tiao (1994) and MICSS algorithm of

Sanso et al. (2004) will be reviewed again, with more detail on introducing the

algorithm that both methods use. Particularly, this section also sets forth a series

of carefully designed Monte Carlo experiments in order to evaluate the performance

of both ICSS and MICSS algorithms, especially with multiple structural breaks in

the data series. Moreover, the method of addressing the detected breaks in the

volatility model will be discussed, so to eliminate the negative effect of structural

breaks toward volatility persistence estimation.

2.4.1 Structural Breaks Identification

As mentioned in the previous chapter, ICSS Algorithm of Inclan and Tiao (1994)

considers the data sequence to vary at a constant value for a period of time until

a sudden change in the variance occurs; the data sequence then varies at this new

value for another period until a next new change occurs. Thus, for an uncorrelated

random data sequence {εt}, with mean 0 and variance σ2
t , t = 1, 2, ..., T , the centred

and normalized cumulative sum of squares Dk takes the form in Equation (2.1)

Dk = Ck/CT − k/T, k = 1, 2, ..., T (2.1)
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where Ck =
∑k

t=1 ε
2
t , k = 1, 2, .., T is the cumulative sum of squares of {εt}. And

CT is the sum of squares over the full sample period at T . Under the null hypothesis

of no structural break in the volatility,
√
T/2Dk asymptotically follows a Brownian

bridge process, where
√
T/2 is to standardise the distribution. An IT test is created

as shown in Equation (2.2) to search for one change point in interval [1, k], k =

1, 2, ..., T :

IT = max
√
T/2|Dk| (2.2)

According to Inclan and Tiao (1994), the critical value of IT test is 1.358 at 95%

percentile. That is to say, when the maximum value of Dk from observation 1 to k

exceeds 1.358 at k∗, k∗ ∈ [1, k], one break is identified at k∗.

In order to test for the potential locations of more than one breakpoint over the full

sample, Inclan and Tiao (1994) propose an iterative procedure, where the IT test

is successively applied to pieces of the sample series which are determined consecu-

tively after a new change point being found. This procedure is described as below:

1. Run the IT test on the full sample series [1, T ]. When one change point is lo-

cated at k∗(1 < k∗ < T ), the full sample is then divided into two sub-samples,

[1, k∗] and [k∗ + 1, T ].

2. Run the IT test on sub-sample [1, k∗]. Where a new change point is detected,

this then becomes the end of a new sub-sample. Run the IT test on newly

formed sub-samples until no change point is found. Record each detected

change points so far.

3. Run the IT test on sub-sample [k∗ + 1, T ]. When a new change point is de-

tected, the location of this newly found change point plus one then becomes

the start of a new sub-sample. Run the IT test on newly formed sub-samples

until no change point is found. Record each detected change points so far.

4. Collect all the change points detected so far from the three steps above and

sort them in an ascending order based on their location in the full sample

series. Suppose these change points are k1, k2, ..., kn. Define two border points

k0 = 0, kn+1 = T , with T as the full sample size. Run the IT test on ki−1 + 1
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to ki+1 with i = 1, 2, .., T − 1.

5. Collect each newly found change point from step 4 and repeat the procedure

in step 4 on this new collection of change points.

6. Repeat step 1 to 5 until there is no change in the number of newly detected

change points, and the location of each change point is within two observa-

tions from where it was in the previous search. Then it can be said that the

algorithm has converged and the estimates of possible change points are de-

termined.

Unlike other methods, such as the supLM(π) test of Andrews (1993), which can

only detect breaks around known events, ICSS requires no such prior information.

Moreover, ICSS is easy to implement with simple computation. These features

make ICSS more appealing over other breaks detection methods. Although many

studies use the ICSS algorithm of Inclan and Tiao (1994) and successfully identify

the structural breaks, Sanso et al. (2004) argue that ICSS can lead to inaccurate

estimation of structural breaks when applied to financial time series. Since IT test

in ICSS is built on independent data sequences with a normal distribution, severe

size distortion occurs when applying ICSS to leptokurtic financial asset series. Sanso

et al. (2004) modify the IT test with a κ2 test by taking into consideration the fourth

moment properties of the data series along with the conditional heteroskedasticity

which are not properly addressed in ICSS. κ2 function is defined in Equation (2.3):

κ2 = sup
k
|
√

1/TGk| (2.3)

where

Gk =
√

1/ω̂4(Ck −
k

T
CT ) (2.4)

ω̂4 in Equation (2.4) is a non-parametric estimator of the long run fourth moment

of Yt, and the expression is shown in Equation (2.5):

ω̂4 =
1

T

T∑
t=1

(ε2t − σ̂2)2 +
2

T

m∑
l=1

ω(l,m)
T∑

t=l+1

(ε2t − σ̂2)(ε2t−1 − σ̂2) (2.5)
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In Equation (2.5), σ̂2 is the variance of the data sequence. Moreover, ω(l,m) rep-

resents the Bartlett kernel function, which is defined as ω(l,m) = 1 − l
m+1

with

1 < l < m. According to (Newey and West, 1994), m is the bandwidth that deter-

mines the number of the cross products considered in Equation (2.5); it is of partic-

ular importance for m to increase at an appropriate rate with the sample size so to

ensure the consistency of this kernel function. They further suggest 4× (T/100)2/9

to be a choice for m based on both theoretical asymptotic and empirical Monte

Carlo results. Under the null hypothesis of no structural break, the critical value of

the κ2 test is 1.329 at the 95% percentile. And MICSS algorithm follows the same

iterated procedure proposed by Inclan and Tiao (1994). Sanso et al. (2004) further

confirm the spurious size distortion of ICSS and the effective improvement of their

modified version. Also, they re-examine the structural breaks detected via ICSS in

Aggarwal et al. (1999); using MICSS on the same research data, no structural break

is found.

2.4.2 Modified GARCH(p,q) with Structural Breaks

Recall the standard GARCH(p,q) of Bollerslev (1986):

rt = µ+ εt, εt|It−1 ∼ N(0, σ2
t ) (2.6)

εt = zt
√
σ2
t , zt ∼ N(0, 1)

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i

As it has been discussed in the previous chapter, in Equations (2.6), the sum of αi

and βi measures the volatility persistence. According to Ross (2013), the standard

GARCH model takes no account of potential structural breaks in the unconditional

variance. As discussed earlier, the volatility of financial time series is very likely

to experience structural breaks due to the changing economic environment or the

occurrence of political events. Ignoring such factor can lead to an overestimation of

the volatility persistence. Diebold (1986) and Lamoureux and Lastrapes (1990) are

among the first to question such spurious GARCH estimation. In order to solve this

problem, dummy variables will be constructed according to each detected break,

and incorporated to the conventional GARCH model as in Equation (2.7):

σ2
t = ω

′
+D1tδ1 +D2tδ2 + ...+Dntδn +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i (2.7)
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where Dit, i = 1, 2, ..., n are dummy variables corresponding to the number of de-

tected change points n. Moreover, for each Dit, it takes the value of 1 from the

detected break onwards and 0 elsewhere. δi, i = 1, 2, , n are the estimated coeffi-

cients of the corresponding dummy variables; ω
′

is the new deterministic term after

the elimination of the structural breaks effects. Adjusted as such, it is expected

to obtain reduced volatility persistence as in the work of, for instance, Malik and

Hassan (2004), Kasman (2009), Wang and Moore (2009), Kang et al. (2009), Todea

and Petrescu (2012).

2.4.3 Monte Carlo Study

The purpose of conducting Monte Carlo simulations is to further understand the

mechanism and performance of the ICSS of Inclan and Tiao (1994) and MICSS of

Sanso et al. (2004), particularly in a setting where multiple breakpoints are simu-

lated. Since the existing simulation studies found in Inclan and Tiao (1994), An-

dreou and Ghysels (2002), Sanso et al. (2004) and Kumar and Maheswaran (2012)

only consider the performance of the core tests but not much has been explored on

the algorithm that runs the tests. Thus, this study sees the necessity to comple-

ment in this regard and aims at revealing any specific patterns or tendencies of the

performance of both algorithms by analysing breakpoints detected from much more

comprehensive scenarios. Particularly, the performance of the GARCH model with

structural breaks will also be studied via simulations, which is scarce in the known

studies in this subject.

2.4.3.1 ICSS vs MICSS

One of the main purposes of this simulation is to evaluate the effects of multiple

structural breaks to the overall performance of both ICSS and MICSS, since almost

all the studies found so far are focused on the effect of one break. In order to

simulate more than one break in the volatility, two data series {V1t} and {V2t} will

be generated with the same parameters apart from different values of the variance.

Then combine {V1t} with {V2t} by segment of equal length, where every two segments

contain different variances as the variables within which are from either {V1t} or

{V2t}. Therefore, the presence of structural breaks is crafted to be at the joining

of segments from {V1t} and {V2t}. To be more specific, the simulated location of

each break will be the first variable that takes a different variance from its previous

value. This arrangement allows us to simulate more than one structural break while

avoiding creating any trend in the simulated data. Moreover, apart from the lack

of attentions on multiple breaks, even fewer studies has considered the potential
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effects of the size of variance change, the order of variance change, and how often

the occurrence of breaks. Thus, this study will attempt to fill such gap by looking

into these factors when designing the simulation experiments:

1. The number of breakpoints

Up to four breaks will be simulated, in order to evaluate the performance of

the studied algorithms when dealing with more than one break.

2. The size of variance change

When one structural break occurs in the volatility, it means the variance of the

data series changes to a new value. And the size of variance change measures

the difference between this new and the old value. Three types will then be

considered: a significant size of variance change (∆ = 0.22), a relatively less

significant one (∆ = 0.11), and an almost insignificant one (∆ = 0.05). This

factor aims at finding out to what extent regarding the size of the change that

the two algorithms could still properly recognise a break from its adjacent

ones.

3. The order of variance change

Also, the occurrence of structural break could cause an increased new variance

value or a decreased one. Therefore, it is also interesting to know whether the

algorithms would react differently to upward or downward change in the new

variance values. In this regard, the order of variance change is created, and

the “Ascending” order indicates the variance becomes bigger than its previous

value, while the “Descending” indicates the opposite.

4. The distance between adjacent breaks

This factor represents how volatile the market is. That is to say, a large

distance in terms of a large number of observations between two adjacent

simulated breaks represents a “Tranquil Period”, suggesting a relatively stable

market. Meanwhile, the small distance with a small number of observations

between the two represents a “Fluctuate Period”, indicating otherwise. More

specifically, this study will simulate one structural break every 300 observations

for “Tranquil Period”, and every 100 observations for “Fluctuate Period”.

Furthermore, two types of data generating processes will be considered, namely, an

independent and identically distributed (i.i.d) process and a GARCH(1,1) with the

disturbances following the standard normal distribution. The former represents the

application of algorithms to the residuals obtained from a fitted model, and the

latter attempts to represent the direct application on the original data series which

has mean zero and conditional variance of a GARCH(1,1) for simplicity. It is worth
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noting that, the most common way found in the literature of detecting structural

breaks is to apply the algorithm(s) to the residuals obtained from a fitted model.

However, since the model estimation might have already been falsely estimated due

to ignoring the breaks when modelling the data at the first place, thus, the detec-

tion would be invalid if applying the algorithm(s) to residuals obtained from a model

without accommodating the structural breaks first. With such consideration, this

simulation study attempts to evaluate the performance of both algorithms when ap-

plied directly to the simulated data, in order to explore the possibility of a new way

which eliminates the interference of structural breaks. By taking into consideration

of the above discussion, three scenarios will then be created as below:

Scenario 1: Investigating the performance of ICSS and MICSS. Both i.i.d and

GARCH(1,1) series will be generated, with relatively significant variance changes

(∆ = 3 for i.i.d and ∆ = 0.22 for GARCH(1,1)). Moreover, both “Fluctuate” and

“Tranquil” periods will be considered.

Scenario 2: Investigating the performance of MICSS with a less significant change

(∆ = 0.11) in the variance in “Fluctuate” setting.

Scenario 3: Investigating the performance of MICSS with an almost insignificant

change (∆ = 0.05) in the variance in “Tranquil” setting.

Scenario 1 specially contributes to the literature where evaluation of both algorithms

only considers the presence of one single break. Scenario 2 and 3 are designed

to mimic stress testing, that takes further investigation on MICSS under extreme

conditions, i.e. breaks occur more and more frequently with less and less signifi-

cant variance changes. Besides, all the scenarios will consider up to four simulated

breaks; also, the Order of Variance Change is considered in each scenario. Detailed

parameter values can be found in Table 2.1:

Since both algorithms are considered in Scenario 1 and only MICSS in Scenario 2

and 3, the number of experiments will be 64, 16, and 16 respectively. Therefore,

this Monte Carlo study consists of 96 experiments, each of which contains 5,000

replications, in order to provide sufficient statistical evidence. This simulation design

can offer the existing literature a comprehensive evaluation of the performance of

the two well-known algorithms. Moreover, the existing literature has shown quite

adequate evidence on the advantage of MICSS over ICSS, yet little has looked into

the drawbacks of such. Therefore, the further investigation in Scenario 2 and 3

can examine the robustness of MICSS under extreme conditions. As a result, the
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selected method for structural break detection is expected to be well studied before

application to the stock series in this chapter.

Table 2.1: Simulation Design for Structural Breaks Detection

i.i.d GARCH(1,1)

Scenarios Interval µ σ2 µ ω α β

Scenario 1

300 0 σ2
1 = 1, σ2

2 = 4 (A) 0 ω1 = 0.11, ω2 = 0.33 (A) 0.1 0.8

300 0 σ2
1 = 4, σ2

2 = 1 (D) 0 ω1 = 0.33, ω2 = 0.11 (D) 0.1 0.8

100 0 σ2
1 = 1, σ2

2 = 4 (A) 0 ω1 = 0.11, ω2 = 0.33 (A) 0.1 0.8

100 0 σ2
1 = 4, σ2

2 = 1 (D) 0 ω1 = 0.33, ω2 = 0.11 (D) 0.1 0.8

Scenario 2

300 0 ω1 = 0.22, ω2 = 0.33 (A) 0.1 0.8

300 — 0 ω1 = 0.33, ω2 = 0.22 (D) 0.1 0.8

300 0 ω1 = 0.28, ω2 = 0.33 (A) 0.1 0.8

300 0 ω1 = 0.33, ω2 = 0.28 (D) 0.1 0.8

Scenario 3

100 0 ω1 = 0.22, ω2 = 0.33 (A) 0.1 0.8

100 — 0 ω1 = 0.33, ω2 = 0.22 (D) 0.1 0.8

100 0 ω1 = 0.28, ω2 = 0.33 (A) 0.1 0.8

100 0 ω1 = 0.33, ω2 = 0.28 (D) 0.1 0.8

Note: Interval 300 indicates tranquil setting while 100 indicates fluctuate setting;
(A) indicates the ascending order of variance shift while (D) indicates the descending

order
of variance shift.

2.4.3.2 GARCH with Structural Breaks

Apart from studying the structural break detection methods, it is also wise to study

the effectiveness of modifying the conventional GARCH model by incorporating

structural breaks. Two data series will be considered in this section, namely, a data

sequence containing a pure GARCH(1,1) process, and a data sequence containing an

autoregressive AR(1) part and a moving average MA(1) part in the mean along with

a GARCH(1,1) process in the variance. Moreover, each data sequence contains one

structural break located in the middle of full sample. In particular, an “MLE[Y]” es-

timator is programmed in R to model the modified GARCH with structural breaks,

while an “MLE[N]” is programmed to model the conventional GARCH without

structural breaks. Both estimators will be run on each of the simulated data series

so that it can be observed whether the volatility persistence will be reduced after

taking into consideration the structural breaks in the volatility and whether such

decrease is significant. Besides, it can also check if the ARMA process in the mean
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would affect such process. In this way, this simulation study is expected to provide

an assessment of the validity of the modified GARCH with structural breaks, and

it is known so far to be the first to conduct this kind of approach. This simulation

will contain four experiments, each of which has 5,000 replications.

2.5 Data

As one of the main purposes of this research is to investigate how different stock

markets respond to significant political, financial, and economic events in the volatil-

ity as of different development level, this chapter conducts investigation between an

emerging and a mature market. With such consideration, this research will use the

SSE Composite Index traded at the Shanghai Stock Exchange to represent the stock

market in China, and the FTSE 100 Index listed on the London Stock Exchange

for the UK. Shanghai Stock Exchange is the largest stock exchange in China, while

London Stock Exchange is the most famous exchange in Europe. The world has

witnessed the rapid economic growth and significant development in Chinese stock

market since the establishment of Shanghai Stock Exchange on 19 December 1990;

moreover, Shanghai Stock Exchange has become the biggest stock exchange in de-

veloping countries by 2016. According to WFE Annual Statistics Guide by World

Federation of Exchanges (2016), Shanghai Stock Exchange was valued at $3.9 tril-

lion at the end of 2016 in terms of market capitalisation, ranked as the fourth largest

stock exchange in the world; while London Stock Exchange was valued at $3.5 tril-

lion and ranked as the fifth in the world. In particular, as one of the major stock

indices in China, SSE composite index that contains all listed stocks traded at the

Shanghai Stock Exchange, is the most commonly used market index in a large body

of research papers. Meanwhile, as the most widely adopted indicator measuring

the performance of the stock market in the UK, FTSE 100 consists of the first one

hundred largest companies in the UK that are ranked according to the scale of the

market value. FTSE 100 companies issue stock shares that are listed on the London

Stock Exchange and most of these companies are focused on global business. Both

indices are available at Datastream, and stock prices are obtained of daily frequency

covering the period from 3 January 1994 to 31 December 2014, resulting 5478 price

observations in each series. Moreover, daily rate of return series from each market

is firstly created as in Equations (2.8) for the following analysis:

rchinat = ln schinat − ln schinat−1 , t = 1, ..., 5478 (2.8)

rukt = ln sukt − ln sukt−1, t = 1, ..., 5478
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Figure 2.1: Plots for Stock Prices of the UK and China over 1994 to 2014

Table 2.2 shows the overview of basic statistics of both return series. It can be

observed that each return series contains a mean value very close to 0. The pos-

itive skewness in the Chinese stock market indicates rchinat is distributed with an

asymmetric tail extending toward more positive values. The negative skewness in

the UK suggests UK stock returns are more likely to be negative. Moreover, each
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FTSE Daily Returns in the UK
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Figure 2.2: Plots for Stock Returns of the UK and China over 1994 to 2014

return series has excess kurtosis compared to a normal distribution, showing that

both series have heavy tails, especially in the Chinese market. Moreover, neither

return series is normally distributed as being confirmed by the Jarque-bera normal-

ity test. The absence of unit root is confirmed by the Augment Dickey-Fuller test,

indicating the stationarity of both return series. Meanwhile, ARCH effect is found
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Table 2.2: Descriptive Statistics of Stock Returns Series in the UK and China Mar-
kets

China UK
Mean 0.0003 0.0001
Standard Deviation 0.0197 0.0115
Skewness 1.4437 -0.1595
Excess Kurtosis 18.9631 6.3143
Jarque-Bera 193490[0.0000] 9131.7[0.0000]
ADF -16.173[0.0000] -18.502[0.0000]
ARCH LM TR2(12) 1007.4[0.0000] 1274.2[0.0000]
Obs 5477 5477

Note: Return series are of daily frequency; each series contains 5477 observations; excess kurtosis
indicates both return series are not normally distributed, which is also confirms by Jarque-Bera
normality test where the null hypothesis of normal distributed data is rejected at 1% significant
level; ADF indicates both return series are stationary as the null hypothesis of non stationarity is
rejected at 1% significant level; ARCH LM test indicates both return series contains further
ARCH effect in the volatility as the null hypothesis of no ARCH effect is rejected at 1%
significant level; TR2(12) indicates the ARCH LM test statistic TR2 at default lag 12; p-value of
each test is shown in square brackets

in the variance of each individual return series. So far, all evidence suggests both

stock return series are leptokurtic, and the variances are heteroskedastic, indicating

an ARMA+GARCH model to fit the data. Figure 2.1 and 2.2 provides an overview

of both prices and returns in each index over the full sample period. Figure 2.2

especially marks the returns of a similar structure by the dotted line, revealing the

locations of potential structural breaks in the volatility.

2.6 Empirical Results and Interpretation

Before analysing stock returns in China and the UK, results from simulation study

will be first presented to justify the choice of the structural break detection method.

Next, the results of detected structural breaks will be presented in both stock mar-

kets, along with the timing and corresponding significant events reported. After

that, structural breaks will be incorporated as dummy variables in the fitted model

in each return series, and the results will be analysed, and implications will be

presented.
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2.6.1 Monte Carlo Simulation Analysis

2.6.1.1 Simulation Outputs for ICSS vs MICSS

The investigation will begin with analysing Scenario 1 via Case 1 and Case 2, where

the performance of ICSS and MICSS will be compared when applied to normally

distributed data and conditional heteroskedastic data. To be more specific, two set-

tings will be considered. Namely, a tranquil setting where the breaks are simulated

at every 300 observations, and a fluctuate setting where the breaks are simulated

at every 100 observations. In each setting, the investigation will be conducted on

data sequence containing simulated change points ranging from one to four. More-

over, the way of how the variance shifts will also be included. In particular, an

ascending order of variance shift in this study represents the data sequence starts

with a small variance and then the variance increases after a structural break, while

the descending order of variance shift represents the opposite composition. After

that, an in-depth evaluation will be conducted on MICSS according to Scenario 2

and 3, where only a conditional heteroskedastic data sequence will be considered.

In particular, a relatively small and an even smaller variance change will be used

to simulate the breaks in the structure of variance, in order to check under what

extreme conditions that MICSS will return invalid detections. Meanwhile, other

factors will be the same as those mentioned in Scenario 1, such as tranquil and

fluctuate settings, a number of one to four simulated break(s), and the ascending

and descending order of variance shift. This evaluation will be addressed in Case 3.

This simulation study extends the scope of conducting the performance assessment

of ICSS and MICSS. Under these considerations, several indicators are specially cre-

ated to conduct a comprehensive analysis on the detected change points from each

Case:

• Desirable Breakpoints No.: This indicator shows the total number of break-

points detected out of 5,000 replications in each experiment, on the condition

that each time each of the simulated change point(s) is correctly identified.

• Simulated Location(s): This indicator shows the locations of simulated breaks.

• Points Detected: This indicator shows the actual number of breakpoints de-

tected out of the 5,000 replications in each experiment.

• Fail to Detect: This indicator measures out of 5,000 replications, how many

times that no change point is detected.

• Detection Rate (%): This indicator is particularly created to show the ac-

curacy of the studied algorithms, measured by how many times out of 5,000
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replications that the algorithms identify a change point at a certain location.

In fact, along with the simulated locations of the breaks, Detection Rate is also

listed for the neighbouring observations in order to check if there is any par-

ticular pattern for the selected algorithm to recognise the structural break(s)

at a certain location.

• Size Distortion Ratio (SDR): This indicator is calculated as in the following

formula:

SDR =
Points Detected− Success Detection×Number of Simulated Points

Success Detection
×100%

(2.9)

where Success Detection = 5, 000−Fail to Detect. SDR is designed specially

to measure the degree of size distortion of each algorithm. The closer SDR

to 0 indicates the greater likelihood for the studied algorithm to detect the

correct number of change points, i.e. a smaller chance of being size distorted.

Moreover, the more positive SDR indicates more severe size distortion in an

overestimated way, while the more negative SDR indicates that of an under-

estimated way. Designed as such, SDR can help to evaluate the effectiveness

of the selected algorithms in a clear manner.

Case 1. ICSS vs MICSS in tranquil setting

Simulation results of this case study can be found in both Appendix Table A.1 and

Appendix Table A.2, where the former presents the results with an ascending order

of variance shift in the simulated data sequences while the latter presents that with

descending order.

According to Appendix Table A.1 with Ascending Order of Variance Shift, for a

normally distributed data sequence with a relatively significant change in the vari-

ance (∆ = 3), Fail to Detect suggests that both algorithms have an almost 100%

success rate out of 5,000 replications in all the four experiments considering change

points from 1 to 4. This finding indicates both algorithms adequately respond to the

presence of variance breaks. However, both algorithms start to detect fewer change

points than the desirable number as the data sequence contains more breaks. For

instance, when there are two change points simulated in the data sequence, ICSS

finds 10,469 points, and MICSS finds 10,457 after 5,000 replications, both of which

are quite close to the desirable number of 10,000. When it is the case of 4 simulated

change points, ICSS finds 17,455 and MICSS finds 17,416, both of which are further

away from the desirable detected number of 20,000. This finding shows that both

algorithms tend to identify more than the actual number of break(s) when the data

contains a small number of breaks, while to be more likely to overlook the breaks
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when there is a large number of shifts in the variance. This pattern is further con-

firmed by SDR. In fact, both algorithms show positive SDR with relatively small

values in the case of no more than two breaks; as the number of breaks increases to

three, SDR starts to drop below zero and becomes more negative when it contains

four breaks. These findings indicate both algorithms tend to have good size proper-

ties when there are a few structural breaks, and soon it becomes more likely for both

to underestimate the presence of breaks as the number of such increases. Moreover,

both algorithms show higher Detection Rate around the simulated change point(s)

comparing to that of the change points that are away from the actual location(s).

For instance, in the case of one change point simulated at 301, ICSS has a Detection

Rate of 11.97% at 301 and of 8.69% at 302, while that of MICSS being 12.11% and

8.70% respectively. However, this significant difference in the Detection Rate starts

to drop gradually as the number of simulated change points increases. For instance,

in the case of four change points simulated at 301, 601, 901, 1201, a Detection Rate

by ICSS becomes 3.76% at 301 and 2.61% at 302, while that of MICSS being 3.76%

at 301 and 2.62% at 302. This finding indicates that both algorithms tend to be

less responsive to the exact locations of structural breaks comparing to the adjacent

observations as the data sequence contains more and more breaks. Very similar find-

ings can be observed from Appendix Table A.2, where the only different factor is the

Descending Order of Variance Shift; this suggests that Order of Variance Shift has

little impact on the performance of both algorithms in tranquil setting. In addition,

Table A.1 and A.2 further confirms that both algorithms always have a much higher

Detection Rate at the previous observation of the actual break. For instance, in

Table A.1 in the case of 4 simulated change points, ICSS shows a Detection Rate of

4.95% at 600 and of 1.10% at 601; the same situation can be found with MICSS; in

Table A.2, when there are two simulated breaks, ICSS has a Detection Rate of 9.30%

at 300 and of 1.88% at 301, while of 9.85% at 600 and of 6.30% at 601; similar results

can be found with MICSS. This finding strongly suggests that both algorithms tend

to determine the structural breaks one observation prior to the actual location. In

short, for a normally i.i.d data sequence, ICSS present satisfactory and much alike

detecting ability as MICSS. Moreover, both algorithms tend to determine the break-

point to be one observation prior to its actual location, especially when the variance

drops after the break. This can also be confirmed by Appendix Figure B.1.1 and

Figure B.1.2. Both algorithms have very similar histograms on the detected change

points; moreover, in both Figure B.1.1 and Figure B.1.2, (a)-(d) almost mirrors im-

ages of (e)-(h), suggesting little interference from Order of Variance Shift.

On the other hand, for a GARCH(1,1) data series with relatively big change in

the variance (∆ = 0.22), according to Appendix Table A.1 and Table A.2, ICSS



CHAPTER 2. VOLATILITY PERSISTENCE: DO STRUCTURAL BREAKSMATTER?56

shows severe size distortion in the following aspects: first of all, there is an extensive

amount of total change points detected against the simulated number. For instance,

in the case of one simulated break at 301 with an ascending order of variance shift,

ICSS finds 11610 change points out of 5000 replications; on top of that, out of 5000

replications, there are less than 30 times that ICSS finds no break. This combina-

tion guarantees that there will be at least one false identification each time when

ICSS detects the presence of breaks. Moreover, the high positive SDR again reveals

the spurious size distortion of ICSS. Secondly, ICSS shows passable Detection Rate

at those that are around the simulated break(s), yet such Detection Rate decreases

and becomes less distinguishable among neighbouring observations as the number

of simulated breaks increases. For instance, in Appendix Table A.1, ICSS has a

Detection Rate of 3.30% at 301 and of 2.23% at 302, when there is one break sim-

ulated at 301. And it shows 1.64% at 301 and of 1.02% at 302 when there are

three breaks simulated at 301, 601, 901. Therefore, when dealing with conditional

heteroskedastic data series, it is more difficult for ICSS to locate the change point(s)

close to the actual one(s) as it tends to find more than the actual number of breaks

plus it is less capable of singling out the actual location(s). On the contrary, MICSS

shows greater advantage with conditional heteroskedastic data; SDR is quite close

to zero, indicating MICSS is less likely to falsely reject the null hypothesis of no

break. Meanwhile, MICSS is more capable of locating the break(s). For instance, in

Appendix Table A.1, when there is one change point simulated at 301, MICSS has

a Detection Rate of 5.00% to find a change point at 301, while ICSS only shows a

Detection Rate of 3.30%. This advantage becomes less significant as the data series

contains more breaks. This feature can also be seen from Appendix Figure B.1.3

and Figure B.1.4, where the change points detected are more centred around the

simulated locations using MICSS than using ICSS. In addition, a similar tendency

can be observed as to that with normally distributed data that both algorithms tend

to determine one observation prior to the actual location of the structural break, and

such effect becomes stronger when the variance after break takes a smaller value.

From these discussions, it can be said that MICSS is much more suitable than ICSS

to detect structural breaks in data series that has heteroskedastic variance. Never-

theless, MICSS shows a higher chance to find no point as the data series contains

more breaks. For instance, there are 794 times out of 5000 replications that MICSS

fails to find any change point when there are actually four simulated. This finding

could particularly lead to a conjecture of the argument in Sanso et al. (2004), where

it is claimed that MICSS outperforms ICSS as it finds no structural break in the

same dataset while ICSS finds a few.

Therefore, under a tranquil setting where structural breaks occur occasionally, both
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algorithms show almost identical performance when applied on a normally dis-

tributed data series. However, for data series contains conditional heteroskedasticity,

MICSS outperforms ICSS. Yet this advantage tends to diminish when the data se-

ries contains more structural breaks. Moreover, both algorithms show a tendency to

find break one observation prior to its occurrence, especially when variance becomes

smaller after the break.

Case 2. ICSS vs MICSS in fluctuate setting

In this setting, all the other factors and simulation design remains the same as in

Case 1; the only exception is the breaks are simulated at every 100 observations in-

stead of 300. Meanwhile, comparison results between an ascending and descending

order of variance shift can be found in Appendix Table A.3 and Table A.4 respec-

tively.

For a normally distributed data sequence, ICSS shows acceptable performance which

is quite similar to that in Case 1, in terms of Points Detected, Fail to Detect, SDR

and Detection Rate. Moreover, when the breaks are simulated to occur more fre-

quently, ICSS still tends to determine the break one observation prior to its actual

location. For instance, when there are two simulated breaks, Table A.3 shows a

Detection Rate of 10.19% at 200 and 1.84% at 201, while in Table A.4, it is 9.78%

and 1.63% respectively. This can also be seen in Figure B.2.1 in Appendix, where

each plot from (a)-(d) has a similar pattern as in that from (e)-(h), indicating the

little impact from Order of Variance Change. In the meantime, MICSS seems to be

more likely to find no break as indicated by an increasing Fail to Detect when data

sequence contains more breaks. For instance, when there are four breaks simulated

in the i.i.d data sequence, MICSS responds to none of the simulated breaks for 4384

times out of 5000 replications, leading to an SDR of -1.03. These results indicate

that ICSS seems to outperform MICSS for a normally distributed data when breaks

occur often in a short time period.

Moreover, it is interesting to notice that, for a GARCH(1,1) data sequence, ICSS

seems to have less severe size distortions comparing to that in Case 1. For instance,

in the event of three breaks simulated, Appendix Table A.1 shows an SDR of 1.70,

while Table A.3 shows one of 0.17. Although the Fail to Detect is slightly increased,

and that could be some influence on such reduction of SDR. Nevertheless, Table A.3

shows much higher Detection Rate at the simulated location comparing to that in

Table A.1, suggesting ICSS actually could hold a robust performance when dealing

with a GARCH(1,1) series that contains frequently occurred structural breaks in a
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relatively short period of time. This can also be observed from Figure B.2.3, where

very similar histograms pattern can be found as in Figure B.1.1, except for Figure

B.2.3 shows a much more standing out frequency around simulated break(s), indi-

cating a higher likelihood of finding the breaks along with less overestimation. In

addition, by comparing Detection Rate between Table A.3 and Table A.4, it can be

seen that ICSS reacts to the size of variance before and after the break. This means

ICSS tends to be more likely to determine the break to be located one observation

before its actual position in GARCH(1,1) series, especially when the new variance

after a break is smaller than its previous value before the break.

Nevertheless, MICSS tends to produce a huge number of unsuccessful detections

when applied on GARCH (1,1) data, especially when data contains more simulated

breaks; within those successful identifications, although MICSS tends to underesti-

mate the number of breaks, it still shows adequate ability to identify the simulated

breaks. This feature can be spotted from Figure B.2.4, when the number of breaks

is more than two, the frequency bars around simulated breaks of each histogram

in (b)-(d) and (f)-(h) become very small but still be recognizable, along with par-

ticularly high frequency bars at zero. These observations indicate MICSS becomes

less competent to locate the breaks due to a higher chance to find no break at all.

This information is also detailed from Table A.3 and Table A.4, where MICSS shows

uncommonly high numbers of Fail to Detect, namely, 3867 and 2581 respectively. In

addition, in the event of above two simulated breaks, the Detection Rate found in

both aforementioned tables is quite close to that in Case 1; however, the Points De-

tected is quite low due to the high Fail to Detect. This combination again confirms

that the chance for to MICSS find the simulated breaks becomes even smaller, which

explains Figure 2.4.4 where the frequency bars seem to disappear as the number of

simulated breaks increases, and yet quite standing out at the simulated location.

In short, when structural breaks are expected to occur frequently, ICSS seems to

have a robust performance toward both normally distributed and GARCH(1,1) data

sequences. In the meanwhile, MICSS shows reasonable performance with normally

distributed data with a small number of structural breaks (no more than three in this

simulation study); however, when employed on GARCH(1,1) data sequence, MICSS

can only show promising performance when there is one break; when the number

of breaks exceeds one, MICSS almost performs inadequately as it is too easily to

detect no break. However, once there is a successful detection by MICSS, the breaks

detected by MICSS can be robust. In addition, under this fluctuate setting, both

algorithms tend to determine the break one observation prior to its actual location,

especially when the variance decreases after the break; however, such phenomenon
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is only found in GARCH(1,1) series.

Case 3. MICSS in extremes

In order to test the limit of the performance of MICSS toward a heteroskedastic

data series, extreme conditions are specially designed so to put any drawbacks of

MICSS discussed earlier in perspective. Consider both a relatively small change

(∆ = 0.11) and an even smaller change (∆ = 0.05) in the variance after break(s).

When break(s) is simulated at every 300 observations, from Appendix Table A.5,

MICSS shows very high Fail to Detect and relatively small Detection Rate around

simulated break(s) when the variance change is 0.11 in all four investigations on

different number of simulated structral breaks; moreover, when this variance change

becomes 0.05, nearly two thirds replications does MICSS detect no break. Evi-

dently, SDR is relatively high, and becomes higher as the data sequence contains

more and more breaks. These findings pin to the tendency that, when the value of

new variance after the break is very close to its previous one, it becomes difficult

for MICSS to determine the actual location(s) of any structural break(s). This can

also be observed by comparing Figure B.3.1 and B.3.2, where as the size of variance

change drops, the frequency bar represents the simulated break(s) become(s) almost

plateau. Moreover, this situation is worsen when the simulated break(s) locate(s)

at every 100 observations. As shown in Figure B.3.3 and B.3.4, the histograms

of detected change points are almost invisible, with the only bar standing out at

zero. This pattern indicates that MICSS has become rather reluctant to identify

the presence of any break. This finding can also be confirmed by the statistics from

Appendix A.6. It can be observed that most of the Detection Rate is less than 1%.

Although there are still a few incidents where the Detection Rate is above 2%, such

as 2.35% at 101 when there is one break simulated, and this similar figure can be

found in Case 1 and 2, however, the situation is quite different since in this case,

there is also a large number of Fail to Detect. Therefore, although the figure itself

is almost indifferent comparing to that in the other two cases, it represents a totally

different situation that the structural breaks become less and less distinguishable

for MICSS under the design of Case 3.

Thus, it can be concluded based on Case 3, MICSS will show poor performance in

a period where the data series is experiencing many breaks, especially when those

variance changes are insignificant.
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2.6.1.2 Simulation Outputs for GARCH with Structural Breaks

In order to assess the performance when accommodating structural breaks in the

conventional GARCH model, a simulation study is also employed before its ap-

plication to the research data. Specifically, two maximum likelihood estimators

are programmed using R project; one is “MLE[Y]” that takes into consideration

the simulated structural breaks in the volatility, and the other is “MLE[N]” that

takes account of none. Two GARCH(1,1) sequences are specified of an equal

length 500 by µ = 0, α1 = 0.1, β1 = 0.8, one of which has ω1 = 0.33 and the

other has ω2 = 0.11. Putting together the two GARCH(1,1) sequences to form

a GARCH(1,1) containing 1000 observations with µ = 0, α1 = 0.1, β1 = 0.8 with

a structural break located in the middle. The reason to consider a GARCH(1,1)

is particularly for creating a simple and ideal case scenario where the data se-

quence contains mean zero and conditional heteroskedasticity, thus, to evaluate

the effectiveness of modifying GARCH with structural breaks. Also as discussed

in the simulation design earlier, it is common to have an ARMA process in the

mean in financial data series; besides, no research work has inspected whether

the ARMA process in the mean would affect modelling volatility with consider-

ation of structural breaks. Thus, two ARMA(1,1)+GARCH(1,1) are specified of

equal length 500 by µ = 0, φ1 = 0.5, θ1 = 0.5, α1 = 0.1, β1 = 0.8, with one se-

quence having ω1 = 0.33 and the other ω2 = 0.11 respectively. Then those two

ARMA(1,1)+GARCH(1,1) are arranged to form an ARMA(1,1)+GARCH(1,1) with

one structural break in the middle. It is worth mentioning that, this study assumes

that the simulated ARMA(1,1)+GARCH(1,1) contains no structural break in the

mean. Both “MLE[Y]” and “MLE[N]” are employed on each of the simulated data

sequences, and each experiment runs 5000 replications. Results from this simulation

can be found in Table 2.3, where each value presented is the average value from 5000

replications:

According to Table 2.3, on the one hand, when estimating GARCH (1,1) with and

without the structural break, the coefficients are all significant at 1% apart from

µ. Meanwhile, both models show no further ARCH effect nor serial correlations

based on the insignificant LM ARCH and Ljung-Box tests; moreover, the Jarque-

Bera normality test statistic is insignificant for both models, indicating a normally

distributed residuals obtained. All these evidence suggests the simulated data series

following a GARCH (1,1) with one structural break is sufficiently modelled by both

MLE[Y] and MLE[N]. Although volatility persistence, as the sum of α1 and β1, is

found to be decreased after the simulated break is accommodated in the GARCH

(1,1) via MLE[Y], this model seems to be less a good fit to the data comparing to
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Table 2.3: Results for Model Estimation by Monte Carlo Simulation

GARCH(1,1) ARMA(1,1)+GARCH(1,1)
Parameters MLE[Y] MLE[N] MLE[Y] MLE[N]

µ -0.0016 0.0016 -0.0016*** 0.0013***
φ1 – – 0.5334*** 0.5324***
θ1 – – 0.3692*** 0.3755***
ω 0.3415** 0.3253** 0.4693*** 0.4632***
α1 0.0886*** 0.0890*** 0.0991*** 0.1022***
β1 0.8080*** 0.8130*** 0.7583*** 0.7579***
δ1 0.0006*** – 0.0097*** –

volatility persistence (α1 + β1) 0.8966 0.9020 0.8574 0.8601
Log Likelihood -1995.967 -1996.686 -2039.277 -2044.909

LR Test Statistics 1.438 11.264***
Standardised Residuals Tests

Jarque-Bera 4.1904 4.1626 6.4219* 6.0178
Ljung-Box Q(10) 8.8146 8.6633 34.986*** 29.794***
Ljung-Box Q(15) 13.915 13.747 35.53*** 31.034***
Ljung-Box Q(20) 23.244 23.024 38.767*** 32.308**
Ljung-Box Q2(10) 8.816 8.542 35.545*** 30.047***
Ljung-Box Q2(15) 13.915 13.623 36.05*** 31.208***
Ljung-Box Q2(20) 23.197 22.803 39.219*** 32.491**

LM ARCH 6.8587 8.2611 20.479* 7.2535

Note: GARCH(1,1) is simulated with µ = 0, α = 0.1, β = 0.8, with ω1 = 0.33, ω2 = 0.11 as the
volatility before and after break respectively;
ARMA(1,1)+GARCH(1,1) is simulated with µ = 0, φ1 = 0.5, θ1 = 0.5, α = 0.1, β = 0.8, with
ω1 = 0.33, ω2 = 0.11 as the volatility before and after break respectively.
MLE[N] is the estimator that accommodates no structural break; MLE[Y] is the estimator taking
account of the simulated structural break;
Structural break is simulated in the middle of the simulated data; δ1 is the estimate coefficient of
simulated break;
The null hypothesis of LR Test in this case is the better performance of model with no
consideration of structural break;
“***”, “**”, “*”, indicates level of significant of 1%, 5%, 10% respectively.

the conventional GARCH (1,1) estimated by MLE[N]; in fact, the insignificant LR

test statistics suggests a conventional GARCH (1,1) model seems to better fit the

simulated data than the modified GARCH (1,1) with structural break accommo-

dated. On the other hand, when modelling a simulated data series containing both

ARMA(1,1) and GARCH(1,1) with one structural break in the volatility, all the co-

efficients are found to be significant at 1%. However, different to the case in GARCH

(1,1), the diagnostic tests on the standardised residuals indicate serials correlation

in the standardised residuals obtained via MLE[Y]; moreover, when estimating via

MLE[Y], not only serial correlation, a further ARCH effect is also found from the

standardised residuals. However, the significant LR test statistics suggests a better
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fit when ARMA(1,1)+GARCH(1,1) data sequence containing one structural break

is modelled by MLE[Y]. These results tend to suggest that for a series only con-

tains conditional heteroskedasticity, taking account of structural break would not

necessarily improve the goodness of fit comparing to a conventional GARCH model.

However, for a series with both conditional mean and variance, it is necessary to

consider the effect of the structural break. Moreover, for both types of series simu-

lated in this study, reduced volatility persistence is found after taking consideration

of the structural break in the volatility, on the assumption that the conditional mean

contains no structural break.

2.6.1.3 Summary of Monte Carlo Study

In all, this simulation study conducts a comparison investigation on the performance

of two popular structural breaks detection methods, namely, ICSS of Inclan and Tiao

(1994) and the modified MICSS of Sanso et al. (2004). Extensive evidence has been

found to support some of the existing arguments in the literature; also some new

findings are discovered; particularly, this study casts doubt on the well implemented

MICSS especially when employed on residuals obtained from a fitted model for a

data series that is heteroskedastic. First of all, both algorithms show satisfactory

and almost identical performance in detecting structural breaks in a normally dis-

tributed data sequence, while ICSS is severely size distorted with GARCH(1,1) data

but MICSS can retain good detecting ability. These are consistent with the existing

conclusions, for instance, in Sanso et al. (2004) and Kumar and Maheswaran (2012).

Nevertheless, this study finds the necessity of adding additional conditions to make

sure MICSS is the better choice for heteroskedastic data. One important condition

is that the interval between two consecutive breaks is relatively large and the to-

tal number of breaks is relatively small. This simulation shows that MICSS has a

great chance to find fewer or even no break if this condition is not met. Therefore,

this finding strongly questions the validity of the number of structural breaks found

via MICSS in financial time series from majority research, and any further research

work that is carried out based on it, especially during an unstable period such as a

financial crisis where financial markets are expected to experience many breaks in

a very short time period (see, for instance, Charles and Darne, 2014; Charles et al.,

2015; Shahzad et al., 2017). This finding also calls into question the argument in

Sanso et al. (2004), where MICSS finds no structural break when re-examining the

work of Aggarwal et al. (1999). This finding alone cannot justify the superiority of

MICSS over ICSS, as the former tends to overlook structural breaks. Surprisingly,

this simulation study finds that ICSS is relatively more reliable under the circum-

stances when financial markets are in a more volatile structure. In fact, ICSS shows

satisfactory performance in such volatile period when dealing both normally dis-
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tributed and heteroskedastic data sequences, as long as the change in the variance is

significant. Quite the contrary, MICSS shows dramatically decreased performance

with normally distributed data containing more than three breaks in a fluctuating

period, due to the problem that MICSS is easy to overlook the break. This point is

particularly worth emphasising, as the approach adopted in the majority research

is to apply the selected structural break test to the residuals obtained from a fitted

model. Therefore, if it is MICSS, it would be very likely to have an underestimated

number of breaks. On the contrary, ICSS can still possess decent performance when

MICSS fails to; in fact, this finding is also supporting the conclusion from Andreou

and Ghysels (2002), where ICSS is claimed to have satisfactory detecting ability

with residuals from a GARCH (1,1) model. Also, as it is documented in Inclan

and Tiao (1994) that, ICSS can be applied to uncorrelated series with mean zero.

Moreover, Andreou and Ghysels (2002) also point out that, ICSS can have decent

performance when detecting breaks in residuals even the change in the variance is

small, given the sample size is large, for instance, the total sample size is 3000. All

these evidence suggests potential advantages of choosing ICSS if applied to residuals

when markets are expected to experience many breaks in a short period of time,

such as during financial crisis. In addition, this simulation study also finds that

MICSS fails to work properly when the change of variance becomes small in a fluc-

tuating period with many breaks expected to occur. Therefore, it would be wise to

carefully consider the most appropriated combination of structural break test, inves-

tigation object and data frequency, depending on whether financial time series are

expected to experience many structural breaks and whether it is in the long or short

run. For example, if it is to check structural breaks in financial markets around a

financial crisis period, according to the previously discussed characteristics of both

structural breaks algorithms, ICSS can be considered if employed on residuals from

a fitted GARCH model for a daily frequency financial data series. If to consider

MICSS on residuals, weekly data or high frequency data should be examined; either

way, the subintervals between two consecutive breaks can be increased, such that

MICSS can work properly. Furthermore, another new finding from this study is that

both algorithms tend to determine the location of any detected structural break one

observation prior to its actual occurrence, particularly in heteroskedastic data se-

quences. No previous study has made such comment because the simulation study

they use is rarely based on multiple breaks but mostly in the case of one simulated

break. Meanwhile, this simulation study confirms the validity of both programmed

MLE[Y] and MLE[N]; particularly, MLE[Y] is confirmed to be able to distinguish

the presence of structural break and make adjustment accordingly when estimating

data series containing only GARCH effect; in particular, when data series contains

ARMA effect in the mean and GARCH in the variance, it is necessary to fit the
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data with MLE[Y] where the presence of structural break is considered, given that

only conditional variance contains structural break.

Based on the above discussion, this chapter proceeds with structural breaks detection

on stock returns from both China and the UK via MICSS. Despite the satisfactory

properties, ICSS still has a relatively high chance to severely overestimating the

structural breaks when applied on a data series with conditional heteroskedasticity.

2.6.2 The Timing of Structural Breaks in Stock Returns in

China and in the UK

After applying the MICSS of Sanso et al. (2004) to the stock returns from both

China and the UK market indices, the timing of each identified structural break is

tabulated in Table 2.4, together with a list of significant political or economic events

that could be possibly related to the occurrence of each break found.

Table 2.4: Structural Breaks Dates and Significant Events

Dates Significant Events

Chinese Stock Market 24 September 1997 1997 Asian financial crisis

7 December 2006 The end of the compensation scheme to SOEs reform

3 September 2009 The 2009 reforms in Chinese stock market

UK Stock Market 21 October 1997 1997 Asian financial crisis

11 June 2002 The 2002 stock market crash

2 June 2003 –

23 July 2007 2007-2008 financial crisis

3 April 2009 Unemployment rate reached 15-year highs

2 August 2011 Bank of England held Interest rate

14 December 2011 Unemployment rate reached 17-year highs

9 July 2013 –

19 September 2014 Scottish independence referendum

As it can be observed from Table 2.4 that, over the 10-year sample period, for the

stock market in China, three breaks are found in the SSE index; while for the UK

stock market, eight are found in FTSE 100 index. By comparing the number of

breaks, it would initially suggest that Chinese stock market is more stable than

the UK stock market. Moreover, when studying the relationship between signifi-

cant events and the occurrences of structural breaks, comparing to the UK, Chinese

stock market seems to be less sensitive to global financial crises. One structural
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break is found on 24 September 1997 in China, which is near the time of the 1997

Asian financial crisis starting in July 1997. As for the UK stock market, a structural

break occurred on 21 October 1997, 11 June 2002, and 23 July 2007, corresponding

to 1997 Asian financial crisis, the 2002 stock market crash, and the 2008 financial

crisis respectively. Furthermore, the domestic events play a critical role in both

countries. For China, the structural break found on 7 December 2006 corresponds

to the completion of the compensation scheme adopted by the Chinese government

to employees made redundant due to the State-owned enterprises (SOEs) reform.

This finding is consistent with Ni et al. (2016), where a break is found on 8 December

2016. Another break is found on 3 September 2009, where a series of reforms taken

place to the management and supervision of stock markets, including the issue of

the Rules on Supervision over Securities Companies, the Rules on Risk Disposal of

Securities Companies, the Provisional Administration Measures for Stock Exchange

Risk Fund, and the Rules of Contents and Format of Information Disclosure by

Companies Offering Securities. These regulations are established in order to reg-

ulate the management activities that may have considerable influence over market

prices, such as disclosure of relevant information by the listed companies, and to

ensure the stock market avoid heavy economic losses (Geretto and Pauluzzo, 2012).

For the UK, structural break found on 3 April 2009 is around the time that the

unemployment rate was reported to reach 15-year highs. In 2011, the break found

on 2 August is around the time that Bank of England held interest rate at a low of

0.5% for the 29th month; later on 14 December, another break is detected when the

unemployment rate was announced to hit 17-year highs. After that, the break found

on 19 September could be associated to the Scottish independence referendum took

place on 18 September.

Therefore, these findings imply that, as an emerging stock market, China has a

relatively stable structure than the mature stock market in the UK. In particular,

empirical evidence shows that both markets are influenced by its domestic political,

social, economic events, yet Chinese stock market seems to be less affected by sig-

nificant global events. This could be the result of the fact that the Chinese stock

market is more relied on government policies and regulations. A similar conclusion

can also be found in Ni et al. (2016).

2.6.3 Modified ARMA-GARCH Model with Structural Breaks

After the timing of each structural break is determined, dummy variables are cre-

ated corresponding to each of the detected breaks. Each dummy variable is a vector

of 5477 observations with value 1 onwards from the identified location till the end of
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the data series and 0 elsewhere. The best model for each research series is selected

according to residuals diagnostics together with the consideration of the detected

breaks 1. Therefore, an ARMA(0,1)+GARCH(1,1) is selected to fit the Chinese

stock return series best, while an ARMA(0,1)+GARCH(1,2) is determined for the

UK. Estimation results of both models with and without incorporated structural

breaks are presented in Table 2.5:

It can be observed from Table 2.5, after taking into consideration the detected

structural breaks in the volatility, stock returns in both countries show reduced

volatility persistence which is calculated as the sum of αi and βi. To look into more

details, the Chinese stock market shows a reduced volatility persistence from very

close to 1 to 0.9274, by an increase of α1 from 0.07 to 0.10 and a more decreased

β1 from 0.9257 to 0.8243. This change then gives the rise in ω from 0.000001 to

0.000053. Similarly, for the UK, a decreased persistence of volatility is also reported

from 0.9867 to 0.8554, where β1 is decreased from 0.8077 to 0.6215 along with a

slightly increased α1 from 0.1160 to 0.1174 and an increased α2 from 0.0637 to

0.1165. This leads to an increased ω from 0.0000008 to 0.000006. Moreover, the

residual diagnosis further supports the validity of ARMA(0,1)+GARCH(1,1) model

for the stock returns series in China. In fact, the Chinese stock returns seem to be

modelled adequately no matter whether the structural breaks are accommodated

or not. Yet, the UK stock return series shows differently. When the structural

breaks are not taken account of, LM ARCH test suggests further ARCH effect in the

conditional variance; this is however improved after the breaks are accommodated,

although serial correlation still presents in the residuals as suggested by Ljung Box

test.

2.7 Limitations and Future Work

Several issues have been raised during the investigation within this chapter. First of

all, it observes a pattern where as an emerging country, Chinese stock market seems

to be less sensitive to the shocks comparing to a mature stock market as in the UK,

and thereby the volatility appears to be more persistence. It would be interesting to

know if this pattern exists between other emerging and mature markets. However,

the evidence found in this research is insufficient in supporting this conjecture. Fu-

ture work could extend the scope of research to investigate on a group of markets

of different level of development.

Secondly, empirical evidence has been shown via Monte Carol simulation that the

1Details of model selection are available on request
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size of variance change has a significant impact on the robustness and effectiveness

of both ICSS and MICSS. Although it reveals the tendency that both algorithms

shows a diminishing power over the breaks, no further analysis has been carried out

on determining the scale or threshold to which the tests would fail. Lack of such

identification can lead to inadequate inference toward the choice of algorithms. In

fact, the plots of both return series suggest a less volatile structural of the Chinese

stock market, which indicates a smaller size of variance change for the Chinese stock

returns. However, this research has taken little consideration on such feature due

to the lack of a threshold. In addition, no further investigation has been conducted

on how to define this size of variance change such that a break can be differentiated

from an outlier of a data series. An outlier is an observation which is distant from

the majority of one data series, and it can occur in a heavy-tailed distribution such

as financial returns series. Yet this chapter pays little attention to such matter.

These limitations tends to constrains the useful implications this research can pro-

vide for the more effective application of both algorithms in study. One suggestion

for future work is to calculate the ratio of the size of variance change against the

unconditional variance.

Moreover, when modelling data series containing both ARMA in the mean and

GARCH effect in the variance, the underlying assumption is that no structural

breaks in the mean process. It would be interesting to know the situation when

there is structural break in the mean. Investigation in this aspect is worth pursuing.

Also, simulation on MLE[Y] and MLE[N] is conducted only based on one simulated

break; it would be worth exploring the case with multiple structural breaks.

2.8 Conclusion

This chapter has investigated the presence of structural breaks in the volatility and

the potential effects it may have caused when modelling volatility via conventional

GARCH models. Two stock markets are selected, namely, China and the UK, so

to extend the scope to investigating markets at the different level of development.

Studying this difference is critical for creating customised volatility models to fit in

a specific market. This study employed MICSS algorithm of Sanso et al. (2004), and

found three breaks in the Chinese stock market and eight breaks in the UK stock

market over the recent two decades. The fewer structural breaks found indicate a

relatively stable market structure in China. Moreover, Chinese stock market seems

to be more affected by domestic economic or political events; for instance, the end of

the compensation scheme to SOES reform, the 2009 reforms in Chinese stock market

regulations. Nevertheless, this study finds no structural break in the Chinese stock
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market either around the 2002 global stock market crash or the 2008 financial crisis.

This finding is consistent with that the Chinese markets are more policy controlled.

Quite to the contrary, structural breaks are found around both domestic events and

global ones for the UK stock market, suggesting as a mature market, the UK stock

returns are more sensitive to significant events in both local and global contexts.

Moreover, after incorporating the detected structural breaks as dummy variables in

the variance model, the volatility persistence of return series has dropped in both

markets, with a larger scale in the UK market. This result suggests comparing to

the emerging stock market in China, neglecting the structural breaks can lead to a

more spurious volatility persistence in the mature stock market in the UK. Further

evidence reveals that, with a relatively stable market structure such as China, the

volatility tends to be more persistent, even after the negative effect of structural

breaks is eliminated.

This chapter also explores the performance of both ICSS and MICSS via Monte

Carlo simulations in a more comprehensive manner. Extensive evidence is found

to support the well established argument in the literature that ICSS shows a se-

vere size distortion when detecting structural breaks in financial asset series, and

MICSS is thus the more suitable method in such situation. More importantly, this

simulation finds the necessity to assert some additional conditions such that this

argument can hold. As there has been evidence shown in this study that in a rel-

atively fluctuate time period where structural breaks are expected to occur quite

often, MICSS has strong likelihood to detect no structural breaks in a GARCH(1,1)

series. Quite the contrary, ICSS shows rather sufficient detecting ability comparing

to the less promising performance of MICSS in this setting, given there is a rel-

ative significant change in the variance before and after the break. Furthermore,

the performance of MICSS becomes even more questionable when the change in the

variance is also very small during such fluctuate period. This finding particularly

casts doubt on the empirical applications of MICSS during a fluctuate time period.

This study challenges the existing literature that is in favour of MICSS, as ICSS also

shows some potentials when applying to residuals obtained from well fitted models.

Moreover, ICSS tends to identify more change points than the simulated number in

the GARCH(1,1) sequence, especially when dealing with more than one structural

breaks. This finding agrees with the criticism drawn on ICSS of being spurious size

distorted when employed on financial time series. Nevertheless, it is hard to neglect

the fact that MICSS has a higher chance of detecting no breaks. Furthermore, as po-

tential breaks occur more often, each estimator shows a significant drop in successful

detection, especially for MICSS. In particular, when dealing with GARCH(1,1) as

the variance changes are getting smaller, MICSS is no longer able to identify the
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simulated breaks correctly. Therefore, this study has raised questions toward the

validity of implications based on the results via MICSS.

Although this chapter reveals the Chinese stock market is less sensitive to significant

global events than the UK stock market does, and the volatility is persistent in this

emerging market even after eliminating the effect of structural breaks, however,

this evidence is not conclusive to all emerging and mature markets. Future work

can be expanded to target a group of emerging and mature markets to look for

any particular pattern in this regard. Moreover, when modelling volatility with

structural breaks, the insignificant breaks are kept in the model. This choice could

affect the performance of MLE[Y] estimator. Therefore, it is necessary to check the

validity of each detected break by the significance of each coefficient in the fitted

model. Future work in this area involves constructing simulation experiments to

examine whether excluding the insignificant structural breaks in the fitted model

improves the performance of selected structural break test.
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Table 2.5: Empirical Results for Stock Markets in China and the UK

China UK

Best Model ARMA(0,1)+GARCH(1,1) ARMA(0,1)+GARCH(2,1)

Action on Break(s) Accommodated Neglected Accommodated Neglected

µ 1.7258e-04 3.5465e-04** 5.0376e-05 2.3159d-04**

θ1 0.1083*** -0.0027 0.1155*** 0.0968***

ω 5.3512e-05 1.6140e-06 6.3776e-06 8.2058e-07

α1 0.1031 0.0709 0.1174*** 0.1160***

α2 – – 0.1165*** 0.0637***

β1 0.8243 0.9257 0.6215 0.8077

δ1 -4.2836e-05 – 1.5225e-05*** –

δ2 0.1031 – 4.5769e-05*** –

δ3 0.8243 – -4.7257e-06*** –

δ4 – – 3.8002e-05*** –

δ5 – – 1.1375e-05*** –

δ6 – – 5.7064e-05*** –

δ7 – – 6.3276e-06**** –

δ8 – – -5.8317e-06*** –

δ9 – – 3.62e-06 –

Volatility Persistence 0.9274 0.9966 0.8554 0.9867

Log Likelihood 15000.23 14920.94 17517.23 17631

LR Test Statistics 158.58*** –

Standardized Residuals Tests

Jarque-Bera 18313*** 38716*** 332*** 257***

Ljung-Box Q(1) 2.642 3.1231* 51.703*** 33.978***

Ljung-Box Q(5) 15.578** 18.771 *** 58.102*** 40.919***

Ljung-Box Q(10) 35.608*** 38.049*** 60.364*** 42.138***

Ljung-Box Q2(1) 0.28 0.1585 1.5839 4.781**

Ljung-Box Q2(5) 1.4452 2.3697 27.425*** 23.464***

Ljung-Box Q2(10) 3.2212 3.9609 43.269*** 35.378***

LM ARCH 0.2798 0.6906 0.2084 4.778**

Note: *,**,*** represent level of significance 1%, 5%, 10% respectively;
Volatility persistence is calculated as the sum of αi and βi;
Jarque-Bera checks whether the standardized residuals are normally distributed, with the

null
hypothesis of normality;
Ljung-Box Q (lag order in brackets) examines the autocorrelation between standardized
residuals, with null hypothesis of series being independent;
Ljung-Box Q2 (lag order in brackets) examines the autocorrelation between squared

standardized
residuals, with null hypothesis of series being independent;

LM ARCH checks for any further ARCH effect in the conditional variance, with the null
hypothesis

of the absence of ARCH;
The null hypothesis of LR Test in this case is the better performance of model with no
consideration of structural break.



Chapter 3

Volatility Spillover: Do Structural

Breaks Matter?

3.1 Introduction

Over the past two decades, economic globalization provides investors with a broader

range of investment benefits and opportunities. Meanwhile, the world markets have

been experiencing more liberation and faster integration. As a consequence, in-

formation from one market can pass on to another much easily as interdependence

between markets grows. Under these circumstances, it is necessary not only to study

the structure and fundamentals of one single financial market but also to capture

the movement and analyse the interactions between markets.

Studies of the relationship between two financial markets are well documented

through studying the long run equilibrium relationship by cointegration (Granger,

1986; Engle and Granger, 1987), and the short run relationship by Granger Causality

(Granger, 1969). The literature in this area is rich; see, for instance, John Wei et al.

(1995), Gilmore and McManus (2002), Zhu et al. (2004), Ramlall (2009), Apergis

et al. (2015), Muye and Muye (2017), Golab et al. (2018). It is worth noting that,

both cointegration and Granger Causality study the relationship of two markets

between the mean returns; the interaction between volatilities of the two is deter-

mined via volatility spillover, where it examines the short term cross-dependence

between two volatilities. Other terms referring to volatility spillover are shock con-

tagion (Bekaert et al., 2005, 2014) and causality in variance/volatility (Cheung and

Ng, 1996; Hong, 2001) for the following reasons. Since Ross (1989) mentions that

market volatility is related to the arrival of new information. Therefore, when two

markets are free of volatility spillover, it implies the “shock” is asset- or market-

specific, and it only affects the volatility of its own market, hence confirms the

71



CHAPTER 3. VOLATILITY SPILLOVER: DO STRUCTURAL BREAKSMATTER?72

interdependence between markets. This information is useful for constructing hedg-

ing positions. Moreover, presence of such spillover suggests “shocks” travel from the

“leading” to the “led” market. Specifically, when a unidirectional volatility spillover

is identified, it is said that the past volatility values of the “leading” market can

contribute to explaining the current volatility of the “led” market. Therefore, the

former market is described as having the incremental predictive ability for the latter

market (Hong, 2001). This information is of particular help to improve volatility

modelling and forecasting, especially when information on one market is insufficient.

That is to say, when market experiences many shocks in a very short period of time,

lack of sufficient observations could lead to efficient model estimations; nevertheless,

information from another market can be used if a volatility spillover pattern can be

established. Therefore, by examining information transmission patterns via volatil-

ity spillover, it offers financial participants a better understanding of the interactions

between markets, hence, to devise proper strategies to adapt any unforeseen turbu-

lence in the markets.

Moreover, recent studies find theoretical evidence for a causal relationship between

equity and currency markets (Ali and Anwar, 2012; Tsai, 2012). Two models are in-

troduced to explain such relationship, one is known as the Balance of Trade Model,

or Flow Oriented Model; the other is the Portfolio Balance Model, or Stock Oriented

Model. The former model suggests foreign exchange rates have influences on the

stock prices by affecting the company’s balance of trade. According to Dornbusch

and Fischer (1980), the depreciation of the local currency will bring benefits to the

export-oriented firms as they can sell their products at a lower price comparing to

the foreign peer firms. This will, in turn, boost the demand for their products both

locally and internationally, and thus expect more earnings in the future. On the

contrary, the appreciation of local currency will then reduce the demand for the

products of the export-oriented firms because of a higher cost. Therefore, it will

expect less income in the future. Opposite situation occurs to the import-oriented

company, where the currency depreciation will benefit the firm and the currency

appreciation will damage the future income. The latter model indicates the changes

in stock prices affect the changes in foreign exchange rates. According to Frankel

(1983), an increase in stock prices stimulates higher demand for money, which then

leads to an increase in the interest rates. Raised interest rates then attracts short-

term capital inflows, resulting an increase in foreign investment, which leads to an

appreciation of the currency. More theoretical evidences can be found in Branson

(1981), Solnik (1987), Gavin (1989), Phylaktis and Ravazzolo (2005), Aloui (2007),

Koseoglu and Cevik (2013).
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Empirical studies regarding mean level relationships between stock and foreign ex-

change markets include Bahmani-Oskooee and Sohrabian (1992), where a two-way

causal relationship is found between stock returns in the US and the effective ex-

change rate of the dollar July 1973 to December 1988. Pan et al. (2007) investigate

main stock indices and exchange rates in seven East Asian countries, namely, Hong

Kong, Japan, Korea, Malaysia, Singapore, Taiwan and Thailand, from January 1988

to October 1998. Via the Granger causality test of Granger (1969), and variance

decomposition analysis of Sims (1980), evidence is found for a significant causal

relation from the currency to stock market for Hong Kong, Japan, Malaysia, and

Thailand. This finding supports the Balance of Trade Model of Dornbusch and Fis-

cher (1980). Moreover, a causal linkage is found from the stock to currency market

for Hong Kong, Korea, and Singapore, supporting the Portfolio Balance Model of

Frankel (1983). More studies in this area can be found in Granger et al. (2000),

Smyth and Nandha (2003), Phylaktis and Ravazzolo (2005), Batori et al. (2010),

Lin and Fu (2016), Tomar and Singh (2016).

Empirical work on volatility spillovers between the two markets can be found in

Kanas (2000), where stock returns and exchange rates examined in several indus-

trialised countries around the October 1987 crash. A unidirectional spillover effect

is found from stock returns to exchange rates in most of the countries in question.

In Caporale et al. (2002), stock and foreign exchange markets are selected in four

East Asian countries around the 1997 East Asian crisis; a unidirectional causality is

detected from stock prices to exchange rates in pre-crisis and bidirectional causality

in post-crisis. Fedorova and Saleem (2012) examined the interaction between stock

markets and foreign exchange markets within the emerging markets of Eastern Eu-

rope and Russia from January 1995 to December 2008. By utilizing the bivariate

BEKK-GARCH of Engle and Kroner (1995) they reported a bidirectional causal-

ity between stock and currency markets in all the countries in question, except for

the Czech Republic where they found a unidirectional causality from currency to

stock markets only. Caporale et al. (2002) conduct empirical investigation on the

casual relationship between local primary stock indices and exchange rates with

local currency against the US dollar in Japan, South Korea, Indonesia and Thai-

land from January 1987 to January 2000. The 1997 Asian crisis is also taken into

consideration, in a way where the full sample is divided into pre- and post-crisis

periods. The bivariate BEKK-GARCH of Engle and Kroner (1995) is adopted to

both the full sample and the two subsamples to determine the potential volatility

spillover patterns in each country. For the more developed markets in Japan and

Korea, volatility spillover is found flowing from the stock markets to the foreign

exchange markets for both the full sample and the two subsamples. For Indonesia
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and Thailand, the same directional volatility spillover is found over the full sample

period and the pre-crisis subsample; these findings support the portfolio approach

of Frankel (1983) that the stock markets affects the foreign exchange rate market.

Nevertheless, evidence is found that this uni-directional spillover in Indonesia and

Thailand has developed into a bi-directional pattern after the 1997 Asian financial

crisis. Richer literature in this area can be found in, for example, Yang and Doong

(2004); Francis et al. (2006); Tai (2007); Yang and Chang (2008); Walid et al. (2011).

So far, substantial evidence is found to support a causal relationship between equity

and currency markets, yet no consensus has reached in either theoretical or empir-

ical work. Among the volatility spillover studies, very few investigate the volatility

relationship between stock and foreign exchange market in the mainland of China,

and even fewer conduct a comparison study between China and other developed

countries. Therefore, this chapter will focus on identifying volatility spillovers be-

tween stock and foreign exchange markets in the mainland of China using causality

in variance test of Hong (2001). This test has fewer computational problems com-

pared to other multivariate methods, for instance, the multivariate approach on

the BEKK-GARCH of Engle and Kroner (1995); it is free of specific distributional

assumptions and produces good inferences with conditional heteroskedastic data se-

ries. Nevertheless, recent studies argue that the presence of structural breaks could

affect the volatility spillover investigation (Rodrigues and Rubia, 2007; Javed, 2011;

Zivkov et al., 2015), due to the majority volatility spillover tests are constructed

on GARCH models. Dijk and Sensier (2005) particularly point out that this test

suffers from considerable size distortions when structural breaks are ignored. Thus

this chapter will also take account of the structural breaks when examining volatil-

ity spillovers via this test, and use MICSS of Sanso et al. (2004) structural breaks

detection. In addition, this chapter will conduct Monte Carlo simulations to further

evaluate the performance of this volatility causality test, especially for the case of

multiple structural breaks in the presence. Moreover, by conducting the causality

in variance test on all the sample cross-correlations. this chapter attempts to iden-

tify not only the presence but also the start of any potential volatility spillovers.

This chapter will also investigate the case in the UK markets, in order to form a

comparison study when examining how differently the volatility causality patterns

can be in countries at a different development level. Designed as such, this research

not only can contribute to establishing insightful knowledge on the fundamentals of

financial markets, it also seeks the possibility to build customized models dealing

with markets with unique characteristics. Therefore, this research is of interest to

both investors and financial managers to devise proper investment strategies espe-

cially over the period such as a financial crisis; meanwhile, it can also provide policy
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makers with invaluable information and advanced econometric techniques to ensure

economic stability.

The remainder of this chapter proceeds as follows: Section 3.2 provides a review

on the recent literature with regard to investigating the volatility spillover between

stock and foreign exchange markets; Section 3.3 formulates the research question;

Section 3.4 presents the methodology; the data and empirical results interpretation

and discussion will be found in Section 3.5 and 3.6; the limitation of this study is

briefly discussed in Section 3.7; Section 3.8 concludes the chapter.

3.2 Literature Review

As the growing globalization gives rise to information transmission across financial

markets, it is important to study the interactions between financial assets such that

investors can make more informed investment decisions. It is particularly beneficial

to financial institutions with a multinational business structure to manage expo-

sures induced from other markets. Serving as a fundamental role in supporting the

growth of one economy, the performance of stock market reflects the degree of devel-

opment in one country. Meanwhile, as an important indicator of economic strength

and political stability, exchange rate market is known as one of the most sensitive

segments of the financial system. Those profound economic impacts of stock and

exchange rate markets have drawn considerable attentions to studying the interac-

tions between them.

In this context, a large number of empirical research has carried out investigations on

the linkage between stock and foreign exchange markets. One approach is through

investigating the volatility spillover. Eissa et al. (2010) study the volatlity rela-

tionship between stock returns and nominal exchange rates in Egypt, Morocco and

Turkey. A bidirectional volatility spillover is found via the BEKK-GARCH model

of Engle and Kroner (1995) in all three countries; in addition, this effect is much

stronger in Egypt and Turkey.

Zhao (2010) studies the dynamic relationship between the currency market and

stock market in China. By analysing the RMB real exchange rate and Shanghai

composite stock price index of monthly frequency from January 1991 to June 2009,

a bidirectional volatility spillover is found between the foreign exchange and stock

markets via the MGARCH-BEKK model of Engle and Kroner (1995). This finding

indicates that future volatility in stock market is greatly influenced by the past in-

novations in foreign exchange market in China, and vice versa.
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Aloui (2007) adopts the causality in variance of Cheung and Ng (1996) to study

the relationship between stock prices and foreign exchange rates for five major Eu-

ropean countries and the United States. The sample period is from 1991 to 2005,

and is divided into the pre- and post-Euro subsamples by the launch of the Euro

in January 1999. The empirical results show much dynamic and complex volatility

spillover patterns. In the pre-Euro period, volatility transmission is found only in

two countries; France experiences a unidirectional volatility spillover from foreign

exchange market to stock market in France, and same pattern is found in Germany.

In the post-Euro period, unidirectional volatility spillover is found in all the coun-

tries except the United States. Apart from Germany and Italy, where the spillover

effect is from foreign exchange to stock market, in France, Belgium and Spain, the

spillover is from stock market to foreign exchange market.

De Las Nieves Morales (2008) employs the EGARCH model of Nelson (1992) in

Spain along with in six Latin American countries from 1998 to 2006. A unidirec-

tional volatility spillover is found from stock to foreign exchange markets. Under the

same framework, Jebran and Iqbal (2016) investigate asymmetric volatility spillover

between equity market and currency market in seven Asian countries, namely, Pak-

istan, India, Sri Lanka, China, Hong Kong and Japan. Using the EGARCH model

of Nelson (1992) on daily return series from January 1999 to January 2014, a bi-

directional volatility spillover is found between the two financial markets in Pak-

istan, and same pattern is found in China, Hong Kong, Sri Lanka; a uni-directional

volatility spillover is found in India going from stock to foreign exchange market; no

volatility spillover is found in Japan. They further comment that for each volatility

spillover pattern being found is asymmetric in nature, meaning the volatility reacts

to negative shocks more than to positive ones of same scale.

It can be seen from the above literature, that most volatility spillover methods

are developed on GARCH models. Nevertheless, it has been well documented in

the literature for the GARCH model misspecification due to the ignorance of the

structural breaks in the volatility. Evidently, neglecting the effect structural breaks

imposes on the GARCH models could lead to biased implications regarding the

volatility spillover investigation. Zivkov et al. (2015) takes account the structural

breaks when studying volatility spillover. The countries in study are four Eastern

European emerging counties, namely, Czech Republic, Hungary, Poland and Russia;

and the sample period is from 2002 to 2014. MICSS of Sanso et al. (2004) is also

employed, and presence of structural breaks is found for all the return series. More-

over, incorporating the breaks as dummy variables greatly improves the GARCH
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model estimations. This finding further confirms that the volatility spillover could

be biased if those breaks are ignored. Under the FIGARCH framework of Baillie

et al. (1996), a bidirectional spillover is found in all the countries, and the impact

currency market imposes on the stock market is much stronger than the other way

around, especially in Russia. Koseoglu and Cevik (2013) investigate the volatility

spillover patterns between stock and foreign exchange markets in four European

countries, namely, Czech Republic, Hungary, Poland, and Turkey. They also iden-

tify the presence of structural breaks by MICSS of Sanso et al. (2004). The negative

effect of structural breaks is then removed before examining the volatility spillover

pattern. Via the causality in variance test of Hong (2001), volatility spillover is

found travelling from the stock to the foreign exchange market in every country in

study.

3.3 Research Question

The primary goal of this chapter is to investigate the volatility spillover effects

between stock market and foreign exchange rate market. Moreover, this research

extends the scope to compare this spillover effect in two countries, namely, the UK

and China, in order to explore whether the spillover effects in the volatilities between

the targeted markets will be affected by the degree of the development. More im-

portantly, the presence of structural breaks is taken into account when investigating

the volatility spillover effects. Monte Carlo simulation studies will be first employed

in order to understand the proposed volatility spillover test. The research question

of this chapter is formed as follow:

What are the volatility spillover patterns between the stock market and foreign ex-

change market in China and the UK? To what extent do structural breaks affect

these spillover patterns? Is it possible to identify the lag period from which the

volatility of the “leading” market contributes to the volatility of the “led” market?

Addressing the above questions can help us better understand the information trans-

mission between two important financial markets. Moreover, when information on

modelling one market is scarce, investors and practitioners can use extra information

from the other market if certain volatility spillover effects are found between them.

Furthermore, it can also show whether taking account of structural breaks improves

the identification of such pattern. Nevertheless, by investigating volatility spillovers

in two countries with the different levels of development, customised models can be

devised based on unique features in each country.
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3.4 Methodology

This section introduces the causality in variance test of Hong (2001) developed on

Cheung and Ng (1996). The establishment of test hypothesis, construction of test

statistics, and test procedures will be discussed. Monte Carlo simulation design will

be explained next.

3.4.1 Causality in Variance Test

The causality in variance test of Hong (2001) study the volatility spillover between

two financial time series by examining their sample cross-correlations under a non-

uniform weighting scheme. It is an improved version of the causality in variance

test of Cheung and Ng (1996). Recall from Chapter 1, for two stationary time series

Yit, i = 1, 2 with each conditional variance following a GARCH(p,q) process:

Yit = µit + εit, i = 1, 2 (3.1)

εit = ξit
√
hit, ξit ∼ N(0, 1), i = 1, 2 (3.2)

hit = ωi +

p∑
j=1

αijε
2
it−j +

q∑
j=1

βijhit−j, t = 1, ..., T, i = 1, 2 (3.3)

Let ut and vt represent the squared error terms ε2it, i = 1, 2 standardized by hit, i =

1, 2:

ut = ε21t/h1t, i = 1, 2 (3.4)

vt = ε22t/h2t, i = 1, 2 (3.5)

The jth cross correlation coefficient ρuv(j) between ut and vt is then

ρuv(j) = {Cuu(0)Cvv(0)}−1/2Cuv(j) j = 1, ..., T (3.6)

where Cuu(0) = T−1
∑T

t=1 u
2
t and Cvv(0) = T−1

∑T
t=1 v

2
t are the variances of Y1t and

Y2t respectively. Moreover, Cuv(j) is the jth sample cross covariance, which takes

the form

Cuv(j) =


T−1

T∑
t=j+1

utvt−j, j ≥ 0

T−1
T∑

t=−j+1

ut+jvt, j < 0

(3.7)
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The test statistic Q is then calculated as below:

Q =
T
∑T−1

j=1 k
2(j/M)ρuv(j)− C1T (k)√

2D1T (k)
(3.8)

C1T (k) =
T−1∑
j=1

(1− j/T )k2(j/M) (3.9)

D1T (k) =
T−1∑
j=1

(1− j/T ){1− (j + 1)/T}k4(j/M) (3.10)

where k(.) is Bartlett kernels (Priestley, 1981), such weighting function is defined as

below

k(j/M) =

1− |j/M | , if |j/M | ≤ 1

0, otherwise
(3.11)

C1T (k) and D1T (k) are used to make sure Q asymptotically has N(0,1) distribution.

Therefore, under the null hypothesis of no volatility spillover, Q is a one-sided test,

and the critical value at the 5% is 1.645. In addition, according to equation 3.7,

the range of j determines the direction of volatility spillover; the causality test with

j < 0 identifies any causal linkage from Y1t to Y2t, while that of j ≥ 0 detects any

causal relation from Y2t to Y1t. This causality in variance test will be applied to

data series twice with different range of j in order to determine the presence and

the direction of volatility spillover. Moreover, M is the number of sample cross-

correlations are under investigation; M can take any integer number between one

and T − 1. Therefore, the Bartlett kernel function k(.) in (3.11) gives zero weight

to the jth cross-correlation when j exceeds M .

It is necessary to mention that, no universal rule is found on how to determine M ;

the choice of M in most studies depends on intuition, and normally M = 1, 5, 10

(see, for instance, Koseoglu and Cevik, 2013). Moreover, assume the true volatility

spillover becomes recognizable from the first M + m (m is any positive integer)

sample cross-correlations, it could be very likely that the causality in variance test

reports no volatility spillover when only the first M cross-correlations are examined.

No research has been found to consider such possibility. Nevertheless, although the

existing literature shows simulation results that neglecting the structural breaks in

the volatility can compromise the causality in variance test of Hong (2001) (see, for

instance, Dijk and Sensier, 2005), no evaluation is conducted on the case of more

than one break. Therefore, these issues call for further Monte Carlo investigation.
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3.4.2 Monte Carlo Study

In order to obtain a much in-depth understanding of the causality in variance test

of Hong (2001) (CinV hereafter), this simulation study is designed considering the

following factors:

• The volatility spillover pattern

Three cases will be considered, i.e., the absence of volatility spillover, lag 1

volatility spillover, lag 30 volatility spillover. The latter two patterns represent

respectively an almost-immediate and a relatively-remote causality between

volatilities from the “leading” to the “led” series.

• The scale of the simulated volatility spillover

Both a strong and a weak volatility spillover will be simulated. Combining

with other factors, it aims at evaluating the robustness of CinV in a more

comprehensive manner.

• The relationship betweenM and the lag number of simulated volatility spillover

For each of the simulated spillover patterns, M = 1, 30, 60 will be considered.

This design is to collect evidence to support the conjuncture that CinV could

overlook volatility spillover if M is smaller than the lag number.

• The presence of structural break(s)

Up to four breaks will be considered in the paired data series, where the

location of the simulated breaks will be identical in each of the individual

series. Also, a comparison will be employed between accommodating and

ignoring the presence of the simulated breaks. In addition, a case where no

structural break in any individual data series will be set up so to study the

causality in variance test without the potential disturbance caused by the

structural breaks.

• The distance between two adjacent breaks

To include this factor is to see if the test would perform differently when many

structural breaks are expected to occur in a relatively short time period.

• The size of variance change

Taking into consideration this factor is to test the sensitivity of CinV to the

change of the volatility.

For simplicity, this simulation considers two GARCH(1,1) data series Yit, i = 1, 2,

and a unidirectional volatility spillover from Y2t to Y1t. Details can be found as

below:
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Yit = µit + εit, i = 1, 2; t = 1, 2, ..., T ; (3.12)

εit = ξit
√
hit, ξit ∼ N(0, 1); (3.13)

h1t = ω′1 +
k∑
1

D1kδ1k + α1ε
2
1t−1 + β1h1t−1 + ζ21ε

2
2t−d + γ21h2t−d; (3.14)

h2t = ω′2 +
k∑
2

D2kδ2k + α2ε
2
2t−1 + β2h2t−1 (3.15)

in the conditional variance processes h1t and h2t, Dik, i = 1, 2 are dummy variables

representing the simulated structural break(s). It takes value 1 from the identified

structural break onwards, and value 0 elsewhere, indicating the shift in the variance

caused by that break. δik are the corresponding coefficients for the dummy vari-

ables, where k represents the number of breaks simulated. It is worth noting that,

the breaks in two series are simulated to occur simultaneously; therefore, future

work could be extended to investigate the performance of the test when structural

breaks occur at a different time. Moreover, ζ21 and γ21 measure the scale of the

causality.

In summary, this chapter will first identify the presence of structural breaks via

MICSS of Sanso et al. (2004), and then accommodate the detected breaks following

the same method discussed in Chapter 2. The causality in variance test of Hong

(2001) is then employed to study the volatility spillover between stock and foreign

exchange markets in both China and the UK. Moreover, this chapter will conduct

Monte Carlo study to investigate the test performance. Under a comprehensive

design, the simulation contains 270 experiments, each of which contains 5,000 repli-

cations. Two factors are particularly considered, namely, multiple structural breaks,

and the choice of M ; as the existing literature is scarce in evaluating the robustness

of this test, especially in the case of multiple breaks. Moreover, there is no consensus

or formal rule on how to choose M , despite that M is a particularly important input

in this test. Structured as such, this chapter attempts to explore further on how

to more accurately identify volatility spillover via causality in variance test of Hong

(2001).

3.5 Data

The main stock indices are the same series as in Chapter 2, namely, the SSE A share

Composite Index traded at the Shanghai Stock Exchange for China, and the FTSE

100 Index listed on the London Stock Exchange for the UK. Each of the stock series
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is denoted in its home currency. As for the foreign exchange rates, the British Pound

(GBP) and China Yuan Renminbi (CNY) will be used and expressed in the local

currency against the US Dollar (USD). All data series are of the daily frequency

and are obtained from DataStream, covering a period from 3 January 1994 to 31

December 2014, forming 5478 observations for each series. Returns from each data

series are firstly created as shown in Equations (3.16) - (3.19). An initial overview

of each series can be found in Figure 3.1 to 3.4.

rstkchinat = ln stkchinat − ln stkchinat−1 (3.16)

rexchinat = ln exchinat − ln exchinat−1 (3.17)

rstkukt = ln stkukt − ln stkukt−1 (3.18)

rexukt = ln exukt − ln exukt−1 (3.19)

Table 3.1: Descriptive Statistics of Stock and Foreign Exchange Returns in the UK
and China

UK Markets Chinese Markets

Stock Returns FX Returns Stock Returns FX Returns

Mean 0.0001 0.00001 0.00047 -0.0001

Standard Deviation 0.0115 0.0054 0.0162 0.0010

Skewness -0.1595 0.0400 -0.4231 -0.0188

Excess Kurtosis 6.3143 4.4588 4.0647 5.4974

Jarque-Bera 9131.7[0.0000] 4544.1[0.0000] 1774.6[0.0000] 3310.7[0.0000]

ADF -18.502[0.0000] -17.118[0.0000] -12.315[0.0000] -11.739[0.0000]

ARCH LM Test 1274.2[0.0000] 703.07[0.0000] 24.739[0.0000] 155.18[0.0000]

Obs 5477 5477 2464 2464

Note: Different sample is chosen for the markets in the UK and China due to the data
availability caused by the change of foreign exchange regime in China; Jarque-Bera normality test
significantly rejects the null hypothesis of i.i.d data for all the four data series; ADF test
significantly rejects the null hypothesis of the presence of unit root, indicating stationarity for all
the four series; ARCH LM test significantly rejects the null hypothesis of no ARCH effect in the
conditional variance for all the data series except for the exchange rate return of China; p-value
of each test is in the bracket

Figure 3.1 and 3.2 show the plot for stock 1 and foreign exchange markets in the

UK in terms of prices and returns respectively. A relatively volatile structure can be

observed for the price markets in the UK. Moreover, plots of returns shows several

regimes in the volatility of each series as marked by the dotted line, indicating the

occurrence of structural breaks. Figure 3.3 and 3.4 show the plot for prices and

1The plots of UK stock prices and returns are identical with the ones in Chapter 2.
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FTSE Daily Prices in the UK from 3/01/1994 to 31/12/2014
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Figure 3.1: Plots for Stock Prices and Foreign Exchange Rates in the UK

returns of foreign exchange and stock market in China. It can be seen from Figure

3.3, CNY to USD exchange rates stay constant from the start of sample period to

21 July 2005, and then show variation afterwards. This is caused by the change

from a pegged exchange rate system against USD to a managed floating policy on

21 July 2005. Since no structural break occurs during the pegged exchange rate
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FTSE Daily Returns in the UK from 3/01/1994 to 31/12/2014
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Figure 3.2: Plots for Stock and Foreign Exchange Returns in the UK

regime, and including such period interferes the detection of any structural break

in the later period. Under such circumstances, this chapter will only study the

sample period after the adoption of new exchange rate regime for both foreign ex-

change and stock series in China, namely, from 22 July 2005 to 31 December 2014.

The stock prices of this new sample is plotted in Figure 3.3 and the return series
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Foreign Exchange Rate (CNY to USD) from 3/01/1994 to 31/12/2014

Year

C
N

Y
/U

S
D

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Foreign Exchange Rate (CNY to USD) from 3/01/1994 to 31/12/2014

Year

C
N

Y
/U

S
D

 R
et

ur
ns

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

6.
0

6.
5

7.
0

7.
5

8.
0

SSE Daily Prices in China from 22/07/2005 to 31/12/2014

Year

 S
to

ck
 P

ric
es

 (
C

N
Y

)

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

10
00

20
00

30
00

40
00

50
00

60
00

Figure 3.3: Plots for Stock and Foreign Exchange Rates in China

can be found in Figure 3.4. It can be observed that Chinese markets seem to have

a rather stable structure with fewer structural breaks as indicated by the dotted line.

Descriptive statistics is presented in Table 3.1 for a different sample period between

the UK and China. For the UK markets over the sample period from 3 January
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Foreign Exchange Returns (CNY to USD) from 22/07/2005 to 31/12/2014
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Figure 3.4: Plots for Stock and Foreign Exchange Returns in China

1994, a slightly left skewed distribution for the stock returns, and a slightly right

skewed distribution for the FX returns can be observed, indicating the majority of

the observations are around the mean of each series, where there is a small chance to

have big negative returns in the stock and a small chance to have big positive returns

in the FX. The positive excess Kurtosis indicates that neither series is normally
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distributed, and it is further confirmed by Jarque-Bera normality test where the null

hypothesis of normality is rejected at 1% level of significance. Similarly conclusion

can be drawn for return series in China dated from 22 July 2005. Moreover, ADF

test suggests all the four series are stationary and ARCH LM test indicates further

GARCH effect for each of the series.

3.6 Empirical Results and Interpretation

This section will firstly analyse the simulation results to gain a more in-depth un-

derstanding of the mechanism of CinV. Next, using MICSS algorithm of Sanso et al.

(2004) as discussed in the previous chapter to identify structural breaks. The best

model for each data series is then presented, and CinV is employed on the most

appropriate estimates to study the volatility spillover patterns between stock and

foreign exchange returns in both China and UK. It is worth noting again, that the

causality pattern considered in this chapter is uni-directional. Moreover, with the

consideration of structural breaks, this study also discusses whether the causality

pattern will be influenced by such factor.

3.6.1 Monte Carlo Simulation Analysis

Appendix Table A.7 presents the statistics of success detections returned by CinV

of simulated causality patterns. Nevertheless, CinV test statistics Q are plotted

from Figure B.4 to Figure ?? in every single scenario created by combining different

factors, including the scale of volatility, the size of variances, and the number of

structural breaks, the relationship between M and the simulated causality. Several

findings are found as shown in below:

According to Panel A - Case A1, when there is no causality simulated from the

variance of Y2t to that of Y1t, CinV shows promising performance on correctly iden-

tifying the lack of a causal linkage between the two. At M = 10, Pass Rate is found

to be 93% when the variances of both series take a relatively large value (ω = 0.33),

and it then drops slightly to 92.1% when the two variances are smaller (ω = 0.11).

Moreover, no or very small improvement is found for the Pass Rate at ω = 0.33 or

ω = 0.11 when increasing M to 30 and 60. These findings suggest that CinV has

an impressive performance to determine the independence between two series, and

neither the size of the variance ω nor the truncated number M interferes with this

degree of accuracy. For Case A2, when the causality is simulated from Y2t−1 to Y1t,

CinV tends to show less satisfactory performance with regard to correctly identify-
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ing the presence of such causality. At M = 10, CinV only shows a Pass Rate ranging

from 45% to 50%, indicating CinV would detect no causality at least half the time

given that the causal linkage between the two series is strong and the variances of

the two series are of bigger value. And the false detection becomes worse as soon

as the causality goes weak or the variances are getting small. Nevertheless, this

situation can be much improved by increasing the truncated number M to 30. And

this improvement appears to be more effective for the series having weak causal-

ity or smaller variances. However, continuing increasing M would not improve the

Pass Rate any better. Thus, it is suggested that the choice of M critically deter-

mines whether CinV can make the correct identification of the presence of causality.

Moreover, it seems that the performance of CinV can be improved by increasing

M , especially for asset series with weak causality relationship while showing a rel-

atively stable market structure. For Case A3, when the simulated causality only

starts from the past 30 observations of Y2t to the current value of Y1t, running CinV

on any truncated number M that is less than 30 will certainly detect no causality.

And the Pass Rate under the category where M = 10 actually represents the suc-

cessful detection of no causality. In this case, CinV shows promising ability under

such circumstances with an above 90% Pass Rate which is not affected by either

the size of variance or the scale of causality. However, it seems that CinV cannot

detect causality pattern when the truncated number is of the same value of the sim-

ulated causality latency, namely 30; nevertheless, it has very limited ability to find

causality even after increasing M to 60, the Pass Rate of such is barely 2%. This

could indicate that CinV is very reluctant to detect the remote causality. Therefore,

from the above discussion based on Panel A where no structural break is simulated,

it can be concluded that CinV can most likely find the correct causality pattern

when the two series have no such relation toward each other. There is still quite

decent chance that CinV can detect the causality pattern when one series is very

closely causal-related to the other, for instance, 1 observation; and such chance can

be improved by increasing the truncated number M especially when dealing with

data series of small variances or insignificant causality power, yet this improvement

has its limit. Most importantly, it is confirmed that CinV will very likely detect no

causality when the truncated number M is equal to or smaller than the simulated

causality latency number d; in addition, CinV seems to have difficulty to find remote

causality patterns. These findings are rather new in the literature.

Next, the impact of structural breaks on CinV will be examined over Panel B-E. Two

types of Pass Rate will be considered, namely, Pass Rate (Y) and Pass Rate (N),

representing break(s) taken into account and otherwise, in order to check whether

incorporating structural breaks in CinV improves causality test results. It can be
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observed from Panel B, when no causality is simulated (Case B1), or is not shown

in the observations yet (Case B3, M = 10), CinV shows a very high level of per-

formance both with and without incorporating breaks. Yet, it is necessary to take

account the structural break as indicated by a smaller Pass Rate (N) than Pass

Rate (Y). Moreover, similarly to that in Case A1 and A3, neither the size of vari-

ance change nor increasing M in these two cases have an impact on test accuracy no

matter the simulated break(s) are taken into consideration or not. Another inter-

esting finding from Case B1 is that CinV actually responds slightly better to series

with a smaller difference of variances change (∆ = 0.11) than that of bigger change

of variances (∆ = 0.22), regardless of whether the structural break is included or

not. In Case B2 and Case B3 (M = 30, M = 60), when there is causality simulated

in the two GARCH(1,1) series at d = 1 and d = 30(M ≥ 30), rather surprisingly,

however, results show that taking structural break(s) into CinV actually compro-

mise the test accuracy. For instance, in Case B2, CinV shows a 57.4% Pass Rate

(N) comparing to a 41.2% Pass Rate (Y) at M = 10 when considering a strong

simulated causality with a relatively large variance change (∆ = 0.22) caused by the

simulated break. Increasing M can improve both Pass Rate (Y) and Pass Rate (N),

and this improvement appears more significant from M = 10 to M = 30 than that

to M = 60, yet still, Pass Rate (N) is higher than Pass Rate (Y) under the same M .

The results so far seem to indicate that it is unnecessary to address the presence

of structural breaks in the data series when examining volatility causality patterns,

which is contradictory to the existing literature. According to Dijk and Sensier

(2005), the presence of structural breaks is proved to cause severe size distortions in

CinV, and thus it is strongly advised to accommodate these breaks when studying

volatility spillover via CinV. However, although here it finds that under the same M ,

CinV performs well when neglecting structural breaks, by taking a bigger M , Pass

Rate (Y) of a bigger M actually exceeds Pass Rate (N) of a smaller M . This is very

useful information, as it has been discussed in the previous chapter that neglecting

structural breaks would cause biased volatility persistence obtained from GARCH

models, therefore, it is absolutely necessary to modify conventional GARCH mod-

els with structural breaks considered. Since adding such factor would induce less

power to the volatility causality test, however, by increasing M this drawback can

be alleviated. Under such circumstances, the causality patterns found in the ex-

isting literature could be misleading due to an M of insufficient value, especially

with the existence of structural breaks. This inference is rather a novelty in the

literature known so far. Furthermore, after investigating the impact from multi-

ple structural breaks, very similar conclusions to Panel B can be drawn for Panel

C-E, indicating that the number of structural breaks has little impact on the per-

formance of CinV. This conclusion can help to justify that impact from a relatively
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volatile period where multiple structural breaks are expected to occur, such as a

global financial crisis, would have a minimal impact on CinV; in other words, the

performance of CinV can stay indifferent regardless of a tranquil or fluctuate period.

Last but not least, it is quite obvious that the truncated number M plays a critical

role in the causality in variance test of Cheung and Ng (1996) and Hong (2001). A

few methods are proposed regarding the choice of M in Hong (2001), such as, try

several M or choose M via some “rule-of-thumb”. However, in the real world, it

would be very unlikely to know when causality starts; in fact, the unknown timing

and pattern are the exact reason why we develop volatility causality test. Therefore,

it would be nearly impossible to validate the choice of M . Given such circumstances,

this study attempts to offer an alternative mechanism to increase the chance of cor-

rectly detecting the causality pattern. On the one hand, it is inspired by Hong (2001)

that, M is permitted to choose from 1 to the full sample size; most importantly,

this alternative mechanism is derived based on the implications revealed from Case

3 over Panel A-E. For Lag 30 simulated volatility spillover, even though it has been

argued that CinV tends to find no causality at M = 10, Pass Rate actually starts to

rise as M increases. Although such rising tendency is at a rather small degree and

the value of Pass Rate is very small, it has already been proved in Case A2-E2 that

CinV shows acceptable ability to detect the correct causality pattern, therefore, it

is reasonable to believe that within the moderate range CinV will show adequate

power. Therefore, it could be plausible to determine the presence and the start of

volatility causality by running CinV from M = 1, ..., T until causality is found.

In summary, the causality in variance test (CinV) of Cheung and Ng (1996) and

Hong (2001) is very capable of finding the absence of causality between two series

in terms of volatility. Such performance is hardly affected by other factors, i.e.

number of structural breaks, size of variance, or differences of variances before and

after the structural break, and the cross-correlations being examined in the test,

namely, the truncated lag number M ; however, ignoring the presence of structural

breaks can compromise test accuracy. Moreover, when two series are Granger-causal

related to each other in the volatilities, CinV shows a less adequate performance to

detecting the correct causality pattern, and is affected by the scale of causality, the

size of variance, or differences of variances before and after the structural break,

and M , to some extent. Surprisingly to find that allowing for structural breaks

in CinV actually worsens the performance comparing to that of without breaks.

However, such drawback can be improved by increasing M to a moderate degree,

as this improvement diminishes as M increases. In fact, evidence shows that CinV

with breaks at a proper M is more powerful than CinV without breaks; moreover,
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another distinct finding is that CinV tends to find no causality when the truncated

number M takes the value that is smaller than the causality lag order d, that is

to say, if CinV examines M cross-correlations before the causality starts, there is

a relatively high chance that no causality will be detected. Based on this finding,

this study can complement the literature on the use of the causality in variance test

of Cheung and Ng (1996) and Hong (2001) that, when CinV detects no causality,

two inferences could be derived: there is no causality between the two series, or

the truncated number M is too small. Hence, this study also casts doubts on the

existing literature where no causality is identified, see, for instance, Aloui (2007);

De Las Nieves Morales (2008). A possible modification this study proposes is to

run CinV with M ranging from 1 to T until causality is found at t, 1 ≤ t ≤ T . It

is expected to observe the test statistics to increase until the tth observation where

test statistics exceeds the critical value, and then it gradually decreases as M in-

crease to T . This anticipation stems from the following features suggested by the

simulation results: (1) CinV is powerful to detect the absence of causality; (2) CinV

finds no causality when M ≤ d but showing signs of responding to the presence of

causality when M > d; (3) CinV is less powerful with regard to remote causality.

Therefore, this chapter will run CinV test on the selected pair of return series with

M = 1, ..., T . Since this study only targets uni-directional causality, thus the test

will be employed both from the stock to exchange rate returns and the other way

around. Moreover, CinV will incorporate structural breaks if any, since taking no

account of such tends to compromise the test accuracy when two series are inde-

pendent. By this new way of employing CinV, this study aims to more accurately

identify the volatility spillover effects; particularly, it is expected to reveal how far

back one series is Granger-causally related to the other in terms of volatility; more-

over, this study can also check how the presence of structural breaks would affect

the detected causality patterns.

3.6.2 Structural Breaks and Model Estimations

The application of the causality in variance test of Hong (2001) requires appropriate

model estimations. Since it has been discussed in the previous chapter, that it is

necessary to incorporating structural breaks in the GARCH models to avoid over-

estimation of volatility persistence, namely, the sum of α and β. Thus the modified

ICSS of Sanso et al. (2004) is employed to firstly detect any structural break in the

four series in question and results are shown in Table 3.2. For Chinese markets over

the sample period of 22/07/2005 to 31/12/2014, both the FX and stock returns are

found to have three breaks. Although the observations are obtained from the same
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stock index with the only difference being the sample period, the breaks identified

here are different from that of the previous chapter. Two breaks are found at 7

December 2006 and 3 September 2009 when the sample period is from 3/01/1994 to

31/12/2014; however, this chapter has identified three new breaks at 22 December

2007, 12 December 2008, and 17 November 2010 when only using the sample pe-

riod after the new foreign exchange rate regime. This finding tends to suggest the

identification of breaks by MICSS of Hong (2001) is subject to the choice of sam-

ple period. In fact, this information can further support the conclusion from Monte

Carlo simulation in previous chapter that, the choice of structural breaks test should

be a decision on the basis of a collective evaluation on a series of factors according

to the data under study, such as the size of break, the intensity of data variability,

and the sample period. Nevertheless, the underlying reason for such impact calls

for future investigation.

After the identification of structural breaks, dummy variables are created corre-

sponding to each break, where taking value 1 from the break onwards and 0 else-

where to indicate the variance shifts. The best model for each return series is

selected from a number of candidate models based on a series of residuals diag-

nosis 2. Therefore, a GARCH(1,0) is selected for foreign exchange returns, and

ARMA(0,1)+GARCH(1,1) is for stock returns in China. Meanwhile, for the UK,

an ARMA(0,1)+GARCH(2,1) tends to be the best fit for both foreign exchange and

stock returns. Detailed information on model estimations can be found in Table 3.3.

Table 3.3: Empirical Estimation for Stock and Foreign Exchange Returns in China
and the UK

China (from 22/07/2005 to 31/12/2014)
Foreign Exchange Market Stock Market

Best Model GARCH(1,0) ARMA(0,1)+GARCH(1,1)
Action on Break(s) Accommodated Neglected Accommodated Neglected

µ 0.0000 0.0000 2.8911e-04 5.3184e-04**
θ1 – – 8.9693e-02*** -1.1728e-02
ω 0.0033 0.0056 6.8718e-06 1.9962e-06
α1 0.1905 0.5095 9.7292e-02*** 4.9523e-02***
β1 – – 8.4541e-01 9.3689e-01
δ1 0.0112 – 3.5642e-05 –
δ2 -0.0026 – 7.8869e-06*** –
δ3 0.0055 – -2.8434e-07 –

Volatility Persistence 0.1905 0.5095 0.9427 0.9864
Log Likelihood 2750.747 2421.745 6963.423 6962.151

LR Test Statistics 658.004*** 2.544

2Details is available on request.
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Standardized Residuals Tests
Jarque-Bera 4437*** 91072*** 323*** 441***

Ljung-Box Q(1) 4.7848** 0.0059 10.353*** 1.8444
Ljung-Box Q(5) 8.0301 3.6757 17.23*** 12.387**
Ljung-Box Q(10) 15.402 12.608 44.398*** 34.21***
Ljung-Box Q2(1) 2.0165 1.9638 3.4493* 0.0004
Ljung-Box Q2(5) 4.5976 2.2896 11.739** 0.3837
Ljung-Box Q2(10) 8.3778 7.8083 21.806** 9.63

LM ARCH 2.0134 1.9606 3.4445* 0.0004

UK (from 03/01/1994 to 31/12/2014)
Foreign Exchange Market Stock Market

Best Model ARMA(0,1)+GARCH(2,1) ARMA(0,1)+GARCH(2,1)
Action on Break(s) Accommodated Neglected Accommodated Neglected

µ -8.0076e-05 1.4653e-05 5.0376e-05 2.3159d-04**
θ1 2.8974e-02** 8.0526e-02*** 0.1155*** 0.0968***
ω 1.3749e-05 3.5545e-06 6.3776e-06 8.2058e-07
α1 3.2474e-02** 1.0088e-01*** 0.1174*** 0.1160***
α2 8.2144e-02** 1.4685e-01*** 0.1165*** 0.0637***
β1 1.9037e-01*** 5.6027e-01 0.6215 0.8077
δ1 7.3971e-06*** – 1.5225e-05*** –
δ2 -2.8344e-06* – 4.5769e-05*** –
δ3 1.2991e-05*** – -4.7257e-06*** –
δ4 1.7566e-04*** – 3.8002e-05*** –
δ5 1.3343e-05*** – 1.1375e-05*** –
δ6 -2.1217e-06* – 5.7064e-05*** –
δ7 – – 6.3276e-06*** –
δ8 – – -5.8317e-06*** –
δ9 – – 3.6200e-06 –

Volatility Persistence 0.305 0.808 0.8554 0.9867
Log Likelihood 21269.1 20966.8 17517.23 17631

LR Test Statistics 604.6*** –
Standardized Residuals Tests

Jarque-Bera 257 677 332*** 257***
Ljung-Box Q(1) 0.301 12.678*** 51.703*** 33.978***
Ljung-Box Q(5) 2.7687 14.372** 58.102*** 40.919***
Ljung-Box Q(10) 4.4842 16.253* 60.364*** 42.138***
Ljung-Box Q2(1) 0.0158 4.2454** 1.5839 4.781**
Ljung-Box Q2(5) 26.083*** 57.654*** 27.425*** 23.464***
Ljung-Box Q2(10) 53.876*** 87.641*** 43.269*** 35.378***

LM ARCH 0.0158 4.2426** 0.2084 4.778**

Note: Estimation of UK stock returns uses the results from Chapter 2 as the stock return series

here and

there are the same;

Estimation of Chinese stock returns are different from the results in Chapter 2 as the same

stock

return series uses a different sample period here;
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Table 3.2: Structural Breaks Dates and Significant Events

Markets Dates

Chinese Exchange Rate Market 4 June 2007

(from 22/07/2005 to 31/12/2014) 31 December 2008

18 June 2010

Chinese Stock Market 22 December 2007

(from 22/07/2005 to 31/12/2014) 12 December 2008

17 November 2010

UK Exchange Rate Market 21 February 2003

(from 03/01/1994 to 31/12/2014) 4 August 2006

6 November 2007

26 September 2008

2 April 2009

23 November 2011

UK Stock Market 21 October 1997

(from 03/01/1994 to 31/12/2014) 11 June 2002

2 June 2003

23 July 2007

3 April 2009

2 August 2011

14 December 2011

9 July 2013

19 September 2014

Note: Due to the data availability, the sample period selected for Chinese markets starts from
22/07/2005 to 31/12/2014. Moreover, the structural breaks in Chinese stock market are
re-examined due to the change of sample period. New break dates are found as shown in this
table, which however are slightly different from those found between 2005 to 2014 in Chapter 2,
namely, 7 December 2006, and 3 September 2009. Using the same stock series in China,
structural break dates are found to be different because of the different sample periods.

*,**,*** represent level of significance 1%, 5%, 10% respectively;

Volatility persistence is calculated as the sum of αi and βi;

Jarque -Bera checks whether the standardized residuals are normally distributed, with the

null

hypothesis of normality;

Ljung-Box Q (lag order in brackets) examines the autocorrelation between standardized

residuals,

with null hypothesis of series being independent;

Ljung-Box Q2 (lag order in brackets) examines the autocorrelation between squared

standardized
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residuals, with null hypothesis of series being independent;

LM ARCH checks for any further ARCH effect in the conditional variance, with the null

hypothesis

of the absence of ARCH;

The null hypothesis of LR Test in this case is the better performance of model with no

consideration of structural break.

3.6.3 Volatility Spillover in China and the UK markets

As discussed earlier in the methodology that, applying CinV twice between the

target series with both a positive and a negative j, both the presence and direc-

tion can be determined. Therefore, after employing CinV on residuals of stock and

FX returns obtained from each of the fitted models in each country, the detected

volatility spillover patterns with and without accommodating the structural breaks

are presented in Table 3.4 and illustrated in Figure 3.5 to 3.8. The indicator “Start

of Causality” represents the appropriate selection of the truncated lag number M ,

one very important component in CinV. The test statistic Q is calculated based on

the M cross-correlations that CinV examines. Therefore, the choice of M is one of

the determinative factors to the identification of volatility causality pattern. Since

the simulation study has provided justifications that CinV would very unlikely re-

spond to the presence of volatility causality if M is smaller than the lag period d

from which this causal relationship starts, therefore, it is plausible to run CinV at

M taking every value from 1 to the full sample, instead of choosing M based on

intuition or some “rule of thumb”, in order to find the causality lag period, namely,

start of causality. Simulation results also suggest that, after M is great than d, CinV

tends to be able to identify the presence of volatility causality. Hereby, the start of

causality will be the value that M takes which enables CinV to find causality for the

very first time. In this context, if a one-way volatility causality is identified from,

say, Y2 to Y1, and the start of causality is at m, this means that volatility spillover

is found going from the lagged m observations of Y2 to the current observation of Y1.

According to Table 3.4, it can be firstly observed that structural breaks affect the

causality pattern identified by CinV. A closer look at Chinese markets, volatility

spillover is found from stock to FX returns, and the start of such spillover is found

to be 67 when the breaks are accounted in the volatility model. This finding indi-

cates the improvement of CinV with breaks, since CinV without breaks identify a

causality pattern starting from 720, since it would be doubtful that the stock re-

turns of 720 days ago would have any effect on the foreign exchange returns today.

Moreover, a causality pattern is found from FX to stock returns when the breaks

are accommodated as oppose to the absence of such pattern when the breaks are
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Table 3.4: Volatility Causality Pattern Statistics

China UK

Stock → FX FX → Stock Stock → FX FX → Stock

Action for Breaks Accounted Ignored Accounted Ignored Accounted Ignored Accounted Ignored

Causality Presence Yes Yes Yes No Yes Yes Yes Yes

Start of Causality 67 720 1097 – 2 82 3691 3297

Note: In “Action for Breaks”, “Accounted” indicates the detected structural breaks have been
accommodated in the fitted model, while “Neglected” indicates otherwise;
“Start of Causality” represents the appropriate selection of the truncated lag number M in CinV
test.

ignored. However, this finding is of little practical implication since it would be

unlikely for a financial series to affect or be affected by the values from another

series of 1097 days ago. Therefore, based on both statistical evidence and practical

considerations, it can be said that a uni-directional volatility spillover is found from

stock to foreign exchange market, and the stock returns of 67 days ago have incre-

mental predictive ability toward the current FX returns.

Similarly, for the UK markets, a one-way volatility spillover is found from stock to

foreign exchange market. “Start of Causality” is found to be affected by whether or

not the detected breaks are accommodated. To be more specific, CinV with breaks

identifies the volatility spillover effect going from lagged 2 observations of stock to

the current FX returns; while CinV without breaks finds it to be lagged 82. This

is consistent with the former inference derived from the Chinese market that CinV

without breaks tends to recognize the start of volatility causality to be a rather

remote observation in the originated series. Nevertheless, CinV with breaks finds

current stock returns is Granger-causally related from the lagged 3691 observations

of foreign exchange returns, while without breaks, CinV finds the start of causality

to be 3297. Again, it would be rare to have one series Granger-causally affected by

another of, say, 3000 days ago; even if there is, the economic value toward volatility

forecasting barely exists.

Based on the above discussion, whether including structural breaks appears to sig-

nificantly affect the causality pattern detected by CinV, especially in determining

“Start of Causality”. Representing the observation at which causality is identified

for the first time when employing CinV via all the cross-correlations between two

target series over the full sample, this indicator is of particular importance in this

study; it ensures the accurate identification of volatility spillover by avoiding choos-

ing an M that is smaller than the lag of actual causality.
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Figure 3.5: From CN Stock to CN Foreign Exchange
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Figure 3.6: From CN Foreign Exchange to CN Stock

Note: Causality in variance (CinV) test statistics Q is plotted against each M from 1 to T;
When looking into volatility spillover patterns in Chinese markets, due to the availability of

foreign
exchange rates, a sub-sample period is selected from 22/07/2005 to 31/12/2014 for both

foreign
exchange and stock returns, which yields 2464 observations, namely, T=2464.

In short, this study argues the importance of taking account of any potential struc-

tural break when investigating volatility spillover via CinV. It then concludes that

there is a uni-directional volatility spillover from stock to foreign exchange market in

China, which is originated at lagged 67 of stock returns; moreover, a uni-directional

volatility spillover is found from stock to foreign exchange market in the UK, which

is originated at lagged 2 of stock returns. Comparing to China, the UK stock market
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Figure 3.7: From UK Stock to UK Foreign Exchange
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Figure 3.8: From UK Foreign Exchange to UK Stock

Note: Causality in variance (CinV) test statistics Q is plotted against each M from 1 to T;
Sample period for investigating volatility spillover pattern in the UK markets is from

03/01/1994 to
31/12/2014, namely, T=5477.

appears to influence its currency market at a more significant level.

3.7 Conclusion

The main focus of this chapter is to examine volatility spillover effects under the

influence of structural breaks between stock and foreign exchange markets in both

China and the UK. Structural breaks are identified for all the return series via MCSS

of Sanso et al. (2004). By employing the causality in variance test of Hong (2001)
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with consideration of the detected breaks, it is found that both China and the UK

experience a uni-directional volatility spillover from stock to foreign exchange mar-

kets. Moreover, this chapter is able to identify the start of volatility spillover by

applying the causality in variance test at M varying from 1 to sample size. To be

more specific, volatility spillover starts at the lagged 67th observation of stock re-

turns in China, and 2nd observation of stock returns in the UK, indicating the UK

currency market is led by its stock market, and such linkage is found to be more sig-

nificant than that within Chinese markets. Furthermore, an extensive Monte Carlo

simulation study is conducted, in order to provide in-depth information to better

understand the performance of causality in variance test under a series of carefully

designed scenarios. This chapter presents a relative novelty way of applying the

causality in variance test of Hong (2001), thus opens up the possibility and reveals

the importance of finding the start of volatility spillover effect, apart from only iden-

tifying the presence of such. Moreover, this study stresses the necessity of accounting

for the structural breaks in the data volatility, as the neglect of which would gener-

ate misleading inferences toward the volatility spillover. Therefore, this study can

benefit financial participants with a choice of improving volatility forecasting, espe-

cially under the circumstances where the available information is insufficient. Since

if such causal relation is found and of validity, the information from the “leading”

market can be used in modelling the “led” market.

Several improvements can be made to this chapter: first of all, both the simulated

causality and CinV is designed to be uni-directional, which leads to a gap with

examining simultaneous volatility spillover in two series. Secondly, the simulation

study only run on GARCH(1,1) process, which shows little inference if data series

is of ARMA(p,q) in the mean. Future work includes designing simulation regarding

ARMA(1,1)+GARCH(1,1) data sequence. Most importantly, structural breaks are

simulated to occur at the same time in both series, which is highly ideal. It is

nearly impossible to have two financial series to have a break at the very same

time, unless they have the exact same structure, at least at that time point when

break occurs, which is very unlikely. Thus this is quite a flaw of the simulation

design by considering only simultaneously occurrence. Extended efforts can be put

on simulating different timing of structural breaks so to check any potential effect

this may have.



Thesis Conclusion

Volatility modelling has drawn considerable attention to both academics and prac-

titioners in the modern finance literature. A significant number of empirical studies

has demonstrated the importance of volatility modelling in finance, for its accuracy

being the essence in many financial activities, such as asset pricing, portfolio diver-

sification, and risk management. With the proper estimation of the future volatility

of financial assets obtained from the appropriate volatility models, investors and

financial managers can devise suitable investment strategies dealing with different

situations; also, policy makers can gain sufficient economic implications for regu-

latory purposes to maintain stability and stimulate the economic growth. In this

context, this thesis has explored potential modifications to conventional GARCH

models to either improve or enhance volatility modelling. By incorporating struc-

tural breaks, volatility persistence is found to be significantly reduced. Moreover, by

eliminating the effect of structural breaks, the identified volatility spillover pattern

tends to be more plausible. This thesis has conducted comprehensive Monte Carlo

simulations to provide sufficient evidence to support these findings. Moreover, when

examining potential volatility spillover patterns between stock and foreign exchange

markets, this thesis is able to provide reasonable implications by considering both

empirical and practical perspectives. This thesis attempts to shed some light on

alternative ways to model volatility of financial time series with more accuracy and

more reliable implications.
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(a) ω =
0.33,m = 10

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

−
3 0

1.
28

2
1.

64
5

2.
32

6

(b) ω =
0.33,m = 30
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(c) ω =
0.33,m = 60
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(d) ω =
0.11,m = 10
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(e) ω =
0.11,m = 30
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(f) ω =
0.11,m = 60

Figure B.4.1: Case A1 - Absence of Simulated Causality with No Simulated Structural Break
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(a) ω =
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(b) ω =
0.33,m = 30
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(c) ω =
0.33,m = 60
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(d) ω =
0.11,m = 10

D
en

si
ty

0.
00

0.
05

0.
10

0.
15

0.
20

−
3 0

1.
28

2
1.

64
5

2.
32

6 10

(e) ω =
0.11,m = 30
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(f) ω =
0.11,m = 60

Figure B.4.2: Case A2 - Lag 1 Simulated Strong Causality with No Simulated Structural Break
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(a) ω =
0.33,m = 10
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(b) ω =
0.33,m = 30
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(c) ω =
0.33,m = 60
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(d) ω =
0.11,m = 10
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(e) ω =
0.11,m = 30
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(f) ω =
0.11,m = 60

Figure B.4.2: Case A2 - Lag 1 Simulated Weak Causality with No Simulated Structural Break
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(a) ω =
0.33,m = 10
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(b) ω =
0.33,m = 30
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(c) ω =
0.33,m = 60
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(d) ω =
0.11,m = 10
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(e) ω =
0.11,m = 30
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(f) ω =
0.11,m = 60

Figure B.4.4: Case A3 - Lag 30 Simulated Strong Causality with No Simulated Structural
Break
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(a) ω =
0.33,m = 10
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(b) ω =
0.33,m = 30
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(c) ω =
0.33,m = 60
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(d) ω =
0.11,m = 10
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(e) ω =
0.11,m = 30
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(f) ω =
0.11,m = 60

Figure B.4.5: Case A3 - Lag 30 Simulated Weak Causality with No Simulated Structural Break
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(a) ω =
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(b) ω =
0.33,m = 30
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(c) ω =
0.33,m = 60
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(d) ω =
0.11,m = 10
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(e) ω =
0.11,m = 30
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(f) ω =
0.11,m = 60

Figure B.5.1: Case B1 - Absence of Simulated Causality with One Simulated Structural Break
Accommodated
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(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.5.2: Case B2 - Lag 1 Simulated Strong Causality with One Simulated Structural
Break Accommodated

D
en

si
ty

0.
00

0.
05

0.
10

0.
15

0.
20

−
2 0

1.
28

2
1.

64
5

2.
32

6 10

(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60

D
en

si
ty

0.
00

0.
05

0.
10

0.
15

0.
20

−
2 0

1.
28

2
1.

64
5

2.
32

6 10

(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.5.3: Case B2 - Lag 1 Simulated Weak Causality with One Simulated Structural Break
Accommodated
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(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.5.4: Case B3 - Lag 30 Simulated Strong Causality with One Simulated Structural
Break Accommodated
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(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

−
3 0

1.
28

2
1.

64
5

2.
32

6 10

(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.5.5: Case B3 - Lag 30 Simulated Weak Causality with One Simulated Structural
Break Accommodated



114

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

−
2 0

1.
28

2
1.

64
5

2.
32

6

(a) ω =
0.33,m = 10
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(b) ω =
0.33,m = 30
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(c) ω =
0.33,m = 60
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(d) ω =
0.11,m = 10
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(e) ω =
0.11,m = 30
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(f) ω =
0.11,m = 60

Figure B.5.6: Case B1 - Absence of Simulated Causality with One Simulated Structural Break
Neglected
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(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.5.7: Case B2 - Lag 1 Simulated Strong Causality with One Simulated Structural
Break Neglected
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(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.5.8: Case B2 - Lag 1 Simulated Weak Causality with One Simulated Structural Break
Neglected
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(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

−
2 0

1.
28

2
1.

64
5

2.
32

6

(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.5.9: Case B3 - Lag 30 Simulated Strong Causality with One Simulated Structural
Break Neglected
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(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.5.10: Case B3 - Lag 30 Simulated Weak Causality with One Simulated Structural
Break Neglected
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(a) ω =
0.33,m = 10
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(b) ω =
0.33,m = 30
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(c) ω =
0.33,m = 60
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(d) ω =
0.11,m = 10
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(e) ω =
0.11,m = 30
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(f) ω =
0.11,m = 60

Figure B.6.1: Case C1 - Absence of Simulated Causality with Two Simulated Structural Breaks
Accommodated
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(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.6.2: Case C2 - Lag 1 Simulated Strong Causality with Two Structural Breaks Ac-
commodated
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(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.6.3: Case C2 - Lag 1 Simulated Weak Causality with Two Structural Breaks Accom-
modated

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

−
2 0

1.
28

2
1.

64
5

2.
32

6 10

(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30

D
en

si
ty

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

−
5 0

1.
28

2
1.

64
5

2.
32

6

(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.6.4: Case C3 - Lag 30 Simulated Strong Causality with Two Simulated Structural
Breaks Accommodated
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(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

−
3 0

1.
28

2
1.

64
5

2.
32

6

(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.6.5: Case C3 - Lag 30 Simulated Weak Causality with Two Simulated Structural
Breaks Accommodated
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(a) ω =
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(b) ω =
0.33,m = 30
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(c) ω =
0.33,m = 60
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(d) ω =
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(e) ω =
0.11,m = 30
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(f) ω =
0.11,m = 60

Figure B.6.6: Case C1 - Absence of Simulated Causality with Two Simulated Structural Breaks
Neglected
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.6.7: Case C2 - Lag 1 Simulated Strong Causality with Two Simulated Structural
Breaks Neglected
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.6.8: Case C2 - Lag 1 Simulated Weak Causality with Two Simulated Structural
Breaks Neglected
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.6.9: Case C3 - Lag 30 Simulated Strong Causality with Two Simulated Structural
Breaks Neglected
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.6.10: Case C3 - Lag 30 Simulated Weak Causality with Two Simulated Structural
Breaks Neglected
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(a) ω =
0.33,m = 10
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(b) ω =
0.33,m = 30
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(c) ω =
0.33,m = 60
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(d) ω =
0.11,m = 10
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(e) ω =
0.11,m = 30
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(f) ω =
0.11,m = 60

Figure B.7.1: Case D1 - Absence of Simulated Causality with Three Simulated Structural
Breaks Accommodated
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(b) ∆ω =
0.22,m = 30

D
en

si
ty

0.
00

0.
05

0.
10

0.
15

0.
20

−
5 0

1.
28

2
1.

64
5

2.
32

6 10

(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.7.2: Case D2 - Lag 1 Simulated Strong Causality with Three Simulated Structural
Breaks Accommodated
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(b) ∆ω =
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.7.3: Case D2 - Lag 1 Simulated Weak Causality with Three Simulated Structural
Breaks Accommodated
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(a) ∆ω =
0.22,m = 10
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

−
2 0

1.
28

2
1.

64
5

2.
32

6

(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.7.4: Case D3 - Lag 30 Simulated Strong Causality with Three Simulated Structural
Breaks Accommodated
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(a) ∆ω =
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

−
2 0

1.
28

2
1.

64
5

2.
32

6 10

(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.7.5: Case D3 - Lag 30 Simulated Weak Causality with Three Simulated Structural
Breaks Accommodated
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(a) ω =
0.33,m = 10
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(b) ω =
0.33,m = 30
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(c) ω =
0.33,m = 60
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(d) ω =
0.11,m = 10
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(e) ω =
0.11,m = 30
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(f) ω =
0.11,m = 60

Figure B.7.6: Case D1 - Absence of Simulated Causality with Three Simulated Structural
Breaks Neglected
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(a) ∆ω =
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(b) ∆ω =
0.22,m = 30
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(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.7.7: Case D2 - Lag 1 Simulated Strong Causality with Three Simulated Structural
Breaks Neglected
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(a) ∆ω =
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(b) ∆ω =
0.22,m = 30

D
en

si
ty

0.
00

0.
05

0.
10

0.
15

0.
20

−
4 0

1.
28

2
1.

64
5

2.
32

6 10

(c) ∆ω =
0.22,m = 60
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(d) ∆ω =
0.11,m = 10
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(e) ∆ω =
0.11,m = 30
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(f) ∆ω =
0.11,m = 60

Figure B.7.8: Case D2 - Lag 1 Simulated Weak Causality with Three Simulated Structural
Breaks Neglected

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

−
2 0

1.
28

2
1.

64
5

2.
32

6 10

(a) ∆ω =
0.22,m = 10

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

−
3 0

1.
28

2
1.

64
5

2.
32

6

(b) ∆ω =
0.22,m = 30

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

−
5 0

1.
28

2
1.

64
5

2.
32

6 10

(c) ∆ω =
0.22,m = 60

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

−
2 0

1.
28

2
1.

64
5

2.
32

6 10

(d) ∆ω =
0.11,m = 10

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

−
3 0

1.
28

2
1.

64
5

2.
32

6

(e) ∆ω =
0.11,m = 30

D
en

si
ty

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

−
5 0

1.
28

2
1.

64
5

2.
32

6

(f) ∆ω =
0.11,m = 60

Figure B.7.9: Case D3 - Lag 30 Simulated Strong Causality with Three Simulated Structural
Breaks Neglected
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(f) ∆ω =
0.11,m = 60

Figure B.7.10: Case D3 - Lag 30 Simulated Weak Causality with Three Simulated Structural
Breaks Neglected
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(c) ω =
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(f) ω =
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Figure B.8.1: Case E1 - Absence of Simulated Causality with Four Simulated Structural Breaks
Accommodated
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Figure B.8.2: Case E2 - Lag 1 Simulated Strong Causality with Four Simulated Structural
Breaks Accommodated
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Figure B.8.3: Case E2 - Lag 1 Simulated Weak Causality with Four Simulated Structural
Breaks Accommodated
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(f) ∆ω =
0.11,m = 60

Figure B.8.4: Case E3 - Lag 30 Simulated Strong Causality with Four Simulated Structural
Breaks Accommodated
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Figure B.8.5: Case E3 - Lag 30 Simulated Weak Causality with Four Simulated Structural
Breaks Accommodated
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(e) ω =
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(f) ω =
0.11,m = 60

Figure B.8.6: Case E1 - Absence of Simulated Causality with Four Simulated Structural Breaks
Neglected
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Figure B.8.7: Case E2 - Lag 1 Simulated Strong Causality with Four Simulated Structural
Breaks Neglected
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Figure B.8.8: Case E2 - Lag 1 Simulated Weak Causality with Four Simulated Structural
Breaks Neglected
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(f) ∆ω =
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Figure B.8.9: Case E3 - Lag 30 Simulated Strong Causality with Four Simulated Structural
Breaks Neglected
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Figure B.8.10: Case E3 - Lag 30 Simulated Weak Causality with Four Simulated Structural
Breaks Neglected



Bibliography

Aggarwal, R., Inclan, C., and Leal, R. (1999). Volatility in emerging stock markets.

Journal of Financial and Quantitative Analysis, 34(1):33–55.

Ahmed, W. (2017). On the dynamic interactions between energy and stock markets

under structural shifts: Evidence from Egypt. Research in International Business

and Finance, 42:61–74.

Ali, G., Z. S. and Anwar, M. (2012). A bivariate causality between Brazilian stock

prices and foreign exchange rates: Evidence from global financial crisis, 2007.

World Applied Sciences Journal, 20(3):438–444.

Aloui, C. (2007). Price and volatility spillovers between exchange rates and stock

indexes for the pre- and post-Euro period. Quantitative Finance, 7(6):669–685.

Andersen, T. and Bollerslev, T. (1997). Intraday periodicity and volatility persis-

tence in financial markets. Journal of Empirical Finance, 4(2-3):115–158.

Andreou, E. and Ghysels, E. (2002). Detecting multiple breaks in financial market

volatility dynamics. Journal of Applied Econometrics, 17(5):579–600.

Andrews, D. (1993). Tests for parameter instability and structural change with

unknown change point. Econometrica, 61(4):821–856.

Antonakakis, N., Chang, T., Cunado, J., and Gupta, R. (2018). The relationship

between commodity markets and commodity mutual funds: A wavelet-based anal-

ysis. Finance Research Letters, 24:1–9.

Apergis, N., Simo-Kengne, B., Gupta, R., and Chang, T. (2015). The dynamic

relationship between house prices and output: evidence from US metropolitan

areas. International Journal of Strategic Property Management, 19(4):336–345.

Araghi, M. and Ghazani, M. (2015). Abrupt changes in volatility: Evidence from

TEPIX index in tehran stock exchange. Iranian Economic Review, 19(2):377–393.

121



BIBLIOGRAPHY 122

Arago-Manzana, V. and Fernandez-Izquierdo, M. (2007). Influence of structural

changes in transmission of information between stock markets: A European em-

pirical study. Journal of Multinational Financial Management, 17(2):112–124.

Bahmani-Oskooee, M. and Sohrabian, A. (1992). Stock prices and the effective

exchange rate of the dollar. Applied Economics, 24(4):459.

Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple

structural changes. Econometrica, 66(1):47–78.

Bai, J. and Perron, P. (2003). Computation and analysis of multiple structural

change models. Journal of Applied Econometrics, 18(1):1–22.

Bailey, W. and Chung, Y. P. (1995). Exchange rate fluctuations, political risk, and

stock returns: Some evidence from an emerging market. Journal of Financial &

Quantitative Analysis, 30(4):541–561.

Baillie, R., Bollerslev, T., and Mikkelsen, H. (1996). Fractionally integrated gen-

eralized autoregressive conditional heteroskedasticity. Journal of Econometrics,

74(1):3–30.

Batori, O., Tsoukalas, D., and Miranda, P. (2010). Exchange rates and equity mar-

kets: Evidence from some European countries. International Journal of Economic

Perspectives, 4(3):501–507.

Bec, F. and Bastien, A. (2007). The transmission of aggregate supply and aggregate

demand shocks in japan: Has there been a structural change? Studies in Nonlinear

Dynamics and Econometrics, 11(4):1–18.

Bekaert, G., Ehrmann, M., Fratzscher, M., and Mehl, A. (2014). The global crisis

and equity market contagion. Journal of Finance, 69(6):2597–2649.

Bekaert, G. and Harvey, C. (1997). Emerging equity market volatility. Journal of

Financial Economics, 43(1):29–77.

Bekaert, G., Harvey, C., and Ng, A. (2005). Market integration and contagion.

Journal of Business, 78(1):39–70.

Belkhouja, M. and Boutahar, M. (2009). Structural change and long memory in the

dynamic of U.S. inflation process. Computational Economics, 34(2):195–216.

Bodnar, G., Hayt, G., Marston, R., and Smithson, C. (1995). Wharton survey of

derivatives usage by U.S. non-financial firms. Financial Management, 24(2):104–

114.



BIBLIOGRAPHY 123

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity.

Journal of Econometrics, 31(3):307–327.

Bollerslev, T. and Engle, R. (1993). Common persistence in conditional variances.

Econometrica, 61(1):167–186.

Branson, W. (1981). Macroeconomic determinants of real exchange rates. Working

Paper 801, National Bureau of Economic Research.

Brooks, C., Clare, A., and Persand, G. (2000). A word of caution on calculat-

ing market-based minimum capital risk requirements. Journal of Banking and

Finance, 24(10):1557–1574.

Budd, B. (2018). The transmission of international stock market volatilities. Journal

of Economics and Finance, 42(1):155–173.

C. aǧli, E., Mandaci, P., and Kahyaoǧlu, H. (2012). Volatility shifts and persistence

in variance: Evidence from the sector indices of istanbul stock exchange. Interna-

tional Journal of Business and Economic Sciences Applied Research, 4(3):119–140.

Caporale, G., Carcel, H., and Gil-Alana, L. (2018). The EMBI in Latin Amer-

ica: Fractional integration, non-linearities and breaks. Finance Research Letters,

24:34–41.

Caporale, G., Pittis, N., and Spagnolo, N. (2002). Testing for causality-in-variance:

an application to the East Asian markets. International Journal of Finance &

Economics, 7(3):235–245.

Charles, A. and Darne, O. (2014). Large shocks in the volatility of the Dow Jones

Industrial Average index: 19282013. Journal of Banking & Finance, 43:188–199.

Charles, A., Darne, O., and Pop, A. (2015). Risk and ethical investment: Empirical

evidence from Dow Jones Islamic indexes. Research in International Business and

Finance, 35:33–56.

Chen, S., Cui, G., and Zhang, J. (2017). On testing for structural break of coefficients

in factor-augmented regression models. Economics Letters, 161:141–145.

Cheung, Y. and Ng, L. (1996). A causality-in-variance test and its application to

financial market prices. Journal of Econometrics, 72(1-2):33–48.

Chkili, W. (2012). The dynamic relationship between exchange rates and stock re-

turns in emerging countries: Volatility spillover and portfolio management. Inter-

national Journal of Management Science and Engineering Management, 7(4):253–

262.



BIBLIOGRAPHY 124

Chou, R., Lin, J., and Wu, C. (1999). Modeling the Taiwan stock market and

international linkages. Pacific Economic Review, 4(3):305–320.

Chow, G. (1960). Tests of equality between sets of coefficients in two linear regres-

sions. Econometrica, 28(3):591–605.

Christopher, H. and Wohar, M. (2006). Identifying regime changes in closed-end

fund discounts. Journal of Economics & Finance, 30(1):115–132.

Dahiru, B., Jim, P., and Nwonyuku, K. (2017). Equity markets volatility dynamics

in developed and newly emerging economies: EGARCH-with-skewed-t density

approach. Economics Bulletin, 37(2):2394–2412.

Davies, R. (1977). Hypothesis testing when a nuisance parameter is present only

under the alternative. Biometrika, 64(2):247–254.

Davies, R. (1987). Hypothesis testing when a nuisance parameter is present only

under the alternative. Biometrika, 74(1):33–43.

De Las Nieves Morales, L. (2008). Volatility spillovers between equity and currency

markets: Evidence from major Latin American countries. Latin American journal

of economics, 45(132):185–215.

Diebold, F. (1986). Modeling the persistence of conditional variances: A comment.

Econometric Reviews, 5(1):51–56.

Dijk, V.D., O. D. and Sensier, M. (2005). Testing for causality in variance in the

presence of breaks. Economics Letters, 89(2):193–199.

Ding, Z. and Granger, C. (1996). Modeling volatility persistence of speculative

returns: A new approach. Journal of Econometrics, 73(1):185–215.

Ding, Z., Granger, C., and Engle, R. (1993). A long memory property of stock

market returns and a new model. Journal of Empirical Finance, 1(1):83–106.

Dornbusch, R. and Fischer, S. (1980). Exchange rates and the current account. The

American Economic Review, 70(5):960–971.

Dridi, J. and Hasan, M. (2010). The effects of the global crisis on Islamic and

conventional banks; a comparative study. IMF Working Papers 10/201, Inter-

national Monetary Fund. Available at: http://EconPapers.repec.org/RePEc:

imf:imfwpa:10/201.

Eissa, M., Chortareas, G., and Cipollini, A. (2010). Stock returns and exchange rate

volatility spillovers in the MENA region. Journal of Emerging Market Finance,

9(3):257–284.



BIBLIOGRAPHY 125

Engle, R. (2002). Dynamic conditional correlation: A simple class of multivari-

ate generalized autoregressive conditional heteroskedasticity models. Journal of

Business & Economic Statistics, 20(3):339–350.

Engle, R. and Bollerslev, T. (1986). Modelling the persistence of conditional vari-

ances. Econometric Reviews, 5:1–50.

Engle, R. and Granger, C. (1987). Co-integration and error correction: representa-

tion, estimation and testing. Econometrica, 55:251–276.

Engle, R. and Kroner, K. (1995). Multivariate simultaneous generalized ARCH.

Econometric Theory, 11(1):122–150.

Engle, R. and Sheppard, K. (2001). Theoretical and empirical properties of dynamic

conditional correlation multivariate GARCH. NBER Working Papers 8554, Na-

tional Bureau of Economic Research, Inc. Available at: http://EconPapers.

repec.org/RePEc:imf:imfwpa:10/201.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of

the variance of United Kingdom inflation. Econometrica, 50(4):987–1007.

Ewing, B. and Malik, F. (2005). Re-examining the asymmetric predictability of

conditional variances: The role of sudden changes in variance. Journal of Banking

& Finance, 29(10):2655–2673.

Ewing, B. and Malik, F. (2010). Estimating volatility persistence in oil prices under

structural breaks. Financial Review, 45(4):1011–1023.

Ewing, B. and Malik, F. (2016). Volatility spillovers between oil prices and the stock

market under structural breaks. Global Finance Journal, 29:12–23.

Fedorova, E. and Saleem, K. (2012). Volatility spillovers between stock and currency

markets: Evidence from emerging Eastern Europe. Finance a uver-Czech Journal

of Economics and Finance, 60(6):519–533.

Francis, B. B., Hasan, I., and Hunter, D. M. (2006). Dynamic relations between

international equity and currency markets: The role of currency order flow. The

Journal of Business, 79(1):219–258.

Frankel, J. (1983). Monetary and portfolio-balance models of exchange rate deter-

mination. Economic Interdependence and Flexible Exchange Rates, pages 84–115.

Gavin, M. (1989). The stock market and exchange rate dynamics. Journal of

International Money and Finance, 8(2):181–200.



BIBLIOGRAPHY 126

Georgiev, I., Harvey, D., Leybourne, S., and Taylor, A. (2018). Testing for parameter

instability in predictive regression models. Journal of Econometrics, 204(1):101–

118.

Geretto, E. and Pauluzzo, R. (2012). Stock exchange markets in China: Structure

and main problems. Research in International Business and Finance, 19(1):89–

106.

Gilmore, C. and McManus, G. (2002). International portfolio diversification: US

and central European equity markets. Emerging Markets Review, 3(1):69–83.

Glosten, L. R., Jagannathan, R., and Runkle, D. (1993). On the relation between

the expected value and the volatility of the nominal excess return on stocks. The

Journal of Finance, 48(5):1779–1801.

Golab, A., Jie, F., Powell, R., and Zamojska, A. (2018). Cointegration between the

European union and the selected global markets following sovereign debt crisis.

Investment Management and Financial Innovations, 15(1):35–45.

Gourieroux, C. (1997). ARCH Models and Financial Applications. Springer, New

York.

Granger, C. (1969). Investigating causal relations by econometric models and cross-

spectral methods. Econometrica, 37(3):424–438.

Granger, C. (1980). Testing for causality: A personal view. Journal of Economic

Dynamics and Control, 2:329–352.

Granger, C. (1986). Developments in the study of cointegrated economic variables.

Oxfod Bulletin of Economics and Statistics, 48:213–228.

Granger, C. W. J., Huangb, B.-N., and Yang, C.-W. (2000). A bivariate causality

between stock prices and exchange rates: Evidence from recent Asian flu. The

Quarterly Review of Economics and Finance, 40(3):337–354.

Grant, K. and Marshall, A. (1997). Large UK companies and derivatives. European

Financial Management, 3(2):191.
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