

GOAL COMPLIANCE ASSURANCE FOR
DYNAMICALLY ADAPTIVE

WORKFLOWS

Thesis submitted for the degree of Doctor of Philosophy�
at the University of Leicester�

by

BUDOOR AHMAD ALLEHYANI

Department of Informatics

 University of Leicester

JUNE 2018

i

ABSTRACT
Business processes capture the functional requirements of an organisation. Today’s

businesses operate in a very dynamic and complex environment. Thus, the suitability of

automation techniques depends on their ability to rapidly and reliably react to change. To

react to change rapidly, an adaptation process for business processes is required. This will

also satisfy better quality of services, evidenced through performance and availability.

The adaptation process includes a need to support self-monitoring of the business

processes, detection of a need for a change, decision making on the right change and

execution of the change. The adaptation process must be performed in a reliable and

automatic manner with minimal user intervention. One of the techniques that enables

automatic adaptation is a policy-driven approach, typically E-C-A policies. Policies can

change running business processes’ behaviour according to changing requirements by

inserting, replacing or deleting functionalities. However, there are no assurances over

policies’ behaviour in terms of the satisfaction of the original goal which is the space that

this thesis fills. The presented work provides an approach to support assurances in the

face of automated adaptation and changing requirements. To that end, we use trace

refinement and ontologies for ensuring goal compliance during adaptation. We present a

goal-compliance framework which incorporates adaptation process through E-C-A

policies and goal-compliance constraints for assurance purposes. The framework

evaluation targets its performance according to two categories: (1) complexity of both

processes and adaptation and (2) execution time including adaptation and verification.

The evaluation results show that the framework reliably guarantees the satisfaction of the

process goal with minimal user intervention. Moreover, it shows a promising

performance in which it is a very important aspect of runtime environment.

ii

DECLARATION
This thesis reports on work undertaken in the Department of Informatics, University of

Leicester, supervised by Dr. Stephan Reiff-Marganiec. I hereby declare that the contents

of this submission have not previously been published for a degree or diploma at any

other university or institute.

All the material submitted is the result of my own research, except where otherwise

indicated.

The research work presented in some sections has been previously published, in

particular:

• The research challenges and an outline of the contribution, represented in Chapter

1 have been published in (Allehyani and Reiff-Marganiec, 2015)

• The background work in Chapter 2, in particular the KAOS goal modelling, the

university admission example used in the case study in Chapter 6 and an overview

of the framework have been published in (Allehyani and Reiff-Marganiec, 2016)

• The goal-compliance framework, the definition of the goal-dependency link and

the domain- task conformance and their corresponding analysis techniques,

represented in Chapter 3 have been published in (Allehyani and Reiff-Marganiec,

2017)

Budoor Allehyani

October 2017

iii

ACKNOWLEDGEMENT

Prophet Mohammad (Peace Be Upon Him) said “Who does not thank people, does not

thank Allah “God””.

Foremost, I praise Allah for giving me patience and health to face all challenges

throughout my PhD journey.

I would like to express my sincere gratitude to my supervisor Dr. Stephan Reiff-

Marganiec for his invaluable encouragement and support on both an academic level and

a personal level over the past four years. For his patience, expert guidance and help I am

sincerely grateful.

I would also like to thank Dr. Fer-Jan de Vries for his expert guidance in CSP and for his

help with the administration throughout the course of my PhD study.

I would like to acknowledge my sponsor Umm Al-Qura University and the Saudi Arabian

Cultural Bureau in London who gave me the chance to do my PhD study and their

constant support.

I would like also to offer special thanks to my parents, without their prayers and

encouragement this work would not have been possible. I owe a debt of gratitude to my

loving family; husband, daughter and son. I am thankful for their patience, kind support

and inspiring me to follow my dreams. My sincere thanks also goes to my uncle Khalid

Allehyani for supporting me through my education journey.

To my friends, thank you for listening, sharing experiences, giving advice and making

this journey in Leicester a memorable. Special thanks to Nisreen, Maryam, Aisha, Mona

and Nawal.

iv

DEDICATION

This thesis is dedicated to my auntie Fouza and my uncle Matir (may
peace be upon them) for bringing me up like my own parents and looking

after me like their own.

v

Table of Contents

ABSTRACT .. i

DECLARATION .. ii

ACKNOWLEDGEMENT ... iii

DEDICATION... iv

Table of Contents .. v

Table of Figures ... viii

Table of Tables .. ix

ABBREVIATIONS .. x

Chapter 1 Introduction ... 1

1.1 Automated Adaptation ... 1

1.2 Runtime Verification: Overview .. 3

1.3 Motivation and Research Hypothesis ... 4

1.4 Research Challenges .. 5

1.5 Research Scope and Assumptions .. 7

1.6 Research Objectives .. 7

1.7 Research Questions ... 8

1.8 Thesis Contribution ... 9

THESIS STATEMENT... 11

1.9 Thesis Structure ... 11

Chapter 2 Background and Related Work .. 13

2.1 A Running Example: UQU Enrolment System .. 13

2.2 Background ... 16

2.2.1 BPMN Processes and Goals ... 16

2.2.2 CSP ... 19

2.2.3 Policies .. 25

2.2.4 Ontologies ... 27

2.3 State of the Art .. 29

2.3.1 Workflow Flexibility ... 29

2.3.2 Assurances in Adaptive and Self-Adaptive Systems 34

2.4 Requirements-Aware/ Goal-Compliance Business Processes 40

vi

2.5 Summary ... 41

Chapter 3 Goal-Compliance Framework .. 42

3.1 Proposed Framework: Overview .. 42

3.2 Runtime Environment Infrastructure .. 45

3.3 Goal-Compliance Framework .. 47

3.3.1 Architecture ... 47

3.3.2 Implementation .. 50

3.4 Summary ... 55

Chapter 4 A Refinement-Based Approach for Delete Policy 56

4.1 Adaptation with Delete Policy ... 56

4.1.1 Deleting a Subprocess .. 57

4.1.2 Deleting an Operator .. 57

4.2 Impact on Goal .. 58

4.3 Goal-Task Dependency (GTD) Constraint: Linkage Specification 61

4.3.1 From Logical KAOS Specification to CSP Properties 61

4.4 GTD Algorithm: Verification .. 65

4.4.1 Goal Satisfaction.. 67

4.5 Summary ... 72

Chapter 5 An Ontology-Based Approach for Insert and Replace Policies 73

5.1 Adaptation with Insert Policy .. 73

5.1.1 Inserting a Subprocess ... 74

5.1.2 Inserting an Operator ... 74

5.2 Impact on Goal .. 74

5.3 Domain-Task Conformance (DTC) Constraint: Specification 77

5.3.1 Domain-Goal-Task (DGT) Ontology ... 77

5.3.2 The Use of WordNet .. 84

5.4 DTC Algorithm: Verification... 84

5.5 Adaptation with Replace Policy ... 87

5.6 Impact on Goal .. 87

5.7 Task-Task Consistency (TTC) Constraint: Specification 88

5.8 TCC Verification ... 89

5.9 Summary ... 91

Chapter 6 Evaluation ... 92

vii

6.1 Introduction ... 92

6.2 Methodology ... 93

6.3 Experiments .. 94

6.3.1 Framework Performance .. 94

6.3.2 Impact of Workflow size on Framework Performance.......................... 96

6.3.3 Impact of Complex Reconfiguration on Framework Performance 99

6.3.4 The DGT Ontology Evaluation: Ontology Accuracy 104

6.4 Framework Adequacy: Workflow Patterns .. 105

6.5 Discussions ... 108

6.6 Summary ... 109

Chapter 7 Conclusion .. 111

7.1 Summary of Contributions ... 111

7.2 Discussions ... 112

7.3 Limitations and Further Research .. 115

7.3.1 Limitations .. 115

7.3.2 Further Research .. 116

7.4 Final Conclusion ... 117

BIBLIOGRAPHY ... 118

viii

Table of Figures
Figure 1-1: Goal compliance in self-adaptive systems ... 9

Figure 1-2: A Framework for runtime verification in self-adaptive workflows 10

Figure 1-3: Thesis outline ... 12

Figure 2-1: Admission process for UQU (adapted from (UQU, 2014), translated

from Arabic Scenario) ... 15

Figure 2-2: Data type and channels declaration of UQU admission example 22

Figure 2-3: Alphabet declaration for car insurance .. 23

Figure 2-4: University admission behaviour .. 24

Figure 2-5: OWL ontology example ... 28

Figure 3-1: Verification requirements for different dependencies.......................... 45

Figure 3-2: Runtime Environment for Self-Adaptive Workflows........................... 47

Figure 3-3: Goal-compliance framework: Architecture .. 48

Figure 3-4: Example of the appConfiguration setting file 52

Figure 3-5: Algorithm ‘flowchart’ for the goal-compliance framework 53

Figure 4-1: The KAOS goal model for the university admission process 63

Figure 4-2: Flowchart of the goal-task dependency verification 67

Figure 4-3: Travel planning process trace ... 71

Figure 5-1: DGT ontology main construction .. 78

Figure 5-2: Example of the DGT ontology: classes and properties 81

Figure 5-3: Example of the DGT ontology: Individuals .. 82

Figure 5-4: DGT ontology main constructs ... 83

Figure 5-5: Flowchart of DTC verification mechanism... 86

Figure 5-6: Flowchart of TCC verification .. 90

Figure 6-1: Correlation between time and BPMN complexity with single

reconfiguration .. 98

Figure 6-2: Correlation between time and BPMN complexity with complex

reconfiguration .. 99

Figure 6-3: Time taken to perform complex reconfiguration of type ‘delete’, E1 101

Figure 6-4: Time taken to perform complex reconfiguration of type ‘insert’, E2 102

Figure 6-5: Time taken to perform various complex reconfigurations, E3 103

Figure 6-6: Time taken to perform various complex reconfigurations, E4 103

ix

Table of Tables
Table 1-1: Research questions linked to research challenges 8

Table 2-1: CSP Syntax .. 20

Table 2-2: Reconfiguration Functions .. 26

Table 2-3: Definitions and taxonomies of workflow flexibility 30

Table 2-4: Correctness criteria for self-adaptive systems with related approaches

.. 35

Table 2-5: Models@Run.Time and our approach ... 41

Table 4-1: Example of policy impact on goal satisfaction 59

Table 4-2: Expected policies in the UQU admission system 60

Table 4-3: Goal-task dependency for the UQU admission system 64

Table 4-4: CSP assertion definition according to property types 68

Table 5-1: Example of the insert policy and the DTC constraint 75

Table 5-2: Policy example for the UQU admission workflow 76

Table 5-3: Example of replace policy impact and the TTC constraint 89

Table 6-1: Measurement functions per reconfiguration .. 95

Table 6-2: The execution time according to workflow complexity.......................... 97

Table 6-3: Summary of experiments for evaluating performance according to

reconfiguration complexity ... 100

Table 6-4: Experiments for ontology evaluation.. 105

x

ABBREVIATIONS
AC Autonomic Computing

BPMN Business Process Model and Notation

BP Business Process

BPM@RT Business Process Models at Runtime

CSP Communicating Sequential Processes

DGT Domain Goal Task

E-C-A Event-Condition(s)-Action(s)

FDR Failures-Divergence Refinement

GORE-for-BP Goal-Oriented Requirements Engineering for Business

 Processes

GTD Goal-Task Dependency

KAOS Keep All Objectives Satisfied

LTL Linear Temporal Logic

LTS Labeled Transition Systems

M@RT Models@Run.Time

ProBE Process Behavior Explorer

RE Requirements Engineering

TDC Task-Domain Conformance

TTC Task-Task Consistency

V&V Validation and Verification

XML eXtensible Markup Language

1

Chapter 1 Introduction

1.1 Automated Adaptation
Workflow management technologies play a major role in modeling and automating

business processes (BPs) (Georgakopoulos, Hornick and Sheth, 1995). Each business

process can be described in terms of processes where they interact to achieve business

goals. Workflows are the technique used to capture the core function (intended behavior)

of business processes. One of the main issues of workflows is their rigidity, which means

once they are structured, they do not extend to capture unstructured events or exceptions.

However, the dynamicity of business environment forces any enterprise to react to

process changes based on environmental or contextual requirements. Therefore, a critical

challenge for any enterprise is to react to process change at runtime in a safe and correct

manner.

The ability for workflows to rapidly and reliably respond to change is still a challenging

issue. Today’s businesses operate in a very dynamic environment, where change is almost

constantly required due to customer demands, legislation and changes to the business’

nature (e.g. mergers) as well as the desire to work more efficiently. These changes have

implications on how the business operates and hence on the processes describing how the

business goals are achieved. Typically making such changes is a matter of redesigning

the processes, thus involving business analysts and then updating the software executing

the processes. Nevertheless, there are some attempts in the field to realise the change and

enable flexibility in business processes.

Automation is the key feature in today’s software systems (Vogel-Heuser et al, 2014).

Autonomic Computing (AC) aims at systems that are capable to deal with complexity

and uncertainty with minimal human intervention (Computing, 2006). Autonomic

systems combine self-* properties including self-configuring, self-healing, self-

optimising and self-protecting (Computing, 2006) and (Parashar and Hariri, 2005). Self-

configuring means the system is able to detect change itself and react to it automatically.

This is also known as self-adaptive systems in the area of software engineering.

Adaptability is considered as a software quality assurance (Jamwal, 2010) and some

researchers consider it as a requirement in today’s systems due to their complexity and

dynamicity (Reichert, Rinderle and Dadam, 2003) and (YongLin and Jun, 2008a).

Chapter 1. Introduction

2

Adaptation could be achieved manually through human intervention, semi-automatically

or automatically. There is an ever increasing demand on automated adaptation due to the

fact that workflow systems are complex and dynamic (Zander et al, 2016). Automated

adaptation has been addressed in current approaches, such as (Gorton et al, 2007) and

(Burmeister et al, 2008a). Such approaches resulted in what is called self-adaptive

workflows.

A Self-adaptive system, in the context of software engineering, is defined as a system that

“evaluates its own behavior and changes behavior when the evaluation indicates that it is

not accomplishing what the software is intended to do, or when better functionality or

performance is possible”, cited in (Salehie and Tahvildari, 2009). On the one hand, self-

adaptive systems combine two promising features: automation and adaptation. On the

other hand, quality over automated adaptation is a critical issue because automation

without management could be the key to severe consequences. The term management in

this context can be defined as software assurances which guarantee correctness and

consistency issues. Correctness and consistency are related to syntactical (e.g.

inheritance), behavioural (e.g. soundness) and semantic issues (e.g. compliance rules).

Most of the state-of-the-art focus on syntactical and behavioural correctness, whereas few

studies address semantic correctness.

Zander and Krol claim that “…the full power of automated adaptation can only be set

free if we find a way to provide context-sensitive, momentary information about the user

and the context to the machine and find a way to automatically interpret it” (Zander et al,

2016).

In the context of this research, self-adaptive workflows are business processes

represented in Business Process Management and Notation (BPMN) diagrams and they

are requirements-aware, self-configuring and self-managing. They are self-adaptive as

they can detect ‘functional’ change through triggering data that are available at runtime

and change their behaviour accordingly through Event-Condition-Action (E-C-A

policies). In addition, they are context-sensitive as policies check context-based

conditions before applying the reconfiguration actions. Policies can change the workflow

behaviour by deleting/inserting or replacing functionalities at any position and anytime.

The current form of the E-C-A policies have no control over ‘what’ to delete or insert in

terms of whether the ‘what’ satisfying the original goal and complying to the domain

Chapter 1. Introduction

3

semantic or not. A policy writer might not be aware of the changing context and this

might lead to undesirable behaviour.

Adaptation processes consist of four phases: monitoring, detecting, deciding and acting

(Salehie and Tahvildari, 2009). Each phase has different challenges, for example the

ability of the software to detect the need for change is a detecting challenge. We focus

on the acting phase as we aim to control the acting when policies are ready to react in

response to change. There are several aspects have been discussed in the literature about

the acting phase of the adaptation process in order to tackle the correctness challenges.

We are going to mention the most related aspects to our work including self-managing

and runtime verification. E-C-A policies (Gorton, 2011) guarantee syntactic correctness

over the reconfigured workflows but cannot guarantee that the functional change at

requirement level is consistent with the workflow’s original goal. To that end, we desire

the capabilities to address consistency issues in an automatic manner to ensure

workflow’s robustness.

1.2 Runtime Verification: Overview
Runtime verification is defined as “the discipline of computer science that deals with the

study, development, and application of those verification techniques that allow checking

whether a run of a system under scrutiny satisfies or violates a given correctness property”

(Leucker and Schallhart, 2009). However, what Validation and Verification (V&V)

strategies can be used for self-adaptive systems, what properties to be checked, where

and when to verify are the main challenges in the area of self-adaptive systems (De Lemos

et al, 2013) and (Salehie and Tahvildari, 2009).

Regarding the correctness issues, self-adaptive workflows must be able to automatically

verify the change and make a decision whether to accept it or not based on predefined

constraints. This is an important and challenging issue to meet the increasing demands on

automation in everyday life. It is argued that self-adaptive systems should have self-

testing capabilities in order to ensure their correctness (De Lemos et al, 2013a). As self-

adaptivity is achieved at runtime, self-testing also must be achieved at runtime for quality

reasons: (1) software or service availability is a critical aspect especially in business

domains and (2) automatic reasoning might reduce the number of errors considering the

issue of growing complexity.

Chapter 1. Introduction

4

Models@Run.Time (Blair, Bencomo and France, 2009a) is a research community,

derived from MDE, that uses abstract models as runtime entities to support various V&V

objectives (Szvetits and Zdun, 2016). One of the objectives is ensuring consistency and

conformance at runtime. This inspires us to provide runtime assurance at a high-level of

abstraction in the face of automation and complexity.

1.3 Motivation and Research Hypothesis
Self-adaptive systems incorporate adaptation properties (i.e. self-* properties), domain

characteristics and preferences of stakeholders (Salehie and Tahvildari, 2009). Current

research to achieve self-adaptivity in a correct manner has focussed on several correctness

aspects that provide quality over adaptation (i.e. qualitative correctness). These aspects

which we analyse in section 2.2.2., are (i) syntactical, considering correct structure

without the needs to analyse its domain, (ii) behavioural, which guarantee correct

behaviour and (iii) semantic aspects, considering domain analysis. Our focus in this thesis

is on the semantic aspects, however most of the related approaches either provide manual

solution or at design phase of the system lifecycle, in which they are unrealistic and

insufficient for self-adaptive systems. Self-adaptive systems change their behaviour

automatically and at runtime in which the verification process should be held in an

automatic manner and at runtime in order to achieve dependability. Semantic correctness

is a wide concept comprising the context and the domain knowledge of a system. In

Section 2.2.2, we discussed the related approaches in a general sense in terms of semantic

correctness and showed that these approaches do not consider goal compliance in the

presence of runtime requirements change. However, some approaches consider goal

compliance either at design time for modelling purposes or at runtime for updating system

specification when the goal is changed. However, ensuring that the system satisfies its

goals in the presence of runtime requirements change remains as a challenge. The

hypothesis underlying the research in this thesis is as follows:

Given the goal specification in an explicit manner and linking its functional goals

with the functional requirements represented in the workflow specification,

efficient runtime verification is feasible to guarantee goal-compliance in the

presence of changes at requirements level. The goal compliance assurance can

be achieved by existing verification techniques for complex ad hoc change and

for larger workflows in a dependable and scalable manner.

Chapter 1. Introduction

5

1.4 Research Challenges
The following issues related to workflow adaptation and verification are the main

challenges to inspire this work:

C1: Instance ad hoc change

Workflow adaptation can be realized at two different levels: process level and instance

level (van der Aalst, Wil MP and Jablonski, 2000). The former addresses the need for

flexibility by restructuring the whole process when the change is applicable for all

instances and it is known as evolutionary change. In contrast, the change at instance level

addresses the need for flexibility by temporally applying change per instance and it is

valid until the instance terminates and it is known as ad hoc change. It is challenging to

change a process on the fly especially if the change is performed online and at instance

level. (Gorton et al, 2007) have proposed StPowla approach, which provides a promising

solution to automatically adapt instance structure. The key feature of StPowla is the

separation of concerns as it separates business logic from its functionality. Another

feature is that the policy engine guarantees the syntactic correctness when a policy

inserts/deletes a task to/from the process. We build our work on the StPowla approach as

we believe that “temporary” instance change is a very important aspect in today’s

workflows. Consider the following two examples as typical:

Example 1: A business might wish to incentivize orders from a specific customer type

by providing a special deal: To attract current accounts from customers with annual

salaries exceeding GBP 50K, such customers will be send a hamper basket upon

registering. This requires that an additional task to be inserted into the workflow,

however, this is not a permanent change and also applies to some users of the process, so

it is not sensible to redesign the process.

Example 2: An enterprise issues a new rule that all business travel has to be second class

and that at least three quotes need to be obtained to prove value for money. This sort of

change requires adaptation to all tasks in all processes where travel booking is involved.

This type of adaptation, process evolution, is complex as it requires to redesign the whole

process. It is also risky as it might miss points that needs adaptation.

Chapter 1. Introduction

6

C2: Automatic runtime adaptation

Typically, adaptation is achieved through redesign, essentially going back to the drawing

board. Slightly more dynamic current approaches to workflow adaptation manually

modify running instances in response to change, i.e. authorized users are responsible to

make changes to a workflow. However, those approaches do not provide a satisfactory

solution since most business processes are complex and dynamic. Hence, instance change

at runtime should be achieved online to guarantee service availability.

C3: Compliance and correctness issues

One of the main challenges arising from dynamic workflow adaptation is to ensure that

the change does not cause any inconsistences or runtime errors thus guaranteeing that the

adapted workflow still satisfies the domain properties within some sensible range of

expectations. The goal model is considered as the main reference for workflow in its

entire lifetime through and after its development. Therefore, any changes or updates

applied to a workflow must be compliant to the original goal, otherwise the workflow

might behave in an unexpected way. The most challenging issue related to quality or

reliability over adaptation is the semantic issues, in particular the domain or context

correctness.

C4: Automatic runtime verification

Self-adaptive system adapts its structure, without human intervention in the midst of its

execution. Therefore, the traditional validation and verification (V&V) mechanisms

should be tolerated or integrated with self-adaptive systems as they are designed to work

at design time where everything is planned. Furthermore, the need to find new V&V

techniques to ensure correctness at runtime is being investigated in recent years. Goal

satisfaction in self-adaptive systems is defined as one of the major challenges facing the

field (Tamura et al, 2013). Runtime V&V techniques are characterized by properties

including: sensitivity, isolation, incrementality and composability (De Lemos et al,

2013). In such manner, the self-adaptive V&V techniques are should be autonomic,

intelligent and may be monitored. The balance between adaptation and correctness is of

upmost importance and it is a challenging issue to be addressed with minimal user

intervention.

Chapter 1. Introduction

7

1.5 Research Scope and Assumptions
This thesis addresses goal compliance in self-adaptive systems with automatic

requirements changing at business level. We consider ad hoc change at requirements level

for workflow systems, focusing on control or flow structure. While the dataflow and

exception handling are outside the scope of this thesis. The workflows are considered to

be isolated (i.e. not complex workflows). The assumptions for this research are as follows:

1. We assume workflows are structured and expressed in BPMN diagrams.

Scientific domains have used workflows to structure and execute processes. While

in this work the focus is on business processes, we believe that it has merit in the

scientific workflow domain, too.

2. We assume goal and BPMN models are correctly defined at design phase and the

BPMN is consistent to its goal before adaptation.

3. We have followed the assumption, in the software engineering domain, which

states that domain knowledge can be understood and derived from the goal.

4. we assume that in some cases a change cannot be made, in which case the original

process will continue to execute (likely resulting in some form of undesired

output).

1.6 Research Objectives
The primary aim of this research is to provide assurances that self-adaptive workflows

are compliant to their original goals. Self-adaptive workflows change their behaviour

according to changing requirements, therefore, the emerging requirements should not

deviate from the original goal, see Figure 1-1. In order to achieve that we identify the

following objectives:

1. To study how the policy actions (delete/insert) when adapting the requirements

model (i.e., BPMN) on the satisfaction of the original goal. In other words, how

inserting or deleting new requirements would deviate from the original goal.

2. To define a management link between the requirements model and the goal model

in order to be able to measure goal satisfaction in the presence of requirements

change at requirements level.

3. To define a semantic-based ontology that captures the requirements in the domain

in which we are interested and define the relationship that links the domain

knowledge (i.e., requirements), for verification purposes.

Chapter 1. Introduction

8

4. To develop verification algorithms using existing techniques for runtime

assurance over the adaptation processes. The verification algorithms ensure goal-

compliance.

5. To evaluate the dependability and applicability of the verification algorithms and

check their satisfaction according to the runtime desirable criteria.

1.7 Research Questions
Table 1-1: Research questions linked to research challenges

This research is motivated by a number of questions arising from the challenges

(numbered above C1-C4). Table 1-1 shows the linkage between research challenges and

questions. Challenge C1 is not the focus of this research, it explains why we consider the

ad hoc adaptation rather than the process evolution.

No. Research Questions Related Challenge(s)

RQ1. How to address goal compliance in the face of

automated adaptation and changing requirements?

To what extent the changing requirements can be

reliably verified against unchanged goal?

C3 and C4

RQ2. How to decide the satisfaction link among the goal

specification and its corresponding requirements

model? In other words, how to link the high-level

goals to lower-level system components to perform

automatic verification at business level? Is

understanding the domain from the goal model

sufficient to control goal compliance?

C2 and C4

RQ3. To what extent goal satisfaction can be guaranteed

without human intervention? how to balance

adaptation and goal satisfaction with minimal user

intervention?

C3 and C4

RQ4. Do the existing verification techniques enable

correctness assurance in self-adaptive systems in a

realistic and reliable manner?

C3 and C4

Chapter 1. Introduction

9

1.8 Thesis Contribution

This research is motivated by the increasing demand on automation, abstraction and

quality over self-adaptivity. However, automation without management would be the key

reason for serious consequences. We aim to manage the automated adaptation of

workflow systems without sacrificing their functionality. Nevertheless, self-adaptive

systems in addition to their ability to detect and react to changes should be able to take

the desired actions by preserving correctness criteria. Thus, the automated adaptation of

workflow systems must be enhanced with constraints, which guarantee the satisfaction of

their original goals.

This thesis argues that there is a real need to ensure domain-semantical correctness in

self-adaptive workflows beside syntactical as well as generic behavioural properties. The

verification process towards that should be automatic and at runtime to meet runtime

requirements and automation nature of self-adaptive workflows. Furthermore,

automation over assurance process could lead to less effort, error and cost. The main

contribution and outcomes of this research are as follows:

1. Goal-compliance algorithms for ensuring the compliant of the new emerging

requirements to the original goal.

Figure 1-1: Goal compliance in self-adaptive systems

Before Adaptation After Adaptation

Goal Model

Requirement Model

Domain Knowledge

Goal Model

Domain Knowledge

Requirement Model
|=

|=

|=

|=

∆
|=

|=

Chapter 1. Introduction

10

2. A methodology for linking the goal specification with the workflow specification

at a high-level of abstraction for providing assurances on goal satisfaction during

workflow adaptation.

3. An ontology-based methodology for providing assurances on goal satisfaction

during workflow adaptation.

4. A goal-compliance framework for dynamic adaptation and verification, see

Figure 1-2.

5. A proof-of-concept implementation.

6. An evaluation of the goal-compliance framework against the runtime desirable

features.

The key finding of this research is that the automated requirements adaptation in self-

adaptive workflows can be managed to ensure goal and domain correctness. The

correctness assurance can be achieved at business level, on running workflows with

minimal user intervention and with a promising performance. The challenge in the

context of this research is how to balance between the process of achieving adaptation

and the process of achieving a quality over adaptation without user intervention.

Figure 1-2: A Framework for runtime verification in self-adaptive workflows

Original
Workflow

Specification

Reconfiguration
detail

Delete

Insert

Replace

Trace-
Refinement

Knowledge-
Engineering

Adapted
Workflow

Specification

Original
Workflow

Specification

Stop for
User-assisted

decision

Goal-
Compliance
Constraints

Inputs Methodology Outputs

Chapter 1. Introduction

11

THESIS STATEMENT
Self-adaptive workflows are able to detect change and take the required action(s) towards

change. One of the main challenges to manage self-adaptive workflows is to provide

assurances on goal satisfaction. Therefore, we developed an automatic checking

mechanisms that can be easily applied to ensure change compliance to the workflow

goals during adaptation.

1.9 Thesis Structure
The thesis consists of seven chapters as shown in Figure 1-3. The remaining chapters are

described as follows:

Chapter 2 introduces the main background concepts and tools used in this research. It

also discusses the state of the art and sheds light on the challenging issues.

Chapter 3 presents the proposed framework, discusses the motivation behind it and its

implementation.

Chapter 4 discusses the proposed mechanisms towards runtime V&V of self-adaptive

workflows. It illustrates the mechanism and the technique that facilitated goal-compliance

check. In particular, it discusses the effect of deleting a task from the process on achieving

the goal.

Chapter 5 focuses on studying the effect of inserting a new task to the process on goal

achievement. It presents the proposed technique to check the conformance of the new

task with the domain.

Chapter 6 shows the feasibility and applicability of our approach by providing evaluation

on its performance and accuracy.

Chapter 7 concludes the thesis with a discussion on the capabilities and limitations of

our approach highlighting the key findings. It also provides some recommendations and

further research.

Chapter 1. Introduction

12

Chapter 1: Introduction

Chapter 2: Background and
Related Work

Chapter 3: Goal-Compliance
Framework

Chapter 5: An Ontology-Based Approach
for Insert and Replace Policies

Chapter 4: A Refinement-Based
Approach for Delete Policy

Chapter 6: Evaluation

Chapter 7: Conclusion

Figure 1-3: Thesis outline

Chapter 2. Background and Related Work

13

Chapter 2 Background and Related Work

This research is built upon existing approaches and techniques for workflow modelling,

reconfiguration and verification. We use and integrated existing solutions in the

aforementioned areas to produce a new solution for providing semantical assurance in

self-adaptive workflows. In this chapter, we present the mapping from BPMN into

Communicating Sequential Processes (CSP), which we use as a modelling and

verification language for BPMN, and the E-C-A policies, which we adopt as workflow

reconfiguration method. In addition to CSP, we use ontologies for modelling and

verification purposes. Furthermore, we discuss related work based on two major

concerns: (1) the need for adaptation and (2) the need for assurances to guarantee

qualitative adaptation and show the importance of goal assurance in the presence of

uncertainty.

2.1 A Running Example: UQU Enrolment System
Our running example considers the specification and verification of Umm Al-Qura

University (UQU) enrolment system from the university point of view (UQU, 2014) The

university admission core process is depicted in Figure 2-1.

At first step, applicants register their personal and educational information and may need

to submit relative documents. All applicants must pass GAT and attainment tests before

the admission process starts. Applicants who intend to apply for English language

program or Medicine must do English test to be able to assign them to the right group.

The university then obtains the applicants’ test results automatically and checks the

requirements specified in a checklist to decide whether the applicant is able to register

with the university or not. Check list includes the following conditions:

• The applicant must be Saudi

• The applicant must be medically fit

• High school certificates must be within 3 years

• General Attitude Test (GAT) and attainment test must be within five years

• English proficiency test must be within three years.

Chapter 2. Background and Related Work

14

After that, the university automatically calculates the ratio for each applicant in order to

restrict his/her preferences in advance to the submission process. Note that this restriction

is controlled by some conditions and they might differ according to the program itself.

For example, some programs require that the nominated applicants must pass their

interviews.

The second stage of the enrolment process starts when the university opens the

submission system. The applicants should be aware of the start and end date of the

submission process. They are then able to apply for programs by preferences. There are

different requirements for each program and the university is aware of that in advance to

restrict applicant’s selections.

The next stage of the enrolment is university nomination as it nominates automatically to

the best programs if the conditions are met. Then applicants are informed by emails with

the nomination results. They then have the opportunity whether to confirm or withdraw

their places.

For those applicants whom accept the nomination result, the university will check their

status if they are not enrolled with another university at the same year. If this is satisfied,

then applicants will receive their approvals including their university IDs. If not, the

university must send them an email to notify them of rejection.

Chapter 2. Background and Related Work

15

Figure 2-1: Admission process for UQU (adapted from (UQU, 2014), translated from Arabic Scenario)

Chapter 2. Background and Related Work

16

The university admission process could be highly vulnerable to ad hoc change at runtime,

because it is a complex process which needs a collaboration among several parties (e.g.

applicants, university admission and ministry of education and other institutions).

Modelling all requirements at design time is implacable and might lead to complex and

pervasive process. Hence, it is impossible to capture every requirement at design time

and this illustrates the need for online and automatic ad hoc change. Furthermore, we

show how to automatically verify the ad hoc change in order to ensure goal satisfaction

at runtime. The core process captures the functional requirements of an organisation and

it is built to logically satisfy its goal.

We are going to refer to this example throughout the thesis to illustrate our approach

considering some expected policies that are applicable for the process.

2.2 Background
This section gives an overview of the languages and technologies that we used in this

research. Specifically, it illustrates the syntax and semantic of BPMN, KAOS and CSP

in order to make it easier to understand the notation used throughout this thesis. It also

discusses briefly the mapping of BPMN to CSP and the adaptation policies. Finally, it

discusses the ontology and how they are used as a mean of verification.

2.2.1 BPMN Processes and Goals
Business processes are used to describe how a business achieves a goal and also to

automate processes by executing them on workflow engines, as discussed in section 3.2.

Each business process is described in terms of a workflow, essentially a set of tasks that

are conducted in a specific order and the interaction of those tasks with the environment,

ultimately capturing how a business goal is achieved. BPMN (OMG, 2013) is the de-facto

standard in business process modelling. A BPMN diagram is constructed from a set of

BPMN elements; activities and their flows. However, BPMN diagram can be easily

designed and simulated by BPMN modelling and simulating tools. We use the Eclipse

BPMN2 Modeler (BPMN2Modeler, 2017) for BPMN modelling. An activity is defined

by the BPMN specification as “a generic term for work that company performs in a

process” (OMG, 2013). It can be atomic task or composite task (i.e. subprocess). A

process model represents the requirement model which is constructed at design time.

However, it is impossible and impractical to anticipate all activities prior to runtime due

to the fact that the business environment is dynamic and complex. However, process

Chapter 2. Background and Related Work

17

models are prone to change and should be able to react to change efficiently.

Although BPMN is widely accepted for business process modelling, it is insufficient for

analysis and verification purposes. This is due to the fact that BPMN lacks a formal

semantic such as mathematical-based specification. Business process goals are achieved

through logically related tasks in the process model. Furthermore, one of the

shortcomings of BPMN is the lack of explicit/formal specification of the goal that it is

designed for as well as the lack in mechanisms to measure goal achievement in standard

BPMN modelling and simulating tools. Thus, it is difficult to trace and reason about

changing BPMN behaviour at runtime. However, there are some approaches which map

BPMN semantics to several formal languages such as Petri net (Peterson, 1981) and CSP

(Roscoe, 1998) to enable reasoning about BPMN behaviour as theses languages have a

formal semantic and are tools supported.

The work by Dijkman (Dijkman et al, 2007) has provided a transformation of the BPMN

into Petri net semantics throughout a prototypical tool that produce the transformation

into a script expressed as Petri Net Markup Language (PNML). PNML is an XML-based

format for Petri nets (Weber and Kindler, 2003). The resulting PNML scripts are

supported by tools for analyzing the behavioural properties such as soundness.

BPMN is also mapped to CSP semantics (Wong, 2011), as will be explained later in

section 2.3.2.1. Similar to Petri net transformation, CSP is supported with tools for

behavioural analysis. However, we choose the CSP approach for our verification

purposes due to the fact that CSP is characterized by the notion of refinement. In

particular, the trace refinement for analysing the trace of the model against a set of

desirable properties. In addition, the CSP hiding process helps to form a simple property

specification and avoid complex specification as discussed in section 4.6.1.

In addition to the formal mapping of BPMN, there are also attempts to provide explicit

linkage among goal specification and the processes they are designed for. Among others

we follow Anton’s definition of the goal (Antón, McCracken and Potts, 1994) which

states that the goal is “high-level objectives of the business, organization or system; they

capture the reasons why a system is needed and guide decisions at various levels within

the enterprise”. In Requirements Engineering (RE), goals are of two types: (i) hard or

functional goals capturing the functional aspects of an organization and usually they have

Chapter 2. Background and Related Work

18

strict criteria to measure satisfaction; (ii) soft or non-functional goals describing the

quality aspects the enterprise wishes to achieve and unlike for hard goals there is no

explicit criteria for satisfaction. Functional goals describe the strategic goals of an

enterprise and each strategic goal is refined by a number of sub-goals or objectives. The

strategic goals are qualitative whereas sub-goals are quantitative and usually described as

operational objectives that can be measured and assigned to agents.

Goal modelling has been applied as a foundation for business process modelling and

redesign. One of the methods applicable here is requirement specification which relates

business goals to functional and non-functional system components. In this research, we

used Keep All Objectives Satisfied (KAOS) (Van Lamsweerde, 1991) for goal modelling

as it provides formal declaration of goals in terms of functional objectives, which are

easily mapped to lower level system components (BPMN tasks). KAOS is a “KAOS is

a methodology for requirements engineering enabling analysts to build requirements

models and to derive requirements documents from KAOS models” (Respect, 2007). The

hierarchy of the goal model in KAOS consists of the strategic goal as a root node, which

is then refined to objectives representing the functional requirements. The refinement

relation between objectives are of two types; OR and AND. The former indicates that at

least one of the objectives must be satisfied, while the latter indicates that all objectives

must be satisfied. Goal modelling in KAOS is achieved in two different ways: (1) semi-

formal goal structuring model and (2) formal definition in linear temporal logic. The

former is supported by a tool called Objectiver (Objectiver, 2015) and it helps to

graphically depict the goal specification. The formal declaration of goals captures goals

in Linear Temporal Logic (LTL) specification with variant patterns as follows:

1. Achieve goals; the target must eventually occur (desire achievement)

2. Cease goals; there must be a state in the future where the target does not occur

(disallow achievement)

3. Maintain goals; the target must hold at all time in the future

4. Avoid goals; the target must not hold at all time in the future.

In the context of our work, we just used the first and third patterns as will be seen in

Chapter 4.

The goal considers only the logical properties of the process, i.e. the occurrence of certain

tasks, but does not consider the temporal properties in terms of the order among tasks.

Chapter 2. Background and Related Work

19

However, business rules or compliance rules capture the temporal and may be other

desired properties that specify how the requirement model must behave. As our focus is

on goal satisfaction, we focus on the occurrence properties and neglect the temporal

aspects. However, the temporal correctness has been addressed in the literature under the

umbrella of compliance rules.

There are two approaches for linking goal model with its process model: top-down and

bottom up. Top-down approach aims at designing an explicit goal model and then

generating its process model by extracting tasks from objectives while relationship among

tasks is inferred from the refinement relationship among objectives at goal level. Bottom-

up approach aims at generating a goal model from previously designed process model by

converting every task to objectives while relationship among objectives is consistent with

the relationship among tasks at process level. In the context of this work, we follow the

first approach, Top-down, as we argue that the goal should be explicitly defined to support

requirements engineering activities.

2.2.2 CSP
CSP is a formalism to describe communicating processes. A process is defined by a set

of events describing the ways it interacts with its environment. These sets of events are

known as the process alphabet and are written as Σ. The events are combined using

operators and processes advance by acting and reacting to their environment (which is

captured by another process). The syntax of CSP is shown in Table 2-2. CSP is a formal

mathematical notation and supported by a number of analysis and reasoning tools. Two

key reasons for using CSP in our work are: (a) the existence of previous work which

transforms BPMN to CSP semantic (Wong, 2011) and (b) the fact that CSP supports the

notion of refinement which helps in reasoning about BPMN behaviour. Refinement is an

ideal notion for our aim; the implementation of a business process is a refinement of its

specification; that it exhibits the correct behavior but contains details that are required for

running it.

Chapter 2. Background and Related Work

20

Table 2-1: CSP Syntax

CSP Operators Semantics
a à P Prefix

P ||| P Parallel interleaving

P |[A | B]| Q Parallel composition of P and Q sharing events in A∩B

P |[A]| Q Parallel composition of P and Q sharing events in A

P \ A Hiding all events in A from P

P ¨ Q External choice (deterministic)

P ∏ Q Internal choice (nondeterministic)

P; Q Sequential composition

P r Q Interruption

Skip Successful termination

Stop Deadlock

CSP semantics are either denotational or operational. The denotational semantic is

described by three models which are the trace model, failure model and failure-

divergence model. They are described briefly below:

1. Traces refinement: observes the process behavior in terms of indicating all

events a process can engage (safety property)

2. Failure refinement: observes the process behavior as in the traces refinement

and additionally considers events a process can refuse to engage.

3. Failure-Divergence refinement: indicates livelock processes (when a

process performs an infinite internal loop).

The second form of semantic that is supported in CSP is the operational semantic and it

graphically represents the CSP processes in terms of Labeled Transition Systems (LTS).

CSP is supported by tools, specifically The Failures-Divergence Refinement (FDR) and

Process Behavior Explorer (ProBE) (Tools for CSP) . The FDR is the refinement checker

for CSP processes. It checks the refinement relation of a CSP specification and its

implementation. It is also used to reason about model properties such as deadlock-

freedom and safety by using assertions. ProBE is the CSP animator or simulator. It

enables the user to “browse” a CSP process by following events that lead from one state

of the process to another. However, we did not use ProBE as the latest version of FDR

Chapter 2. Background and Related Work

21

enables this feature using the ‘:graph’ command. In the context of this research, this

feature helps in visually comparing the trace of the desired behaviour as specified with

properties and the actual behaviour or the process implementation.

The notion of CSP refinement leverages the runtime verification of self-adaptive

workflows as it enables to compare the trace of the desirable specification (for example

a goal specification captured in properties) and the implementation (for example the

adapted workflow). In addition, CSP is a modelling as well as verification language.

Hence, the property specification can be written directly in CSP, without the need to use

different notations from CSP (e.g. LTL) and its satisfaction is calculated directly through

the FDR.

2.2.2.1 BPMN to CSP
As discussed above, BPMN can be transformed into different formal languages in order

to facilitate analysis and verification. BPMN to CSP is one of those mappings and it is

conducted by (Wong, 2011). The transformation can be automatically achieved by

Wong’s prototype tool. This tool is implemented in Haskell and it takes the XML-based

BPMN file as an input and returns its corresponding CSPm file, where CSPm is the

machine readable CSP for FDR tool. In the following, we are going to give a brief

overview of the logic behind this transformation with an example as illustration.

Consider the university admission business process expressed in BPMN as a running

example, see Figure 2-1. The process consists of sixteen tasks, five gateways, one abort

event and a single start and end events. The corresponding CSP script for this BPMN is

shown in Figures 2-2 to 2-4.

Chapter 2. Background and Related Work

22

Each BPMN element (tasks and gateways) is defined as a node in CSP. BPMN tasks

represent a piece of work that achieved by the process, e.g., ‘Register_Applicant’

is a task representing the procedure of collecting an applicant’s information when it is

executed. In order to be able to model task triggers, a channel starts of type Node is

defined. For example, the event ‘starts.Register_Applicant’ indicates that the

task ‘Register_Applicant’ has already started . The channels fin, aborts,

error, except indicate that the process reaches the end state when it successfully

terminates and this is represented by fin or does not terminate successfully due to abortion

or error or exception which is represented by abort, error and except, respectively. The

flow between BPMN elements is modelled as a CSP channel called Flow and it indicates

that there is an incoming/ongoing flow(s) to the assigned element.

In CSP, any process must be declared in terms of alphabet. A process alphabet is a

collection of all events a process can engage when executing. In the above CSP fragment,

there is an alphabet declaration for every BPMN element; start and end events, tasks and

gateways. AUniversityAdmission(agateFlow290) refers to the alphabet of the

‘agate290’ in the university admission pool and indicates that the gateway AND-Spilt

can engage the events ‘fin.0’, ‘fin.1’, ‘Flow149’, ‘Flow290’ and
‘Flow211’, as shown in Figure 2-3.

datatype Msg = init | done

datatype Node = startFlow162 | Register_Applicant | Get_Docs |

agateFlow290 | agateFlow30 | Check_Requirements | Get_GAT |

Get_Attainment | Get_English_Test | Calculate_Ratio |

SMS_Notification_Of_Submission | Get_Submission | Nominate |

Send_Notification_Result | Get_Confirmation | Get_Cancellation |

Check_Status | Send_Ids | Send_Rejection | end0 | end1

channel starts : Node

channel fin , aborts , error , except : { 0, 1 }

channel Flow162 , Flow123 , Flow129 , Flow149 , Flow290 , Flow211 ,

Flow24 , Flow25 , Flow30 , Flow29 , Flow189 , Flow229 , Flow959 ,

Flow89 , Flow179 , Flow230 , Flow301 , Flow221 , Flow380 , Flow19 ,

Flow200 , Flow249 , Flow281 , Flow258 , Flow300

 Figure 2-2: Data type and channels declaration of UQU admission example

Chapter 2. Background and Related Work

23

PUniversityAdmission (BPMN-element) indicates the behaviour of that element

in terms of its incoming and outgoing flows and the work it represents (for tasks in

particular) within this pool. For example,

PUniversityAdmission(agateFlow290), in Figure 2-4, indicates that

Flow149 is its incoming flow followed by ‘Flow290’ and ‘Flow211’ as its

outgoing flows are parts of the university admission pool.

PUniversityAdmission(Register_Applicant) indicates that the

‘Flow162’ is its incoming flow and then some work is done by this task represented

by the event ‘starts. Register_Applicant’ followed by ‘Flow123’ as its

outgoing flow.

AUniversityAdmission(startFlow162) = { fin.0, fin.1, Flow162 }

AUniversityAdmission(Register_Applicant) = { fin.0, fin.1,

Flow162, Flow123, starts.Register_Applicant }

AUniversityAdmission(Get_Docs) = { fin.0, fin.1, Flow123, Flow129,

starts.Get_Docs }

AUniversityAdmission(agateFlow290) = { fin.0, fin.1, Flow149,

Flow290, Flow211 }

AInsurance(end0) = {fin.0, Flow16}

 Figure 2-3: Alphabet declaration for car insurance

Chapter 2. Background and Related Work

24

Regarding the above mapping, we believe that it could be much shorter if it has been

produced manually. Wong’s tool has generated lots of SKIP processes within the script,

specifically the part of modelling the behaviour of each BPMN elements as can be seen

in Figure 2-4. It could be manually mapped following Wong’s structure by providing: (1)

the declaration of the data types and channels, (2) the declaration of the process alphabets

and (3) the modelling of the elements behavior. Thus, the part that might be manually

enhanced is number (3) above, which is the elements behaviour, by cutting down the

number of SKIP processes.

Wong facilitates the verification capabilities of CSP, i.e. refinement, to reason about

BPMN generic properties, such as deadlock freedom and divergence freedom as well as

model checking the order properties of a workflow. They map the LTL property

specification to CSP in order to model check a BPMN diagram against behavioural rules

(Wong and Gibbons, 2009). However, we did not use their mapping in this work because

PUniversityAdmission(startFlow162) = (Flow162 -> (SKIP)) ; ([] i:{

0, 1 } @ (fin.i -> (SKIP)))

PUniversityAdmission(Register_Applicant) = (((Flow162 -> (SKIP))

; ((SKIP) ; ((starts.Register_Applicant -> (SKIP)) ; (((SKIP

) ; ((SKIP) ; (SKIP))) ; (Flow123 -> (SKIP)))))) ; (

PUniversityAdmission(Register_Applicant))) [] ([] i:{ 0, 1 } @ (

fin.i -> (SKIP)))

PUniversityAdmission(Get_Docs) = (((Flow123 -> (SKIP)) ; ((SKIP

) ; ((starts.Get_Docs -> (SKIP)) ; (((SKIP) ; ((SKIP) ; (

SKIP))) ; (Flow129 -> (SKIP)))))) ; (

PUniversityAdmission(Get_Docs))) [] ([] i:{ 0, 1 } @ (fin.i -> (

SKIP)))

PUniversityAdmission(agateFlow290) = (((Flow149 -> (SKIP)) ; ((

Flow290 -> (SKIP)) ||| (Flow211 -> (SKIP)))) ; (

PUniversityAdmission(agateFlow290))) [] ([] i:{ 0, 1 } @ (fin.i ->

(SKIP)))

Figure 2-4: University admission behaviour

Chapter 2. Background and Related Work

25

their purpose is to model check the BPMN against properties that capture the order

specification among BPMN tasks. Whereas we are interested in the occurrence of the

BPMN tasks to check their availability after adaptation.

2.2.3 Policies

StPowla (Gorton et al, 2007) is the approach that we choose as a foundation of our work

– the main motivation is that of the existing work it is the only approach that allows for

dynamic changes to instances of workflows without human intervention. The explicit

separation of core workflow and variability in StPowla allows for easy changes to the

variability requirements by end users.

StPowla assumes that tasks in the process are executed through services, but services by

their very nature could be automatic software components or software artifacts that

require human collaboration (note that this human interaction is different to the one we

try to avoid: we would not like human input to be required for dealing with workflow

variability, but workflow tasks themselves are often discharged by humans). The

workflow can be expressed in any workflow notation and the variability is captured by

policies.

StPowla introduces two types of policies: reconfiguration and refinement. The former

policies are event-condition-action rules that are triggered by a specific event and when

satisfying some condition, perform the specified action(s). Refinement policies deal with

requirements for individual tasks and have been discussed extensively in (Montangero et

al. 2011); reconfiguration policies allow for changes to the workflow structure and thus

are relevant here. The reconfiguration policies proposed by (Gorton, 2011) provide

temporary changes to the WF by adding, deleting, failing, aborting or blocking simple or

composite tasks as well as operators. He defines the effect of E-C-A policies as “a short-

lived modification to the workflow: the modification expires when the workflow instance

ends and the same core process is used at the start of the next instance”. The main policy

actions are summarized in Table 2-2. The syntax of StPowla policies (Gorton, 2011) is

defined as follows:

Chapter 2. Background and Related Work

26

Polrule:: = appliesto location [when triggers] [if conditions]
do actions

triggers:: = trigger | triggers or triggers 

conditions:: = condition | not conditions | conditions or
conditions | and conditions 

actions:: = action | actions actionop actions

actionop:: = and | or | andthen | orelse

Recalling the university admission example, suppose a policy

‘EnsureOtherRequirements’ for inserting a new task called

‘Check_Heritage’ in parallel with ‘Check_Requirements’. The policy syntax

is written as follow:

policy EnsureOtherRequirements is

 appliesTo UniversityAdmission

 when Check_Requirements.task_ended 

  do insert(Check_Heritage, Check_Requirements, true)

Where this policy has no condition and true indicates that both tasks are running in
parallel.

Table 2-2: Reconfiguration Functions

Reconfiguration
Function

Description

Insert Inserts a set of items into the workflow instance

Delete Removes set of items from the workflow instance

Fail Designates an executing workflow task instance as

having failed

Abort Designates an executing workflow task instance as

having been aborted

Block Delays a task’s execution

Chapter 2. Background and Related Work

27

Reconfiguration functions are called over E-C-A policies to take an action by modifying

the workflow structure.

The reconfiguration functions we consider here are:

1. Deleting atomic/composite task in sequence/parallel with existing

atomic/composite task or an operator.

2. Inserting atomic/composite task in sequence/parallel with existing

atomic/composite task or an operator.

3. Deleting or inserting an operator branch

In addition to the above reconfiguration functions, we introduce ‘Replace’ as a complex

reconfiguration function combining delete and insert functions. It enables the replacement

of tasks either by deleting followed by inserting or vice versa.

The existing work of StPowla describes the policies available and addresses the structural

correctness; it does not consider the desirability of actions in terms of the functionalities

of business processes. As a result, the existing work would allow for a workflow to be

reduced to an empty process or an arbitrary process to be constructed from nothing. In

terms of a simple example: a taxi booking could be changed into a process ordering a

washing machine. Our work will build on this, but aims to add the constraints that ensure

sensible adaptations in terms of their desirability.

2.2.4 Ontologies
Ontologies have been used for knowledge engineering in various research communities.

It is a modelling language that captures the knowledge in a certain domain. The

knowledge is represented as concepts and their relationship. Ontologies facilitate

syntactical and semantical verification. However, it is rarely used for the verification

purposes in self-adaptive systems, semantical-based verification in particular.

An ontology consists of the concepts in a specific domain with their relationship. In

practical terms, ontology development includes defining classes in a hierarchy, defining

slots and values, defining instances and relationships.

Chapter 2. Background and Related Work

28

OWL (Horridge et al, 2004) is a logic-based ontology language and it consists of classes,

individuals and properties. OWL classes are sets that contain individuals and OWL

individuals represent instances of classes in a certain domain. OWL Properties represent

the relationship that links individuals. Figure 2-4 depicts an example of OWL ontology.

It has two classes A and B. Each class consists of two individuals (e.g. class A has IA1

and IA2). These individuals are linked to each other through the properties P1 and P2.

BPMN specification defines set of attributes associated with each activity. For example,

task id, name and class to indicate the task id, name and its type between other BPMN

elements. For every action in BPMN it is possible to define the related domain knowledge

by capturing the BPMN components and defining a certain relationship between them to

customize the ontology for a specific purpose.

There exist some approaches that aim to enhance BPMN semantics by developing BPMN

ontologies (Abramowicz et al, 2012) and (Natschlger, 2011). (Natschlger, 2011) has

developed a BPMN ontology using OWL (Web Ontology Language) and the ontology

editor Protégé. She created two ontology files: 1) bpmn20base which contains a

specification for all BPMN classes, their attributes, the relationship among individuals as

IA1

IA2
IB1

IB2

P1

P2

Class A

Class B

Figure 2-5: OWL ontology example

Chapter 2. Background and Related Work

29

well as individuals and data values and the xml schema, and 2) bpmn20 which is an

extension for the bpmn20base by adding the syntactical restrictions as defined by BPMN

specification.

In this work, we use ontology in order to capture BPMN tasks as the domain concept due

to the fact that BPMN tasks represent functional requirements and they are affected by

policy actions and eligible for change. Ontology also facilitates defining extra

vocabularies based on the domain semantic itself, in which it enhances our verification

purposes when new functionalities are introduced at runtime.

2.3 State of the Art
This section discusses the related work moving from general preview on workflow

flexibility to specific related challenges on providing assurances over flexibility and in

more specific the challenge to ensure goal satisfaction in the face of abstraction and

automation. We identify three research areas which concern the adaptation process as

well as assurances in self-adaptive systems in general, and workflow systems in

particular. They are: (1) Models@Run.Time and Business Process Models at Runtime

(BPM@RT) (2) Requirements@Runtime and (3) Goal-Oriented Requirements

Engineering for Business Processes (GORE-for-BP).

2.3.1 Workflow Flexibility
Although there is not an agreed definition for process flexibility, it can be seen as the

ability of the workflow to react to uncertainty in a desired manner. (Regev and Wegmann,

2005) and (Nurcan, 2008) believe that flexibility combines both adaptivity and

consistency, while the other consider correctness as a separate issue. Thus, among the

variable definitions, represented in Table 2-3, we go for the definition provided by

(Nurcan, 2008) in which flexibility dose not only mean adaptivity but also the quality of

this adaptivity is part of flexibility. (van Der Aalst, Wil MP, Pesic and Schonenberg,

2009) consider flexibility as a synonym of adaptation, while (Reichert and Weber, 2012)

identify adaptation as one of the various forms of flexibility. They define adaptation as

the ability to temporarily deviate the flow during the execution of a BP. In the literature,

various flexibility taxonomies exist and most of them share similar categorization, see

Table 2-3. The advantage of those taxonomies is that they provide better understanding

Chapter 2. Background and Related Work

30

of the notion of flexibility. Furthermore, they help to identify further investigations and

research gaps in the area of workflow flexibility. As a consequence, we adopt the ideas

from across the taxonomies that are relevant for our work without defining yet another

taxonomy.

Adaptation can be achieved either at instance level or process level. The former considers

temporary change per instance while the latter considers permanent change at process

level. In this work, we focus on ad hoc change as it is achieved through E-C-A policies.

(Reichert and Weber, 2012) provide a taxonomy for ad hoc process change. The

taxonomy includes eight main categories and each category is refined into sub-categories.

Below we classify the StPowla approach according to this taxonomy as it targets the ad

hoc change.

1. Duration: the E-C-A policies provide temporary change

2. Degree of automation: the E-C-A policies reconfigure the structure automatically

without user intervention

3. Scope: the E-C-A policies can change arbitrary region at any position

4. System control: not applicable as there is no access control for users, no

concurrency or traceability control over policies

5. User interface: this is not applicable as the reconfiguration is automatically

achieved

6. Subject: the E-C-A policies change the process structure, in particular the control

flow schema

7. Specification: the specification of the E-C-A policies is change patterns

8. Correctness: the E-C-A policies provide syntactically correct adaptation.

Table 2-3: Definitions and taxonomies of workflow flexibility

Flexibility Definition Taxonomy Reference
Flexibility is the ability to yield

to change without disappearing,

i.e. without losing identity

No taxonomy provided (Regev and

Wegmann,

2005)

Chapter 2. Background and Related Work

31

Flexibility Definition Taxonomy Reference
A business process is flexible if

it is possible to change it without

replacing it completely

• Abstraction level of

change: Instance/Type

• Subject of change:

Functional/Organisational/

behavioural/

Informational/Operational

• Properties of change:

Extent/Duration/

Swiftness/Anticipation

[Regev et al.,

2005]

Flexibility is the ability of the

workflow process to execute on

the basis of loosely, or partially

specified model, where the full

specification of the model is at

runtime, and may be unique to

each instance

• Dynamism

• Adaptability

• Flexibility

(Sadiq,

Orlowska

and Sadiq,

2005)

Business process flexibility is

the capability to implement

changes in the business process

type and instances by changing

only those parts that need to be

changed and keeping other parts

stable

• Abstraction level of

change

• Subject of change

• Properties of change

(Regev,

Soffer and

Schmidt,

2006)

It is the ability to deal with such

changes, by varying or adapting

those parts of the business

process that are affected by

them, whilst retaining the

essential format of those parts

• Flexibility by design

• Flexibility by deviation

• Flexibility by

underspecification

• Flexibility by change

(Schonenber

g et al, 2008)

Chapter 2. Background and Related Work

32

Flexibility Definition Taxonomy Reference
that are not impacted by the

variations

*Flexibility is considered as the

capacity of making a

compromise between, first,

satisfying, rapidly and easily, the

business requirements in terms

of adaptability when

organizational, functional and/or

operational changes occur; and,

second, keeping effectiveness

• Nature of flexibility: by

adaptation, by selection

• Nature of impact: Local/

Global

• Nature of change: Ad

hoc/Corrective/Evolutiona

ry

• Formalism

• Transition

• Versioning

• Evolution techniques: Ad-

hoc/Derivation/Reflexion/

Rule-based

• Migration techniques:

Cancellation/With

propagation/without

propagation

• Flexibility Techniques:

Late binding/Late

modelling/The case

handling

(Nurcan,

2008)

Chapter 2. Background and Related Work

33

Flexibility Definition Taxonomy Reference
Flexibility includes variability

(instance change at design time),

looseness (instance change at

runtime), adaptation (unforeseen

change) and evolution (process

change).

• Variability

• Looseness

• Adaptation

• Evolution

(Reichert and

Weber, 2012)

*Flexibility is the ability of an

organisation to deal with both

foreseen and unforeseen

changes, and in consideration of

the impact they can have on the

BPs regulating the activities of

the organisation

• Objectives:

Variability/Adaptation/Lo

oseness/

• Phases:

Modelling/Analysis/Enact

ment/Monitoring

• Languages:

BPMN/BPEL/ECP/Petri

nets/Process algebra

• Mechanisms:

Rules/Family of

processes/Patterns/Modula

rity

(Cognini et
al, 2016)

*Please note that those taxonomies are provided for studying the literature of workflow

flexibility aiming at classifying the existing approaches and not to provide taxonomies

for workflow flexibility.

A Workflow process’s main characteristics that complicate enabling reliable flexibility

in running processes are, as extracted from the literature:

• Dynamicity

• Complexity

• Uncertainty

Chapter 2. Background and Related Work

34

• Knowledge-intensive systems

• Heterogeneous environments

• Dependency: dependency among workflow items, dependency between the five

perspectives of the workflow (van der Aalst, Wil MP and Jablonski, 2000) ,

dependency between data and control flow and dependency between services and

business processes

• Complex requirements (Chatzikonstantinou and Kontogiannis, 2016) .

Usually automatic adaptation techniques are related to the enactment phase in the process

lifecycle. Examples of current approaches which automatically adapt workflows’

behaviour are (Gorton, 2011), (Müller, Greiner and Rahm, 2004), (Sell et al, 2009) and

(Burmeister et al, 2008) . Although automated adaptation is desirable, there are some

approaches in the literature that dealt with flexibility in a manual manner (Reichert and

Dadam, 1998), (Pang et al, 2011), (Hallerbach, Bauer and Reichert, 2010) and (Weber,

Reichert and Rinderle-Ma, 2008).

In the context of this research, we consider the approaches that provide automated

adaptation because we are interested in self-adaptivity and believe that the manual

approaches do not meet the dynamicity and complexity nature of self-adaptive systems.

In addition to the adaptation capability of these approaches, they provide quality over

adaptation. However, they address quality in terms of syntactic correctness but neglect

the semantic aspects as will be discussed in the following section.

2.3.2 Assurances in Adaptive and Self-Adaptive Systems
As discussed earlier, business processes should be flexible to deal with uncertainty that

could be as a result of changing requirements, change in goals, laws and regulations,

change in business context or environment. Due to complexity and uncertainty issues,

workflow should be able to automatically and correctly react to change. Beside the needs

for flexibility, workflow systems that are adaptable must be self-managing (Parashar and

Hariri, 2005) . However, assurance is the key challenge in the automated adaptation

systems (Tamura et al, 2013), (Cheng et al, 2014) and (Krupitzer et al, 2015) in order to

guarantee desired behaviour and, therefore, prevent serious consequences. In the context

of software engineering, it is argued that self-adaptive systems must be integrated with

Chapter 2. Background and Related Work

35

self-testing capabilities (De Lemos et al, 2013b) in order to support on-the-fly

verification.

There are two reasons why self-testing capabilities are desired (1) complexity and (2)

online runtime adaptivity. Hence, on-the-fly verification, self-testing capabilities (De

Lemos et al, 2013) and intelligent decision-making techniques are required. On-the-fly

verification means that the workflows have the ability to meet runtime verification

properties. Self-adaptive V&V include techniques and mechanisms for assuring

correctness properties in self-adaptive systems.

Workflow correctness issues are identified in the literature as a multifaceted concept

including three major classes: syntactic, behavioural and semantic. Each class

encompasses a number of properties as shown in Table 2-4 (Tamura et al, 2013). The

term correctness is used here to refer to assurance. According to a definition provided by

IEEE Standard Glossary of Software Engineering Terminology, assurance is “a plan and

systematic pattern of all actions necessary to provide adequate confidence that an item or

product conforms to established technical requirements” (Radatz, Geraci and Katki,

1990). Self-adaptive systems must be assured to satisfy both functional and non-

functional requirements (Cheng et al, 2014).

Table 2-4: Correctness criteria for self-adaptive systems with related approaches

Correctness
Class

Properties

Syntactic • Inheritance (Van Der Aalst, Wil MP and Basten, 2002),

(Rinderle, Reichert and Dadam, 2004)

• Compliance state (Rinderle, Reichert and Dadam,

2004), (Reichert and Weber, 2012)

• Control flow correctness (Reichert and Dadam, 1998),

(Gorton, 2011), (Patig and Stolz, 2013)

Behavioural
(Generic
properties)

• Exception handling (Ali, 2012)

• Deadlock and Divergence freedom (Aguilar et al, 2016)

• Liveness and safety (Patig and Stolz, 2013)

Chapter 2. Background and Related Work

36

Correctness
Class

Properties

• Soundness (van der Aalst, Wil MP et al, 2010), (Wong

and Gibbons, 2009), (Hallerbach, Bauer and Reichert,

2009)

• Reachability (Gorton, 2011)

• Loop tolerance (Rinderle, Reichert and Dadam, 2004)

• Dangling state (Rinderle, Reichert and Dadam, 2004)

• Parallel insertion (Rinderle, Reichert and Dadam, 2004)

• Schema prefix

• Safe state (Rinderle, Reichert and Dadam, 2004)

• Changing the past (Rinderle, Reichert and Dadam,

2004)

Semantic
(Domain/context
properties)

• Tasks dependency (Ly, Rinderle and Dadam, 2008)

• Tasks compatibility (Ly, Rinderle and Dadam, 2008)

• Coexistence tasks (Pham and Le Thanh, 2015)

• Data flow correctness (Rinderle-Ma, 2009), (Trcka, Van

der Aalst, Wil MP and Sidorova, 2009)

• Compliance rules (Reichert and Weber, 2012), (Fdhila

et al, 2015), (Kumar et al, 2010)

This results in what is so called ‘Requirements-Aware and context-aware software

systems’. Although context-awareness seems to be a semantic property of the software,

it is actually discussed in the literature in terms of flexibility but rarely consider assurance

issues (Saidani and Nurcan, 2007), (Wieland et al, 2007) and (YongLin and Jun, 2008).

As shown on the table, most of the current approaches have addressed the challenges

related to syntactic and behavioural properties and rarely consider the domain-specific

semantic properties. In this work, we focus on the last class defined in Table 2-4 as we

address the assurance challenge that is semantic and domain compliant.

Chapter 2. Background and Related Work

37

(Ly, Rinderle and Dadam, 2008) provide an approach to ensure semantic correctness in

terms of tasks compatibility and tasks dependency. Similarly, (Pham and Le Thanh, 2015)

defined additional semantic constraints to the previous approach which is called

coexistence constraints addressing the relationship among the workflow tasks.

Furthermore, ensuring compliance to business rules and correct data flow are critical

issues in order to guarantee desirable business outcome. Some examples of related

approaches are shown in Table 2-4.

However, all the above-mentioned approaches ignore the quality of the new requirements

(inserted/deleted tasks) with respect to the goal that the workflow is designed for. This

thesis fills in this gap by providing an approach to reassess the quality of the adaptation

when new requirements are introduced at runtime.

2.3.2.1 Requirements@Runtime and Models@Run.Time
In this section, we discuss the idea of Requirements@Runtime and Models@Run.Time

as they are well-known research communities for providing assurances over adaptation

in self-adaptive systems.

Requirements@Runtime (Bencomo et al, 2010) is a research community aiming at

dealing with requirements (functional and non-functional) as runtime entities.

Approaches (Feather et al, 1998), (Bencomo et al, 2010) and (Pasquale, Baresi and

Nuseibeh, 2011) address the need for adaptation at requirements level and reconciling

system’s behaviour in response to changing requirements.

Self-adaptive systems are distinguished by two characteristics: context-awareness and

self-awareness. Context-awareness is the ability of the system to monitor its context and

automatically evolve to address contextual changes. Context is defined as “any

information that can be used to characterize the situation of an entity. An entity is a

person, place, or object that is considered relevant to the interaction between a user and

an application, including the user and applications themselves” (Abowd et al, 1999).

Requirements-aware systems are an example of context-aware systems where

requirements are considered the main context category. E-C-A policies can be seen as

requirements-aware as they apply change according to changing requirements at runtime.

In the StPowla approach, the E-C-A policies could be enhanced with the context

information in order to obtain reliable change that is context-aware.

Chapter 2. Background and Related Work

38

Models@Run.Time (Blair, Bencomo and France, 2009) has similar research interests as

Requirements@Runtime. It adopts Model-Driven-Engineering (MDE) techniques to deal

with uncertainty at runtime with the focus on representing requirement models as well as

other models that could support dealing with change at runtime. Requirements@Runtime

defined as “causally connected self-representation of the associated system that

emphasizes the structure, behavior, or goals of the system from a problem space

perspective” (Blair, Bencomo and France, 2009).

Models at abstract level are the core components of M@RT and can be used for several

objectives: (1) Adaptation, (2) Abstraction, (3) Consistency and conformance, (4) Error

handling, (5) Monitoring, simulation, prediction and (6) Policy checking and

conformance(Szvetits and Zdun, 2016). We focus on the consistency and conformance

objective as our approach uses goal models to reconcile behaviour model with its goal

during runtime adaptation.

BPM@RT (Redlich et al, 2014) is a method inspired by M@RT for shifting business

process models at runtime in order to address runtime issues. They argue that the

dynamicity of today’s businesses requires business processes to be more dynamic and

automated to handle and support adaptation through its life cycle. In order to meet these

requirements, business process models should be moved from design time to runtime

models, where models represent the system’s state at any time and allow adaptation and

reasoning mechanisms. A survey in (Szvetits and Zdun, 2016) discusses various

approaches that using M@RT based on objectives, techniques, kinds and architectures

when using models at runtime. (Cheng et al, 2014) argue that M@RT is a foundation for

assurance of self-adaptive systems. It provides the required level of abstraction to reason

about the adaptation behaviour at runtime effectively. Furthermore, M@RT is a modular

way that facilitates the adaptation and verification requirements for dealing with the

complexity and dependency nature of self-adaptive systems.

Among various M@RT approaches we focus on the consistency and conformance

approaches, which use runtime requirements as well as goal models in particular. In the

following section, we discuss GORE-for-BP the RE methodology for mapping RE

activities to business processes’ activities.

Chapter 2. Background and Related Work

39

2.3.2.2 GORE-For-BP for Requirements-Aware Workflows
Goal satisfaction is a critical issue for ensuring correct adaptation, especially automated

adaptation in self-adaptive systems. Goal specification, as explained above, captures

functional goals representing the functional requirements of an organisation. A BPMN

diagram is constructed from logically related tasks that are contributing to achieve the

goal in question. These tasks are representing functional requirements which are derived

from the goal specification. Hence, having explicit links between goal model and

behaviour or requirement models, facilitates behaviours traceability and therefore

measurement of the satisfaction of certain properties.

Requirements Engineering (RE) concerns the study of requirements elicitation,

specification, analysing and monitoring. Goal-Oriented Requirements Engineering

(GORE) is a RE approach focusing on the goal as the main artefact for requirements

elicitation and monitoring (van Lamsweerde, 2004). A goal model represents high-level

system requirements as operational objectives in a tree structure. Those objectives are

then refined into low-level requirements represented in a behaviour model. GORE-for-

BP is an emerging research area as a result of the growing awareness of supporting

business processes design, analysis and development with goal models.

The core idea of GORE-for-BP is to map RE knowledge state into BP knowledge state

(or vice versa) (Poels et al, 2013). Several benefits for the RE process result in better

understanding of modelling and verification activities as goal models are used at design

time for modelling purpose and at runtime for reasoning about system’s requirements

(Ali, Dalpiaz and Giorgini, 2013). The realization of the importance of integrating goal

models with business process models has been studied in the literature varying in the

focus, scope and mature as explained in (Poels et al, 2013). However, the current

approaches related to BPMN assurance challenges before and after adaptation fit into one

of the following scenarios:

1. Approaches that use goal models for modelling or reengineering purposes: these

approaches address the problem of goal compliance at design time to ensure the

consistency of the designed requirement model to its goal specification. Examples

of such approaches include GV2BPMN (Santos et al, 2010)KAOS4SOA (Nagel

Chapter 2. Background and Related Work

40

et al, 2013), GPMN (Jander et al, 2011), GO-BPMN (Greenwood, 2008),

Go4Flex (Braubach et al, 2010) and (Guizzardi and Reis, 2015).

2. Approaches that use goal model for adaptation and verification purposes: these

approaches address the challenges related to reconciling the behaviour of the

requirement models in response to uncertainty in goal specification. In other

words, they assume uncertainty at goal level and according to that the behaviour

of the requirements models is adapted to satisfy the changing goals(Koliadis and

Ghose, 2006), (Burmeister et al, 2008) AutoRelax (Fredericks, DeVries and

Cheng, 2014).

The second scenario is more related to the work presented in this thesis as it concerns the

goal-process satisfaction relationship in adaptive workflows. However, they reassess the

requirements models in response to goal change while we reassess the requirements

models against their goals in response to requirements change. Furthermore, these

approaches do not provide a clear methodology on how the adaptation is achieved at

behaviour level.

2.4 Requirements-Aware/ Goal-Compliance Business Processes
This research focuses on providing assurances over changing requirements to enable

change only for goal-compliant requirements. The proposed approach is built on

requirements-aware workflows that realise changing requirements through policies. It

strengthens the awareness in the requirements-aware workflows to be aware of its original

requirements represented in goal specification to guarantee the correctness of the new

requirements.

In the previous section, we consider the current trend on providing assurances in self-

adaptive systems including M@RT and GORE-for-BP. In this section, we clarify the link

between our approach and the approaches in these research areas, however we do not

build our work upon any of these approaches. Considering M@RT, this work uses

runtime representation of the corresponding models (requirements and goal models) and

proposes the link among them at abstract level. The abstraction of these models enables

to define consistency properties for runtime verification. Table 2-5 shows the models

representation at design time and at runtime.

Chapter 2. Background and Related Work

41

GORE-for-BP facilitates the use of goal models for defining the satisfaction properties

before adaptation and hence ensuring their satisfaction during requirement-based

adaptation. In this work, we use the goal model with the BPMN to address the goal

satisfaction when processes change their behaviour in response to changing requirements.

Table 2-5: Models@Run.Time and our approach

Design Time Models Runtime Models

Goal Model: KAOS • CSP Properties

• Ontology-based properties

Behaviour model (source):
BPMN

• CSP model for FDR verification

• XML-based model for ontology verification

Adaptation logic:
reconfiguration functions

• Java functions

2.5 Summary
This chapter presented the background concepts and techniques used by this research. It

also discussed the trend in the field of self-adaptive systems considering two major

challenges, adaptation and consistency, in the face of complexity and dynamicity.

Furthermore, it identified the consistency challenges related to automated adaptation

and proposed the solution provided by this research.

Chapter 3. Goal-Compliance Framework

42

Chapter 3 Goal-Compliance Framework

In this chapter, we introduce our running example throughout this thesis as an illustration

of our approach. We also give an overview of the proposed goal-compliance framework,

the concept behind it and its implementation. We discuss its notable aspects and how it

supports running instance change at business level. As the framework is enabling runtime

functional change to workflows, we describe and discuss runtime infrastructure and

properties and how this supports online workflow reconfiguration and verification. The

proposed framework supports a number of important features of runtime adaptation

including: change per instance, online adaptation (i.e., adapt running instances),

automatic adaptation using E-C-A policies and runtime change management.

3.1 Proposed Framework: Overview
The goal-compliance framework supports ‘on-the-fly’ workflow adaptation while at the

same time providing assurances on goal satisfaction during adaptation. The framework

comprises different techniques and tools to facilitate and support runtime workflow

adaptation and verification at business level.

We define three methods to validate workflow behaviour which is affected by policies to

match the different ways that policies can adapt workflow behaviour by inserting,

deleting and replacing tasks.

The first method ‘goal-task dependency’ is dealing with policies of type ‘delete’ by

governing the policies effect on workflow behaviour according to goal-satisfaction

properties. The second method is dealing with policies of type ‘insert’ whose effect on

workflow behaviour is semantically different from policies of type ‘delete’. The method

is called ‘domain-task conformance’ and it controls the insertions of new tasks to the

running workflow instances according to domain consistency properties. The third

method is called ‘task-task consistency’ and it is defined as a result of analysing the effect

of replacing existing tasks with new ones. Hence, it controls the effect of policies of type

‘replace’ on workflow behaviour. Although the aforementioned methods are different in

the way they are working, they are designed to solve one problem, which is goal

satisfaction in self-adaptive workflows. In other words, they guarantee that any functional

change to workflow behaviour does not violate its original goal.

Chapter 3. Goal-Compliance Framework

43

 We assume the workflow specification is expressed in BPMN, saved as XML document

for reconfiguration purposes. This is due to the fact that XML has a clear and consistent

structure. The main focus of the proposed framework is the verification process as

mentioned above. It validates the adapted instance against what we call goal-compliance

constraints. We define three sub-categories of the goal-compliance constraints as shown

in Figure 3-1. They are goal-task dependency constraint, domain-task compliance

constraint and task-task consistency constraint. The methods to handle goal-compliance

constraints are discussed in detail in Chapters 4 and 5.

The notable aspects of the proposed framework can be summarised as follows:

1. Online workflow reconfiguration at instance level:

The framework provides flexibility for workflow systems by inserting, deleting and

replacing workflow tasks. The proposed framework provides automatic and online

reconfiguration at instance level through E-C-A policies. Instance change (also known as

ad hoc change) is an important requirement in today’s workflow systems due to their

dynamicity and uncertainty. Further details in this regard are discussed in Chapter 1.

2. Goal-compliance verification capabilities in addition to syntactical

correctness:

The goal-compliance runtime verification is the key feature of the proposed framework.

Before applying any workflow change, the framework has the ability to check the

corresponding constraints and decide whether to accept the change or not. Each change

has its corresponding constraints based on the analysis of its effect on goal satisfaction,

as discussed above. Furthermore, syntactical correctness is achieved by reconnecting the

flows among workflow elements.

3. Using traditional verification techniques to produce new solution:

Self-adaptive systems need dynamic and sufficient verification mechanisms to cope with

the runtime environment. We use two different verification methods: trace refinement

and ontology. The reason why we choose two different methods is because policies have

semantically different impact on achieving the goal as they insert or delete new/existing

Chapter 3. Goal-Compliance Framework

44

functionalities. The trace refinement enables an automatic verification among the adapted

workflow and a set of properties. It is a stable method as the compliance properties are

predefined according to the workflow in question. However, trace refinement is not

applicable to verify change of type insert or replace as they might add extra functionalities

(tasks) that are unknown prior to runtime. As a result, the framework benefits from the

ontology for modeling and verifying domain semantics as the ontology can captures

un/planned functionalities in a specific way for verification purposes. This point is

explained in detail in Chapters 4 and 5.

4. Facilitating extra semantic property checking “Reusability”:

We use ontologies to model workflow domain by defining the workflow domain concepts

and their relationship. However, the ontology could also facilitate other types of semantic

checking by enhancing/reusing the ontology to add more constraints or define different

relationship among the domain concepts. Furthermore, it could be used for querying the

ontology while performing such a semantic verification.

5. Applicable performance in practice:

The framework is built in Java and it uses different techniques and tools to perform

reconfiguration and verification. However, the framework performance evaluation shows

promising results as the execution time taken for reconfiguration as well as verification

is reasonable for runtime. For example, it shows that the time taken to process a workflow

of size 100 tasks is less than one minute. More discussion and implementation details

regarding this point is explained in chapter 6.

Chapter 3. Goal-Compliance Framework

45

3.2 Runtime Environment Infrastructure
The goal-compliance framework performs workflow reconfiguration and verification at

runtime. Therefore, we give a brief description of the runtime environment infrastructure

and how the proposed framework operates. Runtime verification is a well-known research

area in the context of software engineering. While we implement runtime adaptation and

verification, we give an overview of runtime infrastructure in line with the proposed

framework.

The goal-compliance framework for self-adaptive workflows is supposed to be embedded

at runtime environment which is mainly composed of workflow and policy engines. In

the following, we give an overview of the main artefacts that manage, run and support

self-adaptive workflows.

The workflow engine gets the workflow scripts as input which get triggered, run and then

produce an output to a user. In the context of this work, workflows are adapted in response

to E-C-A policies but the adaptation process is controlled by goal-compliance constraints.

Figure 3-2 depicts the real-world runtime environment for self-adaptive workflows. It

shows that workflow engine and policy server are communicating with each other.

Workflow engine sends the triggering data and context and other data to policy server

which actually does two things: (1) it has an interface with authorised users who deploy

policies by adding or removing policies, which are stored in policy repository, (2) it

evaluates policies based on the data received from workflow engine and decides whether

they apply or not. Policy server has the enforcement point where the interaction happens

Figure 3-1: Verification requirements for different dependencies

(b)

Goal-Compliance Constraints

(a)

(b) assurance that no out of domain

tasks are inserted

(a) assurance that no required

behaviour is removed

Goal-Task Dependency
Domain-Task
Conformance

Task-Task
Consistency

Chapter 3. Goal-Compliance Framework

46

with workflow engine. In the literature, they differentiate between policy enforcement

point and policy decision point whereas we do not see any difference because policies

need to be where they are being enforced.

After the policy server gets the deemed data from the workflow engine, it looks up the

repository for matching policies. First of all, it looks at which trigger data matches the

triggers received from workflow engine. The trigger is an optional value and it describes

the situation of a task, e.g., ‘task Completed’ and ‘taskStarted’. Then, it looks up for

matching conditions where they are true based on the context data retrieved from the

workflow engine. Please note that any policy does not have a condition is considered to

be true by default. Finally, all applicable policies are returned by the policy server which

tells the workflow engine what to do based on the actions it gets from the applicable

policies. So, the policy server now gets back to the workflow engine with one of these

actions; insert or delete.

 The workflow engine then changes the workflow instance to react to these actions if they

are approved by goal-compliance constraints. We assume that goal-compliance

constraints are coded as extra functionalities to the workflow engine. These constraints

help to produce qualitative workflows while the absence of them might lead to

syntactically correct workflows but not semantically. This is due to the fact that policies

could delete, insert or replace anything at any position. For example, as mentioned above

any policy with no conditions are evaluated to be true. In the context of our work, the

workflow engine is responsible to apply the change to the running instance while ensuring

its compliant to the goal-compliance constraints.

Chapter 3. Goal-Compliance Framework

47

3.3 Goal-Compliance Framework
The following subsections discuss the architecture and the implementation of the

proposed framework.

3.3.1 Architecture
The goal-compliance framework as mentioned above performs its jobs at runtime with

help and support from workflow engine and policy engine. The workflow engine

facilitates the reading and running of workflow specification and managing instance

reconfiguration. While the policy engine looks up the policy repository for matching

policies as well as manages the deployment of applicable policies.

Policy layer

System Layer

Policy Server

Workflow

Policy
Repository

Workflow Engine

Goal- compliance
constraints

 Figure 3-2: Runtime Environment for Self-Adaptive Workflows

Chapter 3. Goal-Compliance Framework

48

Figure 3-3: Goal-compliance framework: Architecture

Validator

Validates against the goal-
compliance constraints

FDR Ontologies

WordNet

Re-configurator

Reads Policies

Re-configurates the BPMN
specification

Policies

Reads the BPMN
diagram

Transforms BPMN into CSP

Specification Reader

XML CSP

BPMN
Specification

Re-configuration
Details

Inputs

The Goal-compliance Framework

Chapter 3. Goal-Compliance Framework

49

As can be seen from Figure 3-3, the proposed framework reads the original workflow

specification, the modification details as its inputs. The workflow specification is

represented in BPMN (Business Process Modelling Notation) which is provided as an

XML-based file. The modification details can be expressed in a configuration file, that

specifies the changes to the workflow specification including the type of change

(delete/insert), the position, the new/existing task Ids and the nature of the change

(sequence/parallel). The proposed framework consists of three main components namely,

Specification Reader, Re-configurator and Validator. The brief description of each one is

provided below:

• Specification Reader: This component is responsible for reading the existing

workflow specification and transforming it into an in memory state for fast

processing and easy manipulation of the modification. This can be achieved by

utilizing some XML interfacing APIs (Application Programming Interface).

• Re-configurator: The re-configurator is responsible for processing the actual

change operations e.g. insertion of the new task into existing workflow

specification. This component is responsible to interact with the XML and CSP

files to perform the adaptation. It performs reconfigurations at XML level as it

has a clear structure. It then invokes Wong’s tool to transform it to CSP script if

the reconfiguration is of type ‘delete’ for verification purposes. This

transformation is carried out for verification purposes using FDR. The verification

process for the other reconfiguration types; insert and replace; is performed

through the interaction with ontology and WordNet (WordNet, 2012). So, the

framework deals with the XML file in this case without the need to transform it

to CSP.

• Validator: The validator is responsible for ensuring that the modification is

according to the given specification and it doesn’t violate any of the goal-

compliance constraints, the constraints that are defined in the context of this

research (see Figure 3-2) to provide assurances on goal compliance after

requirements adaptation. This can be achieved by exploiting the FDR, ontology

and WordNet.

Chapter 3. Goal-Compliance Framework

50

The proposed framework works in the following sequential order:

1. Read the existing workflow specification

2. Read the reconfiguration details

3. Validate the reconfigurations

4. Reconfigure the workflow, if satisfying the goal-compliance constraints and

produce adapted workflow specification

5. Otherwise, save the original specification

If the verification result was not successful, the framework neglects the

reconfiguration request and continues to run the original specification or suspends the

workflow execution and gives feedback for authorised users to take a decision.

3.3.2 Implementation

This section describes the details of the prototypical implementation of the proposed

framework explained in the previous section. Java has been used as the main development

language. Furthermore, specific Java libraries, such as OWL (OWL API, 2015) and Java

WordNet Interface (JWI 2.4.0., 2015), are used for interfacing with ontology and

WordNet dictionaries.

The framework reads all necessary information about current reconfiguration from an

application configuration file which is called ‘appConfiguration’, see Figure 3-4. This file

consists of two main configuration parts: Basic and Operations. The Basic part consists

of the main parameters that manage input and output files, providing domain name,

ontology files and WordNet dictionary paths. The Operations part holds all parameters of

each reconfiguration operation. This part can hold multiple operations for the purpose of

complex reconfiguration. Each operation is defined by providing its type, nature and other

information. The operation could be atomic-insert, atomic-delete, composite-insert or

composite-delete. The nature indicates whether the operation is going to apply the change

in sequence or parallel manner within the running workflow instance.

The implementation of the proposed framework runs in a sequential manner and can best

be described by the flowchart provided in Figure 3-5.

Chapter 3. Goal-Compliance Framework

51

The brief description of each step of the above process flow is described below:

1. In the first step, the framework reads the workflow specification. The workflow

specification is a BPMN document and is in XML format.

2. The workflow specification is the collection of various details like tasks, gateways

and pools. The proposed framework converts these details to respective memory

objects. The key reason of this conversion is to easily deal with them in the

memory and to avoid file reading again. There is one Java class to represent each

entity of workflow specification.

3. The configuration file consists of the details of workflow reconfiguration process

(e.g. which kind of operation must be executed and what are the respective

details). All the configuration is read at once and stored in memory as a java

object.

4. Once the workflow specification has been read to memory and the required

operation is determined, then the operation is executed and the workflow

specification has been changed in memory.

5. The framework then validates the current change against the predefined

constraints. This depends on the type of reconfiguration as discussed before. The

framework uses different tools and techniques, when validating the

reconfiguration, according to the reconfiguration type. If the reconfiguration was

of type ‘delete’, it uses FDR for verification. If it was of type ‘insert’ or ‘replace’,

the framework uses ontology or ontology and WordNet for verification.

6. In the last step, the modified workflow specification is saved to disk if the

verification was successful. Otherwise, the original specification is saved. The

framework then has the ability to either run the original workflow specification or

stop.

Chapter 3. Goal-Compliance Framework

52

 Figure 3-4: Example of the appConfiguration setting file

Chapter 3. Goal-Compliance Framework

53

Start

Read the XML-based diagram

Transform the diagram into memory-
based objects

Read the appConfiguration file

Re-configurate the original XML diagram

Validate

Delete

Insert Replace

Transform the diagram into CSP

FDR verification

Ontology
checking

WordNet checking

Perform re-configuration
and save the adapted XML

Discard re-configuration
and save the original XML

End

Fail

Fail

Pass

Pass

Figure 3-5: Algorithm ‘flowchart’ for the goal-compliance framework

Chapter 3. Goal-Compliance Framework

54

The above steps are executed through the help of various functions and Java classes. The

following are the most important classes and their brief description:

1. BPMNController: This class is the main class and it contains the main function.

It reads the configuration file and create an object of that file to pass it to Diagram

class, where all other functions are performed.

2. Diagram: This class is considered the orchestrator of the framework and all the

steps mentioned in Figure 3-6 process flow is triggered from the various functions

of this class.

3. Operation: This is a data class, which is the corresponding representation for the

relevant details of the reconfiguration operation i.e. Insert, Delete and Replace.

4. DiagramEntity: This class represents the structure of any BPMN entity: BPMN

pool, start and end events, activities, flows and gateways. All other entity classes

are derived from this class.

5. UtilOntology: This class basically provides interfacing with OWL API to interact

with the Ontology file. This class contains all the necessary operations that is

needed for insert and replace reconfiguration operations.

6. UtilWN: Similarly, to UtilOntology class, this class provides interface with JWI

library for the interaction with WordNet dictionary at runtime.

7. AppConfiguration: This is a data class, which contains functions to read the

configuration file and store all the necessary parameter settings.

8. BasicConfiguration: Reads all necessary information from the appConfiguration

file at runtime and specifically from the Basic part.

9. OperationConfiguration: Reads all necessary information from the

appConfiguration file at runtime and specifically from the Operations part.

10. XMLHelper: This class is the handler to interact with XML (i.e. BPMN) file and

contains methods like read workflow specification and write modified workflow

specification.

11. PerformanceEvaluation: This class holds and manages all the evaluation

functions which are explained later in chapter 6.

Chapter 3. Goal-Compliance Framework

55

3.4 Summary
This chapter presents the proposed framework, its features and implementation. We

discussed the runtime environment where the framework is supposed to perform its

functionalities. Nevertheless, the behaviour of policies and how they run and managed

through policy and workflow engines are explained in addition to the characteristics of

runtime verification in the context of our research. Next chapters, 4 and 5, are going to

comprehensively discuss the three methods supported by our proposed framework.

Chapter 4. A Refinement-Based Approach for Delete Policy

56

Chapter 4 A Refinement-Based Approach for

Delete Policy

In this chapter, we show how deleting a workflow activity would have a serious impact

on achieving the business outcome. To that end, we define a goal-task dependency

constraint as well as satisfaction function to preserve workflow goal during runtime

adaptation. Specifically, we analyse the impact of removing BPMN activities on goal

satisfaction by establishing a management link between functional objectives in goal

models and functional requirements in BPMN models. This link is formally identified

and a verification mechanism exploiting the CSP formalisms and tools is introduced.

4.1 Adaptation with Delete Policy
The framework allows the deletion of sequential atomic, parallel atomic and composite

tasks. The change affects only the running instance and expires once it terminates. In

addition to the adaptation capabilities, E-C-A policies have no semantic constraints that

govern their behaviour at runtime. Policies can delete anything from the process

neglecting the goal the workflow is designed for. Thus, policies might require the removal

of activities that contribute to the achievement of the business goal. This may cause

undesired behaviour violating the organisation’s goals and assumptions.

The policy syntax for deleting a task is (as defined in (Gorton, 2011)): Delete (T),

where T represents the task to be deleted.

The deleted tasks can be atomic sequential, atomic parallel and composite. The policy

engine guarantees the correct behaviour in syntactic terms by reconnecting the flows

where the policy takes place.

Consider the UQU admission diagram in Figure 3-1: suppose policy R1 is deployed to

delete the task ‘Get_English_Test’. This task is proceeded and followed by the

complex gateways. When a policy is applicable to delete ‘Get_English_Test’, the

policy engine takes care of the flow correctness.

Chapter 4. A Refinement-Based Approach for Delete Policy

57

4.1.1 Deleting a Subprocess
BPMN subprocess is simply a compound task that encompasses group of tasks

contributing to achieve business outcome. Hence, deleting a subprocess means removing

a block of tasks from the process model. In this context, we deal with subprocesses the

same way as simple tasks. The goal-related subprocesses are identified through the

establishment of goal-task dependency link and captures the availability of each task

individually.

4.1.2 Deleting an Operator
 BPMN gateways are used to control BPMN flows either by branching, merging, forking

or joining (OMG, 2013). Unlike BPMN tasks, they do not hold any actual work.

Exclusive OR (XOR) is used to create alternative paths within the process and only one

path can be executed. Data-Based XOR and Event-Based XOR are used for the same

purpose as XOR but the former executes only one path based on available data while the

other one executes only one path based on event. Inclusive OR is also used to create

alternative paths but one or multiple paths can be taken. Complex gateway is used to

model complex synchronisation behaviour and one path can be taken based on the

condition result. Parallel gateway (AND) is used to execute more than one branch in

parallel.

From the above overview about BPMN gateways we study how deleting a gateway

affects goal satisfaction. Goal specification indicates what and how to achieve business

goals. What to achieve is represented by BPMN tasks, as explained earlier. How to

achieve is related to the relationship among tasks either sequenced order or branched with

any type of the above gateways. Task-Task relationship is indicated by the order

properties, i.e., task A is executed before task B and this is represented in the BPMN

diagram by their flows. The second type of relationship which is gateway-related tasks

indicates parallel execution of tasks or one/multiple execution of tasks depending on the

gateway. Goal model contains goals specification and their relationship. We neglect how

their corresponding tasks are related in the process model as we focus on the occurrence

of tasks but not the order between them.

Chapter 4. A Refinement-Based Approach for Delete Policy

58

Before deleting an operator, it must be clear that this operator does not violate the desired

behaviour defined by business rules.

In the following sections, we analyse and discuss the impact of the delete policy on

satisfying the original process requirements which are represented by goal specification.

4.2 Impact on Goal
Goal specification indicates an organisation’s operational goals which are refined to at

least one activity in the behaviour model. As a result, there is a strong link between goal

and process models that cannot be ignored during adaptation. The process model captures

the functional requirements of an organisation which have originally stemmed from its

goal specification. Considering this ‘dependency’ link between goal and process models,

we study the effect of removing a workflow task (functionality) in respect with the goal

in question.

 As the process specification captures the functional goals, those functionalities must be

available at every process execution in order to satisfy their original goals. Otherwise the

goal in question would not be achieved as expected and this might affect the process

outcome which in turn might have a severe impact on both the organisation and its users.

Table 4-1 shows an example of the goal-compliance rule and how policies can break it.

Chapter 4. A Refinement-Based Approach for Delete Policy

59

Table 4-1: Example of policy impact on goal satisfaction

Recalling back our UQU admission example, we identify some variations to the core

process which can occur in response to emerging laws or regulations, customer

satisfaction or changing requirements. We assume these variations are applicable, under

certain conditions, to some instances of the university admission process. The expected

changes to the process are temporary and are applied to some process instances. We also

assume that complex changes could be applied to a single instance at a time. For example,

deleting a task and inserting a new one to the running instance. As in real world multiple

instances could be run at the same time, we also assume that multiple changes might be

applied to multiple instances at a time.

Table 4-2 shows an example of a policy that require deleting a task from the UQU

admission workflow along with its syntactical definition and the reason of change.

Policy Constraint Organisation-
specific goal

example

Policy example Policy impact
example

Delete Some

workflow

functionalities

must always be

available

The customer

must receive a

tracking number

G:

TrackingNumbe

rSent

Delete the task

‘Send_Tracking

_Information’

Desired

behaviour (reject

to delete the

task):

The customer

always receives a

tracking number

Undesired

behaviour (the

task is deleted):

The customer

never receives a

tracking number

Chapter 4. A Refinement-Based Approach for Delete Policy

60

Table 4-2: Expected policies in the UQU admission system

Policy action description Syntax Reason of change

R1: Delete the task
‘Get_English_Test’

Delete

(Get_English_Test)
Applicants’ group

The university admission process has the task ‘Send_Nomination_Result’ which

is contributing to achieve the goal ‘NominationSent’. Thus, this task must be

available at every workflow execution in order to guarantee the satisfaction of its

corresponding goal unless the goal is changed. Otherwise, the workflow might deliver an

undesirable outcome.

As discussed earlier, in Chapter 2, GORE-for-BP leverages the specification as well as

the verification of adaptive business processes using the goal concept. In order to be able

to study the effect of the adaptation process on satisfying the goal, we adopt a GORE

methodology that supports the analysis as well as the verification of the adaptation

process (Poels et al, 2013). GORE methodology was selected for creating a requirements-

aware BPMNs for two reasons. Firstly, we believe that BPMNs are designed to achieve

business outcomes; therefore, they capture functional requirements and any change to

these requirements should not violate the original goal. The balance between

requirements changing and goal satisfaction is a challenging issue due to a number of

challenges related to the nature of self-adaptive systems including uncertainty,

complexity and situation-specific cases.

Secondly, having explicit and formal goal specification support business analysts to

reason about it at runtime. In particular, we adopt KAOS methodology from RE and link

it to the BPMN requirements model. The aim of linking BPMNs with their goal models

is to be able to decide which tasks (functionalities) are assigned to fulfil the goal

(dependency relationship). This leads to the establishment of a management link between

functional requirements and goal specification (or vice versa). Hence, the ability to trace

functional requirements during adaptation guarantees that policies are not allowed to

remove any workflow item aligned with a goal.

Chapter 4. A Refinement-Based Approach for Delete Policy

61

We consider goal specification in KAOS (Van Lamsweerde, 1991) that only captures

functional requirements, the non-functional requirements are outside the scope of this

study. The functional requirements are encapsulated through tasks in BPMN process

models. The achievement of functional goals must be satisfied before and during

adaptation. The satisfaction before adaptation means that the software is correctly

designed according to stakeholders’ goals (at design time). Whereas, during adaptation

indicates that when the software changes its behaviour in the midst of its execution, it still

satisfies its original goal (at runtime).

4.3 Goal-Task Dependency (GTD) Constraint: Linkage Specification
Although the dependency relationship between BPMN requirements models and their

corresponding goal models is defined in the literature, to the best of our knowledge no

study has facilitated this link to ensure goal satisfaction when process models are adapted.

Instead, it is used to design a goal-compliance process model at design time or to adapt

goal specification at runtime and accordingly adapt the process model. In the following,

we illustrate how this link is defined.

4.3.1 From Logical KAOS Specification to CSP Properties
We propose the goal-task dependency constraint whose purpose is to find a dependency

link to trace the satisfaction of the high-level goals when workflow components, i.e. tasks,

are adapted. Workflows represent requirement models as they capture the functional

requirements in terms of tasks, while goals represent the desirable functional

requirements in terms of objectives. Therefore, each objective is captured through a task

or group of tasks. The goal-task dependency constraint expresses that a task is dependent

on a goal; i.e., this task is contributing to the achievement of this goal or objective.

Nevertheless, business goals must be achieved during their entire life cycle. Defining the

goal separately from the requirement model gives us the ability to verify the changed

requirement model against its goal.

We defined a methodology for specifying and verifying the goal-task dependency

constraint as follows:

Chapter 4. A Refinement-Based Approach for Delete Policy

62

1. Assign all goal-related tasks based on contribution relationship, which task (i.e.

functional requirement) is contributing to achieve which goal (functional goal).

This is based on requirements elicitation process and could be decided from the

task id and the goal id as they suggest each other (Koliadis and Ghose, 2006).

2. Define the goal property specifications using the results from (1). Property

specifications should state the availability (occurrence) of all goal-related tasks

and must be consistent with the goal specification; i.e., the refinement between

objectives should be reflected on property specification among their

corresponding tasks.

3. Convert property specifications from (2) into CSP property specifications which

states the availability of all goal-related tasks. We neglect temporal properties

and focus on occurrence properties as we aim to compare the trace of the adapted

process with goal properties in order to check goal satisfaction.

4. Check the trace refinement relation (satisfaction function) between goal

properties and adapted process with FDR: Spec [T= P; which indicates that

the process specification (P) satisfies the goal properties (Spec) that are

extracted from goal specification.

The identification of this dependency constraint (from step 2) is based on the refinement

relationship among objectives at goal level. Goal-related tasks are tasks that are related

to objectives and they must be executed at all times unless the goal is changes. As a result,

if all tasks are refined to objectives then deleting any task from the process is undesired.

Goal-related tasks are thus inferred from the goal specification.

If there exist tasks that are not related to any objective, this means they are not

contributing to the achievement of any objective, then removing them from the process

will not affect its outcome. This could be the case when the BPMN specification is

detailed or an instance does not require the execution of some tasks.

Each goal can be translated down to a single task or a group of tasks. Similarly, each task

can be related to a single goal or a group of goals. However, if a task is related to more

than one goal, this means that this goal is a sub-goal from a bigger goal. Nevertheless, it

depends on the stakeholders’ requirements and the way they specify the goal.

Chapter 4. A Refinement-Based Approach for Delete Policy

63

Figure 4-1: The KAOS goal model for the university admission process

We find two types of dependency when we define the goal-task dependency link between

the goal model and the process model as follows:

1. A single task is contributing to the achievement of a single objective.

2. A Group of tasks is contributing to the achievement of a single objective and this

could be:

a) OR-grouped tasks

b) AND-grouped tasks

Achieve[RequirementsMet]

Achieve[ResultsObtained]

Achieve[RatioCalculated
]

Achieve[ApplicantNotifiedOfSubmission]

Achieve[SubmissionReceived
]

Achieve[ApplicantNominated] Achieve[NominationSent]

Achieve[StatusChecked] Achieve[NominationAccepted]

Achieve[ApprovalSent]

Achieve[ApplicantAssignedToRightPlace]

Chapter 4. A Refinement-Based Approach for Delete Policy

64

c) Sequenced tasks

d) Randomly ordered tasks.

Based on the above discussion, we define CSP property patterns that guarantee the

availability of goal-related tasks. The first dependency indicates a one-to-one relationship

and is mapped to the LTL global universality pattern: �T. This means the task T may

occur throughout the process execution. The second dependency indicates a one-to-many

relationship and is defined as CSP patterns as follows:

a) The global occurrence of T Õ T

b) The global occurrence of Ts; this case is treated as the first case because CSP is a

primitive language and there is no notion for the AND operator

c) The global occurrence of T; ….; Tn (where ‘;’ indicates T1 then T2, the sequence

operator in CSP)

d) The global occurrence of Ts, as Ts are not in a sequenced order.

Table 4-3: Goal-task dependency for the UQU admission system

Goals Tasks

‘ApprovalSent’ ‘Send_Ids’

‘NominationSent’ ‘Send_Nomination_Result’

‘NominationAccepted’ ‘Get_Confirmation’

‘StatusChecked’ ‘Check_Status’

‘SubmissionReceived’ ‘Get_Submission’

‘ApplicantNotifiedOfSubmiss

ion’

‘SMS_Notification_Of_Submiss

ion’

‘ApplicantNominated’ ‘Nominate’

‘ResultsObtained’ ‘Get_GAT’ and ‘Get_Attainment’

and/or ‘Get_English_Test’

‘RatioCalculated’ ‘Calculate_Ratio’

‘RequirementsMet’ ‘Check_Requirements’

The KAOS goal model for the UQU admission example, depicted in Figure 4-1, includes

only the functional requirements of the travel planning business process with the

Chapter 4. A Refinement-Based Approach for Delete Policy

65

refinement relationship among them. It does not include non-functional goals or

expectations because they are not captured in the process model.

Goal properties are defined according to the relationship among goals in the goal model

and the goal-related tasks. For example, the goal ‘NominationSent’ is achieved through

the contribution of the task ‘Send_Nomination_Result’ within the process and

its satisfaction affect the satisfaction of the goal ‘ApprovalSent’ as the satisfaction of

‘NominationSent’ and ‘StatusChecked’ is important to achieve ‘ApprovalSent’.
• ApprovalSent= starts.Send_Ids -> SKIP

• ConfirmationReceived= starts.Get_Confirmation -> SKIP

• StatusChecked= starts.Check_Status -> SKIP

• NominationSent= starts.Send_Nomination_Result -> SKIP

• NominationAccepted= starts.Get_Submission -> SKIP

• ApplicantNotifiedOfSubmission=

starts.SMS_Notification_Of_Submission -> SKIP

• PResultsObtained= starts.Get_GAT -> SKIP

• RResultObtained =starts.Get_Attainment -> SKIP

• QResultObtained=starts.Get_English_Test -> SKIP |~|

SKIP

• RequirementsMet= starts.Check_Requirements -> SKIP

The satisfaction of all goal properties leads to the satisfaction of the strategic goal the

process designed for, which is ‘ApplicantAssignedToRightPlace’.

4.4 GTD Algorithm: Verification
We choose the CSP as a specification language for different reasons: 1) available

mapping from BPMN into CSP, 2) tools supported, 3) specification and verification

language at the same time (i.e., the process and goal-task dependency properties are

defined in CSP, 4) The notion of trace refinement is one of the main reasons for choosing

CSP as it helps with the analysis and runtime reasoning.

The process model we have is expressed as a BPMN diagram and this BPMN is

transformed to CSP using Wong’s tool, as explained in Chapter 2. Goal specification is

expressed in LTL patterns, so those patterns can be converted to CSP specification

Chapter 4. A Refinement-Based Approach for Delete Policy

66

manually following the goal-task dependency link specification. The constraint formulae

then can be automatically checked using the FDR tool.

The delete process of the proposed framework refers to the ability to modify a given

workflow specification through allowing the deletion of existing task(s).

The detailed flow chart of the GTD algorithm can be seen in Figure 4-2, while a brief

description of the main steps is provided below:

1. The framework reads the workflow specification file and the configuration file

that contains information on the task that is to be deleted. The framework first

ensures that the task to be deleted exists in the specification.

2. The framework then ensures that the deletion operation does not violate any of

the domain compliance constraints. If not, then the requested task is deleted from

the in-memory representation of the workflow specification. A modified

workflow specification must be produced at the end of the process.

3. If the deletion of the task violates any of the domain compliance constraints, then

the framework will not allow the task to be deleted.

Chapter 4. A Refinement-Based Approach for Delete Policy

67

Figure 4-2: Flowchart of the goal-task dependency verification

4.4.1 Goal Satisfaction
We define goal-compliance properties based on the original goal specification in order to

check their satisfaction. The satisfaction of all constraints is crucial for an instance to

fulfil the strategic goal. However, goal properties specification is an upfront step as it is

defined at design time. Therefore, the goal properties are defined and appended at runtime

with the BPMN-CSP file and are processed all together with every instance checking.

Thus, the satisfaction of the goal properties leads to goal satisfaction. Each goal property

is transformed into a CSP property specification. At runtime, each CSP property

specification is checked against the adapted process through trace refinement assertion in

FDR. If all assertions are successful, the model is consistent with its goal. Otherwise, the

Start

Get Task Id(s) to be
deleted

Exists

Validate if deletion of
task violates goal

End

Delete task/s

Yes No

No

Find if task/s
available

Violates

Yes

Acknowledge
Invalid task

Acknowledge not
appropriate to delete

Chapter 4. A Refinement-Based Approach for Delete Policy

68

model deviates from its goal specification and therefore the change is rejected. In this

case, the process continues to run its original specification or stop to allow for user

intervention.

Table 4-4: CSP assertion definition according to property types

Property type CSP property
specification

CSP assertion

1. One-to-one

Task Ti to satisfy

Objective O1

P= Ti -> SKIP P [T= B \ (all other tasks)

2. OR-related tasks

Ti OR Tj to satisfy

Objective O2

P= let

Sprc0= Ti -> SKIP

Spec1= Tj -> SKIP

Within Spec0 Õ

Spec1

P [T= B \ (Ti or Tj

and all other tasks)

3. AND-related tasks

Ti AND Tj to satisfy

Objective O3

P= Ti -> SKIP

PP= Tj -> SKIP
P [T= B \ (all other

tasks)

PP [T= B \ (all other

tasks)

4. Sequenced tasks

Ti followed by Tj to satisfy

Objectve O4

P= Ti; Tj -> SKIP P [T= B \ (all other

tasks)

5. Randomly ordered

tasks Ti, ….., Tj

P= Ti -> SKIP

PP= Tj -> SKIP
P [T= B \ (all other

tasks)

PP [T= B \ (all other

tasks)

As the focus is on occurrence of certain tasks, we use FDR trace refinement to compare

traces between goal-properties and the adapted process. The property trace captures goal

specification, where goal labels are matched to lower level task labels. For example, the

goal ‘ApplicantNominated’ is mapped to the task ‘Nominate’ and the property

captures the universal availability of this task. The adapted process trace represents the

Chapter 4. A Refinement-Based Approach for Delete Policy

69

process after adaptation and it must satisfy the property specification. If the property

states the availability of a certain task is mandatory, the trace of the adapted process must

perform this task.

Table 4-4 shows the mapping of properties to CSP specification and their corresponding

assertions. FDR calculates these assertions under trace refinement to check their validity

at runtime. One-to-one property is specified simply in CSP as a process that has just the

task label in its trace, which is contributing to the achievement of an objective. Then, the

assertion compares the trace of both the property and the adapted model by hiding all

tasks from the trace of the adapted model except the task in the left-hand side. The CSP

‘hide’ operator enables certain tasks to be hidden from the process trace and this facilitates

investigation of the model trace without some tasks.

The second property indicates OR-related tasks that are contributing to the achievement

of an objective, so tasks are modelled in CSP specification using nondeterministic choice.

The goal-compliance framework now verifies the above defined goal properties through

FDR trace refinement. In order to do that we provided the FDR assertion list that assert

the trace refinement of the properties against the adapted process. From the above

properties, we choose the ‘QResultObtained’ to show how its corresponding

assertion is written as it is concerned with the delete policy. The property

‘QResultObtained’ is defined locally in the BPMN-CSP specification file as

follows:

• QResultObtained=starts.Get_English_Test -> SKIP |~|

SKIP

As R1 deleting ‘Get_English_Test’, this adaptation is expressed in CSP assertions

by hiding this task from the original model specification along with all other tasks, as

explained above. The CSP hide operator means show the trace without certain tasks.

The assertion of the above property is shown below:

• assert QResultObtained [T= UUniversityAdmission

\ {(starts.Register_Applicant, starts.Get_Docs,

starts.Check_Requirements, starts.Get_GAT,

starts.Get_Attainment, starts.Get_English_Test,

starts.Notify_Of_Submission, starts.Get_Submission,

Chapter 4. A Refinement-Based Approach for Delete Policy

70

starts.Nominate, starts.Send_Nomination_Result,

starts.Get_Confirmation, starts.Get_Cancellation,

starts.Check_Status, starts.send_Rejection,

starts.Send_Ids)}

The CSP assertions hold the property specification (e.g. QResultObtained) on

the LHS and the process specification (e.g.UUniversityAdmission) on the RHS

and compares their traces using trace refinement ‘T’.

 It hides all other tasks along with the deleted task and checks property satisfaction.

Fig 4-3 depicts the state transition system of the property ‘QResultObtained’ and

the university admission process after applying R1, i.e. the process without

‘Get_English_Test. Fig 4-3(a) has no task in its trace as the (RHS) assertion of

‘QResultObtained’ states to hide all tasks with the removed task from the process

trace. The (t) represent an internal event (also known as tau) in CSP, which means that

this event is hidden from the environment. It runs only one event which is SKIP, the

successful termination. We provide a manual representation of the university admission

example as FDR could not generate the LTS, see Fig 4-3(a), and this is because the

process is complex and has too many states. However, this is does not affect our

verification as we generate the LTS just for clarification purposes. The property

‘QResultObtained’ has either the event ‘Get_English_Test’ or the event

SKIP on its trace, see Figure 4-3(b). Comparing the trace between the property

‘QResultObtained’ and the university admission trace after hiding the tasks, as in

the corresponding assertion, shows that the property and the process both has the SKIP

on their traces. This means that the process satisfies the property and the reconfiguration

here is successful. The task ‘Get_English_Test’ is contributing to achieve the

goal ‘ResultsObtained’ but the task is not mandatory as it represents a work that

is applicable for certain group of applicants. The property specification

‘QResultObtained’ states that the task ‘Get_English_Test’ could be deleted,

see Fig 4-3(b), without any impact on the fulfilment of the process strategic goal. The

trace refinement of ‘QResultObtained’ and the adapted process is successful,

therefore, R1 is verified to be compliant to the goal as the deletion of this task still satisfies

the goal.

Chapter 4. Refinement-Based Approach for Delete Policy

71

a) University admission trace

b) QResultObtained trace

Figure 4-3: Travel planning process trace

Chapter 4. Refinement-Based Approach for Delete Policy

72

4.5 Summary
In this chapter, we have shed light on the impact of the delete policy on satisfying a

business’s goal. In order to measure goal satisfaction, we defined a dependency link

between goals at goal level and tasks at BPMN level. This linkage allowed us to capture

goal specification in property patterns and compare BPMN behaviour against these

properties. From this link, we defined a goal-task dependency constraint and its

satisfaction function. We also discussed how the verification of the goal-task dependency

constraint is automatically performed using CSP and FDR.

73

Chapter 5 An Ontology-Based Approach for Insert

and Replace Policies

In this chapter, we discuss how the insertion of new tasks to a workflow instance could

break its original goal. Inserting new functionalities in an ad hoc manner is accomplished

at the business level through the reconfiguration policy ‘insert’. Due to the fact that

policies introduce new functionalities which are not known prior to runtime, it is

necessary to formulate the business domain and its assumptions as a fuzzy approach to

be able to perform on-the-fly runtime reasoning. Domain knowledge can be expressed in

ontology by expressing its concepts and their relationship in a semantic way. Domain

knowledge is understood and derived from the goal in question. Therefore, capturing the

requirements on ontologies enables checking the new requirements against the

ontologies, which are originally derived from the goal itself. We further show how

defining the domain-based ontology for BPMNs can be effectively used to validate new

functionalities against their original goal.

5.1 Adaptation with Insert Policy
The insert process refers to the facility where the proposed framework allows the

modification of the existing workflow by allowing the insertion of a new task into the

given workflow specification. The newly inserted tasks can be of any of the following

kinds of tasks:

• Atomic sequential: This refers to the insertion of a new task in sequential

order immediately after a given task. This operation requires the new task

name as well as the name of an existing task.

• Atomic parallel: This refers to the insertion of a new task in parallel to an

existing task. The operation will insert the parallel gateway to connect the

new task and existing task in parallel. The new and existing task names

must be provided to perform the operation.

• Composite: The composite task is in itself a collection of multiple tasks.

The framework allows the insertion of a new composite task. In this

74

operation, the framework will receive multiple task names that

collectively represent the composite task. The framework will then insert

those tasks as a composite task in reference to an existing task.

The syntax of the insert policy is defined as: Insert (T2, T1, true). The

translation of this syntax is insert task T2 in parallel with task T1.

5.1.1 Inserting a Subprocess
The subprocess is also one of the elements that could be inserted to the BPMN. As it

consists of a number of atomic tasks, its compliance to the goal can be achieved by

checking each atomic task independently. The assurance mechanism tests the compliance

of each task according to the domain-task conformance constraint. The subprocess

satisfies the constraint only and only if all of its atomic tasks are verified to be domain

conformance.

5.1.2 Inserting an Operator
As discussed in section 4.2.2, BPMN operators address the order among tasks which is

outside the scope of this research. Saying that, inserting an operator can be achieved

through the reconfiguration functions in the framework but we assume they are

semantically correct.

5.2 Impact on Goal
All desirable actions or functionalities that any organisation wishes to achieve are

basically determined through goal specification. Workflow systems capture the

functional requirements in a logical order to satisfy a certain business outcome. The insert

policy is used to add extra functionality to the workflow. It can insert a new workflow

item (activity or operator) at

75

Table 5-1: Example of the insert policy and the DTC constraint

any position. Thus, policy behaviour can be discussed from two different perspectives:

what and where. The first perspective, ‘what’, is concerned with the new requirements to

be added, while the ‘where’ perspective is concerned with the position or the order of

existing requirements. We analyse and reason about the first perspective, which allows

us to focus on the occurrence of work in workflow systems and evaluate its semantic

correctness. However, order correctness and tasks compatibility have already been

studied in the literature, as discussed in Chapter 2. Table 5-1 shows an example of the

undesirable effect of the insert function. The constraint is general and expresses that the

insertion of any undesirable action is not accepted.

 In this context, semantic correctness refers to a desirable process behaviour that

guarantees goal satisfaction. Current reconfiguration policies have no constraints on what

to insert into the running process. Therefore, this might cause unexpected business

outcomes, which in turn might affect businesses. For example, the delivery of a travel

plan changes to the delivery of a washing machine.

Policy Constraint Organisation-
specific goal

example

Policy example Policy impact
example

Insert A workflow

item must

never be

processed if

does not

belong to

the domain

Add a new task

whose goal is to

offer a free

delivery for VIP

customer

Goal:

FreeDeliveryOffe

red

Domain:

PizzaDelivery

Insert
‘Offer_Free_Deli

very’

Desirable

behaviour:

The new task is

applied in the

PizzaDelivery

domain

Undesirable

behaviour:

The new task is

inserted into

the university

admission

domain

76

There is a strong relationship between the goal specification and the running process, as

discussed in the previous chapter. Furthermore, ontology knowledge is derived from goal

specification and it is consistent with the goal in question. Hence, the satisfaction link

between process and ontology lead to the satisfaction link between process and goal as

the ontology is supposed to be consistent with the goal. Assume we have a Goal (G), an

Ontology (O) and a Process (P), the satisfaction formulae can be written as:

If P |= O and O |= G -> P |= G.		

Figure 1-1, in section 1.8 (Page 9), depicts the satisfaction relationship among the process,

its domain and goal. The goal specification is located in the top layer since it is considered

the main reference for the workflow consistency check. It is followed by domain

knowledge, which represents the concepts of that domain and their interrelationship. It is

consistent with the goal in question. In the bottom layer, the workflow specification,

which must be consistent with the domain knowledge. The consistency between

workflow and domain knowledge will lead to goal satisfaction. Hence, we use domain

knowledge to reason about goal satisfaction. This is due to the fact that goal specification

holds the desirable actions but is abstracted from any detail about the process for which

it is designed. For this reason, we use the domain knowledge to prove consistency with

the goal as it can express the wider context of the process and its original goal.

Table 5-2 shows an example of inserting a new task to the UQU admission workflow

along with its syntactical definition and the reason of change.

Table 5-2: Policy example for the UQU admission workflow

Policy action description Syntax Reason of

change

R1: insert a new task ‘Re-nominate’ Insert (Re-nominate,

Send_Ids, false)

Applicants’

satisfaction

77

The challenge here is how to define the desirable and undesirable actions and take the

right decision at online reconfiguration. Furthermore, how to design the correct ontology

and keep it updated and by whom? Despite the fact that the actions or requirements are

domain specific, our constraints are generalised and could be implemented with any

BPMN domain. Therefore, we decided to integrate domain knowledge with workflow

systems for an engineering process, i.e., workflow verification. The unmanaged insertion

of new functionalities to the running process might have a severe impact on achieving its

goal.

5.3 Domain-Task Conformance (DTC) Constraint: Specification
The domain-task conformance is a goal-compliance constraint which is developed in

accordance with managing the impact of the insert policy. It expresses that every task

must be compliant to its domain knowledge. We define this constraint due to the nature

of the insert policy and its semantic impact on achieving the goal. The effect it causes

needs a fuzzy approach to allow more possibilities to take the right decision whether to

allow the insertion of the new work or not. This is unlike the goal-task dependency

constraint, which is defined for deleting an existing functionality. As the policy requires

the deletion of an existing functionality, the goal-task dependency constraint is defined

to help decide whether this functionality is goal-related or not.

Each BPMN domain is captured in an ontology in a specified way, as explained in the

following section. This enables modelling the domain concepts and the semantic

relationship among them. The DTC constraint ensures that any task to be inserted into the

process conforms to the defined domain. We assume a process (P), its defined ontology,

(O), and a new task (T); the task is evaluated against its domain in order to ensure its

conformance. The satisfaction formulae can be written as: if T |= O -> T |= P.

5.3.1 Domain-Goal-Task (DGT) Ontology
In this section, we introduce an ontology for BPMNs to enrich their knowledge with extra

vocabularies (i.e., tasks). There are several reasons why we choose ontology for

verification purposes: (i) its natural language, which makes it easier for end users to

understand, (ii) ontologies are a modelling as well as a verification language and this

might save the effort and cost exploited for engineering activities, (iii) it enriches the

domain knowledge as it allows for expressing related concepts to the domain along with

78

their semantic relations, which in turn enables online verification of self-adaptive

workflows. Hence, it helps business analysts to define domain concepts represented as

‘tasks’ and their semantic relationship. For example, the travel planning domain is

composed of travel planning concepts whose work express the semantic of this domain.

It cannot include tasks whose job is to book a training course or find the nearest NHS

services.

The purpose of each concept is also captured in the ontology in terms of goals, to facilitate

the verification decision. Every task in the ontology must be linked to the goal that they

are contributing to. Despite the fact that BPMNs are domain specific, i.e., domains differ

in their goals and the purpose for which they are designed, we develop a generalised

semantic constraint that could be applied to any domain. For example, Flight-Booking is

a different domain from PizzaDelivery as the tasks used within the processes as well as

their outcomes (goals) are different. However, the DGT ontology is a general ontology

structure that can be used to integrate knowledge for any BPMN domains. Figure 5-1

depicts the DGT ontology structure.

The DGT ontology is designed using OWL (W3 Semantic Web, 2013) and developed with

Protégé (Protégé, 2016). It combines three main classes: Domain, Goal and Task. The

‘Domain’ class includes the domain’s name, which is unique for every domain and is

Figure 5-1: DGT ontology main construction

Domain

Goal

Task

hasGoal

hasDomain

79

used to define a certain domain. The ‘Goal’ class includes goal classifications of a

certain domain as expressed in the goal model. The class ‘Task’ encompasses all

anticipated tasks in a certain domain. It is further decomposed into two subclasses:

Atomic and Subprocess. The former includes tasks that are of type atomic tasks, while

the latter includes composite tasks as defined as in the corresponding BPMN. Individuals

of the three classes are linked using OWL object properties. Basically, we have two object

properties: hasGoal, linking tasks with goals, and hasDomain, linking goals with

domains.

The values for each class are defined as individuals of that class. as in the corresponding

BPMN. In this work, BPMN tasks are considered to be the ontology main concepts as

they are the main artefacts in process execution since they are designed to perform ‘work’

within the process. Furthermore, tasks are vulnerable to change at BPMN level and they

are the target to be checked in the ontology.

In addition to the previous relationships, we assign the property ‘sameAs’ to link

individuals in the class ‘Task’, indicating that individuals refer to the same thing in the

ontology. It is defined for tasks that are doing the same sort of work to achieve a certain

goal or, as we call them semantically equivalent tasks.

For example, the tasks ‘Pay_by_Cash’ and ‘Pay_by_Card’ are semantically

equal as they are contributing to the same goal ‘PaymentReceived’.

To illustrate the ontology hierarchy in Figure 5-3 and how it is used to express our

semantical constraint, we recall our UQU admission example that introduced in Chapter

3. Its corresponding ontology is depicted in Figures 5-4, 5-5 and 5-6. The class Domain

has ‘UniversityAdmission’ as a domain individual. All planned/unplanned tasks in the

domain of the university admission are defined as individuals of the class ‘Task’. They

are considered as the vocabulary in that domain.

All individuals are linked to each other according to the defined semantic relationship

‘hasDomain’ and ‘hasGoal’. The goals that are defined in the domain of the

university admission are linked to their domain name under the object property

‘hasDomain’. For example, the goal ‘ApplicantNominated’ is linked to the

domain name ‘UniversityAdmission’ through ‘hasDomain’. Hence,

‘ApplicantNominated’ ‘hasDomain’ ‘UniversityAdmission’.

80

The tasks that belong to the ‘UniversityAdmission’ are classified under its goals through

the object property ‘hasGoal’. For example, the task ‘Nominate’ is classified under

the goal ‘ApplicantNominated’. Hence, ‘Nominate’ hasGoal’

ApplicantNominated’.

 The key question here is how to guarantee that this new task belongs to the domain,

which in turn will guarantee goal satisfaction. The ontology is built on the assumption

that it encompasses all vocabularies ‘concepts’ in a specific domain. Upon this

assumption, we are able to query the ontology about the availability of a specific concept

‘task’ in a specific domain. The goal-compliance framework checks the availability of

the new task in the ontology and verifies its conformance with the domain only if it exists,

see Figure 5-7 for the complete flowchart of the verification process. Therefore, the

insertion of a new task into the process model can be automatically verified.

For example, inserting ‘deliver_Washing_Machine’ to the domain of

‘UniversityAdmission’ is semantically not accepted as it deviates from the domain

semantic which is all about registering students to the right major.

Due to the fact that the business environment is dynamic and ever changing, new

requirements and needs might appear. We have an assumption that the ontologies

encompass everything about domains but they are also vulnerable to incompleteness due

to the fact that anticipating everything at modelling time is impractical. Therefore, a more

intelligent and context-based mechanism is needed to improve the decision-making

process.

5.3.1.1 DGT Ontology for the UQU admission workflow
As explained in the previous section, we use the ontology to deal with the insertion or

replacement of tasks. In the ontology, each task is associated with a goal through the

object property ‘hasGoal’ and each goal is associated with a domain through

‘hasDomain’. We developed an ontology for the university admission domain

according to the DGT ontology format. The domain is called ‘UniversityAdmission’ and

it has a set of goals defined according to the goal model, depicted the previous chapter,

in Figure 4-1. Every goal has a set of tasks that are defined according to their contribution

to the goals along with a set of other semantically equal tasks. Figures 5-2 to 5-4 depict

the university admission ontology.

81

The policy R1, as defined in Table 5-2, requires to insert the task ‘Re-nominate’

after ‘send_Ids’. The university domain has ‘Re-nominate’ as one of its

vocabularies. Thus, when the framework searches the university domain, it will find this

task defined and, therefore, the framework will allow the insertion through R1.

Figure 5-2: Example of the DGT ontology: classes and properties

82

Figure 5-3: Example of the DGT ontology: Individuals

83

Figure 5-4: DGT ontology main constructs

<owl:Class

rdf:about="http://www.semantic

web.org/budoorallehyani/ontolo

gies/2016/11/Travel-

Plan#Domain"/>

<owl:Class

rdf:about="http://www.semantic

web.org/budoorallehyani/ontolo

gies/2016/11/Travel-

Plan#Type"/>

 <owl:Class

rdf:about="http://www.semantic

web.org/budoorallehyani/ontolo

gies/2016/11/Travel-

Plan#Task"/>

<owl:sameAs

rdf:resource="http://www.sem

anticweb.org/budoorallehyani

/ontologies/2016/11/Travel-

Plan#Quote_Car_Rental"/>

<owl:sameAs

rdf:resource="http://www.sem

anticweb.org/budoorallehyani

/ontologies/2016/11/Travel-

Plan#Quote_Flight"/>

a) Classes b) Individuals

<hasDomain

rdf:resource="http://www.seman

ticweb.org/budoorallehyani/ont

ologies/2016/11/Travel-

Plan#TravelPlan"/>

<hasGoal

rdf:resource="http://www.seman

ticweb.org/budoorallehyani/ont

ologies/2016/11/Travel-

Plan#RequirementsChecking"/>

<owl:sameAs

rdf:resource="http://www.sem

anticweb.org/budoorallehyani

/ontologies/2016/11/Travel-

Plan#Choose_Ticket_Type"/>

<owl:sameAs

rdf:resource="http://www.sem

anticweb.org/budoorallehyani

/ontologies/2016/11/Travel-

Plan#Find_Tickets"/>

c) Object properties d) Individuals identity

84

5.3.2 The Use of WordNet
Due to the fact that it is impossible to anticipate everything about certain domains or

business contexts prior to runtime (e.g., anticipating all tasks), we use WordNet to

enhance the verification process. We use WordNet for searching task synonyms in case

the task does not exist in the ontology. The retrieved synonyms are then matched to the

existing tasks in a certain ontology. If synonyms are found, then the insertion of the new

task does not violate the domain. Otherwise, the insertion of the new task is rejected and

the process continues to run its original specification or stop.

A task name is assumed to be of two parts: Action and Object, separated by underscore,

i.e., A_O. The first part represents an action the process is trying to perform, while the

second part represents an object that belongs to a certain domain. Actions in the university

admission domain include: Register, Nominate, Submit, Notify, Apply, etc. Objects in

the university admission domain can be Applicant, Documents, Attainment, Test,

Submission, etc.

When a policy requires the insertion of a task outside the range of the defined vocabulary

in the ontology, this task is divided into action and object. Let us take the task

‘Receive_Docs’ as an example where ‘Receive’ is the action and ‘Docs’ is the

object. Thus, it could be broken down into ‘Receive’ and ‘Docs’ when using

WordNet to find their synonyms. The retrieved synonyms are then checked against the

ontology where both must be matched with the defined tasks in the ontology. The action

part is related to the goals in the ‘Goal’ class which ensures to which goal the new task

belongs. For example, one of the retrieved synonyms from WordNet for ‘Receive’ is

‘Get’ which is already exist in the ontology and linked to the goal

’InformationRetrieved’ and one of the retrieved synonyms of ‘Docs’ is

‘Docs’ in which it already exists as well. Therefore, the task

‘Receive_Docs’conforms to the university admission domain and can be inserted to

the running process.

5.4 DTC Algorithm: Verification
The procedure developed for the insertion of the new task into an existing workflow is

the same irrespective of the above-mentioned types in Section 5.2. This procedure can be

85

seen from the detailed flowchart presented in Figure 5-5. A short explanation is provided

below:

1. In the first step, the framework reads the existing workflow specification and then

obtains the new task name from the configuration file that contains the

modification details. This name is then searched from the available ontology. This

search query targets that the task name must match an individual name in the

ontology, satisfying the constraint that the individual must belong to the same

domain as the domain of the workflow specification. If the search succeeds, then

the Re-configurator will allow the insertion of the new task. Otherwise, it will

carry out Step-2.

2. In case the given task name is not available in the ontology, then the framework

will attempt to explore the possibility of confirming the suitability of that task

name through WordNet. The framework assumes that the task name must consist

of two words separated by a special character (e.g. “_”). The first word represents

the action, where the second word represents the object (e.g. “Register_Student”).

The framework interacts with the WordNet repository to obtain the synonyms of

both words (i.e. object and action parts). The object part and its synonyms help to

identify the corresponding domain of the workflow, whereas the action part hints

at the type of action.

3. Once the synonyms are retrieved, then they are searched in the ontology. The

framework will allow the insertion of the new task, if any of the synonyms of both

parts are found in the ontology. Otherwise, the framework will not allow the

insertion of the new task.

It is integrated with the framework and it is compiled using OWL API (OWL API, 2015)

for Java. This library basically provides interfacing with OWL API to interact with the

Ontology file. This class contains all the necessary operations that are needed for

verification. The compilation is activated when a policy requires the insertion of a new

task for verification purposes. The WordNet API (WordNet, 2012) is also integrated

within the framework for verification purposes as discussed earlier.

86

Insert to
Ontology

Start

Get new task Id

Search the ontology for
the new task Id

Found

Insert to
BPMN

Separate the Id into Action
and Object

Find synonyms of Action
and Object in the WordNet

Get domain of matching
Object and Action

Synonyms
found

End

Yes No

Yes

No

Figure 5-5: Flowchart of DTC verification mechanism

87

5.5 Adaptation with Replace Policy
In addition to the reconfiguration functions defined in (Gorton, 2011), we introduce the

replace policy as a variant of reconfiguration functions. Replace is a complex change

function as it consists of two different functions: delete and insert, in either order.

Furthermore, it should be synchronised with the instance until it performs the complex

change correctly. For example, a policy performs replacement of task ‘Pay_by_Card’

with ‘Pay_by_Cash’. There are two different possibilities to achieve that: (a) it deletes

task ‘Pay_by_Card’ first and then inserts ‘Pay_by_Cash’, or (b) it inserts task

‘Pay_by_Cash’ in the process and then deletes ‘Pay_by_Card’. In both cases, the

framework allows the replacement if it does not violate the specified goal. Similar to the

insert policy, the framework enables the replacement of atomic tasks and subprocesses

either sequentially or in parallel.

5.6 Impact on Goal
The impact of both cases on goal satisfaction is basically the same as the impact of delete

and insert policies. As a result, the framework follows goal-compliance constraints to

validate the replacement. However, the framework has two different cases for verification

when considering the aforementioned cases independently.

The first case (a), the framework validates the change according to the goal-task

dependency constraint as it first deletes an existing task and, based on the verification

result, it decides to accept or refuse the change. If the constraint is successfully validated,

the framework deletes that task and performs the insertion afterwards. Before it inserts

the new task, it checks its validity through the domain-task conformance constraint. If it

is validated, then the framework inserts it. Otherwise, it is neglected and runs the original

process but with a missing task. This is an unsafe situation (weak behaviour) as although

this removed task is meant to be removed from the process, a new task is supposed to

take its place. This might affect the original goal and result in undesirable behaviour.

The second case (b), however, it is the same effect but slightly different in the sense of

redundancy. The policy requires the insertion of a new task first, so its validity is checked.

If it is confirmed, a new task is inserted and then an existing task should be removed.

However, if this task is a goal-related task, the framework will not allow this policy to be

88

applied. Therefore, this task might be redundant as it is meant to be replaced with another

task or it might affect the behaviour in an undesired way. Hence, both cases ae too

restrictive and not acceptable in practice, while the replacement might be of great

advantage to the running instance. Therefore, we develop a different constraint to deal

with this type of change instead of implementing the same constraints of delete and insert

functions.

Table 5-3 shows an example of the undesirable effect of the replace function. The

constraint is general and expresses that the replacement with any undesirable action is not

accepted.

5.7 Task-Task Consistency (TTC) Constraint: Specification
The constraint task-task consistency can be seen as a variant to the domain-task

conformance constraint because the replacement always means inserting a new task. The

TTC constraint expresses that the new task must always be consistent with the task to be

replaced with in order to guarantee goal satisfaction. The consistency here determines

that the new task must contribute to the achievement of the same goal as the replaced one.

There are two possibilities to express this semantic property within the ontology as the

new task either exists in the ontology or does not.

The existing tasks in the ontology can be defined as ‘sameAs’ if they are semantically

equal. Furthermore, the property ‘hasGoal’ link tasks that are contributing to achieve

the same goal. The declaration of these properties facilitates to express the consistency

among tasks. The TTC constraint is defined based on this consistency and it expresses

that any new task must be consistent with the task to be replaced with. If both exist in the

ontology, both must belong to the same goal through ‘hasGoal’ or both tasks are

defined in the ontology as ‘SameAs’ individuals. For example, the tasks

‘Pay_Tickets_By_Cash’ and ‘Pay_Tickets_By_Card’ are defined as being

semantically equal as they hold the same ‘work’ and contribute to the same goal, which

is ‘TicketsPaid’. Thus, if one of those tasks replaces the other it does not violate the

domain semantics. Otherwise, if the new task does not exist in the ontology the

framework retrieves its synonyms from WordNet and checks their conformance against

the ontology.

89

Table 5-3: Example of replace policy impact and the TTC constraint

5.8 TCC Verification
The replace process of the proposed framework allows the replacement of an existing

task with a new one. The existing task in the process that is meant to be replaced with a

new task already exists in its corresponding ontology. When the framework deletes this

task from the process and inserts the new task instead, it follows the steps below (see

Figure 5-6):

1. It looks up the ontology for the existing task and retrieves its synonyms through

the semantic relation ‘sameAs’, if any

2. It then compares the new task with the retrieved synonyms

3. If it matches any of them, it successfully satisfies the TTC constraint

4. Otherwise, the framework checks if both tasks exist in the ontology and belong to

the same goal in the hierarchy through ‘hasGoal’

5. If they belong to the same goal, the replacement successfully satisfies the TTC

constraint

Policy Constraint Organisation-
specific
example

Policy Example Policy impact
example

Replace A workflow

item must

be replaced

by a

semantically

equal item

or an item

that is

contributing

to the same

goal

A customer

must be

notified when

his delivery is

on its way

Replace
‘Email_Notification’

With
‘SMS_Notification’

Desired

behaviour: the

customer will

be notified by

SMS

Undesired

behaviour: the

customer will

not receive a

notification and

the goal will

not be achieved

90

Start

Get New Task Id
(Ti)

Get the existing task Id
to be replaced (Tj)

New task exists
in the ontology

Check if Ti and Tj are
same individuals

Search WordNet

Compare goals in
the ontology Replace

Synonyms
found

Same type

End

Same
Individuals

yes No

yes

No

No

yes

yes

Same
type

Figure 5-6: Flowchart of TCC verification

91

6. Otherwise, the framework retrieves the synonyms of the new task from WordNet

7. If synonyms found in the domain, the replacement successfully satisfies the TTC

constraint

8. Otherwise, the framework rejects the replacement and runs the original

specification instead or generates feedback to the user for human decision.

Recalling back our university admission example, assume a policy requires to replace the

task ‘SMS_Notification_Of_Submission’ with

‘Email_Notification_Of_Submission’. As the policy is of type ‘replace’, the

framework will check the satisfaction of the TTC constraint. The framework checks the

ontology if both tasks are defined to be the same individual through the property

‘sameAs’ or they are related to the same goal through the property ‘hasGoal’. If

one of these constraints hold, the verification is successful and this means that the policy

is applicable. In this case, both tasks are defined in the university admission ontology as

same individuals, therefore, this policy successfully satisfies the constraint and the

framework allows the replacement.

5.9 Summary
In this chapter, we have analysed and discussed the impact of inserting new functionalities

and replacing tasks at instance level. We also have defined goal-compliance constraints

to ensure compliance to the original goal during runtime adaptation. These constraints are

domain-task constraint and task-task consistency constraint. Each constraint is

implemented within the goal-compliance framework to control policy behaviour.

92

Chapter 6 Evaluation

6.1 Introduction
The proposed framework provides assurances on goal satisfaction in self-adaptive

workflows. It performs instance adaptation in response to changing requirements and

supports reasoning about the adaptation to ensure new requirements are compliant to the

original goal. The proposed framework is supposed to be embedded into the runtime

environment, where the workflow and the policy engines are established. The workflow

and policy engines support and manage the functionalities related to the adaptation, while

the functionalities related to assurances are supported and managed with the proposed

goal-compliance mechanisms.

In section 1.3, our hypothesis presume that goal compliance assurance can be reliably

realised by existing verification techniques. Existing verification techniques are stable

and it is argued (Tamura et al, 2013) that this stability does not meet the dynamicity nature

of self-adaptive systems. In this research, we used existing verification techniques (trace

refinement and domain-knowledge analysis) and we show they can be used for self-

adaptive workflows with minimal user intervention. In section 6.6 we discuss to what

extent these techniques helped us to achieve our aim.

For applicability and reliability evaluation, we assess the proposed approach considering

several angles: framework performance, framework adequacy and ontology accuracy.

The applicability is concerned with the framework performance and its ability to meet the

runtime desirable criteria while the reliability is concerned with its ability to balance the

need for adaptation and the quality over adaptation.

In the following section, we discuss the methodology used for achieving our evaluation.

Section 6.3 shows the conducted experiments and their results for performance and

accuracy evaluation. Section 6.4 discusses the framework adequacy using workflow

patterns as the benchmark. We also discuss the capabilities and limitations of the

proposed approach regarding the desirable runtime criteria in section 6.5.

Chapter 6. Evaluation

93

6.2 Methodology
As our evaluation targets several perspectives as explained in the previous section. For

evaluation purposes we used two different methodologies; Java code and runtime criteria.

A. Java code

We developed a Java code for evaluating the framework performance. The code is simple

and basically calculates the time taken by the framework to execute its functions. These

functions, as introduced in Chapter 3, are responsible for accomplishing the main

functionalities of the proposed framework. They are varied based on the reconfiguration

type as discussed in section 6.3. The execution time is recorded for each function. The

program records the start time when the function is called and start its work as well as the

time when the function completes its work. The overall time for each function is

calculated by subtracting the start time from the end time. The framework records the

time for all functions in an excel file that is given as an input in the appConfiguration file.

Section 6.3.1 discusses the framework performance evaluation in terms of the time taken

to perform its functionalities.

B. Ontology evaluation criteria

The framework accuracy is evaluated considering the ontology accuracy criteria

(Hlomani and Stacey, 2014). We conduct experiments with various BPMNs’ complexity

and domain. Ontology evaluation is categorised under two different perspectives,

including ontology correctness and ontology quality (Hlomani and Stacey, 2014). Each

of which has different metrics for evaluation. In this thesis, we consider evaluating the

developed ontology according to its accuracy.

The accuracy is classified as a correctness metric and it includes precision, recall and

coverage as the main criteria. However, we are going to evaluate the DGT ontology

targeting only the precision and recall as we aim to show how effective the ontology can

be for runtime verification. While the coverage is not our focus for evaluating the

developed ontology as we assume the ontology cover everything about a specific domain.

Precision and recall are well-known criteria in the information retrieval filed. Precision

is defined as the total number correctly found over whole knowledge defined in the

Chapter 6. Evaluation

94

ontology, whereas recall measures the total correctly found over all knowledge that

should be found. Section 6.3.2 shows the conducted experiments along with their results.

C. Workflow patterns

The framework adequacy is evaluated in terms of its ability to verify a wide range of the

workflow patterns. Workflow patterns are defined in (Russell, 2006) for the purpose of

indicating the requirements of the workflow languages. They are 43 patterns in total and

classified to several groups; basic control-flow patterns, advanced branching and

synchronisation patterns, structural patterns, multiple instance patterns, state-based

patterns and cancellation patterns.

Gorton (Gorton, 2011) provides an evaluation on the reconfiguration policies considering

these patterns and shows that the reconfiguration policies directly support 19 patterns and

indirectly support 10 other patterns, making a total of 29 out of 43. Our approach is built

upon Gorton’s work with the focus on the verification side of the reconfiguration policies.

So, we provide an assessment of the proposed framework against these patterns in section

6.4.

6.3 Experiments
 In the previous section we introduce the methodology we used for evaluation purposes.

The framework performance and accuracy are evaluated by conducting experiments as

will be discussed in the following subsections.

6.3.1 Framework Performance
 Although the performance was not our aim when developing the framework, measuring

its performance is an essential requirement for runtime verification. We give an initial

envision for its applicability in practice. The performance aims to measure the execution

time taken by the framework to perform its aforementioned functions. We consider two

main factors for the framework performance evaluation: (1) workflow complexity and (2)

reconfiguration complexity. The former is related to the workflow size in terms of the

number of elements it contains, mainly tasks. The latter refers to the number and type of

the reconfiguration functions per a single instance.

The experiments were conducted with randomly and automatically generated BPMN

models of various size. Thus, we consider different sizes of workflows, from simple

Chapter 6. Evaluation

95

workflow containing 5 tasks and two gateways to very complex workflows with 50 and

100 tasks with random number of gateways.

We also perform complex reconfiguration by implementing multiple reconfiguration

functions at a time. For example, inserting a new task and deleting an existing one at the

same time. Please note that when the framework performs multiple reconfigurations of

different types (insert and delete), it performs two different types of verification at the

same time (Ontology checking and FDR trace refinement). We believe that real world

processes are long running transactions and the change might be of a complex nature per

running instances.

As we discussed earlier, the verification process differs according to the reconfiguration

type. The framework records the time taken to perform reconfiguration and verification

functions. Table 6-1 shows the functions associated with each reconfiguration type.

Table 6-1: Measurement functions per reconfiguration

Reconfiguration
type

Recorded functions

Delete • Reading appConfiguration file

• Reconfiguration

• CSP conversion

• FDR verification

• Overall time calculation

Insert • Reading appConfiguration file

• Reconfiguration

• Ontology check

• WordNet check (if needed)

• Overall time calculation

In the following two sections, we discuss the conducted experiments along with the

results for performance evaluation, according to the workflow complexity and

reconfiguration complexity.

Chapter 6. Evaluation

96

6.3.2 Impact of Workflow size on Framework Performance
The goal-compliance framework provides three types of compliance check as illustrated

in Chapters 4 and 5. Its main aim is to ensure goal-compliance during runtime

reconfiguration. The verification of deleting workflow tasks is accomplished in

cooperation with FDR, while the latter is accomplished with ontology and/or WordNet

within Java-Protégé and Java-WordNet collaborations.

6.3.2.1 Experiments
We run test experiments by randomly increasing the workflow size. The framework

automatically generates different sizes of workflows by increasing the number of tasks.

The tasks are generated following the last task from the provided BPMN and giving name

ids as TestTask_i, where i ranges from 0 to N-1 (where N is the target number of tasks).

For example, to increase a giving BPMN with 100 tasks, the framework starts inserting

TestTask_0 after the last existing task and continues to TestTask_99.

Table 6-2 shows the reconfiguration type, the workflow size and the time taken to execute

and validate reconfigurations for each experiment. The experiments are conducted using

a workflow that initially consists of 10 atomic tasks and an ontology file of 70 task

individuals.

Chapter 6. Evaluation

97

The reconfigurations are changed per experiments, i.e., E1 with 10 tasks performs simple

reconfiguration (single change) and complex reconfiguration (multiple change at a time).

Table 6-2: The execution time according to workflow complexity

The assertion file consists of the goal properties specification and their corresponding

assertions for calculation through the FDR.

The framework is provided with three appConfiguration files containing information

about each experiment where every experiment is assigned to a different file. However,

Experiment Id Reconfigurations Workflow
Size

Overall average
time

E1 • Insert an atomic task

after TestTask_5

10 1.32s

E1 • Delete an atomic task

(TestTask_7)

• Delete an atomic task

(TestTask_8)

10 1.48s

E2 • Insert an atomic task

after TestTask_47

50 1.60s

E2 • Delete an atomic task

(TestTask_44)

• Delete an atomic task

(TestTask_38)

50 1.91s

E3 • Insert an atomic task

after TestTask_88

100 1.80s

E3 • Delete an atomic task

(TestTask_63)

• Delete an atomic task

(TestTask_92)

100 2.32s

Chapter 6. Evaluation

98

we provided the number of targeted runs in the main class in order to run them all at the

same time. We run them two times and calculated the average overall time as shown in

Table 6-2.

Figure 6-1 shows the relationship between BPMN size and the execution time taken by

the framework to perform a simple reconfiguration. Whereas, Figure 6-2 shows the time

taken to perform a complex reconfiguration as increasing the BPMNs complexity. We

noticed that the average execution time grows slightly linearly with the workflow size as

well as with the reconfiguration policies. Thus, scalability is not a problem as the

framework still behaves well when the workflow size is increased. However, it is believed

that there is a positive correlation between BPMN size and errors (Mendling, Reijers and

van der Aalst, Wil MP, 2010) and the size is suggested not to be more than 50 elements.

Figure 6-1: Correlation between time and BPMN complexity with

single reconfiguration

Chapter 6. Evaluation

99

We also measure the time taken to perform reconfiguration and verification on complex

BPMNs by changing the position of inserting new tasks or deleting existing ones. The

position is changed from inserting/deleting to/from the beginning/middle/end of the

BPMN. The results showed insignificant change in the execution time either the change

was at the beginning/middle or the end of the BPMN.

As the framework uses FDR to perform the verification that is related with the delete

policy, we evaluate its performance independently from the framework. FDR showed that

the average time to calculate a simple assertion that checks the availability of a single

task, e.g. the task ‘Confirm_Booking’ is contributing to achieve the objective

‘FlightBooked’ in the Travel domain, is 0.81s. While some assertions can be more

complex, i.e., the assertions that check the availability of group of tasks. For example, the

tasks ‘Quote_Flight’ OR ‘Quote_ Hotel’ OR ‘Quote_Car’ are

contributing to achieve the objective ‘QuotationAchieved’. For complex properties, the

average time taken to calculate the assertion is 0.2s.

6.3.3 Impact of Complex Reconfiguration on Framework Performance
In this section, we discuss the impact of performing complex reconfigurations on the

framework’s performance, the execution time in particular. Complex reconfiguration is

the second perspective in our performance evaluation. It refers to the number of

reconfiguration functions the framework can perform per instance. However, they are

Figure 6-2: Correlation between time and BPMN complexity with

complex reconfiguration

Chapter 6. Evaluation

100

implemented concurrently at the same time per a single instance. The developed

appConfiguration file gives the ability to add as many reconfiguration operations as we

wish, as explained in Chapter 3. Each time the framework was requested to make complex

changes to the running BPMN, it checks the verification of each change at the same time.

Table 6-3 shows the experiments along with the changing complexity in the type and the

number of the reconfigurations with the average time taken by the framework.

Table 6-3: Summary of experiments for evaluating performance according to

reconfiguration complexity

Experiment Reconfigurations Average time
E1 • Delete an atomic task

• Delete an atomic task (the task is a branch of

an XOR gateway)

1.41s

E2 • Insert an atomic task (the task exists in the

ontology)

• Insert an atomic task (the task does not exist

in the ontology)

1.12s

E3 • Delete an atomic task

• Insert a composite task in parallel

• Insert an atomic task (the task to be inserted

as a new branch to an XOR gateway)

1.49s

E4 • Delete a composite task

• Insert an atomic task

• Insert an atomic task in parallel with the

previous one

1.49s

6.3.3.1 Experiments
We consider measuring the performance of goal-compliance framework when

performing complex reconfigurations. Three experiments were conducted using the same

workflow with three different reconfiguration functions. The workflow consists of 5

Chapter 6. Evaluation

101

atomic tasks and 2 parallel gateways with single start and end events. The reconfiguration

functions are changed per experiment as explained below. While the reconfiguration

varies according to several aspects including (1) the number of reconfigurations at a time,

(2) the type of the reconfigurations (insert/delete) per experiments, (3) the nature of the

reconfiguration function (sequence/parallel) and (4) the degree of complexity of the task

being inserted or deleted (composite/atomic task).

Figures 6-3 and 6-4 show the time taken to perform complex reconfiguration of type

‘delete’ and ‘insert’, respectively. Please not these charts show the time taken per a single

run per each experiment not the average time. The execution time taken by the framework

to perform complex deletion is slightly more than the time taken to perform complex

insertion. The reason of this might be because of the FDR invocation and calculation

within the framework when deleting tasks, whereas with the insertion the framework just

interface with the ontology and WordNet through the Java libraries.

Figure 6-3: Time taken to perform complex reconfiguration of type ‘delete’,

E1

Chapter 6. Evaluation

102

Figures 6-5 and 6-6 show the time taken to perform complex reconfiguration of different

types. Please note these charts show the time taken per a single run per each experiment

not the average time. The experiments conducted by changing the other aspects, i.e.

nature of reconfiguration and complexity of tasks. The average time of both experiments

E3 and E4 show that the nature of reconfiguration and complexity of tasks do not have a

significant impact on the framework performance.

Figure 6-4: Time taken to perform complex reconfiguration of type ‘insert’,

E2

Chapter 6. Evaluation

103

Figure 6-5: Time taken to perform various complex reconfigurations, E3

Figure 6-6: Time taken to perform various complex reconfigurations, E4

Chapter 6. Evaluation

104

6.3.4 The DGT Ontology Evaluation: Ontology Accuracy
The proposed DGT ontology can be generalised to represent any BPMN domain. It is

based on an assumption that it encompasses all tasks (designed and un-designed) that

belong to a specific domain. However, predicting all tasks related to instance variants is

impossible at modelling time. As a result, WordNet was integrated within the framework

to enhance the verification process.

Ontology is expressed in a natural language, which makes it easier for an end-user to

understand. Ontology evaluation is categorised under two different perspectives,

including ontology correctness and ontology quality (Hlomani and Stacey, 2014). Each

of which has different metrics for evaluation. In this thesis, we consider evaluating the

developed ontology according to its accuracy. The accuracy is classified as a correctness

metric and it includes precision, recall and coverage as the main criteria. However, we

are going to evaluate the DGT ontology targeting only the precision and recall as we aim

to show how effective the ontology can be for runtime verification. While the coverage

is not our focus for evaluating the developed ontology as we assume the ontology cover

everything about a specific domain. Precision and recall are well-known criteria in the

information retrieval filed. Precision is defined as the total number correctly found over

whole knowledge defined in the ontology, whereas recall measures the total correctly

found over all knowledge that should be found.

 The experiments implemented on three different BPMN models from different

domains; PizzaDelivery, CabBooking and TravelBooking. The BPMN models vary on

the number of tasks (from 7 to 12 tasks). We developed an ontology for those BPMNs,

each one contains different number of task individuals as shown in Table 6-4.

Ontologies are designed and integrated with the proposed framework. We run the

experiments by applying the insert function which reads the new task id, the nature of

the insertion (sequence/parallel) and the input/output files. Each time the policy requires

to insert a new task, the framework validates the request before allowing to proceed

with the insertion (this point was discussed earlier in Chapter 5). The number of verified

tasks matched the tasks defined in the class ‘Task’ in the ontology, was 54 out of 60.

Whereas six tasks were not found in the ontology directly, but four of them were

matched through synonyms finding with WordNet, making a total of 58. However, two

tasks were failed to meet the DTC constraints and as a result were rejected.

Chapter 6. Evaluation

105

Table 6-4: Experiments for ontology evaluation

BPMN domain Number of tasks in the

ontology (whole

knowledge)

Number of

experimented

tasks

Number of

matched tasks

Pizza delivery 57 20 18

Cab booking 44 20 18

Travel booking 37 20 18

The average of ontology precision according to the experiments, as shown in Table 6-4,

is 40%. We think the ontology precision is promising and the resulted percentage is 40%

because the number of the experimented tasks is small compared to the whole knowledge.

The average of ontology recall according to the same experiments is 90%.

There are several reasons why the framework failed to validate some tasks against the

ontology and WordNet. The first reason is that framework only handles task ids in the

Action-Object format. It retrieves their synonyms through WordNet and finds them in the

ontology. If the new task id follows the Action-Object-Object format, the framework can

handle it if it exists in the ontology but cannot retrieve its synonyms from WordNet. The

other reason is that WordNet does not have all synonyms as we expect. For example, task

‘Hire_Car’ failed to be inserted in the TravelPlanning domain, while the ontology has

vocabulary such as ‘Book’ and ‘Find’ but they are not defined in the WordNet as

synonyms to ‘Hire’.

In case of long task id, the framework should determine the most relevant object with the

domain in question. Failure to assign the most relevant object might result in failure to

decide the task conformance within the given domain. Furthermore, the framework

should be enhanced with more intelligent techniques for matching and decision making.

6.4 Framework Adequacy: Workflow Patterns
The goal-compliance framework is supposed to execute BPMN processes and

reconfigure their structure with StPowla reconfiguration functions. BPMN processes

represent workflow systems and StPowla targets the reconfiguration at workflow

systems. As our approach assumes workflows to be modelled by BPMN notations and

their reconfigurations is realised by StPowa policies, we consider the workflow patterns

for evaluating the adequacy (coverage) of our framework. The workflow patterns are

Chapter 6. Evaluation

106

generalised for workflow systems regardless the modelling notation (e.g., BPMN, XPDL,

Petri Nets, etc) and they are widely acceptable. Table 6.5 shows the patterns and the

supported patterns by BPMN and StPowla and highlights the tested patterns by the goal-

compliance framework in addition to the supported but not yet tested patterns.

In Table 6-5, the green highlighted cells refer to supported/tested patterns, the red

highlighted cells refer to the unsupported/untested patterns, the yellow highlighted cells

refer to the partially supported patterns and the blue cells refer to the supported but not

yet tested patterns. The supported but not tested patterns are those patterns which are

supported (including the partially supported patterns) by BPMN and StPowla but not yet

tested by our framework. The unsupported patterns by the goal-compliance framework

are not supported by both BPMN and StPowla. However, regardless of the workflow

specification language and the adaptation logic, we think the proposed verification

algorithms could be generalized to verify compliant to the goal in self-adaptive systems.

Table 6-5: Evaluation of goal-compliance framework in relation to workflow

patterns

Chapter 6. Evaluation

107

Patterns BPMN STPOWLA Tested Supported
but not
tested

Sequence
Parallel Split
Synchronisation
Exclusive Choice
Flow Merge
Multi-Choice
Structured Synchronising Merge
Multi-Merge
Structured Discriminator
Blocking Discriminator
Cancelling Discriminator
Structured Partial Join
Blocking Partial Join
Cancelling Partial Join
Generalised AND-Join
Local Synchronising Merge
General Synchronising Merge
Thread Merge
Thread Split
Multiple Instances without
Synchronisation

Multiple Instances with a Priori
Design-Time Knowledge

Multiple Instances with a Priori
Run-Time Knowledge

Multiple Instances without a Priori
Run-Time Knowledge

Static Partial Join for Multiple
Instances

Cancelling Partial Join for Multiple
Instances

Dynamic Partial Join for Multiple
Instances

Deferred Choice
Interleaved Parallel Routing
Milestone
Critical Section
Interleaved Routing
Cancel Task
Cancel Case
Cancel Region
Cancel Multiple Instance Activity
Complete Multiple Instance
Activity

Chapter 6. Evaluation

108

6.5 Discussions
This section discusses the capabilities and limitations of the proposed framework in

general and its applicability according to the desirable runtime verification. Although the

framework guarantees the goal-compliance properties over adaptive BPMNs in most

cases, it fails at some cases (in particular the cases related to the insertion) for several

reasons. First of all, due to the fact that ontology is incomplete as it is impossible to

predict every related vocabulary at design time. However, we suggested the use of

WordNet to overcome ontology incompleteness. Second, WordNet dictionary does not

include all the expected synonyms. Finally, the defined constraints are restrictive to some

extent as we believe they need to be enhanced with intelligent techniques to offer a better

degree of reliable flexibility. Therefore, this leads to restrictive adaptation through the

proposed framework. However, the framework is characterised by atomicity, which is a

desirable feature in runtime verification (Villegas et al, 2011). Atomicity means that the

framework has the ability to run the original specification in case the adaptation fails. It

also generates a feedback to the authorised users for a human-assisted decision.

Self-adaptive systems adapt their structure, without human intervention in the midst of

their executions. Therefore, validation and verification mechanisms for such systems

must be characterized by runtime V&V properties including: sensitivity, isolation,

incrementality and composability (De Lemos et al, 2013). Sensitivity and isolation are

related to the challenge of validating every change in an independent manner. This is

applied to our work as the policies adapt instances in an isolated manner without affecting

the whole process. Thus, the verification is held in an isolation manner as well because

the framework needs to verify the change on the current instance according to specific

properties.

Incrementality expresses that validating a change does not mean to go back and check the

validity of the previous change. In the context of the E-C-A policies, every time the policy

changes the BPMN instance, the change is valid only for that current instance and does

Arbitrary Cycles
Structured Loop
Recursion
Implicit Termination
Explicit Termination
Transient Trigger
Persistent Trigger

Chapter 6. Evaluation

109

not affect the other running instances. Therefore, the proposed framework verifies every

change at the time of adaptation and verifying another change does not depend on other

instances. Composability indicates the composition of two components is correct with the

whole system. In this work we did not simulate the runtime environment where thousands

of instances are running at the same time, so we did not try to validate two different

instances at the same time.

It is also believed that the ability to automatically adapt a workflow instance while it is

running imposes the challenge to provide an automatic and intelligent mechanisms that

also able to validate correctness and consistency at runtime.

We showed how existing verification methods that are used in this thesis can manage

goal compliance in self-adaptive workflows. Two different approaches were used for

verification: (1) CSP trace refinement and (2) domain knowledge analysis through

ontologies. However, the CSP trace refinement is stable and upfront process (defined at

design time). It captures the property specification as derived from the goal specification.

Thus, it is effective to ensure goal satisfaction when deleting a requirement at runtime

unless the goal is changed. For verifying that new inserted or replaced requirements are

compliant to the goal, different approach exploiting the ontologies is used. This is due to

the fact that CSP is stable and cannot model the unknown requirements. Ontologies can

compose the known and unknown requirements prior to runtime. Furthermore, they allow

to semantically compose the domain knowledge by defining a semantic link among its

vocabularies. However, ontologies cannot ever be complete and cover all the unknown

requirements. Hence, we used the WordNet to overcome this shortcoming.

In terms of generalization, the proposed approach can be used for any workflow from any

domain when requirements change is the case. Furthermore, the verification algorithms

can be generalized to any application area (e.g. mission-critical systems) and our

verification can run in parallel with other system-based verification (e.g. security check).

6.6 Summary
In this chapter, we evaluated the proposed framework and presented the results of the

three evaluation aspects. The framework performance is measured in terms of the time

taken by the framework to perform its functions. Two features are considered when

measuring the time; BPMN complexity and reconfiguration complexity. We calculated

the execution time by developing a Java code. The results showed that the execution time

Chapter 6. Evaluation

110

increased when BPMN and reconfiguration complexity increased. The adequacy is

evaluated based on the workflow patterns. Case by case analysis showed that the

framework supports 25 out of 43 patterns. Furthermore, the proposed ontology is

evaluated in terms of its accuracy including precision and recall. The results showed that

the ontology is a promising technique for modelling BPMN domains and verifying them

during their reconfiguration at runtime. Next chapter discusses this work in terms of

capabilities and limitations and suggests further directions.

Chapter 7. Conclusion

111

Chapter 7 Conclusion

7.1 Summary of Contributions
The goal-compliance constraints and the goal-compliance framework are developed in

this thesis in order to provide assurances in self-adaptive workflows, BPMNs in

particular. In the following, we discuss our contributions by chapters:

In Chapter 1, we presented the motivated context and related research challenges. The

context presented some issues of validation and verification in the field of self-adaptive

workflows which are affected by automated adaptation through E-C-A policies. Our

primary aim was to provide assurances that any process adaptation through policies must

be controlled under the original goal umbrella to exclude undesired behaviour. Hence, we

presented our objectives to address the identified problem.

Chapter 2 presented the background technologies which we used to build up this work.

It discussed the CSP transformation of BPMN diagrams and how to measure the

satisfaction of the generic properties, such as deadlock and divergence freedom. It further

analysed the related work to this research and highlighted the motivated research gaps.

In Chapter 3, we presented the goal-compliance framework, the motivated approach

behind it and its implementation. The proposed framework has the ability to adapt BPMN

structure as requested and validate the adaptation against the goal-compliance constraints.

As the adaptation nature differs, we managed to study and analyse the effect of each

adaptation logic in an independent manner while keeping in mind our original aim.

In Chapter 4, we analysed the effect of deleting tasks from BPMN instances on goal

satisfaction. In this regard, we defined the goal-task dependency constraint which links

goals from the goal model with tasks from the BPMN and allows a way of measuring

goal satisfaction. In order to be able to establish a management link among goals and

tasks, we defined a methodology to assign tasks to goals and translate that into properties

to check their trace refinement with the adapted BPMN.

 In Chapter 5, we analysed the effect of inserting new tasks into BPMN instances as well

as replacing tasks with new tasks. The nature of inserting and replacing suggests to use

ontology for verification purposes. Ontology is used to define extra vocabularies (tasks)

as domain concepts and establish a semantic relationship among them. As a result, we

Chapter 7. Conclusion

112

defined the domain-task conformance constraint and then further divided it to include the

task-task consistency constraint. The former helps in identifying task inconsistency with

a specific domain, while the latter helps in identifying task inconsistency with a specific

task in a specific domain.

In Chapter 6, we consider evaluation the performance of the proposed framework and

its applicability at runtime. The framework showed promising results as it took only a

few seconds to complete its jobs – from reading specifications and reconfiguration to

verification. The framework used two different verification methods: FDR trace

refinement and ontology. Therefore, we evaluated the proposed ontology separately to

figure out its accuracy. The results showed that the DGT ontology is accurate in most

cases.

The outcomes of this study, explained in section 8.4, might contribute positively to any

organisation that implements workflow systems, particularly BPMNs. Organisations will

avoid catastrophic failures that are resulted from automated adaptation. Furthermore, the

methodologies we defined will help business analysts to perform runtime verification of

self-adaptive workflows. The methodologies (goal-compliance constraints) might be

extended or reused to address the consistency issues in self-adaptive systems.

7.2 Discussions
This section discusses the research questions identified in section 1.7.

We asked whether goal satisfaction can be detected and checked with a high-level

specification. This question is related to abstraction and uncertainty challenges. To what

extent the abstraction of the goal and BPMN models to decide any undesired behaviour?

Is the abstraction nature effective to handle and verify functional change? To answer the

question, we will discuss the abstraction nature at both levels (i.e. goal and process).

BPMN is considered a high-level specification capturing functional business

requirements. It describes what to achieve and in what order while abstracted from other

business and implementation details. For example, it does not contain information about

the data flow. Functional requirements are originally elicited from goal specification and

represented by the BPMN’s activities. However, they are vulnerable to change at runtime

as the business environment is highly dynamic and workflows are well-known for their

complexity and dependency. E-C-A policies provide automatic adaptation at the business

level in response to changing requirements. In similar way, the goal models capture the

Chapter 7. Conclusion

113

stakeholders’ objectives in terms of what abstracted from any other details on how to

achieve them. The proposed goal-compliance constraints guarantee goal satisfaction at

the business level as they help to identify undesired behaviour during reconfiguration at

an early stage.

Most of the current approaches address the problem at a lower level, where interchanging

data and dependency become more complex and may be hard to manage. What is more,

the current focus in the field of self-adaptive systems verification is on assuring that the

system is meeting its requirements while dropping/inserting new goals, as discussed in

Chapter 2. We address the consistency issues during reconfiguration when the workflow

changes its requirements and assume the goal is stable (unchanging). In Chapter 4 and 5,

we show how the goal-compliance constraints help to identify any undesired behaviour

and reject it.

We also asked how policies can be managed to exclude undesired behaviour while at the

same time provide flexibility to cope with the kind of changes we wish to allow. To

answer this question, we considered the argument about how to provide a flexible system

while preserving its syntactic and semantic properties in order to preserve its quality. Our

constraints successfully preserved the business outcome by disallowing any undesirable

behaviour that violates the goal. However, the restrictions they imposed on the

verification process might prevent valuable changes. On the other hand, increasing their

flexibility could seriously affect business functionality. The task-task consistency

constraint guarantees that the replace policy replaces only the equally semantic tasks. If

we analyse their impact on verifying compliance, we can see that they prevented good

changes at some points. For example, it was impossible to insert some tasks while they

were compliant to the domain but the constraints were too restrictive. Hence, increasing

the constraints flexibility without losing control is of utmost important to be considered.

For example, rather than restricting the replace with the semantically equal tasks, it could

be extended to consider relationships among business tasks in terms of their contribution

to the same goal. In addition, the domain conformance constraint could be extended to

handle complex task names instead of tasks of the Action-Object format. Furthermore, it

could be enhanced with intelligent mechanisms in order to make a decision about whether

this task is domain compliant or not. What is more, finding synonyms is sometimes not

enough to decide task conformance. The framework could find synonyms for both parts

Chapter 7. Conclusion

114

of the task (Action and Object) but the combination could violate the goal and cause

unfavourable consequences. However, we suggest that the problem of restrictive

constraints might be resolved through user intervention.

The constraints could also be enhanced with mechanisms that identify the tasks within

each pool in the business process. For example, inserting ‘Pay_Bill’ into an organisation

pool deviates from the goal because it represents a task that should be carried out by the

customer, not the organisation.

We also asked how runtime adaptation can be guaranteed to meet the original

requirements. In this regard, we found out that goal specification for BPMN models must

be explicitly defined and linked to BPMN activities in order to be able to trace and

measure them at runtime, as discussed in Chapter 4. Thus, we used the KAOS goal model

which facilitated the establishment of a goal-task dependency link among the goal and

BPMN models as well as DGT ontology, as discussed in Chapter 5. This helped to check

the goal-satisfaction of the adapted BPMN at runtime. In connection with this point, we

also asked whether understanding the domain from the goal model is enough to ensure

goal satisfaction. Deriving BPMN domain concepts, which are representing BPMN tasks,

and categorising them under predefined goals helped to manage the emerging functional

requirements through policies. Although the proposed constraints do not take the

temporal aspects into consideration, it is possible to handle them with both approaches.

The proposed framework showed that the use of FDR, ontology and WordNet for

verification purposes are promising for runtime verification.

The proposed framework was evaluated to show that it is effective for runtime

verification. The development of the goal-compliance framework was to implement and

test the goal-compliance approach. We did not use the Java profiling tool for evaluating

the framework performance for two reasons:

(1) the framework is supposed to be embedded in a runtime environment but we could

not do that as it is beyond the capabilities of this research, and

(2) our aim was to develop automatic and online verification capabilities for

automatically adapted workflows and prove they are applicable in practice but not to

develop a tool to outperform existing tools.

Chapter 7. Conclusion

115

Chapter 6 discussed some of the main aspects to be considered when performing runtime

verification and the goal-compliance framework showed its applicability to handle the

runtime aspects with a promising performance.

Most of the test cases we ran through the goal-compliance framework showed that

process goals are maintained against goal-compliance constraints. Some cases fail, as

discussed in the previous chapter, and the proposed framework continues to run the

original specification. It might be argued that this is inconvenient in practice and the

framework should consider different alternatives. For example, the framework could be

improved with intelligent techniques including learning and planning to enhance the

decision-making process. We think that user intervention might be the immediate solution

but not the best one as it could not be reliable with the automation and complexity nature

of self-adaptive workflows.

We also asked questions regarding the existing verification strategies, weather they

enable consistency assurance in self-adaptive systems. We think the adaptability nature

of these systems restrict the ability of existing strategies to handle the challenge

effectively. The FDR trace refinement captures the desired properties at design time when

everything is planned and known prior to runtime. We could not use it to handle the

insertion policies as their effect is not expected or unplanned. Therefore, we used the

ontology to overcome this issue. However, the ontology also needs to be regularly

updated to meet the requirements related to the adaptability nature.

7.3 Limitations and Further Research
This section sheds light on the limitations of our approach/framework and suggests future

work.

7.3.1 Limitations
i. CSP and FDR

• FDR lacking AND notation as CSP language is a primitive language. For

properties of type ‘AND-related tasks’, we could not define the property

immediately as there is no CSP ‘AND’ operator, as discussed in section 4.5.1. To

overcome this issue, we treat the CSP property specification for AND-related

properties in the same way as the single task properties. Thus, we divided the

Chapter 7. Conclusion

116

property specification into separate specifications. Each of them specifies the

occurrence of each task individually. We can write a single property specification

if the occurrence of all tasks is sequential. Otherwise, the property specification

would become more complex.

• CSP cannot handle the insert and replace, DTC and TTC verification algorithms,

as they need a fuzzy approach to manage them. CSP sematic helps for identifying

syntactical and behavioural properties but does not have the functionality to deal

with the adaptive-nature of workflows. Therefore, we used a different approach

for managing the DTC and TTC verification algorithms as discussed in Chapter

5.

ii. Goal-compliance constraints

• The balance between the flexibility of the proposed constraints and the degree of

consistency we wish to achieve is a challenging issue. In some cases, the

constraints prevent desirable adaptation or validate undesirable adaptation, as

discussed in the previous section. However, the proposed framework generates a

feedback to the user in order to take the decision.

iii. Goal-compliance framework

• Policy conflicts issue to be handled when the policy is written.

• We developed a methodology to extract goal properties manually from the goal

specification, as explained in section 4.4.1. However, it would be better to be

automated. The goal’s formal specification could be structured into an XML

document or any other structured form to allow the framework to read it and

extract the properties based on the methodology defined ‘goal-task dependency

link’.

7.3.2 Further Research
In the light of the above-mentioned limitations and the identified gaps in the related

approaches, we suggest the following future work:

• A further study to improve the framework with intelligent techniques to enhance

the verification process for deciding the consistency of inserting new

requirements in a certain domain. Also, it is interesting to consider intelligent

matching to deal with complex tasks’ labels when using the ontology and

WordNet

Chapter 7. Conclusion

117

• A further study to map KAOS other models (Respect, 2007) to the BPMN for

ensuring the consistency of other aspects.

• A further study to investigate whether our approach could be generalised for other

type of systems, such as autonomous systems. A good start towards that might be

by analysing the type of adaptation and study its impact on the behaviour of those

systems with respect to the goal.

• A further study to improve policies to be able to learn from their behaviour to

avoid repeating the undesired behaviour as policies lack the learning capabilities.

Therefore, it would be interesting to refine or delete the policies which are trying

to always make the same sort of change and always fail. This might help policies

to be applied where they are really relevant.

7.4 Final Conclusion
The proposed framework along with the goal-compliance constraints address the goal-

compliance issue in self-adaptive workflows. Automated adaptation can be managed in

an autonomic manner to avoid unfavourable consequences in the face of complexity and

automation. It is still a challenging to balance adaptation and the quality over adaptation.

Due to the dynamicity and uncertainty nature of self-adaptive systems at runtime.

 The key findings of this research can be summarised as follows:

• Moving the verification level to an abstract, early and user-friendly level

leverages self-adaptive workflows to avoid inconsistency at runtime and avoid the

complexity and dependency at lower data level.

• Self-adaptive workflows must be able to automatically reassess the adaptation as

they are dynamic, dependent, knowledge-intensive and uncertain at runtime. In

other words, reconfigurable systems must be able to interpret its current state,

context and other information at runtime and may be enhanced with some

intelligence to behave correctly according to these information. User intervention

could be error prone, costly and time consuming

118

BIBLIOGRAPHY
UQU. Admission and Registration Guide for UQU. Available at:

https://drive.uqu.edu.sa/_/dadregis/files/daleel2222.pdf (Accessed: 2014).

BPMN2Modeler. Available at: https://www.eclipse.org/bpmn2-modeler/ (Accessed:

2014).

JWI 2.4.0. Available at: https://projects.csail.mit.edu/jwi/ (Accessed: 2014).

Objectiver. Available at: http://www.objectiver.com/index.php?id=4 (Accessed: 2015).

OMG. Available at: http://www.bpmn.org (Accessed: 2014).

OWL API. Available at: http://owlapi.sourceforge.net (Accessed: 2015).

Protégé. Available at: https://protege.stanford.edu (Accessed: 2015).

Tools for CSP. Available at:

https://www.cs.ox.ac.uk/publications/books/concurrency/tools/ (Accessed: 2014).

W3 Semantic Web. Available at: https://www.w3.org/OWL/ (Accessed: 2015).

WordNet. A Lexical Database for English. Available at:

https://wordnet.princeton.edu/wordnet/frequently-asked-questions/for-application-

developer/ (Accessed: 2015).

Abowd, G., Dey, A., Brown, P., Davies, N., Smith, M. & Steggles, P. (1999) 'Towards a

better understanding of context and context-awareness', Handheld and ubiquitous

computing Springer, pp. 304-307.

Abramowicz, W., Filipowska, A., Kaczmarek, M. and Kaczmarek, T. (2012)

'Semantically enhanced business process modeling notation', in Anonymous

Semantic Technologies for Business and Information Systems Engineering: Concepts

and Applications. IGI Global, pp. 259-275.

Aguilar, J.C.P., Hasebe, K., Mazzara, M. and Kato, K. (2016) 'Model Checking of BPMN

Models for Reconfigurable Workflows', arXiv preprint arXiv:1607.00478.

Ali, M. (2012) Maintaining transactional integrity in long running workflow services: a

policy-driven framework. PhD thesis, University of Leicester.

Ali, R., Dalpiaz, F. and Giorgini, P. (2013) 'Reasoning with contextual requirements:

Detecting inconsistency and conflicts', Information and Software Technology, 55(1),

pp. 35-57.

119

Allehyani, B and Reiff-Marganiec, S (2017) 'Goal-Compliance Framework for Self-

Adaptive Workflows', The Ninth International Conference on Adaptive and Self-

adaptive Systems and Applications Copyright (c) IARIA, 2017, pp. 16-21.

Allehyani, B and Reiff-Marganiec, S (2015) 'Towards Ensuring a Correct Dynamic

Adaptation of Workflows', The Eighth Saudi Students Conference in the UKWorld

Scientific Publishing Company, pp. 123-132.

Allehyani, B. & Reiff-Marganiec, S. (2016) 'Maintaining Goals of Business Processes

during Runtime Reconfigurations.', ZEUS, pp. 21-28.

Antón, A.I., McCracken, W.M. & Potts, C. (1994) 'Goal decomposition and scenario

analysis in business process reengineering', International Conference on Advanced

Information Systems EngineeringSpringer, pp. 94-104.

Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A. & Letier, E. (2010) 'Requirements

reflection: requirements as runtime entities', Software Engineering, 2010 ACM/IEEE

32nd International Conference on IEEE, pp. 199-202.

Bizagi Suite. BPMN by Example. Available at:

http://resources.bizagi.com/docs/BPMNByExampleENG.pdf (Accessed: 2014).

Blair, G., Bencomo, N. and France, R.B. (2009) 'Models@ run. time', Computer, 42(10).

Braubach, L., Pokahr, A., Jander, K., Lamersdorf, W. & Burmeister, B. (2010) 'Go4Flex:

Goal-Oriented Process Modelling.', IDC Springer, pp. 7787.

Burmeister, B., Arnold, M., Copaciu, F. & Rimassa, G. (2008) 'BDI-agents for agile goal-

oriented business processes', Proceedings of the 7th international joint conference on

Autonomous agents and multiagent systems: industrial track International

Foundation for Autonomous Agents and Multiagent Systems, pp. 37-44.

Chatzikonstantinou, G. and Kontogiannis, K. (2016) 'Run-time requirements verification

for reconfigurable systems', Information and Software Technology, 75, pp. 105-121.

Cheng, B.H., Eder, K.I., Gogolla, M., Grunske, L., Litoiu, M., Müller, H.A., Pelliccione,

P., Perini, A., Qureshi, N.A. and Rumpe, B. (2014) 'Using models at runtime to

address assurance for self-adaptive systems', in Anonymous Models@ run. time.

Springer, pp. 101-136.

Cognini, R., Corradini, F., Gnesi, S., Polini, A. and Re, B. (2016) 'Business process

flexibility-a systematic literature review with a software systems perspective',

Information Systems Frontiers, pp. 1-29.

120

Computing, A. (2006) 'An architectural blueprint for autonomic computing', IBM White

Paper, 31.

De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B.,

Tamura, G., Villegas, N.M. and Vogel, T. (2013) 'Software engineering for self-

adaptive systems: A second research roadmap', in Anonymous Software Engineering

for Self-Adaptive Systems II. Springer, pp. 1-32.

Fdhila, W., Rinderle-Ma, S., Knuplesch, D. & Reichert, M. (2015) 'Change and

compliance in collaborative processes', Services Computing (SCC), 2015 IEEE

International Conference on IEEE, pp. 162-169.

Feather, M.S., Fickas, S., Van Lamsweerde, A. & Ponsard, C. (1998) 'Reconciling system

requirements and runtime behavior', Proceedings of the 9th international workshop

on Software specification and design IEEE Computer Society, pp. 50.

Fredericks, E.M., DeVries, B. and Cheng, B.H. (2014) 'AutoRELAX: automatically

RELAXing a goal model to address uncertainty', Empirical Software Engineering,

19(5), pp. 1466-1501.

Georgakopoulos, D., Hornick, M. and Sheth, A. (1995) 'An overview of workflow

management: From process modeling to workflow automation infrastructure',

Distributed and parallel Databases, 3(2), pp. 119-153.

Gorton, S.M. (2011) Policy-driven Reconfiguration of Service-targeted Business

Processes. PhD thesis, University of Leicester.

Gorton, S., Montangero, C., Reiff-Marganiec, S. & Semini, L. (2007) 'StPowla: SOA,

policies and workflows', International Conference on Service-Oriented Computing

Springer, pp. 351-362.

Greenwood, D. (2008) 'Goal-oriented autonomic business process modeling and

execution: Engineering change management demonstration', International

Conference on Business Process Management Springer, pp. 390-393.

Guizzardi, R. & Reis, A.N. (2015) 'A method to align goals and business processes',

International Conference on Conceptual Modeling Springer, pp. 79-93.

Hallerbach, A., Bauer, T. and Reichert, M. (2010) 'Capturing variability in business

process models: the Provop approach', Journal of Software: Evolution and Process,

22(6-7), pp. 519-546.

121

Hallerbach, A., Bauer, T. & Reichert, M. (2009) 'Guaranteeing soundness of configurable

process variants in Provop', Commerce and Enterprise Computing, 2009. CEC'09.

IEEE Conference on IEEE, pp. 98-105.

Hlomani, H. and Stacey, D. (2014) 'Approaches, methods, metrics, measures, and

subjectivity in ontology evaluation: A survey', Semantic Web Journal, pp. 1-5.

Horridge, M., Knublauch, H., Rector, A., Stevens, R. and Wroe, C., 2004. 'A practical

guide to building OWL ontologies using the Protégé-OWL plugin and CO-ODE tools'

edition 1.0. University of Manchester.

Jamwal, D. (2010) 'Analysis of software quality models for organizations', International

Journal of Latest Trends in Computing, 1(2).

Jander, K., Braubach, L., Pokahr, A., Lamersdorf, W. and Wack, K. (2011) 'Goal-oriented

processes with GPMN', International Journal on Artificial Intelligence Tools, 20(06),

pp. 1021-1041.

Koliadis, G. & Ghose, A. (2006) 'Relating business process models to goal-oriented

requirements models in KAOS', PKAWSpringer, pp. 25-39.

Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G. and Becker, C. (2015) 'A survey on

engineering approaches for self-adaptive systems', Pervasive and Mobile Computing,

17, pp. 184-206.

Kumar, A., Yao, W., Chu, C. & Li, Z. (2010) 'Ensuring compliance with semantic

constraints in process adaptation with rule-based event processing', International

Workshop on Rules and Rule Markup Languages for the Semantic Web Springer, pp.

50-65.

Leucker, M. and Schallhart, C. (2009) 'A brief account of runtime verification', The

Journal of Logic and Algebraic Programming, 78(5), pp. 293-303.

Ly, L.T., Rinderle, S. and Dadam, P. (2008a) 'Integration and verification of semantic

constraints in adaptive process management systems', Data & Knowledge

Engineering, 64(1), pp. 3-23.

Mendling, J., Reijers, H.A. and van der Aalst, Wil MP (2010) 'Seven process modeling

guidelines (7PMG)', Information and Software Technology, 52(2), pp. 127-136.

Müller, R., Greiner, U. and Rahm, E. (2004) 'Agentwork: a workflow system supporting

rule-based workflow adaptation', Data & Knowledge Engineering, 51(2), pp. 223-

256.

122

Nagel, B., Gerth, C., Post, J. & Engels, G. (2013) 'Kaos4SOA-Extending KAOS Models

with Temporal and Logical Dependencies.', CAiSE Forum, pp. 9-16.

Natschlger, C. (2011) 'Towards a BPMN 2.0 ontology', Business Process Model and

Notation, pp. 1-15.

Nurcan, S. (2008) 'A survey on the flexibility requirements related to business processes

and modeling artifacts', Hawaii International Conference on System Sciences,

Proceedings of the 41st Annual IEEE, pp. 378-378.

Pang, S., Li, Y., He, H. and Lin, C. (2011) 'A model for dynamic business processes and

process changes', Chinese Journal of Electronics, 20(4), pp. 632-636.

Parashar, M. and Hariri, S. (2005) 'Autonomic computing: An overview', Unconventional

Programming Paradigms, pp. 257-269.

Pasquale, L., Baresi, L. & Nuseibeh, B. (2011) 'Towards adaptive systems through

requirements@ runtime', 6th Workshop on Models@ run. time.

Patig, S. and Stolz, M. (2013) 'A pattern-based approach for the verification of business

process descriptions', Information and Software Technology, 55(1), pp. 58-87.

Peterson, J.L. (1981) 'Petri net theory and the modeling of systems'.

Pham, T.A. & Le Thanh, N. (2015) 'Ontology-based workflow validation', Computing &

Communication Technologies-Research, Innovation, and Vision for the Future

(RIVF), 2015 IEEE RIVF International Conference on IEEE, pp. 41-46.

Poels, G., Decreus, K., Roelens, B. and Snoeck, M. (2013) 'Investigating goal-oriented

requirements engineering for business processes', Journal of Database Management

(JDM), 24(2), pp. 35-71.

Radatz, J., Geraci, A. and Katki, F. (1990) 'IEEE standard glossary of software

engineering terminology', IEEE Std, 610121990(121990), pp. 3.

Redlich, D., Blair, G., Rashid, A., Molka, T. and Gilani, W. (2014) 'Research challenges

for business process models at run-time', in Anonymous Models@ run. time.

Springer, pp. 208-236.

Regev, G., Soffer, P. and Schmidt, R. (2006) 'Taxonomy of Flexibility in Business

Processes.', BPMDS, 236.

Regev, G. & Wegmann, A. (2005) 'A regulation-based view on business process and

supporting system flexibility', Proceedings of the CAiSE, pp. 91-98.

123

Reichert, M. and Dadam, P. (1998) 'ADEPT flex—supporting dynamic changes of

workflows without losing control', Journal of Intelligent Information Systems, 10(2),

pp. 93-129.

Reichert, M., Rinderle, S. and Dadam, P. (2003) 'On the common support of workflow

type and instance changes under correctness constraints', Lecture notes in computer

science, pp. 407-425.

Reichert, M. and Weber, B. (2012) Enabling flexibility in process-aware information

systems: challenges, methods, technologies. Springer Science & Business Media.

Respect, I.T. (2007) ‘A KAOS tutorial'. Available at:

http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf

(Accessed: 2015)

Rinderle, S., Reichert, M. and Dadam, P. (2004) 'Correctness criteria for dynamic changes

in workflow systems––a survey', Data & Knowledge Engineering, 50(1), pp. 9-34.

Rinderle-Ma, S. (2009) 'Data flow correctness in adaptive workflow systems', Emisa

Forum, pp. 25-35.

Roscoe, B. (1998) 'The theory and practice of concurrency'.

Russell, N., Ter Hofstede, A.H., Van Der Aalst, Wil MP and Mulyar, N. (2006)

'Workflow control-flow patterns: A revised view', BPM Center Report BPM-06-22,

BPMcenter.org, pp. 6-22.

Sadiq, S.W., Orlowska, M.E. and Sadiq, W. (2005) 'Specification and validation of

process constraints for flexible workflows', Information Systems, 30(5), pp. 349-378.

Saidani, O. & Nurcan, S. (2007) 'Towards context aware business process modelling', 8th

Workshop on Business Process Modeling, Development, and Support (BPMDS’07),

CAiSE, pp. 1.

Salehie, M. and Tahvildari, L. (2009) 'Self-adaptive software: Landscape and research

challenges', ACM transactions on autonomous and adaptive systems (TAAS), 4(2),

pp. 14.

Santos, E., Castro, J., Sanchez, J. & Pastor, O. (2010) 'A Goal-Oriented Approach for

Variability in BPMN.', WER, pp. 17-28.

Schonenberg, H., Mans, R., Russell, N., Mulyar, N. & van der Aalst, Wil MP (2008)

'Towards a Taxonomy of Process Flexibility.', CAiSE forum, pp. 81-84.

124

Sell, C., Winkler, M., Springer, T. and Schill, A. (2009) 'Two dependency modeling

approaches for business process adaptation', Knowledge Science, Engineering and

Management, pp. 418-429.

Szvetits, M. and Zdun, U. (2016) 'Systematic literature review of the objectives,

techniques, kinds, and architectures of models at runtime', Software & Systems

Modeling, 15(1), pp. 31-69.

Tamura, G., Villegas, N., Müller, H., Sousa, J.P., Becker, B., Pezze, M., Karsai, G.,

Mankovskii, S., Schafer, W. and Tahvildari, L. (2013) 'Towards practical runtime

verification and validation of self-adaptive software systems'. In Software Engineering

for Self-Adaptive Systems II (pp. 108-132). Springer, Berlin, Heidelberg.

Trcka, N., Van der Aalst, Wil MP & Sidorova, N. (2009) 'Data-Flow Anti-patterns:

Discovering Data-Flow Errors in Workflows.', CAiSESpringer, pp. 425-439.

Van Der Aalst, Wil MP and Basten, T. (2002) 'Inheritance of workflows: an approach to

tackling problems related to change', Theoretical Computer Science, 270(1-2), pp.

125-203.

van der Aalst, Wil MP, Dumas, M., Gottschalk, F., Ter Hofstede, A.H., La Rosa, M. and

Mendling, J. (2010) 'Preserving correctness during business process model

configuration', Formal Aspects of Computing, 22(3-4), pp. 459-482.

van der Aalst, Wil MP and Jablonski, S. (2000) 'Dealing with workflow change:

identification of issues and solutions', Computer systems science and engineering,

15(5), pp. 267-276.

van Der Aalst, Wil MP, Pesic, M. and Schonenberg, H. (2009) 'Declarative workflows:

Balancing between flexibility and support', Computer Science-Research and

Development, 23(2), pp. 99-113.

van Lamsweerde, A. (2004) 'Goal-oriented requirements engineering: a roundtrip from

research to practice [engineering read engineering]', Requirements Engineering

Conference, 2004. Proceedings. 12th IEEE International IEEE, pp. 4-7.

Van Lamsweerde, A. (1991) 'The KAOS Project: Knowledge Acquistion in Automated

Specification of Software', Proc. AAAI Spring Symposium Series, Stanford

University, American Association for Artificial Intelligence, March 1991.

Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L. & Casallas, R. (2011) 'A

framework for evaluating quality-driven self-adaptive software systems',

125

Proceedings of the 6th international symposium on Software engineering for

adaptive and self-managing systems ACM, pp. 80-89.

Vogel-Heuser, B., Diedrich, C., Fay, A., Jeschke, S., Kowalewski, S., Wollschlaeger, M.

and Ghner, P. (2014) 'Challenges for software engineering in automation', Journal of

Software Engineering and Applications, 7(05), pp. 440.

Weber, M. and Kindler, E., 2003. The petri net markup language. In Petri Net Technology

for communication-based systems (pp. 124-144). Springer Berlin Heidelberg.

Weber, B., Reichert, M. and Rinderle-Ma, S. (2008) 'Change patterns and change support

features–enhancing flexibility in process-aware information systems', Data &

Knowledge Engineering, 66(3), pp. 438-466.

Wieland, M., Kopp, O., Nicklas, D. & Leymann, F. (2007) 'Towards context-aware

workflows', CAiSE07 Proc. of the Workshops and Doctoral Consortium, pp. 78.

Wong, P. (2011) Formalisations and Applications of Business Process Modelling

Notation. PhD thesis, University of Oxford.

Wong, P.Y. & Gibbons, J. (2009) 'Property Specifications for Workflow Modelling.',

IFM Springer, pp. 56-71.

YongLin, X. & Jun, W. (2008) 'Context-driven Business Process Adaptation for ad hoc

changes', e-Business Engineering, 2008. ICEBE'08. IEEE International Conference

on IEEE, pp. 53-60.

Zander, Thorsten, Krol & Laurens (2016) The Potential of Automated Adaptation.

Available at: http://neuroadaptive.org/blog/the-potential-of-automated-adaptation.

