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Abstract

Generalized root graded Lie algebras

Hogar M Yaseen

Let g be a non-zero finite-dimensional split semisimple Lie algebra with root system
∆. Let Γ be a finite set of integral weights of g containing ∆ and {0}. We say that a Lie
algebra L over F is generalized root graded, or more exactly (Γ,g)-graded, if L contains
a semisimple subalgebra isomorphic to g, the g-module L is the direct sum of its weight
subspaces Lα (α ∈ Γ) and L is generated by all Lα with α ̸= 0 as a Lie algebra. If g is the
split simple Lie algebra and Γ = ∆∪{0} then L is said to be root-graded. Let g∼= sln and

Θn = {0,±εi ± ε j,±εi,±2εi | 1 ≤ i ̸= j ≤ n}

where {ε1, . . . ,εn} is the set of weights of the natural sln-module. Then a Lie algebra
L is (Θn,g)-graded if and only if L is generated by g as an ideal and the g-module L
decomposes into copies of the adjoint module, the natural module V , its symmetric and
exterior squares S2V and ∧2V , their duals and the one dimensional trivial g-module.

In this thesis we study properties of generalized root graded Lie algebras and focus
our attention on (Θn,sln)-graded Lie algebras. We describe the multiplicative structures
and the coordinate algebras of (Θn,sln)-graded Lie algebras, classify these Lie algebras
and determine their central extensions.
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Chapter 1

Introduction

Throughout the thesis, the ground field F is of characteristic zero, g is a non-zero split
finite dimensional semisimple Lie algebra over F with root system ∆ and Γ is a finite
set of integral weights of g. Following [6], we say that a Lie algebra L over F is (Γ,g)-
graded, or simply Γ-graded, if L contains a subalgebra isomorphic to g, the g-module L
is the direct sum of its weight subspaces Lα (α ∈ Γ) and L is generated by all Lα with
α ̸= 0 as a Lie algebra (see also Definition 3.0.1). Unless otherwise stated, we assume
that g is the grading subalgebra of the (Γ,g)-graded L. If g is the split simple Lie algebra
and Γ = ∆∪{0} then L is said to be root-graded. If Γ = BCn∪{0} and g is of type Bn, Cn

or Dn, then L is BCn-graded. Let g∼= sln and

Θn = {0,±εi ± ε j,±εi,±2εi | 1 ≤ i ̸= j ≤ n}

where {ε1, . . . ,εn} is the set of weights of the natural sln-module. The aim of this thesis
is to describe the multiplicative structures and the coordinate algebras of (Θn,sln)-graded
Lie algebras, classify these Lie algebras and determine their central extensions.

1.1 Overview

Root graded Lie algebras were introduced by Berman and Moody in 1992 to study toroidal
Lie algebras and Slodowy intersection matrix algebras. However, this concept appeared
previously in Seligman’s study of simple Lie algebras [46]. Root graded Lie algebras
of simply-laced finite root systems were classified up to central isogeny by Berman and
Moody in [22]. The case of double-laced finite root systems was settled by Benkart and
Zelmanov [20]. Neher [44] described Lie algebras graded by 3-graded root systems. This
gives an alternative classification of root-graded Lie algebras since most root systems are
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3-graded (more precisely, a root system is 3-graded if and only if it does not have an
irreducible component of type E8, F4 or G2).

Non-reduced systems BCn were considered by Allison, Benkart and Gao [4] (for n≥2)
and by Benkart and Smirnov [18] (for n = 1). It became clear at that time that this notion
can be generalized further by considering Lie algebras graded by finite weight systems.

A central extension of a Lie algebra L is a pair (L̃,π) consisting of a Lie algebra L̃ and
a surjective Lie algebra homomorphism π : L̃ → L whose kernel lies in the center of L̃. A
cover or covering of L is a central extension (L̃,π) of L with L̃ perfect, i.e., L̃ = [L̃, L̃]. A
homomorphism of central extensions from the central extension f : K → L to the central
extension f ′ : K′ → L is a Lie algebra homomorphism g : K → K′ satisfying f = f ′ ◦g. A
central extension U : K → L is a universal central extension, if there exists a unique homo-
morphism from K to any other central extension K̃ of L. Any perfect Lie algebra L has a
universal central extension which is also perfect, called a universal covering algebra of L
and any two universal covering algebras of L are isomorphic [32]. Two perfect Lie algeb-
ras L1 and L2 are said to be centrally isogenous if they have the same universal covering
algebra (up to isomorphism). Central extensions of root graded Lie algebras in terms of
the homology of its coordinate algebra were determined and described up to isomorphism
by Allison, Benkart and Y. Gao in [3] and [4]. Derivations and invariant forms of these
Lie algebras were described by Benkart in [10]. Their centroids (the spaces of L-module
endomorphisms χ of L: χ([x,y]) = [x,χ(y)] for all x,y ∈ L) were determined by Benkart
and Neher [17]. Gao studied involutive Lie algebras graded by finite root systems and
classified the fixed point subalgebras up to central isogeny [31]. Yousofzadeh studied the
subalgebras of fixed points of root graded Lie algebras for certain classes of automorph-
isms of finite order [55]. Bhargava and Gao studied (BCr,g)-graded intersection matrix
algebras where g is of type Br (r ≥ 3) [25]. Manninga, Neher and Salmasian studied
representations of a root-graded Lie algebra L which are integrable as representations of
the grading semisimple subalgebra g and whose weights are bounded by some dominant
weight [39].

Finite-dimensional semisimple Lie algebras were generalised in many ways. For ex-
ample, one could try to generalize their presentation given by Serre’s Theorem. In this
way one obtains, for example, the Kac-Moody algebras or Slodowy’s generalized inter-
section matrix algebras. Root-graded or more generally (Γ,g)-graded Lie algebras can be
considered as another reasonable generalization of semisimple Lie algebras.

The (Γ,g)-graded Lie algebras form an important class of infinite dimensional Lie al-
gebras. Due to their uniform structure, it is possible to describe their multiplicative struc-
ture and classify them in terms of their coordinate algebras. Apart from split semisimple
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Lie algebras, there are other well known classes of (Γ,g)-graded Lie algebras, such as
affine Kac–Moody algebras [36], isotropic finite-dimensional simple Lie algebras [46],
the intersection matrix Lie algebras introduced by Slodowy [48], derived algebras of af-
fine Lie algebras, extended affine Lie algebras (EALAs) [1], the twisted affine algebras,
toroidal Lie algebras, Tits-Kantor-Koecher Lie algebra (see Example 2.2.5), etc. Every
extended affine Lie algebra has an ideal called the core, which is a root-graded (or BCr-
graded) Lie algebra. Classifying the extended affine Lie algebras amounts to determining
the coordinate algebra, derivations and central extensions of the core (see [1], [23], [24]
and [51] for those EALAs which correspond to the reduced root systems).

Another motivation comes from [43], where Neeb applied (Γ,g)-graded Lie algebras
in a topological setting of locally convex Lie algebras to study some classes of Lie al-
gebras arising in mathematical physics, operator theory, and geometry. This brings some
geometric flavor to the theory because the coordinatization theorems for (Γ,g)-graded
Lie algebras are very similar in nature to certain coordinatization results in synthetic geo-
metry [43]. Muller, Neeb and Seppaunen introduced and studied (weakly) root graded
Banach–Lie algebras and corresponding Lie groups as natural generalizations of groups
like GLn(A) for Banach algebras A [42].

Root decompositions also play a crucial role in the classification of the finite dimen-
sional complex simple Lie superalgebras (see [35]). Lie superalgebras graded by the
root systems of the finite-dimensional basic classical simple Lie superalgebras A(m,n),
A(n,n), B(m,n), C(n), D(m,n), D(2,1;α); (α ̸= 0,−1), G(3), and F(4) were classified
up to central isogeny by Benkart and Elduque [11–13, 15]. Lie superalgebras graded by
P(n) and Q(n) were classified by Martinez and Zelmanov [40]. Lie superalgebras graded
by locally finite root supersystems were studied by Yousofzadeh [58, 59].

There were several attempts to generalize root graded Lie algebras. Neher switched
from fields of characteristic zero to rings containing 1

6 and working with locally finite root
systems instead of finite [44]. He also considered Lie algebras graded by infinite root sys-
tems of type A−D. Welte in her PhD thesis described the universal central extensions of
Lie algebras graded by the root systems of type A with rank at least 2 and of type C defined
over commutative associative unital rings [50]. Yoshii [52] studied so-called predivision
(∆,G)-graded Lie algebras. These are ∆-graded Lie algebras with additional compatible
grading by an abelian group G. He introduced the notion of a root system extended by
an abelian group G and showed that (∆,G)-graded Lie algebras have such root systems.
As a special case of division (∆,G)-graded Lie algebras, Yoshii introduced and studied
Lie G-tori [19, 53, 54]. Yousofzadeh studied Lie algebras graded by irreducible locally
finite root systems [56, 57]. Elduque [28] and Draper and Elduque [27] related root grad-
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ings with fine grading. This notion was extended further by Nervi to the case where g is
an affine Kac-Moody algebra and ∆ is the (infinite) root system of an affine Kac-Moody
algebra. She gave the complete classification of all affine Kac–Moody algebras graded
by affine root systems [45]. Messaoud and Rousseau studied Kac-Moody Lie algebras
graded by Kac-Moody root systems [41].

Shi introduced groups graded by finite root systems which can be thought of as nat-
ural generalizations of Steinberg and Chevalley groups over rings [47]. Ershov, Jaikin-
Zapirain, Kassabov [30] and Ershov, Jaikin-Zapirain, Kassabov and Zhang [29] studied
the class of groups satisfying property T and graded by root systems.

There were several attempts to classify Γ-graded Lie algebras for systems Γ larger than
∆. This includes the BCn-graded Lie algebras mentioned above. Certain weight-graded
Lie algebras were considered by Neeb in [43] (with Γ\{0} a finite irreducible root system
and ∆ a sub-root system of Γ \ {0}). Let g = sln and ΓV = ∆∪V ∪{0} where ∆ = An−1

and V is the set of weights of the natural and conatural g-modules. Bahturin and Benkart
[5] (for n > 3) and Benkart and Elduque [14] (for n = 3) described the multiplicative
structure of the (ΓV ,g)-graded Lie algebras. Note that a Lie algebra is (ΓV ,g)-graded
if and only if it decomposes as a g-module into (possibly infinitely many) copies of the
adjoint, natural, conatural and trivial modules. We believe that the set ΓV can be enlarged
further by adding the weights of the symmetric and exterior squares of the natural and
conatural modules. Recall that we denote the corresponding set of weights by Θn. Note
that a Lie algebra L is (Θn,g)-graded if and only if L is generated by g as an ideal and
the g-module L decomposes into copies of the adjoint module (we will denote it by the
same letter g), the natural module V , its symmetric and exterior squares S2V and ∧2V ,
their duals and the one dimensional trivial g-module (see Proposition 3.2.2). Thus, by
collecting isotypic components, we get the following decomposition of the g-module L:

L = (g⊗A)⊕(V ⊗B)⊕(V ′⊗B′)⊕(S⊗C)⊕(S′⊗C′)⊕(Λ⊗E)⊕(Λ′⊗E ′)⊕D (1.1.1)

where A,B,B′,C,C′,E,E ′ are vector spaces,

g :=V (ω1 +ωn−1), V :=V (ω1), V ′ :=V (ωn−1),

S :=V (2ω1), S′ :=V (2ωn−1), Λ :=V (ω2), Λ
′ :=V (ωn−2)

and D is the sum of the trivial g-modules.
Note that the Θn-graded Lie algebras did appear in the literature previously in vari-

ous contexts. Finite dimensional Θn-graded Lie algebras and their representations were
studied in [8, 9]. It was also proved in [6, 4.3] that a simple locally finite Lie algebra is
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Θn-graded if and only if it is of diagonal type.

1.2 Outline of methods and summary of results

Let L be a (Γ,g)-graded Lie algebra and let ∆ be the root system of g. Then L is a
direct sum of finite-dimensional irreducible g-modules and there is one possible isotypic
component for each dominant weight in Γ. By collecting isotypic components, we get the
following decomposition of the g-module L.

1. If Γ\{0}= ∆ = An,Dn,E6,E7 or E8 where n = 2, then the g-module L decomposes
into (possibly infinitely many) copies of adjoint modules (modules isomorphic to
g) and one dimensional trivial g-modules [22].

2. If Γ \ {0} = ∆ = Bn,Cn,F4 or G2, then the g-module L is a direct sum of adjoint
modules, little adjoint modules (whose highest weight is the highest short root) and
one dimensional trivial g-modules [20].

3. If Γ \ {0} is a finite irreducible root system and ∆ is a sub-root system of Γ \ {0},
then there are at most three isotypic components, corresponding to the adjoint mod-
ule, little adjoint module and the one dimensional trivial g-module [43].

4. If Γ \ {0} = BCn and ∆ = Bn,Cn,Dn (n ≥ 2), then there are four isotypic compon-
ents, corresponding to the modules V (2ω1), V (ω2), V (ω1) and V (0), except in the
case ∆ = D2 where there are five [4].

5. If Γ = Θn and ∆ = An−1 (n ≥ 5) then the g-module L is a direct sum of copies of g,
V , V ′, S, S′, Λ, Λ′ and T (see Proposition 3.2.2). This makes 8 possible components,
which increases the complexity of the problem considerably in comparison with the
case of root-graded Lie algebras.

We will need the following notation to describe our classification of Θn-graded Lie algeb-
ras. Recall that every Θn-graded Lie algebra L is decomposed as in (1.1.1). Since g is
a g-submodule of g⊗A, there exists a distinguished element 1 of A such that g = g⊗ 1.
Define by g+ := {x ∈ g | xt = x} and g− := {x ∈ g | xt =−x} the subspaces of symmetric
and skew-symmetric matrices in g, respectively. Then the component g⊗A in (1.1.1) can
be decomposed further as

g⊗A = (g+⊕g−)⊗A = (g+⊗A−)⊕ (g−⊗A+)
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where A− and A+ are two copies of the vector space A. We denote by a± the image of
a ∈ A in A±. Denote

a := A+⊕A−⊕C⊕E ⊕C′⊕E ′ and b := a⊕B⊕B′.

Our main goal of classification of Θn-graded Lie algebras L is achieved in the following
steps.

1. The determination of the finite-dimensional irreducible g-modules whose weights
relative to the Cartan subalgebra h of g are in Θn (Proposition 3.2.2).

2. The proof of the complete reducibility of L as a g-module (Lemma 3.1.2).

3. The computation of all non-zero g-module homomorphism spaces Homg(X ⊗Y,Z)
where X ,Y,Z ∈ {g,V,V ′,S,Λ,S′,Λ′,T}, see (3.4.3).

4. The determination of the system of products on the components of the g-module
decomposition of L induced by multiplication in L, see (3.4.4).

5. Description of the “coordinate” algebra b of L (Theorem 4.2.9).

6. We define a centerless algebra L (b) and show that it is an Θn-graded Lie algebra
with coordinate algebra b, see Theorem 5.2.5. Instead of proving directly that L (b)

satisfies the Jacoby identity (which is quite lengthy), we construct an explicit ex-
ample of an Θn-graded Lie algebra u such that u modulo its center is isomorphic to
L (b), see Example 5.2.3.

7. We show that if b is the coordinate algebra of L then L is a cover of L (b) (Theorem
5.2.5).

8. We show that L is uniquely determined (up to central isogeny) by its coordinate
algebra b := a⊕B where B := B ⊕ B′ and L is centrally isogenous to the Θn-
graded unitary Lie algebra u of the hermitian form ξ := w⊥− χ on the a-module
an ⊕B where w : an × an → a is a non degenerate bilinear form on an and χ :
B×B → a is a hermitian form over a (Proposition 5.2.4 and Theorem 5.2.6). This
completes the classification of Θn-graded Lie algebras up to central extensions in
the case when n ≥ 7 or n = 5,6 and the conditions (1.2.1) hold.

9. We find the universal central extension L̂ (b) of L (b) and show that its center is
HF(b), the full skew-dihedral homology group of b (Theorem 5.3.7). We prove that
every Θn-graded Lie algebra with coordinate algebra b is isomorphic to L (b,X) =
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L̂ (b)/X for some subspace X of HF(b) which classifies the Θn-graded Lie algebras
up to isomorphism (Theorem 5.3.8).

Chapters 3 and 4 consist mainly of joint work with Alexander Baranov [7]. Chapter 5
contains some results in joint work with Alexander Baranov. We are now ready to state
our main results.

In Chapter 2 we review main concepts and results of the theory of Lie algebras graded
by finite root systems. This chapter is organized as follows. First we recall the multi-
plicative structures and coordinate algebras of Lie algebras graded by finite reduced root
systems (Section 2.1). Then we consider some examples (Section 2.2) and state recogni-
tion theorem for these Lie algebras (Section 2.3). In Section 2.4 we review Lie algebras
graded by non-reduced systems BCn (n ≥ 2).

In Chapter 3 we study general properties of generalized root graded Lie algebras and
we describe the multiplicative structures of (Θn,sln)-graded Lie algebras. The coordinate
algebra of (Θn,sln)-graded Lie algebra and its properties are analyzed in Chapter 4.

In Section 3.1 we establish general properties of weight-graded Lie algebras. In partic-
ular, we prove that every finite-dimensional perfect Lie algebra is (Γ,sl2)-graded for some
Γ, see Theorem 3.1.9. In Section 3.2 we discuss the similarities between the Θn-graded
and BCn-graded Lie algebras by showing that every Θn-graded Lie algebra is BCr-graded
with r = ⌊n

2⌋ and every BCn-graded Lie algebra is Θn-graded, see Theorems 3.2.4 and
3.2.6. This means that some results about the structure of Θn-graded Lie algebras can be
derived from those proved in BCr-contexts [4, 18]. However note that our approach gives
a “finer” multiplicative and coordinate algebra structure on L as we have more compon-
ents in the decomposition of L (see Remark 3.2.5).

Let L be Θn-graded and let g ∼= sln be the grading subalgebra of L. Then we have
decomposition (1.1.1). Recall that

a := A+⊕A−⊕C⊕E ⊕C′⊕E ′ and b := a⊕B⊕B′.

We are going to show that the product in L induces an algebra structure on both a and b.
Moreover, a is associative if n ≥ 7 or n = 5,6 and the following conditions on multiplic-
ation in L hold:

[Λ⊗E,Λ⊗E] = [Λ′⊗E ′,Λ′⊗E ′] = 0 for n = 6; (1.2.1)

[Λ⊗E,(Λ⊗E)⊕ (V ⊗B)] = [Λ′⊗E ′,(Λ′⊗E ′)⊕ (V ′⊗B′)] = 0 for n = 5.

Note that the conditions (1.2.1) automatically hold for n ≥ 7 (see Table 3.4.2) and for
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BCn-graded (considered as Θn-graded) Lie algebras with n ≥ 5 (see Proposition 3.2.7).
These conditions appear only because of irregularities in the tensor product decomposi-
tions of the specified modules for small ranks, see Remark 3.4.4. We do not consider the
case of n ≤ 4 in this thesis because of additional technicalities (e.g. Λ ∼= Λ′ for A3 and
Λ ∼=V ′ and Λ′ ∼=V for A2, so we have less summands in the decomposition (1.1.1)), this
is the subject of our further research.

Suppose that n ≥ 7 or n = 5,6 and the conditions (1.2.1) hold. We prove that there
exists a system of products (see Formulae (3.4.4)) on the components of the decomposi-
tion (1.1.1) which is compatible with the product in L and induces an algebra structure on
both a and b satisfying the following properties.

(i) a is a unital associative subalgebra of b with identity element 1+ and with involution
whose symmetric and skew-symmetric elements are A+⊕E ⊕E ′ and A−⊕C⊕C′,
respectively, see Theorems 4.1.3 and 4.1.6.

(ii) b is a unital algebra with identity element 1+ and with an involution η whose sym-
metric and skew-symmetric elements are A+⊕E ⊕E ′⊕B⊕B′ and A−⊕C ⊕C′,
respectively, see Theorem 4.2.1 and Proposition 4.2.2.

(iii) B⊕B′ is an associative a-bimodule with a hermitian form χ with values in a. More
exactly, for all β1,β2 ∈ B⊕B′ and α ∈ a we have χ(β1,β2) = β1β2, χ(αβ1,β2) =

αχ(β1,β2), η(χ(β1,β2)) = χ(β2,β1) and χ(β1,αβ2) = χ(β1,β2)η(α), see Pro-
positions 4.2.4 and 4.2.6.

(iv) A := A−⊕A+ is a unital associative subalgebra of a and C⊕E, C′⊕E ′, B and B′

are A -bimodules, see Corollaries 4.1.4, 4.1.5 and 4.2.5.

(v) D acts by derivations on b, see Propositions 4.2.7 and 4.2.8.

Let e1 = 1++1−
2 and e2 = 1+−1−

2 . Consider the subspaces A1 = span{a++ a− | a ∈ A}
and A2 = span{a+− a− | a ∈ A}. In Section 4.3 we show that e1 and e2 are orthogonal
idempotents with e1+e2 = 1+ and η(e1) = e2 where η is the involution of the coordinate
algebra b. We also show that A1 and A2 are 2-sided ideals of the algebra A with identity
elements e1 and e2, respectively. Moreover, we prove that the associative algebra a has
the following realization by 2×2 matrices with entries in the components of a:

a∼=

[
A1 C⊕E

C′⊕E ′ A2

]
.

In Chapter 5 we classify Θn-graded Lie algebras in the case when n ≥ 7 or n = 5,6
and the conditions (1.2.1) hold. The chapter is organized as follows. First we study basic
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properties of central extensions of (Γ,g)-graded Lie algebras. We show all Lie algebras
in a given isogeny class are Γ-graded if one of them is, and all have isomorphic weight
spaces for non-zero weights. We also show that for every central extension (L̃,π) of a
(Γ,g)-graded Lie algebra L with kernel E, there is lifting of the grading subalgebra g

to a subalgebra of L̃ and L can be lifted to a subspace L of L̃ which contains the given
g so that the corresponding 2-cocycle satisfies λ (g,L) = 0 (see Section 5.1). Then we
focus our attention to (Θn,sln)-graded Lie algebras. We define a centerless algebra L (b)

and show that it is Θn-graded with coordinate algebra b and any Θn-graded Lie algebra
L with coordinate algebra b is a cover of the centerless Lie algebra L (b). Then we
show that every Θn-graded Lie algebra L is uniquely determined (up to central isogeny)
by its coordinate algebra b. In Section 5.2 we show that L is centrally isogenous to the
explicitly constructed Θn-graded unitary Lie algebra u of the hermitian form ξ = w⊥−χ

on the a-module an ⊕B. This completes the classification of Θn-graded Lie algebras
up to central extensions. In Section 5.3 we find the universal central extension L̂ (b) of
L (b) and show that its center is HF(b), the full skew-dihedral homology group of b.
We prove that every Θn-graded Lie algebra with coordinate algebra b is isomorphic to
L (b,X) = L̂ (b)/X for some subspace X of HF(b), which classifies the Θn-graded Lie
algebras up to isomorphism.

At the end of the chapter we relate the Θn-graded Lie algebras to the quasiclassical
Lie algebras (see Definition 5.4.5) by showing that every (Ξn,sln)−graded Lie algebra
with

Ξn := {0,±εi ± ε j,±2εi | 1 ≤ i ̸= j ≤ n} ⊂ Θn

is centrally isogenous to a quasiclassical Lie algebra (see Section 5.4).

1.3 Notation

• For convenience of the reader we mostly follow notations of [3, 4] whenever pos-
sible.

• g is a non-zero split finite dimensional semisimple Lie algebra over a field F of
characteristic zero with root system ∆. Unless otherwise stated we assume that g is
the grading subalgebra of (Γ,g)-graded L.

• We denote
Θn = {0,±εi ± ε j,±εi,±2εi | 1 ≤ i ̸= j ≤ n}

where {ε1, . . . ,εn} is the set of weights of the natural sln-module. We fix a base
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Π = {εi − εi+1 for i = 1,2, · · · ,n−1} of simple roots for the root system

An−1 = {εi − ε j | 1 ≤ i ̸= j ≤ n}.

• Θ+
n is the set of dominant weights in Θn. Thus,

Θ
+
n = {ε1 − εn, ε1,−εn, 2ε1, −2εn, ε1 + ε2, −εn−1 − εn, 0}.

• We say that a Lie algebra is Θn-graded if it is (Θn,g)-graded with g∼= sln.

• Let g be a split simple Lie algebra of type An,Bn,Cn or Dn. We use the following
representation of the simple roots αk (1 ≤ k ≤ n) and fundamental weights ωk (1 ≤
k ≤ n) of g in terms of ε’s, see [26],

αk =


εn if k = n (B)

2εn if k = n (C)

εn−1 + εn if k = n (D)

εk − εk+1 otherwise,

ωk =


1
2(ε1 + ...+ εn) if k = n (B or D)

1
2(ε1 + ...+ εn−1 − εn) if k = n−1 (D)

ε1 + ...+ εk otherwise.

Vg(λ ) (or simply V (λ )) is the simple g-module of highest weight λ ; Vg := Vg(ω1)

(or simply V ) is the natural g-module; if M is a g-module then M′ denotes its dual
and W (M) is the set of weights of M.

• If g is of type An−1, we will use the following notations for the g-modules below:

g :=V (ω1 +ωn−1), V :=V (ω1), S :=V (2ω1), Λ :=V (ω2) and T :=V (0).

Note that V ′ ∼=V (ωn−1), S′ ∼=V (2ωn−1) and Λ′ ∼=V (ωn−2).

• ≪ g≫L (or simply ≪ g≫) is the ideal generated by g in L

• Γ is a finite set of integral weights of g.

• Let x and y be n×n matrices. We will use the following products:

[x,y] = xy− yx,
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x◦ y = xy+ yx− 2
n

tr(xy)I,

x� y = xy+ yx,

(x | y) =
1
n

tr(xy).

• If g = sln, we denote by g+ := {x ∈ g | xt = x} and g− := {x ∈ g | xt = −x} the
subspaces of symmetric and skew-symmetric matrices in g, respectively. Then the
component g⊗A can be decomposed further as

g⊗A = (g+⊕g−)⊗A = (g+⊗A−)⊕ (g−⊗A+)

where A− and A+ are two copies of the vector space A.

• If A is an associative algebra with involution σ (of the first kind) over F then sym(A)
(resp. skew(A)) denotes the set of symmetric elements (resp. skew-symmetric ele-
ments) of A with respect to σ .

• A(−) denotes the Lie algebra of an associative algebra A with the Lie bracket defined
by [x,y] = xy− yx for all x,y ∈ A where xy is the usual multiplication of A and A(1)

denotes the derived subalgebra of A(−).

• Mn(A) the algebra of n×n matrices over A and gln(A) = Mn(A)(−) denote the Lie
algebra of n×n matrices over A.

• sln(A) = {x ∈ gln(A) | trx ∈ [A,A]}.

• Mn the algebra of all n×n-matrices over F and Ei, j denote the matrix units.

• gln the general linear algebra and sln denote the special linear algebra over F.

• sp2n the symplectic Lie algebra and som (m = 2n+1 or 2n) denote the orthogonal
Lie algebra over F.

• Let L be an Θn-graded Lie algebra and

L=(g+⊗A−)⊕(g−⊗A+)⊕(V ⊗B)⊕(V ′⊗B′)⊕(S⊗C)⊕(S′⊗C′)⊕(Λ⊗E)⊕(Λ′⊗E ′)⊕D

see (1.1.1). We identify the g-modules V and V ′ with the space Fn of column vectors
with the following actions:

x.v = xv for x ∈ sln, v ∈V,
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x.v′ =−xtv′ for x ∈ sln, v′ ∈V ′.

We identify S and S′ (resp. Λ and Λ′) with symmetric (resp. skew-symmetric) n×n
matrices. Then S, S′, Λ and Λ′ are g-modules under the actions:

x.s = xs+ sxt for x ∈ sln, s ∈ S,

x.λ = xλ +λxt for x ∈ sln, λ ∈ Λ,

x.s′ =−s′x− xts′ for x ∈ sln, s′ ∈ S,

x.λ ′ =−λ
′x− xt

λ
′ for x ∈ sln, λ

′ ∈ Λ
′.

Denote A = A−⊕A+, B := B⊕B′, a :=A ⊕C⊕E⊕C′⊕E ′ and b := a⊕B. The
products on the components of L induces an algebra structure on both a and b.

• We show that a is an associative algebra with involution γ with respect to multiplic-
ation defined as follows:

α1α2 :=
[α1,α2]

2
+

α1 ◦α2

2

for all homogeneous α1,α2 ∈ a with the products [ ] and ◦ given by Table 4.1.1.
Note that [α1,α2] = α1α2 −α2α1 and α1 ◦α2 = α1α2 +α2α1.

• It can be shown that all products (β1,β2)Z with β1,β2 ∈ B⊕B′ or β1,β2 ∈ a are
either symmetric or skew-symmetric. This is why we will write (β1 ◦ β2)Z or
[β1,β2]Z , respectively, instead of (β1,β2)Z . For α ∈ a and β ∈ B⊕B′ we will write
αβ (resp. βα) instead of (α,β )Z (resp. (β ,α)Z) (see Table 3.4.5 and Section 4.2).
Let b ∈ B and b′ ∈ B. We define bα := γ(α)b and αb′ := b′γ(α). We show that
B⊕B′ is an a-bimodule.

• Let b1,b2 ∈ B and b′1,b
′
2 ∈ B′. We define

b1b2 :=
[b1,b2]C

2
+

(b1 ◦b2)E

2
, b′1b′2 :=

[b′1,b
′
2]C′

2
+

(b′1 ◦b′2)E ′

2
,

bb′ :=
[b,b′]A−

2
+

(b◦b′)A+

2
, b′b :=− [b,b′]A−

2
+

(b◦b′)A+

2
.

Then b= a⊕B⊕B′ is an algebra with multiplication extending that on a (see Table
4.2.1) .

• Der∗(b) := {d ∈ Der(b) | dX ⊆ X for X = A+,A−,B, · · · ,E ′ }.
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• Db,b = span{Dα,β | α,β ∈ b} where Dα,β := ⟨α,β ⟩ for α,β ∈ b (⟨,⟩ is a surjective
map from b⊗b to D, see (4.2.5)).

• Let I be the subspace of b⊗b spanned by the elements

α ⊗β +β ⊗α,

γα ⊗β +βγ ⊗α +αβ ⊗ γ,

x⊗ y

where α,β ∈ b and x ∈ X and y /∈ X ′ with X = B,C,E or x ∈ A+ and y∈ A−. Denote
{b,b}= b⊗b/I (resp. ≺ b,b≻= {b,b}/X ) with product {α,β}=α⊗β +I (resp.
≺ α,β ≻= {α,β}+X). Denote

L (b) := (g⊗A)⊕ (V ⊗B)⊕ . . .⊕ (Λ′⊗E ′)⊕Db,b,

L̂ (b) := (g⊗A)⊕ (V ⊗B)⊕ . . .⊕ (Λ′⊗E ′)⊕{b,b} ,
L (b,X) := (g⊗A)⊕ (V ⊗B)⊕ . . .⊕ (Λ′⊗E ′)⊕≺ b,b≻,

see (5.3.3) and Theorems 5.2.5 and 5.3.7.



Chapter 2

Lie algebras graded by finite root
systems

In this chapter we review main concepts and results of the theory of Lie algebras graded by
finite root systems. Root graded Lie algebras were introduced by Berman and Moody in
1992 to study toroidal Lie algebras and Slodowy intersection matrix algebras [22]. How-
ever, this concept appeared previously in Seligman’s study of finite-dimensional isotropic
simple Lie algebras [46]. He described the multiplicative structure of these Lie algebras
and he constructed a model for them.

Recall that any perfect Lie algebra L has a universal central extension which is also
perfect, called a universal covering algebra of L and any two universal covering algebras
of L are isomorphic [32]. Two perfect Lie algebras L1 and L2 are said to be centrally
isogenous if they have the same universal covering algebra (up to isomorphism). One
can easily check that every root graded Lie algebra L is perfect (see Theorem 5.1.1). Let
(U,ψ) be the universal covering algebra of L. Then U is (∆,g)-graded if and only if L is
(∆,g)-graded (see Theorem 5.1.2). For that reason, root graded Lie algebras of simply-
laced finite root systems were classified up to central isogeny by Berman and Moody
[22]. In the case of double-laced finite root systems this was finalized by Benkart and
Zelmanov [20]. Non-reduced systems BCn were considered by Allison, Benkart and Gao
[4] (for n≥2) and by Benkart and Smirnov [18] (for n = 1). Also, central extensions of
these Lie algebras in terms of the homology of its coordinate algebra were determined
and described up to isomorphism by Allison, Benkart and Y. Gao [3].

The chapter is organized as follows. First we recall the multiplicative structures and
coordinate algebras of Lie algebras graded by finite reduced root systems (Section 2.1).
Then we consider some examples (Section 2.2) and state recognition theorem for these
Lie algebras (Section 2.3). In Section 2.4 we review Lie algebras graded by non-reduced
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systems BCn (n ≥ 2).

2.1 Root graded Lie algebras

A subalgebra h of a Lie algebra L is called a Cartan subalgebra if it is nilpotent and
self-normalising. A Cartan subalgebra h of a finite-dimensional Lie algebra is said to be
splitting if the characteristic roots of every adh, h ∈ h, are in the base field. A Lie algebra
L is called split if it contains a splitting Cartan subalgebra [34]. If the base field F is
algebraically closed, then every Cartan subalgebra is a splitting Cartan subalgebra. We
start with the definition of Lie algebras graded by finite reduced root systems.

Definition 2.1.1. Recall that a Lie algebra L over a field F of characteristic zero is graded

by the (reduced) root system ∆ (or is ∆-graded) if
(∆1) L contains as a subalgebra a finite-dimensional split simple Lie algebra

g= h⊕
⊕
α∈∆

gα ,

whose root system is ∆ relative to a split Cartan subalgebra h= g0;
(∆2) L =

⊕
α∈∆∪{0}

Lα where Lα = {x ∈ L | [h,x] = α (h)x for all h ∈ h};

(∆3) L0 = ∑
α∈∆

[Lα ,L−α ].

The condition (∆2) in the definition of a ∆-graded Lie algebra can be replaced by:
(∆2)′ As a g-module L is a direct sum of adjoint modules (modules isomorphic to g),

little adjoint modules whose highest weight is the highest short root, or one-dimensional
g-modules; the latter being contained in L0 [20, 22].

Let L be a Lie algebra graded by the (reduced) root system ∆ with grading subalgebra
g of type ∆. The multiplicative structure and the coordinate algebra of L is obtained as
follows.

(1) ∆ = An−1 with n ≥ 3 ([22] and [3, 4.14]). Note that the Lie algebra L in this case
is also Θn-graded, so L ∼= (g� A)⊕D with the same multiplication as in (3.4.4) with
B = B′ = C = C′ = E = E = {0}. Here A is an associative (if n ≥ 4) or alternative (if
n = 3) algebra over F and D is the sum of trivial g-modules (acting by derivations on A).

(2) ∆ = Er (r = 6,7,8) or ∆ = A1 ([22] and [3, 2.34]). Then there is a commutative
associative algebra A (or Jordan algebra A if ∆ = A1) over F such that L ∼= (g� A)⊕D,
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with

[x�a,d] = x�ad,

[x�a,y�a′] = [x,y]�aa′+(x | y)⟨a,a′⟩

where x,y ∈ g, a,a′ ∈ A and d,⟨a,a′⟩ ∈ D.
(3) ∆ = Bn, Cn, or Dn with n ≥ 2 [20]. Note that L is also BCn-graded, so L = (g⊗

A)⊕ (s⊗B)⊕ (V ⊗C)⊕D (except in the case ∆ = D2 where there are five components)
and Theorem 2.4.4 can be used to describe the multiplicative structures and the coordinate
algebras of L with

B = {0} if ∆ is of type Bn,

C = {0} if ∆ is of type Cn,

B =C = {0} if ∆ is of type Dn.

(4) ∆ = F4,G2 [20], see Theorems 2.3.5 and 2.3.4.

2.2 Examples of root graded Lie algebras

Example 2.2.1. Let A be an associative commutative F-algebra with unit 1 and let g be a
split simple Lie algebra of type ∆. Then L = g⊗A is a (∆,g⊗1)-graded Lie algebra with
respect to the bracket

[x�a,y�b] = [x,y]�ab

for all x,y ∈ g and a,b ∈ A. More generally, any perfect central extension of g⊗A is also
(∆,g⊗1)-graded. The universal covering algebra of g⊗A is a generalization of the affine
Kac-Moody algebra determined by g [20, 0.5].

Example 2.2.2. Seligman showed that any finite-dimensional isotropic (i.e. containing
ad-nilpotent elements) simple Lie algebra L over a field of characteristic zero is either
∆-graded or BCr-graded [46].

Example 2.2.3. Let L = g1 ⊕ g2 where g1 and g2 are ideals of L isomorphic to sln and
let g be the diagonal subalgebra of L isomorphic to sln. Then L is (An−1,g)-graded. Note
that L is not (An−1,gi)-graded as it fails to satisfy condition (∆3) in the definition of root
graded Lie algebras. We identify the g-module L with sln ⊗A where A = span{e1,e2}.
The Lie algebra structure of L gives the following multiplication on sln ⊗A:

[x⊗ ei,y⊗ ei] = [x,y]⊗ ei,

[x⊗ e1,y⊗ e2] = 0,
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[x⊗1,y⊗ ei] = [x⊗ (e1 + e2),y⊗ ei] = [x,y]� ei,

for x,y ∈ sln and i = 1,2. Then A becomes a unital associative algebra with multiplication
eie j = δi, jei (i, j = 1,2) and e1+e2 is the identity element of A, so A ∼= F⊕F (the sum of
two ideals).

Example 2.2.4. Let L = sln+k and let g be the copy of sln in the northwest corner. We
consider the adjoint action of g on L. Then the g-module L decomposes into k copies
of the natural module V = Fn, k copies of the dual module V ′ = Hom(V,F), an adjoint
module g and one dimensional trivial g-modules in its southeast corner. Then

L = g⊕V⊕k ⊕V ′⊕k ⊕D

where D is the sum of the trivial sln-modules. As a result, we may write

L = g⊕ (V ⊗B)⊕ (V ′⊗B′)⊕D

where B ∼= B′ ∼= Fk. Then L is (An−1,g)-graded. Bahturin and Benkart [5] (for n > 3) and
Benkart and Elduque [14] (for n = 3) described the multiplicative structure of this type of
Lie algebras.

Note that the Lie algebra L in Example 2.2.4 is also (An+k−1,L)-graded. This shows
that Lie algebras can be root graded in different ways.

Example 2.2.5. [4] (1) Affine Lie algebras (or more precisely their derived algebras)
which have realization as

ga f f = (g⊗F[t±1])⊕Fz

where F[t±] is the algebra of Laurent polynomials in t over F and Fz is a one dimensional
(non split) center, are ∆-graded.

(2) Toroidal Lie algebras, which can be realized as

ga f f = (g⊗F[t±1
1 , · · · , t±1

n ])⊕Z

where Z is an infinite dimensional non-split center, are ∆-graded.
(3) The twisted affine algebras

(g⊗F [t±2])⊕ (W ⊗ tF [t±2])⊕Fz (∆ = Br,Cr,F4)

and their toroidal counterparts are graded by the root system of g.
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(4) The Tits-Kantor-Koecher Lie algebra

K(A) = (sl2 ⊗A)⊕ [LA,LA]

of a unital Jordan algebra A where LA denotes left multiplication by a ∈ A, is graded by
∆ = A1.

2.3 Recognition theorem of root graded Lie algebras

In this section we recall so-called recognition theorems for root graded Lie algebras
proved by Berman and Moody [22] for simply laced case and by Benkart and Zelmanov
[20] for double laced case. To state the theorems in a unified way we mainly use [3] and
[20] as our source. Recall that two perfect Lie algebras L1 and L2 are said to be centrally
isogenous if they have the same universal covering algebra (up to isomorphism).

Theorem 2.3.1 (Recognition theorem for type An and Dn). [22] Let L be a Lie algebra
over F graded by a simply-laced finite root system ∆ of rank n = 2.

(a) If ∆ = Dn,n = 4 or if ∆ = E6,E7,E8, then there exists a commutative associative
unital F-algebra A such that L is centrally isogenous with g⊗A, where g is the split simple
Lie algebra with root system ∆.

(b) If ∆ = An,n = 3, then there exists a unital associative F-algebra A such that L is
centrally isogenous with en+1(A) where en+1(A) is the ideal of gln+1(A) generated by the
elements aEi, j, a ∈ A and i ̸= j.

(c) If ∆ = A2, then L is centrally isogenous with Steinberg Lie algebra st3(A), where
A is a unital alternative F-algebra.

Theorem 2.3.2 (Recognition theorem for type Bn). [20] Let L be a Lie algebra over F
graded by Bn for n = 3. Then there exists a unital, commutative, associative F-algebra
A and an A-module B having a symmetric A-bilinear form (,) : B×B → A such that L is
centrally isogenous with the Lie algebra

T (J(V )/F,J(B)/A) = (g⊗A)⊕ (V ⊗B)⊕DJ(B),J(B)

where V is (2n+1)-dimensional F-vector space with a nondegenerate symmetric bilinear
form (the defining representation for Bn), g is the set of skew-symmetric transformations
on V relative to the form on V, and DJ(B),J(B) is the Lie algebra of inner derivations on
the Jordan algebra J(B) = A⊕B.
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Theorem 2.3.3 (Recognition theorem for type Cn ). [20] Let L be a ∆-graded Lie algebra
over F.

(a) If ∆ =Cn,n = 4, then there exists a unital, associative algebra A with an involution
∗ : A → A such that L is centrally isogenous with the algebra sp2n(A,∗) of symplectic
(2n)× (2n) matrices over A.

(b) If ∆ = C3, then L is centrally isogenous with the symplectic Steinberg algebra
st sp6(A,∗), where A is an alternative involutive algebra whose symmetric elements, {a ∈
A | a∗ = a}, lie in the associative center of A.

(c) If ∆ =C2, then L is centrally isogenous with a Tits-Kantor-Koecher construction of
a unital Jordan algebra J which contains the Jordan algebra of symmetric 2×2 matrices,
and the identity of J lies in this subalgebra.

(d) If ∆ =C1 = A1, then L is centrally isogenous with a Tits-Kantor-Koecher construc-
tion of a unital Jordan algebra J.

Theorem 2.3.4 (Recognition theorem for type G2). [20] Let L be a G2-graded Lie algebra
over F. Assume g is the split simple Lie algebra of type G2, which we identify with (inner)
derivations of the 8-dimensional alternative algebra O of split octonions over F. Then
there exist a unital commutative associative F-algebra A and a Jordan algebra a over A
with a normalized trace satisfying the Cayley-Hamilton trace identity ch3(x) = 0 of degree
3 such that L is centrally isogenous with the Lie algebra

T (O/F,a/A) = (g⊗A)⊕ (O0 ⊗B)⊕Da,a

where B is the set of trace zero elements in a and Da,a is the Lie algebra of inner deriva-
tions of a.

Theorem 2.3.5 (Recognition theorem for type F4). [20] Let L be an F4-graded Lie al-
gebra over F. Assume g is the split simple Lie algebra of type F4, which we identify with
the (inner) derivation algebra of the split exceptional 27-dimensional Jordan algebra J

over F. Then there exist a unital commutative associative F-algebra A and an alternative
algebra a over A with a normalized trace satisfying the Cayley-Hamilton trace identity
ch2(x) = 0 of degree 2 such that L is centrally isogenous with the Lie algebra

T (J /A,a/F) = (g⊗A)⊕ (J0 ⊗B)⊕Da,a

where B is the set of trace zero elements in a and Da,a is the Lie algebra of inner deriva-
tions of a.



2.4 BCr-graded Lie algebras 20

2.4 BCr-graded Lie algebras

Lie algebras graded by non-reduced root systems BCr (r ≥ 2) were classified by Allison,
Benkart, and Gao [4]. The grading subalgebra g is a simple Lie algebra of type Br,Cr or
Dr. Thus

g= g0 ⊕
⊕

α∈∆X

gα

where ∆X is a root system of type X = B,C or D. Let ∆BC denotes the system BCr. Recall
that

∆B = {±εi ± ε j | 1 ≤ i ̸= j ≤ r}∪{±εi | i = 1,2, ..,r},
∆C = {±εi ± ε j | 1 ≤ i ̸= j ≤ r}∪{±2εi | i = 1,2, ..,r},
∆D = {±εi ± ε j | 1 ≤ i ̸= j ≤ r}

∆BC = {±εi ± ε j | 1 ≤ i ̸= j ≤ r}∪{±εi,±2εi | i = 1,2, ..,r}

in terms of ε’s (see Bourbaki [26]).

Definition 2.4.1. A Lie algebra L over a field F of characteristic zero is graded by the
root system BCr or is BCr-graded if:

(1) L contains as a subalgebra a finite-dimensional simple Lie algebra g= h⊕
⊕

α∈∆X

gα

whose root system relative to a split Cartan subalgebra h= g0 is ∆X , X = B,C or D.
(2) L =

⊕
α∈∆BC

⋃
{0}

Lα where Lα = {x ∈ L | [h,x] = α (h)x for all h ∈ h} for α ∈ ∆BC.

(3) L0 = ∑
α∈∆BC

[Lα ,L−α ].

Example 2.4.2. Any Lie algebra which is graded by a finite root system of type Br,Cr,

or Dr is also BCr-graded with grading subalgebra of type Br,Cr, or Dr, respectively. For
such a Lie algebra L, the space Lµ = {0} for all µ not in ∆B, ∆C or ∆D, respectively.

Remark 2.4.3. For r ≥ 2, a BCr-graded Lie algebra L with grading subalgebra g is a
direct sum of the modules g = V (2ω1), s=V (ω2), V = V (ω1) and V (0), except in the
case ∆BC = D2 where there are five isotypic components [4]. The components can be
parametrized by subspaces A, B, C, and D so that L = (g⊗A)⊕ (s⊗B)⊕ (V ⊗C)⊕D,

where D is the centralizer of g in L. Let n = dimV , so n = 2r or 2r + 1. Since V is a
natural g-module, the algebra g is defined by a non degenerate g-invariant bilinear form
(|) on V which is symmetric of maximal Witt index or is skew-symmetric. Set ρ = 1 if
the form is symmetric, and ρ =−1 if it is skew-symmetric, so that

(v | u) = ρ (u | v) for all u,v ∈V.
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Then
g= {x ∈ EndF(V ) | (xu | v) =−(u | xv) for all u,v ∈V},

s= {s ∈ EndF(V ) | (su | v) = (u | sv) for all u,v ∈V and tr(s) = 0},

and g is a split simple Lie algebra. When
(1) n = 2r+1 and ρ = 1, then g has type Br.
(2) n = 2r and ρ =−1, then g has type Cr.

(3) n = 2r and ρ = 1, then g has type Dr.

Theorem 2.4.4 (Multiplicative structure and coordinate algebra for type BCr). [4] Sup-
pose that L is a BCr-graded Lie algebra for r ≥ 3 with grading subalgebra g (not of type
D3) over F. Then there exists an F-algebra a with involution η having symmetric ele-
ments A and skew symmetric elements B relative to η , an a-module C, an a-sesquilinear
form χ( , ) on C so that

(a) a is associative unless r = 3 and g-has type C3 in which case a is alternative and
A is contained in the nucleus (associative center) of a;

(b) C is an associative a-module and χ( , ) is hermitian (skew-hermitian) if the form
on V is symmetric (skew-symmetric);

(c) L = (g⊗A)⊕ (s⊗B)⊕ (V ⊗C)⊕D and we may suppose that there exist
commutative products
a⊗a′ 7→ a◦a′ ∈ A b⊗b′ 7→ b◦b′ ∈ A
anti commutative products
a⊗a′ 7→ [a,a′] ∈ B b⊗b′ 7→ [b,b′] ∈ B a⊗a′ 7→ ⟨a,a′⟩ ∈ D b⊗b′ 7→ ⟨b,b′⟩ ∈ D

products
a⊗b 7→ [a,b] ∈ A a⊗b 7→ a◦b ∈ B a⊗ c 7→ a.c ∈C b⊗ c 7→ b.c ∈C
c⊗ c′ 7→ c⋆ c′ = ρc′ ⋆ c ∈ A c⊗ c′ 7→ c� c′ =−ρc′ � c ∈ B c⊗ c′ 7→ ⟨c,c′⟩=−ρ⟨c′,c⟩ ∈ D
d ⊗a 7→ da ∈ A d ⊗b 7→ db ∈ B d ⊗ c 7→ dc ∈C

so that the multiplication in L is given as follows. For all x,y∈ g, s,u∈ s, a∈ A, b∈ B,
c ∈C, d ∈ D,

[x⊗a,y⊗a′] = [x,y]⊗ 1
2

a◦a′+ x◦ y⊗ 1
2
[a,a′]+ tr(xy)⟨a,a′⟩

[x⊗a,s⊗b] = x◦ s⊗ 1
2
[a,b]+ [x,s]⊗ 1

2
a◦b =−[s⊗b,x⊗a],

[s⊗b, t ⊗b′] = [s, t]⊗ 1
2

b◦b′+ s◦ t ⊗ 1
2
[b,b′]+ tr(st)⟨b,b′⟩,

[x⊗a,u⊗ c] = xu⊗a.c =−[u⊗ c,x⊗a],

[s⊗b,u⊗ c] = su⊗b.c =−[u⊗ c,s⊗b],
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[u⊗ c,v⊗ c] = γu,v ⊗ c⋆ c′+σu,v ⊗ c� c′+(u | v)⟨c,c′⟩,
[d,x⊗a] = x⊗da =−[x⊗a,d],

[d,s⊗b] = s⊗db =−[s⊗b,d],

[d,u⊗ c] = u⊗dc =−[u⊗ c,d],

[d1,d2] = d1d2 −d2d1,

where

c⋆ c′ =
1
2
(χ(c,c′)+η(χ(c,c′)),

c� c′ =
1
2
(χ(c,c′)−η(χ(c,c′)),

γu,v(w) =
1
2
((v | w)u− (w | u)v),

γu,v(w) =
1
2
((v | w)u+(w | u)v)− 1

2n
tr((v | w)u+(w | u)v)I.

Moreover,
D = ⟨b,b⟩= ⟨A,A⟩+ ⟨B,B⟩+ ⟨C,C⟩,

and ⟨β ,β ′⟩β ′′ = Dβ ,β ′β ′′ for all β ,β ′,β ′′ ∈ b,where Dβ ,β ′β ′′ ∈ Der∗(b) is defined by

Dα,α ′α
′′ =

[[α,α ′]+ [η(α),η(α ′)],α ′′]+3(α,α ′′,α ′)+3(η(α),α ′′,η(α ′))

2n
,

Dα,α ′c =
([α,α ′]+ [η(α),η(α ′)])c

2n
,

Dc,c′α =
ρ

n
[c� c′,α],

Dc,c′c
′′ =

1
2
(η(χ(c′,c′′).c−χ(c′′,c).c′)+

ρ

2n
(χ(c,c′)−η(χ(c,c′)).c′′),

for all α,α ′,α ′′ ∈ a, c,c′,c′′ ∈C and Da,C = DC,a = (0).

Theorem 2.4.5 (Recognition theorem for type BCr). [4] Suppose that r ≥ 3 and g does not
have type C3 or D3. A Lie algebra L is a BCr-graded Lie algebra with grading subalgebra
g if and only if there exist an associative algebra a with involution, an a-module C so that
L is centrally isogenous to the BCr-graded unitary Lie algebra of the ρ-hermitian form
ξ = w⊥−ρχ on the a-module an ⊕B (see [4, Example 1.23]).



Chapter 3

Generalized root graded Lie algebras

We start with the general definition of Lie algebras graded by finite weight systems.

Definition 3.0.1. [6] Let ∆ be a root system and let Γ be a finite set of integral weights of
∆ containing ∆ and {0}. A Lie algebra L is called (Γ,g)-graded (or simply Γ-graded) if

(Γ1) L contains as a subalgebra a non-zero finite-dimensional split semisimple Lie
algebra

g= h⊕
⊕
α∈∆

gα ,

whose root system is ∆ relative to a split Cartan subalgebra h= g0;
(Γ2) L =

⊕
α∈Γ

Lα where Lα = {x ∈ L | [h,x] = α (h)x for all h ∈ h};

(Γ3) L0 = ∑
α,−α∈Γ\{0}

[Lα ,L−α ].

The subalgebra g is called the grading subalgebra of L. A Lie algebra L is called
(Γ,g)-pregraded if it satisfies (Γ1) and (Γ2) (but not necessarily (Γ3)). Note that the
condition (Γ2) yields [Lµ ,Lν ]⊆ Lµ+ν if µ +ν ∈ Γ and [Lµ ,Lν ] = 0 otherwise. We denote
by ≪ g≫L (or simply ≪ g≫) the ideal generated by g in L. Note that a (Γ,g)-pregraded
Lie algebra L is (Γ,g)-graded if and only if ≪ g≫= L, see Proposition 3.1.3.

3.1 Basic properties of Γ-graded Lie algebras

The following is well-known (see for example [6, Lemma 4.2]).

Lemma 3.1.1. Let g be a split simple subalgebra of a Lie algebra L. Assume that a Lie
algebra L is (Γ,g)-pregraded. Then the space

I =
⊕

α∈Γ\{0}
Lα + ∑

α1,−α∈Γ\{0}
[Lα ,L−α ]
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is a non-zero Γ-graded ideal of L. In particular, if L is simple then it is Γ-graded.

Lemma 3.1.2. Let L be a Lie algebra containing a non-zero split semisimple subalgebra
g. Then L is (Γ,g)-pregraded for some finite set Γ if and only if there exists a finite set
Q of dominant weights of g such that L is the direct sum of finite-dimensional irreducible
g-modules whose highest weights are in Q, i.e. as a g-module,

L ∼=
⊕
λ∈Q

V (λ )⊗Wλ

for some vector spaces Wλ (the vector space Wλ indexes the copies of V (λ ) and the
g-action is given by

x.(vλ ⊗wλ ) = [x,vλ ⊗wλ ] = x.vλ ⊗wλ

for x ∈ g, vλ ∈V (λ ) and wλ ∈Wλ ).

Proof. The “if” part is obvious with Γ being the union of the weights of the modules
V (λ ), λ ∈ Q.

For the converce, it is enough to show that every finite-dimensional subspace U of L is
contained in a finite-dimensional g-submodule M of L. Indeed, by enlarging if necessary
one can assume that U is a weighted subspace. Let {u1, . . . ,uk} be a basis of U consisting
of weight vectors. It is enough to show that each ui belongs to a a finite-dimensional
g-submodule Mi of L. Put Mi = U(g)ui. Following [13, Lemma 2.2], once we fix an
ordering of the roots of g, there is a triangular decomposition g= n−⊕h⊕n+ (h denotes
the Cartan subalgebra of g) and

Mi =U(g)ui =U(n−)U(h)U(n+)ui.

But dim(U(n+)ui) is finite, since dimU(n+)ν is finite for any ν ∈ Z∆, and L has only
finitely many h-weight spaces. Also, U(h)U(n+)ui = U(n+)ui because the action of
U(h) is diagonalizable, and again dim(U(n−)U(h)U(n+)ui) is finite by the same weight
argument as above.

Proposition 3.1.3. Let g be a split simple subalgebra of a Lie algebra L and suppose L is
(Γ,g)-pregraded. Then the following are equivalent.

(1) L is Γ-graded.
(2) L0 = ∑

α,−α∈Γ\{0}
[Lα ,L−α ].

(3) L =
⊕

α∈Γ\{0}
Lα + ∑

α,−α∈Γ\{0}
[Lα ,L−α ].
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(4) ≪ g≫= L.

Proof. (1)⇔ (2) and (2)⇔ (3) follows from Definition 3.0.1.
(3)⇒ (4) : Note that Lα = [h,Lα ]⊆≪ g≫ for all α ̸= 0. Since ≪ g≫ is a subalgebra

of L, we have L =
⊕

α∈Γ\{0}
Lα + ∑

α,−α∈Γ\{0}
[Lα ,L−α ]⊆≪ g≫⊆ L, so ≪ g≫= L.

(4)⇒ (3) : By Lemma 3.1.1,
⊕

α∈Γ\{0}
Lα + ∑

α,−α∈Γ\{0}
[Lα ,L−α ] is an ideal of L con-

taining g, so (4) implies (3).

Corollary 3.1.4. Let g be a split simple finite dimensional subalgebra of a simple Lie
algebra L and let Γ be the set of all weights of the g-module L. Suppose L is (Γ,g)-
pregraded. Then L is (Γ,g)-graded.

Proposition 3.1.5. Suppose L is (Γ1,g1)-graded and g1 is (Γ2,g2)-graded. Then L is
(Γ3,g2)-graded where Γ3 is the set of all weights of the g2-module L.

Proof. We only need to check the condition (Γ3) of the definition, (Γ1) and (Γ2) being
obvious. By Lemma 3.1.3, ≪ g1 ≫L= L and ≪ g2 ≫g1= g1, so

≪ g2 ≫L=≪≪ g2 ≫g1≫L=≪ g1 ≫L= L.

Using Lemma 3.1.3 again we get (Γ3), as required.

Lemma 3.1.6. Let Li be (Γi,gi)-graded for i = 1,2. Suppose that g1 ∼= g2. Then L1 ⊕L2

is (Γ1 ∪Γ2,g)-graded for some subalgebra g isomorphic to g1.

Proof. Let L = L1 ⊕L2 and let f : g1 → g2 (i = 1,2) be any isomorphism. Denote

g= {x+ f (x) | x ∈ g1}.

Then g is a subalgebra of L isomorphic to g1. We claim that L is (Γ1 ∪Γ2,g)-graded. By
Lemma 3.1.2, L1 and L2 are the direct sums of finite-dimensional irreducible g-modules
whose highest weights are in Γ1 and Γ2, respectively. Note that Γ1 ∪Γ2 is finite and L =⊕
α∈Γ1∪Γ2

Lα , so (Γ2) holds. It remains to prove (Γ3), or equivalently, that ≪ g≫L= L. By

Proposition 3.1.3, ≪ g1 ≫L1= L1 and ≪ g2 ≫L2= L2. We have gi = [gi,gi] = [gi,g]⊆≪
g≫, so

L = L1 ⊕L2 =≪ g1 ≫L1 ⊕≪ g2 ≫L2⊆≪ g≫ .

Therefore, ≪ g≫L= L.
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Lemma 3.1.7. Let S be a finite-dimensional simple Lie algebra and let g be a non-zero
split semisimple subalgebra of S. Then S is (Γ,g)-graded where Γ is the set of all weights
of the g-module S.

Proof. This follows from Lemma 3.1.1.

Lemma 3.1.8. Every non-zero finite-dimensional split semisimple Lie algebra is (Γ,sl2)-
graded for some Γ.

Proof. Let L be a non-zero finite-dimensional split semisimple Lie algebra. Then, L =

S1 ⊕ S2 ⊕ ·· · ⊕ Sk where Si are split simple ideals. Note that each Si is (Γ,sl2)-graded
(just fix any subalgebra gi ∼= sl2 of Si and use Lemma 3.1.7). It remains to apply Lemma
3.1.6.

Theorem 3.1.9. Let L be finite-dimensional perfect Lie algebra L and let Q be a Levi
subalgebra of L over an algebraically closed field of characteristic zero. Then

(1)L is (Γ1,Q)-graded for some Γ1.
(2)L is (Γ,sl2)-graded for some Γ.

Proof. (1) let R be the solvable radical of L. Then L = Q⊕R. Note that L is (Γ1,Q)-
pregraded where Γ1 is the set of weights of the Q-module L. Since R is solvable,

L/≪ Q ≫= (≪ Q ≫+R)/≪ Q ≫∼= R/(≪ Q ≫∩R)

is solvable. But L/≪ Q ≫ is perfect, so L/≪ Q ≫= {0} and L =≪ Q ≫. By Proposi-
tion 3.1.3, L is (Γ1,Q)-graded.

(2) This follows from Lemma 3.1.8 and Proposition 3.1.5.

3.2 Θn-graded and BCn-graded Lie algebras

In this section we discuss the relationship between Θn-graded and BCn-graded Lie algeb-
ras. Let g be a split simple Lie algebra of classical type An, Bn, Cn or Dn. Throughout this
thesis, {ω1, . . . ,ωn} is the set of the fundamental weights of g; Vg(ω) (or simply V (ω))
denotes the highest weight g-module of weight ω; Vg :=Vg(ω1) (or simply V ) is the nat-
ural g-module; if M is a g-module then M′ is its dual and W (M) is the set of weights of
M. If g is of type An−1, we will use the following notations for the g-modules below:

g :=V (ω1 +ωn−1), V :=V (ω1), S :=V (2ω1), Λ :=V (ω2) and T :=V (0).

Note that V ′ ∼=V (ωn−1), S′ ∼=V (2ωn−1) and Λ′ ∼=V (ωn−2).
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Recall that a Lie algebra L is (Γ,g)-pregraded if it satisfies (Γ1) and (Γ2) of Definition
3.0.1. It is easy to see that BCn-pregraded Lie algebras have the following decomposition,
see for example [4, 2.5].

Proposition 3.2.1. Let L be a Lie algebra and let b be a split simple subalgebra of L of
type type Bn, Cn (n ≥ 2) or Dn (n ≥ 3). Then L is (BCn ∪{0},b)-pregraded if and only if
the b-module L is a direct sum of copies of Vb(2ω1), Vb(ω2), Vb(ω1) and Vb(0).

A similar decomposition exists for Θn-pregraded Lie algebras.

Proposition 3.2.2. Let L be a Lie algebra and let g be a subalgebra of L isomorphic to
sln. Then L is (Θn,g)-pregraded if and only if the g-module L is a direct sum of copies of
g, V , V ′, S, S′, Λ, Λ′ and T .

Proof. We only need to prove the “only if” part, the “if” part being obvious. Suppose L is
(Θn,g)-graded. Then by Lemma 3.1.2, L is a direct sum of finite-dimensional irreducible
g-modules. Note that only the following dominant weights appear in Θn:

ω1 +ωn−1, ω1, ωn−1, 2ω1, 2ωn−1, ω2, ωn−2, 0

where ωi = ε1 + · · ·+ εi. They are the highest weights of the modules g, V , V ′, S, S′, Λ,

Λ′ and T , respectively.

Suppose L is (Θn,g)-graded. By collecting isomorphic summands of L into isotypic
components, we may assume that there are vector spaces A,B,B′,C,C′E,E ′ such that

L ∼= (g⊗A)⊕(V ⊗B)⊕(V ′⊗B′)⊕(S⊗C)⊕(S′⊗C′)⊕(Λ⊗E)⊕(Λ′⊗E ′)⊕D (3.2.1)

where D is the sum of the trivial g-modules (and also the centralizer of g in L).

Remark 3.2.3. Recall that W (M) denotes the set of weights of a g-module M and M′

denotes the dual of M.
(1) Let k be a simple Lie algebra of type type Br, Cr or Dr and let

Γk := W ((T ⊕Vk)⊗ (T ⊕Vk)).

Then Γk = BCr ∪{0}.
(2) Let g be a simple Lie algebra of type An−1 and let

Γg := W ((T ⊕Vg⊕V ′
g)⊗ (T ⊕Vg⊕V ′

g)).
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Then Γg = Θn.
(3) Let g∼= sln and let k∼= son be a naturally embedded subalgebra of g. Then Vg ↓ k∼=

Vk, V ′
g ↓ k∼=Vk and

Γg ↓ k= W ((T ⊕Vg⊕V ′
g)⊗ (T ⊕Vg⊕V ′

g) ↓ k) = W ((T ⊕Vk)⊗ (T ⊕Vk)) = Γk.

(4) Let k∼= so2n+1, so2n or sp2n and let g∼= sln be a naturally embedded subalgebra of
k. Then Vk ↓ g∼=Vg⊕V ′

g (or Vg⊕V ′
g⊕T if k∼= so2n+1) and Γk ↓ g= Γg.

Theorem 3.2.4. Let n ≥ 2 and r = ⌊n
2⌋. Then every Θn-graded Lie algebra is BCr-graded.

Proof. Suppose L is (Θn,g)-graded. Let k ∼= son be a naturally embedded subalgebra of
g∼= sln. Note that the rank of k is r = ⌊n

2⌋ and sln is (BCr ∪{0},k)-graded. By Proposition
3.1.5, we only need to show that the set of all weights of the k-module L is a subset of
BCr ∪{0}. Using Remark 3.2.3, we get

W (L ↓ k) = W (L ↓ g) ↓ k⊆ Θn ↓ k= Γg ↓ k= Γk = BCr ∪{0},

as required.

Remark 3.2.5. Suppose L is (Θn,g)-graded (n ≥ 5). Let k ∼= son be a naturally embed-
ded subalgebra of g ∼= sln. As shown in the proof of Theorem 3.2.4, the algebra L is
BCr-graded with respect to the grading subalgebra k with r = ⌊n

2⌋. The general theory of
BCr-graded Lie algebras gives multiplication structure of L in terms of k-decomposition
components. We are going to show that the multiplication structure of L as an (Θn,g)-
graded algebra is “finer” and more specific. Let Vk(λ ) denote the simple k-module with
highest weight λ . We have

Vg(ω1) ↓k∼=Vg(ωn) ↓k∼=Vk,

Vg(2ω1) ↓k∼=Vg(2ωn) ↓k∼= s+T, (3.2.2)

Vg(ω2) ↓k∼=Vg(ωn−1) ↓k∼= k,

Vg(ω1 +ωn)) ↓k∼= k+ s

where T = Vk(0), k=Vk(ω2), s = Vk(2ω1) and Vk = Vk(ω1). By combining (3.2.1) and
(3.2.2), we can rewrite L as a k-module as follows:

L = (k⊗ (A⊕E ⊕E ′))⊕ (s⊗ (A⊕C⊕C′))⊕ (Vk⊗ (B⊕B′))⊕D′ (3.2.3)

where D′ = (T ⊗(C⊕C′))⊕D. Set a= A⊕B where A=A⊕E⊕E ′ and B=A⊕C⊕C′.
Then a= A+B is an associative algebra with involution ∗ given by a∗ = a and b∗ =−b
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for a ∈A and b ∈B (see [4]). If we wish to calculate the product [k⊗E,k⊗E] in L using
BCr-grading structure then we can only say that

[k⊗E,k⊗E]⊆ (k⊗ (A⊕E ⊕E ′))⊕ (s⊗ (A⊕C⊕C′))⊕D′.

On the other hand, Θn-grading structure (see Table 3.4.2 ) implies that

[k⊗E,k⊗E]⊆ [Λ⊗E,Λ⊗E] = 0.

Similarly, in BCr case we have

[k⊗E,k⊗E ′]⊆ (k⊗ (A⊕E ⊕E ′))⊕ (s⊗ (A⊕C⊕C′))⊕D′

and in Θn case we have

[k⊗E,k⊗E ′]⊆ [Λ⊗E,Λ′⊗E ′]⊆ (g⊗A)⊕D = (k⊗A)⊕ (s⊗A)⊕D.

Theorem 3.2.6. Let L be BCr-graded for some integer r ≥ 2. Then L is Θr-graded.

Proof. Suppose L is BCr-graded with grading subalgebra k of type Br, Cr, or Dr. Let
g∼= slr be a naturally embedded subalgebra of k. It is easy to see that k is (Θr,g)-graded.
By Proposition 3.1.5, we only need to show that the set of all weights of the g-module L
is a subset of Θr. Using Remark 3.2.3, we get

W (L ↓ g) = W (L ↓ k) ↓ g⊆ BCr ∪{0} ↓ g= Γk ↓ g= Γg = Θr,

as required.

Proposition 3.2.7. Let L be BCn-graded for some integer n ≥ 5. Then L is Θn-graded and
the conditions (1.2.1) hold.

Proof. Suppose that L is BCn-graded with a grading subalgebra k. Let g∼=sln be a natur-
ally embedded subalgebra of k as in the proof of Theorem 3.2.6. Then L is Θn-graded and
we need to check the conditions (1.2.1). We will assume that k is of type Cn (the cases Bn

and Dn are proved similarly). We have the following decomposition of the k-module L:

L = (k⊗A)⊕ (s⊗B)⊕v⊗C⊕D

where k∼=Vk(2ω1), s∼=Vk(ω2) and v∼=Vk(ω1). The restrictions of the k-modules k, s and
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v to g are decomposed as follows:

k= g⊕S⊕S′, s= g⊕Λ⊕Λ
′, v=V ⊕V ′. (3.2.4)

Therefore we have the following decomposition of the g-module L:

L = (g⊕S⊕S′)⊗A⊕ (g⊕Λ⊕Λ
′)⊗B⊕ (V ⊕V ′)⊗C⊕D

= (g⊗ (A⊕B))⊕ (S⊗A)⊕ (S′⊗A)⊕ (Λ⊗B)⊕ (Λ′⊗B)⊕ (V ⊗C)⊕ (V ′⊗C)⊕D,

Fix the standard matrix presentations of the algebra k ∼= sp2n and its modules s and v as
in [4]. Then g is identified with the subalgebra {diag(X ,−X t) | X ∈ sln} of k. Let Kn

denotes the set of skew-symmetric n× n matrices. Then the components Λ, V and their
duals in the decompositions (3.2.4) have the following matrix shapes:

Λ =

{(
0 Y
0 0

)
| Y ∈ Kn

}
, Λ

′ =

{(
0 0
Y ′ 0

)
| Y ′ ∈ Kn

}
,

V =

{(
v
0

)
| v ∈ Fn

}
, V ′ =

{(
0
v′

)
| v′ ∈ Fn

}
.

Let λ1 ⊗b1,λ2 ⊗b2 ∈ Λ⊗B and u⊗ c ∈V ⊗C. Using Formulae in [4, (2.8)] and the fact
that Λ⊗B ⊆ s⊗B and V ⊗C ⊆ v⊗C we get

[λ1 ⊗b1,λ2 ⊗b2] = (λ1 ◦λ2)⊗
[b1,b2]

2
+[λ1,λ2]⊗

b1 ◦b2

2
+ tr(λ1λ2)⟨b1,b2⟩,

[u⊗ c,λ ⊗b] =−λu⊗ c ·b =−[λ ⊗b,u⊗ c].

Note that λ1 ◦ λ2 = [λ1,λ2] = λ1λ2 = 0 and λu = 0. Substituting these values in the
formulae above we get [Λ ⊗ B,Λ ⊗ B] = [Λ ⊗ B,V ⊗C] = 0. Similarly, we get [Λ′ ⊗
B′,Λ′⊗B] = [Λ′⊗B′,V ′⊗C′] = 0, as required.

3.3 Examples of Θn-graded Lie algebras

Example 3.3.1. As discussed previously (see Theorems 3.2.6), every BCn-graded Lie
algebra (n ≥ 2) is Θn-graded.

Example 3.3.2. Any Lie algebra which is (An−1,sln)-graded is also Θn-graded. For such
a Lie algebra, the space Lα = {0} for all α not in An−1.
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Example 3.3.3. Let L = sl2n+1 and g =


 x 0 0

0 −xt 0
0 0 0

 | x ∈ sln

 ⊂ L. We consider

the adjoint action of g on L. We have the following decomposition of the g-module L:

L = g⊕g′⊕V1 ⊕V2 ⊕V ′
1 ⊕V ′

2 ⊕S⊕S′⊕Λ⊕Λ
′⊕D

where D =


 t1In 0 0

0 t2In v
0 0 −n(t1 + t2)

 | t1, t2 ∈ F

 is the sum of the trivial g-modules

and

g′ =


 x 0 0

0 xt 0
0 0 0

 | x ∈ sln

∼= g∼=V (ω1 +ωn−1)

V1 =


 0 0 v

0 0 0
0 0 0

 | v ∈ Fn

∼=V2 =


 0 0 0

0 0 0
0 vt 0

 | v ∈ Fn

∼=V (ω1),

V ′
1 =


 0 0 0

0 0 v
0 0 0

 | v ∈ Fn

∼=V ′
2 =


 0 0 0

0 0 0
vt 0 0

 | v ∈ Fn

∼=V (ωn−1),

S =


 0 x 0

0 0 0
0 0 0

 | x ∈ Mn(F) and x = xt

∼=V (2ω1),

S′ =


 0 0 0

x 0 0
0 0 0

 | x ∈ Mn(F) and x = xt

∼=V (2ωn−1),

Λ =


 0 x 0

0 0 0
0 0 0

 | x ∈ Mn(F) and x =−xt

∼=V (ω2),

Λ
′ =


 0 0 0

x 0 0
0 0 0

 | x ∈ Mn(F) and x =−xt

∼=V (ωn−2),

as g-modules. Then L is (Θn,g)-graded.

Example 3.3.4. Let L = g⊕R where R = RadL and g is a simple submodule of L iso-
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morphic to sln. Suppose [R,R] = 0 and R ∼=V (w) as a g-module. Then L is (Θn,g)-graded
if and only if w ∈ Θn.

3.4 Multiplication in Θn-graded Lie algebras, n ≥ 5

Recall that Θn = {0,±εi ± ε j,±εi,±2εi | 1 ≤ i ̸= j ≤ n} were {ε1, . . . ,εn} is the set of
weights of the natural sln-module. We denote by Θ+

n the set of dominant weights in Θn

and the corresponding simple sln-modules. Thus,

Θ
+
n = {ω1 +ωn−1 = ε1 − εn, ω1 = ε1, ωn−1 =−εn,

2ω1 = 2ε1, 2ωn−1 =−2εn, ω2 = ε1 + ε2, ωn−2 =−εn − εn−1, 0}.

These are the highest weights of the modules g, V , V ′, S, S′, Λ, Λ′ and T , respectively.
We fix a base

Π = {αi = εi − εi+1 for i = 1,2, · · · ,n−1}

of simple roots for the root system

An−1 = {±εi ± ε j | 1 ≤ i ̸= j ≤ n+1}.

Let L be an Θn-graded Lie algebra and let g be the grading subalgebra of L of type ∆ =

An−1 with n = 5. We identify g with the matrix algebra sln. By Proposition 3.2.2 the g-
module L is a direct sum of copies of g, V , V ′, S, S′, Λ, Λ′ and T . By collecting isomorphic
summands of L into isotypic components, we may assume that there are vector spaces
A,B,B′,C,C′E,E ′ such that

L ∼= (g⊗A)⊕ (V ⊗B)⊕ (V ′⊗B′)⊕ (S⊗C)⊕ (S′⊗C′)⊕ (Λ⊗E)⊕ (Λ′⊗E ′)⊕D.

Alternatively, these spaces can also be viewed as the corresponding g-mod Hom-spaces:
A = Homg(g,L), B = Homg(V,L), etc, so for each simple g-module M, the space M ⊗
Homg(M,L) is canonically identified with the M-isotypic component of L via the evalu-
ation map

M⊗Homg(M,L)⇁ L, m⊗ϕ 7→ ϕ(m). (3.4.1)

Definition 3.4.1. (1) We identify the g-modules V and V ′ with the space Fn of column
vectors with the following actions:

x.v = xv for x ∈ sln, v ∈V,
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x.v′ =−xtv′ for x ∈ sln, v′ ∈V ′.

(2) We identify S and S′ (resp. Λ and Λ′) with symmetric (resp. skew-symmetric) n× n
matrices. Then S, S′, Λ and Λ′ are g-modules under the actions:

x.s = xs+ sxt for x ∈ sln, s ∈ S,

x.λ = xλ +λxt for x ∈ sln, λ ∈ Λ,

x.s′ =−s′x− xts′ for x ∈ sln, s′ ∈ S,

x.λ ′ =−λ
′x− xt

λ
′ for x ∈ sln, λ

′ ∈ Λ
′.

Since the subalgebra g of L is a g-submodule, there exists a distinguished element 1
of A such that g= g⊗1. In particular,

[x⊗1,y⊗b] = x.y⊗b. (3.4.2)

where x⊗1 is in g⊗1, y⊗b belongs to one of the components in (3.2.1), and x.y is as in
Definition 3.4.1.

Let Θ(M) be the Θ-component of M, i.e. the sum of all simple submodules of M with
highest weights in Θ+

n . In order to describe multiplication in L we need to calculate first
the Θ-components of the tensor products of the modules in Θ+

n . Most of the decomposi-
tions are easily derived from stability results in [21, Cor. 6.22 and 7.2] (for larger ranks)
with a computer program (such as LiE) used to verify the small rank cases. These are the
following (full) decompositions:

V (ω1)⊗V (ω1) = V (2ω1)⊕V (ω2),

V (ωn−1)⊗V (ωn−1) = V (2ωn−1)⊕V (ωn−2),

V (ω1)⊗V (2ω1) = V (ω1 +ω2)⊕V (3ω1),

V (ωn−1)⊗V (2ωn−1) = V (ωn−1 +ωn−2)⊕V (3ωn−1),

V (ω1)⊗V (ωn−2) = V (ω1 +ωn−2)⊕V (ωn−1),

V (ωn−1)⊗V (ω2) = V (ωn−1 +ω2)⊕V (ω1),

V (2ω1)⊗V (2ω1) = V (4ω1)⊕V (2ω1 +ω2)⊕V (2ω2),

V (2ωn−1)⊗V (2ωn−1) = V (4ωn−1)⊕V (2ωn−1 +ωn−2)⊕V (2ωn−2),

V (2ω1)⊗V (ωn−2) = V (2ω1 +ωn−2)⊕V (ω1 +ωn−1),

V (2ωn−1)⊗V (ω2) = V (ω2 +2ωn−1)⊕V (ω1 +ωn−1),

V (ω2)⊗V (ω2) = V (2ω2)⊕V (ω1 +ω3)⊕V (ω4),



3.4 Multiplication in Θn-graded Lie algebras, n ≥ 5 34

V (ωn−2)⊗V (ωn−2) = V (2ωn−2)⊕V (ω2 +ωn−3)⊕V (ωn−4),

V (ω2)⊗V (ω1) = V (ω1 +ω2)⊕V (ω3),

V (ωn−2)⊗V (ωn−1) = V (ωn−3)⊕V (ωn−1 +ωn−2),

V (2ω1)⊗V (ω2) = V (2ω1 +ω2)⊕V (ω1 +ω3),

V (2ωn−1)⊗V (ωn−2) = V (2ωn−1 +ωn−2)⊕V (ωn−1 +ωn−3).

Note that the modules V , V ′, Λ, and Λ′ are minuscule i.e. their weights form a single
W -orbit where W is the Weyl group, so the following lemma can be used.

Lemma 3.4.2. [38, Cor.3.5] For two dominant weights λ , µ such that V (µ) is minuscule,
we have the decomposition

V (λ )⊗V (µ)∼=
⊕

ω ∈W/Wµ :
λ +ωµ is dominant

V (λ +ωµ)

with each summand occurring with multiplicity 1, where Wµ := {ω ∈W | ωµ = µ} is the
isotropy group of µ . Moreover, the number of irreducible components in V (λ )⊗V (µ) is
equal to the cardinality Wλ\W/Wµ .

This lemma gives us 8 more decompositions:

V (ω1 +ωn−1)⊗V (ω2) = V (ω1 +ω2 +ωn−1)⊕V (ω3 +ωn−1)⊕V (2ω1)⊕V (ω2),

V (ω1 +ωn−1)⊗V (ωn−2) = V (ωn−1 +ωn−2 +ω1)⊕V (ωn−3 +ω1)⊕V (2ωn−1)⊕V (ωn−2),

V (2ω1)⊗V (ωn−1) = V (2ω1 +ωn−1)⊕V (ω1),

V (2ωn−1)⊗V (ω1) = V (ω1 +2ωn−1)⊕V (ωn−1),

V (ω1 +ωn−1)⊗V (ω1) = V (2ω1 +ωn−1)⊕V (ω2 +ωn−1)⊕V (ω1),

V (ω1 +ωn−1)⊗V (ωn−1) = V (ω1 +2ωn−1)⊕V (ω1 +ωn−2)⊕V (ωn−1),

V (ω1)⊗V (ωn−1) = V (ω1 +ωn−1)⊕V (0),

V (ωn−2)⊗V (ω2) = V (ω2 +ωn−2)⊕V (ω1 +ωn−1)⊕V (0),

Seligman [46, A-2]) found the following decomposition of g⊗g for n > 4:

V (ω1 +ωn−1)⊗V (ω1 +ωn−1) =V (2ω1 +2ωn−1)⊕V (2ω1 +ωn−2)⊕V (ω2 +2ωn−1)

⊕V (ω2 +ωn−2)⊕2V (ω1 +ωn−1)⊕V (0).

It remains to find the decompositions of g⊗ S, g⊗ S′ and S⊗ S′. We will only calculate
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the Θ-components. It is well known that the only possible V (ν) which can occur as sum-
mands of V (λ )⊗V (µ) are those with ν = λ + µ1 for some µ1 in the set of weights of
V (µ) [33, p.142]. The following lemma gives a bit more precise information on multipli-
cities.

Lemma 3.4.3. [38, Proposition 3.2] Let λ , µ be two dominant weights. Then any com-
ponent V (ν) of V (λ )⊗V (µ) is of the form ν = λ +µ1 for some µ1 in the set of weights
of V (µ). Moreover, its multiplicity mν

λ ,µ ≤ dimV (µ)µ1 .

By Lemma 3.4.3, to calculate Θ(V (λ )⊗V (µ)) we need to find all dominant weights
ν ∈ Θn such that ν = λ +µ1 for some µ1 in the set of weights of V (µ). All these possib-
ilities are listed in the table below. Note that we have V (µ) = S or S′, so all weight spaces
of V (µ) are 1-dimensional and the corresponding modules V (ν) appear in the decompos-
ition with multiplicity at most 1. On the other hand, in the list (3.4.3) below we explicitly
construct all these summands V (ν), so their multiplicities are exactly 1.

λ µ ν = λ +µ1 ∈ Θ+
n Θ(V (λ )⊗V (µ))

ε1 − εn 2ε1
2ε1 = (ε1 − εn)+(ε1 + εn)

ε1 + ε2 = (ε1 − εn)+(ε2 + εn)
Θ(g⊗S) = S+Λ

ε1 − εn ε1 + ε2
−2εn = (ε1 − εn)+(−ε1 − εn)

−εn−1 − εn = (ε1 − εn)+(−ε1 − εn−1)
Θ(g⊗S′) = S′+Λ′

2ε1 −2εn−1
ε1 − εn = (2ε1)+(−ε1 − εn)

0 = (2ε1)+(−2ε1)
Θ(S⊗S′) = g+T

Table 3.4.1:

To summarize, in Tables 3.4.2-3.4.4 below and Remark 3.4.4 we describe Θ-components
of all tensor product decompositions for the modules in Θ+

n (n ≥ 3). If the cell in row X
and column Y contains Z this means that Θ(X ⊗Y )∼= Z.

⊗ g S Λ S′ Λ′ V V ′

g g+g+T S+Λ S+Λ S′+Λ′ S′+Λ′ V V ′

S S+Λ 0 0 g+T g 0 V
Λ S+Λ 0 0 g g+T 0 V
S′ S′+Λ′ g+T g 0 0 V ′ 0
Λ′ S′+Λ′ g g+T 0 0 V ′ 0
V V 0 0 V ′ V ′ S+Λ g+T
V ′ V ′ V V 0 0 g+T S′+Λ′

Table 3.4.2: Θ-component of tensor product decompositions for sln (n ≥ 7)
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Remark 3.4.4. For n = 5,6 all the decompositions are the same as in Table 3.4.2 except
in addition we have Θ(Λ ⊗Λ) = Λ′ and Θ(Λ′ ⊗Λ′) = Λ for sl6 and Θ(Λ ⊗Λ) = V ′,
Θ(Λ⊗V ) = Λ′, Θ(Λ′⊗Λ′) =V and Θ(Λ′⊗V ′) = Λ for sl5.

Note that Λ ∼= Λ′ for sl4 and Λ ∼= V ′ and Λ′ ∼= V for sl3 so we have the following
decompositions.

⊗ g S Λ ∼= Λ′ S′ V V ′

g g+g+T S+Λ S+Λ S′+Λ V V ′

S S+Λ 0 g g+T 0 V
Λ S+Λ g g+T g V ′ V

S′ S′+Λ g+T g 0 V ′ 0
V V 0 V ′ V ′ S+Λ g+T

V ′ V ′ V V 0 g+T S′+Λ

Table 3.4.3: Θ-component of tensor product decompositions for sl4

⊗ g S S′ V ∼= Λ′ V ′ ∼= Λ

g g+g+T S+V ′ S′+V S′+V S+V ′

S S+V ′ S′ g+T g V
S′ S′+V g+T S V ′ g

V S′+V g V ′ S+V ′ g+T
V ′ S+V ′ V g g+T S′+V

Table 3.4.4: Θ-component of tensor product decompositions for sl3

Let L be an Θn-graded Lie algebra and let g be the grading subalgebra of L. Suppose
that n ≥ 7 or n = 5,6 and the conditions (1.2.1) hold. In (3.4.3) we list bases for all non-
zero g-module homomorphism spaces Homg(X⊗Y,Z) where X ,Y,Z ∈{g,V,V ′,S,Λ,S′,Λ′,T}
and X and Y are both non-trivial. Note that all of them are 1-dimensional except the first
one (which is 2-dimensional).

Homg(g⊗g,g) = span{x⊗ y 7→ xy− yx, x⊗ y 7→ xy+ yx− 2
n

tr(xy)I}, (3.4.3)

Homg(V ⊗V ′,g) = span{u⊗ v′ 7→ uv′t − tr(uv′t)
n

I},

Homg(S⊗Λ
′,g) = span{s⊗λ

′ 7→ sλ
′},

Homg(S′⊗Λ,g) = span{s′⊗λ 7→ s′λ},
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Homg(Λ⊗Λ
′,g) = span{λ ⊗λ

′ 7→ λλ
′− tr(λλ ′)

n
I},

Homg(S⊗S′,g) = span{s⊗ s′ 7→ ss′− tr(ss′)
n

I},

Homg(g⊗V,V ) = span{x⊗ v 7→ xv},
Homg(Λ⊗V ′,V ) = span{λ ⊗ v′ 7→ λv′},
Homg(S⊗V ′,V ) = span{s⊗ v′ 7→ sv},
Homg(g⊗V ′,V ′) = span{x⊗ v′ 7→ xv′},
Homg(S′⊗V,V ′) = span{s′⊗ v 7→ s′v},

Homg(Λ
′⊗V ′,V ′) = span{λ

′⊗ v′ 7→ λ
′v′},

Homg(g⊗S,S) = span{x⊗ s 7→ xs+ sxt},
Homg(V ⊗V,S) = span{u⊗ v 7→ uvt + vut},
Homg(g⊗Λ,S) = span{x⊗λ 7→ xλ −λxt},
Homg(S′⊗g,S′) = span{s′⊗ x 7→ s′x+ xts′},

Homg(V ′⊗V ′,S′) = span{u′⊗ v′ 7→ u′v′t + v′u′t},
Homg(Λ

′⊗g,S′) = span{λ
′⊗ x 7→ λ

′x− xt
λ
′},

Homg(g⊗Λ,Λ) = span{x⊗λ 7→ xλ +λxt},
Homg(g⊗S,Λ) = span{x⊗ s 7→ xs− sxt},
Homg(V ⊗V,Λ) = span{u⊗ v 7→ uvt − vut},
Homg(Λ

′⊗g,Λ) = span{λ
′⊗ x 7→ λ

′x+ xt
λ
′},

Homg(S′⊗g,Λ′) = span{s′⊗ x 7→ s′x− xts′},
Homg(V ′⊗V ′,Λ′) = span{u′⊗ v′ 7→ u′v′t − v′u′t},

Homg(g⊗g,T ) = span{x1 ⊗ x2 7→
1
n

tr(x1x2)},

Homg(V ′⊗V,T ) = span{vt ⊗u 7→ 1
n

tr(uvt)},

Homg(S⊗S′,T ) = span{s⊗ s′ 7→ 1
n

tr(ss′)},

Homg(Λ⊗Λ
′,T ) = span{λ ⊗λ

′ 7→ 1
n

tr(λλ
′)}.

We claim that the Lie algebra structure on the decomposition (3.2.1) induces cer-
tain bilinear maps among the spaces A,B,B′,C,C′,E,E ′,D. Indeed, denote the irre-
ducible modules and the corresponding spaces by M1, . . . ,M8 and H1, . . . ,H8, respect-
ively. Then L =

⊕8
i=1 Mi ⊗ Hi and Hi = Homg(Mi,L), see (3.4.1). The Lie product

on L can be identified with an element of Homg(L⊗ L,L). Since any homomorphisms
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between non-isomorphic irreducible g-modules are zero, the product is actually an ele-
ment of Homg(Θ(L⊗L),L) where Θ(L⊗L) is the sum of all irreducible g-submodules
of L⊗L isomorphic to one of M1, . . . ,M8. The g-module L⊗L is decomposed as L⊗L =⊕8

i, j=1 Mi ⊗M j ⊗Hi ⊗H j and the Θ-component of L⊗L can be found as

Θ(L⊗L) =
8⊕

k=1

Mk ⊗Homg(L⊗L,Mk) =
8⊕

k=1

Mk ⊗
(
⊕8

i, j=1Mk
i j ⊗Hi ⊗H j

)
where Mk

i j = Homg(Mi⊗M j,Mk). Then the Lie bracket on L is an element µ of the space

Homg(Θ(L⊗L),L) =
8⊕

k=1

HomF

(
⊕8

i, j=1Mk
i j ⊗Hi ⊗H j,Hk

)
=

8⊕
i, j,k=1

HomF

(
Mk

i j ⊗Hi ⊗H j,Hk

)
.

=
8⊕

i, j,k=1

HomF

(
Mk

i j,HomF(Hi ⊗H j,Hk)
)

Denote by {bki j
1 ,bki j

2 . . .} the basis of the space Homg(Mi ⊗M j,Mk) as in (3.4.3). Then
there exist unique elements χ

ki j
1 ,χ

ki j
2 , . . . in HomF(Hi⊗H j,Hk) (the images of bki j

1 ,bki j
2 . . . )

which correspond to multiplication µ on L. These elements χ
ki j
s ∈ HomF(Hi⊗H j,Hk) are

the claimed bilinear maps Hi ×H j → Hk.
In Table 3.4.5, if the cell in row X and column Y contains Z, this means that there is a

bilinear map X ⊗Y → Z given by x⊗y 7→ (x,y)Z . For simplicity of notation, we will write
dy instead of (d,y)D if X = Z = D and we will write ⟨x,y⟩ instead of (x,y)D if X ,Y ̸= D
and Z =D. In the case X =Y = Z =A, we have two bilinear products a1⊗a2 7→ a1◦a2 and
a1⊗a2 7→ [a1,a2] for a1,a2 ∈ A. Note that some of the cells are empty. The corresponding
products X ⊗Y → Z will be defined later by extending the existing maps Y ⊗X → Z. This
will make the table symmetric.
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. A B B′ C C′ E E ′ D

A (A,◦, [ ]), D B C,E C,E

B C,E A,D 0 0
B′ A C′,E ′ B 0 B 0
C 0 0 A,D 0 A
C′ C′,E ′ B′ 0 0 A 0
E 0 0 0 A,D
E ′ C′,E ′ B′ 0 0 0
D A B B′ C C′ E E ′ D

Table 3.4.5: Bilinear products

Let x and y be n×n matrices. We will use the following products:

[x,y] = xy− yx,

x◦ y = xy+ yx− 2
n

tr(xy)I,

x� y = xy+ yx,

(x | y) =
1
n

tr(xy).

Following the methods in [4, 20, 22, 46] (see also our argument below) and using
the results of (3.4.3), Tables 3.4.2 and 3.4.5 and Remark 3.4.4, we may suppose that the
multiplication in L is given as follows. For all x,y ∈ sln, u,v ∈V , u′,v′ ∈V ′, s ∈ S, λ ∈ Λ,
s′ ∈ S′, λ ′ ∈ Λ′ and for all a,a1,a2 ∈ A, b,b1,b2 ∈ B, b′,b′1,b

′
2 ∈ B′, c ∈C, c′ ∈C′, e ∈ E,

e′ ∈ E ′ and d,d1,d2 ∈ D,

[x⊗a1,y⊗a2] = (x◦ y)⊗ [a1,a2]

2
+[x,y]⊗ a1 ◦a2

2
+(x | y)⟨a1,a2⟩, (3.4.4)

[u⊗b,v′⊗b′] = (uv′t − tr(uv′t)
n

I)⊗ (b,b′)A +
2
n

tr(uv′t)⟨b,b′⟩=−[v′⊗b′,u⊗b],

[s⊗ c,s′⊗ c′] = (ss′− (s | s′)I)⊗ (c,c′)A +(s | s′)⟨c,c′⟩=−[s′⊗ c′,s⊗ c],

[λ ⊗ e,λ ′⊗ e′] = (λλ
′− (λ | λ

′)I)⊗ (e,e′)A +(λ | λ
′)⟨e,e′⟩=−[λ ′⊗ e′,λ ⊗ e],

[u⊗b1,v⊗b2] = (uvt + vut)⊗ (b1,b2)C
2

+(uvt − vut)⊗ (b1,b2)E

2
,

[u′⊗b′1,v
′⊗b′2] = (u′v′t + v′u′t)⊗

(b′1,b
′
2)C′

2
+(u′v′t − v′u′t)⊗

(b′1,b
′
2)E ′

2
,

[x⊗a,s⊗ c] = (xs+ sxt)⊗ (a,c)C
2

+(xs− sxt)⊗ (a,c)E

2
=−[s⊗ c,x⊗a],
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[x⊗a,λ ⊗ e] = (xλ +λxt)⊗ (a,e)E

2
+(xλ −λxt)⊗ (a,e)C

2
=−[λ ⊗ e,x⊗a],

[s′⊗ c′,x⊗a] = (s′x+ xts′)⊗ (c′,a)C′

2
+(s′x− xts′)⊗ (c′,a)E ′

2
=−[x⊗a,s′⊗ c′],

[λ ′⊗ e′,x⊗a] = (λ ′x+ xt
λ
′)⊗ (e′,a)E ′

2
+(λ ′x− xt

λ
′)⊗ (e′,a)C′

2
=−[x⊗a,λ ′⊗ e′],

[s⊗ c,λ ′⊗ e′] = sλ
′⊗ (c,e′)A =−[λ ′⊗ e′,s⊗ c],

[s′⊗ c′,λ ⊗ e] = s′λ ⊗ (c′,e)A =−[λ ⊗ e,s′⊗ c′],

[x⊗a,u⊗b] = xu⊗ (a,b)B =−[u⊗b,x⊗a],

[s′⊗ c′,u⊗b] = s′u⊗ (c′,b)B′ =−[u⊗b,s′⊗ c′],

[λ ′⊗ e′,u⊗b] = λ
′u⊗ (e′,b)B′ =−[u⊗b,λ ′⊗ e′],

[u′⊗b′,x⊗a] = xtu′⊗ (b′,a)B′ =−[x⊗a,u′⊗b′],

[u′⊗b′,s⊗ c] = su′⊗ (b′,c)B =−[s⊗ c,u′⊗b′],

[u′⊗b′,λ ⊗ e] =−λu′⊗ (b′,e)B =−[λ ⊗ e,u′⊗b′],

[d,x⊗a] = x⊗da =−[x⊗a,d],

[d,u⊗b] = u⊗db =−[u⊗b,d],

[d,s⊗ c] = s⊗dc =−[s⊗ c,d],

[d,λ ⊗ e] = λ ⊗de =−[λ ⊗ e,d],

[d,s′⊗ c′] = s′⊗dc′ =−[s′⊗ c′,d],

[d,u′⊗b′] = u′⊗db′ =−[u′⊗b′,d],

[d,λ ′⊗ e′] = λ
′⊗de′ =−[λ ′⊗ e′,d],

[d1,d2] ∈ D,

All other products of the homogeneous components of the decomposition (3.2.1) are zero.
Following the methods in [4, 20], we present a sample argument for the existence

of these maps. Let {ai | i ∈ I} and {ds | s ∈ S} be bases of the vector spaces A and D,
respectively. Fix any ai and a j of A. Then for all x,y ∈ g, write

[x⊗ai,y⊗a j] = ∑
k∈I

ε
k
i, j(x,y)⊗ak +∑

s∈S
η

s
i, j(x,y)ds + r(x,y)

where r(x,y) is the sum of projections of [x⊗ai,y⊗a j] to other isotypic components. It
is easy to see that the maps εk

i, j : g× g→ g and ηs
i, j : g× g→ T are bilinear and induce

g-module homomorphisms εk
i, j : g⊗g→ g and ηs

i, j : g⊗g→ T . By (3.4.3)
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Homg(g⊗g,g) = span{x⊗ y 7→ xy− yx, x⊗ y 7→ xy+ yx− 2
n

tr(xy)I},

Homg(g⊗g,T ) = span{x1 ⊗ x2 7→
1
n

tr(x1x2)},

and Homg(g⊗g,M) = 0 for all other types of irreducible submodules M of L, so

ε
k
i, j(x,y) = ξ

k
i, j[x,y]+δ

k
i, jx◦ y,

η
s
i, j(x,y) = η

s
i, j(x | y),

r(x,y) = 0.

As a result,

[x⊗ai,y⊗a j] = ∑
k∈I

(ξ k
i, j[x,y]+δ

k
i, jx◦ y)⊗ak +∑

s∈S
η

s
i, j(x | y)ds

= [x,y]⊗∑
k∈I

ξ
k
i, jak + x◦ y⊗∑

k∈I
δ

k
i, jak +(x | y)∑

s∈S
η

s
i, jds.

These expressions in A depend only on i and j not on x,y ∈ g, and so we define

ai ◦a j := 2∑
k

ξ
k
i, jak

[ai,a j] := 2∑
k

δ
k
i, j

⟨ai,a j⟩ := ∑
s∈S

η
s
i, jds

for all i, j ∈ I (The factor of 2 is just for notational convenience later on). These maps can
be extended to give F-bilinear mappings ◦ : A⊗A → A, [ , ] : A⊗A → A and ⟨ , ⟩ : A⊗A →
D such that

[x⊗ai,y⊗a j] = [x,y]⊗
ai ◦a j

2
+ x◦ y⊗

[ai,a j]

2
+(x | y)⟨ai,a j⟩

for all x,y ∈ g, ai,a j ∈ A. Since D is the centralizer of g, it is a subalgebra of L. The
product

[d,g⊗ai]⊆ g⊗A for all d ∈ D.

Hence
[d,x⊗ai] = ∑

k∈I
ε

k
i (d,x)⊗ak.
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Note that εk
i ( , )∈Homg(Fd⊗g,g) and so εk

i (d,x) = εk
i x for some εk

i ∈F for each i. Thus,

[d,x⊗ai] = ∑
k∈I

ε
k
i x⊗ak = x⊗∑

k∈I
ε

k
i ak.

Setting dai = ∑k∈I εk
i ak and extending gives an action of D on A. One can show that A is

a D-module and ⟨A,A⟩ is an ideal of D (by using the Jacoby identity for d, x⊗ a, y⊗ b
and for d, d′, x⊗a where d,d′ ∈ D and a,b ∈ A).



Chapter 4

The coordinate algebra of a Θn-graded
Lie algebra, n ≥ 5

Let L be an Θn-graded Lie algebra and let g∼= sln be the grading subalgebra of L. Assume
that n ≥ 7 or n = 5,6 and the conditions (1.2.1) hold. Let g± = {x ∈ sln | xt =±x}. Then

g⊗A = (g+⊕g−)⊗A = (g+⊗A)⊕ (g−⊗A) = (g+⊗A−)⊕ (g−⊗A+) (4.0.1)

where A± is a copy of the vector space A. Recall that we identify g with g⊗1 where 1 is
a distinguished element of A. We denote by a± the image of a ∈ A in the space A±.

In Chapter 3 we described the multiplicative structures of Θn-graded Lie algebras. In
this chapter we describe the coordinate algebras of these Lie algebras. Denote

a := A+⊕A−⊕C⊕E ⊕C′⊕E ′ and b := a⊕B⊕B′.

We show that the product in L induces an algebra structure on both a and b. In Sec-
tion 4.1 we prove that a is a unital associative subalgebra of b with involution whose
symmetric and skew-symmetric elements are A+⊕E ⊕E ′ and A−⊕C⊕C′. In Section
4.2 we prove that b is a unital algebra with an involution η whose symmetric and skew-
symmetric elements are A+⊕E⊕E ′⊕B⊕B′ and A−⊕C⊕C′. It is also shown that B⊕B′

is an associative a-bimodule with a hermitian form χ with values in a. More exactly,
for all β1,β2 ∈ B⊕B′ and α ∈ a we have χ(β1,β2) = β1β2, χ(αβ1,β2) = αχ(β1,β2),
η(χ(β1,β2)) = χ(β2,β1) and χ(β1,αβ2) = χ(β1,β2)η(α). In Section 4.3 we show that
the associative algebra a has the following realization by 2× 2 matrices with entries in
the components of a:
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a∼=

[
A1 C⊕E

C′⊕E ′ A2

]
.

4.1 Unital associative algebra a

We are going to define Lie and Jordan multiplication on a by extending the bilinear
products given in Table 4.1.1 in a natural way. It can be shown that all products (α1,α2)Z

with α1,α2 ∈ a are either symmetric or skew-symmetric. This is why we will write
(α1 ◦α2)Z or [α1,α2]Z , respectively, instead of (α1,α2)Z . The aim of this section is to
show that a is an associative algebra with respect to the new multiplication given by

α1α2 :=
[α1,α2]

2
+

α1 ◦α2

2
.

Remark 4.1.1. In this remark we rewrite some of the products in (3.4.4) in terms of sym-
metric and skew-symmetric elements. Note that every x ∈ g is uniquely decomposed as
x = x++ x− where x+ = x+xt

2 ∈ g+ and x− = x−xt

2 ∈ g−.
(a) Let x+1 ⊗a−1 , x+2 ⊗a−2 ∈ g+⊗A− and x−1 ⊗a+1 ,x

−
2 ⊗a+2 ∈ g−⊗A+. Since

[x⊗a1,y⊗a2] = x◦ y⊗ [a1,a2]

2
+[x,y]⊗ a1 ◦a2

2
+(x | y)⟨a1,a2⟩,

and (x+1 | x−1 ) =
1
n tr(x+1 x−1 ) = 0 we have

[x+1 ⊗a−1 ,x
+
2 ⊗a−2 ] = x+1 ◦ x+2 ⊗

[a−1 ,a
−
2 ]A−

2
+[x+1 ,x

+
2 ]⊗

(a−1 ◦a−2 )A+

2
+(x+1 | x+2 )⟨a

−
1 ,a

−
2 ⟩,

[x−1 ⊗a+1 ,x
−
2 ⊗a+2 ] = x−1 ◦ x−2 ⊗

[a+1 ,a
+
2 ]A−

2
+[x−1 ,x

−
2 ]⊗

(a+1 ◦a+2 )A+

2
+(x−1 | x−2 )⟨a

+
1 ,a

+
2 ⟩,

[x+1 ⊗a−1 ,x
−
1 ⊗a+1 ] = x+1 � x−1 ⊗

[a−1 ,a
+
1 ]A+

2
+[x+1 ,x

−
1 ]⊗

(a−1 ◦a+1 )A−

2
.

(b) Let s⊗ c ∈ S⊗C and λ ⊗ e ∈ Λ⊗E. Since

[x⊗a,s⊗ c] = (xs+ sxt)⊗ (a,c)C
2

+(xs− sxt)⊗ (a,c)E

2
and

x+s+ s(x+)t = x+s+ sx+ = x+ ◦ s,

x+s− s(x+)t = x+s− sx+ = [x+,s],

x−s+ s(x−)t = x−s− sx− = [x−,s],

x−s− s(x−)t = x−s+ sx− = x− ◦ s,
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we obtain

[x+⊗a−,s⊗ c] = x+ � s⊗ [a−,c]C
2

+[x+,s]⊗ (a− ◦ c)E

2
,

[x−⊗a+,s⊗ c] = x− � s⊗ [a+,c]E
2

+[x−,s]⊗ (a+ ◦ c)C
2

.

Since

[x⊗a,λ ⊗ e] = (xλ +λxt)⊗ (a,e)E

2
+(xλ −λxt)⊗ (a,e)C

2
and

x+λ +λ (x+)t = x+λ +λx+ = x+ ◦λ ,

x+λ −λ (x+)t = x+λ −λx+ = [x+,λ ],

x−λ +λ (x−)t = x−λ −λx− = [x−,λ ],

x−λ −λ (x−)t = x−λ +λx− = x− ◦λ ,

we get

[x+⊗a−,λ ⊗ e] = x+ �λ ⊗ [a−,e]E
2

+[x+,λ ]⊗ (a− ◦ e)C
2

,

[x−⊗a+,λ ⊗ e] = x− �λ ⊗ [a+,e]C
2

+[x−,λ ]⊗ (a+ ◦ e)E

2
.

(c) Let s′⊗ c′ ∈ S′⊗C′ and λ ′⊗ e′ ∈ Λ′⊗E ′. Since

[s′⊗ c′,x⊗a] = (s′x+ xts′)⊗ (c′,a)C′

2
+(s′x− xts′)⊗ (c′,a)E ′

2
and

s′x++(x+)ts′ = s′ ◦ x+, s′x+− (x+)ts′ = [s′,x+],

s′x−+(x−)ts′ = [s′,x−], s′x−− (x−)ts′ = s′ ◦ x−,

we get

[s′⊗ c′,x+⊗a−] = s′ � x+⊗ [c′,a−]C′

2
+[s′,x+]⊗ (c′ ◦a−)E ′

2
,

[s′⊗ c′,x−⊗a+] = s′ � x−⊗ [c′,a+]E ′

2
+[s′,x−]⊗ (c′ ◦a+)C′

2
.

Since

[λ ′⊗ e′,x⊗a] = (λ ′x+ xt
λ
′)⊗ (e′,a)E ′

2
+(λ ′x− xt

λ
′)⊗ (e′,a)C′

2
and

λ
′x++(x+)t

λ
′ = λ

′ ◦ x+, λ
′x+− (x+)t

λ
′ = [λ ′,x+],
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λ
′x−+(x−)t

λ
′ = [λ ′,x−], λ

′x−− (x−)t
λ
′ = λ

′ ◦ x−,

we have

[λ ′⊗ e′,x+⊗a−] = λ
′ � x+⊗ [e′,a−]E ′

2
+[λ ′,x+]⊗ (e′ ◦a−)C′

2
,

[λ ′⊗ e′,x−⊗a+] = λ
′ � x−⊗ [e′,a+]C′

2
+[λ ′,x−]⊗ (e′ ◦a+)E ′

2
.

(d) For any x⊗a ∈ g⊗A, x⊗a = (x+xt)
2 ⊗a+ (x−xt)

2 ⊗a ∈ g+⊗A+g−⊗A. Since

[s⊗ c,s′⊗ c′] = (ss′− (s | s′)I)⊗ (c,c′)A +(s | s′)⟨c,c′⟩, and

ss′− (s | s′)I +(ss′− (s | s′)I)t = s◦ s′,

ss′− (s | s′)I − (ss′− (s | s′)I)t = [s,s′],

we get

[s⊗ c,s′⊗ c′] = s◦ s′⊗ [c,c′]A−

2
+[s,s′]⊗ (c◦ c′)A+

2
+(s | s′)⟨c,c′⟩.

Since

[λ ⊗ e,λ ′⊗ e′] = (λλ
′− (λ | λ

′)I)⊗ (e,e′)A +(λ | λ
′)⟨e,e′⟩ and

λλ
′− (λ | λ

′)I +(λλ
′− (λ | λ

′)I)t = λ ◦λ
′,

λλ
′− (λ | λ

′)I − (λλ
′− (λ | λ

′)I)t = [λ ,λ ′],

we obtain

[λ ⊗ e,λ ′⊗ e′] = λ ◦λ
′⊗ [e,e′]A−

2
+[λ ,λ ′]⊗ (e◦ e′)A+

2
+(λ | λ

′)⟨e,e′⟩.

Since [s⊗c,λ ′⊗e′] = sλ ′⊗(c,e′)A and sλ ′+(sλ ′)t = [s,λ ′], sλ ′−(sλ ′)t = s◦λ ′, we get

[s⊗ c,λ ′⊗ e′] = s�λ
′⊗ [c,e′]A+

2
+[s,λ ′]⊗ (c◦ e′)A−

2
.

Since [s′⊗ c′,λ ⊗ e] = s′λ ⊗ (c′,e)A and λ ′s+(λ ′s)t = [λ ′,s], (λ ′s)− (sλ ′)t = λ ′ � s, we
have

[s′⊗ c′,λ ⊗ e] = s′ �λ ⊗ [c′,e]A+

2
+[s′,λ ]⊗ (c′ ◦ e)A−

2
.

The mappings α ⊗β 7→ (α ◦β )Z1 and α ⊗β 7→ [α,β ]Z2 can be extended to Y ⊗X in a
consistent way by defining (β ◦α)Z1 = (α ◦β )Z1 and [β ,α]Z2 =−[α,β ]Z2 . In Table 4.1.1
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below, if the cell in row X and column Y contains (Z1,◦), and (Z2, [ ]) this means that
there is a symmetric bilinear map X ×Y → Z1, given by α ⊗β 7→ (α ◦β )Z1 and a skew
symmetric bilinear map X ×Y → Z2, given by α ⊗β 7→ [α,β ]Z2 (α ∈ X ,β ∈ Y ).

. A+ A− C E C′ E ′

A+ (A+,◦)
(A−, [ ])

(A−,◦)
(A+, [ ])

(C,◦)
(E, [ ])

(E,◦)
(C, [ ])

(C′,◦)
(E, [ ])

(E ′,◦)
(C′, [ ])

A− (A−,◦)
(A+, [ ])

(A+,◦)
(A−, [ ])

(E,◦)
(C, [ ])

(C,◦)
(E, [ ])

(E ′,◦)
(C′, [ ])

(C′,◦)
(E ′, [ ])

C
(C,◦)
(E, [ ])

(E,◦)
(C, [ ])

0 0
(A+,◦)
(A−, [ ])

(A−,◦)
(A+, [ ])

E
(E,◦)
(C, [ ])

(C,◦)
(E, [ ])

0 0
(A−,◦)
(A+, [ ])

(A+,◦)
(A−, [ ])

C′ (C′,◦)
(E, [ ])

(E ′,◦)
(C′, [ ])

(A+,◦)
(A−, [ ])

(A−,◦)
(A+, [ ])

0 0

E ′ (E ′,◦)
(C′, [ ])

(C′,◦)
(E ′, [ ])

(A−,◦)
(A+, [ ])

(A+,◦)
(A−, [ ])

0 0

Table 4.1.1: Products of homogeneous components of a

We are going to show that a = A+⊕A−⊕C⊕E ⊕C′⊕E ′ is an associative algebra
with respect to multiplication defined as follows:

α1α2 :=
[α1,α2]

2
+

α1 ◦α2

2

for all homogeneous α1,α2 ∈ a with the products [ ] and ◦ given by Table 4.1.1. Note that
[α1,α2] = α1α2 −α2α1 and α1 ◦α2 = α1α2 +α2α1.

From Table 4.1.1 and the formulas in Remark 4.1.1, we deduce the following.

Lemma 4.1.2. Let α1,α2 and α3 be homogeneous elements of a. Then

[z1 ⊗α1,z2 ⊗α2] = z1 ◦ z2 ⊗
[α1,α2]

2
+[z1,z2]⊗

α1 ◦α2

2
+(z1 | z2)⟨α1,α2⟩,

if α1,α2 ∈ X = A± or α1 ∈ X and α2 ∈ X ′ with X =C,E. In all other cases we have

[z1 ⊗α1,z2 ⊗α2] = z1 � z2 ⊗
[α1,α2]

2
+[z1,z2]⊗

α1 ◦α2

2
.

Theorem 4.1.3. a = A+⊕A−⊕C⊕E ⊕C′⊕E ′ is an associative algebra with identity
element 1+.
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Proof. It will be shown in Proposition 4.2.2 that 1+ is the identity element of a larger
algebra b containing a as a subalgebra. Therefore we only need to prove the associativity.
Let α1,α2,α3∈ a. We need to show that α1(α2α3) = (α1α2)α3. By linearity, we can
assume that α1,α2 and α3 are homogeneous. Set

z1 = E1,2 + ε1E2,1, z2 = E2,3 + ε2E3,2 and z3 = E3,4 + ε3E4,3 where εi =±1.

The signs of each εi can be chosen in such a way that zi⊗αi belongs to the corresponding
homogeneous component of L. Note that tr(ziz j) = 0, for all i ̸= j. Hence by Lemma
4.1.2, we have

[zi ⊗αi,z j ⊗α j] = zi � z j ⊗
[αi,α j]

2
+[zi,z j]⊗

αi ◦α j

2
.

Consider the Jacoby identity for z1 ⊗α1,z2 ⊗α2,z3 ⊗α3:

[z1 ⊗α1, [z2 ⊗α2,z3 ⊗α3]] = [[z1 ⊗α1,z2 ⊗α2],z3 ⊗α3]+ [z2 ⊗α2, [z1 ⊗α1,z3 ⊗α3]].

Using Lemma 4.1.2 yields

[z1, [z2,z3]]⊗
α1 ◦ (α2 ◦α3)

2
+ z1 � [z2,z3]⊗

[α1,α2 ◦α3]

4
(4.1.1)

+[z1,(z2 � z3)]⊗
α1 ◦ [α2,α3]

4
+ z1 � (z2 � z3)⊗

[α1, [α2,α3]]

4

= [[z1,z2],z3]⊗
(α1 ◦α2)◦α3

4
+([z1,z2]� z3)⊗

[α1 ◦α2,α3]

4
+[z1 � z2,z3]⊗

[α1,α2]◦α3

4

+(z1 ◦ z2)◦ z3 ⊗
[[α1,α2],α3]

4
+[z2, [z1,z3]]⊗

α2 ◦ (α1 ◦α3)

4
+ z2 � [z1,z3]⊗

[α2,α1 ◦α3]

4

+[z2,(z1 � z3)]⊗
α2 ◦ [α1,α3]

4
+ z2 � (z1 � z3)⊗

[α2, [α1,α3]]

4
.

Note that

z1 � (z2 � z3) = E1,4 + ε1ε2ε3E4,1,

[z1,(z2 � z3)] = E1,4 − ε1ε2ε3E4,1,

z1 � [z2,z3] = E1,4 − ε1ε2ε3E4,1,

[[z1,z2],z3] = E1,4 + ε1ε2ε3E4,1,

(z1 � z2)� z3 = E1,4 + ε1ε2ε3E4,1,

[z1 � z2,z3] = E1,4 − ε1ε2ε3E4,1,

[z1,z2]� z3 = E1,4 − ε1ε2ε3E4,1,
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[z2, [z1,z3]] = z2 � (z1 � z3) = [z2,(z1 � z3)] = z2 � [z1,z3] = 0.

Now (4.1.1) becomes

(E1,4 + ε1ε2ε3E4,1)⊗α1 ◦ (α2 ◦α3)+(E1,4 − ε1ε2ε3E4,1)⊗ [α1,α2 ◦α3]

+ (E1,4 − ε1ε2ε3E4,1)⊗α1 ◦ [α2,α3]+ (E1,4 + ε1ε2ε3E4,1)⊗ [α1, [α2,α3]]

= (E1,4 + ε1ε2ε3E4,1)⊗ (α1 ◦α2)◦α3 +(E1,4 − ε1ε2ε3E4,1)⊗ [α1 ◦α2,α3]

+ (E1,4 − ε1ε2ε3E4,1)⊗ [α1,α2]◦α3 +(E1,4 + ε1ε2ε3E4,1)⊗ [[α1,α2],α3].

By collecting the coefficients of E1,4 we get

α1 ◦ (α2 ◦α3)+ [α1,α2 ◦α3]+α1 ◦ [α2,α3]+ [α1, [α2,α3]]

= (α1 ◦α2)◦α3 +[α1 ◦α2,α3]+ [α1,α2]◦α3 +[[α1,α2],α3],

or equivalently α1(α2α3) = (α1α2)α3, as required.

From Theorem 4.1.3 and tensor product decompositions for sln (n ≥ 4), we deduce
the following

Corollary 4.1.4. A = A−⊕A+ is an associative subalgebra of a with identity element
1+.

Corollary 4.1.5. C⊕E and C′⊕E ′ are A -bimodules.

Theorem 4.1.6. The linear transformation γ : a→ a defined by

γ(a−) =−a−,γ(a+) = a+,γ(c) =−c,γ(e) = e,γ(c′) =−c′,γ(e′) = e′,

is an antiautomorphism of order 2 of the algebra a.

Proof. We need only to check that γ(xy) = γ(y)γ(x) for all homogeneous x and y in a:

γ(a+1 a+2 ) = γ(
[a+1 ,a

+
2 ]

2
+

a+1 ◦a+2
2

) =−
[a+1 ,a

+
2 ]

2
+

a+1 ◦a+2
2

= a+2 a+1 = γ(a+2 )γ(a
+
1 ),

γ(a−1 a−2 ) = γ(
[a−1 ,a

−
2 ]

2
+

a−1 ◦a−2
2

) =−
[a−1 ,a

−
2 ]

2
+

a−1 ◦a−2
2

= a−2 a−1 = γ(a−2 )γ(a
−
1 ),

γ(a+1 a−2 ) = γ(
[a+1 ,a

−
2 ]

2
+

a+1 ◦a−2
2

) =
[a+1 ,a

−
2 ]

2
−

a+1 ◦a−2
2

= (−a−2 )a
+
1 = γ(a−2 )γ(a

+
1 ),

γ(a−1 a+2 ) = γ(
[a−1 ,a

+
2 ]

2
+

a−1 ◦a+2
2

) =
[a−1 ,a

+
2 ]

2
−

a−1 ◦a+2
2

= a+2 (−a−1 ) = γ(a+2 )γ(a
−
1 ),

γ(a−c) = γ(
[a−,c]C

2
+

(a− ◦ c)E

2
) =− [a−,c]C

2
+

(a− ◦ c)E

2
= ca− = γ(c)γ(a−),



4.2 Coordinate algebra b 50

γ(a−e) = γ(
[a−,e]E

2
+

(a− ◦ e)C
2

) =
[a−,e]E

2
− (a− ◦ e)C

2
= e(−a−) = γ(e)γ(a−),

γ(a+c) = γ(
[a+,c]E

2
+

(a+ ◦ c)C
2

) =
[a+,c]E

2
− (a+ ◦ c)C

2
= (−c)a+ = γ(c)γ(a+),

γ(a+e) = γ(
[a+,e]C

2
+

(a+ ◦ e)E

2
) =− [a+,e]C

2
+

(a+ ◦ e)E

2
= ea+ = γ(e)γ(a+),

γ(c′a−) = γ(
[c′,a−]C′

2
+

(c′ ◦a−)E ′

2
) =− [a−,c′]C′

2
+

(a− ◦ c′)E ′

2
= a−c′ = γ(a−)γ(c′),

γ(e′a−) = γ(
[e′,a−]E ′

2
+

(e′ ◦a−)C′

2
) =

[e′,a−]E ′

2
− (e′ ◦a−)C′

2
= (−a−)e′ = γ(a−)γ(e′),

γ(c′a+) = γ(
[c′,a+]E ′

2
+

(c′,a+)C′

2
) =

[c′,a+]E ′

2
− (c′,a+)C′

2
= a+(−c′) = γ(a+)γ(c′),

γ(e′a+) = γ(
[e′,a+]C′

2
+

(e′ ◦a+)E ′

2
) =− [e′,a+]C′

2
+

(e′ ◦a+)E ′

2
= a+e′ = γ(a+)γ(e′),

γ(cc′) = γ(
[c,c′]A−

2
+

(c◦ c′)A+

2
) =− [c,c′]A−

2
+

(c◦ c′)A+

2
= c′c = γ(c′)γ(c),

γ(ee′) = γ(
[e,e′]A−

2
+

(e◦ e′)A+

2
) =− [e,e′]A−

2
+

(e◦ e′)A+

2
= e′e = γ(e′)γ(e),

γ(ce′) = γ(
[c,e′]A+

2
+

(c◦ e′)A−

2
) =

[c,e′]A+

2
− (c◦ e′)A−

2
= e′(−c) = γ(e′)γ(c),

γ(c′e) = γ(
[c′,e]A+

2
+

(c′ ◦ e)A−

2
) =

[c′,e]A+

2
− (c′ ◦ e)A−

2
= (−c′)e = γ(e)γ(c′).

4.2 Coordinate algebra b

Define
b := a⊕B⊕B′ = A+⊕A−⊕C⊕E ⊕C′⊕E ′⊕B⊕B′.

The aim of this section is to show that b is an algebra with identity 1+ with respect
to the multiplication extending that on a given in Table 4.2.1. It can be shown that all
products (β1,β2)Z with β1,β2 ∈ B⊕B′ are either symmetric or skew-symmetric. This is
why we will write (β1 ◦β2)Z or [β1,β2]Z , respectively, instead of (β1,β2)Z . For α ∈ a and
β ∈ B⊕B′ we will write αβ (resp. βα) instead of (α,β )Z (resp. (β ,α)Z). Let b ∈ B
and b′ ∈ B. We define bα := γ(α)b and αb′ := b′γ(α). We will show that B⊕B′ is an
a-bimodule.

Recall that

x⊗a =
(x+ xt)

2
⊗a+

(x− xt)

2
⊗a ∈ g+⊗A+g−⊗A.
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Let u⊗b ∈V ⊗B and v′⊗b′ ∈V ′⊗B′. We need the following formula from (3.4.4):

[u⊗b,v′⊗b′] = (uv′t − tr(uv′t)
n

I)⊗ (b,b′)A +
2tr(uv′t)

n
⟨b,b′⟩.

By splitting (b,b′)A into symmetric and skew-symmetric parts and using the equations

(uv′t − tr(uv′t)
n

I)+(uv′t − tr(uv′t)
n

I)t = uv′t + v′ut − 2tr(uv′t)
n

I,

(uv′t − tr(uv′t)
n

I)− (uv′t − tr(uv′t)
n

I)t = uv′t − v′ut ,

we get

[u⊗b,v′⊗b′] = (uv′t + v′ut − 2tr(uv′t)
n

I)⊗ [b,b′]A−

2
+

(uv′t − v′ut)⊗ (b◦b′)A+

2
+

2tr(uv′t)
n

⟨b,b′⟩. (4.2.1)

Let b,b1,b2 ∈ B and b′,b′1,b
′
2 ∈ B′. Using (3.4.4) and (4.2.1) we get

[u⊗b1,v⊗b2] = (uvt + vut)⊗ [b1,b2]C
2

+(uvt − vut)⊗ (b1 ◦b2)E

2
,

[u′⊗b′1,v
′⊗b′2] = (u′v′t + v′u′t)⊗

[b′1,b
′
2]C′

2
+(u′v′t − v′u′t)⊗

(b′1 ◦b′2)E ′

2
,

[u⊗b,v′⊗b′] = (uv′t + v′ut − 2tr(uv′t)
n

I)⊗ [b,b′]A−

2
+

(uv′t − v′ut)⊗ (b◦b′)A+

2
+

2tr(uv′t)
n

⟨b,b′⟩. (4.2.2)

We define

b1b2 :=
[b1,b2]C

2
+

(b1 ◦b2)E

2
, b′1b′2 :=

[b′1,b
′
2]C′

2
+

(b′1 ◦b′2)E ′

2
,

bb′ :=
[b,b′]A−

2
+

(b◦b′)A+

2
, b′b :=− [b,b′]A−

2
+

(b◦b′)A+

2
.

Then b = a⊕B⊕B′ is an algebra with multiplication extending that on a. The follow-
ing table describes the products of homogeneous elements of b (use Table 4.1.1 for the
products on a).
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. A++A− C+E C′+E ′ B B′

A++A− A++A− C+E C′+E ′ B B′

C+E C+E 0 A++A− 0 B
C′+E ′ C′+E ′ A++A− 0 B’ 0

B B 0 B′ (E,◦)
(C, [ ])

(A+,◦)
(A−, [ ])

B′ B′ B 0
(A+,◦)
(A−, [ ])

(E ′,◦)
(C′, [ ])

Table 4.2.1: Products in b

Theorem 4.2.1. The linear transformation η : b→ b defined by η(α) = γ(α), η(b) = b
and η(b′) = b′ for all α ∈ a, b ∈ B and b′ ∈ B′ is an antiautomorphism of order 2 of the
algebra b.

Proof. In Theorem 4.1.6, we showed that η(xy) = η(y)η(x) for all x and y in a. Let
b,b1,b2 ∈ B,b′,b′1,b

′
2 ∈ B′ and α ∈ a. We have

η(b1b2) = η(
[b1,b2]C +(b1 ◦b2)E

2
) =

−[b1,b2]C +(b1 ◦b2)E

2
= b2b1 = η(b2)η(b1),

η(b′1b′2) = η(
[b′1,b

′
2]C′ +(b′1 ◦b′2)E ′

2
) =

−[b′1,b
′
2]C′ +(b′1 ◦b′2)E ′

2
= b′2b′1 = η(b′2)η(b′1),

η(bb′) = η(
[b,b′]A− +(b◦b′)A+

2
) =

−[b,b′]A− +(b◦b′)A+

2
= b′b = η(b′)η(b),

η(αb) = αb = bη(α) = η(b)η(α),

η(b′α) = b′α = η(α)b′ = η(α)η(b′).

Using these properties and Theorem 4.1.6 we deduce that η is an antiautomorphism of
order 2 of the algebra b.

Proposition 4.2.2. 1+ is the identity element of b.

Proof. Let a± ∈ A±, b ∈ B, b′ ∈ B′, c ∈ C, c′ ∈ C′, e ∈ E and e′ ∈ E ′. Recall that we
identify g with g⊗1 where 1 is a distinguished element of A and 1+ is the image of 1 in
A+. Using (3.4.4) and (3.4.2) we get

[x−1 ,x
−
2 ]⊗a+ = [x−1 ,x

−
2 ]⊗

(1+ ◦a+)A+

2
+[x−1 ,x

−
2 ]⊗

[1+,a+]A−

2
+(x−1 | x−2 )⟨1

+,a+⟩,

[x−1 ,x
+
1 ]⊗a− = [x−1 ,x

+
1 ]⊗

(1+ ◦a−)A−

2
+ x−1 ◦ x+1 ⊗ [1+,a−]A−

2
,
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[x−,s]⊗ c = [x−,s]⊗ (1+ ◦ c)C
2

+ x− ◦ s⊗ [1+,c]E
2

,

[x−,λ ]⊗ e = [x−,λ ]⊗ (1+ ◦ e)E

2
+ x− ◦λ ⊗ [1+,e]C

2
,

[x−,s′]⊗ c′ = [x−,s′]⊗ (1+ ◦ c′)C′

2
+ x− ◦ s′⊗ [1+,c′]E ′

2
,

[x−,λ ′]⊗ e′ = [x−,λ ′]⊗ (1+ ◦ e′)E ′

2
+ x− ◦λ

′⊗ [1+ ◦ e′]C′

2
,

and xu ⊗ 1+.b = xu ⊗ b, xtu′ ⊗ 1+.b′ = xtu′ ⊗ b′. This implies that (1+◦a+)A+
2 = a+,

[1+,a+]A−
2 = 0, (1+◦a−)A−

2 = a−, [1+,a−]A−
2 = 0, (1+◦c)C

2 = c, [1+,c]E
2 = 0, (1+◦e)E

2 = e, [1+,e]C
2 =

0, (1+◦c′)C′
2 = c′, [1+,c′]E′

2 = 0, (1+◦e′)E′
2 = e′, [1+◦e′]C′

2 = 0, 1+.b = b and 1+.b′ = b′. Com-
bining these properties and the fact that ◦ is symmetric, [ , ] is skew symmetric and
η(1+) = 1+, we see that 1+ is the identity element of b.

Using (3.4.4) and Table 4.2.1, we deduce the following.

Lemma 4.2.3. Let b ∈ B, b′ ∈ B′ and α ∈ a. Then

[z⊗α,u⊗b] = zu⊗αb =−[u⊗b,z⊗α],

[u′⊗b′,z⊗α] = ztu′⊗b′α =−[z⊗α,u′⊗b′].

Proposition 4.2.4. B⊕B′ is an a-bimodule.

Proof. Let b ∈ B,b′ ∈ B′ and let α1,α2 be homogeneous elements in a. Set

z1 = E1,2 + ε1E2,1, z2 = E2,3 + ε2E3,2 and u = u′ = e3 where εi =±1.

Then [z1,z2] = E1,3 − ε1ε2E3,1, z1 ◦ z2 = E1,3 + ε1ε2E3,1, z1z2 = E1,3 and (z1|z2) = 0.
First we are going to show that (α1α2)b = α1(α2b). Consider the Jacoby identity for

z1 ⊗α1,z2 ⊗α2,u⊗b:

[z1 ⊗α1, [z2 ⊗α2,u⊗b]] = [[z1 ⊗α1,z2 ⊗α2],u⊗b]+ [z2 ⊗α2, [z1 ⊗α1,u⊗b]].

Using Lemmas 4.2.3 and 4.1.2 we get

z1(z2u)⊗α1(α2b)− (z1 ◦ z2)u⊗
[α1,α2]

2
b− [z1,z2]u⊗

α1 ◦α2

2
b = 0. (4.2.3)
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Substituting matrix units, we get that

e1 ⊗ (α1(α2b)− [α1,α2]

2
b− α1 ◦α2

2
b) = 0,

so α1(α2b) = [α1,α2]
2 b+ α1◦α2

2 b = (α1α2)b, as required.
Now we are going to show that (b′α2)α1 = b′(α2α1). Consider the Jacoby identity

for z1 ⊗α1,z2 ⊗α2,u′⊗b′:

[z1 ⊗α1, [z2 ⊗α2,u′⊗b′]] = [[z1 ⊗α1,z2 ⊗α2],u′⊗b′]+ [z2 ⊗α2, [z1 ⊗α1,u′⊗b′]].

Using Lemmas 4.1.2 and 4.2.3 we get

(z2z1)
tu′⊗ (b′α2)α1 =−(z1 ◦ z2)

tu′⊗b′
[α1,α2]

2
− [z1,z2]

tu′⊗b′
α1 ◦α2

2
.

Substituting matrix units, we get that

ε1ε2e1 ⊗ (b′α2)α1 =−ε1ε2e1 ⊗b′
[α1,α2]

2
+b′

α1 ◦α2

2
,

so (b′α2)α1 = b′(α2α1), as required. It remains to show b(α1α2)= (bα1)α2 and (α1α2)b′=
α1(α2b′). We have

b(α1α2) = η(η(α1α2)η(b)) = η((η(α2)η(α1))η(b))

= η(η(α2)(η(α1)η(b))) = η(η(α2)η((bα1))) = (bα1)α2.

Similarly, we get (α1α2)b′ = α1(α2b′), as required.

Note that both B and B′ are invariant under multiplication by A , see Table 4.2.1, so
we get the following.

Corollary 4.2.5. B and B′ are A -bimodules.

Proposition 4.2.6. Let χ(β1,β2) := β1β2 for all β1,β2 ∈ B⊕B′. Then χ is a hermitian
form on the a-bimodule B⊕B′ with values in a. More exactly, for all α ∈ a and β1,β2 ∈
B⊕B′ we have

(i) χ(αβ1,β2) = αχ(β1,β2),
(ii) η(χ(β1,β2)) = χ(β2,β1),
(iii) χ(β1,αβ2) = χ(β1,β2)η(α).

Proof. (i) We need to show that (αβ1)β2 = α(β1β2) for all homogeneous β1, β2 in B⊕B′

and α ∈ a. Set z = E1,2 + εE2,1, u1 = u′1 = e1 and u2 = u′2 = e3 where ε = ±1. Let
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b1,b2 ∈ B and b′1,b
′
2 ∈ B′. First we are going to show that α(b1b2) = (αb1)b2. Consider

the Jacoby identity for z⊗α , u1 ⊗b1, u2 ⊗b2:

[z⊗α, [u1 ⊗b1,u2 ⊗b2]] = [[z⊗α,u1 ⊗b1],u2 ⊗b2]+ [u1 ⊗b1, [z⊗α,u2 ⊗b2]].

Using (4.2.2) and Lemma 4.2.3 we get

[z⊗α,(E1,3+E3,1)⊗
[b1,b2]C

2
+[z⊗α,(E1,3−E3,1)⊗

(b1 ◦b2)E

2
] = [εe2⊗αb1,u2⊗b2].

(4.2.4)
By using Lemma 4.1.2 and (4.2.2), we get

(εE2,3 + εE3,2)⊗
[α, [b1,b2]C]

2
+(εE2,3 − εE3,2)⊗

α ◦ [b1,b2]C
2

+(εE2,3 + εE3,2)⊗
[α,(b1 ◦b2)E ]

2
+(εE2,3 − εE3,2)⊗

α ◦ (b1 ◦b2)E

2

= (εE2,3 + εE3,2)⊗
[αb1,b2]

2
+(εE2,3 − εE3,2)⊗

αb1 ◦b2

2

By collecting the coefficients of E2,3, we get:

[α, [b1,b2]C]+α ◦ [b1,b2]C
2

+
[α,(b1 ◦b2)E ]+α ◦ (b1 ◦b2)E

2
=

[αb1,b2]+αb1 ◦b2

2
,

or equivalently α(b1b2) = (αb1)b2, as required.
Similarly, one can show that α(b1b′2) = (αb1)b′2 (by using the Jacoby identity for

z⊗α,u1 ⊗b1,u′2 ⊗b′2).
By using the Jacoby identity for z⊗α , u′1 ⊗ b′1, u′2 ⊗ b′2 and similar calculations we

get b′2(b
′
1α) = (b′2b′1)α . By applying the involution η to both sides and using the fact

that η is identity on both B and B′, we get (η(α)b′1)b
′
2 = η(α)(b′1b′2), or equivalently

(αb′1)b
′
2 = α(b′1b′2), as required.

By using the Jacoby identity for z⊗α,u1 ⊗ b1,u′2 ⊗ b′2 we get (b2b′1)α = b2(b′1α).
By applying η we get η(α)(b′1b2) = (η(α)b′1)b2, or equivalently α(b′1b2) = (αb′1)b2, as
required.

(ii) We only need to check this for homogeneous elements. We have

η(χ(b1,b2)) = η(
[b1,b2]C +(b1 ◦b2)E

2
) =

−[b1,b2]C +(b1 ◦b2)E

2
= χ(b2,b1),

η(χ(b′1,b
′
2)) = η(

[b′1,b
′
2]C′ +(b′1 ◦b′2)E ′

2
) =

−[b′1,b
′
2]C′ +(b′1 ◦b′2)E ′

2
= χ(b′2,b

′
1),

η(χ(b1,b′1)) = η(
[b1,b′1]A− +(b1 ◦b′1)A+

2
) =

−[b1,b′1]A− +(b1 ◦b′1)A+

2
= χ(b′1,b1),
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η(χ(b′1,b1)) = η(
[b′1,b1]A− +(b′1 ◦b1)A+

2
) =

−[b′1,b1]A− +(b′1 ◦b1)A+

2
= χ(b1,b′1),

as required.
(iii) Using (i) and (ii), we get

χ(β1,αβ2) = η(χ(αβ2,β1)) = η(αχ(β2,β1)) = η(χ(β2,β1))η(α) = χ(β1,β2)η(α).

The mapping ⟨,⟩ : X ⊗X ′ → D with X = B,C,E can be extended to X ′⊗X in a con-
sistent way by defining ⟨x′,x⟩ := −⟨x,x′⟩. Let X ,Y ∈ {A+,A−,B,B′,C,C′,E,E ′}. Recall
also the maps ⟨,⟩ : A±⊗A± → D described previously (see Remark 4.1.1(a)). For the
convenience, we extend the mappings to the whole space b by defining the remaining
⟨X ,Y ⟩ to be zero. Hence

⟨b,b⟩= ⟨A+,A+⟩+ ⟨A−,A−⟩+ ⟨B,B′⟩+ ⟨C,C′⟩+ ⟨E,E ′⟩.

It follows from condition (Γ3) in Definition 3.0.1 that

D = ⟨b,b⟩. (4.2.5)

Proposition 4.2.7. Let α1,α2 and α3 be homogeneous elements in b with ⟨α1,α2⟩ ̸= 0.
Then

⟨α1,α2⟩α3 =



[α1,α2]A−α3
2 + n((α3α2)α1−(α3α1)α2)

2 if α1,α2,α3 ∈ B⊕B′,

[[α1,α2]A−,α3] if α1,α2,α3 ∈ a,

[α1,α2]A−α3 if α1,α2 ∈ a, α3 ∈ B⊕B′,
[[α1,α2]A− ,α3]

2 if α1 ∈ B, α2 ∈ B′, α3 ∈ a.

Proof. Since ⟨α1,α2⟩ ̸= 0, we need to consider only the following cases:
Case 1: α1,α2,α3 ∈ a. Consider the Jacoby identity for z1 ⊗α1, z2 ⊗α2, z3 ⊗α3:

[z1 ⊗α1, [z2 ⊗α2,z3 ⊗α3]] = [[z1 ⊗α1,z2 ⊗α2],z3 ⊗α3]+ [z2 ⊗α2, [z1 ⊗α1,z3 ⊗α3]].

Let z1 = z2 = E1,2+ε1E2,1 and z3 = E2,3+ε2E3,2 where εi =±1. Using Lemma 4.1.2 we
get

[z1, [z2,z3]]⊗
α1 ◦ (α2 ◦α3)

4
+ z1 ◦ [z2,z3]⊗

[α1,α2 ◦α3]

4
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+[z1,(z2 ◦ z3)]⊗
α1 ◦ [α2,α3]

4
+ z1 ◦ (z2 ◦ z3)⊗

[α1, [α2,α3]]

4

= [[z1,z2],z3]⊗
(α1 ◦α2)A+ ◦α3

4
+[z1,z2]◦ z3 ⊗

[(α1 ◦α2)A+,α3]

4

(z1 | z2)z3 ⊗⟨α1,α2⟩α3 +[z1 ◦ z2,z3]⊗
[α1,α2]A− ◦α3

4
+(z1 ◦ z2)◦ z3 ⊗

[[α1,α2]A−,α3]

4

+[z2, [z1,z3]]⊗
α2 ◦ (α1 ◦α3)

4
+ z2 ◦ [z1,z3]⊗

[α2,α1 ◦α3]

4

+[z2,(z1 ◦ z3)]⊗
α2 ◦ [α1,α3]

4
+ z2 ◦ (z1 ◦ z3)⊗

[α2, [α1,α3]]

4
.

Note that

[z1, [z2,z3]] = ε1E2,3 + ε1ε2E3,2,

z1 ◦ (z2 ◦ z3) = ε1E2,3 + ε1ε2E3,2,

[z1,z2 ◦ z3] = ε1E2,3 − ε1ε2E3,2,

z1 ◦ [z2,z3] = ε1E2,3 − ε1ε2E3,2,

(z1 ◦ z2)◦ z3 = 2
(n−4)

n
(ε1E2,3 + ε1ε2E3,2), (4.2.6)

[z1 ◦ z2,z3] = 2(ε1E2,3 − ε1ε2E3,2),

[[z1,z2],z3] = [z1,z2]◦ z3 = 0,

[z2, [z1,z3]] = ε1E2,3 + ε1ε2E3,2,

z2 ◦ (z1 ◦ z3) = ε1E2,3 + ε1,ε2E3,2,

[z2,(z1 ◦ z3)] = ε1E2,3 − ε1ε2E3,2,

z2 ◦ [z1,z3] = ε1E2,3 − ε1ε2E3,2.

Now (4.2.6) becomes

(ε1E2,3 + ε1ε2E3,2)⊗
α1 ◦ (α2 ◦α3)

4
+(ε1E2,3 − ε1ε2E3,2)⊗

[α1,α2 ◦α3]

4

+(ε1E2,3 − ε1ε2E3,2)⊗
α1 ◦ [α2,α3]

4
+(ε1E2,3 + ε1ε2E3,2)⊗

[α1, [α2,α3]]

4

= 2(ε1E2,3 − ε1ε2E3,2)⊗
[α1,α2]A− ◦α3

4
+2

(n−4)
n

(ε1E2,3 + ε1ε2E3,2)

⊗ [[α1,α2]A−,α3]

4
+

2ε1

n
(E2,3 + ε2E3,2)⊗⟨α1,α2⟩α3 +(ε1E2,3 + ε1ε2E3,2)

⊗α2 ◦ (α1 ◦α3)

4
+(ε1E2,3 − ε1ε2E3,2)⊗

[α2,α1 ◦α3]

4
+(ε1E2,3 − ε1ε2E3,2)

⊗α2 ◦ [α1,α3]

4
+(ε1E2,3 + ε1ε2E3,2)⊗

[α2, [α1,α3]]

4
.
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By collecting the coefficients of E2,3 we get

α1 ◦ (α2 ◦α3)

4
+

[α1,α2 ◦α3]

4
+

α1 ◦ [α2,α3]

4
+

[α1, [α2,α3]]

4

=
[α1,α2]A− ◦α3

2
+

(n−4)
n

[[α1,α2]A−,α3]

2
+

2
n
⟨α1,α2⟩α3

+
α2 ◦ (α1 ◦α3)

4
+

[α2,α1 ◦α3]

4
+

α2 ◦ [α1,α3]

4
+

[α2, [α1,α3]]

4
.

Since a is an associative algebra (see Theorem 4.1.3) we obtain

⟨α1,α2⟩α3 = [[α1,α2]A−,α3],

as required.
Case 2: α1,α2 ∈ a and α3 ∈ B⊕B′. First assume that α3 ∈ B and consider the Jacoby

identity for z1 ⊗α1, z2 ⊗α2, u⊗α3:

[z1 ⊗α1, [z2 ⊗α2,u⊗α3]] = [[z1 ⊗α1,z2 ⊗α2],u⊗α3]+ [z2 ⊗α2, [z1 ⊗α1,u⊗α3]].

Using Lemmas 4.2.3 and 4.1.2 we get

z1(z2u)⊗α1(α2α3)− (z1 ◦ z2)u⊗
[α1,α2]A−

2
α3 −

1
2
[z1,z2]u⊗ (α1 ◦α2)A+α3

−u⊗ tr(z1z2)

n
⟨α1,α2⟩α3 − z2(z1u)⊗α2(α1α3) = 0.

Set z1 = z2 = E1,2 + ε1E2,1 and u = e1 with ε1 =±1. We get

ε1e1 ⊗ (α1(α2α3)+(−2+
4
n
)
[α1,α2]A−

2
α3 −

2
n
⟨α1,α2⟩α3 −α2(α1α3)) = 0,

so α1(α2α3)− (2− 4
n)

[α1,α2]A−
2 α3 − 2

n⟨α1,α2⟩α3 −α2(α1α3) = 0. Since [α1,α2]A−α3 =

α1(α2α3)−α2(α1α3), we get

⟨α1,α2⟩α3 = [α1,α2]A−α3,

as required. Similarly, one can show that ⟨α1,α2⟩α3 = [α1,α2]A−α3 for α1,α2 ∈ a and
α3 ∈ B′.

Case 3: α1 ∈ B,α2 ∈ B′ and α3 ∈ a. Consider the Jacoby identity for u⊗α1, u′⊗α2,
z⊗α3:

[u⊗α1, [u′⊗α2,z⊗α3]] = [[u⊗α1,u′⊗α2],z⊗α3]+ [u′⊗α2, [u⊗α1,z⊗α3]].
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Set u = e1, u′ = e1 and z = E1,2 + εE2,1 with ε = ±1. Using (4.2.2), Lemmas 4.2.3 and
4.1.2 we get

(E2,1 +E1,2)⊗
[α1,α2α3]

2
+(E1,2 −E2,1)⊗

α1 ◦ (α2α3)

2

= ((E1,2 + εE2,1)−
2
n
(E1,2 + εE2,1))⊗

[[α1,α2]A−,α3]

2

+(E1,2 − εE2,1)⊗
[α1,α2]A− ◦α3

2
+(E1,2 + εE2,1)⊗

2
n
⟨α1,α2⟩α3

+ε(E2,1 +E1,2)⊗
[α3α1,α2]

2
+ ε(E2,1 −E1,2)⊗

(α3α1)◦α2

2
.

By collecting the coefficients of E1,2 we get

[α1,α2α3]

2
+

α1 ◦ (α2α3)

2
=

[[α1,α2]A−,α3]

2
+

[α1,α2]A− ◦α3

2

− [[α1,α2]A−,α3]

n
+

2
n
⟨α1,α2⟩α3 + ε

[α3α1,α2]

2
− ε

(α3α1)◦α2

2
,

or equivalently,

α1(α2α3) = [α1,α2]A−α3 − εα2(α3α1)−
[[α1,α2]A−,α3]

n
+

2
n
⟨α1,α2⟩α3,

Since

[α1,α2]A−α3 = (α1α2 −α2α1)α3 = (α1α2)α3 − (α2α1)α3,

and (α1α2)α3 =α1(α2α3), (α2α1)α3 =α2(η(α3)α1)=−εα2(α3α1) (Using Proposition
4.2.6 ) we obtain

⟨α1,α2⟩α3 =
[[α1,α2]A−,α3]

2
,

as required.
Case 4:α1 ∈ B,α2 ∈ B′ and α3 ∈ B. Consider the Jacoby identity for v⊗α3, u′⊗α2,

u⊗α1:

[v⊗α3, [u′⊗α2,u⊗α1]] = [[v⊗α3,u′⊗α2],u⊗α1]+ [u′⊗α2, [v⊗α3,u⊗α1]].

Taking v = e2, u′ = e1 and u = e1. Using (4.2.2) we get

[e2 ⊗α3,(2E11 −
2
n

I)⊗ [α2,α1]A−

2
+

2
n
⟨α2,α1⟩]

= [(E2,1 +E1,2)⊗
[α3,α2]A−

2
+(E2,1 −E1,2)⊗

(α3 ◦α2)A+

2
,e1 ⊗α1]
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+[e1 ⊗α2,(E2,1 +E1,2)⊗
[α3,α1]C

2
+(E2,1 −E1,2)⊗

(α3 ◦α1)E

2
].

Using (3.4.4) and Lemma 4.2.3 we get

e2 ⊗ (
[α2,α1]A−α3

n
− 2

n
⟨α2,α1⟩α3) =

e2 ⊗ (
[α3,α2]A−

2
α1 +

(α3 ◦α2)A+

2
α1 −

[α3,α1]C
2

α2 −
(α3 ◦α1)E

2
α2),

so,

[α2,α1]A−α3

n
− 2

n
⟨α2,α1⟩α3 =

[α3,α2]A−

2
α1 +

(α3 ◦α2)A+

2
α1

− [α3,α1]C
2

α2 −
(α3 ◦α1)E

2
α2.

We conclude that

⟨α2,α1⟩α3 =
[α2,α1]A−α3

2
+

n((α3α1)α2 − (α3α2)α1)

2
,

or equivalently,

⟨α1,α2⟩α3 =
[α1,α2]A−α3

2
+

n((α3α2)α1 − (α3α1)α2)

2
.

Case 6: α1 ∈ B,α2 ∈ B′ and α3 ∈ B′. This is proved similarly to Case 5 by setting v′ =
e2, u′ = e1 and u = e1 and considering the Jacoby identity for v′⊗α3, u′⊗α2, u⊗α1.

Proposition 4.2.8. (1) [d,⟨α,β ⟩] = ⟨dα,β ⟩+ ⟨α,dβ ⟩ for all α,β ∈ b and d ∈ D.

(2) ⟨A+,A+⟩, ⟨A−,A−⟩, ⟨B,B′⟩, ⟨C,C′⟩ and ⟨E,E ′⟩ are ideals of the Lie algebra D.
(3) D acts by derivations on b and leaves all subspaces A+,A−,B, . . . ,E ′ invariant.

Proof. Let α = a+1 +a−1 +b1 +b′1 + c1 + c′1 + e1 + e′1 and β = a+2 +a−2 +b2 +b′2 + c2 +

c′2 + e2 + e′2 be the decompositions of α and β into homogeneous parts. By considering
Jacobi identities for the following 5 triples,

(i) d, x+1 ⊗a−1 , x+2 ⊗a−2 ;

(ii) d, x−1 ⊗a+1 , x−2 ⊗a+2 ;

(iii) d, u⊗bi,v′⊗b′j;

(iv) d, s⊗ c,s′⊗ c′;

(v) d, λ ⊗ e,λ ′⊗ e′;

we get the following equations, respectively,
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[d,⟨a−1 ,a
−
2 ⟩] = ⟨da−1 ,a

−
2 ⟩+ ⟨a−1 ,da−2 ⟩, (4.2.7)

[d,⟨a+1 ,a
+
2 ⟩] = ⟨da+1 ,a

+
2 ⟩+ ⟨a+1 ,da+2 ⟩,

[d,⟨bi,b′j⟩] = ⟨dbi,b′j⟩+ ⟨bi,db′j⟩,
[d,⟨ci,c′j⟩] = ⟨dci,c′j⟩+ ⟨ci,dc′j⟩,
[d,⟨ei,e′j⟩] = ⟨dei,e′j⟩+ ⟨ei,de′j⟩.

and

d(a−1 a−2 ) = (da−1 )a
−
2 +a−1 (da−2 ), (4.2.8)

d(a+1 a+2 ) = (da+1 )a
+
2 +a+1 (da+2 ),

d(bib′j) = (dbi)b′j +b(db′j),

d(cic′j) = (dci)c′j + ci(dc′j),

d(eie′j) = (dei)e′j + ei(de′j),

where i, j = 1,2. We illustrate this by considering the case (i). By applying Jacobi identity
to d, x+1 ⊗a−1 , x+2 ⊗a−2 , we get

[d, [x+1 ⊗a−1 ,x
+
2 ⊗a−2 ]] = [[d,x+1 ⊗a−1 ],x⊗a−2 ]+ [x+1 ⊗a−1 , [d,x

+
2 ⊗a−2 ]]

Using (3.4.4) and Lemma 4.1.2 we get

x+1 ◦ x+2 ⊗d
[a−1 ,a

−
2 ]A−

2
+[x+1 ,x

+
2 ]⊗d

(a−1 ◦a−2 )A+

2
+(x+1 | x+2 )[d,⟨a

−
1 ,a

−
2 ⟩]

= x+1 ◦ x+2 ⊗
[da−1 ,a

−
2 ]A−

2
+[x+1 ,x

+
2 ]⊗

(da−1 ◦a−2 )A+

2
+(x+1 | x+2 )⟨da−1 ,a

−
2 ⟩

+ x+1 ◦ x+2 ⊗
[a−1 ,da−2 ]A−

2
+[x+1 ,x

+
2 ]⊗

(a−1 ◦da−2 )A+

2
+(x+1 | x+2 )⟨a

−
1 ,da−2 ⟩. (4.2.9)

Then

x+1 ◦ x+2 ⊗d
[a−1 ,a

−
2 ]A−

2
+[x+1 ,x

+
2 ]⊗d

(a−1 ◦a−2 )A+

2
= x+1 ◦ x+2 ⊗

[da−1 ,a
−
2 ]A−

2
+

[x+1 ,x
+
2 ]⊗

(da−1 ◦a−2 )A+

2
+ x+1 ◦ x+2 ⊗

[a−1 ,da−2 ]A−

2
+[x+1 ,x

+
2 ]⊗

(a−1 ◦da−2 )A+

2
(4.2.10)

and
(x+1 | x+2 )[d,⟨a

−
1 ,a

−
2 ⟩] = (x+1 | x+2 )(⟨da−1 ,a

−
2 ⟩+ ⟨a−1 ,da−2 ⟩). (4.2.11)
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When x+1 = x+2 = E1,2 +E2,1, we have tr(x+1 x+2 ) = 1. Hence (4.2.11) is equivalent to

[d,⟨a−1 ,a
−
2 ⟩] = ⟨da−1 ,a

−
2 ⟩+ ⟨a−1 ,da−2 ⟩,

When x+1 = E1,2+E2,1 and x+2 = E2,3+E3,2, we have [x+1 ,x
+
2 ] = E1,3+E3,1 and x+1 ◦x+2 =

E1,3 +E3,1. Hence (4.2.10) is equivalent to:

d(
[a−1 ,a

−
2 ]A−

2
+

(a−1 ◦a−2 )A+

2
) = (

[da−1 ,a
−
2 ]A−

2
+

(da−1 ◦a−2 )A+

2
)

+(
[a−1 ,da−2 ]A−

2
+

(a−1 ◦da−2 )A+

2
),

or equivalently, d(a−1 a−2 ) = (da−1 )a
−
2 +a−1 (da−2 ), as in equation (4.2.7).

By combining the equations (4.2.7) we get

[d,⟨α,β ⟩] = ⟨dα,β ⟩+ ⟨α,dβ ⟩,

for all d ∈ D and α,β ∈ b. This implies that the subspaces ⟨A+,A+⟩, ⟨A−,A−⟩, ⟨B,B′⟩,
⟨C,C′⟩ and ⟨E,E ′⟩ are ideals in D. The equations (4.2.8) show that d acts by deriva-
tion. Similarly, one can show that D acts by derivations on b. Using Proposition 4.2.7
and Tables 4.1.1 and 4.2.1 we get the action of D leaves all subspaces A+,A−,B, . . . ,E ′

invariant as required.

The above results can be summarized as follows.

Theorem 4.2.9 (The structure theorem for Θn-graded Lie algebras). Let L be an Θn-
graded Lie algebra and let g∼= sln be the grading subalgebra of L. Suppose that n ≥ 7 or
n = 5,6 and the conditions (1.2.1) hold. Then

L = (g⊗A)⊕ (V ⊗B)⊕ (V ′⊗B′)⊕ (S⊗C)⊕ (S′⊗C′)⊕ (Λ⊗E)⊕ (Λ′⊗E ′)⊕D

with multiplication given by (3.4.4) where A,B,B′,C,C′,E,E ′ are vector spaces and D is
the sum of the trivial g-modules. Define by g+ := {x ∈ g | xt = x} and g− := {x ∈ g | xt =

−x} the subspaces of symmetric and skew-symmetric matrices in g, respectively. Then
the component g⊗A can be decomposed further as

g⊗A = (g+⊕g−)⊗A = (g+⊗A−)⊕ (g−⊗A+)
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where A− and A+ are two copies of the vector space A. Denote

a := A+⊕A−⊕C⊕E ⊕C′⊕E ′ and b := a⊕B⊕B′.

Then the product in L induces an algebra structure on both a and b satisfying the following
properties.

(i) a is a unital associative subalgebra of b with involution whose symmetric and skew-
symmetric elements are A+⊕E ⊕E ′ and A−⊕C⊕C′, respectively, see Theorems 4.1.3
and 4.1.6.

(ii) b is a unital algebra with an involution η whose symmetric and skew-symmetric
elements are A+⊕E ⊕E ′⊕B⊕B′ and A−⊕C⊕C′, respectively, see Theorem 4.2.1 and
Proposition 4.2.2.

(iii) B⊕B′ is an associative a-bimodule with a hermitian form χ with values in a.
More exactly, for all β1,β2 ∈ B⊕B′ and α ∈ a we have χ(β1,β2) = β1β2, χ(αβ1,β2) =

αχ(β1,β2), η(χ(β1,β2)) = χ(β2,β1) and χ(β1,αβ2) = χ(β1,β2)η(α), see Propositions
4.2.4 and 4.2.6.

(iv) A := A−⊕A+ is a unital associative subalgebra of a and C⊕E, C′⊕E ′, B and
B′ are A -bimodules, see Corollaries 4.1.4, 4.1.5 and 4.2.5.

(v) D acts by derivations on b, see Propositions 4.2.7 and 4.2.8.

4.3 Matrix realization of the algebra a

Recall that g⊗A = g+⊗A−⊕g−⊗A+ where g± = {x ∈ sln | xt =±x} and A± is a copy
of the vector space A. We identify g with g⊗ 1 where 1 is a distinguished element of
A. We denote by a± the image of a ∈ A in the space A±. Recall that A = A+ ⊕A−

is an associative algebra (for n ≥ 4) with identity element 1+. Consider the subspaces
A1 = span{a++ a− | a ∈ A} and A2 = span{a+− a− | a ∈ A}. Then A = A1 ⊕A2 as
a vector space. In this section we show that A1 and A2 are 2-sided ideals of the algebra
A and that the associative algebra a has the following realization by 2×2 matrices with
entries in the components of a:

a∼=

[
A1 C⊕E

C′⊕E ′ A2

]
.

We start with the following observation.

Lemma 4.3.1. For all a± ∈ A±, c ∈C, c′ ∈C′, e ∈ E, e′ ∈ E ′, b ∈ B, b′ ∈ B′ we have
(1) 1−.a− = a+ = a−.1− and 1−.a+ = a− = a+.1−;
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(2) c = 1−.c =−c.1− and e = 1−.e =−e.1−;
(3) c′ = c′.1− =−1−.c′ and e′ = e′.1− =−1−.e′;
(4) b = 1−b and b′ = b′.1−.

Proof. Let x±,x±1 ,x
±
2 ∈ g±. Using (3.4.4), we get

[x+1 ⊗1−,x+2 ⊗a−] = [x+1 ,x
+
2 ]⊗a+,

[x+1 ⊗1−,x−1 ⊗a+] = [x+1 ,x
−
1 ]⊗a−,

[x+⊗1−,s⊗ c] = x+ � s⊗ c,

[x+⊗1−,λ ⊗ e] = x+ �λ ⊗ e,

[s′⊗ c′,x+⊗1−] = s′ � x+⊗ c′,

[λ ′⊗ e′,x+⊗1−] = λ
′ � x+⊗ e′,

[x+⊗1−,u⊗b] = x+u⊗b,

[u′⊗b′,x+⊗1−] = xtu′⊗b′

Using these properties and the formulas in Remark 4.1.1, we get

[x+,x+2 ]⊗a+ = x+ ◦ x+2 ⊗ [1−,a−]A−

2
+[x+,x+2 ]⊗

(1− ◦a−)A+

2
+(x+ | x+2 )⟨1

−,a−⟩,

[x+,x−1 ]⊗a− = x+ � x−1 ⊗ [1−,a+]A+

2
+[x+,x−1 ]⊗

(1− ◦a+)A−

2
,

x+ � s⊗ c = x+ � s⊗ [1−,c]C
2

+[x+,s]⊗ (1− ◦ c)E

2
,

x+ �λ ⊗ e = x+ �λ ⊗ [1−,e]E
2

+[x+,λ ]⊗ (1− ◦ e)C
2

,

s′ � x+⊗ c′ = s′ � x+⊗ [c′,1−]C′

2
+[s′,x+]⊗ (c′ ◦1−)E ′

2
,

λ
′ � x+ = λ

′ � x+⊗ [e′,1−]E ′

2
+[λ ′,x+]⊗ (e′ ◦1−)C′

2
,

x+u⊗b = x+u⊗1−b,

xtu′⊗b′ = xtu′⊗b′.1−,

so

a+ =
(1− ◦a−)A+

2
,
[1−,a−]A−

2
= 0, a− =

(1− ◦a+)A−

2
,
[1−,a+]A+

2
= 0,

c =
[1−,c]C

2
,
(1− ◦ c)E

2
= 0, e =

[1−,e]E
2

,
(1− ◦ e)C

2
= 0,

c′ =
[c′,1−]C′

2
,
(c′ ◦1−)E ′

2
= 0, e′ =

[e′,1−]E ′

2
,
(e′ ◦1−)C′

2
.
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b = 1−b, b′ = b′.1−.

This implies (1)-(4) as required.

Proposition 4.3.2. Let e1 =
1++1−

2 and e2 =
1+−1−

2 . Then the following hold.
(1) e1 and e2 are orthogonal idempotents with e1 + e2 = 1+ and η(e1) = e2.
(2) Let a = e1ae1 ⊕ e1ae2 ⊕ e2ae1 ⊕ e2ae2 be the Peirce decomposition of a. Then

e1ae1 = A1, e1ae2 =C⊕E, e2ae1 =C′⊕E ′, and e2ae2 = A2.
(3) A1 and A2 are 2-sided ideals of A = A1 ⊕A2.
(4) ei is the identity of Ai.
(5) η(A1) = A2.
(6) B = Be2 and B′ = Be1.
(7) A1 ∼= A and A2 ∼= Aop (the opposite algebra of A) as algebras.

Proof. (1)-(6) This is easy to check using Lemma 4.3.1 and properties of the Peirce de-
composition.

(7) Define the map ϕ :A → A1 by ϕ(a) = a++a−
2 where a ∈ A. Note that this map is

well defined and bijective. It remains only to check that ϕ is an algebra homomorphism.
Let a,b ∈ A. Then

ϕ(ab) = ϕ(
a◦b

2
+

[a,b]
2

)

= ϕ(
a◦b

2
)+ϕ(

[a,b]
2

)

= (
a◦b

4
)++(

a◦b
4

)−+(
[a,b]

4
)++(

[a,b]
4

)−

=
a+a++a+a−+a−a++a−a−

4

= (
a++a−

2
)(

a++a−

2
)

= ϕ(a)ϕ(b),

so ϕ is a homomorphism. Thus, A1 ∼= A and A2 = η(A1)∼= Aop, as required.

Using Peirce decomposition of a as in Proposition 4.3.2 we immediately get the fol-
lowing.

Proposition 4.3.3. The associative algebra a has the following realization by 2×2 matrices
with entries in the components of a:

a∼=

[
A1 C⊕E

C′⊕E ′ A2

]
.
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In particular,

A+ ∼=

{[
a1 0
0 η(a1)

]
| a1 ∈ A1

}
(a+ 7→

[
a++a−

2 0
0 a+−a−

2

]
),

A− ∼=

{[
a1 0
0 −η(a1)

]
| a1 ∈ A1

}
(a− 7→

[
a++a−

2 0
0 −a++a−

2

]
).

Let A be an associative algebra with involution σ (of the first kind) over F . Recall
that A becomes a Lie algebra A(−) under the Lie bracket [x,y] = xy− yx. Let sym(A)
(resp. skew(A)) denotes the set of symmetric elements (resp. skew-symmetric elements)
of A with respect to σ . Then, skew(A) is a Lie subalgebra of A(−). The following is well
known.

Lemma 4.3.4. Let A1 and A2 be two associative algebras with involutions σ1 and σ2,
respectively. Then A = A1 ⊗A2 is an associative algebra with involution σ = σ1 ⊗σ2.
Moreover, we have

(1)sym(A) = sym(A1)⊗ sym(A2)⊕ skew(A1)⊗ skew(A2).

(2)skew(A) = skew(A1)⊗ sym(A2)⊕ sym(A1)⊗ skew(A2).

Proof. It is easy to see that the RHS of the equation (1) (resp. (2)) is a subspace of sym(A)
(resp. skew(A)). It remains to note that

A1 ⊗A2 = (sym(A1)⊕ skew(A1))⊗ (sym(A2)⊕ skew(A2))

= sym(A1)⊗ sym(A2)⊕ skew(A1)⊗ skew(A2)

⊕ skew(A1)⊗ sym(A2)⊕ sym(A1)⊗ skew(A2).

Lemma 4.3.5. Define σ : a→ a by

σ(

[
a1 c+ e

c′+ e′ a2

]
) =

[
η(a2) η(c+ e)

η(c′+ e′) η(a1)

]

Then σ is an involution on a and

sym(a) =

{[
a1 e
e′ η(a1)

]
| a1 ∈ A1, e ∈ E, e′ ∈ E ′

}
,

skew(a) =

{[
a1 c
c′ −η(a1)

]
| a1 ∈ A1, c ∈C, c′ ∈C′

}
.



Chapter 5

Central extensions of Θn-graded Lie
algebras, n ≥ 5

The aim of this chapter is to classify Θn-graded Lie algebras up to isomorphism in the
case when n ≥ 7 or n = 5,6 and the conditions (1.2.1) hold.

The chapter is organized as follows. First we study basic properties of central ex-
tensions of (Γ,g)-graded Lie algebras. We show all Lie algebras in a given isogeny
class are Γ-graded if one of them is, and all have isomorphic weight spaces for non-
zero weights. We also show that for every central extension (L̃,π) of a (Γ,g)-graded Lie
algebra L =

⊕
µ∈Q

V (µ)⊗Wµ with kernel E, there is lifting of the grading subalgebra g of

L to a subalgebra of L̃ and L can be lifted to a subspace L of L̃ which contains the given
g so that the corresponding 2-cocycle satisfies ζ (g,L) = 0. Moreover, there exists an F-
bilinear map ε : W ×W → E on the space W :=

⊕
µ∈Q\{0}

Wµ with ε(Wµ ,Wν) = 0 whenever

V (µ)�V (ν)′, such that

ζ (uµ ⊗wµ ,vν ⊗wν) = π(uµ ,uν)ε(wµ ,wν)

for all uµ ⊗wµ ∈ V (µ)⊗Wµ and uν ⊗wν ∈ V (ν)⊗Wν (see Section 5.1). We will use
these properties to compute universal central extensions in Section 5.3. Then we focus
our attention to (Θn,sln)-graded Lie algebras. First we define a centerless algebra L (b)

and show that it is Θn-graded with coordinate algebra b. It is also shown that any Θn-
graded Lie algebra L with coordinate algebra b is a cover of the centerless Lie algebra
L (b). Then we show that every Θn-graded Lie algebra L is uniquely determined (up to
central isogeny) by its “coordinate” algebra b and we show that L is centrally isogenous
to the explicitly constructed Θn-graded unitary Lie algebra u of the hermitian form ξ =
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w⊥− χ on the a-module an ⊕B (see Section5.2 ). This completes the classification of
Θn-graded Lie algebras up to central extensions. In Section 5.3 we find the universal
central extension L̂ (b) of L (b) and show that its center is HF(b), the full skew-dihedral
homology group of b. We prove that every Θn-graded Lie algebra with coordinate algebra
b is isomorphic to L (b,X) = L̂ (b)/X for some subspace X of HF(b), which classifies
the Θn-graded Lie algebras up to isomorphism.

At the end of this chapter we discuss the similarities between the Θn-graded Lie al-
gebras and quasiclassical Lie algebras by showing that every (Ξn,sln)−graded Lie algebra
with

Ξn = {0,±εi ± ε j,±2εi | 1 ≤ i ̸= j ≤ n} ⊂ Θn

is centrally isogenous to a quasiclassical Lie algebra (see Section 5.4).
For convenience of the reader we mostly follow notations of [3, 4] whenever possible.

5.1 Central extensions of (Γ,g)-graded Lie algebras

Recall that a central extension of a Lie algebra L is a pair (L̃,π) consisting of a Lie algebra
L̃ and a surjective Lie algebra homomorphism π : L̃ → L whose kernel lies in the center
of L̃. A cover or covering of L is a central extension (L̃,π) of L with L̃ perfect, i.e.,
L̃ = [L̃, L̃]. A homomorphism of central extensions from the central extension f : K → L
to the central extension f ′ : K′ → L is a Lie algebra homomorphism g : K → K′ satisfying
f = f ′ ◦g. A central extension U : K → L is a universal central extension, if there exists
a unique homomorphism from K to any other central extension K̃ of L. A Lie algebra L
is said to be centrally closed if (L, Id) is a universal central extension of L.

Central extensions of Lie algebras graded by finite root systems in terms of the ho-
mology of its coordinate algebra were determined and described up to isomorphism by
Allison, Benkart and Y. Gao in [3] and [4]. The same technique can be used to describe
central extensions of (Γ,g)-graded Lie algebras.

Theorem 5.1.1. Let L be a (Γ,g)-graded Lie algebra. Then L is perfect.

Proof. We need to show L ⊆ [L,L], i.e. Lα ⊆ [L,L] for all α ∈ Γ. By condition (Γ3) in
Definition 3.0.1, L0 ⊆ [L,L]. Suppose now that α ∈ Γ\{0}. Then there exists h ∈ H such
that α(h) ̸= 0 so for all x ∈ Lα ,

[h,x] = α(h)x and x = [α(h)−1h,x] ∈ [L0,Lα ] .

Thus, Lα ⊆ [L0,Lα ], as required.
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Recall that any perfect Lie algebra L has a universal central extension which is also
perfect, called a universal covering algebra of L. Any two universal covering algebras
of L are isomorphic [32]. Therefore every Γ-graded Lie algebra has a universal covering
algebra. We need the following simple generalization of [22, Proposition 1.24].

Theorem 5.1.2. Let L be a (Γ,g)-graded Lie algebra and let (U,ψ) be the universal
covering algebra of L. Then U is graded by Γ and ψ |Uα

Uα → Lα is an isomorphism for
all α ∈ Γ\{0}. In particular Kerψ ⊂U0.

Proof. This is similar to the proof of [22, Proposition 1.24]. It is well known that g is
centrally closed [16]. Thus the central extension ψ : ψ−1(g)→ g splits and we may view
g as a subalgebra of U . In particular, h is a subalgebra of U . We define

Ũα := ψ
−1(Lα), α ∈ Γ,

Uα :=

[Ũα ,h], α ∈ Γ\{0},

Ũ0, α = 0.

We are going to show that Uα is exactly the α-weight space for adU h. For all k,h ∈ h and
x ∈ Ũα ,

[k, [x,h]] = [[k,x],h] = α(k)[x+ v,h] = α(k)[x,h]

for some v ∈ Kerψ . This proves that Uα is a subspace of the α-weight space for adU h,
α ∈ Γ\{0}. It follows that for α ∈ Γ\{0}, Uα ∩Kerψ = {0}, and hence ψ |Uα

Uα → Lα

is an isomorphism for all α ∈ Γ\{0}. Now we are going to show that U = ∑
α∈∆

Uα +U0.

Let x ∈ U and write x = ∑α∈Γ x̃α where x̃α ∈ Ũα . Let α ∈ Γ \ {0}. Fix any h ∈ h such
that α(h) ̸= 0. We claim that

x̃α −α(h)−1[h, x̃α ] ∈ Kerψ ⊂ Ũ0 =U0.

Indeed,

ψ(x̃α −α(h)−1[h, x̃α ]) = ψ(x̃α)−α(h)−1[h,ψ(x̃α)] = ψ(x̃α)−ψ(x̃α) = 0

as ψ(x̃α) ∈ Lα . Thus, we may rewrite x as ∑α∈Γ xα where xα ∈Uα . It follows that

U =U0 + ∑
α∈Γ

Uα .
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Now

U0 = Ũ0 = ψ
−1

(
∑

α∈Γ\{0}
[Lα ,L−α ]

)
= ∑

α∈Γ\{0}
[Ũα ,Ũ−α ]+Kerψ.

Since ψ |Uα
: Uα → Lα is an isomorphism of vector spaces for all α ∈ Γ \ {0}, we have

Ũα =Uα +Kerψ so
U0 = ∑

α∈Γ\{0}
[Uα ,U−α ]+Kerψ. (5.1.1)

This proves that U0 is a 0-eigenspace for h. Now we see that Uα is exactly the α-
eigenspace for h for all α ∈ Γ and hence

[
Uα ,Uβ

]
⊆Uα+β , whenever α +β ∈ Γ. Thus,

U is (Γ,g)-pregraded. It remains to show that U0 ⊆ ∑α∈Γ\{0}[Uα ,U−α ].

Since U = [U,U ], we have

U0 = ∑
α∈Γ\{0}

[Uα ,U−α ]+ [U0,U0].

But by (5.1.1),

[U0,U0] = ∑
α,β∈Γ\{0}

[[Uα ,U−α ], [Uβ ,U−β ]]⊆ ∑
γ∈Γ\{0}

[Uγ ,U−γ ].

Hence
U0 = ∑

α∈Γ\{0}
[Uα ,U−α ].

This proves that U is (Γ,g)-graded, as required.

Corollary 5.1.3. (1) Let (U,ψ) be the universal covering algebra of L. Then U is (Γ,g)-
graded if and only if L is (Γ,g)-graded.

(2) All Lie algebras in a given isogeny class are Γ-graded if one of them is, and all
have isomorphic weight spaces for non-zero weights.

Lemma 5.1.4. Suppose that π : L̃→ L is a central extension of a (Γ,g)-graded Lie algebra
L with kernel E. Then there is lifting of the grading subalgebra g of L to a subalgebra of
L̃. Moreover, L can be lifted to a subspace L of L̃ which contains the given g so that the
corresponding 2-cocycle satisfies ζ (g,L) = 0.

Proof. We use the same method as in [4, 3.1-3.4 ]. Since F is a field, we can lift L to a
subspace of L̃ which is mapped isomorphically to L by π if we identify this subspace of
L̃ with L. We have L̃ = L⊕E and the multiplication on L̃ is given by

[ f ,g]̃ = [ f ,g]+ζ ( f ,g), f ,g ∈ L,
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where [ f ,g] denotes the product in L and ζ : L×L → E is the corresponding 2-cocycle.
Thus ζ is a bilinear mapping satisfying

(i) ζ ( f ,g) =−ζ (g, f )

(ii) ζ ([ f ,g],h)+ζ ([g,h], f )+ζ ([h, f ],g) = 0, (5.1.2)

for all f ,g,h ∈ L. The subalgebra g̃= g⊕ζ (g,g), is a finite-dimensional g-module under
the action x. w = [x,w]̃, which can be readily seen from the calculation

[x,y].w = [[x,y],w]̃ = [[x,y]̃,w]̃ = [x, [y,w]̃]̃− [y, [x,w]̃]̃ = x.(y.w)− y.(x.w).

By complete reducibility of finite-dimensional g-modules (see Lemma 3.1.2), there must
exist a g-complement g̃= g′⊕ζ (g,g) to the g-submodule ζ (g,g). Then each y ∈ g has a
unique expression y = y′+ ey, where y′ ∈ g′ and ey ∈ ζ (g,g). For x,y ∈ g,

[x,y] = [x,y]′+ e[x,y],

is one such expression, while [x,y] = [x,y′ ]̃−ζ (x,y) is yet another since g′ is a g-submodule.
Therefore

[x,y]′ = [x,y′]̃ = [x′,y′ ]̃,

which shows that g′ is a subalgebra of L̃ and that the map g→ g′ (y 7→ y′) is a Lie algebra
isomorphism.

Using Lemma 3.1.2, we get L ∼=
⊕

µ∈Q
V (µ)⊗Wµ for some vector spaces Wµ where Q

is the set of dominant weights of g. Let {w j
µ | j ∈ Jµ} be a basis of Wµ . Then L is the

direct sum of the finite-dimensional g-modules

M ∈M := {V (µ)⊗w j
µ | µ ∈ Q, j ∈ Jµ}.

For such a module M ̸= g⊗1 consider the following g-submodule of L̃:

M̃ = M⊕ζ (g,M),

with g-action given by x.w = [x,w]̃. This can be viewed as a g′-module where x′.w =

[x′,w]̃ = [x,w]̃for all x′ ∈ g′ and w ∈ M∼. The submodule ζ (g,M) has a g′-complement,

M̃ = M′⊕ζ (g,M).
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Thus for each m∈M there exist unique elements m′ ∈M′,em ∈ ζ (g,M) with m=m′+em.

Let L′ =de f
∑M∈MM′. Then L̃ = L′⊕E.

Suppose π1 : L̃ → L′ and π2 : L̃ →E are the projections onto the summands, and define

[w′,z′]1 = π1([w′,z′ ]̃),

ζ
′(w′,z′) = π2([w′,z′ ]̃),

for w′,z′ ∈ L′. We claim (L′, [, ]1) is a Lie algebra isomorphic to L. Indeed,

[[w′,z′]1, t ′]1 = π1([[w′,z′]1, t ′ ]̃) = π1([[w′,z′ ]̃).

It is clear that cyclically permuting w′,z′, t ′ and summing will give 0. Now assume that
m ∈ M and n ∈ N where M,N are two (possibly equal) modules in M, and write m =

m′+ em and n = n′+ en. Let Mr, r ∈R, be an enumeration of the modules in M. Then
the calculation

[m′,n′ ]̃ = [m,n]̃ = [m,n]+ζ (m,n)

= ∑
r∈R

fr +ζ (m,n)

= ∑
r∈R

f ′r + ∑
r∈R

e fr +ζ (m,n).

Thus

[m′,n′]1 = ∑
r∈R

f ′r,

ζ
′(m′,n′) = ∑

r∈R
e fr +ζ (m,n),

where [m,n] = ∑r∈R f r and fr ∈ Mr for all r ∈R. Hence the map L → L′, f 7→ f ′ = π1( f )
can be seen to be an isomorphism of Lie algebras.

Finally, it is clear that ζ ′(,) is a 2-cocycle on L′ with values in E. Moreover, it has the
property

ζ
′(x′,z′) = π2([x′,z′ ]̃) = 0 for all x′ ∈ g′,z′ ∈ L′.

Since L′ is a g′-submodule. Thus by replacing L with L′, we see that L can be lifted to a
subspace L of L̃ so that the corresponding 2-cocycle satisfies ζ (g,L) = 0, as required.

Let V be an irreducible g-module and let V ′ be its dual. Let π : V ×V ′ → F be any
non-degenerate g-invariant bilinear form. Note that π is unique up to a scalar multiple
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as Homg(V ⊗V ′,F)∼= Homg(V,V )∼= F. Set π(V,W ) = 0 if V and W are irreducible and
W ̸∼=V ′.

Theorem 5.1.5. Let L be a (Γ,g)-graded Lie algebra and L =
⊕

µ∈Q
V (µ)⊗Wµ for some

vector spaces Wµ . Assume that L̃ = L⊕E is a central extension of L determined by the
2-cocycle ζ ( , ): L×L → E with ζ (g,L) = 0. Then,

(1) V (µ) and V (ν) (µ,ν ∈Q) are orthogonal relative to ζ ( , ) whenever V (µ)�V (ν)′

as g-modules;
(2) there exists an F-bilinear map ε : W ×W → E on the space W :=

⊕
µ∈Q\{0}

Wµ with

ε(Wµ ,Wν) = 0 whenever V (µ)�V (ν)′, such that

ζ (uµ ⊗wµ ,vν ⊗wν) = π(uµ ,uν)ε(wµ ,wν)

for all uµ ⊗wµ ∈V (µ)⊗Wµ and uν ⊗wν ∈V (ν)⊗Wν .

Proof. (1) Let {w j
µ | j ∈ Jµ} be a basis of Wµ and let

M,N ∈M := {V (µ)⊗w j
µ | µ ∈ Q, j ∈ Jµ}.

Assume {ek | k ∈ K} is a basis for E. The 2-cocycle ζ ( , ) induces an F-linear trans-
formation ζk : M ⊗N → F, obtained from reading off the coefficient of ek in ζ (m,n). It
follows from the 2-cocycle condition, ζ ([x,m],n)+ζ ([m,n],x)+ζ ([n,x],m) = 0, and the
assumption that ζ (g,L) = 0, that the map ζk is a g-module homomorphism. But since M
and N are irreducible g-modules and Homg(M ⊗N,F) ∼= Homg(M′,N), ζk ̸= 0 implies
M′ ∼= N. Thus ζ (M,N) ̸= 0 implies M′ ∼= N, as required.

(2) Fix wi
µ ∈Wµ and w j

ν ∈Wν . The mapping uµ ⊗uν → ζk(uµ ⊗wi
µ ,uν ⊗w j

ν) determ-
ines a g-module homomorphism from V (µ)⊗V (ν) to F. By Part (1) we can assume that
V (µ)∼=V (ν)′ (otherwise the mapping ζk is zero). Then this mapping must be a multiple
of the form π , i.e. ζk(uµ ⊗wi

µ ,uν ⊗w j
ν) = ηk

µ,νπ(uµ ,uν) for some ηk
µ,ν ∈ F. Define

εk : Wµ ×Wν → F by first setting εk(wi
µ ,w

j
ν) = ηk

µ,ν and extending this bilinearly. Then

ζk(uµ ⊗wi
µ ,uν ⊗w j

ν) = π(uµ ,uν)εk(wi
µ ,w

j
ν)

for all wi
µ ∈Wµ , w j

k ∈Wν and uµ ∈V (µ), uν ∈V (ν). As a result,

ζ (uµ ⊗wi
µ ,uν ⊗w j

ν) = ∑
k∈K

ζk(uµ ⊗wi
µ ,uν ⊗w j

ν))ek

= π(uµ ,uν) ∑
k∈K

εk(wi
µ ,w

j
ν)ek
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= π(uµ ,uν)ε(wi
µ ,w

j
ν)

where ε(wi
µ ,w

j
ν) := ∑k∈K εk(wi

µ ,w
j
ν)ek ∈ E. Thus we get a map ε : V (µ)⊗V (ν) → E

such that
ζ (uµ ⊗wi

µ ,uν ⊗w j
ν) = π(uµ ,uν)ε(wi

µ ,w
j
ν).

We extend the mappings to the whole space W ×W by defining ε(wi
µ ,w

j
k) = 0 for all

V (µ) � V (ν) and wi
µ ∈ Wµ , w j

k ∈ Wν . We obtain an F-bilinear map taking W ×W to E,
as required.

Theorem 5.1.6. Assume that L̃ = L⊕E is a central extension of the Θn-graded Lie al-
gebra L = (g⊗A)⊕ (V ⊗B)⊕ ·· · ⊕ (Λ′ ⊗E ′)⊕D determined by the 2-cocycle ζ ( , ):
L×L → E with ζ (g,L) = 0. Then,

(1) V (µ) and V (ν) (µ,ν ∈ Θ+
n ) are orthogonal relative to ζ ( , ) whenever V (µ) �

V (ν)′ as g-modules;
(2) there exists a 2-cocycle ε : b× b → E on the algebra b with ε(Wµ ,Wν) = 0

whenever V (µ)�V (ν)′ such that

(a) ζ (x±⊗a∓1 ,y
±⊗a∓2 ) = tr(x±y±)ε(a∓1 ,a

∓
2 ) (5.1.3)

(b) ζ (s⊗ c,s′⊗ c′) = tr(ss′)ε(c,c′)

(c) ζ (λ ⊗ e,λ ′⊗ e′) = tr(λλ
′)ε(e,e′)

(d) ζ (v⊗b,v′⊗b′) = tr(vv′t)ε(b,b′)

(e) ζ (d,⟨β ,β ′⟩) = ε(dβ ,β ′)+ ε(β ,dβ
′) =−ζ (⟨β ,β ′⟩,d),

for all x,y ∈ g, v ∈V , v′ ∈V ′, s ∈ S, λ ∈ Λ, s′ ∈ S′, λ ′ ∈ Λ′ and for all a∓1 ,a
∓
2 ∈ A∓, b ∈ B,

b′ ∈ B′, c ∈C, c′ ∈C′, e ∈ E, e′ ∈ E ′, β ,β ′ ∈ b and d ∈ D.

Proof. This is similar to [4, Proposition 5.33] and [4, Thereom 3.7]. Let W := A⊕C⊕
E ⊕C′⊕E ′⊕B⊕B′. In Theorem 5.1.5, we show that there exists an F-bilinear map ε an
F-bilinear map taking W ×W to E and

(a) ζ (x⊗a1,y⊗a2) = tr(xy)ε(a1,a2)

(b) ζ (s⊗ c,s′⊗ c′) = tr(ss′)ε(c,c′)

(c) ζ (λ ⊗ e,λ ′⊗ e′) = tr(λλ
′)ε(e,e′)

(d) ζ (v⊗b,v′⊗b′) = tr(vv′t)ε(b,b′)

for all x,y ∈ g, v ∈ V , v′ ∈ V ′, s ∈ S, λ ∈ Λ, s′ ∈ S′, λ ′ ∈ Λ′ and for all a1,a2 ∈ A, b ∈ B,
b′ ∈ B′, c ∈C, c′ ∈C′, e ∈ E, e′ ∈ E ′, β ,β ′ ∈ b and d ∈ D. Since (x+ | x−) = 0 for all x± ∈
g±, we can extend the mapping ε to the algebra b= A+⊕A−⊕C⊕E ⊕C′⊕E ′⊕B⊕B′
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by defining ε(a+1 ,a
−
2 ) = ε(a−1 ,a

+
2 ) = 0 and ε(a±1 ,a

±
2 ) = ε(a1,a2) for all a1,a2 ∈ A. Thus,

we obtain an F-bilinear map taking b×b to E.
It remains to show that ε( , ) is a 2- cocycle of b and

ζ (d,⟨β ,β ′⟩) = ε(dβ ,β ′)+ ε(β ,dβ
′) =−ζ (⟨β ,β ′⟩,d),

for all β ,β ′ ∈ b and d ∈ D. Applying the cocycle relation ζ ([ f ,g],h) + ζ ([g,h], f ) +
ζ ([h, f ],g) = 0 and using the orthogonality of some of the components, we determine that
ε( , ) is a 2- cocycle of b. We illustrate these calculations by considering homogeneous
elements α1,α2 and α3 in a. Set

z1 = E1,2 + ε1E2,1, z2 = E2,3 + ε2E3,2 and z3 = E3,1 + ε3E1,3 where εi =±1.

The sign of each εi can be chosen in such a way that zi ⊗αi belongs to the corresponding
homogeneous component of L. Note that tr(ziz j) = 0 for all i ̸= j. Hence by Lemma
4.1.2, we have

[zi ⊗αi,z j ⊗α j] = zi � z j ⊗
[αi,α j]

2
+[zi,z j]⊗

αi ◦α j

2
.

Then from (5.1.2) with z1 ⊗α1, z2 ⊗α2, z1 ⊗α3, we obtain

([z1,z2] | z3)ε(α1 ◦α2,α3)+(z1 � z2 | z3)ε([α1,α2],α3)

+([z2,z3] | z2)ε([α2,α3],α1)+(z2 � z3 | z2)ε([α2,α3],α1)

+([z3,z1] | z2)ε(α3 ◦α1,α2)+(z3 � z1 | z2)ε([α3,α1],α2) = 0

Using the fact that (z | y) = 1
n tr(zy), it is easy to verify that the form is associative relative

to the “�” product, (i.e. (z� y | z) = (z | y� z) holds for all x,y,z ∈ g∪S∪S′∪Λ∪Λ′), and
also relative to the commutator product. Thus,

([z1,z2] | z3)(ε(α1 ◦α2,α3)+ ε(α2 ◦α3,α1)+ ε(α3 ◦α1,α2))

+(z1 � z2 | z3)(ε([α1,α2],α3)+ ε([α2,α3],α1)+ ε([α3,α1],α2)) = 0. (5.1.4)

Note that ε1ε2ε3 =±1 and

[z1,z2]z3 = E11 − ε1ε2ε3E33.

(z1 � z2)z3 = E11 + ε1ε2ε3E33.
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If ε1ε2ε3 = 1, then

ε([α1,α2],α3)+ ε([α2,α3],α1)+ ε([α3,α1],α2) = 0 (5.1.5)

and we have four cases: ε1 = ε2 = ε3 = 1; ε1 = 1 and ε2 = ε3 = −1; ε1 = ε2 = −1 and
ε3 = 1; ε1 = ε3 =−1 and ε2 = 1. In each of these cases ε(α1 ◦α2,α3) = ε(α2 ◦α3,α1) =

ε(α3 ◦α1,α2) = 0 (see Table 4.1.1), so

ε(α1 ◦α2,α3)+ ε(α2 ◦α3,α1)+ ε(α3 ◦α1,α2) = 0 (5.1.6)

as well. Adding equations (5.1.5) and (5.1.6) gives the desired 2-cocycle condition.
If ε1ε2ε3 =−1 , then

ε(α1 ◦α2,α3)+ ε(α2 ◦α3,α1)+ ε(α3 ◦α1,α2) = 0 (5.1.7)

and we have four cases: ε1 = ε2 = ε3 =−1; ε1 =−1 and ε2 = ε3 = 1; ε1 = ε2 = 1 and ε3 =

−1; ε1 = ε3 = 1 and ε2 = −1. In each of these cases ε([α1,α2],α3) = ε([α2,α3],α1) =

ε([α3,α1],α2) = 0 (see Table 4.1.1), so

ε([α1,α2],α3)+ ε([α2,α3],α1)+ ε([α3,α1],α2) = 0 (5.1.8)

as well. Adding equations (5.1.7) and (5.1.8) gives the desired 2-cocycle condition.
To prove (e), consider the 2-cocycle relation (5.1.2) for the elements x1 ⊗α1, x2 ⊗α1,

d and use Lemma 4.1.2.

Proposition 5.1.7. ⟨,⟩ : b×b→ D is a surjective 2-cocycle.

Proof. Linearity of the bracket of L lead to ⟨,⟩ is an F-bilinear map. Let α,β ,γ and δ be
homogeneous elements in b. From anti-commutativity of the bracket and the fact that

tr(xy) = tr(yx),

tr(uv′t) = tr(v′ut),

for all n×n matrices x and y and v ∈V and v′ ∈V ′, we deduce that ⟨α,β ⟩=−⟨β ,α⟩ for
all α,β ∈ b. It only remains to show that ⟨ , ⟩ satisfies the Jacoby identity, which can be
proved by making various choices of z1 ⊗α , z2 ⊗β , z3 ⊗ γ ∈(g⊗A)∪ (V ⊗B)∪ (V ′⊗
B′)∪(S⊗C)∪ (S′⊗C′)∪ (Λ⊗E)∪ (Λ′⊗E ′) and calculating the corresponding Jacoby



5.2 Classification of Θn-graded Lie algebras, n ≥ 5 77

identity. As illustration, consider α = a− ∈ A−, β = b′ ∈ B′, γ = b ∈ B. We get

[z⊗a−, [v′⊗b′,u⊗b] = [[z⊗a−,v′⊗b′],u⊗b]+ [v′⊗b′, [z⊗a−,u⊗b]].

Using (3.4.4) and Lemma 4.2.3 we get

z◦ (uv′t + v′ut − 2tr(uv′t)
n I)

4
⊗ [a−, [b,b′]A−]A− +

[z,uv′t + v′ut − 2tr(uv′t)
n I]

4

⊗ (a− ◦ [b,b′]A−)A+ +
(z | (uv′t + v′ut − 2tr(uv′t)

n I))
2

⟨a−, [b,b′]A−⟩

=−
(u(ztu′)t + ztu′ut − 2tr(uv′t)

n I)
2

⊗ [b,b′a−]A− − (u(ztu′)t − ztu′ut)

2
⊗ (b◦b′a−)A+

− 2tr(u(ztu′)t

n
⟨b,b′a−⟩−

(zuv′t + v′(zu)t − 2tr(zuv′t)
n I)

2
⊗ [a−b,b′]A−

− (zuv′t − v′(zu)t)

2
⊗ (a−b◦b′)A+ − 2tr(zuv′t)

n
⟨a−b,b′⟩.

Then ⟨b,b⟩-component of the Jacobi identity gives

tr(z(uv′t)(⟨a−, [b,b
′]A−

2
⟩+ ⟨b,b′a−⟩+ ⟨b′,a−b⟩) = 0.

Choosing u, v′ and z such that, tr(z(uv′t) ̸= 0 (for example u1 = e1, u′ = e2 and z =

(E1,2 +E2,1)), we get ⟨a−, [b,b
′]A−
2 ⟩+ ⟨b,b′a−⟩+ ⟨b′,a−b⟩= 0. Since ⟨(b◦b′)A+,a−⟩= 0,

we obtain ⟨a−,bb′⟩+ ⟨b,b′a−⟩+ ⟨b′,a−b⟩= 0. Thus, ⟨,⟩ is a 2-cocyclic map. In (4.2.5),
we showed that D = ⟨b,b⟩. Therefore ⟨,⟩ is a surjective 2-cocycle as required.

5.2 Classification of Θn-graded Lie algebras, n ≥ 5

We define a centerless algebra L (b) and show that it is Θn-graded with coordinate al-
gebra b. Instead of proving directly that L (b) satisfies the Jacoby identity (which is
quite lengthy), we construct an explicit example of a Θn-graded Lie algebra u such that
u modulo its center is isomorphic to L (b), see Example 5.2.3. It is also shown that any
Θn-graded Lie algebra L with coordinate algebra b is a cover of the centerless Lie algebra
L (b). We show that every Θn-graded Lie algebra L is uniquely determined (up to central
isogeny) by its coordinate algebra b and L is centrally isogenous to the Θn-graded unitary
Lie algebra u of the hermitian form ξ = w⊥− χ on the a-module an ⊕B (Proposition
5.2.4 and Theorem 5.2.6).
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Definition 5.2.1. [2, 2.2] Let A be an associative algebra with involution η . A map
ξ : X ×X →A is called a hermitian form over A if X is a right A-module and ξ : X ×X →A
is a bi-additive map such that

ξ (xa,y) = η(a)ξ (x,y),

ξ (x,ya) = ξ (x,y)a,

ξ (y,x) = η(ξ (x,y)),

for a ∈ A and x,y ∈ X . If Y is an A-submodule of X , then

Y⊥ := {x∈X | ξ (x,y) = 0 for all y∈Y}

is also an A-submodule of X . The form ξ is said to be nondegenerate if X⊥ = 0.

Definition 5.2.2. [2, 4.1.1] Let A be an associative algebra with involution. Suppose that
ξ : X ×X → A is a hermitian form over A. Let

U(X ,ξ ) = {T ∈ EndA(X) | ξ (T (u),v)+ξ (u,T (v)) = 0, ∀u,v ∈ X}

Then U(X ,ξ ) is a Lie subalgebra of EndA(X), and we say that U(X ,ξ ) is the unitary Lie
algebra of ξ .

Example 5.2.3. Let a be any associative algebra with involution η , identity element 1+

and two orthogonal idempotents e1 and e2 such that 1+ = e1 + e2 and e2 = η(e1) and
let B be any unital associative right a-module with a hermitian form χ with values in a.
Put ηB = I. Define β1.β2 = χ(β1,β2) for all β1,β2 ∈ B⊕B′. Then b = a⊕B⊕B′ is a
(non-associative) algebra with multiplication extending that on a. For every n ≥ 5, we are
going to explicitly construct a Θn-graded Lie algebra with coordinate algebra b= a⊕B.

We start with the Peirce decomposition

a= e1ae1 ⊕ e1ae2 ⊕ e2ae1 ⊕ e2ae2.

Note that η(e1ae1) = e2ae2 and both e1ae2 and e2ae1 are η-invariant. Define

A+ = sym(e1ae1 ⊕ e2ae2), A− = skew(e1ae1 ⊕ e2ae2), B = Be2, B′ = Be1.

E = sym(e1ae2), C = skew(e1ae2), E ′ = sym(e2ae1), C′ = skew(e2ae1),

Thus, we have a = A+⊕A−⊕C⊕E ⊕C′⊕E ′ and B = B⊕B′. The right a-module B
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can be regarded as a left a-module by means of the action α.β = βη(α) for α ∈ a and
β ∈ B.

Since a is a right a-module under right multiplication, an (n×1 column vectors with
entries in a) is also a right a-module. Let w : an × an → a be a non degenerate bilinear
form on an defined by

w(α1,α2) = η(α1)
t
α2

where α1,α2 ∈ an. Let ξ : (an ⊕B)× (an ⊕B)→ an ⊕B be a bilinear form on an ⊕B

defined by
ξ (α1 ⊕β1,α2 ⊕β2) = w(α1,α2)−χ(β1,β2)

where β1,β2 ∈ B and α1,α2 ∈ an. Then

U= U(X ,ξ ) = {T ∈ Enda(an ⊕B) | ξ (T (u),v)+ξ (u,T (v)) = 0, ∀u,v ∈ an ⊕B}

is a Lie subalgebra of Enda(an ⊕B) under the commutator [T,T ′] = T T ′−T ′T , called
the unitary Lie algebra of the hermitian form ξ = w⊥−χ . We can identify Enda(an⊕B)

in a natural way with the algebra of 2×2 matrices:[
Enda(an) Homa(B,an)

Homa(a
n,B) Enda(B)

]
whose components have the following realizations:

Mn(a)∼= Enda(an) via the map M 7→ M̂(α 7→ Mα).
(B∗)n ∼= Homa(B,an) where B∗ = Enda(B,a) via the map

λ =

 λ1
...

λn

 7→ λ̂ (β 7→

 λ1β

...
λnβ

).
(Bn)t ∼= Homa(a

n,B) via the map

β
t =
[

β1 · · · βn

]
7→ β̂ t(α 7→ β

t
α).

Elements of an ⊕B can be viewed as column vectors


α1
...

αn

β

, where α1, · · · ,αn ∈ a and
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β ∈ B and elements of Enda(an ⊕B) can be regarded as matrices M

λ1
...

λn

β1 · · · βn N


where M ∈ Mn(a), β1, · · · ,βn ∈ B, λ1, · · · ,λn ∈ B∗ := Homa(B,a) and N ∈ Enda(B).
The action of Enda(an +B) on an ⊕B is by left multiplication, and composition in
Enda(an⊕B) is matrix multiplication. The elements of Mn(a) are linear combinations of
the elements Ei, jα (1 ≤ i, j ≤ n), but the multiplication in Mn(a) is given by

(Ei, jα)(Er,sα
′) = δ j,rEi,sαα

′.

We define χc : B → a by χc(c′) = χ(c,c′) and for

λ =

 λ1
...

λn

 ∈ (B∗)n, set χλ =

 χλ1
...

χλn

 .

Let

[
M Y
X N

]
∈ U and

(
α1

β1

)
,

(
α2

β2

)
∈ an ⊕B. Then

0 = ξ (

[
M Y
X N

](
α1

β1

)
,

(
α2

β2

)
)+ξ (

(
α1

β1

)
,

[
M Y
X N

](
α2

β2

)
)

= ξ (

(
Mα1 +Y β1

Xα1 +Nβ1

)
,

(
α2

β2

)
)+ξ (

(
α1

β1

)
,

(
Mα2 +Y β2

Xα2 +Nβ2

)
)

= w(Mα1 +Y β1,α2)−χ(Xα1 +Nβ1,β2)+w(α1,Mα2 +Y β2)−χ(β1,Xα2 +Nβ2)

= η(Mα1 +Y β1)
t
α2 +η(α1)

t(Mα2 +Y β2)−χ(Xα1 +Nβ1,β2)−χ(β1,Xα2 +Nβ2)

= η(Mα1)
t
α2 +η(Y β1)

t
α2 +η(α1)

t(Mα2)+η(α1)
t(Y β2)

−χ(Xα1,β2)−χ(Nβ1,β2)−χ(β1,Xα2)−χ(β1,Nβ2).

We deduce that
(1) η(Mα1)

tα2 +η(α1)
t(Mα2) = 0. We get, η(M)t +M = 0.

(2) χ(Nβ1,β2)+χ(β1,Nβ2) = 0.
(3) η(Y β1)

tα2 = χ(β1,Xα2).
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(4) η(α1)
t(Y β2)−χ(Xα1,β2) = w(α1,Y β2)−χ(Xα1,β2) = 0.

Fix X =
[

γ1 · · · γn

]
and Y =

 λ1
...

λn

. By (3), we have η(Y β1)
tα2 = β1(Xα2)

where α2 ∈ an and β1 ∈ B. Hence η(

 λ1β1
...

λnβ1

)tα2 = β1(
[

γ1 · · · γn

]
α2), so

[
λ1β1 · · · λnβ1

]
=
[

η(β1γ1) · · · η(β1γn)
]
=
[

γ1β1 · · · γnβ1

]
.

Therefore λiβ1 = γiβ1 = χ(γi,β1). It follows from the nondegeneracy of w that for any
X ∈ (Bn)t ∼= Homa(a

n,B), there is a unique Y ∈ (B∗)n ∼= Homa(B,an) satisfying (3).
Moreover, when X = (β )t in (3), then Y = χβ . With these convention, we have

U=

{[
M χβ

β t N

]
| M ∈ Mn(a), (ηM)t +M = 0, β ∈ Bn, N ∈ U(χ)

}
,

where
U(χ) = {N ∈ Enda(B) | χ(Nβ ,β ′)+χ(β ,Nβ

′) = 0 ∀β ,β ′ ∈ B}

is the unitary Lie algebra of χ . Recall that 1+ = e1 + e2. Put 1− = e1 − e2. Let

g=

{(
M 0
0 0

)
| M ∈ Mn ⊗ span{1+,1−} and (ηM)t +M = 0

}

=

{(
M 0
0 0

)
| M ∈ sym(Mn)⊗1−⊕ skew(Mn)⊗1+

}
.

By Lemma 4.3.4, the map η : Mn ⊗ a → Mn ⊗ a given by σ(x⊗α) = xt ⊗η(α) is an
involution of the algebra Mn ⊗a∼= Mn(a). We have

skew(Mn ⊗a) = sym(Mn)⊗ skew(a)⊕ skew(Mn)⊗ sym(a)

where skew(a) = A−⊕C ⊕C′ and sym(a) = A+⊕E ⊕E ′ with respect to η . Note that
sym(Mn)⊗1−⊕ skew(Mn)⊗1+ is a Lie subalgebra of skew(Mn ⊗a) and it is isomorphic
to gln. (The corresponding isomorphism ϕ : gln → g is given by

ϕ(x) =

[
(x+ xt)⊗ (e1−e2)

2 ⊕ (x− xt)⊗ (e1+e2)
2 0

0 0

]
).
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Put
g= [g,g]∼= sln.

Let h=

[
H ⊗1− 0

0 0

]
where H is the set of diagonal matrices of sln. Then h is a Cartan

subalgebra of g and U has the following weight spaces with respect to the adjoint action
of h:

Uεi−ε j =

{[
Ei, j ⊗ e1αe1 +E j,i ⊗ e2αe2 0

0 0

]
| α ∈ a

}
, 1 ≤ i ̸= j ≤ n;

Uεi+ε j =

{[
Ei, j ⊗ (c+ e)−E j,i ⊗η(c+ e) 0

0 0

]
| (c+ e) ∈C+E

}
, 1 ≤ i, j ≤ n;

U−εi−ε j =

{[
Ei, j ⊗ (c′+ e′)−E j,i ⊗η(c′+ e′) 0

0 0

]
| (c′+ e′) ∈C′+E ′

}
, 1 ≤ i, j ≤ n;

Uεi =

{[
0 vi ⊗b

(vi)
t ⊗b 0

]
| v ∈V, b ∈ B

}
, 1 ≤ i ≤ n;

U−εi =

{[
0 v′i ⊗b′

(v′i)
t ⊗b′ 0

]
| v′ ∈V ′, b′ ∈ B′

}
,1 ≤ i ≤ n;

U0 =

{[
(Ei,i −Ei+1,i+1)⊗a− 0

0 0

]
| a− ∈ A−, i = 1,2, · · · ,n−1

}

∪

{[
0 0
0 N

]
| N ∈ U(χ)

}
.

In general, the Lie algebra U is not Θn-graded since it may fail to satisfy Condition
(Γ3) in Definition 3.0.1. To obtain a Θn-graded Lie algebra we need to pass to the subal-
gebra u of U generated by the weight spaces Uα corresponding to no zero weights α ∈Θn.
Then,

u=
⊕

α∈Θn\{0}
Uα

⊕
∑

α∈Θn\{0}
[Uα ,U−α ] ,

and u is a Θn-graded Lie algebra with grading subalgebra g. Note that

u0 = u∩U0 and uα = Uα for α ∈ Θn \{0}.

We call u the Θn-graded unitary Lie algebra of ξ = w⊥−χ .

Proposition 5.2.4. Let n ≥ 5 and let a and B be as in Example 5.2.3. Let u be the Θn-
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graded unitary Lie algebra of the hermitian form ξ = w⊥− χ on the a-module an ⊕B.
Then u is Θn-graded with coordinate algebra b.

Proof. In Example 5.2.3 we showed that u is Θn-graded. It only remains to show that u
has coordinate algebra b= a⊕B. Recall that

A+ = sym(e1ae1 ⊕ e2ae2), A− = skew(e1ae1 ⊕ e2ae2), B = Be2, B′ = Be1.

E = sym(e1ae2), C = skew(e1ae2), E ′ = sym(e2ae1), C′ = skew(e2ae1),

We adopt the notation of Example 5.2.3. In particular, U is the unitary Lie algebra of the
form ξ , and u is the subalgebra of U generated by the weight spaces Uα for α ∈ Θn, and
g= [g,g] where

g=

{(
M 0
0 0

)
| M ∈ sym(Mn)⊗1−⊕ skew(Mn)⊗1+

}
,

1+ = e1 + e2 and 1− = e1 − e2. Identify M ⊗α ∈ Mn ⊗ a with

(
M⊗α 0

0 0

)
(resp.

P∈ Enda(B) with

(
0 0
0 P

)
and v⊗β with

(
0 v⊗β

vt ⊗β 0

)
where v∈V and β ∈B

). As g-modules, g⊗A, V ⊗B, V ′⊗B′, S⊗C, S′⊗C′, Λ⊗E and Λ′⊗E ′ are generated
by highest weight vectors corresponding to non-zero weights. Hence, these modules are
contained in L. Then, with the above identifications, we have

u= (g⊗A)⊕ (V ⊗B)⊕ (V ′⊗B′)⊕ . . .⊕ (Λ′⊗E ′)⊕ (DU ∩u)

where DU =

[
I ⊗A− 0

0 U(χ)

]
is the centralizer of g in L. We have a standard Lie

bracket on u:

[x⊗α,y⊗β ] = (x⊗α)(y⊗β )− (y⊗β )(x⊗α) = xy⊗αβ − yx⊗βα.

We claim that u has coordinate algebra b. Define [α1,α2] = α1α2 −α2α1 and α1 ◦α2 =

α1α2 +α2α1 for α1α2 ∈ b. Note that for x,y ∈ sln, u,v ∈ V , u′,v′ ∈ V ′, s ∈ S, λ ∈ Λ,
s′ ∈ S′, λ ′ ∈ Λ′ and for a±,a±1 ,a

±
2 ∈ A±, b,b1,b2 ∈ B, b′,b′1,b

′
2 ∈ B′, c ∈C, c′ ∈C′, e ∈ E,

e′ ∈ E ′ and d,d1,d2 ∈ D, we have
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[x+1 ⊗a−1 ,x
+
2 ⊗a−2 ] =

[
x+1 x+2 ⊗a−1 a−2 − x+2 x+1 ⊗a−2 a−1 0

0 0

]
= x+1 ◦ x+2 ⊗ [a−1 ,a

−
2 ]A−

+[x+1 ,x
+
2 ]⊗

(a−1 ◦a−2 )A+

2
+(x−1 | x−2 )

[
I ⊗ [a−1 ,a

−
2 ]A− 0

0 0

]
.

Indeed, a−1 ,a
−
2 ∈ e1ae1⊕e2ae2, so [a−1 ,a

−
2 ],a

−
1 ◦a−2 ∈ e1ae1⊕e2ae2. Since η([a−1 ,a

−
2 ]) =

−[a−1 ,a
−
2 ] and η(a−1 ◦a−2 ) = a−1 ◦a−2 , we have [a−1 ,a

−
2 ] ∈ A− and a−1 ◦a−2 ∈ A+. Then

x+1 x+2 ⊗a−1 a−2 − x+2 x+1 ⊗a−2 a−1 = (x+1 x+2 − x+2 x+1 )⊗
[a−1 ,a

−
2 ]A−

2

+(x+1 x+2 + x+2 x+1 − 2
n

tr(x+1 x+2 )I)⊗
(a−1 ◦a−2 )A+

2
+(x+1 | x+2 )[a

−
1 ,a

−
2 ]A−.

Similarly,

[x−1 ⊗a+1 ,x
−
2 ⊗a+2 ] = x−1 ◦ x−2 ⊗

[a+1 ,a
+
2 ]A−

2
+[x−1 ,x

−
2 ]⊗

(a+1 ◦a+2 )A+

2
+

[
(x−1 | x−2 )I ⊗ [a+1 ,a

+
2 ] 0

0 0

]
,

[x+1 ⊗a−1 ,x
−
1 ⊗a+1 ] = x+1 � x−1 ⊗

[a−1 ,a
+
1 ]A+

2
+[x+1 ,x

−
1 ]⊗

(a−1 ◦a+1 )A−

2
.

Note that

[v⊗b,v′⊗b′] =

[
v(v′)t ⊗bb′− v′vt ⊗b′b 0

0 (v)tv′⊗ [b,b′]A−

]
= v′ ◦ v⊗ [b,b′]A−

2

+[v′,v]⊗ (b◦b′)A+

2
+ tr(v(v′)t)

[
1
n I ⊗ [b,b′]A− 0

0 1⊗ [b,b′]A−

]
.

Indeed, b ∈Be2 and b′ ∈Be1, so [b,b′],b◦b′ ∈ e1ae1⊕e2ae2. Since η([b,b′]) =−[b,b′]
and η(b◦b′) = b◦b′, we have [b,b′] ∈ A− and b◦b′ ∈ A+. Then

v(v′)t ⊗bb′− v′vt ⊗b′b = (v(v′)t − v′vt)⊗ [b,b′]A−

2
+(v(v′)t + v′vt − 2

n
tr(v′vt)I)

⊗ (b◦b′)A+

2
+

1
n

tr(v′vt)
[b,b′]A−

2
,
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Similarly, one can show that

[s⊗ c,s′⊗ c′] = s◦ s′⊗ [c,c′]A−

2
+[s,s′]⊗ (c◦ c′)A+

2
+

[
(s | s′)I ⊗ [c,c′]A− 0

0 0

]
,

[λ ⊗ e,λ ′⊗ e′] = λ ◦λ
′⊗ [e,e′]A−

2
+[λ ,λ ′]⊗ (e◦ e′)A+

2
+

[
(λ | λ )I ⊗ [e,e′]A− 0

0 0

]
,

[u⊗b1,v⊗b2] = (uvt + vut)⊗ [b1,b2]C
2

+(uvt − vut)⊗ (b1 ◦b2)E

2
,

[u′⊗b′1,v
′⊗b′2] = (u′v′t + v′u′t)⊗

[b′1,b
′
2]C′

2
+(u′v′t − v′u′t)⊗

(b′1 ◦b′2)E ′

2
.

[x+⊗a−,s⊗ c] = x+ � s⊗ [a−,c]C
2

+[x+,s]⊗ (a− ◦ c)E

2
,

[x−⊗a+,s⊗ c] = x− � s⊗ [a+,c]E
2

+[x−,s]⊗ (a+ ◦ c)C
2

,

[s′⊗ c′,x+⊗a−] = s′ � x+⊗ [c′,a−]C′

2
+[s′,x+]⊗ (c′ ◦a−)E ′

2
,

[s′⊗ c′,x−⊗a+] = s′ � x−⊗ [c′,a+]E ′

2
+[s′,x−]⊗ (c′ ◦a+)C′

2
,

[x+⊗a−,λ ⊗ e] = x+ �λ ⊗ [a−,e]E
2

+[x+,λ ]⊗ (a− ◦ e)C
2

,

[x−⊗a+,λ ⊗ e] = x− �λ ⊗ [a+,e]C
2

+[x−,λ ]⊗ (a+ ◦ e)E

2
,

[λ ′⊗ e′,x+⊗a−] = λ
′ � x+⊗ [e′,a−]E ′

2
+[λ ′,x+]⊗ (e′ ◦a−)C′

2
,

[λ ′⊗ e′,x−⊗a+] = λ
′ � x−⊗ [e′,a+]C′

2
+[λ ′,x−]⊗ (e′ ◦a+)E ′

2
,

[s⊗ c,λ ′⊗ e′] = s�λ
′⊗ [c,e′]A+

2
+[s,λ ′]⊗ (c◦ e′)A−

2
,

[s′⊗ c′,λ ⊗ e] = s′ �λ ⊗ [c′,e]A+

2
+[s′,λ ]⊗ (c′ ◦ e)A−

2
.

Since (x+)t = x+, η(a−) = −a−, (v⊗b)t(x+⊗a−)t = vt(x+)t ⊗ba− = −(x+v⊗a−b)t ,
then

[x+⊗a−,v⊗b] =

[
0 x+v⊗a−b

(x+v)t ⊗a−b 0

]
= x+v⊗a−b.

Similarly,

[v′⊗b′,x+⊗a−] =

[
0 (x+)tv′⊗b′a−

((x+)tv′)t ⊗b′a− 0

]
= (x+)tv′⊗b′a−,
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[s′⊗ c′,v⊗b] =

[
0 s′v⊗ c′b

vts′⊗ c′b 0

]
= s′v⊗ c′b,

[λ ′⊗ e′,v⊗b] =

[
0 λ ′v⊗ e′b

vtλ ′⊗be′ 0

]
= λ

′v⊗ e′b,

[s⊗ c,v′⊗b′] =

[
0 sv′⊗ cb′

(v′)ts⊗ cb′ 0

]
= sv′⊗ cb′,

[λ ′⊗ e′,v⊗b] =

[
0 λv′⊗ e′b

(v′)tλ ⊗b′e 0

]
= λv′⊗ eb′.

So the product on b determined by (3.4.4) (see Tables 4.1.1 and 4.2.1) is exactly the
given product on b, as required.

Define Der∗(b) := {d ∈ Der(b) | dX ⊆ X for X = A+,A−,B, · · · ,E ′ }. Using Propos-
ition 4.2.8, we get D ⊆ Der∗(b). Let α,β ∈ b. Define Dα,β := ⟨α,β ⟩. Set

Db,b = span{Dα,β | α,β ∈ b}.

Theorem 5.2.5. Let n ≥ 5 and let a and B be as in Example 5.2.3. Define the algebra

L (b) := (g⊗A)⊕ (V ⊗B)⊕·· ·⊕ (Λ′⊗E ′)⊕Db,b

with multiplication as in (3.4.4) with D replaced by Db,b and ⟨α,β ⟩ replaced by Dα,β .
Then the following hold.

(1) L (b)∼= u/Z(u) is a Lie algebra where Z(u) is the center of u.
(2) L (b) is Θn-graded with coordinate algebra b.
(3) Every Θn-graded Lie algebra with coordinate algebra b is a cover of L (b).

Proof. (1) Define f : u→ L (b) by

f (x) = x, ∀x ∈ (g⊗A)⊕·· ·⊕ (Λ′⊗E ′),

f (⟨α,β ⟩) = Dα,β , ∀α,β ∈ b.

It is clear that f is a surjective map. Now we are going to show that f is a Lie algebra
homomorphism. We need to check that f ([x,y]) = [ f (x), f (y)] for all homogeneous x,y ∈
u. This is obvious if x ̸∈ D or y ̸∈ D. If both x,y ∈ D, we have

f ([⟨α1,α2⟩,⟨β1,β2⟩]) = f (⟨Dα1,α2β1,β2⟩+ ⟨β1,Dα1,α2β2⟩)
= DDα1,α2β1,β2 +Dβ1,Dα1,α2β2
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= [Dα1,α2,Dβ1,β2]

= [ f (⟨α1,α2⟩), f (⟨β1,β2⟩)],

as required. The center Z(u) of u is equal to Ker f . Thus, L (b) ∼= u/Z(u) and so L (b)

is a Lie algebra.
(2) By construction, it is clear that L (b) is Θn-graded with coordinate algebra b.
(3) As in the proof of (1), we can show that every Θn-graded Lie algebra with coordin-

ate algebra b is isomorphic to L (b) modulo its center. Thus, it is a cover of L (b).

Next theorem completes the classification of Θn-graded Lie algebras up to central
extensions in the case when n ≥ 7 or n = 5,6 and the conditions (1.2.1) hold.

Theorem 5.2.6 (Classification of Θn-graded Lie algebras, n ≥ 5). A Lie algebra L is
(Θn,g)-graded if and only if there exist an associative algebra a with involution η , identity
element 1+ and two orthogonal idempotents e1 and e2 such that 1+ = e1 + e2 and e2 =

η(e1), a unital associative right a-module B with a hermitian form χ with values in
a such that L is centrally isogenous to the (Θn,g)-graded unitary Lie algebra u of the
hermitian form ξ = w⊥−χ on the right a-module an ⊕B (see Example 5.2.3).

Proof. The “if” part follows from Proposition 5.2.4. To prove the “only if” suppose
that L is a Θn-graded Lie algebra with grading subalgebra g. By Theorem 4.2.9 and
Proposition 4.3.2, L has coordinate algebra b= a+B with a being associative containing
two orthogonal idempotents e1 and e2 with the above properties. By Proposition 5.2.4,
the (Θn,g)-graded unitary Lie algebra u has the same coordinate algebra. By Theorem
5.2.5, L/Z(L′)∼= L (b)∼= u/Z(u). It follows that L and u are centrally isogenous.

5.3 The universal central extensions of Θn-graded Lie
algebras, n ≥ 5

In this section we use the same method as in [3, 4] to compute the universal central
extension L̂ (b) of L (b). We show that for every Θn-graded Lie algebra L there is a
subspace X of the center of L̂ (b) such that L is isomorphic to L (b,X) = L̂ (b)/X . This
finishes the classification of Θn-graded Lie algebras up to isomorphism.

Recall that Der∗(b) := {d ∈ Der(b) | dX ⊆ X for X = A+,A−,B, · · · ,E ′ } and

Db,b = span{Dα,β | α,β ∈ b}
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where Dα,β := ⟨α,β ⟩ for α,β ∈ b (⟨,⟩ is a surjective map from b⊗b to D, see (4.2.5)).
The centerless (Θn,g)-graded Lie algebra L (b) in Theorem 5.2.5 has Lie bracket defined
as follows. For all x±,x±1 ,x

±
2 ∈ g±, u,v ∈ V , u′,v′ ∈ V ′, s ∈ S, λ ∈ Λ, s′ ∈ S′, λ ′ ∈ Λ′

and for all a±,a±1 ,a
±
2 ∈ A, b,b1,b2 ∈ B, b′,b′1,b

′
2 ∈ B′, c ∈ C, c′ ∈ C′, e ∈ E, e′ ∈ E ′,

d,α1,α2 ∈ Db,b,

[u⊗b,v′⊗b′] = (uv′t + v′ut − 2tr(uv′t)
n

I)⊗ [b,b′]A−

2
+ (5.3.1)

(uv′t − v′ut)⊗ (b◦b′)A+

2
+

2tr(uv′t)
n

Db,b′ =−[v′⊗b′,u⊗b],

[x+1 ⊗a−1 ,x
+
2 ⊗a−2 ] = x+1 ◦ x+2 ⊗

[a−1 ,a
−
2 ]A−

2
+[x+1 ,x

+
2 ]⊗

(a−1 ◦a−2 )A+

2
+(x+1 | x+2 )Da−1 ,a

−
2

,

[x−1 ⊗a+1 ,x
−
2 ⊗a+2 ] = x−1 ◦ x−2 ⊗

[a+1 ,a
+
2 ]A−

2
+[x−1 ,x

−
2 ]⊗

(a+1 ◦a+2 )A+

2
+(x−1 | x−2 )Da−1 ,a

−
2

,

[x+1 ⊗a−1 ,x
−
1 ⊗a+1 ] = x+1 � x−1 ⊗

[a−1 ,a
+
1 ]A+

2
+[x+1 ,x

−
1 ]⊗

(a−1 ◦a+1 )A−

2
,

[s⊗ c,s′⊗ c′] = s◦ s′⊗ [c,c′]A−

2
+[s,s′]⊗ (c◦ c′)A+

2
+(s | s′)Dc,c′ =−[s′⊗ c′,s⊗ c],

[λ ⊗ e,λ ′⊗ e′] = λ ◦λ
′⊗ [e,e′]A−

2
+[λ ,λ ′]⊗ (e◦ e′)A+

2
+(λ | λ

′)De,e′ =−[λ ′⊗ e′,λ ⊗ e]

[u⊗b1,v⊗b2] = (uvt + vut)⊗ [b1,b2]C
2

+(uvt − vut)⊗ (b1 ◦b2)E

2
,

[u′⊗b′1,v
′⊗b′2] = (u′v′t + v′u′t)⊗

[b′1,b
′
2]C′

2
+(u′v′t − v′u′t)⊗

(b′1 ◦b′2)E ′

2
,

[x+⊗a−,s⊗ c] = x+ � s⊗ [a−,c]C
2

+[x+,s]⊗ (a− ◦ c)E

2
=−[s⊗ c,x+⊗a−],

[x−⊗a+,s⊗ c] = x− � s⊗ [a+,c]E
2

+[x−,s]⊗ (a+ ◦ c)C
2

= [s⊗ c,x−⊗a+],

[x+⊗a−,λ ⊗ e] = x+ �λ ⊗ [a−,e]E
2

+[x+,λ ]⊗ (a− ◦ e)C
2

=−[λ ⊗ e,x+⊗a−],

[x−⊗a+,λ ⊗ e] = x− �λ ⊗ [a+,e]C
2

+[x−,λ ]⊗ (a+ ◦ e)E

2
=−[λ ⊗ e,x−⊗a+],

[s′⊗ c′,x+⊗a−] = s′ � x+⊗ [c′,a−]C′

2
+[s′,x+]⊗ (c′ ◦a−)E ′

2
=−[x+⊗a−,s′⊗ c′],

[s′⊗ c′,x−⊗a+] = s′ � x−⊗ [c′,a+]E ′

2
+[s′,x−]⊗ (c′ ◦a+)C′

2
=−[x−⊗a+,s′⊗ c′],

[λ ′⊗ e′,x+⊗a−] = λ
′ � x+⊗ [e′,a−]E ′

2
+[λ ′,x+]⊗ (e′ ◦a−)C′

2
=−[x+⊗a−,λ ′⊗ e′],

[λ ′⊗ e′,x−⊗a+] = λ
′ � x−⊗ [e′,a+]C′

2
+[λ ′,x−]⊗ (e′ ◦a+)E ′

2
=−[x−⊗a+,λ ′⊗ e′],
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[s⊗ c,λ ′⊗ e′] = s�λ
′⊗ [c,e′]A+

2
+[s,λ ′]⊗ (c◦ e′)A−

2
=−[λ ′⊗ e′,s⊗ c],

[s′⊗ c′,λ ⊗ e] = s′ �λ ⊗ [c′,e]A+

2
+[s′,λ ]⊗ (c′ ◦ e)A−

2
=−[λ ⊗ e,s′⊗ c′],

[x⊗a,u⊗b] = xu⊗ab =−[u⊗b,x⊗a],

[s′⊗ c′,u⊗b] = s′u⊗ c′b =−[u⊗b,s′⊗ c′],

[λ ′⊗ e′,u⊗b] = λ
′u⊗ e′b =−[u⊗b,λ ′⊗ e′],

[u′⊗b′,x⊗a] = xtu′⊗b′a =−[x⊗a,u′⊗b′],

[u′⊗b′,s⊗ c] = su′⊗b′c =−[s⊗ c,u′⊗b′],

[u′⊗b′,λ ⊗ e] =−λu′⊗b′e =−[λ ⊗ e,u′⊗b′],

[d,x⊗a] = x⊗da =−[x⊗a,d],

[d,u⊗b] = u⊗db =−[u⊗b,d],

[d,s⊗ c] = s⊗dc =−[s⊗ c,d],

[d,λ ⊗ e] = λ ⊗de =−[λ ⊗ e,d],

[d,s′⊗ c′] = s′⊗dc′ =−[s′⊗ c′,d],

[d,u′⊗b′] = u′⊗db′ =−[u′⊗b′,d],

[d,λ ′⊗ e′] = λ
′⊗de′ =−[λ ′⊗ e′,d],

[d,Dα1,α2 ] = Ddα1,α2 +Dα1,dα2.

Proposition 5.3.1. [D1,D2] = D1D2 −D2D1 for all D1,D2 ∈ Db,b.

Proof. Let Dα1,β1 , Dα2,β2 ∈ Db,b. We need to show that

[Dα1,β1,Dα2,β2 ](δ ) = (Dα1,β1Dα2,β2 −Dα2,β2Dα1,β1)(δ ),

for all δ ∈ b. To prove this, we need to make various choices of α1, β1, α2, β2 and δ , use
Propositions 4.2.8, 4.2.7, 4.2.6 and associativity of a. As illustration, we demonstrate the
case when α1,β1,α2,β2,δ ∈ a. We have

[Dα1,β1,Dα2,β2](δ ) = DDα1,β1
α2,β2(δ )+Dα2,Dα1,β1

β2(δ )

= [[[α1,β1]A−,α2],β2]A−,δ ]+ [[α2, [[α1,β1]A−,β2]]A−,δ ]

= [[[α1,β1]A−,α2],β2]A− +[α2, [[α1,β1]A−,β2]]A−,δ ]

= [[[α1,β1]A−, [α2,β2]A−],δ ]

= [[α1,β1]A−, [[α2,β2]A−,δ ]]+ [[[α1,β1]A−,δ ], [α2,β2]A−]

= [[α1,β1]A−, [[α2,β2]A−,δ ]]− [[α2,β2]A−, [[α1,β1]A−,δ ]]
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= Dα1,β1Dα2,β2 −Dα2,β2Dα1,β1(δ ),

as required.

Lemma 5.3.2. Db,b is an ideal in Der∗(b).

Proof. This is similar to [4, Lemma 3.6]. In Proposition 4.2.8, we showed that Db,bX ⊆ X
for X = A+, A−, B, · · · ,E ′, so it is enough to prove that (1) Db,b ⊆ Der∗(b) and (2)
[ψ,Dα1,α2] = Dϑα1,α2 +Dα1,ψα2 , for all α1,α2 ∈ b and ψ ∈ Der∗(b). To prove this we
make various choices of α1,α2,β1,β2 ∈ a∪B and calculate the corresponding deriva-
tion actions by using Proposition 4.2.7. As an illustration, we consider the case when
α1,α2,β1,β2 ∈ a.

(1) Let ϑ = Dβ1,β2 ∈ Db,b where β1,β2 ∈ a. Using Proposition 4.2.7 and the associ-
ativity of a, we get

ϑ(α1)α2 +α1ϑ(α2) = [[β1,β2]A−,α1]α2 +α1[[β1,β2]A−,α2]

= ([β1,β2]A−α1)α2 −α1(α2[β1,β2]A−)

= [β1,β2]A−(α1α2)− (α1α2)[β1,β2]A−

= [[β1,β2]A−,α1α2]

= ϑ(α1α2),

for all α1,α2 ∈ a, as required.
(2) Let ψ ∈ Der∗(b) and α1,α2 ∈ a. Let δ ∈ b. We have two cases.
Case 1: δ ∈ a. Using Proposition 4.2.7, the associativity of a and Db,bX ⊆ X for

X = A+, A−, B, · · · ,E ′ we get

[ψ,Dα1,α2 ](δ ) = ψDα1,α2(δ )−Dα1,α2ψ(δ )

= ψ([[α1,α2]A−,δ ])− [[α1,α2]A−,ψ(δ )]

= ψ([α1,α2]A−δ )−ψ(δ [α1,α2]A−)

− [α1,α2]A−.ψ(δ )+ψ(δ )[α1,α2]A−

= ψ([α1,α2]A−)δ +[α1,α2]A−ψ(δ )−ψ(δ )[α1,α2]A−

−δψ([α1,α2]A−)− [α1,α2]A−.ψ(δ )+ψ(δ )[α1,α2]A−

= ψ([α1,α2]A−)δ −δψ([α1,α2]A−)

= [ψ([α1,α2]A−),δ ]

= [(ψα1)α2 +α1(ψα2)− (ψα2)α1 −α2(ψα1),δ ]

= [(ψα1)α2 −α2(ψα),δ ]+ [α1(ψα2)− (ψα2)α1,δ ]
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= [[ψα1,α2]A−,δ ]+ [[α1,ψα2]A−,δ ]

= Dψα1,α2 +Dα1,ψα2(δ ).

Case 2: δ ∈ B⊕B′. Using Proposition 4.2.7, the associativity of a and Db,bX ⊆ X for
X = A+, A−, B, · · · ,E ′ we get

[ψ,Dα1,α2](δ ) = ψDα1,α2(δ )−Dα1,α2ψ(δ )

= ψ([α1,α2]A−δ )− [α1,α2]A−ψ(δ )

= ψ([α1,α2]A−)δ +[α1,α2]A−ψ(δ )− [α1,α2]A−.ψ(δ )

= ψ([α1,α2]A−)δ

= ψ(α1α2)δ −ψ(α2α1)δ

= ((ψα1)α2 −α2(ψα1)+α1(ψα2)− (ψα2)α1))δ

= [ψα1,α2]A−δ +[α1,ψα2]A−δ

= Dψα1,α2 +Dα1,ψα2(δ ).

Then (1) and (2) hold, as required.

Lemmas 5.1.7 and 5.3.2 and Propositions 4.2.7 and 4.2.8 imply the following.

Proposition 5.3.3. (1) The space Db,b of inner derivations is an ideal of Der∗(b) and
Db,b(X)⊆ X for X = A+, A−, B, · · · , E ′.

(2) The inner derivations satisfy

Dα,β +Dβ ,α = 0,

Dαβ ,γ +Dβγ,α +Dγα,β = 0,

for all α,β ∈ b. Moreover, Dx,y = 0 if x ∈ X and y /∈ X ′ with X = B,C,E or x ∈ A+ and
y ∈ A−.

Let I be the subspace of b⊗b spanned by the elements

α ⊗β +β ⊗α, (5.3.2)

γα ⊗β +βγ ⊗α +αβ ⊗ γ,

x⊗ y

where α,β ∈ b and x ∈ X and y /∈ X ′ with X = B,C,E or x ∈ A+ and y ∈ A−. In Pro-
positions 4.2.7 and 4.2.8 we showed that b is a Db,b-module, so b⊗ b is a Db,b-module.
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Thus, the space I is invariant under Db,b, and so {b,b} is a Db,b-module under the induced
action:

Dα1,α2.{β1,β2} := {Dα1,α2β1,β2}+{β1,Dα,α2β2} .

Consider the quotient space {b,b} = b⊗ b/I and set {α,β} = α ⊗ β + I in {b,b}.
Then the relations in (5.3.2) translate to say

{α,β}=−{β ,α},
{γα,β}+{βγ,α}+{αβ ,γ}= 0,

{x,y}= 0.

The mapping b⊗b→ Db,b, α ⊗β 7→ Dα,β has I in its kernel. We define the induced
mapping p : {b,b}→ Db,b by ρ({α,β}) = Dα,β . We have the following.

Proposition 5.3.4. (1) The space {b,b} is a Lie algebra with the multiplication

[{α1,α2} ,{β1,β2}] = {Dα1,α2β1,β2}+{β1,Dα1,α2β2} ,

for all α1,α2,β1,β2 ∈ b.
(2) The mapping ρ : {b,b} → Db,b given by ρ({α,β}) = Dα,β is a surjective Lie

algebra homomorphism.

Proof. This is similar to [3, 4.8-4.10] and [4, 5.24].
(1) This can be checked by making various choices of α1,α2,β1,β2,γ1,γ2 ∈ a∪B

and calculating the corresponding derivations by using Proposition 4.2.7. As illustration,
consider the case when α1,α2,β1,β2,γ1,γ2 ∈ a. Note that

[{α1,α2} ,r1 {β1,β2}+ r2 {γ1,γ2}] = Dα1,α2 .(r1 {β1,β2}+ r2 {γ1,γ2})
= Dα1,α2 .r1 {β1,β2}+Dα1,α2.r2 {γ1,γ2}
= [{α1,α2} ,r1 {β1,β2}]+ [{α1,α2} ,r2 {γ1,γ2}].

This means that, the bracket is bilinear. Now we are going to show that {b,b} satisfies
the Jacoby identity.

[{α1,α2} , [{β1,β2} ,{γ1,γ2}]]− [{β1,β2} , [{α1,α2} ,{γ1,γ2}]]
= [{α1,α2} ,

{
Dβ1,β2γ1,γ2

}
+
{

γ1,Dβ1,β2γ2
}
]−

[{β1,β2} ,{Dα1,α2γ1,γ2}+{γ1,Dα1,α2γ2}]
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= [{α1,α2} ,
{

γ1,Dβ1,β2γ2
}
]+ [{α1,α2} ,

{
Dβ1,β2γ1,γ2

}
−

[{β1,β2} ,{Dα1,α2γ1,γ2}]− [{β1,β2} ,{γ1,Dα1,α2γ2}]
=
{

Dα1,α2γ1,Dβ1,β2γ2
}
+
{

γ1,Dα1,α2Dβ1,β2γ2
}
+{

Dα1,α2Dβ1,β2γ1,γ2
}
+
{

Dβ1,β2γ1,Dα1,α2γ2
}
−
{

Dβ1,β2Dα1,α2γ1,γ2
}
−{

Dα1,α2γ1,Dβ1,β2γ2
}
−
{

Dβ1,β2γ1,Dα1,α2γ2
}
−
{

γ1,Dβ1,β2Dα1,α2γ2
}

=
{

Dα1,α2Dβ1,β2γ1,γ2
}
−
{

Dβ1,β2Dα1,α2γ1,γ2
}
+{

γ1,Dα1,α2Dβ1,β2γ2
}
−
{

γ1,Dβ1,β2Dα1,α2γ2
}

=
{
[Dα1,α2,Dβ1,β2 ]γ1,γ2

}
+
{

γ1, [Dα1,α2,Dβ1,β2]γ2
}

=
{

DDα1,α2β1,β2 +Dβ1,Dα1,α2β2γ1,γ2

}
+
{

γ1,Dβ1,Dα1,α2β2 +DDα1,α2β1,β2γ2

}
=
{

DDα1,α2β1,β2γ +Dβ1,Dα1,α2β2γ1,γ2

}
+
{

γ1,Dβ1,Dα1,α2β2γ2 +DDα1,α2β1,β2γ2

}
=
{

DDα1,α2β1,β2γ1,γ2

}
+
{

Dβ1,Dα1,α2β2γ1,γ2

}
+
{

γ1,DDα1,α2β1,β2γ2

}
+
{

γ1,Dβ1,Dα1,α2 β2γ2

}
=
{

DDα1,α2β1,β2γ1,γ2

}
+
{

γ1,DDα1,α2 β1,β2γ2

}
+
{

Dβ1,Dα1,α2β2γ1,γ2

}
+
{

γ1,Dβ1,Dα1,α2 β2γ2

}
= [{Dα1,α2β1,β2} ,{γ1,γ2}]+ [{β1,Dα1,α2β2} ,{γ1,γ2}]
= [{Dα1,α2β1,β2}+{β1,Dα1,α2β2} ,{γ1,γ2}]
[[{α1,α2} ,{β1,β2}],{γ1,γ2}].

It follows that, {b,b} satisfies the Jacoby identity. It remains to prove that the multiplica-
tion [{α1,α2} ,{β1,β2}] is anti-commutative. We have

[{α1,α2} ,{β1,β2}]+ [{β1,β2} ,{α1,α2}]
= {Dα1,α2β1,β2}+{β1,Dα1,α2β2}+

{
Dβ1,β2α1,α2

}
+
{

α1,Dβ1,β2α2
}

= Dα1,α2β1 ⊗β2 +β1 ⊗Dα1,α2β2 +Dβ1,β2α1 ⊗α2 +α1 ⊗Dβ1,β2α2 + I

= [[α1,α2],β1]⊗β2 +β1 ⊗ [[α1,α2],β2]+ [[β1,β2],α1]⊗α2 +α1 ⊗ [[β1,β2],α2]+ I

= [α1α2 −α2α1,β1]⊗β2 +β1 ⊗ [α1α2 −α2α1,β2]+

[β1β2 −β2β1,α1]⊗α2 +α1 ⊗ [β1β2 −β2β1,α2]+ I

= [α1,α2]β1 ⊗β2 −β1[α1,α2]⊗β2 +β1 ⊗ [α1,α2]β2 −β1 ⊗β2[α1,α2]+

[β1,β2]α1 ⊗α2 −α1[β1,β2]⊗α2 +α1 ⊗ [β1,β2]α2 −α1 ⊗α2[β1,β2]+ I

= [α1,α2]⊗ [β1,β2]+ [β1,β2]⊗ [α1,α2]+ I = I.

Thus, the space {b,b} becomes a Lie algebra under this product.
(2) It is clear that ρ is a surjective map. It remains to show that f is a Lie algebra
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homomorphism. Using Lemma 5.3.2, we get

ρ([{α1,α2} ,{β1,β2}]) = ρ({Dα1,α2β1,β2}+{β1,Dα1,α2β2})
= DDα1,α2β1,β2 +Dβ1,Dα1,α2β2

= [Dα1,α2 ,Dβ1,β2]

= [ρ({α1,α2}),ρ({β1,β2})].

Thus, ρ is a Lie algebra homomorphism, as required.

Propositions 4.2.8 and 5.3.4 imply the following.

Proposition 5.3.5. b is a module for the Lie algebra {b,b} with action defined by {α,β}.γ =
ρ({α,β})γ = Dα,β γ for {α,β} ∈ {b,b}, γ ∈ b. This action stabilizes the subspaces
A+,A−,B, · · · ,E ′.

Definition 5.3.6. [4, 5.26] The full skew-dihedral homology group of b is

HF(b) = kerρ =

{
∑

i
{αi,βi} ∈ {b,b} | ∑

i
Dαi,βi = 0

}
.

Theorem 5.3.7. Let n ≥ 5 and let a and B be as in Example 5.2.3. Let

L̂ (b) := (g⊗A)⊕·· ·⊕ (Λ′⊗E ′)⊕{b,b}

be the algebra with multiplication defined by (5.3.1) with Db,b replaced by {b,b} and
Dα,β replaced by {α,β}. Then (L̂ (b), f ) where f : L̂ (b)→ L (b) is given by

f (x) = x, ∀x ∈ (g⊗A)⊕·· ·⊕ (Λ′⊗E ′),

f ({α,β}) = Dα,β , ∀{α,β} ∈ {b,b} ,

is the universal covering algebra of L (b) and the center of L̂ (b) is HF(b).

Proof. This is similar to [3, Theorem 4.13] and [4, Theorem 5.34]. First, we are going to
show that L̂ (b) with the above multiplication is a Lie algebra. It is clear that the bracket
is bilinear. It remains to check L̂ (b) satisfies the Jacobi identity. Observe that if at least
2 of the 3 factors are from (g⊗A)⊕·· ·⊕ (Λ′⊗E ′), then the products behave as in L (b).
The only difference is that the {b,b}-component of the products involves expressions
such as {α1,α2} rather than Dα1,α2 . But when such a term acts on b, the action of the two
is the same. When all of them belong to {b,b}, by Proposition 5.3.4, the Jacobi identity
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hold. When exactly 2 of the 3 factors belongs to {b,b} then it is necessary to know that
products of the form [{α1,α2},{β1,β2}] are represented as [Dα1,α2,Dβ1,β2 ], but that is the
content of Proposition 5.3.4. As illustration, we consider {α1,α2},{β1,β2} ∈ {a,a} and
x⊗α ∈ (g⊗A)⊕ (S⊗C)⊕ (S′⊗C′)⊕ (Λ⊗E)⊕ (Λ′⊗E ′). Using Proposition 4.2.7 and
the associativity of a we get

[[{α1,α2} ,{β1,β2}],x⊗α] = [{Dα1,α2β1,β2}+{β1,Dα,α2β2} ,x⊗α]

= [{[[α1,α2],β1],β2} ,x⊗α]+ [{β1, [[α1,α2],β2]} ,x⊗α]

= x⊗ ([[[[α1,α2],β1],β2],α]+ [[β1, [[α1,α2],β2]],α])

= x⊗ [[[α1,α2], [β1β2]],α]

= x⊗ ([[α1,α2], [[β1,β2],α]]+ [[[α1,α2],α], [β1,β2]])

= [{α1,α2} ,x⊗ [[β1,β2],α]]+ [x⊗ [[α1,α2],α],{β1,β2}]
= [{α1,α2} , [{β1,β2} ,x⊗α]+ [[{α1,α2} ,x⊗α],{β1,β2}]

Therefore L̂ (b) with the above multiplication is a Lie algebra. By its construction L̂ (b)

is graded by the same root system as L (b) and it is perfect. In Lemma 5.3.4 we showed
that f is a surjective Lie algebra homomorphism and

ker f =

{
∑

i
{αi,βi} ∈ {b,b} | ∑

i
Dαi,βi = 0

}
.

Thus, (L̂, f ) is a central extension of L. We have ker f ⊆ Z(L̂) and it easy to check that
Z(L̂)⊆ ker f , so Z(L̂) = ker f = HF(b), as required.

To see that f : L̂ (b)→L (b) is universal, suppose that f : L̃ (b)→L (b) is a central
extension of L. By Lemma 5.1.4, we can lift L (b) to a subspace of L̃ (b) , which we
identify with L̃ (b), so that the corresponding 2-cocycle satisfies ζ (g,L̃ (b)) = 0. Then,
by Theorem 5.1.6, we may assume that the corresponding 2-cocycle is obtained from a
2-cocycle ε of b as in (5.1.3). The 2-cocycle induces a mapping ε̃ : {b,b} → E with
{α,β} 7→ ε(α,β ) ∈ E . Thus, there is a homomorphism ϕ : L̂ (b)→ L̃ (b) with

ϕ(x⊗a) = x⊗a, ∀x ∈ (g⊗A)⊕·· ·⊕ (Λ′⊗E ′),

ϕ({α,β}) = Dα,β + ε̃(α,β ), ∀{α,β} ∈ {b,b} .

Hence L̂ (b) is the universal covering algebra of L (b), as required.
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Consider the quotient space ≺ b,b ≻= {b,b}/X and set ≺ α,β ≻= {α,β}+X in
{b,b}/X . Let

L (b,X) = (g⊗A)⊕·· ·⊕ (Λ′⊗E ′)⊕≺ b,b≻ (5.3.3)

be the algebra with multiplication same as L (b) with Dα,β replaced by ≺ α,β ≻. Then
we have the following:

Theorem 5.3.8. (1) L (b,X) is a (Θn,g)-graded Lie algebra with coordinate algebra b.
(2) Every Θn-graded Lie algebra with coordinate algebra b is isomorphic to L (b,X)

for some subspace X of HF(b).

Proof. This proof is similar to the proof of [3, Theorem 4.20] and [4, Theorem 5.35].
We need to prove only (2). Denote L := L (b). Suppose that L̃ is a (Θn,g)-graded Lie
algebra with coordinate algebra b. By Theorem 5.2.5, L̃ is a cover of L. Since L is
(Θn,g)-graded with coordinate algebra b, by Lemma 5.1.4 we can lift L to a subspace of
L̃, which we identify with L, so that the corresponding 2-cocycle satisfies ζ (g,L) = 0. We
get L̃ = L⊕E where E is the center of L̃. Let π : L̃ → L be the canonical projection. Then
π | g = id is a monomorphism which we can use to identify g with its image in L. By
Theorem 5.1.6, we may assume that the 2-cocycle ζ is gotten from a 2-cocycle ε of b as
in (5.1.3). The 2-cocycle induces a mapping ε̃ : {b,b}→ E with {α,β} 7→ ε(α,β ) ∈ E .
Thus, there is a homomorphism ϕ : L̂ → L̃ with

ϕ(x⊗a) = x⊗a, ∀x ∈ (g⊗A)⊕·· ·⊕ (Λ′⊗E ′),

ϕ({α,β}) = Dα,β + ε̃(α,β ), ∀{α,β} ∈ {b,b} .

Then the homomorphism ϕ : L̂→ L̃ has the additional property that ϕ | g= id. Hence, if X
is the kernel of ϕ , then ϕ induces an isomorphism ψ : L (b,X)→ L̃ so that ψ | g= id.

Using basic facts about central extension [49] we also have

Theorem 5.3.9. The natural map L̂ (b) → L (b,X) is the universal cover of L (b,X),
and hence H2(L (b,X),F)∼= X.

5.4 Quasiclassical Lie algebras and Θn-graded Lie algeb-
ras

Let A be any associative algebra with identity 1 and let n ≥ 2. We denote by Mn(A) ∼=
Mn ⊗A the associative algebra of n× n matrices over A. The corresponding Lie algebra
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Mn(A)(−) is denoted gln(A) and has the following multiplication:

[x⊗α,y⊗β ] = (x⊗α)(y⊗β )− (y⊗β )(x⊗α) = xy⊗αβ − yx⊗βα.

One can check that its derived subalgebra sln(A) := gln(A)(1) is an An−1-graded Lie al-
gebra with grading subalgebra sln(F)⊗ 1 (see for example, [43, Example 1.5] or [39,
5.1]). The following is well known.

Proposition 5.4.1. The following definitions of sln(A) are equivalent.
(1) sln(A) := gln(A)(1).
(2) sln(A) = en(A) where en(A) is the ideal of gln(A) generated by the elements aEi, j,

r ∈ A and i ̸= j) (see [22]).
(3) sln(A) = {x ∈ gln(A) | trx ∈ [A,A]} (see [44]).
(4) sln(A) = KerT where T is a natural non-comutative trace map

T : gln(A) 7→ A/[A,A], x 7→ [
n

∑
j=1

x j j]

and [a] denotes the class of a in A/[A,A].

Proof. We will only show (1)⇔ (2) (the other being obvious). Note that

sln(A) = gln(A)(1) = (sln ⊗A)⊕ (I ⊗ [A,A])

(see for example [43, Example 1.5]). We claim that en(A) = (sln ⊗A)⊕ (I ⊗ [A,A]). We
have for all a ∈ A, i ̸= j and [a1,a2] ∈ [A,A],

(Ei,i −E j, j)⊗a = [Ei, j ⊗a,E j,i ⊗1] ∈ en(A) (5.4.1)

Ei, j ⊗a = [Ei,k ⊗a,Ek, j ⊗1] ∈ en(A)a, k ̸= i, j

Ei,i ⊗ [a1,a2] = ([Ei, j ⊗a1,E j,i ⊗a2]− [Ei, j ⊗a2a1,E j,i ⊗1]) ∈ en(A)

Thus (sln ⊗A)⊕ I ⊗ [A,A] ⊆ en(A). Since gln(A)(1) = (sln ⊗A)⊕ (I ⊗ [A,A]) (see [43,
Example 1.5]), we have gln(A)(1) ⊆ en(A). From Formulas (5.4.1) we see that en(A) ⊆
gln(A)(1), as required.

Definition 5.4.2. The Steinberg Lie algebra stn(A) (n≥ 3) is defined to be the Lie algebra
over F generated by the symbols Xi j(r), 1≤ i, j ≤ n, i ̸= j, r ∈ A, where A is any F-algebra
with identity subject to the relations:

(1) Xi j(ar+bs) = aXi j(r)+bXi j(s).
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(2) [Xi j(r),X jk(A)] = Xik(rA) if i, j,k are distinct.
(3) [Xi j(r),Xkt(A)] = 0 if i ̸= t and j ̸= k, for all a,b ∈ k and for all r,s ∈ A.

Lemma 5.4.3. [37] Let A be any associative algebra with identity and let n ≥ 3. Let
ψ : stn(A)→ sln(A) be the Lie algebra epimorphism such that ψ(Xi j(r)) = Ei, j(r). Then
(stn(A),ψ) is a central extension of sln(A) and the kernel of ψ is isomorphic to HC1(A),
the first cyclic homology group of A.

Theorem 5.4.4. [22] Let L be an An−1-graded Lie algebra with coordinate algebra A
where n ≥ 4. Then

(1) stn(A) is an An−1-graded Lie algebra with coordinate algebra A such that
stn(A) = st0n(A)⊕∑i ̸= j st

i, j
n (A) where st0n(A) := ∑i̸= j[Xi j(A),X ji(A)] and st

i, j
n (A) :=

Xi j(A).
(2) stn(A) is centrally closed.
(3) stn(A) is the universal covering algebra of L and sln(A).

Definition 5.4.5. [9] A Lie algebra L is said to be quasiclassical if there exists an associ-
ative algebra A with involution such that L ∼= skew(A)(1).

Remark 5.4.6. Let A be an associative algebra and let L = A(1). Then L is quasiclassical.
Indeed it is easy to see that L ∼= skew(Ã)(1) where Ã := A⊕Aop, the direct sum of two
ideals, with involution swapping the components.

Corollary 5.4.7. Let L be an An−1-graded Lie algebra where n ≥ 4. Then L is centrally
isogenous to a quasiclassical Lie algebra.

Proof. By Theorem 5.4.4(3), L is centrally isogenous to sln(A). It remains to note that
sln(A) is quasiclassical by Remark 5.4.6.

Denote by Ξn the following set of integral weights of sln:

Ξn = Γ((V ⊕V ∗)⊗2) = {0,±εi ± ε j,±2εi | 1 ≤ i, j ≤ n} ⊂ Θn.

We are going to show (Ξn,sln)-graded Lie algebras are centrally isogenous to quasi-
classical Lie algebras for n ≥ 5.

Example 5.4.8. Let L = sl2n and g =

{[
x 0
0 −xt

]
| x ∈ sln

}
⊂ L. We consider the

adjoint action of g on L. We have the following decomposition of the g-module L:

L = g⊕g′⊕S⊕S′⊕Λ⊕Λ
′⊕D
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where D =

{[
t1In 0
0 −t1In

]
| t1 ∈ F

}
is a trivial g-module and

g′ =

{[
x 0
0 xt

]
| x ∈ sln

}
∼= g∼=V (ω1 +ωn−1),

S =

{[
0 x
0 0

]
| x ∈ Mn(F) and x = xt

}
∼=V (2ω1),

S′ =

{[
0 0
x 0

]
| x ∈ Mn(F) and x = xt

}
∼=V (2ωn−1),

Λ =

{[
0 x
0 0

]
| x ∈ Mn(F) and x =−xt

}
∼=V (ω2),

Λ
′ =

{[
0 0
x 0

]
| x ∈ Mn(F) and x =−xt

}
∼=V (ωn−2),

as g-modules. Thus, L is (Ξn,g)-graded.

Define sym(Mn) := {x ∈ Mn | xt = x}, sym0(Mn) := {x ∈ sln | xt = x} and skew(Mn) :=
{x ∈ Mn | xt =−x}.

Theorem 5.4.9. Let L be (Ξn,sln)-graded. Let a = A+⊕A−⊕C ⊕E ⊕C′⊕E ′ be the
coordinate algebra of L with involution η (as in Theorem 4.2.9 with B = B′ = 0) and let
U= Mn ⊗a. Suppose n ≥ 7 or n = 5,6 and the conditions (1.2.1) hold. Then

(1) U is an associative algebra with involution σ : x⊗α 7→ xt ⊗η(α);
(2) skew(U)(1) = sym0(Mn)⊗ skew(a)⊕ skew(Mn)⊗ sym(a)⊕ I⊗ (C⊕C′)⊕D where

D= I ⊗ ([A−,A−]⊕ [A+,A+]⊕ [C,C′]⊕ [E,E ′]);

(3) skew(U)(1) is (Ξn,g)-graded with coordinate algebra a where g∼= sln;
(4) L̂ (a) is the universal covering algebra of both L and skew(U)(1). In particular,

all these three algebras are centrally isogenous.

Proof. (1) This follows from Lemma 4.3.4.
(2) Let U= Mn ⊗a. Recall that U(−) is a Lie algebra with multiplication:

[x⊗α,y⊗β ] = (x⊗α)(y⊗β )− (y⊗β )(x⊗α) = xy⊗αβ − yx⊗βα.
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By Lemma 4.3.4,

skew(U) = sym(Mn)⊗ skew(a)⊕ skew(Mn)⊗ sym(a).

Denote

L= sym0(Mn)⊗ skew(a)⊕ skew(Mn)⊗ sym(a)⊕ I ⊗ (C⊕C′)⊕D

where
D= I ⊗ ([A−,A−]⊕ [A+,A+]⊕ [C,C′]⊕ [E,E ′]).

We need to show that skew(U)(1) = L. First we need to prove that skew(U)(1) contains L.
Note that x⊗ c = [I ⊗ 1−

2 ,x⊗ c], for all x ∈ sym(Mn) and c ∈C, so

sym(Mn)⊗C ⊂ skew(U)(1).

Similarly, we prove that

sym(Mn)⊗ (C⊕C′)⊕ skew(Mn)⊗ (E ⊕E ′)⊆ skew(U)(1).

It remains to check

sym0(Mn)⊗A−⊕ skew(Mn)⊗A+⊕D⊆ skew(U)(1).

We have for all a± ∈ A±, i ̸= j and (α,α ′) ∈ (A−,A−)∪ (A+,A+)∪ (C,C′]∪ (E,E ′),

Ei, j ⊗a± = [Ei,k ⊗a±,Ek, j ⊗1+] ∈ skew(U)(1), k ̸= i, j (5.4.2)

(Ei,i −E j, j)⊗a− = [Ei, j ⊗a−,E j,i ⊗1+] ∈ skew(U)(1),

Ei,i ⊗ [α,α ′] = ([Ei, j ⊗α,E j,i ⊗α
′]− [Ei, j ⊗α

′
α,E j,i ⊗1+]) ∈ skew(U)(1),

as required. Now we are going to show that skew(U)(1) ⊆ L. Let x⊗α and y⊗ β be
homogeneous elements in sym(Mn)⊗ A− ⊕ skew(Mn)⊗ A+. If both x ⊗ α and y ⊗ β

belong to sym(Mn)⊗A− or skew(Mn)⊗A+ then

[x⊗α,y⊗β ] = x◦ y⊗ [α,β ]

2
+[x,y]⊗ α ◦β

2
+ I ⊗ (x | y)[α,β ] ∈ L.

Otherwise, tr(xy) = 0 (as the product of a symmetric and a skew symmetric matrices has
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zero trace) and

[x⊗α,y⊗β ] = x� y⊗ [α,β ]

2
+[x,y]⊗ α ◦β

2
∈ L.

Thus,
(sym(Mn)⊗A−⊕ skew(Mn)⊗A+)(1) ⊆ L.

Similarly,

[sym(Mn)⊗C⊕ skew(Mn)⊗E,sym(Mn)⊗C′⊕ skew(Mn)⊗E ′]⊆ L.

It is easy to check (using Table 4.1.1) that

[sym(Mn)⊗A−⊕ skew(Mn)⊗A+,sym(Mn)⊗ (C⊕C′)⊕ skew(Mn)⊗ (E ⊕E ′)]

⊆ sym(Mn)⊗ (C⊕C′)⊕ skew(Mn)⊗ (E ⊕E ′)⊆ L,

[sym(Mn)⊗C⊕ skew(Mn)⊗E,sym(Mn)⊗C⊕ skew(Mn)⊗E] = 0,

[sym(Mn)⊗C′⊕ skew(Mn)⊗E ′,sym(Mn)⊗C′⊕ skew(Mn)⊗E ′] = 0.

Thus, skew(U)(1) ⊆ L, as required.
(3) Denote g̃ := sym(Mn)⊗1−⊕ skew(Mn)⊗1+. We claim that g̃ is a Lie subalgebra

of skew(U) isomorphic to gln. Indeed, since e1 =
1++1−

2 and e2 =
1+−1−

2 are orthogonal
idempotents in A = A+⊕A− (see Proposition 4.3.2) , it is easy to see that the following
map ϕ : gln → g̃ is a Lie algebra isomorphism:

ϕ(x) =
(x+ xt)

2
⊗1−+

(x− xt)

2
⊗1+

=
(x+ xt)

2
⊗ (e1 − e2)+

(x− xt)

2
⊗ (e1 + e2)

= x⊗ e1 +(−xt)⊗ e2.

Put g = g̃(1) ∼= sln. We wish to show that L is (Ξn,g)-graded with coordinate algebra
a. Let h = H ⊗ 1− where H is the set of diagonal matrices of sln. Then h is a Cartan
subalgebra of g and L has the following weight spaces with respect to the adjoint action
of h:

Lεi−ε j = {Ei, j ⊗ e1αe1 +E j,i ⊗ e2αe2 | α ∈ a},1 ≤ i ̸= j ≤ n;

Lεi+ε j =
{

Ei, j ⊗ (c+ e)−E j,i ⊗η(c+ e) | (c+ e) ∈C⊕E
}
,1 ≤ i, j ≤ n;
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L−εi−ε j =
{

Ei, j ⊗ (c′+ e′)−E j,i ⊗η(c′+ e′) | (c′+ e′) ∈C′⊕E ′} ,1 ≤ i, j ≤ n;

L0 = (H ⊗A−)⊕D.

From the formulas (5.4.2), we see that L0 = ∑
α∈Ξn\{0}

[Lα ,L−α ] . Thus L is (Ξn,g)-graded.

It is easy to check that a is the coordinate algebra of L (this was also proved in more
general case, see Example 5.2.4 and Theorem 5.2.6).

(4) By Theorem 5.2.5, L and skew(U)(1) are covers of L (b) and by Theorem 5.3.7
L̂ (b) is the universal covering algebra of both of them.

Corollary 5.4.10. Let L be (Ξn,sln)−graded. Suppose n ≥ 7 or n = 5,6 and the condi-
tions (1.2.1) hold. Then L is centrally isogenous to a quasiclassical Lie algebra.
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