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Abstract 1 
Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive 2 
pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of 3 
European ancestry, we define 279 lung function signals, 139 of which are new. In 4 
combination, these variants strongly predict COPD in independent patient populations. 5 
Furthermore, the combined effect of these variants showed generalizability across smokers 6 
and never-smokers, and across ancestral groups. We highlight biological pathways, known 7 
and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-8 
related and other pleiotropic effects of lung function associated variants. This new genetic 9 
evidence has potential to improve future preventive and therapeutic strategies for COPD. 10 

Introduction 11 
Impaired lung function is predictive of mortality1 and is the key diagnostic criterion for 12 
chronic obstructive pulmonary disease (COPD). Globally, COPD accounted for 2.9 million 13 
deaths in 20162, being one of the key causes of both Years of Life Lost and Years Lived with 14 
Disability worldwide3. Determinants of maximally attained lung function and of lung 15 
function decline can influence the risk of developing COPD. Tobacco smoking is the single 16 
largest risk factor for COPD, although other environmental exposures and genetic makeup 17 
are important4,5. Genetic variants associated with lung function and COPD susceptibility can 18 
provide etiological insights, assisting with risk prediction, as well as drug target identification 19 
and validation6. Whilst there has been considerable progress in identifying genetic markers 20 
associated with lung function and risk of COPD4,7-19 seeking a high yield of associated 21 
genetic variants is key to progressing knowledge because: (i) implication of multiple 22 
molecules in each pathway will be needed to build an accurate picture of the pathways 23 
underpinning development of COPD; (ii) not all proteins identified will be druggable and; 24 
(iii) combining information across multiple variants can improve prediction of disease 25 
susceptibility. 26 
Through new detailed quality control and analyses of spirometric measures of lung function 27 
in UK Biobank and expansion of the SpiroMeta Consortium, we undertook a large genome-28 
wide association study of lung function. Our study entailed a near seven-fold increase in 29 
sample size over previous studies of similar ancestry to address the following aims: (i) to 30 
generate a high yield of genetic markers associated with lung function; (ii) to confirm and 31 
fine-map previously reported lung function signals; (iii) to investigate the putative causal 32 
genes and biological pathways through which lung function associated variants act, and their 33 
wider pleiotropic effects on other traits; and (iv) to generate a weighted genetic risk score for 34 
lung function and test its association with COPD susceptibility in individuals of European 35 
and other ancestries. 36 

Results 37 

139 new signals for lung function 38 
We increased the sample size available for the study of quantitative measures of lung 39 
function in UK Biobank by refining the quality control of spirometry based on 40 
recommendations of the UK Biobank Outcomes Adjudication Working Group 41 
(Supplementary Note). Genome-wide association analyses of forced expired volume in 1 42 
second (FEV1), forced vital capacity (FVC) and FEV1/FVC were undertaken in 321,047 43 
individuals in UK Biobank (Supplementary Table 1) and in 79,055 individuals from the 44 
SpiroMeta Consortium (Supplementary Tables 2 and 3). A linear mixed model 45 
implemented in BOLT-LMM20 was used for UK Biobank to account for relatedness and fine-46 
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scale population structure (Online Methods). A total of 19,819,130 autosomal variants 47 
imputed in both UK Biobank and SpiroMeta were analyzed. Peak expiratory flow (PEF) was 48 
also analyzed genome-wide in UK Biobank and up to 24,218 samples from SpiroMeta. 49 
GWAS results in UK Biobank were adjusted for the intercept of LD score regression21, but 50 
SpiroMeta and the meta-analysis were not, as intercepts were close to 1.00 (Online 51 
Methods). All individuals included in the genome-wide analyses were of European ancestry 52 
(Supplementary Figure 1 and Supplementary Note). 53 
To maximize statistical power for discovery of new signals, whilst maintaining stringent 54 
significance thresholds to minimize reporting of false positives, we adopted a study design 55 
incorporating both two-stage and one-stage approaches (Figure 1). In the two-stage analysis, 56 
99 new distinct signals, defined using conditional analyses22, were associated with one or 57 
more traits at P<5×10-9 (23) in UK Biobank and showed association (P<10-3) with a consistent 58 
direction of effect in SpiroMeta (“Tier 1” signals, Supplementary Figure 2; Supplementary 59 
Table 4). In the one-stage analysis, we meta-analyzed UK Biobank and SpiroMeta (up to 60 
400,102 individuals) and 40 additional new distinct signals associated with one or more lung 61 
function traits reaching P<5×10-9 were identified (Supplementary Figure 2, Supplementary 62 
Table 4) that were also associated with P<10-3

 separately in UK Biobank and in SpiroMeta, 63 
with consistent direction of effect (“Tier 2” signals). An additional 323 autosomal signals 64 
were significantly associated with one or more lung function traits in the meta-analysis of UK 65 
Biobank and SpiroMeta (P<5×10-9) and reached P<10-3 for association in only one of UK 66 
Biobank or SpiroMeta (“Tier 3” signals, Supplementary Table 5). Analysis of chromosome 67 
X variants in 359,226 individuals (321,027 UK Biobank and 38,199 SpiroMeta15) gave an 68 
additional five Tier 3 signals. Only the 139 signals meeting Tier 1 and Tier 2 criteria were 69 
followed up further. The strength and direction of association of the sentinel variant (the 70 
variant in each signal with the lowest P value) for these 139 new signals across all 4 lung 71 
function traits are shown in Figure 2. Of the 139 signals, 131 were associated with at least 72 
two lung function traits at P<10-3, eight signals were unique to FEV1/FVC and no signals 73 
were unique to FEV1, FVC or PEF at this threshold. 74 
We assessed whether any of these 139 signals associated with lung function could be driven 75 
via an underlying association with smoking behavior (Online Methods). Only rs193686 76 
(Supplementary Table 6) was associated with smoking behavior. Whilst rs193686 was 77 
associated with smoking initiation (P=9.18×10-6), the allele associated with smoking 78 
initiation was associated with increased lung function in never smokers (FEV1/FVC 79 
P=5.28×10-10, Supplementary Table 7). Therefore, this signal was retained for further 80 
analysis. 81 
A total of 279 signals of association for lung function 82 
Of 157 previously published autosomal signals of association with lung function and 83 
COPD3,6-18

, 142 were associated at P<10-5 in UK Biobank (Online Methods, Supplementary 84 
Figure 3, Supplementary Table 8). Two sentinel variants (rs1689510 and rs11134789) were 85 
associated with smoking initiation (Supplementary Table 6), but were also associated with 86 
lung function in never smokers (Supplementary Table 7). SNP rs17486278 at CHRNA5 and 87 
rs11667314 near CYP2A6 were each associated with cigarettes per day (Supplementary 88 
Table 6); neither were significantly associated with lung function among never smokers and 89 
so were excluded from further analysis. This brings the total number of distinct signals of 90 
association with lung function to 279 (Supplementary Table 9). None of these variants 91 
showed interaction with ever-smoking status (P>1.8×10-4, Online Methods, Supplementary 92 
Table 7). Using the effect estimates, allele frequencies and assuming a total heritability of 93 
40%24,25 (Online Methods), we calculated that the 140 previously reported lung function 94 
signals showing association in this study (UK Biobank P<10-5) explained 5.0%, 3.4%, 9.2% 95 
and 4.5% of the estimated heritability of FEV1, FVC, FEV1/FVC and PEF, respectively. The 96 
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139 new signals reported here, explain an additional 4.3%, 3.3%, 3.9% and 3.3% of the 97 
estimated heritability, respectively. 98 
Identification of putative causal genes 99 
Bayesian refinement was undertaken for each signal, using the meta-analysis of UK Biobank 100 
and SpiroMeta, to identify the set of variants that were 99% likely to contain the underlying 101 
causal variant (assuming the causal variant has been analyzed, Online Methods, 102 
Supplementary Table 10, Supplementary Data 1 and Supplementary Data 2). 103 
To identify putative causal genes for each signal, we identified deleterious variants and 104 
variants associated with gene expression (expression quantitative trait loci (eQTLs)) or 105 
protein levels (protein quantitative trait loci (pQTLs)) within each 99% credible set for all 106 
new and previously reported signals outside the HLA region (Online Methods). 107 
There were 25 SNPs, located in 22 unique genes, which were annotated as potentially 108 
deleterious (Online Methods, Supplementary Table 11). Amongst our new signals, there 109 
were 10 variants annotated as deleterious in 9 different genes: DOCK9 (rs117633128), 110 
CEP72 (rs12522955), BCHE (rs1799807), DST (rs11756977), KIAA0753 (rs2304977, 111 
rs9889363), LRRC45 (rs72861736), BTC (rs11938093), MAB21L4 (rs6709469) and IER5L 112 
(rs184457). Of these, the missense variant in BCHE (rs1799807) had the highest posterior 113 
probability (0.996) in its respective credible set, was low frequency (minor allele frequency 114 
(MAF)=1.95%) and results in an amino acid change from aspartic acid (D) to glycine (G), 115 
known to affect the function of the encoded butyrylcholinesterase enzyme by altering 116 
substrate binding26. The two common missense variants in KIAA0753 were within the 117 
credible set of new signal rs4796334. KIAA0753, CEP72 and LRRC45 all encode proteins 118 
with a role in ciliogenesis or cilia maintenance27-31, and all are highly expressed in the airway 119 
epithelium32.  120 
Variants in the 99% credible sets were queried in three eQTL resources to identify 121 
associations with gene expression in lung33-35 (n=1,111; Supplementary Table 12), blood36 122 
(n=4,896) and a subset of Genotype-tissue Expression (GTEx)37 tissues (max n=388, Online 123 
Methods). The tissues included from GTEx were lung and blood, plus nine tissues containing 124 
smooth muscle (Online Methods). The latter were chosen based on previous reports of 125 
enrichment of lung function GWAS signals in smooth muscle-containing tissues18,38. We 126 
identified 88 genes, implicated by 58 of the 279 signals, for which the most significant SNP 127 
associated with expression of that gene in the respective eQTL resource was within one of the 128 
99% credible sets (Supplementary Table 13). 129 
We checked credible set variants for association with protein levels in a pQTL study39 130 
comprising SNP associations for 3,600 plasma proteins (Online Methods). We found five 131 
proteins with a sentinel pQTL contained within our lung function credible set: ECM1, 132 
THBS4, NPNT, C1QTNF5 and SCARF2 (Supplementary Table 14). 133 
In total, 107 putative causal genes were identified (Table 1), amongst which, we highlight 75 134 
for the first time as putative causal genes for lung function (43 implicated by a new signal 135 
and 32 newly implicated by a previous signal18). 136 
Pathway analysis 137 
We tested whether these 107 putative causal genes were enriched in gene sets and biological 138 
pathways (Online Methods), finding an enrichment of genes in elastic fiber and extracellular 139 
matrix organization pathways, and a number of gene ontologies including gene sets relating 140 
to the cytoskeleton and processes involved in ciliogenesis (Supplementary Table 15). 141 
Whilst the enrichment in elastic fiber-related pathways is consistent with our previous 142 
study18, enrichment in these pathways was further supported in this analysis by two new 143 
genes, ITGAV (at a new signal) and GDF5 (a newly implicated gene for a previously reported 144 
signal), and by strengthened eQTL evidence for TGFB2 and MFAP2 at two previously 145 
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reported signals.  The presence of TGFB2, GDF5 and SMAD3 in our list of 107 genes resulted 146 
in enrichment of a TGF-β superfamily signalling pathway (TGF-Core) and related gene 147 
ontology terms (Supplementary Table 15). 148 
Functional enrichment analyses 149 
Using stratified LD-score regression40, we showed that FEV1/FVC and FVC heritability is 150 
significantly enriched at variants overlapping histone marks that are specific to lung, fetal 151 
lung, and smooth muscle-containing cell lines. SNPs that overlap with H3K4me1 marks that 152 
are specific to fetal lung correspond to 6.99% of the input SNPs yet explain 57.09% 153 
(P=2.85×10-25) and 35.84% (P=4.19×10-21) of the SNP-chip heritability for FEV1/FVC and 154 
FVC, respectively (Supplementary Table 16).  155 
We also tested enrichment of (i) FEV1/FVC and (ii) FVC SNPs at DNase I hypersensitive site 156 
(DHS) hotspots using GARFIELD41 (Online Methods). For FEV1/FVC results, we see 157 
significant enrichment across most cell lines with increased fold-enrichment in fetal and adult 158 
lung, fetal muscle and fibroblasts (Supplementary Figure 4a). For FVC, we see similar 159 
broad significant enrichment without evidence of increased enrichment in a subset of tissues 160 
(Supplementary Figure 4b) suggesting that SNPs influencing FVC may act via more 161 
complex and broader developmental pathways. 162 
We used DeepSEA42 to identify whether our signals were predicted to have a chromatin 163 
effect in lung-related cell lines.  We identified 10 signals (including 5 new signals) for which 164 
the SNP with the largest posterior probability of being causal also had a significant predicted 165 
effect on a DHS in lung-related cells (Supplementary Table 17). This included a new signal 166 
near SMURF2 (rs11653958). 167 
Drug targets  168 
All 107 putative causal genes were investigated for known gene-drug interactions43 169 
(Supplementary Table 18). We highlight two examples of new genetic signals implicating 170 
targets for drugs in development for indications other than COPD. One of our new signals is 171 
an eQTL for ITGAV. ITGAV encodes a component of the αvβ6 integrin heterodimer, which is 172 
inhibited by a monoclonal antibody in development for pulmonary fibrosis (NCT01371305) 173 
and for which the small molecule GSK3008348 (NCT03069989) is an antagonist44. Integrins 174 
have an emerging role as local activators of TGFβ and specifically the avb6 integrin 175 
heterodimer can activate latent-TGFβ45. In our study, the allele associated with reduced 176 
expression of ITGAV (Supplementary Table 13) was associated with increased lung 177 
function (Supplementary Table 9) suggesting that inhibitors of αvβ6 integrin might also 178 
have a beneficial effect in COPD. Another new signal is associated with expression of 179 
TNFSF13 (synonym APRIL), which encodes a cytokine of the TNF ligand family. Atacicept 180 
blocks B cell stimulation by TNFSF13 (as well as by BLyS) and reduced systemic lupus 181 
erythematosus disease activity in a recent Phase IIb trial46. In our study, the allele associated 182 
with decreased expression of TNFSF13 was associated with reduced FEV1, indicating that 183 
vigilance for pulmonary consequences of atacicept may be warranted. 184 
Association with FEV1/FVC and COPD in multiple ancestries 185 
We constructed a genetic risk score (GRS) weighted by FEV1/FVC effect sizes comprising 186 
all 279 sentinel variants, and tested for association with FEV1/FVC and GOLD Stage 2-4 187 
COPD (FEV1/FVC<0.7 and FEV1<80% predicted) in different ancestry groups in UK 188 
Biobank, and China Kadoorie Biobank (Online Methods, Supplementary Table 19). UK 189 
Biobank participants of non-European ancestry were not included in the discovery analyses. 190 
The GRS was associated with a significant decrease in lung function, and corresponding 191 
significant increase in COPD risk in each of the independent ancestry groups (Figure 3a).  192 
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We tested for a GRS interaction with smoking in European ancestry individuals in UK 193 
Biobank47. No statistical interaction was seen for FEV1/FVC (interaction term -0.002 per SD 194 
change in GRS, 95% CI: [0.009, 0.005], P=0.532), whilst the findings for COPD were 195 
consistent with a slightly smaller effect of the GRS in ever-smokers (odds ratio (OR) for 196 
ever-smoking-GRS interaction term per SD change in GRS 0.96, 95% CI: [0.92, 0.99], 197 
P=0.015). 198 
The association of the GRS with COPD susceptibility was additionally tested in five 199 
independent COPD case-control studies (Supplementary Table 20, Online Methods). 200 
Similar effect size estimates were seen across each of the 5 European ancestry studies 201 
(Figure 3b); in the meta-analysis of these studies (n=6,979 cases and 3,915 controls), the 202 
odds ratio for COPD per standard deviation of the weighted GRS was 1.55 (95% CI: [1.48, 203 
1.62]), P=2.87×10-75 (Supplementary Table 21). The GRS was also associated with COPD 204 
in individuals of African-American ancestry in COPDGene (P=8.36×10-7), albeit with a 205 
smaller effect size estimate, odds ratio=1.26 (95% CI: [1.15, 1.37]). 206 
To aid clinical interpretation, we divided individuals in each of the five European ancestry 207 
COPD case-control studies into deciles, according to their value of the weighted GRS. The 208 
odds ratio for COPD in members of the highest GRS decile compared to the lowest GRS 209 
decile was 4.73 (95% CI: [3.79, 5.90]), P=3.00×10-43 (Figure 3c, Supplementary Table 22). 210 
We calculated the population attributable risk fraction (Supplementary Note) and estimated 211 
that the proportion of COPD cases attributable to risk scores above the first GRS decile was 212 
54.6% (95% CI: [50.6%, 58.4%]).  213 
Incorporation of the GRS into a risk model already comprising available clinical information 214 
(age, sex, height and pack-years of smoking in COPDGene non-Hispanic Whites) led to a 215 
statistically significant (P=3.33×10-10), yet modest, increase in the area under the curve, from 216 
0.751 to 0.771 (Supplementary Note). Based on our estimated GRS relative risk and 217 
absolute risk estimates of COPD48, one would expect the highest GRS risk decile group of 218 
smokers to have an absolute risk of developing COPD by approximately 70 years of age of 219 
82.4%, versus 17.4% for the lowest GRS decile (Supplementary Note). 220 
Pleiotropy and phenome-wide association studies  221 
As phenome-wide association studies (PheWAS) can provide evidence mimicking 222 
pharmacological interventions of drug targets in humans and informing drug development49, 223 
we undertook a PheWAS of 2,411 phenotypes in UK Biobank (Online Methods, Figure 4, 224 
Supplementary Table 23); 226 of the 279 sentinel variants were associated (false discovery 225 
rate (FDR)<1%) with one or more traits and diseases (excluding quantitative lung function 226 
traits). Eighty-five of the lung function signals were associated with standing height. In order 227 
to investigate whether the genetic association signals for lung function were driven by 228 
incomplete adjustment for height, we tested for correlation of effects on lung function in UK 229 
Biobank and height in a meta-analysis of UK Biobank and the GIANT consortium for 246 of 230 
the 279 signals that had a proxy variant in GIANT50; there was no significant correlation 231 
(Supplementary Figure 5). Additionally, the PheWAS identified associations with body 232 
composition measures such as fat free mass (54 SNPs) and hip circumference (40 SNPs), as 233 
well as muscle strength (32 SNPs, grip strength). One hundred and fourteen of the 279 SNPs 234 
were associated with several quantitative measures of blood count, including eosinophil 235 
counts and percentages (25 SNPs). Twenty-five of our SNPs were also associated with 236 
asthma including 12 SNPs associated both with asthma and eosinophil measures 237 
(Supplementary Table 24). Eight of these SNPs were in linkage disequilibrium (LD, r2>0.1) 238 
with a SNP reported for association with asthma in previously published genome-wide 239 
association studies. We compared our observed effect sizes with those estimated after 240 
exclusion of all self-reported asthma cases and observed similar estimates (Supplementary 241 
Figure 6) suggesting that the lung function associations we report are not driven by asthma. 242 
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We examined the specificity of genetic associations, given the potential for this to predict 243 
specificity of drug target modification, and found that 53 of the 279 signals were associated 244 
only with lung function and COPD-related traits. In contrast, three of our 279 signals were 245 
associated with over 100 traits across multiple categories – among these rs3844313, a known 246 
intergenic signal near HLA-DQB1 was associated with 163 traits, and also had the strongest 247 
signal in the PheWAS, which was for association with intestinal malabsorption and celiac 248 
disease. 249 
 250 
In our 279-variant weighted GRS PheWAS analysis (Supplementary Table 25), we found 251 
association with respiratory traits including COPD, chronic bronchitis, emphysema, 252 
respiratory failure, corticosteroid use and both pediatric and adult-onset asthma (Figure 5a). 253 
The GRS was also associated with non-respiratory traits including celiac disease, an intestinal 254 
autoimmune disorder (Figure 5b).  These pleiotropic effects on risk of autoimmune diseases 255 
was further confirmed by analysis of previously reported GWAS (Online Methods, 256 
Supplementary Table 26) which showed overlapping single variant associations with 257 
Crohn’s disease, ulcerative colitis, psoriasis, systemic lupus erythematosus, IgA nephropathy, 258 
pediatric autoimmune disease and type 1 diabetes. 259 

Discussion 260 
The large sample size of our study, achieved by our refinement of the spirometry in UK 261 
Biobank and inclusion of the substantially expanded SpiroMeta consortium data set, has 262 
doubled the yield of lung function signals to 279.  Fine-mapping of all new and previously 263 
reported signals, together with gene and protein expression analyses with improved tissue 264 
specificity and stringency, has implicated new genes and pathways, highlighting the 265 
importance of cilia development, TGF-β signalling via SMAD3, and elastic fibers in the 266 
etiology of airflow obstruction. Many of the genes and pathways reported here contain 267 
druggable targets; we highlight examples where the genetic variants mimicking therapeutic 268 
modulation of targets may have opposing effects on lung function. We have developed and 269 
applied the first weighted GRS for lung function and tested it in independent COPD case-270 
control studies. Our GRS shows stronger association and larger effect size estimates than a 271 
previous GRS in European ancestry populations18, as well as generalizability to other 272 
ancestry groups. We undertook the first comprehensive PheWAS for lung function signals, 273 
and report genetic variants with apparent specificity of effects and others with pleiotropic 274 
effects that might indicate shared biological pathways between different diseases. 275 
For the first time in a GWAS of lung function, we report an enrichment of genes involved in 276 
ciliogenesis (including KIAA0753, CDK2 and CEP72). Defects in primary cilia as a result of 277 
highly deleterious mutations in essential genes result in ciliopathies known to affect multiple 278 
organ systems. We found an enrichment of genes with a role in centriolar replication and 279 
duplication, core processes in primary and motile cilia formation. Mutations in KIAA0753 280 
cause the ciliopathies Joubert Syndrome and Orofaciodigital Syndrome28. Reduced airway 281 
motile cilia function impacting mucus clearance is a feature of COPD, but it has not been 282 
clear whether this is causal or the consequence of damage by external factors such as 283 
smoking or infection. Our findings suggest that impaired ciliary function might be a driver of 284 
the disease process. We have previously shown enrichment of rare variants in cilia-related 285 
genes in heavy smokers without airflow obstruction51. 286 
New signals, implicating ITGAV and GDF5, as well as stronger support for TGFB2 and 287 
MFAP2 as likely causal genes, provide new genetic support for the importance of elastic fiber 288 
pathways in lung function and COPD18. The elastic fibers of the extracellular matrix are 289 
known to be disrupted in COPD52. As the breakdown of elastic fibers by neutrophil elastase 290 
leads to emphysema in individuals with alpha1-antitrypsin deficiency, we also assessed the 291 
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association with the SERPINA1 Z allele, which was not associated with FEV1/FVC in our 292 
study (rs28929474, P=0.109 in UK Biobank).  293 
Smoking and genetic risk both have important effects on lung function and COPD. For lung 294 
function, we found no interaction between smoking and individual variants, and for 295 
FEV1/FVC no interaction between smoking status and the weighted GRS. However, for 296 
COPD a weak smoking-GRS interaction was observed. Whilst the weighted GRS showed a 297 
strong association with COPD susceptibility, and a high attributable risk, we do not claim that 298 
this would represent an appropriate method of screening for COPD risk. Importantly, our 299 
findings demonstrate the high absolute risk among genetically susceptible smokers (82.4% by 300 
approximately 70 years of age). 301 
We used two complementary study designs to maximize sample size for discovery and ensure 302 
robustness of findings by requiring independent support for association. Furthermore, through 303 
additional analysis of the spirometry data in UK Biobank and substantial expansion of the 304 
SpiroMeta consortium, we have markedly increased samples sizes to almost seven times 305 
those included in previous studies. As no lower MAF threshold was applied in our analyses, 306 
an overall threshold of P<5×10-9, as recommended for re-sequencing analyses of European 307 
ancestry individuals23, was applied. We identified the largest number of new signals in our 308 
more stringent two-stage design (“Tier 1”, 99 new signals). Amongst the signals that we 309 
report as “Tier 3” (and did not include in further analyses), all reached P<10-3 in UK Biobank 310 
and 183 met a less stringent threshold of P<0.05 in SpiroMeta. 311 
Our study is the first to investigate genome-wide associations with PEF. PEF is determined 312 
by various physiological factors including lung volume, large airway caliber, elasticity of the 313 
lung and expiratory muscle strength, is used for monitoring asthma, and was incorporated in a 314 
recently evaluated clinical score for diagnosing COPD and predicting acute exacerbations of 315 
COPD53. Overall, 133 of the 279 signals were also associated with PEF (P<10-5) and for 15 316 
signals (including 4 new signals), PEF was the most significantly associated trait. Of note, a 317 
signal near SLC26A9, a known cystic fibrosis modifier gene54, was highly significantly 318 
associated with PEF in UK Biobank (P=3.97×10-66) and nominally significant in SpiroMeta 319 
(P=6.93×10-3), with consistent direction of effect, but did not meet the Tier 2 criteria. This 320 
could reflect the limited power for PEF in SpiroMeta (up to 24,218 for PEF compared to 321 
79,055 for the other traits). 322 
Examining associations of a given genetic variant with a wide range of human phenotypes is 323 
a valuable tool in therapeutic target validation. As in our PheWAS, it can highlight variants 324 
which show associations with one or more respiratory traits that might be expected to 325 
demonstrate greater target specificity than variants associated with many traits. Additionally, 326 
in some instances, association with multiple traits may indicate the relevance of drug 327 
repurposing. Association of a given SNP with multiple traits does not necessarily imply 328 
shared etiology, and further investigation is warranted. Our GRS PheWAS assesses broader 329 
genetic overlap between lung function and other traits and supports the evidence for some 330 
shared genetic determinants with autoimmune diseases. 331 
In summary, our study has doubled the number of signals for lung function and provides new 332 
understanding and resources of utility for the development of therapeutics. The 279-variant 333 
GRS we constructed was associated with a 4.73-fold increased relative risk of moderate-334 
severe COPD between highest and lowest deciles, such that one would expect over 80% of 335 
smokers in the highest genetic risk decile to develop COPD. The GRS was also predictive of 336 
COPD across multiple ancestral groups. Our PheWAS highlights both expected and 337 
unexpected associations relevant to respiratory and other systemic diseases. Investigating the 338 
nature of the pleiotropic effects of some of these variants will be of benefit for drug target 339 
identification and validation. 340 
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Figure Legends 573 
Figure 1: Study design 574 
Tier 1 signals had P<5×10-9 in UK Biobank and P<10-3 in SpiroMeta with consistent direction of effect. 575 
Tier 2 signals had P<5×10-9 in the meta-analysis of UK Biobank and SpiroMeta with P<10-3 in UK Biobank and P<10-3 in SpiroMeta with consistent directions 576 
of effect. Signals with P<5×10-9 in the meta-analysis of UK Biobank and SpiroMeta, and that had consistent directions of effect but did not meet P<10-3 in both 577 
cohorts were reported as Tier 3. 578 

 579 
Figure 2: Strength and direction of association across four lung function traits for 139 novel signals: 580 
Signals are in chromosome and genomic position order from top to bottom then left to right. Red indicates a decrease in the lung function trait; blue indicates an 581 
increase. All effects are aligned to the allele associated with decreased FEV1/FVC, hence the FEV1/FVC column is only red or white. P-values are from the 582 
meta-analysis of UK Biobank and SpiroMeta (n=400,102). The scale points are thresholds used for (i) confirmation in 2-stage analysis and 1-stage analysis 583 
(P<10-3); (ii) confirmation of association of previous signals (P<10-5); (iii) signal selection in 2-stage and 1-stage analysis (P<5×10-9); capped at (P<10-20).  584 
FEV1, forced expired volume in 1 second; FVC, forced vital capacity; PEF, peak expiratory flow  585 
 586 
Figure 3: Association of weighted genetic risk score (wGRS) with COPD and FEV1/FVC. 587 

a. Association of the wGRS with FEV1/FVC and COPD in UK Biobank (UKB) and China Kadoorie Biobank (CKB) (Supplementary Table 19). Left-588 
hand axis: standard deviation (SD) change in FEV1/FVC per SD increase in wGRS (light grey bars, N=total sample size). Right-hand axis: the translation 589 
of this effect to COPD (GOLD stage 2-4) odds ratio (OR) per SD increase in wGRS in the same individuals for UKB ancestries with >100 COPD cases 590 
(dark grey bars, N=number of cases + number of controls). Whiskers represent 95% confidence intervals. Some variants in the wGRS were discovered in 591 
UKB Europeans, therefore UKB Europeans are shown for reference only (far left, ‘Discovery sample’). All other ancestral groups are independent to 592 
UKB Europeans. 593 

b. OR for COPD per SD increase in wGRS in six study groups. COPD was defined using GOLD 2-4 criteria (Supplementary Table 21: means and SDs of 594 
risk scores). The vertical black line indicates the null effect (OR=1). The point estimate of each study is represented by a box proportional to study 595 
weight; whiskers represent 95% confidence intervals. The diamond represents a fixed effect meta-analysis of the five European-ancestry groups, the 596 
width of which represents the 95% confidence interval (I2 statistic=0). 597 

c. OR for COPD according to deciles of the wGRS, with decile 1 (the 10% of individuals with the lowest GRS) as the reference group. Each point 598 
represents a meta-analysis of results for a given comparison (e.g. decile 2 vs reference, decile 3 vs reference, etc.) in five external European-ancestry 599 
study groups (COPDGene, ECLIPSE, GenKOLS, SPIROMICS, NETT-NAS). Deciles were calculated and models were run in each group separately. 600 
Error bars show 95% confidence intervals (Supplementary Table 22). 601 

 602 
Figure 4: Individual PheWAS with 279 variants (traits passing FDR 1% threshold) 603 
Separate association of 279 variants with 2,411 traits (FDR<1%) in UK Biobank (n up to 379,337). In each category, the trait with the strongest association, i.e. 604 
highest –log10(FDR), is shown first, followed by other traits in that category in descending order of –log10(FDR). Categories are colour-coded, and outcomes 605 
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are denoted with a circular or triangular point, according to whether they were coded as binary or quantitative. The top association per-category is labelled with 606 
its rsID number, and a plain English label describing the trait. The letter at the beginning of each label allows easy cross-reference with the categories labelled 607 
in the legend. Zoomed in versions of each category with visible trait names and directionality are available in Supplementary Figure 10. These plots have 608 
signed log10(FDR) values, where a positive value indicates that a positive SNP-trait association is concordant with the risk allele for reduced lung function (as 609 
measured by lower FEV1/FVC). Tabulated results of all SNP-trait PheWAS associations associated at an FDR of<1% are available in Supplementary Table 610 
23. 611 
 612 
Figure 5: PheWAS with genetic risk score (traits passing FDR 1% threshold) 613 
Association of a 279 variant weighted genetic risk score with 2,453 traits (FDR<1%) in UK Biobank (n up to 379,337). In each panel, the category with the 614 
strongest association, i.e. highest –log10(FDR), is shown first, followed by all other associations in that category, ordered by descending order of –log10(FDR). 615 
Sample sizes varied across traits and are available in Supplementary Table 25, along with the full summary statistics for each association, plus details of 616 
categorisation and plain English labels for each trait. Trait categories are colour coded, and outcomes are denoted with a circular or triangular point, according 617 
to whether they were coded as binary or quantitative. The sign of the log10(FDR) value is positive where an increase in the risk score (i.e. greater risk of COPD, 618 
reduced lung function) is associated with a positive effect estimate for that trait. *QC refers to spirometry passing European Respiratory Society / American 619 
Thoracic Society (ERS / ATS) criteria. SR=self-report; HES=Hospital Episode Statistics. 620 

a. Associations with respiratory traits. 621 
b. Associations with all other traits. ENT=Ear, Nose and Throat; FBC=Full Blood Count. 622 



19 
 

Tables 623 

Table 1: Genes implicated using gene expression data, protein level data and functional annotation 624 
†Genes implicated by eQTL signals: Lung eQTL (n=1,111) and Blood eQTL (n=4,896) datasets and eleven GTEx (V7) tissues were screened: Artery Aorta (n=267), Artery 625 
Coronary (n=152), Artery Tibial (n=388), Colon Sigmoid (n=203), Colon Transverse (n=246), Esophagus Gastroesophageal Junction (n=213), Esophagus Muscularis (n=335), 626 
Lung (n=383), Small Intestine Terminal Ileum (n=122), Stomach (n=237), and Whole Blood (n=369); see Supplementary Table 13 for direction of gene expression for the 627 
COPD risk (FEV1/FVC reducing) allele. 628 
‡Genes implicated by pQTL signals: pQLT look up in 3,600 plasma proteins (n up to 3,300). 629 
*Genes implicated because they contain a deleterious variant (Supplementary Table 11). 630 
“Other traits” column lists the other lung function traits for which the sentinel was associated at P<5×10-9 in the meta-analysis of UK Biobank and SpiroMeta. 631 
In total, 107 putative causal genes were identified: 8 by both a deleterious variant and an eQTL signal (including KIAA0753 implicated by two deleterious variants), 1 (NPNT) 632 
by both an eQTL and a pQTL signal, 1 (SCARF2) by both a deleterious variant and a pQTL signal, 13 by a deleterious variant only, 81 by an eQTL signal only and 3 by a pQTL 633 
signal only 634 

Gene Phenotype Other traits 

Novel 
Tier/ 
Previous Sentinel SNP Position (b37) 

COPD 
risk/alt Functionally implicated genes 

DHDDS (intron) FVC FEV1 Tier 2 rs9438626 1:26,775,367 G/C DHDDS† 
DHDDS (3’-UTR) FEV1  Tier 1 rs12096239 1:26,796,922 C/G HMGN2†, DHDDS† 
NEXN (intron) FEV1/FVC  Tier 1 rs9661687 1:78,387,270 T/C NEXN† 
DENND2D (intron) FEV1/FVC FEV1 Tier 1 rs9970286 1:111,737,398 G/A CEPT1†, CHI3L2†, DRAM2† 
C1orf54 (intron) PEF  Tier 1 rs11205354 1:150,249,101 C/A MRPS21†, RPRD2†, ECM1‡ 
KRTCAP2 FEV1/FVC  Tier 1 rs141942982 1: 155153537 T/C THBS4‡ 
RALGPS2 (intron) FEV1 FVC Tier 1 rs4651005 1:178,719,306 C/T ANGPTL1† 
LMOD1 (intron) FEV1/FVC  Tier 2 rs4309038 1:201,884,647 G/C SHISA4† 
ATAD2B (intron) FVC FEV1 Tier 2 rs13009582 2:24,018,480 G/A UBXN2A† 
PKDCC FVC FEV1 Tier 1 rs4952564 2:42,243,850 A/G PKDCC† 
ITGAV (intron) FEV1/FVC  Tier 1 rs2084448 2:187,530,520 C/T ITGAV† 
SPATS2L (intron) FEV1/FVC  Tier 2 rs985256 2:201,208,692 C/A SPATS2L† 
MAB21L4 FVC  Tier 1 rs6437219 2:241,844,033 C/T MAB21L4†* 
MIR548G FVC FEV1 Tier 1 rs1610265 3:99,420,192 T/C FILIP1L† 
BCHE (exon) FEV1/FVC  Tier 1 rs1799807 3:165,548,529 C/T BCHE* 
BTC (intron) FEV1/FVC FEV1 Tier 1 rs62316310 4:75,676,529 G/A BTC* 
LOC100996325 FEV1 FEV1/FVC Tier 1 rs11739847 5:609,661 A/G CEP72* 
RNU6-71P FEV1 FEV1/FVC, PEF Tier 1 rs2894837 6:56,336,406 G/A DST* 
JAZF1 (intron) FEV1 FVC, PEF Tier 1 rs1513272 7:28,200,097 C/T JAZF1† 
MET (intron) FEV1/FVC  Tier 2 rs193686 7:116,431,427 T/C MET† 
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Gene Phenotype Other traits 

Novel 
Tier/ 
Previous Sentinel SNP Position (b37) 

COPD 
risk/alt Functionally implicated genes 

IER5L FEV1  Tier 2 rs967497 9:131,943,843 G/A CRAT†, PTPA†, IER5L* 
DOCK9 FEV1/FVC  Tier 1 rs11620380 13:99,665,512 A/C DOCK9* 
CHAC1 FVC  Tier 1 rs4924525 15:41,255,396 A/C INO80†, CHP1†, RAD51† 
ATP2A3 FEV1/FVC  Tier 1 rs8082036 17:3,882,613 G/C ATP2A3† 
PITPNM3 FEV1  Tier 2 rs4796334 17:6,469,793 A/G KIAA0753†*, TXNDC17†, PITPNM3† 
TNFSF12-TNFSF13 FEV1  Tier 2 rs4968200 17:7,448,457 C/G TNFSF13†, SENP3† 
NCOR1 (intron) FVC  Tier 2 rs34351630 17:16,030,520 C/T ADORA2B†, TTC19† 
ASPSCR1 (intron) FVC FEV1 Tier 1 rs59606152 17:79,952,944 C/T LRRC45* 
RMC1 FVC FEV1 Tier 1 rs303752 18:21,074,255 A/G RMC1† 
ZFP82 FVC  Tier 2 rs2967516 19:36,881,643 A/G ZFP14†, ZFP82† 
MFAP2 FEV1/FVC FVC, PEF Previous rs9435733 1:17,308,254 C/T MFAP2† 
LOC101929516 FEV1/FVC FEV1, PEF Previous rs755249 1:39,995,074 T/C PABPC4† 
TGFB2 PEF  Previous rs6604614 1:218,631,452 C/G TGFB2† 
TRAF3IP1 FEV1 FEV1/FVC Previous rs6710301 2:239,441,308 C/A ASB1* 
SLMAP (intron) FEV1 FVC, FEV1/FVC, PEF Previous rs6445932 3:57,879,611 T/G SLMAP† 
RSRC1 (intron) FVC FEV1 Previous rs12634907 3:158,226,886 G/A RSRC1† 
GSTCD (intron) FEV1 FVC, FEV1/FVC Previous rs11722225 4:106,766,430 T/C INTS12† 
NPNT (intron) FEV1/FVC FEV1, FVC, PEF Previous rs34712979 4:106,819,053 A/G NPNT†‡ 
AP3B1 (intron) FVC  Previous rs425102 5:77,396,400 G/T AP3B1† 
SPATA9 FEV1/FVC  Previous rs987068 5:95,025,146 C/G RHOBTB3† 
P4HA2-AS1 FVC  Previous rs3843503 5:131,466,629 A/T SLC22A5†, P4HA2†, C1QTNF5‡ 
CYFIP2 (intron) FEV1/FVC FEV1, PEF Previous rs11134766 5:156,908,317 T/C ADAM19† 
ADAM19 (intron) FEV1/FVC FEV1, PEF Previous rs11134789 5:156,944,199 A/C ADAM19†* 
DSP (intron) FEV1/FVC  Previous rs2076295 6:7,563,232 T/G DSP† 
MIR588 FVC FEV1 Previous rs6918725 6:126,990,392 T/G CENPW† 
ADGRG6 (exon) FEV1/FVC FVC, PEF Previous rs17280293 6:142,688,969 A/G ADGRG6* 
C1GALT1 (intron) FEV1/FVC  Previous rs4318980 7:7,256,490 A/G C1GALT1† 
QSOX2 (3’-UTR) FVC FEV1 Previous rs7024579 9:139,100,413 T/C QSOX2† 
DNLZ (intron) FVC  Previous rs4073153 9:139,259,349 G/A SNAPC4†, CARD9†, INPP5E† 
CDC123 (intron) FEV1/FVC FEV1, FVC, PEF Previous rs7090277 10:12,278,021 T/A NUDT5† 
MYPN (intron) FVC FEV1 Previous rs10998018 10:69,962,954 A/G MYPN* 
EML3 (intron) FEV1 FVC Previous rs71490394 11:62,370,155 G/A EEF1G†, ROM1†*, EML3†* 
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Gene Phenotype Other traits 

Novel 
Tier/ 
Previous Sentinel SNP Position (b37) 

COPD 
risk/alt Functionally implicated genes 

ARHGEF17 (intron) FEV1/FVC FEV1 Previous rs2027761 11:73,036,179 C/T FAM168A†, ARHGEF17†* 
RAB5B (intron) FEV1  Previous rs1689510 12:56,396,768 C/G CDK2† 
LRP1 (intron) FEV1/FVC PEF Previous rs11172113 12:57,527,283 T/C LRP1† 
FGD6 (intron) FEV1/FVC  Previous rs113745635 12:95,554,771 T/C FGD6† 
RPAP1 FEV1/FVC  Previous rs2012453 15:41,840,238 G/A ITPKA†, LTK†, TYRO3†, RPAP1† 
AAGAB FVC  Previous rs12917612 15:67,491,274 A/C AAGAB†, SMAD3†, IQCH† 
THSD4 (intron) FEV1/FVC FEV1, PEF Previous rs1441358 15:71,612,514 G/T THSD4† 

IL27 FEV1  Previous rs12446589 16:28,870,962 A/G SBK1†, TUFM†, SGF29†, SULT1A1†, SULT1A2†*, SH2B1†, NPIPB7†, CLN3†, 
ATXN2L†, EIF3C† 

MMP15 (intron) FEV1/FVC  Previous rs11648508 16:58,063,513 G/T MMP15† 
SSH2 (intron) FEV1/FVC PEF Previous rs2244592 17:28,072,327 A/G EFCAB5† 
FBXL20 (intron) FVC FEV1 Previous rs8069451 17:37,504,933 C/T CDK12†, FBXL20† 
MAPT-AS1 FEV1 FVC, PEF Previous rs79412431 17:43,940,021 A/G LRRC37A4P†, MAPT* 
TSEN54 (intron) FEV1  Previous rs9892893 17:73,525,670 G/T CASKIN2†, TSEN54* 
LTBP4 (exon) FEV1/FVC PEF Previous rs34093919 19:41,117,300 G/A LTBP4* 
ABHD12 (intron) FEV1  Previous rs2236180 20:25,282,608 C/T PYGB†* 
UQCC1 (5’-UTR) FVC FEV1, PEF Previous rs143384 20:34,025,756 G/A UQCC1†, GDF5† 
SLC2A4RG (intron) FVC FEV1 Previous rs4809221 20:62,372,706 A/G LIME1† 
SCARF2 (intron) FEV1 FEV1/FVC Previous rs9610955 22:20,790,723 C/G SCARF2*‡ 

635 



22 
 

Online Methods 636 

Study Design Overview and rationale 637 
For the two-stage approach, we first selected distinct signals of association (defined using conditional 638 
analyses) with one or more traits achieving P<5×10-9 in UK Biobank only (maximum n=321,047). A 639 
threshold of P<5×10-9 was selected to maximize stringency and for consistency with currently recommended 640 
genome-wide significance thresholds for re-sequencing analyses of European ancestry individuals23. We 641 
reported as new those signals which additionally met P<10-3 in SpiroMeta (N effective>70% of n up to 642 
79,055; see Supplementary Note and Supplementary Figure 7 for power calculations), with consistent 643 
directions of effect. We term these “Tier 1“ signals, as they meet our highest level of stringency. Methods 644 
for conditional analyses and determining novelty are described below. 645 
For the one-stage approach, we selected distinct signals of association (defined using conditional analyses) 646 
with one or more traits reaching P<5×10-9 in the meta-analysis of UK Biobank and SpiroMeta (maximum 647 
n=400,102), reporting as new those with a consistent direction of effect that additionally met P<10-3 in both 648 
UK Biobank and SpiroMeta. We term these signals “Tier 2“, as they meet our second-highest level of 649 
stringency. 650 
All signals meeting either set of criteria described above, and that had not been previously published, were 651 
reported as new association signals for lung function. Signals that reached P<5×10-9 in the meta-analysis of 652 
UK Biobank and SpiroMeta, had a consistent direction of effect in UK Biobank and SpiroMeta, but that did 653 
not reach P<10-3 in both UK Biobank and SpiroMeta are presented as “Tier 3”, and were not included in 654 
further analyses. 655 
Data for chromosome X were available for 321,027 European individuals in UK Biobank and 38,199 656 
individuals from SpiroMeta (1000 Genomes Project Phase 1 imputation).55 657 
Please see the ‘Life Sciences Reporting Summary’. 658 
UK Biobank  659 
The UK Biobank resource is described elsewhere (see URLs). Individuals were selected for inclusion in this 660 
study if they: (i) had complete data for age, sex, height and smoking status; (ii) had spirometry meeting 661 
quality control requirements (based on analyses of acceptability, reproducibility and blow curve metrics; 662 
Supplementary Note); (iii) had genome-wide imputed data and; (iv) were of European ancestry based on 663 
genetic data (Supplementary Note; Supplementary Figure 1). Genotyping was undertaken using the 664 
Affymetrix Axiom® UK BiLEVE and UK Biobank arrays13. Genotypes were imputed to the Haplotype 665 
Reference Consortium panel56 (Supplementary Note), and retained if minor allele count≥3 and imputation 666 
quality (info)>0.5. In total, 321,047 individuals were included in our analyses (Supplementary Table 1). 667 
Residuals from linear regression of each trait (FEV1, FVC, FEV1/FVC and PEF) against age, age2, sex, 668 
height, smoking status (ever/never) and genotyping array were ranked and inverse-normal transformed, 669 
giving normally distributed Z-scores. These Z-scores were used for genome-wide association testing under 670 
an additive genetic model using BOLT-LMM v2.320. Principal components were not included as BOLT-671 
LMM uses a linear mixed model to account for relatedness and fine-scale population structure.  672 
Linkage disequilibrium (LD) score regression implemented in LDSC21 was used to estimate test statistic 673 
inflation due to confounding. Genomic control was applied, adjusting test statistics by LD score regression 674 
intercepts: 1.12 for FEV1, 1.14 for FVC, 1.19 for FEV1/FVC and 1.13 for PEF (Supplementary Figure 8; 675 
Supplementary Table 27), acknowledging that this might be over-conservative for UK Biobank. 676 
SpiroMeta consortium 677 
The SpiroMeta consortium meta-analysis comprised a total of 79,055 individuals from 22 studies. Thirteen 678 
studies (n=21,436) were imputed to the 1000 Genomes Project Phase 1 panel55 (B58C, BHS1&2, three 679 
Croatian studies [CROATIA-Korcula, CROATIA-Split and CROATIA-Vis], Health 2000, KORA F4, 680 
KORA S3, LBC1936, NSPHS, ORCADES, SAPALDIA and YFS) and 9 studies (n=61,682) were imputed 681 
to the Haplotype Reference Consortium (HRC) panel57 (EPIC [obese cases and population-based studies], 682 
GS:SFHS, NFBC1966, NFBC1986, PIVUS, SHIP, SHIP-TREND, UKHLS and VIKING). See 683 
Supplementary Tables 2 and 3 for abbreviation definitions, study characteristics, and details of genotyping 684 
platforms, imputation panels and methods). Measurements of spirometry for each study are described in the 685 
Supplementary Note. 686 
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In each study, linear regression models were fitted for each trait (FEV1, FEV1/FVC, FVC and where 687 
available, PEF), with adjustment for age, age2, sex and height. For studies with unrelated individuals, 688 
models were fitted separately in ever and never smokers, with additional adjustment for ancestral principal 689 
components. Studies with related individuals fitted mixed models in all individuals to account for 690 
relatedness, with ever smoking status as a covariate. 691 
In all studies, residuals were rank-based inverse normal transformed and used as the phenotype for 692 
association testing, under an additive genetic model (Supplementary Table 3). 693 
In the study-level results, variants were excluded if they had a low minor allele count (MAC) 694 
(Supplementary Table 3) or imputation quality (info)<0.3. In studies of unrelated individuals, ever and 695 
never smokers’ results were combined using inverse-variance weighted meta-analysis. Genomic control was 696 
applied to all study-level results, before combining results across all studies using inverse-variance weighted 697 
meta-analysis. LD score regression intercepts for the meta-analysis were close to 1.00 (Supplementary 698 
Figure 8; Supplementary Table 27), therefore genomic control was not applied. 699 
Meta-analyses 700 
A total of 19,819,130 variants (imputed or genotyped) in both UK Biobank and SpiroMeta were meta-701 
analyzed, using inverse-variance weighted fixed effect meta-analysis. No further genomic control was 702 
applied as LD score regression intercepts were close to 1.00 (Supplementary Table 27). 703 
Selection of new signals using conditional analyses 704 
All SNPs ±1 Mb were extracted around each sentinel variant. We performed stepwise conditional analysis to 705 
select independently associated SNPs within each 2-Mb region, using GCTA58. LD was estimated for UK 706 
Biobank from the same individuals used in discovery, and for SpiroMeta, from an unrelated subset of 48,943 707 
UK Biobank individuals18. Secondary signals identified within each 2-Mb region were required to meet Tier 708 
1 or Tier 2 criteria (described above) after conditioning on the primary sentinel variant. A combined list of 709 
distinct lung function signals was then made across the four phenotypes, FEV1, FVC, FEV1/FVC and PEF, 710 
as follows: where sentinel variants for 2 signals for different phenotypes were in high LD (r2>0.5), we 711 
retained the most significant variant; where 2 signals were in moderate LD (0.1>r2>0.5), we retained 712 
variants if, after conditional analysis, they still met the Tier 1 or Tier 2 threshold; for signals in low LD 713 
(r2<0.1) we retained both variants. We then used the same criteria to identify a subset of new signals which 714 
were distinct from previously published independent signals (see below). 715 
Assessment of previously reported lung function signals 716 
We identified 184 autosomal signals from previous GWAS of lung function and COPD1,4-14. After LD 717 
pruning (only keeping signals with LD of r2<0.1), we removed 24 non-independent SNPs, leaving 160 718 
previously reported independent signals. Of 6 previously reported signals in the HLA region, we included 719 
only the 3 independent lung function HLA signals reported from conditional analysis using all imputed HLA 720 
genotypes18: AGER (rs2070600), HLA-DQB1 (rs114544105) and near ZNF184 (rs34864796), leaving 157 721 
autosomal signals. 722 
We confirmed association of previously reported signals in our data if they met any of three criteria: (i) the 723 
previously reported sentinel was associated (P<10-5) with any lung function trait in UK Biobank; (ii) a proxy 724 
for the previously reported sentinel with r2>0.5 was associated (P<10-5) with any lung function trait in UK 725 
Biobank; (iii) a proxy for the previously reported sentinel with r2>0.1 was associated with any lung function 726 
trait meeting tier 1 or tier 2 criteria (Supplementary Figure 3). 727 
Effect on COPD susceptibility – genetic risk score in multiple ancestries 728 
To test association of all lung function signals with COPD susceptibility, we constructed a 279-variant 729 
weighted GRS comprising the 139 novel and 140 previously reported signals; we used the previously 730 
reported sentinel SNP for published signals. Weights were derived using the FEV1/FVC decreasing 731 
(generally COPD risk increasing) alleles. For previously reported signals (n=140), effect sizes from UK 732 
Biobank were used as weights for the 94 signals that were not discovered using UK Biobank data. Weights 733 
were taken from SpiroMeta for 46 signals where UK Biobank was included in the discovery of those signals. 734 
For novel signals, weights were taken from SpiroMeta for two-stage (tier 1) signals (n=99), and the smallest 735 
absolute effect size from either UK Biobank or SpiroMeta was used for one-stage (tier 2) signals (n=40) 736 
(Supplementary Table 28). This approach was taken in order to derive conservative weights, thus reducing 737 
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the likelihood of bias by winner’s curse. For the weighted GRS the number of risk alleles at each variant was 738 
multiplied by its weight.  739 
The GRS was first calculated in unrelated individuals (KING kinship coefficient of<0.0884) within 6 740 
ancestral groups of UK Biobank: Europeans, South Asians, Africans, Chinese, Mixed African and 741 
Europeans, and Mixed Other (total sample of unrelated individuals across six ancestries: 323,001) using 742 
PLINK. Weights and alleles were as described above. COPD was defined as FEV1/FVC<0.7 and 743 
FEV1<80% predicted, i.e. GOLD stage 2-4 categorization. Associations with the GRS were then tested 744 
using COPD (in ancestral groups with at least 100 COPD cases) and FEV1/FVC as the outcomes. 745 
We also calculated the GRS in individuals from the China Kadoorie Biobank (CKB). Four of the 279 SNPs 746 
were unavailable in CKB (rs1800888, rs56196860, rs72724130 and rs77672322), and for 12 SNPs, proxies 747 
were used (minimum r2=0.3). Analyses were undertaken in all COPD GOLD stage 2-4 cases 748 
(FEV1/FVC<0.7 and FEV1<0.8 of the predicted value: 6,013 cases and 69,567 controls), against an unbiased 749 
set of population controls. The GRS was also tested for association with FEV1/FVC in CKB (n=72,796). 750 
Logistic regression of COPD case-control status with the GRS in UK Biobank and China Kadoorie Biobank 751 
assumed an additive genetic effect and was adjusted for age, age2, sex, height, and smoking 752 
(Supplementary Table 19). Ten principal components were included in UK Biobank analyses. In China 753 
Kadoorie Biobank, analyses were stratified by geographical regions, then meta-analyzed using an inverse-754 
variance fixed effect model. Linear models assessing the association with FEV1/FVC were fitted using the 755 
transformed outcome used in the main GWAS analysis.  756 
We then tested association in 5 European-ancestry COPD case-control studies: COPDGene (Non-Hispanic 757 
White Population) (3,068 cases, 2,110 controls), ECLIPSE (1,713 cases, 147 controls), GenKOLS (836 758 
cases, 692 controls), NETT-NAS (374 cases, 429 controls) and SPIROMICS (988 cases, 537 controls) 759 
(Supplementary Table 20). We also tested this GRS in the COPDGene African American population study 760 
(910 cases, 1,556 controls). Logistic regression models using COPD as outcome and the GRS as exposure 761 
were adjusted for age, age2, sex, height, and principal components (Supplementary Table 21, 762 
Supplementary Figure 9). Single variant associations of the 279 SNPs with COPD are in Supplementary 763 
Table 29. 764 
Next, we divided individuals in the external COPD case-control studies into deciles, according to their 765 
values of the weighted GRS (undertaken separately by study group). For each decile, logistic models were 766 
fitted, comparing the risk of COPD for members of the decile compared to those in the lowest decile (i.e. 767 
those with lowest values of the weighted GRS). Covariates were as for COPD analyses. Results were 768 
combined across European-ancestry study groups by fixed effect meta-analysis (Supplementary Table 22). 769 
Effects on smoking behavior  770 
As our discovery GWAS in UK Biobank was adjusted for ever smoking status, and not for pack years of 771 
smoking (this information was missing for 32% of smokers), we evaluated whether any lung function 772 
association signals might be driven by an association with smoking behavior, by testing for association with 773 
smoking initiation (123,890 ever smokers vs. 151,706 never smokers) and cigarettes per day (n=80,015) in 774 
UK Biobank (see Supplementary Note). We also tested for association with lung function in never smokers 775 
only (n=173,658). We excluded signals associated with smoking behavior (Supplementary Table 6) but not 776 
with lung function in never smokers. 777 
Smoking interaction  778 
For associated variants (new and previously reported), we repeated association testing for lung function 779 
separately in UK Biobank and SpiroMeta (up to 176,701 ever smokers and 197,999 never smokers), and 780 
tested for an interaction effect with smoking using the Welch test (Supplementary Note). A threshold of 781 
P<1.79×10-4 (Bonferroni corrected for 279 tests) indicated significance. 782 
We also tested for interaction between the weighted GRS and smoking, within 303,619 unrelated individuals 783 
of European ancestry in UK Biobank, using COPD and FEV1/FVC as outcomes (FEV1/FVC was pre-784 
adjusted for age, age2

, sex, and height, and the residuals transformed as per the main GWAS analysis). For 785 
COPD (defined as FEV1/FVC<0.7, and FEV1<80% predicted) a logistic model was fitted:  786 
COPD ~ genotyping array + 10 principal components + age + age2 + sex + height + smoking status + 787 
weighted risk score + (smoking status × weighted risk score).  788 
For FEV1/FVC, a linear model was fitted:  789 
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FEV1/FVC ~ genotyping array + 10 principal components + smoking status + weighted risk score + 790 
(smoking status x weighted risk score). 791 
Proportion of variance explained 792 
We calculated the proportion of variance explained by the previously reported (n=140) and new variants 793 
(n=139) associated with lung function using the formula: 794 

∑ 2𝑓𝑓𝑖𝑖(1 − 𝑓𝑓𝑖𝑖)𝛽𝛽𝑖𝑖2𝑛𝑛
𝑖𝑖=1

𝑉𝑉
 795 

where n is the number of variants, fi and βi are the frequency and effect estimate of the i’th variant, and V is 796 
the phenotypic variance (always 1 as our phenotypes were inverse-normal transformed). We used the same 797 
conservative effect estimates (β) used as GRS weights for the 279 GRS variants , derived from either UK 798 
Biobank or SpiroMeta effect estimates (described above). Our previously published estimate of proportion 799 
of variance explained18 used UK Biobank effect estimates. We assumed a heritability of 40%24,25 to estimate 800 
the proportion of additive polygenic variance. 801 
Fine-mapping 802 
A Bayesian method59 was used to fine-map lung-function-associated signals to the set of variants that were 803 
99% likely to contain the underlying causal variant (assuming that the causal variant was analyzed). This 804 
was undertaken for new signals and for previously reported signals reaching P<10-5 in UK Biobank. For 805 
previously reported signals, the sentinel variant from the current UK Biobank analysis was used, instead of 806 
the previously reported variant. We used a value of 0.04 for the prior W in the approximate Bayes factor 807 
formula60. Effect sizes and standard errors for fine-mapping were obtained from inverse-variance weighted 808 
meta-analysis of UK Biobank and SpiroMeta (maximum n=400,102). Signals in the HLA region were not 809 
included.  810 
Implication of potentially causal genes 811 

Annotation of deleterious variants 812 
Variants in the 99% credible sets were checked for predicted functional effect if they were annotated as 813 
“exonic”, “splicing”, “ncRNA_exonic”, “5’-UTR” or “3’-UTR” (untranslated region) by ANNOVAR61.  We 814 
then used SIFT, PolyPhen-2 (implemented using the Ensembl GRCh37 Variant Effect Predictor, see URLs) 815 
and FATHMM62 to annotate missense variants, and CADD (also implemented using VEP) to annotate non-816 
coding variation. Variants were annotated as deleterious if they were labelled 'deleterious' by SIFT, 817 
'probably damaging' or 'possibly damaging' by PolyPhen-2, ‘damaging’ by FATHMM (specifying the 818 
‘Inherited Disease’ option of the ‘Coding Variants’ method, and using the ‘Unweighted’ prediction 819 
algorithm) or had a CADD scaled score ≥2018. The union of the four methods was taken to establish the 820 
number of potentially deleterious variants and their unique genes.  821 
Gene expression and protein levels 822 
At 276 of 279 (3 HLA signals excluded) signals, the sentinel variant and 99% credible set59 were used to 823 
query three eQTL resources: lung eQTL (n=1,111)13, blood eQTL (n=4,896)63 and GTEx (V7; with 824 
maximum n=388, depending on tissue: ‘Artery Aorta’ (n=267), ‘Artery Coronary’ (n=152), ‘Artery Tibial’ 825 
(n=388), ‘Colon Sigmoid’ (n=203), ‘Colon Transverse’ (n=246), ‘Esophagus Gastroesophageal Junction’ 826 
(n=213), ‘Esophagus Muscularis’ (n=335), ‘Lung’ (n=383), ‘Small Intestine Terminal Ileum’ (n=122), 827 
‘Stomach’ (n=237), and ‘Whole Blood’ (n=369))64, and one blood pQTL resource (n=3,301)39. 828 
A gene was classified as a ‘putative causal gene’ if the sentinel SNP or any SNP in the respective 99% 829 
credible set was associated with expression of this gene or its protein levels (FDR<5% for eQTL, 830 
P<5.03×10-8  for pQTL [276 tests at 3,600 proteins]) and if the GWAS sentinel SNP or any SNP in the 831 
respective 99% credible set was the variant most strongly associated with expression of the respective gene 832 
or level of the respective protein (i.e. the sentinel eQTL/pQTL SNP) in one or more of the eQTL and pQTL 833 
data sets. 834 
Pathway analysis 835 
We tested for enrichment of genes identified via functional annotation, gene expression or protein level 836 
analyses in pathway and gene set ontology databases using ConsensusPathDB.65 Pathways or gene sets 837 
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represented entirely by genes implicated by the same association signal were excluded. Gene sets and 838 
pathways with FDR<5% are reported. 839 
Functional enrichment analyses 840 
We carried out stratified LD score regression to identify significant enrichment of heritability at variants 841 
overlapping histone marks (e.g. H3K4me1, H3K4me3) specific to lung, foetal lung, and smooth muscle-842 
containing (e.g. colon, stomach) cell lines, using methods specified by Finucane et al.40  843 
We separately selected FEV1/FVC and FVC associated SNPs passing two thresholds (P<5×10-5 and 844 
P<5×10-9 in the meta-analysis) as input to GARFIELD41 to test for enrichment of our signals for 424 DHS 845 
hotspot annotations derived from 55 different tissues in the RoadMap Epigenomics and ENCODE projects. 846 
Using DeepSEA42, we analyzed all SNPs in the 99% credible set for predicted chromatin effects. We 847 
reported effects for any chromatin effect and lung-related cell line with an E-value<0.05 (i.e. the expected 848 
proportion of SNPs with a larger predicted effect based on empirical distributions of predicted effects for 849 
1000 Genomes SNPs) and an absolute difference in probability of>0.1 (threshold for “high confidence”) 850 
between the reference and alternative allele.  851 
Drug targets 852 
Genes identified as potentially causal using eQTL, pQTL or variant annotation were interrogated against the 853 
gene-drug interactions table of the Drug-Gene Interactions Database (DGIDB) (see URLs). Drugs were 854 
mapped to CHEMBL IDs (see URLs), and indications (MeSH headings) were added. 855 
Phenome-wide association studies 856 
To identify whether the 279 signals were associated with other traits and diseases, the weighted GRS was 857 
calculated in up to 379,337 UK Biobank samples, and a phenome-wide association study (PheWAS) was 858 
performed, with the GRS as the exposure. Traits included UK Biobank baseline measures (from 859 
questionnaires and physical measures), self-reported medication usage, and operative procedures, as well as 860 
those captured in Office of Population Censuses and Surveys codes from the electronic health record. We 861 
also included self-reported disease variables and those from hospital episode statistics (ICD-10 codes 862 
truncated to three-character codes and combined in block and chapter groups), combining these where 863 
possible to maximize power. The GRS analysis included 2,453 traits, and the single-variant analysis 864 
contained 2,411 traits (traits with>200 cases were included for the single-variant PheWAS, whereas traits 865 
with>50 cases were included in the GRS PheWAS). Analyses were conducted in unrelated European-866 
ancestry individuals (KING kinship coefficient <0.0442), and were adjusted for age, sex, genotyping array, 867 
and ten principal components. Logistic and linear models were fitted for binary and quantitative outcomes, 868 
respectively. False discovery rates were calculated according to the number of traits in the GRS and single-869 
variant PheWAS (2,453 or 2,411, respectively).  870 
In addition, the sentinel variants 99% credible set variants were queried against the GWAS catalog66 (see 871 
URLs) and GRASP67 (see URLs) for associations at P<5×10-8. Associations relating to methylation, 872 
expression, metabolite or protein levels, as well as lung function and COPD, were not included. 873 
  874 
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Data availability statement 875 
SpiroMeta GWAS summary statistics and UK Biobank GWAS summary statistics are available online via 876 
LD-Hub (http://ldsc.broadinstitute.org/ldhub/). Single-variant PheWAS results are available by request to 877 
the corresponding authors. The newly derived spirometry variables are available from UK Biobank 878 
(http://www.ukbiobank.ac.uk/). 879 
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Editorial summary:  909 
A genome-wide association study in over 400,000 individuals identifies 139 new signals for lung function. These 910 
variants can predict chronic obstructive pulmonary disease in independent, trans-ethnic cohorts.  911 
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