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ABSTRACT  

Aims: Blood biochemistry may provide information on associations between road traffic noise, air 

pollution and cardiovascular disease risk. We evaluated this in two large European cohorts (HUNT3, 

Lifelines).     

Methods and Results: Road traffic noise exposure was modelled for 2009 using a simplified version 

of the Common Noise Assessment Methods in Europe (CNOSSOS-EU). Annual ambient air pollution 

(PM10, NO2) at residence was estimated for 2007 using a Land Use Regression model. The statistical 

platform DataSHIELD was used to pool data from 144,082 participants aged ≥20 years to enable 

individual-level analysis. Generalized linear models were fitted to assess cross-sectional associations 

between pollutants and high-sensitivity C-reactive protein (hsCRP), blood lipids and for (Lifelines 

only) fasting blood glucose, for samples taken during recruitment in 2006-2013.   

Pooling both cohorts, an interquartile range (IQR) higher day-time noise (5.1dB(A)) was associated 

with 1.1%(95%CI: 0.02%-2.2%) higher hsCRP, 0.7%(95%CI:0.3%-1.1%) higher triglycerides and 

0.5%(95%CI:0.3%-0.7%) higher high-density lipoprotein(HDL); only the association with HDL was 

robust to adjustment for air pollution. An IQR higher PM10 (2.0µg/m3) or NO2 (7.4µg/m3) was 

associated with higher triglycerides (1.9%, 95%CI:1.5%-2.4% and 2.2%, 95%CI:1.6%-2.7%), 

independent of adjustment for noise. Additionally for NO2, a significant association with hsCRP 

(1.9%, 95%CI: 0.5%-3.3%) was seen. In Lifelines, an IQR higher noise (4.2dB(A)) and PM10 

(2.4µg/m3) was associated with 0.2%(95%CI: 0.1%-0.3%) and 0.6%(95%CI:0.4%-0.7%) higher 

fasting glucose respectively, with both remaining robust to adjustment for air/noise pollution. 

Conclusion: Long-term exposures to road traffic noise and ambient air pollution were associated with 

blood biochemistry, providing a possible link between road traffic noise/air pollution and cardio-

metabolic disease risk.  
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Translational Perspective  

Road traffic noise and air pollution are the two most common environmental stressors and both have 

been associated with cardiovascular disease in a growing number of studies. Evidence for the long-

term effects of both pollutants on traditional cardiovascular risk factors is limited. Our results based 

on two large European population-based cohorts suggest that both road traffic noise and ambient air 

pollution may increase systemic inflammation, blood glucose levels and risk for potential lipid 

disturbance. Our findings highlight the importance to consider environmental causes in the prevention 

and pathogenesis of cardiovascular disease and the collective efforts needed to mitigate noise and air 

pollution.   
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Introduction 

Increasing numbers of studies have suggested that long-term exposure to road traffic noise(1) and 

ambient air pollution(2) have been linked to cardiovascular disease (CVD) morbidity and mortality 

via different but not mutually exclusive hypothesised mechanistic pathways(3).     

As proposed by Babisch(4), traffic noise as an environmental stressor exerts adverse health effects via 

both direct (e.g. sleep disturbance) and indirect (e.g. annoyance) pathways. Based on the stress 

reaction model, both pathways lead to a physiologic acute response, for example, elevated levels of 

stress hormones, through activations of the hypothalamus-pituitary-adrenal axis and the sympathetic-

adrenal-medulla axis(3). In the long-term, stress hormone such as cortisol is overly produced to 

restore homeostasis partly by increasing the supply of energy in the forms of glucose and fatty 

acids(5,6). Catecholamines are an important stress hormone to boost this supply by breaking down 

triacylglycerol(5). In addition, overproduction of cortisol is also believed to inhibit insulin secretion as 

well as to impair insulin sensitivity in both the liver and adipose tissue(6). For air pollution, oxidative 

stress is the principal hypothesised mechanism to explain the adverse health effects, with other 

pathways including impaired endothelial function, systemic inflammation, activation of autonomous 

nervous system (ANS) and direct transfer of particles from lung to blood circulation also 

contributing(2).  

It is biologically plausible to hypothesise that via these aforementioned mechanistic pathways both 

long-term noise and air pollution exposures may lead to adverse changes in CVD risk factors 

including systemic inflammation, blood lipids and glucose(2-4), thus mediating the links between 

these exposures and manifest CVD. However, epidemiological evidence linking these exposures, 

especially noise, with CVD risk factors is rather limited(3,7). Noise could also be a potential 

confounder in any associations between air pollution and CVD risk factors, which merits further 

investigation(7).          

We evaluated cross-sectional associations between long-term road traffic noise, ambient air pollution 

and high sensitivity C-reactive protein (hsCRP), blood lipids and glucose levels in two large European 
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cohorts. Harmonised exposure and health data were analysed at the individual-level via 

DataSHIELD(8), a novel statistical platform that allows pooling of data via distributed data analysis.      

Methods 

Study populations  

Two cohorts, HUNT3(9) and Lifelines(10), were included in this study as part of the BioSHaRE 

(Biobank Standardisation and Harmonisation for Research Excellence in the European Union-

BioSHaRE-EU) project.   

The HUNT (Helseundersøkelsen i Nord-Trøndelag) study is a population-based health survey 

conducted in the county of Nord-Trøndelag in central Norway, targeting all residents aged≥20 

years(9). We used data from the third survey (HUNT3) undertaken in 2006-2008, during which 

50,805 residents participated and provided data, all of whom were included in our study.  

Lifelines is a prospective multi-generational population-based cohort study to examine the health and 

health-related behaviours of people living in northern Netherlands(10). Compared to those of the 

HUNT study, study areas of Lifelines are more densely populated(11). During baseline recruitment 

(2006-2013), a random selection of residents aged 25-50 years and their family members registered in 

general practices were invited to participate. Quality-checked data from 93,277 participants were 

available for analysis by the time our study was conducted. 

Ethical approvals for this study were obtained from the Regional Committee for Medical and Health 

Research Ethics in Norway for HUNT and from the Medical Ethical Committee of the University 

Medical Center Groningen for Lifelines.   

Biochemistry data  

Details of the collection, transport, storage and analysis of the blood samples in each cohort have been 

published(9,10). In brief, for both cohorts, blood samples were collected and transported on the same 

day, and were stored at -80°C for future analysis. Non-fasting blood samples were collected in 

HUNT3 whilst fasting blood samples were collected in Lifelines. Samples were analysed in a central 

laboratory for each cohort, following respective quality control measures.   
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Serum concentrations of hsCRP (mg/L), total cholesterol (mmol/L), triglycerides (mmol/L), and high-

density lipoprotein (HDL) cholesterol (mmol/L) were measured in both cohorts. Additionally for 

Lifelines, fasting blood glucose (mmol/L) and glycated haemoglobin (HbA1c) concentrations 

(mmol/mol) were also measured.   

Exposure assessment  

A simplified version of the CNOSSOS-EU (Common noise assessment methods in European Union) 

noise modelling framework(12) was developed and run for each cohort. Noise sound pressure level 

was estimated on all roads within 500 meters of home address at recruitment. Noise propagation due 

to refraction and diffraction, absorption from buildings, distance and angle of view were considered in 

the model. Road network geography, calculated hourly vehicle flows using a daily average traffic 

profile, building heights, land cover and meteorological data were obtained for the respective study 

areas. To account for participants living on minor roads that were not captured in the national level 

traffic datasets, a fixed low-level baseline traffic flow (600 vehicles per day) was assigned. Traffic 

data were for the year 2009 and land cover data were for the year 2006. Annual mean A-weighted 

sound pressure level in decibels (dB(A)) for day-time noise (average sound level from 07:00 to 19:00) 

and night-time noise (average sound level from 23:00 to 07:00) and weighted 24-hour noise (Lden) 

were modelled at recruitment address of participants in both cohorts.   

An European harmonised Land Use Regression (LUR) model at a resolution of 100x100m was used 

to assign annual air pollution estimates, PM10 (Particulate Matter with aerodynamic diameter≤10µm) 

and NO2 (nitrogen dioxide), for year 2007 at participant’s recruitment address(13). The model used 

information from over 1,500 monitoring sites across western Europe, satellite-based ground-level air 

pollution data and land use variables obtained from a Geographic Information System (GIS)(13).        

Covariates 

Age, sex, smoking status, smoking pack-years, education, paid employment, alcohol consumption and 

‘ever-had’ hypertension and diabetes were obtained from questionnaires at recruitment. Height (cm) 

and weight (kg) were measured after removal of heavy clothes and shoes and body mass index (BMI, 

kg/m2) was computed. Time at residence of recruitment in years was calculated for each participant. 

Season of blood draw was based on the calendar month the participant attended for clinical 
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measurements. All these covariates were retrospectively harmonised across the two cohorts, following 

a validated protocol(14).   

Statistical analyses  

Statistical analyses for hsCRP and blood lipids were performed using DataSHIELD v4.1.2(8). In 

brief, the DataSHIELD approach involves setting up secure servers hosting harmonised data in 

geographically dispersed research sites (e.g. Groningen for Lifelines and London for HUNT3) and 

allowing a central computer to conduct remote federated analyses of individual-level data without 

physically pooling this data. DataSHIELD offers an effective solution to overcome the complex 

ethico-legal issues associated with a physical sharing of the data. Analyses on fasting blood glucose 

and HbA1c were conducted in Lifelines only also using DataSHIELD in ‘single-site’ mode which 

provides, in effect, a privacy-protected analysis in an R statistical environment.  

All outcomes were modelled as a log-transformed value to improve linearity and results were 

expressed as percent change per inter-quartile range (IQR) higher exposure. 

Spearman correlations between metrics of road traffic noise and ambient air pollution were calculated 

for each cohort. Associations between the noise, PM10, NO2 and each biochemical parameter were 

analysed using multivariate linear regression. Both noise and air pollution metrics were analysed on a 

continuous scale, assuming a linear effect. Additionally noise was categorised as <55, 55-60, ≥60 

dB(A) for daytime and <45, 45-50, ≥50 dB(A) for night-time noise respectively.   

The covariates were chosen a priori based on current knowledge. The sequence of models was as 

follows: adjusted for study (in pooled analyses on hsCRP and blood lipids), age (continuous) and sex 

(Model1), further adjusted for season of blood draw, smoking status and pack-years, education, 

employment and alcohol consumption (Model2). Based on Model2, ambient air pollution (or road 

traffic noise) were additionally added to the noise (or air pollution) model (mutually adjusted 

model).  

Sensitivity analyses were conducted based on Model2: a) further adjusting for BMI; b) further 

adjusting for ever-had hypertension and diabetes; c) restricting analyses to those living at current 

address≥10 years; d) as with a previous study(15), excluding those with an hsCRP over 10 mg/ L 

from the analysis as levels above this may indicate a current infection.   
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We also conducted study-specific analyses for hsCRP and blood lipids and then pooled estimates via 

meta-analysis using R ‘metafor’ packages v3.2.2.  

Results 

Overall there were 144,082 participants, mean age (SD) was 47.6 (13.7) years, and 56% (n=82,574) 

were women (Table1).   

Across the two cohorts, median Lday was 51.6 dB(A), with an IQR of 5.1 dB(A); median PM10 and 

NO2 were 18.8 and 17.2 µg/m3, with an IQR of 2.0 and 7.4 µg/m3 respectively (Supplement-1). 

Spearman correlations between PM10 and Lday was 0.04 (HUNT3) and 0.38 (Lifelines); similar 

correlations were seen for NO2. Daytime and night-time noise or 24-hour noise were almost perfectly 

correlated (r=0.99). We therefore report only results for daytime noise here.     

In the pooled analyses of both HUNT3 and Lifelines, an IQR increase in daytime noise, PM10 and 

NO2 was significantly associated with higher levels of hsCRP (Table 2) in the fully adjusted model 

(Model2), but significance only remained for NO2 (1.7%, 95% confidence interval (CI): 0.2%-3.2%) 

in the model further adjusted for noise (mutually adjusted model).  

An IQR increase in daytime noise, PM10 and NO2 was significantly associated with 0.7% 

(95%CI:0.3%-1.1%), 1.9% (95%CI:1.5%-2.4%) and 2.2% (95%CI:1.6%-2.7%) higher levels of 

triglycerides respectively (Table 3).  However, when Model 2 was mutually adjusted for both noise 

and air pollution, significance remained for both air pollutants, but not noise. We found no 

associations between any of the exposures and total cholesterol (Supplement-2), but significant 

positive associations between noise or NO2 and HDL cholesterol were observed(Table 3).   

In the analyses of fasting glucose in Lifelines only(Table 4), an IQR increase in daytime noise, PM10 

and NO2 was significantly associated with 0.2% (95%CI:0.1%-0.3%), 0.6% (95%CI:0.4%-0.7%) and 

0.6% (95%CI:0.4%-0.8%) higher levels of fasting glucose respectively. These significant associations 

remained in the mutually adjusted models. Corresponding associations were not seen for HbA1c 

(Supplement-2).  

Sensitivity analyses only resulted in minor changes to the main findings described for each 

biochemistry parameter, except that the significant positive associations between air pollution and 
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HDL cholesterol were no longer seen after further adjustment for BMI (supplement-3). Treating noise 

as a categorical variable in Model2 showed that for hsCRP, triglycerides and fasting glucose, 

significant associations were only observed among those with a day-time noise level ≥60 vs. <50 

dB(A) (supplement-4).   

Study-specific meta-analyses for hsCRP and blood lipids yielded similar results to the pooled analyses 

on DataSHIELD (Supplement-5).   

Discussion 

In this large population-based study, we found that higher long-term road traffic noise was 

significantly associated with higher levels of hsCRP, triglycerides, HDL cholesterol and fasting 

glucose, with the latter two associations remaining after further adjustment for air pollution. Higher 

PM10 or NO2 exposure was significantly associated with higher levels of triglycerides and fasting 

glucose, independent of road traffic noise. Both air pollutants were also significantly associated with 

higher hsCRP levels, but the significance for PM10 was lost after adjustment for traffic noise.  

Road traffic noise effects  

There have been very few studies investigating the effects of road traffic noise on cardiovascular risk 

factors to date. Chronic noise exposure may trigger the same responses (e.g. oxidative stress, systemic 

inflammation) as air pollutants(6) and it has been suggested that the link between long-term 

psychological stress and CVD may operate via a chronic low-grade systemic inflammation(16). We 

are not aware of any other studies exploring the association between road traffic noise and hsCRP. We 

observed a small increase in hsCRP levels in relation to noise exposure when assessed as a continuous 

variable. Analysing noise as a categorical variable suggested that there may exist a threshold of 60 

dB(A), above which a significant positive association on hsCRP was seen in our study. However, 

significance was lost after adjustment for air pollution.   

The over-production of stress hormones (e.g. catecholamines) following long-term noise exposure is 

believed to increase the supply of fatty acids and glucose by breaking down triacylglycerol(5). In 

support of this hypothesised mechanism, we found significant positive associations between road 

traffic noise exposure and triglycerides. Only one population-based study was conducted previously 
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and reported no association with total cholesterol(17). In our study, we found no associations with 

total cholesterol either, but a positive significant association was unexpectedly found with HDL 

cholesterol. There is no biological plausible explanation for this association and it is possible that this 

is a chance finding due to multiple testing. Findings across a small number of occupational studies 

were not consistent with regards to which lipids were adversely affected by noise exposures(18). The 

role of traffic noise in the perturbations in lipid levels is rarely investigated(3) and our findings should 

be interpreted with caution until further studies have confirmed this result.     

Our study provides novel evidence that increasing road traffic noise is associated with increasing 

fasting blood glucose levels, independent of air pollution effects. Only one study in the early 1990s 

reported a positive trend (p-value<0.05) between higher day-time noise level and increased glucose 

level in men(19). Another study in Stockholm found no associations between aircraft noise exposure 

and impaired fasting glucose(20). In a Danish prospective cohort, a 10dB higher road traffic noise at 

diagnosis was associated with a 8% (95%CI: 2%-14%) higher risk of incident diabetes, after 

adjustment for air pollution(21).   

Air pollution effects 

An inflammatory response to ambient air pollution has been perceived as one of the key mechanisms 

that may explain air pollution effects on CVD(2). Our findings on elevated hsCRP for both air 

pollutants generally support this concept. An analysis of 22,561 adults from six European cohorts 

observed a significant association between elevated hsCRP levels and living close to traffic but not for 

modelled air pollutants(15). A longitudinal analysis with repeated measurements of hsCRP in 

Germany found that each IQR (2.4µg/m3) higher PM2.5 was associated with 5.4% (95%CI: 0.6%- 

10.5%) higher hsCRP, independent of short-term air pollution(22). Two other studies in England(23) 

and Sweden(24) reported no associations with hsCRP.     

Inflammation-induced adverse lipid metabolism and lipid oxidation may be among the possible 

mechanisms underlying the associations between air pollution and perturbations in lipid levels(25). A 

study of nearly 40,000 adults aged 50-64 years in Copenhagen reported that both PM2.5 and NO2 were 

significantly associated with elevated non-fasting total cholesterol(17). Data on other lipid measures 

were not available. Similarly, a nationwide USA study of 11,623 participants (median age: 41 years) 
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reported significant positive associations between annual PM10 exposure and both triglycerides and 

total cholesterol levels(25). Association with HDL cholesterol was positive but non-significant. Partly 

in line with this, we found both higher PM10 and NO2 were significantly associated not only with 

elevated triglycerides but also HDL cholesterol levels, although for the latter the association was non-

significant after further adjustment for BMI.   

Air pollution may also affect glucose homeostasis via pathways including increased adipose tissue 

inflammation and oxidative stress as well as impaired insulin responses in the liver and adipose 

tissue(3). Our findings of significant associations with fasting glucose for long-term PM10 and NO2 

exposures were partly consistent with previous studies of various designs(26-29). However, we did 

not observe an association with HbA1c. Annual average of PM10 and NO2 was significantly 

associated with increased fasting glucose and HbA1c among elderly participants in Taiwan(26) while 

in Germany higher regional PM10 levels were significantly associated with higher HbA1c levels 

among patients with diabetes(28). A study of 363 elderly German women reported that long-term 

exposure to NO2 may contribute to impaired glucose metabolism, although significance was lost after 

correction for multiple testing(27). Recently, a nationwide cross-sectional study of 11,847 adults in 

China observed that satellite-based modelled annual PM2.5 at residence was significantly associated 

with both increased fasting glucose and HbA1c(29).   

Strengths and limitations  

Strengths include our ability to simultaneously examine the effects of noise and air pollution exposure 

on cardiovascular risk factors in this large sample. In addition, data across the two cohorts were 

harmonised and then individual-level analyses and data pooling were carried out via DataSHIELD, 

making this one of the largest such studies to date. The novel use of DataSHIELD was validated 

through meta-analysis of the two cohorts involved, with DataSHIELD giving similar effect estimates 

but (as expected) smaller confidence intervals as individual participant data were analysed together.  

Limitations include the cross-sectional nature of the study, longitudinal studies are needed to 

strengthen these findings. Modelled noise and air pollution estimates at home address will inevitably 

have some misclassification (e.g. time spent away from home). However, this was likely non-

differential with regard to biochemistry measurements. Correlations between PM10 and NO2 were high 
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which precluded a co-pollutant analysis. Some simplified inputs were used in our noise model to 

enable a harmonised approach across the two cohorts investigated(30); this may have resulted in non-

differential misclassification of noise exposure that would be expected to bias results toward the null. 

The European harmonised LUR model for air pollution was likely less accurate for the HUNT cohort 

for two reasons. First, no Norwegian monitoring air pollution data were used in the model building 

and therefore the performance of this LUR model cannot be formally measured in Norway. However, 

the use of this LUR model for the HUNT cohort was reasonably justified based on the model’s 

moderate to good performance in other Scandinavian countries. Second, the road networks used in the 

air pollution/noise models building for the Netherlands had a more complete representation of both 

major and minor roads whilst for Norway the road networks only had major roads included. 

Therefore, the relatively low correlation between noise and air pollution seen for the HUNT cohort 

may be driven in part by the less detailed data inputs. While road traffic is a major source of both 

noise and air pollutants, these variables are not always closely correlated(31). Noise and air pollution 

estimates at recruitment address were modelled to a single year 2009 and 2007 respectively, which 

may differ by several years from when recruitment took place in both cohorts (2006-2013). We made 

a reasonable assumption that the spatial contrast in levels of both exposures will have been relatively 

stable over these years. Estimates may have residual confounding, as information about 

environmental tobacco smoke, diet, exercise and area-level socioeconomic status were not 

harmonised and therefore were not included in our models. Finally, we used nominal P-values, so 

given the number of tests it is possible that some observed associations may be chance findings; 

replication in other studies is therefore recommended.  

In our study, the observed effects of road traffic noise and air pollution on CVD risk factors are small 

and potentially within the precision of a laboratory measurement for an individual. The clinical impact 

of an increase in risk of that magnitude on any individual would be very small if not negligible, 

despite statistical significance. However, the importance of these population-based results is that they 

suggest that the entire distribution of these risk factors may be shifted towards a less favourable 

profile at population level, i.e. ‘at-risk’ populations may be increased. Our results contribute to the 

evidence base to identify potential mechanisms and quantify impacts of both road noise and air 
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pollution exposures on cardiovascular disease at population level. Future work will explore potential 

for effect modification and whether effects are confined to a subset of the population.  

In conclusion, we found significant associations of long-term exposure to road traffic noise and 

ambient air pollution with CVD biochemical parameters, providing a possible link between noise or 

air pollution exposure and cardiovascular disease.  
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Table 1 Characteristics of study populations in both cohorts  

  Pooled data HUNT3 Lifelines 

Total N 144,082 50,805 93,277 

Age, years, mean±SD 47.6±13.7 52.7±16.7 44.9±12.3 

Sex, women, (%) 56 55 59 

BMI, kg/m2, mean±SD 26.5±4.4 27.2±4.4 26.1±4.3 

BMI categories, (%)       

<25 kg/m2 41 33 45 

25-30 kg/m2 41 44 39 

≥30 kg/m2 18 23 16 

Smoking status, (%)       

Never-smoker 44 43 45 

Ex-smoker 32 32 32 

Current-smoker 24 25 23 

Current working status, (%)       

Not in paid employment 25 36 19 

In paid employment 75 64 81 

Education level, (%)       

primary education or less 11 31 2 

Secondary education 62 47 68 

Post-secondary school or above 28 22 30 

Ever-had diabetes 3 4 2 

Ever-had hypertension 24 22 25 

Alcohol consumption, gram per 

week, mean±SD 

31.6±88.8 28.0±40.0 56.9±71.5 
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hsCRP, mg/L, median±IQR 1.2±2.1 1.2±2.1 1.2±2.2 

Total cholesterol, mmol/L, 

mean±SD 

5.2±1.0 5.5±1.1 5.0±1.0 

HDL cholesterol, mmol/L, 

mean±SD 

1.4±0.4 1.4±0.3 1.5±0.4 

Triglycerides, mmol/L, mean±SD 1.3±0.9 1.6±1.0 1.1±0.8 

Fasting glucose, mmol/L, 

mean±SD 

- - 5.0±0.8 

HbA1c, mmol/mol, mean±SD - - 37.5±4.8 
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Table 2  Cross-sectional associations between per IQR higher exposure and hsCRP: pooled analyses 

from HUNT3 and Lifelines  

  %changes (95%CI) in hsCRP  

Exposure IQR N Model1 N Model2 Model2* 

Daytime 

noise 

5.1dB(A) 90,689 0.4  

(0.1-0.8) 

55,930 1.1  

(0.02-2.2) 

1.0  

(-0.1-2.2)a 

      0.9  

(-0.3-2.0)b 

PM10 2.0µg/m3 87,622 1.3  

(0.2-2.4) 

51,238 1.4  

(0.1-2.7) 

0.9  

(-0.4-2.3) 

NO2 7.4µg/m3 87,957 1.0  

(-0.1-2.2) 

51,459 1.9  

(0.5-3.3) 

1.7  

(0.2-3.2) 
Model 1: adjusted for cohort, age, sex; 

Model 2: further adjusted for season of blood draw, smoking status and pack-years, education, employment and 

alcohol consumption.  

Model 2*: further adjusted for air pollution (a for PM10, b for NO2), or daytime noise, based on Model 2.  

BOLD indicates where significance level <0.05.  
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Table 3 Cross-sectional associations between per IQR higher exposure and triglycerides and HDL 

cholesterol: pooled analyses from HUNT3 and Lifelines  

  %changes (95%CI) in triglycerides   

Exposure IQR N Model1 N Model2 Model2* 

Daytime noise 5.1dB(A) 119,464 0.7  

(0.4-1.0) 

81,799 0.7  

(0.3-1.1) 

0.2  

(-0.2-0.7)a 

      0.3  

(-0.2-0.7)b 

PM10 2.0µg/m3 111,547 1.4 

(1.0-1.8) 

72,794 1.9 

(1.5-2.4) 

1.9 

(1.4-2.4) 

NO2 7.4µg/m3 111,893 1.6 

(1.1-2.0) 

73,026 2.2 

(1.6-2.7) 

2.1 

(1.6-2.7) 

       

  %changes (95%CI) in HDL cholesterol   

Exposure IQR N Model1 N Model2 Model2* 

Daytime noise 5.1dB(A) 118,866 0.3  

(0.2-0.5) 

81,590 0.5 

(0.3-0.7) 

0.4 

(0.1-0.6)a 

      0.3 

(0.04-0.5)b 

PM10 2.0µg/m3 110,834 0.1 

(0.04-0.2) 

72,551 0.2 

(-0.1-0.4) 

0.04 

(-0.2-0.3) 

NO2 7.4µg/m3 111,178 0.4 

(0.2-0.7) 

72,783 0.5 

(0.3-0.8) 

0.4 

(0.1-0.7) 
Model 1: adjusted for cohort, age, sex  

Model 2: further adjusted for season of blood draw, smoking status and pack-years, education, employment and 

alcohol consumption.  

Model 2*: further adjusted for air pollution (a for PM10, b for NO2), or daytime noise, based on Model 2.  

BOLD indicates where significance level <0.05.   
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Table 4 Cross-sectional associations between per IQR higher exposure and fasting glucose: analyses 

of Lifelines cohort  

  %changes (95%CI) in fasting glucose  

Exposure IQR N Model1 N Model2 Model2* 

Daytime 

noise 

4.2dB(A) 72,401 0.2 

(0.1-0.3) 

62,765 0.2 

(0.1-0.3) 

0.2 

(0.06-0.3)a 

      0.1 

(0.03-0.3)b 

PM10 2.4µg/m3 59,898 0.5 

(0.4-0.7) 

52,234 0.6 

(0.4-0.7) 

0.5 

(0.3-0.6) 

NO2 8.8µg/m3 60,182 0.5 

(0.4-0.7) 

52,543 0.6 

(0.4-0.8) 

0.5  

(0.3-0.7) 
Model 1: adjusted for age, sex  

Model 2: further adjusted for season of blood draw, smoking status and pack-years, education, employment and 

alcohol consumption.  

Model 2*: further adjusted for air pollution (a for PM10, b for NO2), or daytime noise, based on Model 2.  

BOLD indicates where significance level <0.05.   
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Figure legends  

 

Figure 1. Cross-sectional associations between per IQR* higher exposure and percent changes in each CVD biochemical parameter   

 

Model 2: adjusted for cohort (pooled analysis only), age, sex, season of blood draw, smoking status and pack-years, education, employment and alcohol consumption.  Model 2*: further 

adjusted for PM10 or daytime noise. *IQR: Inter-quartile range, which is 5.1 dB(A) for daytime noise, 2.0 µg/m3 for PM10, 7.4µg/m3 for NO2 for analyses on hsCRP and lipids; 4.2 dB(A) for 

daytime noise, 2.4 µg/m3 for PM10, 8.8 µg/m3 for NO2 for analyses on blood glucose.  
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Supplement-1  

 

Table S1.1: Distributions of exposures in this study by cohort and in the pooled data  

 

NO2, µg/m3 N 5% 10% 25% 50% 75% 90% 95% Mean(SD) IQR 

HUNT3 50,628 8.2 8.8 10.1 11.9 15.4 18.6 19.5 13.0 (3.9) 5.3 

Lifelines 62,212 13.6 14.1 16.6 20.6 25.4 28.9 31.1 21.2 (5.7) 8.8 

Pooled 112,840 11.5 12.1 14.1 17.2 21.5 24.9 26.6 18.0 (5.1) 7.4 

PM10,µg/m3 N 5% 10% 25% 50% 75% 90% 95% Mean(SD) IQR 

HUNT3 50,567 9.7 10 10.4 11.2 12 12.6 12.9 11.3 (1.1) 1.6 

Lifelines 61,927 21 21.4 22.3 23.6 24.7 25.7 26.5 23.6 (1.7) 2.4 

Pooled 112,494 16.6 17.0 17.7 18.8 19.7 20.6 21.2 18.8 (1.5) 2.0 

Daytime 

noise(Lday) 

N 5% 10% 25% 50% 75% 90% 95% Mean(SD) IQR 

HUNT3 45,644 39.1 39.5 43.6 47.4 50.3 52.9 54.6 47.0 (4.9) 6.7 

Lifelines 74,744 51.3 51.7 52.4 53.9 56.6 60.4 63.9 55.2 (4.0) 4.2 

Pooled 120,388 47.0 47.3 49.3 51.6 54.4 57.7 60.6 52.3 (4.3) 5.1 

Nighttime 

noise(lnight) 

N 5% 10% 25% 50% 75% 90% 95% Mean(SD) IQR 

HUNT3 45,644 35.1 35.2 37.5 40.2 42.5 44.8 46.4 40.3 (3.7) 5.0 

Lifelines 74,744 42.5 42.8 43.6 45.1 47.8 51.6 55.1 46.4 (4.0) 4.2 

Pooled 120,388 39.8 40.1 41.5 43.4 45.9 49.2 52.0 44.2 (3.9) 4.4 

NO2 and PM10 were estimated based on the pan-European LUR model for year 2007 while noise estimates (Lday and Lnight) were for year 2
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Table S1.2: Spearman correlations between air pollutants and road traffic noise (Lday and 

Lnight)  

 

HUNT3 (N=45,581) NO2 PM10 LDAY 

NO2 -   

PM10 0.80 -  

Lday -0.05 0.04 - 

Lnight -0.04 0.06 0.99 

Lifelines (N=62,653) NO2 PM10 LDAY 

NO2 -   

PM10 0.78 -  

Lday 0.43 0.38 - 

Lnight 0.46 0.40 0.99 
 Lday: day-time noise level at 07:00-19:00; Lnight: night-time noise level at 23:00-07:00.   
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Supplement-2  

 

Table S2.1 Cross-sectional analyses between daytime noise, air pollution and cholesterol: pooled 

analyses of HUNT3 and Lifelines  

 

 %changes (95%CI) in total cholesterol   

Exposure IQR N Model1 N Model2 Model2* 

Daytime 

noise 

5.1dB(A

) 

118,8

68 

-0.1 (-0.2 to 0.02) 81,5

90 

-0.1 (-0.2 to 0.1) 0.03 (-0.1 to 

0.2)a 

      0.01 (-0.2 to 

0.2)b 

PM10 2.0µg/m
3 

110,8

36 

-0.5 (-0.6 to -0.3) 72,5

51 

-0.1 (-0.3 to 

0.05) 

-0.1 (-0.3 to 

0.06) 

NO2 7.4µg/m
3 

111,1

80 

-0.4 (-0.6 to -0.2) 72,7

83 

-0.1 (-0.3 to 0.1) -0.1 (-0.3 to 0.2) 

Model 1: adjusted for cohort, age, sex; 

Model 2: further adjusted for season of blood draw, smoking status and pack-years, education, employment and alcohol consumption.  

Model 2*: further adjusted for air pollution (a for PM10, b for NO2), or daytime noise, based on Model 2.  
BOLD indicates where significance level <0.05.  

 

Table S2.2 Cross-sectional analyses between daytime noise, air pollution and HbA1c: analyses 

of Lifelines  

  %changes (95%CI) in HbA1c   

Exposure IQR N Model1 N Model2 Model2* 

Daytime 

noise 

4.2dB(A) 56,0

26 

-0.1 (-0.1 to 0.04) 50,1

94 

-0.1(-0.1 to 0.05) -0.1 (-0.1 to 

0.08)a 

      0.01 (-0.1 to 0.1)b 

PM10 2.4µg/m3 47,6

28 

-0.1 (-0.1 to 0.1) 43,4

81 

-0.1(-0.2 to 0.1) -0.1 (-0.2 to 0.1) 

NO2 8.8µg/m3 47,6

86 

-0.1(-0.3 to 0.04) 43,5

37 

-0.1 (-0.3 to 0.05) -0.1(-0.3 to 0.06) 

Model 1: adjusted for  age, sex; 
Model 2: further adjusted for season of blood draw, smoking status and pack-years, education, employment and alcohol consumption.  

Model 2*: further adjusted for air pollution (a for PM10, b for NO2), or daytime noise, based on Model 2.  

BOLD indicates where significance level <0.05. 

 

Supplement-3   

Table S3.1 Sensitivity analyses based on Model2  

Daytime Noise  %changes (95%CI) 

 M2 M2+BMI M2+long-term 

health  

long residency 

only 

hsCRP<10 

mg/L only 

HsCRP 1.1(0.02 to 

2.2) 

1.8 (0.8 to 

2.8) 

1.3 (0.2 to 2.4) 1.0 (-0.5 to 2.4) 0.9 (-0.1 to 

1.8) 

Total 

cholesterol 

-0.1 (-0.2 to 

0.1) 

0 (-0.2 to 0.2) 0.03 (-0.1 to 

0.2) 

0.1(-0.2 to 0.3)  

Triglycerides 0.7 (0.3 to 1.0 (0.6 to 0.7 (0.3 to 1.2) 0.4 (-0.1 to 1.0)  
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1.1) 1.4) 

HDL 

cholesterol 

0.5 (0.3 to 

0.7) 

0.3 (0.1 to 

0.5) 

0.4(0.2 to 0.6) 0.2 (-0.1 to 0.5)  

Fasting 

glucose 

0.2 (0.1 to 

0.3) 

0.3 (0.2 to 

0.4) 

0.2(0.1 to 0.4) 0.3 (0.2 to 0.5)  

HbA1c -0.1(-0.1 to 

0.05) 

0% (-0.1 to 

0.1) 

-0.1(-0.1 to 0.1) -0.1 (-0.2 to 

0.1) 

 

      

PM10  %changes (95%CI) 

 M2 M2+BMI M2+long-term 

health  

long residency 

only 

hsCRP<10 

mg/L only 

HsCRP 1.4 (0.1 to 

2.7) 

2.6 (1.3 to 

3.8) 

1.9 (0.5 to 3.3) 2.0 (0.2 to 3.9) 1.0 (-0.1 to 

2.2) 

Total 

cholesterol 

-0.1 (-0.3 to 

0.05) 

-0.1 (-0.3 to 

0.1) 

-0.1 (-0.3 to 

0.1) 

0.04 (-0.2 to 

0.3) 

 

Triglycerides 1.9 (1.5 to 

2.4) 

2.4 (1.9 to 

2.8) 

1.9 (1.4 to 2.4) 2.7 (2.0 to 3.4)  

HDL 

cholesterol 

0.2 (-0.1 to 

0.4) 

-0.1 (-0.3 to 

0.1) 

0.1 (-0.1 to 0.4) -0.5 (-0.8 to -

0.1) 

 

Fasting 

glucose 

0.6 (0.4 to 

0.7) 

0.6 (0.5 to 

0.7) 

0.5 (0.3 to 0.6) 0.7 (0.5 to 1.0)  

HbA1c -0.1(-0.2 to 

0.1) 

0.01 (-0.1 to 

0.1) 

-0.1 (-0.2 to 

0.1) 

0 (-0.2 to 0.2)  

      

NO2  %changes (95%CI) 

 M2 M2+BMI M2+long-term 

health  

long residency 

only 

hsCRP<10 

mg/L only 

HsCRP 1.9 (0.5 to 

3.3) 

3.9 (2.6 to 

5.3) 

2.2 (0.7 to 3.7) 2.3 (0.3 to 4.3) 1.8 (0.5 to 3.1) 

Total 

cholesterol 

-0.1 (-0.3 to 

0.1) 

-0.1 (-0.2 to 

0.2) 

-0.1 (-0.2 to 

0.2) 

0.3 (0 to 0.6)  

Triglycerides 2.2 (1.6 to 

2.7) 

2.9 (2.4 to 

3.4) 

2.0 (1.5 to 2.6) 2.9 (2.1 to 3.7)  

HDL 

cholesterol 

0.5 (0.3 to 

0.8) 

0.1 (-0.1 to 

0.4) 
0.5 (0.3 to 0.8) -0.1 (-0.4 to 

0.3) 

 

Fasting 

glucose 

0.6 (0.4 to 

0.8) 

0.7 (0.6 to 

0.9) 

0.5 (0.3 to 0.6) 0.8 (0.6 to 1.1)  

HbA1c -0.1 (-0.3 to 

0.05) 

0 (-0.2 to 0.1) -0.1 (-0.3 to 

0.02) 

-0.1 (-0.4 to 

0.1) 

 

Model 2: further adjusted for season of blood draw, smoking status and pack-years, education, employment and alcohol consumption. Lday: 

daytime noise; Long-term health: ever-had hypertension and diabetes IQR for daytime noise, PM10 , NO2 was 5.1 dB(A) ,2.0 and 7.4 µg/m3 

for analyses of hsCRP and lipids; IQR for daytime noise, PM10 , NO2 was 4.2 dB(A), 2.4 and 8.8 µg/m3 for analyses of fasting glucose. 

 

Supplement-4  

Table S4.1 Categorical noise estimates (% changes, 95%CI) in the main analyses Model 2 

hsCRP, mg/L  Model2 Model2+NO2 Model2+PM10 

Lday, dB(A) N       

<55 40,577 1 1 1 

55-60 10,972 0.1                               

(-2.2 to 2.5) 

-0.7                                   

(-3.3 to 2.0) 

-0.4                            

(-3.0 to 2.3) 
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>=60 4,381 4.2                         

(0.6 to 7.8) 

2.6                                    

(-1.3 to 6.7) 

3.4                            

(-0.5 to 7.5) 

 

Total 

cholesterol, 

mmol/L 

    

Lday, dB(A) N    

<55 56,437 1 1 1 

55-60 17,976 0.004                        

(-0.3 to 0.3) 

0.1                          

(-0.3 to 0.5) 

0.1                        

(-0. 2 to 0.5) 

>=60 7,177 -0.2                      

(-0.7 to 0.3) 

-0. 1                             

(-0.6 to 0.5) 

-0.1                      

(-0.5 to 0.5) 

 

HDL 

cholesterol, 

mmol/L 

    

Lday, dB(A) N    

<55 56,437 1 1 1 

55-60 17,976 0.8                     

(0.4 to 1.3) 

0.5                         

(0.1 to 1.0) 

0.7                      

(0.2 to 1.2) 

>=60 7,177 1.2                   

(0.6 to 1.8) 

0.9                             

(0.2 to 1.6) 

1.2                     

(0.5 to 1.9) 

 

 

Triglycerides, 

mmol/L 

    

Lday, dB(A) N    

<55 56,630 1 1 1 

55-60 17,990 0.04                        

(-0.8 to 0.9) 

-0.4                            

(-1.3 to 0.6) 

-0.2                           

(-1.2 to 0.7) 

>=60 7,179 1.9                            

(0.6 to 3.1) 

0.3                              

(-1.1 to 1.7) 

0.6                             

(-0.8 to 1.9) 

 

Fasting glucose, 

mmol/L 

    

Lday, dB(A) N    

<55 38,984 1 1 1 

55-60 16,903 0.1                         

(-0.1 to 0.3) 

0.04                               

(-0.2 to 0.3) 

0.1                                 

(-0.2 to 0.3) 

>=60 6,878 0.6                         

(0.3 to 0.9) 

0.4                              

(0.01 to 0.7) 
0.4                               

(0. 1 to 0.8) 

 

HbA1c, 

mmol/mol 

    

Lday, dB(A) N    
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<55 31,464 1 1 1 

55-60 13,741 -0.1                          

(-0.2 to 0.2) 

0.05                               

(-0.2 to 0.3) 

0.01                                

(-0.2 to 0.2) 

>=60 5,709 -0.1                          

(-0.4 to 0.2) 

0.1                             

(-0.2 to 0.5) 

0.05                               

(-0.3 to 0.4) 

Bold indicates where significant level<0.05 ; Model 2 adjusted for cohort (pooled analyses only), age, sex, education, employment status, 

smoking status, smoking pack-years, alcohol consumption.; Lday: daytime noiseIQR for daytime noise and PM10 was 5.1 dB(A) and 2.0 

µg/m3 for analyses of hsCRP and triglycerides; IQR for daytime noise and PM10 was 4.2 dB(A) and 2.4 µg/m3 for analyses of fasting 

glucose.  

 

Supplement-5 cohort-specific results (%changes per IQR, 95%CI) and meta-analysis for 

HsCRP and blood lipids: results based on Model2.   

Daytime noise     

 HUNT3 Lifelines Pooled  

(meta-analysis) 

Pooled  

(DataSHIEL

D) 

hsCRP 1.8 (-0.5 to 4.0) 0.4 (-0.7 to 1.6) 0.7 (-0.3 to 1.7) 1.1 (0.02 to 

2.2) 

Total cholesterol -0.1 (-0.5 to 0.3) 0.03 (-0.1 to 0.2) 0 (-0.1 to 0.2) -0.1 (-0.2 to 

0.1) 

Triglycerides  0.1 (-1.0 to 1.1) 0.8 (0.4 to 1.2) 0.7 (0.3 to 1.1) 0.7 (0.3 to 

1.1) 

HDL cholesterol 0 (-0.5 to 0.4) 0.5 (0.3 to 0.7) 0.5 (0.3 to 0.7) 0.5 (0.3 to 

0.7) 

     

PM10     

 HUNT3 Lifelines Pooled  

hsCRP 2.7 (0.2 to 5.3) 0.4 (-1.4 to 2.1) 1.1 (-0.3 to 2.5) 1.4 (0.1 to 

2.7) 

Total cholesterol -0.1 (-0.5 to 0.3) 0.1 (-0.1 to 0.3) 0.1(-0.1 to 0.3) -0.1 (-0.3 

to0.05) 

Triglycerides  0.9 (-0.2 to 2.1) 2.7 (2.1 to 3.3) 2.3 (1.8 to 2.8) 1.9 (1.5 to 

2.4) 

HDL cholesterol 0.3 (-0.2 to 0.9) 0.2 (-0.1 to 0.5) 0.2 (0 to 0.5) 0.2 (-0.1 to 

0.4) 

     

NO2     

 HUNT3 Lifelines Pooled  

hsCRP 1.4 (-1.0 to 3.8) 1.4 (-0.5 to 3.2) 1.4 (-0.1 to 2.8) 1.9 (0.5 to 

3.3) 

Total cholesterol -0.1 (-0.5 to 0.3) 0.2 (0.01 to 0.5) 0.2 (0 to 0.4) -0.1 (-0.3 to 

0.1) 

Triglycerides  0.3 (-0.7 to 1.4) 3.1 (2.5 to 3.8) 2.4 (1.8 to 2.9) 2.2 (1.6 to 

2.7) 

HDL cholesterol 0.5 (0 to 1.0) 0.6 (0.3 to 0.9) 0.6 (0.3 to 0.8) 0.5 (0.3 to 

0.8) 

 

 

 


