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Abstract  

Purpose: Carbon dioxide (CO2) is a potent cerebral vasomotor agent. Despite reduction in CO2 levels 

(hypocapnia) being described in several acute diseases, there is no clear data on baseline CO2 values 

in acute stroke. The aim of the study was to systematically assess CO2 levels in acute stroke. Material 

and methods: Four online databases, Web of Science, MEDLINE, EMBASE and CENTRAL, were 

searched for articles that described either partial pressure of arterial CO2 (PaCO2) and end-tidal CO2 

(EtCO2) in acute stroke.  Results: After screening, based on predefined in- and exclusion criteria, 19 

studies were retained. There were 5 studies in intracerebral haemorrhage and 14 in ischemic stroke, 

totalling 614 stroke participants. Acute stroke was associated with a significant decrease in CO2 levels 

compared to controls (-1.28 mmHg [95% CI -2.20 to -0.37]; I2= 78%, p=0.006). Cerebral 

haemodynamic studies using transcranial Doppler ultrasonography have demonstrated  a significant 

reduction in cerebral blood flow velocities and cerebral autoregulation in acute stroke patients. 

Conclusion: The evidence from this review suggests that acute stroke patients are significantly more 

likely than controls to be hypocapnic, supporting the value of routine CO2 assessment in the acute 

stroke setting. Further studies are required in other to evaluate the clinical impact of these findings. 
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Changes in arterial partial pressure of carbon dioxide (PaCO2) have a potent effect on the cerebral 

vasculature, demonstrated by a 4% flow change in the middle cerebral artery (MCA) for every 

1mmHg increase or decrease in PaCO2 between the range of 20 to 80mmHg [1,2]. Hypocapnic states, 

despite reducing cerebral blood flow (CBF), demonstrate the ability to widen the plateau region of the 

autoregulatory curve, thus improving autoregulatory capacity [3]. Therefore, hypocapnic states, may 

improve the inherent ability of the cerebrovasculature to keep CBF constant across changes in 

cerebral perfusion pressure. In disease states, like acute stroke, improving autoregulatory capacity 

may be clinically beneficial, particularly in the context of extremes of cerebral perfusion pressure 

from uncontrolled hypertension or rising intracranial pressures.  

Despite recent advances in understanding the relationship between peripheral and central 

hemodynamic variables and PaCO2 change in healthy volunteers [4], the carbon dioxide changes in 

acute stroke remain unclear. Observational studies have found lower than normal PaCO2 in acute 

stroke patients [5] and no autoregulatory impairment. Could this be the consequence of the 

physiological effects of lower PaCO2 on the cerebrovasculature in this population? Crucially, 

neuroprotective mechanisms in cerebrovascular disease highlight hypocapnia as a key mediator of 

lower intracranial pressures and restoration of penumbral areas around ischemic tissue [3]. However, 

these potential protective mechanisms are weighed against the risks of vasoconstriction-induced 

ischemia, as well as cerebral hyperemia associated with subsequent PaCO2 normalisation [3].  

International guidelines for the delivery of thrombectomy in acute stroke advocate use of capnography 

in acute ischemic stroke settings [6,7]. Furthermore, capnography has long had a role in several 

neurologically vulnerable states including cardiac arrest and seizure episodes. Increasingly, through 

observational [5] and interventional studies [8], we are understanding the relationship between PaCO2 

and CBF in acute stroke. However, there remains no clear data on baseline carbon dioxide values in 

acute stroke and whether hypocapnia exists post-stroke. End-tidal CO2 (ETCO2) is a surrogate 

measure of PaCO2 and provides a non-invasive bed-side measurement tool for use in a ward-based 

setting. This systematic review and meta-analysis aims for the first time to determine if acute stroke 



patients tend to be hypocapnic, by assessment of studies incorporating carbon dioxide assessment in 

the acute stroke setting. 

Material and Methods 

Study identification 

The protocol implemented as part of this systematic review and meta-analysis was constructed using 

combined recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-

analysis (PRISMA) and the Cochrane Handbook for Systematic Reviews. 

Literature Search Strategy 

Studies were identified with a search strategy across four English language databases (Web of 

Science, MEDLINE, EMBASE and CENTRAL), between 1966 and February 2019, accommodating 

different medical Subject Headings (MeSH) terms or subcategories available on each database 

(supplemental material Table I). Bibliographies of selected articles were screened for additional 

relevant articles. 

Inclusion and Exclusion Criteria 

Only studies in acute stroke that have monitored carbon dioxide levels were included. Eligibility was 

assessed by reading abstracts, and, if necessary, whole articles. The effects of carbon dioxide, CBF 

velocity (CBFV) changes (if applicable), cerebral autoregulation status (if applicable) and 

neurological outcome were assessed. Excluded were case reports, non-English language articles, 

posterior territory stroke studies, and studies with ultrasound contrast agent injection. The rationale 

for exclusion of studies focusing on posterior circulatory strokes was largely due to prior work 

demonstrating an inability to reliably assess the posterior territory as compared to the anterior territory 

in dynamic haemodynamic studies [9]. Studies using US contrast agents were excluded as there are 

concerns around the validity of indices associated with this procedure with issues raised including the 

low resolution and nonlinear relationship with blood pressure [10]. 

Data Extraction 



The following data were extracted: (1) stroke type; (2) stroke classification; (3) stroke severity on 

admission and assessment (NIHSS); (4) number of patients and controls; (5) breakdown of numbers 

by sex; (6) acute (<48 hours) vs. sub-acute (>48 hours) assessment; (7) method of data analysis: 

technique and signal processing method; (8) neurological outcome; (9) presence, timing and 

conclusion of follow-up studies; (10) length of protocol; (11) status of cerebral autoregulation 

contralateral and ipsilateral; (12) CBFV values; (13) CO2 values; (14) respiratory rate; (15) heart rate; 

(16) blood pressure (BP) values, and (17) main conclusions and results. The methodological quality of 

the selected studies was assessed by the Newcastle–Ottawa scale (NOS) for observational studies. 

This scoring system evaluates the quality of an article based on 3 broad perspectives: the cohort 

selection (0–4 points), comparability (0–2 points), and assessment of outcomes (0–3 points). A score 

of ≥7 points was suggestive of a high-quality study. Two independent reviewers (ASMS and JSM) 

undertook the methodological quality screening and data extraction of the included studies. Any 

discrepancies were settled by consensus. 

Statistical Analysis 

All studies assessing ETCO2 in acute strokes were included, however only those that also recruited 

controls were included in the meta-analysis (as opposed to descriptive review). The outcomes of 

interest were all continuous variables, so the weighted mean difference (wMD) with its corresponding 

95% confidence interval (CI) for each parameter was computed in acute stroke and healthy controls. 

The software used was Review Manager 5.3 (RevMan 5) provided by the Cochrane Library. The 

heterogeneity assumption was checked by the χ2-based Q test. An I2 value of >50% or a P value of 

<0.05 for the Q2 statistic indicated significant heterogeneity. In the presence of statistical 

heterogeneity, random-effects model was chosen for the computation of wMD with its corresponding 

95%CI. Otherwise, no obvious heterogeneity was considered to have occurred in the included studies, 

and the fixed-effects model was selected to generate the wMD with its corresponding 95%CI. A 

wMD >1 indicates that acute stroke is associated with higher parameters levels, whereas a wMD <1 

indicates that stroke is associated with a lower levels as compared to controls. The forest plot for each 

parameter was constructed to illustrate the weight ratio of each incorporated study. 



Results 

Summary of included studies 

A detailed flow diagram of study selection is shown in Figure 1. Eighteen thousand, seven hundred 

and eighty publications met the search criteria and were evaluated. The commonest reasons for 

exclusion were animal studies and subarachnoid or neonatal hemorrhage patients. Overall, the 

eligibility criteria were met by 19 studies (Table 1). Two studies used the same dataset [11,12], but 

both were included due to the different methods adopted for assessment of CA. However, 11 studies 

were included in the quantitative analysis comparing ETCO2 levels in acute stroke and controls 

groups.  

Risk of bias in included studies 

According to the results of the NOS, 12 out of the 19 studies scored 8 to 9 points indicating high 

methodological quality. Supplemental material Table II provides the risk of bias indicators of the 

included studies. 

Main findings of included studies 

The acute stroke patients recruited in five studies had intracerebral hemorrhage (ICH) and in fourteen 

studies had acute ischemic stroke (AIS). NIHSS varied between 7.4 ±5.0 and 12 ±7.0 in the ICH 

patients, and 3.5 ±3.3 and 20 [IQR not informed] in the AIS patients, with one study not reporting 

stroke severity in ICH [13] and two studies in AIS [14,15]. The total number of participants was 

significantly higher in the stroke group (n=614) than the control group (n=384); most of the included 

participants being male (n=401, 65%).  Six studies did not include controls [13,16-20]. CA 

assessment was performed in 17 studies and the method used to calculate was transfer function 

analysis (TFA) in 10 studies [11,12,14,17,18,21-25], and the autoregulation index (ARI) in four 

studies [5,16,26-28]; with rate of regulation (RoR) [15], flow values [13] and cerebral perfusion 

pressure-oxygen reactivity index (COR) [20] being used in one study each. All studies, except those 

previously stated as lacking control data, included CO2 (mmHg) data for acute stroke patients and 

controls. Main findings of the included studies are presented in Table 1. The lowest EtCO2 values 



were 31.4 ±3.8 within the AIS population [25] and the highest values were those derived 43.2±5.4 in 

those with benign MCA AIS [20]. 

Meta-analysis of outcomes 

All studies detailed carbon dioxide values (ETCO2 or PaCO2) for acute stroke patients, whereas two 

studies did not present ETCO2 data from controls [11,12], and six studies recruited no controls [13,16-

20]. Therefore, only 11 studies were eligible for carbon dioxide meta-analysis. Pooled analysis 

showed statistically significant hypocapnia in acute stroke compared to healthy control subjects with 

high heterogeneity between studies (-1.28 mmHg [95% CI -2.20 to -0.37], p=0.006; I2= 78%), as 

presented in Figure 2. The meta-analysis also indicated significant decrease in CBFV bilaterally in 

acute stroke compared to healthy controls; pooled mean difference of -8.72 cm.s-1 [95% CI -12.04 to -

5.39, p<0.00001  (Figure 3)] and -6.98 cm.s-1 [95% CI -8.83 to -5.13, p<0.00001  (Figure 4)], for 

affected and unaffected hemispheres, respectively. Due to different methods used to assess CA, only 

analysis of the differences in phase between acute stroke and controls could be performed.  The meta-

analysis of 5 studies indicated bilateral CA impairment in acute stroke, pooled significant mean 

difference of -24.76 degrees of phase [95% CI -35.09 to -14.44, p<0.00001 (Figure 5)] and -24.60 

[95% CI -34.28 to -14.91, p<0.00001  (Figure 6)], for affected and unaffected hemispheres, 

respectively. ARI was assessed in five studies [5,16,26,27,29]. 

Discussion 

This study demonstrates, for the first time, that acute stroke patients are significantly more likely than 

controls to be hypocapnic. Furthermore, both affected and unaffected hemispheres in acute stroke 

patients display convincingly lower CBFV than control subjects and impairment of CA, as evidenced 

by reduced TFA phase in comparison with control subjects. This review incorporates significant 

numbers of acute stroke patients (>500), with detailed physiological measurement assessments, using 

highly comparable methodological approaches. Importantly, the volume of data on CO2 levels in 

acute stroke provides an evolution on previous reviews [30], which states “interpretation of 

measurements can be severely confounded in situations in which significant changes in CO2 go 



undetected.” Despite this study providing further confirmatory evidence of the bilateral impairment of 

CA, the processes governing change from impairment to improvement remain unclear. Nevertheless, 

impairment of CA has recently been correlated with stroke severity and functional outcome [27]. The 

information afforded by continuous monitoring of PaCO2 (capnography), blood pressure (beat-to-

beat) and CBFV (TCD), as is often the case in autoregulatory studies, provides a wealth of data on 

potential physiological and pathological mechanisms during acute stroke.  

PaCO2 change has a strong influence on cardio- and cerebro-vascular variables. Key studies in stroke 

populations, designed to assess impairment of dynamic CA in acute stroke, have often been hampered 

by the inability to adjust for perceived lower levels of PaCO2 post stroke [5,31]. In non-neurological 

disease states two important studies exist to provide some perspective on cardio-respiratory disease 

and haemodynamics [32] and chronic kidney disease (associated with increased cardiorespiratory 

morbidity) [33]. These two studies both demonstrated impaired dynamic cerebral autoregulation and 

provide evidence to support an underlying mechanism for the increased stroke risk we see in these 

two populations. To date, our understanding of the relationship between PaCO2 and CBF is largely 

informed by healthy volunteer studies using protocols designed to assess blood flow across the 

physiological range of PaCO2 [4,34,35]. Despite such studies offering a potential opportunity to 

“correct” for PaCO2 variation post-stroke, there has been a lack of confirmatory evidence to support 

the hypothesis that acute stroke patients are indeed hypocapnic. Furthermore, there are no 

comparative studies to date assessing both ICH and AIS patients in this context. 

Hypocapnia is considered a common component of several acute disease states including 

cardiopulmonary diseases, such as early asthma and pulmonary oedema [3]. Furthermore, assessment 

of acid-base disturbance has long formed part of the acute work-up of a deteriorating patient. 

Furthermore, assessment of acid-base disturbance has long formed part of the acute work-up of a 

deteriorating patient. Our understanding of the clinical profile of hypocapnia in the critically ill patient 

is limited [36]. The potential benefits of hypocapnia in critical illness include prevention of brainstem 

herniation and prevention of hypertensive crises in neonates [36]. However, potential risks are 

associated primarily with the impact on respiratory physiology with hypocapnia often manifesting in 



acute respiratory distress syndrome [36]. This is associated with increased airway resistance and 

worsened ventilation/perfusion matching [36]. Interestingly, hyperventilation and hypocapnia have 

been identified as independent determinants of long-term pulmonary dysfunction in patients with 

underlying lung disease [36]. By understanding the relationship between hypocapnia and acute stroke, 

there exists direction of research to identify a biomarker of evolving lung pathology post-stroke 

(pneumonia for example) or indeed an exacerbation of existing chronic lung disease. However, aside 

from head injury and certain ‘brain at risk’ states like epilepsy and cardiac arrest, no guidelines exist 

encouraging assessment of hypocapnia specifically in acute stroke. The neurologic effects of 

hypocapnia include lowering of intracranial pressure (by hypocapnic alkalosis decreasing CBFV by 

vasoconstriction) and deleterious effects including risk of reperfusion injury by cerebral hyperemia, 

post normalisation, post hypocapnia [3]. However, no studies to date have clarified whether 

hypocapnia is a neuroprotective mechanism or a consequence of disease pathology. Studies are 

ongoing to assess the potential for manipulation of CO2 levels via hyperventilation in acute ICH [8] 

with a hope that improved autoregulation associated with lower levels of PaCO2 may potentiate 

improved outcome by expanding the plateau region of the autoregulatory curve and keeping CBFV 

constant over a wider range of perfusion pressures as seen in the neurologically vulnerable acute ICH 

patient cohort.  

Hypocapnia generated by hyperventilation is associated with improvement in cerebral autoregulation 

across both healthy and diseased states [4,37,38], and provides clinically preferential benefits on 

circumstances associated with raised ICP [39,40]. However, with this study demonstrating that CA 

remains impaired despite the existence of a mild but consistently apparent hypocapnic state, is this 

considered a physiological response designed to precipitate neuroprotection? If the baseline 

hypocapnic state were accentuated post stroke, would CA improve or would we see a u-shaped curve 

worsening of CA as hypocapnia accentuated. Furthermore, to what extent does vasoconstriction 

associated with hypocapnia become a concern in acute stroke? This remains unclear and future studies 

are required to answer these specific questions associated with reasoning for hypocapnia existing post 

stroke.  
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Figures Captions 

Figure 1: Flowchart of article inclusion  

Figure 2: Forest plot with random effects for differences in EtCO2 levels between acute stroke and 
healthy controls. 

Figure 3: Forest plot with random effects for differences in the affected hemisphere CBFV between 
acute stroke and healthy controls. 

Figure 4: Forest plot with fixed effects for differences in the unaffected hemisphere CBFV between 
acute stroke and healthy controls. 

Figure 5: Forest plot with fixed effects for differences in the affected hemisphere CA (phase 
difference) between acute stroke and healthy controls. 

Figure 6: Forest plot with fixed effects for differences in the unaffected hemisphere CA (phase 
difference) between acute stroke and healthy controls. 

 

 

 

 

 

 

 



Table 1: Characteristics of included studies. 

Study Stroke 
Type 

Stroke 
Severity 

Number 
Patients 

(Controls) 

Sex M:F 
Patients 

(Controls) 

Age Patients 
(Controls) 

CBFV (cm.s-1) Cerebral Autoregulation Carbon dioxide (mm Hg) 

AH UH Controls Assess. 
Method Result Stroke Controls 

Castro et al., 
2017a AIS 18.2±10.5 46 (NC)  73.0±12.0                 

(NC) D1: 51.0±18.0 D1: 53.0±16.0 NC TFA 
Impaired AH 

36.0±7.0 NC 25:21  
(NC) 

 (lower PD, HT 
group only) 

Castro et al., 
2017b AIS 11.9± 9.0 30 (NC)  69.0±13.0                 

(NC) D1: 42.0±15.0 D1: 50.0±18.0 NC TFA 
Lower PD and 
gain in poor 

outcome patients 
37.0±6.0 NC 16:14   

(NC) 

Dohmen et al., 
2007 

AIS 
(malignant 

MCA) 
20 (NS) 8 (NC) 5:3              

(NC) 
55.0±6.0                   

(NC) NS NS NC COR 

Impaired in 
patients with 

malignant 
oedema 

39.7±2.1 
(early). 

40.3±2.4 
(late)* 

NC 

 

AIS 
(benign 
MCA) 

16 (NS) 7 (NC) 
 61.0±8.0                   

(NC) NS NS NC COR 

Preserved in 
patients without 

malignant 
oedema 

40.0±2.5 
(early), 

43.2±5.4 
(late)* 

NC 5:2             
(NC) 

Guo et al.,  
2014 AIS 7.1±4.7 15(20) 

12:03 44.7 ±13.1                  
(42.2 ±13.7) NS NS NS TFA 

Impaired AH 
36.2± 2.6 36.4 ±2.4 

(16:4)  (lower PD) 

 AIS 3.8±2.8 26 (20) 
21:05 54.1±9.7                   

(42.2 ±13.7) NS NS NS TFA 
Impaired 
bilaterally  
(lower PD) 

37.2±2.9 36.4 ±2.4 
(16:4) 

Guo et al.,  
2015 AIS 3.7±1.9 46 (30) 30:16 

(20:10) 
54.3±9.4 

NS NS NS TFA 
Impaired 
bilaterally  
(lower PD) 

37.2± 2.4 36.1 ± 2.8 
(53.7±10.6) 

Lam et al., 
2018 AIS 4.8±4.2  15 (16) 7:8         

(8:8) 
69.0  ±7.5 

(57.0 ± 16.0)  38.3 ± 14.4 43.4 ± 14.9 52.6 ± 13.6 ARI No difference 
between groups 33.5 ± 2.7 38.9 ± 3.5 

Llwyd et al.,  
2018 AIS ≤ 5 65 (NC) 

39:26 66.0±12.0 
41.0±13.0 45.0±14.0 NC ARI No differences 

between AH/UH 35.0± 3.0 NC 
(NC) (NC) 

 AIS 6-25 56 (NC) 32:24  
(NC) 

64.0±14.0 
43.0±17.0 51.0±18.0 NC ARI No differences 

between AH/UH 36.0± 3.0 NC 
(NC) 

Ma et al., 
2016 ICH 7.4±5.0 43 (30) 

 

53.7±10.0                   
(52.3±8.1) 

D1-2: 49.6±19.1    
D4-6: 56.0±17.2   

D10-12: 60.0±14.5         
D30: 59.3±14.1  

D1-2: 52.3±20.6    
D4-6: 58.4±16.7  

D10-12: 1.2±16.1  
D30: 62.4±13.8  

62.9±13.0 TFA 
Impaired 
bilaterally  
(lower PD) 

D1-2: 
34.3±3.7     

D4-6: 
34.9±2.8   
D10-12: 
34.8±2.2   

D30: 35.2±2.4 

35.1±2.5 30:13  
(21:9) 

Ma et al., 
2017 ICH 7.6 ± 5.1 53 (30) 

40:13 54.3±11.1                    
(52.3±8.1) 53.6±17.1 57.2±14.5 62.9±13.0 TFA 

Impaired 
bilaterally  
(lower PD) 

34.7±3.3 35.1±2.5 
(21:9) 

 

 



Cont. 

Study Stroke 
Type 

Stroke 
Severity 

Number 
Patients 

(Controls) 

Sex M:F 
Patients 

(Control) 

Age 
Patients 

(Controls) 

CBFV (cm.s-1) Cerebral 
Autoregulation Carbon dioxide (mm Hg) 

AH UH Controls Assess. 
Method Result Stroke Controls 

Oeinck et al., 2013 ICH 12.0 ± 7.0 26 (55) 
 65.0±11.0                 

(64.0±8.0) 

D1: 43.6 (SE =3.4)   
D3: 55.8 (SE =3.6)   
D5: 53.6 (SE =3.6) 

D1: 47.7 (SE=3.5)   
D3: 56.6 (SE=3.7)   
D5: 47.7 (SE=3.5) 

NS TFA 

Preserved PD 
but impaired 

gain 
bilaterally 

D1: 34.9 (SE=0.9)   
D3: 34.3 (SE=0.9)   
D5:35.1 (SE=0.9) 

NS 21:05  
(44:11) 

Panerai et al., 2016 AIS NS 11 (9) 8:3  
(7:2) 

69.9±39.9 
D0-3: 45.2±8.9 D0-3: 42.3±9.8 

L: 50.9 ±8.7 
RoR Impaired 

bilaterally  35.5±3.1 39.6±2.6# 
(60.0±24.4) R: 49.5±5.2 

Reinhard et al., 
2010 ICH 12.0 ± 7.0 26 (55) 

 
65.0±11.0                    
(64.0±8.0) 

D1: 43.6 (SE = 3.4)   
D3: 55.8 (SE = 3.6)   
D5: 53.6 (SE = 3.6) 

D1: 47.7 (SE 3.5)   
D3: 56.6 (SE 3.7)   
D5: 47.7 (SE 3.5) 

NS TFA (Mx) 

Preserved 
with 

secondary 
decline in 

AH 

D1: 34.9 (SE=0.9)   
D3: 34.3 (SE=0.9)   
D5:35.1 (SE=0.9) 

NS 21:05  
(44:11) 

Salinet et al., 2014 AIS 7.8 ± 4.8 15 (22) 
 62.4±9.0                    

(62.2±7.5) 

D 0-3: 45.4 ± 6.9   
D14: 48.3 ± 8.6    

D30: 48.8 ± 9.9 D90: 
49.0 ± 9.8 

D0-3: 49.5 ± 10.1 
D14: 43.9 ± 9.9  
D30: 46.0 ± 6.1  
D90: 47.9 ± 9.5 

L: 50.7 ± 5.6   
R: 48.9 ± 4.9 ARI 

Impaired CA 
and NVC 

initially but 
improved 
over time  

D1-3: 35.1 ± 2.6  
D14: 35.6 ± 5.3   
D30: 34.9 ± 2.1   
D90: 35.4 ± 2.1 

 37.7 ± 3.2# 
12:03  
(16:6) 

Salinet et al., 2015 AIS 3.5 ± 3.3 27 (27) 16:11  
(15:12) 

63.0±11.7                   
(61.4±6.0) D0-2: 43.5 ±19.0 D0-2: 41.1±11.0 49.6 ± 10.5 ARI Preserved 

CA 34.4±3.4 38.9 ± 4.5# 

Salinet et al., 2018 AIS 14.9 ± 7.1 55 (32) 27: 28  
(10:22) 

62.8±12.0 
(63.6±10.4) D0-2: 42.4±10.0 D0-2: 50.4±9.7 58.0±9.2 ARI 

Impaired 
with 

increasing 
severity 

38.4±1.3 38.9 ± 1.0 

Takahashi et al., 
2014 

AIS 
(favorable 
outcome) 

Median 18 
[NS] NS NS 

61.8± NS 
NC NC NC NA NA 35.2±NS NC 

 (NC) 

 

AIS 
(unfavorable 

outcome) 

Median 20 
[NS] NS NS 

69.4± NS 
NC NC NC NA NA 34.1± NS NC 

 (NC) 

Tutaj et al., 2014 AIS 5.3 ± 2.8 6 (14)  65.5±9.2         
(61.8±9.7) D0-2: 27.7±5.9 D0-2: 26.9±2.9 34.4±4.7 TFA 

Impaired UH 
31.4±3.8 32.1±1.7 4:2 

 (7:7)  (lower PD) 

Wang et al., 2015 AIS NS 8 (24) 
 49.3±4.3 

NC NC NC TFA 

Impaired 
bilaterally  
(lower PD 
bilaterally 

and gain UH) 

35.5±2.6 35.5±2.1 7:1  
(12:12) (48.3±7.2) 

Ye and Su, 2013 ICH NS 30 (NC) 
23:07 58.0±13.0  

52.0 ± 15.0 49.0±11.0 NC PI Impaired PI    40.11±5.5* NC 
(NC) (NC) 

 



AH, affected hemisphere; ARI, autoregulatory index; CA, cerebral autoregulation; CBFV, cerebral blood flow velocity; COR, cerebral perfusion pressure-oxygen reactivity 
index; D, day; HT, haemorrhagic transformation; MCA, middle cerebral artery; Mx, mean flow index; NA, not applicable; NS, not stated; NC, no controls included in the 

study; NVC, neurovascular coupling; PD, phase difference; PI, pulsatility index; SE, standard error; TFA, transfer function analysis; UH, unaffected hemisphere;  
* PaCO2 (not ETCO2 like others) 

# statistical difference between controls and stroke 

 

 

 

 

 

 

 

 


