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 
Abstract—Noise detection accuracy is crucial in suppressing 

random-valued impulse noise. Both false and miss detections 
determine the final estimation performance. Deterministic 
detection methods, which distinctly classify pixels into noisy or 
uncorrupted pixels, tend to increase the estimation error because 
some uncorrupted edge points are hard to discriminate from the 
random-valued impulse noise points. This paper proposes an 
iterative Structure-adaptive Fuzzy Estimation (SAFE) for 
random-valued impulse noise suppression. This SAFE method is 
developed in the framework of Gaussian Maximum Likelihood 
Estimation (GMLE). The structure-adaptive fuzziness is reflected 
by two structure-adaptive metrics based on pixel reliability and 
patch similarity, respectively. The reliability metric for each pixel 
(as noise free) is estimated via a novel Minimal Path Based 
Structure Propagation (MPSP) to give full consideration of the 
spatially varying image structures. A robust iteration stopping 
strategy is also proposed by evaluating the re-estimation error of 
the uncorrupted intensity information. Comparative experiment 
results show that the proposed structure-adaptive fuzziness can 
lead to effective restoration. Efficient implementation of this 
SAFE method is also realized via GPU (Graphic Processing 
Unit)-based parallelization.   
Index Terms—Random-valued impulse noise, Structure-adaptive 
Fuzzy Estimation (SAFE), reliability metric, similarity metric. 

I. INTRODUCTION 
N signal acquisition or transmission, observed images are 
often corrupted by impulse noise arising from sensor damage, 
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malfunctioning or timing errors, faulty memory locations in 
hardware or bit errors [1-2]. When images are corrupted by 
impulse noise, the intensities of some pixels are changed to 
some wrong values, which often lead to high-contrast artifacts 
in the image. It is thus necessary to remove the impulse noise to 
guarantee a good performance of subsequent image processes 
such as edge detection, image segmentation and object tracking. 
Let ijI be the pixel intensity of an image I  at location (i, j), 
and  min max ，I I  be the dynamic intensity range of I . With ijx
denoting the intensity of the corresponding noisy image at 
location (i,j), then 

                     1-
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with probability  = 



ij

ij
ij

n
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where  min max  ，ijn I I  is the value of corrupted points and   
denotes the noise density or ratio. Here, for fixed-valued 
“salt-and-pepper” noise, noisy pixels ijn  take either minI  or 

maxI  values [3-9]. As to the random-valued impulse noise, 
noisy pixels ijx  can take any random value between minI  and 

maxI . Compared to random-valued impulse noise, 
salt-and-pepper noise is much easier to identify, remove and 
restore via target-specific operations on corrupted points. 

Many filters have been proposed to suppress random-valued 
impulse noise in the past twenty years. It is well accepted that 
the performance of filtering is highly dependent on the 
detection precision of corrupted points. In [10], Chen and Wu 
proposed an adaptive center-weighted median filter (ACWMF) 
with a switching scheme based on an impulse detection 
mechanism, which was then combined with a detail-preserving 
regularization and a sparse representation [11-13]. In [14], a 
noise detection method according to the minimum absolute 
value of four convolutions was proposed. In [15], Aizenberg et 
al. developed two noise detectors called differential rank 
impulse detector (DRID) and enhanced rank impulse detector 
(ERID). And in [16], Garnett et al. exploited the rank-ordered 
absolute differences (ROAD) statistic to develop bilateral 
filtering for impulse noise suppression. In [17] and [18], Dong 
et al. improved the detection of ROAD by using a logarithmic 
function and a directional weighting strategy, respectively. 
Then, in [19], a rank-ordered relative difference (RORD) 
statistic impulse detector was proposed in a recursive weighted 
mean filter for the removal of random-valued impulse noise. In 
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[20], a detection method based on directional intensity 
difference was proposed and used in an adaptive weighted 
mean filter. In [21], a filter named adaptive switching median 
(ASWM) with an automatically calculated threshold was 
reported for random-valued noise suppression. In [22], Wu and 
Tang proposed a new selective degenerate diffusion (NSDD) 
model for random-valued noise, in which pixels were classified 
into edge pixels, noisy pixels, and interior pixels, from which a 
controlling speed function was designed to adaptively suppress 
noise. Yan applied an adaptive outlier pursuit based method 
(AOP) in [23] to inpaint those points corrupted by 
random-valued noise. 

In the case of random-valued impulse noise, noise pixels take 
arbitrary values within a dynamic range, which makes their 
detection challenging especially in regions with large intensity 
variations. Deterministic discrimination of noise points tends to 
greatly increase the estimation error. Recently, fuzzy 
techniques have been considered to improve filtering by 
exploiting a fuzzy characterization of the random-valued 
impulse noise. Several fuzzy type filters were proposed for 
fixed-valued impulse noise ([24-28]). Luo et al. [29] applied a 
trimmed mean based fuzzy detection method for 
random-valued impulse noise, from which a linear membership 
was calculated in order to get an improved edge-preserving 
filtering. In [30], a fuzzy reasoning-based directional median 
filter was devised by exploiting the directional information of 
intensity continuity. Schulte et al. [31] proposed a fuzzy noise 
detection and reduction method (FIDRM) for random-valued 
noise. Then, in [32], Schulte et al. extended the FIDRM method 
by detecting random-valued impulse noise points using 
directional gradient based fuzzy rules. Directional gradient 
information was also used in [33] as the input of a fuzzy system, 
the outputs being further submitted to a classification process to 
guide the restoration. In [34] and [35], a peer group concept was 
utilized in building fuzzy metrics for impulse noise detection. 
In [36], a decision-based fuzzy approach (DFA) relying on 
evidence theory was proposed for random-valued noise 
reduction. In [37], a fuzzy weighted non-local means (FWNLM) 
filter was developed to suppress random-valued noise. 

In most of the above algorithms on random-valued impulse 
noise suppression, gradient information along some pre-fixed 
directions is calculated in order to avoid detecting some edge 
points as noise points. Nevertheless, we should also note that 
such fixed-directional constraints are inherently ineffective in 
reflecting the real image structures where varying intensities 
and orientations cannot be predicted. To overcome this, we 
propose a Structure-adaptive Fuzzy Estimation (SAFE) method 
to remove random-valued impulse noise in the framework of 
Gaussian Maximum Likelihood Estimation (GMLE). Spatially 
varying structure information is incorporated into this SAFE 
algorithm as the fuzziness metrics in the form of point 
reliability and structure similarity. Especially, a membership 
function evaluating the pixel-wise reliability is built via a novel 
Minimal Path Based Structure Propagation (MPSP) to capture 
the spatially varying structures in the image. An effective 
iteration stopping strategy is also proposed based on the error 
evaluation of the re-estimated un-corrupted information. The 

SAFE solution is implemented via GPU (Graphic Processing 
Unit)-based parallelization techniques. Numerical experiments 
conducted on different noise densities have been performed to 
assess the performance of the proposed algorithm.  

The rest of this paper is organized as follows: in section II, 
we first give a short review of the Gaussian Maximum 
Likelihood Estimation (GMLE) in impulse noise suppression 
and its relationship with median filtering. Then, we describe the 
proposed SAFE algorithm and we detail both the minimal path 
based reliability metric and the re-estimation based iteration 
stopping criterion. Experimental results are given and 
discussed in section IV. Section V concludes this paper with a 
brief description of its contributions and some open issues for 
future work. 
II. THE  STRUCTURE ADAPTIVE FUZZY ESTIMATION (SAFE) 

A. Structure Adaptive Fuzzy Estimation (SAFE) 
As the most widely used methods in impulse noise 

suppression, median type filters estimate the corrupted pixel 
intensities as the medians of the neighboring intensities. The 
median operation corresponds to the maximum likelihood 
estimators of independent and identically distributed (i.i.d.) 
observations which obey Laplacian distributions with 
probability density function (pdf, denoted by f  here) [38], 
[39]. Let 1 ,...., Nx x  be N i.i.d. Laplacian distributed 
observations with unknown location parameter   and the 
same scale parameter   (deviation) from  , the following 
Laplacian likelihood function of   can be expressed by: 
      1

=1
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i i
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 Maximizing Eq. (2) leads to the solution of the simple median 

̂ =  1MEDIAN ,...., Nx x  [39]. Assuming the Laplacian 
distribution of the observations in a 3 3  window, 2D median 
filtering of center pixel value   is in fact the maximization of 
the function (2) with respect to   [40]. Likewise, with the 
assumption of Gaussian distribution, we can build the 
likelihood function: 

                   
 

1

2
2 2

2

=1

=1

;

exp 22π

,....,  = -  
1= - -

N

N N

N
i

i

i
i

L x x f x

x

 

 
        




                 (4) 

Similarly, maximizing Eq.(4) on   leads to Gaussian 
Maximum Likelihood Estimation (GMLE) as an averaging 
filtering operation.: 

                             =1
ˆ= i

N

i
Nx                                      (5) 

The variance of the estimated  ̂  is 2 N  , which shows that  
the variance for GMLE decreases linearly as the number of 
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observations increases. It was pointed out in [41] that such 
Gaussian distribution based averaging filtering can lead to 
better Pepper-Salt noise suppression than the Laplacian 
distribution based median filtering. However, assuming an 
identical variance assumption for all the samples, the averaging 
filtering Eq. (5) tends to smear image details. In fact, in 
estimating the points corrupted by random-valued impulse 
noise, neighboring points should not be assigned the same 
variance for the following two reasons A1 and A2: 
 A1: it is actually impossible to explicitly detect all the 
impulse noise points with no error because of the uncertainty 
caused by the random noise values and the spatially varying 
edge intensities. A fuzzy metric should be used to cope with 
this randomness, in which each pixel should be given a 
reliability value (between 0 and 1) to evaluate its probability of 
being an uncorrupted point. That is, following Eq. (4), those 
neighboring pixels with a high probability to be an impulse 
noise point should be trusted less and assigned a large variance. 
 A2: neighboring pixels belonging to the structure similar to 
the current point should be considered with a higher probability 
of belonging to the same structure, and should be assigned a 
low variance in estimating the current pixel in Eq. (4). Thus, 
another fuzzy metric value from 0 to 1 can be used to reflect the 
similarity degree (from low to high) for neighboring pixels. 
 We can see that the term 22  determines the contribution of 
the neighboring points in the estimation of the current pixel. So, 
based on A1 and A2, we can extend the identical variance 
strategy to an adaptive variance strategy. This option features 
the proposed Structure Adaptive Fuzzy Estimation (SAFE) for 
random-valued impulse noise suppression. An improved 
GMLE model can be obtained by replacing the identical 
variance term 2  in Eq. (4) by an adaptive variance term 2

ij  , 
which is calculated as the reciprocal of the multiplication of the 
two fuzzy membership functions for the reliability and 
similarity metrics ( ijr  and ijs ) of the neighboring point 
intensity ijx . Denoting the noisy image and the target restored 
image by x  and  , we obtain the following improved 
likelihood function:  
   
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Here, the subscripts in jx  and ijx  represent the intensities at 
point j  and the points in its surrounding filter window jN , 
respectively. Note that such subscript rule also applies to other 
notations in this paper. In Eq. (6), u

jr  and  ijr  are the reliability 

metrics of the current point intensity jx  and its neighboring 
one ijx . jN  denotes the cardinal number of the filter window 

jN . A detailed explanation of u
jr ,  ijr  and ijs  is given as 

follows: 
(a), [0,1] [0,1]and u

j ijr r   , and both take values from the 
same reliability map R . 0u

jr   means that pixel j  is 
explicitly deemed as a corrupted noise point, and should be 
excluded in the GMLE function Eq. (6); 1u

jr   means that the 
pixel j  is explicitly detected as an uncorrupted point, and in 
this case, the information of the neighbor pixels should be 
excluded in this GMLE function; ijr  is used to reflect the 
reliability degree of the neighbor pixel at ij  in estimating j .  
(b), 0,1)(ijs  reflects the similarity degree between the 
current pixel j  and its neighbor pixel ij . A smaller ijs  means 
that the neighbor pixel ij  has a lower probability of belonging 
to the same structure containing the current pixel j , while a 
larger ijs  means that the pixel ij  has a higher probability of 
belonging to the same structure. We use the “patch similarity” 
idea described in [42] to quantify the ijs  by an exponential 
function of  1  norm distance between neighboring patches 
[43-44]. Let j  and  ij  be the two patches centered at pixel j  
and its neighbor pixel ij , the similarity metric ijs  is calculated 
via Eq. (7):   1

exp r r
ij ij j ij j hs                          (7) 

Here, considering that the pixels with a lower reliability should 
be less weighted in the patch similarity calculation, we 
introduced two weighting patches  ij

r  and  j
r  storing the 

reliability value r  for each points in ij  and  j  (  ij  and  j
have the same size). The parameter h in (7) is used to modulate 
the exponent function value with respect to patch distance. 
Minimizing Eq. (6) with respect to j  leads to a linearly 
weighted solution: 
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B. Minimal Path Based Structure Propagation (MPSP) for 
Reliability Map Calculation 
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For impulse noise point detection, intensity gradients along 
certain preset directions were widely used to discriminate edge 
points from noise points. But such calculations often fail to 
reflect the unpredictable inherent image structures. It is 
demonstrated in [45-47] that minimal path tracking can be 
applied to retrieve inherent image structures as the minimal 
path connection between two different points. So, we apply a 
Minimal Path based Structure Propagation (MPSP) approach to 
capture the spatially-varying feature information for noise point 
estimation. The proposed MPSP method is a minimal path 
tracking with no end point, in which the start point is simply set 
at the center point in each propagation window. With the 
potential function calculated as the cumulated intensity 
differences between each reached points and the center point, 
the MPSP method proceeds until two of the four borders of a 
square propagation window mp

jN  are reached. The structures 
the center points belonging to can be represented by the two 
connected minimal paths back-traced from the two border 
points to the center pixel j  in each propagation window.  
 

 

 
1.1 1.0 j jmg r ，

   2.1, 1.0j jmg r      5.6, 0.92j jmg r    8.8 0.87 j jmg r ，
 

 

 
7.4, 0.90j jmg r   10.9, 0.80j jmg r   11.9, 0.50j jmg r  29.9, 0.01j jmg r   

 (a)  The tracked minimal paths for eight uncorrupted points, which are the 
center points in the illustrated window images. 

14.6, 0.64j jmg r   33.6, 0.01j jmg r   51.4, 0.01j jmg r   46, 0.02j jmg r   

68.2, 0j jmg r    34.6, 0.07j jmg r    100.8, 0j jmg r     44.7, 0j jmg r   
(b)  The tracked minimal paths for eight corrupted points, which are the center 
points in the illustrated window images. 
Fig.1. Illustration of the tracked minimal paths (in white color) for uncorrupted 
points. For both (a) and (b), the illustrations are presented in the forms of 7 7  
propagation windows centered at the points to be considered. And the 
calculated mg  values and reliability value r  are listed below the 
corresponding pictures. 

We illustrate in Fig.1(a) the tracked minimal paths for eight 
uncorrupted points, and Fig.1(b) the results for eight corrupted 
ones. These points were selected from the Lena image without 
and with  40% density of random-value impulse noise, and the 
illustrations are presented in 7 7  propagation windows 
centered at the points to be considered. For both Fig.1(a) and 
Fig.1(b), the first rows display the intensities in the original 
images. The second rows in Fig.1(a) and Fig.1(b) highlight the 
tracked minimal paths in white color, from which we can see 
that the tracked minimal paths take structure-preferable 
trajectories and can well avoid the corrupted points. For each 
center pixel j , we calculate the mean (denoted by jmg ) of the 
absolute values of intensity differences (with respect to the 
center pixel) for all the points in the back-traced minimal path 

mp
jL . From the mg  values in the captions below Fig.1(a) and (b), 

we can see that the random-valued impulse noise introduces 
abrupt intensity variations and tends to result in significantly 
larger mg  values than the uncorrupted points. We can also find 
that some uncorrupted edge point (e.g. the right most column in 
Fig.1(a)) can even obtain larger mg  values than some 
corrupted background points (e.g. the one in the left most 
column in Fig.1(b)).  

 

 
   Fig.2. The fuzzy membership function for the reliability metric calculation. 

 
Leveraging the fact that the mg  values for most points often 

increase greatly after corruption, a pixel-wise fuzzy 
membership function is used to quantify the reliability degree 
for the pixels in map R . Fig.2 illustrates the fuzzy membership 
function (expressed in Eq. (10) below), with jLm  and jHm  
denoting the two threshold parameters in calculating the fuzzy 
reliability for point j . As it can be seen in Fig.3, the points 

jmg

jr
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with jmg  values lower than jLm  are distinctly considered as 
the originally uncorrupted points ( 1jr ) and the points with 

jmg  values larger than jHm  are to be treated as noisy points 
( 0jr ). For those points with jmg  values between jLm  and 

jHm  , a fuzzy value jr  between 0 and 1 is assigned to reflect 
the certainty degree of being uncorrupted. We plotted in 
Fig.3(a1), (b1), (c1) and (d1) the ordered mg  values for the 
points in the four 7 7 propagation windows before (Fig.3(a2), 
(b2), (c2), (d2)) and after (Fig.3(a3), (b3), (c3), (d3)) noise 
corruption. Lena image with 40% density of random-value 
impulse noise is still used here. For each center pixel j , we 
calculate the mean (denoted by jmg ) of the absolute values of 
intensity differences (with respect to the center pixel) for the 
points in the back-traced minimal path mp

jL . We can see that the 
mg  values increase significantly after noise corruption, and a 
sharp increment of mg values can be easily noticed on the right 
side of each plot which corresponds to large mg  values. We 
apply a K-means based clustering method to estimate the 
threshold parameters jLm  and jHm . With an array mg

jN  storing 
the mg  values in each propagation window mp

jN , we classify 
all the mg  values in mp

jN  into three data clusters mg
jLS , mg

jLM  
and  mg

jLL ,  corresponding respectively to the three sets of small, 
medium and large mg  values:   
        , , , - ,3( )  mg mg mg mg mg

j j j j jLS LM LL C K means N             (9) 
Here, the K-means algorithm is chosen to cluster the data for its 
low complexity and is implemented based on the method 
reported in [48]. The “3” in the right part of Eq. (9) indicates 
that all the points in mp

jN  are clustered into three datasets based 
on their  mg  values. mg

jC  contains centroid mean values ( 
mg
S jC , 


mg
M jC  and mg

L jC  ) for respectively the three clusters  ( mg
jLS , 

mg
jLM  and  mg

jLL ). We should note that, due to the inherent 
intensity variations and the random values of noise points, 
some classification errors are inevitable with this K-means 
based clustering. In other words, some mg  values from both 
corrupted and uncorrupted points might exist in all the three 
clusters. Also, by comparing the plots before and after 
corruption in Fig.3, we can understand that the sharp 
increments in the right parts of the plots were caused by the 
increased mg  values due to noise corruption. So, in calculating 
the map N

jR  storing the reliability values for the points in
mp
jN ,we use the centroid values 

mg
S jC  and 

mg
M jC  as the 

threshold parameters mp
jLm and mp

jHm  in Eq. (10) 
( mp mg

j S jLm C  ,  = mp mg
j M jHm C  ): 
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1    

                                 

j j
N mp mp
j j j j j j j

j j

mg Lm
R mg Hm Lm Lm mg Hm

mg Hm
  






 
   (10) 

In Eq. (10), jmg  stores the mg  values for the points in mp
jN . 

The points with jmg  values lower than jLm  are distinctly 
considered as the originally uncorrupted points ( 1jr ) and the 
points with jmg  values larger than jHm  are to be treated as 
noise points ( 0jr ). For those points with jmg  values 
between jLm  and jHm  , a fuzzy value jr  between 0 and 1 is 
assigned to reflect the certainty degree of being uncorrupted. 
We then extend each N

jR   to a larger map N
jR  of the same size 

as the input image (by setting the point values outside the mp
jN  

to zero) and output the final fuzzy reliability map R  (storing 
jr  values for all image points) by averaging all the N

jR  maps 
for all the j  via Eq. (11): 

                                 
1N N

j j
jj

R R R   

                          
(11) 

Here, 1N
jR  denotes a unity map in the same size of N

jR , and is 
simply obtained by replacing the non-zero values in N

jR  by 
unity value. Now we can see that each reliability value jr  for 
pixel j is jointly determined by the distribution of all the mg  
values in the surrounding propagation window mp

jN , which 
closely reflects local image structures. Just below the images in 
Fig.1(a) and Fig.1(b), we listed the calculated jr  values for 
different points: it is observed that the uncorrupted points have 
significantly larger jr  values than the corrupted ones. 

  
 

                    

(a2)                         (a3)                                     (b2)                         (b3) 

1(a ) 1(b )

ordered points

mg mg

ordered points
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(c2)                           (c3)                                     (d2)                          (d3) Fig.3. The ordered mg  values of the points in propagation windows 
 
Algorithm 1: The MPSP Algorithm 
 Initialization: set the size of each propagation window mp

jN  ; 
 Pixel-wise Loop (on each pixel index  j):  
     1．Perform the minimal path propagation from current 

pixel j  toward the direction with the minimal 
gradient magnitudes, and stop the propagation when 
two points lying in different borders are reached; 

     2． Retrieve the minimal path mp
jL  across the propagation 

window mp
jN  by back-tracing from the above two 

border points to the center pixel j ;  
     3.    Calculate the mean jmg  of the intensity differences 

(with respect to the center pixel) for all the points in 
the back-traced minimal path mp

jL . 
     4.    Calculate the reliability map R  that stores value jr  for 

each pixel j  based on equations Eq. (9)-(11). 
End Pixel-wise Loop 

 
This MPSP algorithm is outlined above. One important merit 

of this MPSP method is its robustness in parameter setting 
because almost all the related parameters (e.g. propagation 
window size, threshold parameters, etc.) can be fixed in 
practical implementation. 
C. Iteration Stopping Criterion Based on Pixel Re-estimation  

Image quality will be improved after each restoration 
operation of Eq. (8). So, if we replace the input data x  in Eqs. 
(6)-(8) by the updated image  , a better restoration 
performance can be expected because the corrected intensities 
allow a more accurate calculation of the similarity metric s . 
However, over iterations, the benefits brought by this pixel 
correction will become more and more out-weighted by the 
negative effects caused by the inclusion of irrelevant pixels and 
the restored image quality will deteriorate if the iteration 
continues further. The ground truth image is not available to 
control the iteration number required to reach the optimal 
restoration. Therefore, the restoration deterioration is evaluated 
via a re-estimation strategy based on the assumption that the 
best restoration is reached when the surrounding intensities are 

able to provide the best estimation of the non-corrupted image 
information. After each iteration, we re-estimate the 
non-corrupted intensities via Eq. (12) using only the 
neighboring estimated intensities, the current pixel intensities 
being excluded. The non-corruption information for each pixel 
is thus introduced by the reliability metric r . We can obtain the 
re-estimated peak signal-to-noise ratio (PSNR-R) with respect 
to the non-corrupted image information via Eq. (12) and Eq. 
(13):  

                     
( )( )=

j jj j

R t
j ij ij ij ij ij

ij N xij N x
r sr s 


 

              
(12) 

 
   

1

22
10PSNR-R 10 Max - log

j

M
R

I j j jt r I


    
    

(13)
 
 

where, M  and Max I  denote the pixel number and the 
maximum pixel intensity in the original image I , and t is the 
iteration index.  The ijr  term in the summation operation in Eq. 
(12) is used to guarantee that only the uncorrupted information 
is used in PSNR-R calculation over iterations. The restored 
image is obtained when the PSNR-R starts to decrease. Though 
some estimation errors will be inevitably introduced due to the 
inaccuracy in calculating the reliability metric, it is found that 
this stopping strategy can well reflect the image deterioration 
for the cases with noise densities going from 10% up to 40%. 
When noise density increases over 40%, it is found that this 
strategy does not work because the increased noise density will 
increase error in the reliability metric estimation and greatly 
lower the estimation accuracy of the PSNR-R. So, in the case of 
noise density larger than 40%, we stop the iteration when the 
normed image difference between two consecutive iterations is 
less than a small ratio   of the norm of the previous iterated 
image: 1 1|| || || ||t t t       ( || ||  is the 2  norm operator). 
Considering the fact that the knowledge of the exact noise 
density is not known, we perform a rough estimation of the 
overall noise density e  using the calculated reliability value 

jr  stored in map R : 

                           
 1 j

j
e Mr                                

(14) 
It is found that the estimated noise density range  32%,   35%e  always provides a good map to the true noise 
density =40%  for all the images considered so far, so we use 
the estimated noise density =35%e  to modulate the stopping  
strategy in the SAFE algorithm.  
D.  Outline of the SAFE Algorithm 

The overall flowchart of the SAFE algorithm can be 
summarized as follows: 
 
Algorithm 2: The SAFE Algorithm 
1. Reliability map calculation and noise density estimation: 
    (1) Calculate the reliability map R  based on the above 

MPSP method in Section B. 

mg mg1(c ) 1(d )

ordered points ordered points



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2615444, IEEE
Transactions on Circuits and Systems for Video Technology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

(2) Calculate the estimated noise density e  based on the 
reliability values in map R  using Eq. (14).                    

2. Image restoration:  
Initiate 0  to be the input image data x ; set the size of the 
filter window N ; Set StopIteration to FALSE; set t  and PSNR_R 1  to 1 and 0, respectively; set the ratio value 
( 510  in this study) . 
While StopIteration = FALSE 

               Pixel-wise Loop (on pixel index  j=1, 2, ... M ):  
                   Estimate the each pixel  t

j via Eq. (8); 
                   Re-estimate each pixel R

j  via  Eq. (12); 
End Pixel-wise Loop 
Calculate  PSNR_R t  via Eq. (13); 
If (    PSNR_R PSNR_R 1-<t t  AND 

35%<=e ) OR ( 1 1|| || | ||t t t       AND >35%e ) 
StopIteration  = TRUE; 

End 
  1t t  , and update  x to t ; 

End While 
Output the image t  as the final restored image ̂ . 

III. EXPERIMENTS 
A. Experiment Configuration 
  Four grayscale images (Lena, Boat, Barbara and Peppers, 
referred under (a) to (d) in Fig.4) were chosen for the 
experiments. Random-value impulse noise with a density 
ranging from 20% to 60% (10% increments) is simulated. For 
comparison, the ACWMF(Adaptive Center-Weighted Median 
Filter), ROLD-EPR(Rank Ordered Logarithmic Difference 
based statistic combined with the Edge-Preserving Regularized 
method), DWM (Directional Weighted Median), ASWM 
(Adaptive Switching Median), RORD-WMF(Rank Ordered 
Relative Differences combined with Weighted Median Filter), 
NSDD (New Selective Degenerate diffusion), AOP (Adaptive 
Outlier Pursuit), DFA (decision-based fuzzy approach) and 
FWNLM (Fuzzy Weighted Non-Local Means) methods were 
implemented based on [10], [17], [18], [19,], [21], [22], [23], 
[36], [37], respectively.  
  Also, the parameters involved in these methods were suitably 
set based on their reference papers to obtain the best overall 
results in terms of PSNR (calculated via Eq. (22)) for all the 
four test images. The iterative ACWMF restoration approach 
applies four different groups of thresholds (Delta) in four 
center-weighted median operations, respectively. In the 
proposed SAFE method, we set the propagation window size to 

7 7PW   , the cluster number 3CN  , the neighboring 
window size 17 17NW   , the patch size 9 9PS   , the 
smoothing parameter 0.7h   and the ratio 510  . Here, 

3CN   was used because we need to cluster the points in the 
propagation window into small, medium and large mg  values 

for the computation of the reliability values. Note that the 
parameter h  modulates the relation between the similarity 
metric and the patch distance, and needs to be manually set to 
provide a satisfying restoration. The parameter values used in 
the other methods implemented for comparison purpose are 
defined in TABLE I. 

The operations in Eq.(8)-Eq.(14) can be parallelized using 
the GPU based CUDA technique. Under the Compute Unified 
Device Architecture (CUDA) framework, we set the total 
number of blocks in grid to the row size of the image, and the 
total number of threads in each block to the column size of the 
image [49-50]. In implementing the SAFE algorithm, all the 
threads in the block-grid structure were executed in parallel to 
complete the involved pixel-wise operations. All the images 
were processed in a PC workstation (Intel Core™ 2 Quad CPU 
and 8192 Mb RAM, GPU (NVIDIA GTX475)) with Visual 
C++ as the developing environment (Visual Studio 2008 
software; Microsoft). The restoration performance was 
quantitatively measured by the peak signal-to-noise ratio 
(PSNR) and the mean structural similarity index (MSSIM) 
proposed in [51]: 

   22

=1
10PSNR 10 255 ˆˆ , log -      M j j

j
MI I           (15) 

 
2

2 2 2 2
ˆ ˆ , 1 2

ˆ ˆ

ˆ ˆ

(2 2
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)( )
( )( )ˆ, I I I

I I

I

m m c
m m c cI M

 

 
 


   

   

     


   


       (16) 

where, ̂  and I  denote the 8 8  windows in the same 
position in the restored image ̂  and the original true image I .  
M  is the total pixel number in the images. ˆm   and Im  

represent the mean intensities of ̂  and I , ̂  and I   are 
the standard deviations of ̂  and I , ˆ I   is the covariance 
of ̂  and I , 2

1 1 )(K Lc  and 2
2 2 )(K Lc   with L  being the 

dynamic range of the pixel values (255 for 8-bit grayscale 
images). 1K and 2K  are set to 0.01 and 0.03 as suggested in 
[51]. 
B. Restoration Results 

Fig.5 to Fig.12 provide restoration results of the local ROI 
(regions of interest) cropped from the red rectangle regions in 
the test images in Fig.4. Fig.5 and Fig.6 correspond to the Lena 
image with 40% and 60% noise densities. Likewise, Fig.7 and 
Fig.8 present the results for the Boat image, Fig.9 and Fig.10 
for the Barbara image, and Fig.11 and Fig.12 for the Peppers 
image. The calculated PSNR and MSSIM with respect to the 
original true images are given in the captions. In Fig.5-Fig.12, 
the original true images and the corrupted images are displayed 
in (a) and (b) for reference, and the restored images are shown 
in (c)-(h) for the methods ACWMF, ROLD-EPR, DWM, 
ASWM, RORD-WMF, NSDD, AOP, DFA, FWNLM, SAFE, 
respectively. 

We can observe in Fig.5-Fig.12 that all the methods lead to 
noise suppression at some extent. It is also found that the 
restored images from ACWMF, ASWM, RORD-WMF, NSDD, 
AOP, and DFA methods are far from being satisfactory when
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TABLE I 

PARAMETER SETTING FOR THE DIFFERENT METHODS 
Methods  Parameter  Settings 
ACWMF Delta=[100,85,70,65];Delta=[80, 65,50,45];Delta=[60, 45,30,25];Delta=[40, 25,10, 5];(Based on [10]) 

ROLD-EPR 1.9, 3 3, 4, 25%; 5.4, 5 5, 12, 25%;s w m for p s w m for p           

0 1 max, ( 0), 7, is the numberof pixel whose is less than ;k kT s q T T q k K q ROLD s      (Based on[17]) 
DWMF 0 15 5, 510, 0.8,and iteration stops until the PSNR decreasesk kw T T T      ;(Based on [18]) 
ASWM 0 13 3, 20, 0.8( 0), 0.01, 0.1, 6;n nw n iteration              (Based on[19]) 

RORD-WMF max 2, 4, 3 3, 3 3K m FW RW      for noise ratio is less than 25%; 
max 3, 10, 7 7, 5 5K m FW RW       for noise ratio is higher than 25% (Based on[21]) 

NSDD 5 5, 5, 20 for noise less than 30%; W=5 5 iternum=10, =15 for noise ratio 40%;
=5 5, =20, =15 for noise ratio 50%; =7 7, =30, =15 for noise ratio 60%; (Based on [22])

W iternum T T
W iternum T W iternum T

    
   

AOP 100, 7maxIter    (Based on[23]) 
DFA 3 3; 16 for noise ratio 10% and 20%; 3 3 18 for noise ratio is higher than 20%;W T W = , T =       

(Based on[36]) 
FWNLM 1 221 21, 9 9, 380, 120, 6;SW MW T T h        (Based on [37]) 

SAFE 57 7, 3, 17 17, 9 9, 0.7, 10 ;PW CN NW PS h            
 
noise density is high, with noise residuals clearly visible in 
Fig.6, Fig.8, Fig.10 and Fig.12 (60% noise density). Compared 
to these methods, the ROLD-EPR and DWM methods provide 
a better noise suppression but still suffer from blurring effects 
around some tiny structures. The FWNLM method improves 
the restoration quality by introducing a fuzzy weighting 
function into the non-local means filtering and presents an 
improved performance in noise suppression than other 
median-based filters. But oversmoothing effect can still be 
observed on some image details (see images (g) in 
Fig.5-Fig.12). With the fuzzy metrics utilizing both the pixel 
reliability information and patch similarity information, the 
SAFE algorithm leads to the best overall performance in terms 
of both noise suppression and detail preservation (see images (h) 
in Fig.5-Fig.12). Especially, we can see that some fine features 
(e. g. the hat structures in Lena image, the mast in Boat image, 
the scarf fabrics in Barbara image and the edges in the Pepper 
image) were better restored by the SAFE algorithm than by the 
other methods. High PSNR and MSSIM values are still 
obtained by the proposed SAFE method for 40% and 60% noise 
densities in Fig.5-Fig.12. 

In Fig.13 and TABLE II, we summarize the PSNR and 
MSSIM values of the restored images for noise densities 
ranging from 20% to 60%.  The highest values for different 
images and noise densities are given in bold numbers. We can 
observe in the plots that the PSNR and MSSIM values decrease 
as noise level rises in all cases. Overall, the proposed SAFE 
algorithm has the best performance in PSNR and MSSIM 
values among all the methods when noise density is higher than 
20%, and this advantage becomes more prominent as noise 
density increases. The ACWMF method or RORD-WMF 
method leads in some cases to higher PSNR values than the 

SAFE method but the proposed SAFE method still behaves 
better in terms of MSSIM for most images. The FWNLM 
method provides higher PSNR or MSSIM values than the 
SAFE method for the Barbara image when the noise density is 
equal to 60%. However, even with a lower PSNR value than the 
FWNLM method (1.22% decrement from 23.10 to 22.82), the 
SAFE algorithm applied to the Barbara image (60% noise 
density) shows a much larger MSSIM improvement (7.19% 
increment from 0.7362 to 0.6868) over the FWNLM method.  

Fig.4. The original test images. (a) Lena. (b) Boat. (c) Barbara. (d) Peppers. 
Note the red rectangles in the four images correspond to the zoomed local parts 
illustrated in Fig.5-Fig.12 below. 

(a)

(c) (d)

(b)
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Fig.5. Restoration results for Lena image (40% noise density). (a) Original 
image; (b) Corrupted image; (c) ACWMF; (d) ROLD-EPR; (e) DWM; (f) 
ASWM;(g) RORD-WMF; (h) NSDD; (i) AOP; (j) DFA; (k) FWNLM; (l) 
SAFE.  
 

Fig.6. Restoration results for Lena image (60% noise density). (a) Original 
image; (b) Corrupted image; (c) ACWMF; (d) ROLD-EPR; (e) DWM; (f) 
ASWM;(g) RORD-WMF; (h) NSDD; (i) AOP; (j) DFA; (k) FWNLM; (l) 
SAFE.  
 

Fig.7. Restoration results for Boat image (40% noise density). (a) Original 
image; (b) Corrupted image; (c) ACWMF; (d) ROLD-EPR; (e) DWM; (f) 
ASWM;(g) RORD-WMF; (h) NSDD; (i) AOP; (j) DFA; (k) FWNLM; (l) 
SAFE.  
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.8. Restoration results for Boat image (60% noise density). (a) Original 
image; (b) Corrupted image; (c) ACWMF; (d) ROLD-EPR; (e) DWM; (f) 
ASWM;(g) RORD-WMF; (h) NSDD; (i) AOP; (j) DFA; (k) FWNLM; (l) 
SAFE.  
 

Fig.9. Restoration results for Barbara image (40% noise density). (a) Original 
image; (b) Corrupted image; (c) ACWMF; (d) ROLD-EPR; (e) DWM; (f) 
ASWM;(g) RORD-WMF; (h) NSDD; (i) AOP; (j) DFA; (k) FWNLM; (l) 
SAFE.  
 

Fig.10. Restoration results of different methods for Barbara image (60% noise 
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density). (a) Original image; (b) Corrupted image; (c) ACWMF; (d) 
ROLD-EPR; (e) DWM; (f) ASWM;(g) RORD-WMF;  (h) NSDD; (i) AOP; (j) 
DFA; (k) FWNLM; (l) SAFE.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11. Restoration results of different methods for Peppers image (40% noise 
density). (a) Original image; (b) Corrupted image; (c) ACWMF; (d) 
ROLD-EPR; (e) DWM; (f) ASWM;(g) RORD-WMF; (h) NSDD; (i) AOP; (j) 
DFA; (k) FWNLM; (l) SAFE. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12. Restoration results of different methods for Peppers image (60% noise 
density). (a) Original image; (b) Corrupted image; (c) ACWMF; (d) 
ROLD-EPR; (e) DWM; (f) ASWM;(g) RORD-WMF; (h) NSDD; (i) AOP; (j) 
DFA; (k) FWNLM; (l) SAFE.  
 

 

Fig.13. PSNR and MSSIM values for restorations with varying noise densities 
using different algorithms. (a) and (b): the PSNR and MSSIM for Lena image; 
(c) and (d): the PSNR and MSSIM for Boat image; (e) and (f): the PSNR and 
MSSIM for Barbara image; (g) and (h): the PSNR and MSSIM for Peppers 
image. 
C. Validation of the MPSP Based Reliability Metric 

We implemented the SAFE algorithm with different binary 
reliability strategies to show the advantage of the proposed 
fuzzy reliability. Here, the ACWMF method (denoted by 
R_BR_ACWMF) is used, and the binary reliability means an 
explicit classification of pixels into corrupted and 
non-corrupted points. Different binary reliability maps were 
produced by hard thresholding the reliability maps R  using 
thresholds ranging from 0.1 to 0.9 (R_BR_0.1 to R_BR_0.9). 
The parameters in the restoration step were set based on 
TABLE I to provide a fair evaluation. We plot in Fig.15(a)-(d) 
the PSNR values of different images restored by the SAFE 
algorithm using different reliability maps. We can see in Fig.15 
that, except for the Boat image with 20% noise density, the 
proposed MPSP based reliability metric (denoted by 
R_Fuzzy_MPSP) leads to higher PSNR values than all the 
binary reliability metrics for all the images. 
D. Validation of Recursion Stopping 

Fig.14 plots the PSNR with respect to SAFE iterations for 
the restored Lena image (blue lines) and the PSNR-R of the 
reliability image information (green lines) under different noise 
densities. The same parameter set defined above was used for 
this validation. The iterations with the highest PSNR and 
PSNR-R values are tagged in red. We can note that the PSNR 
values decrease after some iterations: this result confirms the 
deterioration that may occur when applying the SAFE method. 
A good overall match of the highest values between the true 
PSNR of the restored images and PSNR-R of the re-estimated 
pixels can be observed with however a progressive deviation 
when the noise density increases to 50%. The reason of such 
match deviation is due to the increased error of the 
MPSP-based reliability calculation under high noise densities. 
We can also observe that the PSNR evolution over iterations 
becomes more and more stable as the noise density increases. 
Such observation supports the proposed stopping strategy for  
the SAFE algorithm: the metric PSNR-R is used to control the 
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TABLE II 

PSNR and MSSIM (IN THE RIGHT BRACKET) FOR DIFFERENT METHODS WITH DIFFERENT NOISE DENSITIES  
(THE HIGHEST VALUES ARE GIVEN IN BOLD) 

 Lena (20% ND) Lena (30% ND) Lena (40% ND) Lena (50% ND) Lena (60% ND) 
Noisy image 16.23 (0.1735) 14.49 (0.1155) 13.24 (0.0827) 12.28 (0.0619) 11.49 (0.0459) 

ACWMF 35.04 (0.9564) 32.76 (0.9262) 30.39 (0.8788) 27.44 (0.7924) 23.98 (0.6538) 
ROLD-EPR 34.84 (0.9500) 32.00 (0.9181) 30.88 (0.8935) 29.65 (0.8590) 28.04 (0.8101) 

DWM 33.99 (0.9364) 32.48 (0.9030) 30.97 (0.8832) 29.42 (0.8510) 27.41 (0.8033) 
ASWM 34.69 (0.9529) 32.74 (0.9287) 30.67 (0.8934) 28.45 (0.8400) 25.20 (0.7312) 

RORD-WMF 36.18 (0.9462) 33.79 (0.9277) 32.05 (0.9016) 30.25 (0.8673) 28.27 (0.8123) 
NSDD 32.61 (0.8801) 31.30 (0.8535) 29.91 (0.8412) 28.11 (0.7905) 25.73 (0.7146) 
AOP 34.23 (0.9494) 32.34 (0.9240) 30.05 (0.8848) 28.07 (0.8331) 25.62 (0.7524) 
DFA 34.27 (0.9417) 32.16 (0.8973) 29.16 (0.8143) 25.63 (0.6810) 22.08 (0.5011) 

FWNLM 33.685 (0.9133) 32.48 (0.8990) 31.33 (0.8810) 29.96 (0.8555) 28.22 (0.8146) 
SAFE 34.65 (0.9565) 33.45 (0.9416) 32.18 (0.9199) 30.58 (0.8931) 28.38 (0.8461) 

 Boat (20% ND) Boat (30% ND) Boat (40% ND) Boat (50% ND) Boat (60% ND) 
Noisy image 16.27 (0.2280) 14.54 (0.1569) 13.29 (0.1138) 12.35 (0.0861) 11.55 (0.0632) 

ACWMF 30.63 (0.9188) 29.05 (0.8809) 27.26 (0.7805) 25.23 (0.7336) 22.42 (0.5997) 
ROLD-EPR 30.42 (0.9159) 28.15 (0.8682) 26.88 (0.8278) 26.04 (0.7811) 24.97 (0.7194) 

DWM 29.66 (0.8706) 28.24 (0.8449) 27.07 (0.8108) 25.88 (0.7607) 24.35 (0.6902) 
ASWM 30.14 (0.9074) 28.88 (0.8729) 27.33 (0.8252) 25.63 (0.7586) 23.23 (0.6457) 

RORD-WMF 31.34 (0.9120) 29.26 (0.8836) 27.81 (0.8408) 26.57 (0.7912) 24.97 (0.7179) 
NSDD 28.76 (0.8186) 28.17 (0.7962) 26.70 (0.7616) 25.13 (0.6929) 23.52 (0.6102) 
AOP 30.40 (0.9155) 28.80 (0.8738) 27.05 (0.8168) 25.27 (0.7406) 23.27 (0.6470) 
DFA 29.83 (0.9045) 28.39 (0.8563) 26.53 (0.7782) 23.97 (0.6542) 20.97 (0.4915) 

FWNLM 29.33 (0.8660) 28.18 (0.8366) 27.19 (0.8023) 26.06 (0.7587) 24.92 (0.6916) 
SAFE 30.59 (0.9214) 28.99 (0.8911) 27.97 (0.8547) 26.48 (0.7992) 25.08(0.7341) 

 Barbara(20%ND) Barbara(30%ND) Barbara(40%ND) Barbara(50%ND) Barbara(60%ND) 
Noisy image 15.81 (0.2646) 14.08 (0.1897) 12.83 (0.1413) 11.88 (0.1064) 11.09 (0.0793) 

ACWMF 25.31 (0.8664) 24.48 (0.8266) 23.62 (0.7673) 22.40 (0.6796) 20.54 (0.5442) 
ROLD-EPR 25.72 (0.8679) 24.67 (0.8117) 23.74 (0.7634) 23.11 (0.7142) 22.65 (0.6630) 

DWM 25.71 (0.8082) 24.40 (0.7657) 23.59 (0.7267) 23.03 (0.7001) 22.48 (0.6419) 
ASWM 24.70 (0.8345) 24.17 (0.8026) 23.48 (0.7603) 22.58 (0.6984) 21.01 (0.5843) 

RORD-WMF 26.14 (0.8544) 24.70 (0.8129) 23.91 (0.7677) 23.13 (0.7169) 22.31 (0.6477) 
NSDD 25.16 (0.8213) 24.73 (0.7695) 23.68 (0.7181) 23.10 (0.6670) 21.90 (0.5804) 
AOP 25.07 (0.8433) 24.16 (0.8107) 23.23 (0.7460) 22.27 (0.6654) 21.07 (0.5707) 
DFA 24.75 (0.8127) 23.73 (0.7625) 22.94 (0.6899) 21.44 (0.5694) 19.28 (0.4157) 

FWNLM 27.66 (0.8996) 26.24 (0.8634) 25.11 (0.8165) 24.13 (0.7587) 23.10 (0.6868) 
SAFE 28.14 (0.9254) 26.97 (0.9020) 25.72 (0.8668) 24.41 (0.8169) 22.82 (0.7362) 

 Peppers(20% ND) Peppers(30% ND) Peppers(40% ND) Peppers(50% ND) Peppers(60% ND) 
Noisy image 15.86 (0.1693) 14.11 (0.1118) 12.86 (0.0800) 11.91 (0.0595) 11.12 (0.0450) 

ACWMF 34.41 (0.9214) 32.39 (0.8863) 30.03 (0.8328) 26.81 (0.7409) 23.04 (0.5917) 
ROLD-EPR 33.50 (0.9266) 32.13 (0.8975) 30.92 (0.8635) 29.75 (0.8235) 28.22 (0.7701) 

DWM 33.65 (0.9306) 32.38 (0.8988) 30.87 (0.8649) 29.25 (0.8181) 26.85 (0.7489) 
ASWM 33.31 (0.8811) 32.00 (0.8596) 30.30 (0.8276) 27.84 (0.7684) 24.13 (0.6587) 

RORD-WMF 34.76 (0.9135) 33.31 (0.8935) 31.77 (0.8597) 29.92 (0.8176) 27.64 (0.7559) 
NSDD 33.50 (0.9266) 32.13 (0.8976) 30.92 (0.8635) 29.75 (0.8235) 28.22 (0.7701) 
AOP 32.62 (0.9030) 30.70 (0.8612) 28.78 (0.8092) 25.97 (0.7301) 23.01 (0.6257) 
DFA 33.81 (0.9175) 31.61 (0.8694) 28.59 (0.7780) 24.76 (0.6369) 20.86 (0.4575) 

FWNLM 32.94 (0.8526) 31.92 (0.8411) 31.00 (0.8273) 29.95 (0.8078) 28.20 (0.7708) 
SAFE 33.72 (0.9302) 33.03 (0.9136) 31.78 (0.8852) 30.46 (0.8569) 28.65 (0.8092) 

 
TABLE III 

COMPUTATION COST (IN SECONDS) FOR DIFFERENT METHODS WITH DIFFERENT NOISE DENSITIES (ND) 
 Lena (20% ND) Lena (30% ND) Lena (40% ND) Lena (50% ND) Lena (60% ND) 

ACWMF 20.3893 19.5625 19.3285 19.5625 19.1413 
ROLD-EPR 12.9637 17.2381 17.7217 20.8729 34.8974 

DWM 122.0396 122.6948 138.1077 155.3146 183.8316 
ASWM 51.8391 54.8344 58.8436 62.3692 66.1288 

RORD-WMF 0.3276 1.1076 1.2636 1.1856 1.2636 
NSDD 35.1314 34.5542 34.2890 33.4778 32.6510 
AOP 8.9389 10.2181 12.2305 14.4613 16.8793 
DFA 18.7669 17.7825 19.2505 18.9697 19.6405 

FWNLM 994.4752 993.49241 992.8216 994.2100 994.1008 
Un-parallelized SAFE 768.0553 763.4845 759.5377 753.5004 749.6160 

SAFE 11.3725 13.1041 12.7453 14.4765 16.2085 
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Fig.14. PSNR and PSNR-R values for Lena image with various noise densities (from 10% to 60%).

Iteration number when the noise density does not increase over 
40% while the normed difference between two consecutive 
iterated images is used otherwise. 
 

Fig.15. Comparison of the proposed MPSP based reliability metric with binary 
reliability metric in the SAFE restoration 
E. Computational Complexity 
TABLE III lists the computation costs (in seconds) in 
implementing all the methods in the above experiments with 
different noise densities. The RORD-WMF method appears as 
the fastest one and the un-parallelized SAFE is the most 
expensive. TABLE III also shows that the GPU based 
implementation leads to a significant acceleration (from 35 to 
70 times) of the original un-parallelized SAFE processing. The 
computation costs for the SAFE approach increase with the 
noise density due to the fact that more iterations of the intensity 
re-estimation are required to meet the stopping criterion. The 

feasibility of the SAFE method using a parallelization 
technique is however demonstrated.  

IV. CONCLUSION 
This paper has proposed an iterative fuzzy approach named 

SAFE to remove random-valued impulse noise under the frame 
of Gaussian Maximum Likelihood Estimation. Image structure 
information is effectively incorporated to determine the two 
fuzzy metrics of reliability and similarity. In particular, a novel 
membership function on pixel reliability has been designed 
based on the Minimal Path Based Structure Propagation (MPSP) 
providing a structure-adaptive evaluation of point reliability. 
The restoration quality is iteratively refined and the total 
iteration number can be well controlled by the re-estimated 
reliability information. The experiments conducted on several 
images with different noise densities demonstrate that the 
proposed SAFE method has a good performance in both noise 
suppression and structure restoration when compared to other 
methods, especially for high noise densities. Another merit is 
that the SAFE method is robust to parameter setting, i.e. the 
same parameter set can be used in processing all the test 
images. 

The results in Fig.15 show that the binary noise detection 
step in ACWMF method can lead to higher PSNR than the 
proposed fuzzy reliability metrics under low noise densities. 
We can further improve the estimation of the reliability metric 
by using a multi-sized window strategy in the ACWMF method. 
Another issue concerns the fact that the accuracy of the MPSP 
estimation decreases as the noise density increases. Therefore, 
a better restoration can be expected by designing a new fuzzy 
reliability metric adaptively estimated according to different 
noise levels. Currently, a constant smoothing parameter h (in 
Eq. (7)) is used in the SAFE algorithm and a further 

Lena Boat

Barbara Peppers
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improvement may be obtained by optimizing this parameter as 
pointed out in [52] and [53]. A more thorough analysis on 
issues such as the window size, different fuzzy member 
function models and clustering stability will also be considered. 
In addition, though parallelized by means of a GPU technique, 
the proposed SAFE still needs a further acceleration for 
real-time processing tasks. Future work will be devoted to 
addressing the above problems. 

 ACKNOWLEDGEMENTS 
The authors would like to thank anonymous reviewers for 
giving valuable comments on this paper.  

REFERENCES 
[1] A. Bovik, Handbook of Image and Video Processing. New York: 

Academic, 2000. 
[2] J. Astola and P. Kuosmaneen, Fundamentals of Nonlinear Digital 

Filtering. Boca Raton, FL: CRC, 1997. 
[3] T. Chen and H. R.Wu, “Space variant median filters for the 

restoration of impulse noise corrupted images,” IEEE Trans on 
Circuit and System -II, vol. 48, no. 8, pp. 784-789, 2001.  

[4] R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt and pepper noise 
removal by median type noise detectors and detail preserving 
regularization,” IEEE Trans. Image Process., vol. 14, no. 10, pp. 
1479-1485, 2005. 

[5] P. Sree, P. Kumar, R. Siddavatam, R. Verma, "Salt-and-pepper 
noise removal by adaptive median-based lifting filter using 
second-generation wavelets," Signal, Image and Video 
Processing, vol. 7, no. 1, pp. 111-118, 2013. 

[6] Z. Wang and D. Zhang, "Progressive switching median filter for 
the removal of impulse noise from highly corrupted 
images," IEEE Trans on Circuit and System-II, vol. 46, no. 1, pp. 
78-80, Jan. 1999.  

[7] H. L. Eng and K.-K. Ma, “Noise adaptive soft-switching median 
filter, ” IEEE Trans. Image Process.,  vol. 10,  no.  2, pp. 242-251, 
2001. 

[8] P. E. Ng and K. K. Ma, “A switching median filter with boundary 
discriminative noise detection for extremely corrupted images,” 
IEEE Trans. Image Process., vol. 15, no. 6, pp. 1506-1516, 2006.  

[9] M. Yildirim, A. Basturk, M. Yuksel, “Impulse noise removal 
from digital images by a detail-preserving filter based on type-2 
fuzzy logic,” IEEE Trans on Fuzzy Systems, vol. 16, no. 4, pp. 
920-928, 2008. 

[10] T. Chen, H.R. Wu, “Adaptive impulse detection using 
center-weighted median filters,” IEEE Signal Processing Letters., 
vol.8, no.1, pp. 1-3, 2001 

[11] R.H. Chan, C. Hu, M. Nikolova, “An iterative procedure for 
removing random-valued impulse noise,” IEEE Signal Process. 
Lett., 11, pp. 921-924, 2004.  

[12] J. J. Zhang, “An efficient median filter based method for 
removing random-valued impulse noise,” Digital Signal 
Processing., vol. 20, no. 4, pp. 1010-1018, 2010. 

[13] J. Jiang, L. Zhang, and J. Yang, “Mixed noise removal by 
weighted encoding with sparse nonlocal regularization,” IEEE 
Trans. Image Process., vol.23, no.6, pp.2651-2662,2014. 

[14] S. Zhang and M. A. Karim, “A new impulse detector for 
switching median filters,” IEEE Signal  Process. Lett., vol. 9, no. 
11, pp. 360-363, 2002.  

[15] I. Aizenberg, C. Butakoff, “Effective impulse detector based on 
rank-order criteria,” IEEE Signal Process. Lett., vol.11, no.3, pp. 
363-366, 2004. 

[16] R. Garnett, T. Huegerich, C. Chui, and W.-J. He, “A universal 
noise removal algorithm with an impulse detector,” IEEE Trans. 
Image Process., vol. 14, no. 11, pp. 1747-1754, 2005. 

[17] Y. Q. Dong, R. H. Chan and S. F Xu, "A detection statistic for 
random-valued impulse noise," IEEE Trans. Image Process., vol. 
16, no. 4, pp. 1112-1120, 2007. 

[18] Y. Q. Dong, and S. F Xu, "A new directional weighted median 
filtering for removal of random-valued impulse noise," IEEE 
Signal Process. Lett., vol. 14, no. 3, pp. 193-196, 2007.  

[19] H. Yu, L. Zhao, H. Wang. “An efficient procedure for removing 
random-valued impulse noise in images,” IEEE Signal Process 
Lett., vol. 15, pp. 922-925, 2008. 

[20] X. M. Zhang and Y. L. Xiong, “Impulse noise removal using 
directional difference based noise detector and adaptive weighted 
mean filter,” IEEE Signal Process. Lett., vol. 16, no. 4, pp. 295–
298, 2009. 

[21] S. Akkoul, R. Ledee, R. Leconge and R. Harba, “A new adaptive 
switching median filter,” IEEE Signal Process. Lett., vol. 17, no. 
6, pp. 587-590, 2010. 

[22] J. Wu and C. Tang, “PDE-Based Random-Valued Impulse Noise 
Removal Based on New Class of Controlling Functions,” IEEE 
Trans. Image Process., vol. 20, no. 9, pp. 2028-2039, 2011. 

[23] M. Yan, “Restoration of images corrupted by impulse noise and 
mixed Gaussian impulse noise using blind inpainting,” SIAM 
Journal on Imaging Sciences, vol. 6, no. 3, pp.1227-1245, 2013 

[24] C.S. Lee, Y.H. Kuo, P.T. Yu, “Weighted fuzzy mean filters for 
image processing,” Fuzzy Sets and Systems., vol. 89, no. 2, pp. 
157-180, 1997. 

[25] M. Mancuso, R. D. Luca, R. Poluzzi, G. G. Rizzotto, “A fuzzy 
decision directed filter for impulsive noise reduction,” Fuzzy Sets 
and Systems., vol. 77, no. 1, pp. 111-116, 1996. 

[26] H. Xu, G. Zhu, H. Peng, D. Wang, “Adaptive fuzzy switching 
filter for images corrupted by impulse noise,” Pattern 
Recognition Letters., vol. 25, no. 15, pp. 1657-1663, 2004.  

[27] C. S. Lee, S. M. Guo, C.Y. Hsu, “Genetic-based fuzzy image 
filter and its application to image processing,” IEEE Trans. Syst, 
Man, and Cybern., vol. 35, no. 4, 694-711, 2005. 

[28] A. Toprak, İ. Güler, “Impulse noise reduction in medical images 
with the use of switch mode fuzzy adaptive median filter,” 
Digital Signal Processing., vol. 17, no. 4, pp. 711-723, 2007  

[29] W. Luo, “An efficient detail-preserving approach for removing 
impulse noise in images,” IEEE Signal Process Lett., vol. 13, no. 
7, pp. 413-416, 2006 

[30] C. C. Kang, W. J. Wang, “Fuzzy reasoning-based directional 
median filter design,” Signal Processing, vol. 89, no. 3, pp. 
344-351, 2009 

[31] S. Schulte, M. Nachtegael, V. De Witte, D. Van der Weken, E. E. 
Kerre, “A fuzzy impulse noise detection and reduction method,” 
IEEE Trans. Image Process., vol. 15, no. 5, pp. 1153-1162, 2006. 

[32] S. Schulte, V. De Witte, M. Nachtegael, D. Van der Weken, E. E. 
Kerre, “Fuzzy random impulse noise reduction method,” Fuzzy 
Sets and Systems., vol. 158, no. 3, pp. 270-283, 2007. 

[33] H. C. Chen, W. J. Wang, “Efficient impulse noise reduction via 
local directional gradients and fuzzy logic,” Fuzzy Sets and 
Systems., vol. 160, no. 13, pp. 1841-1857, 2009. 

[34] J. G. Camarena, V. Gregori, S. Morillas, et al, “Fast detection and 
removal of impulsive noise using peer groups and fuzzy metrics,” 
Journal of Visual Communication and Image Representation., 
vol. 19, no. 1, pp. 20-29, 2008. 

[35] J. G. Camarena, V. Gregori, S. Morillas, et al, “Some 
improvements for image filtering using peer group techniques,” 
Image and Vision Computing., vol. 28, no. 1, pp. 188-201, 2010. 

[36] T. C. Lin, “Decision-based fuzzy image restoration for noise 
reduction based on evidence theory,” Expert Systems with 
Applications., vol. 38, no. 7: 8303-8310, 2011. 

[37] W. Jian and T. Chen, “Random-valued impulse noise removal 
using fuzzy weighted non-local means”, Signal, Image and Video 
Processing, vol. 8, no. 2, pp 349-355, 2014. 

[38] Justusson, B. I."Median filtering: Statistical    



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2615444, IEEE
Transactions on Circuits and Systems for Video Technology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 14 
 properties." Two-Dimensional Digital Signal Processing-II. 
Springer Berlin Heidelberg, pp. 161-196, 1981.  

[39] G. R. Arce, “A general weighted median filter structure admitting 
negative weights,” IEEE Trans. Signal Process., vol. 46, no. 12, 
pp. 3195-3205, 1998.  

[40] J. W. Harris, and H. Stocker, "Maximum Likelihood Method." 
(§21.10.4) in Handbook of Mathematics and Computational 
Science. New York: Springer-Verlag, pp. 824, 1998. 

[41] Y. Chen, J. Yang, H. Shu, L. Shi, J. Wu, et al., “2-D impulse noise 
suppression by recursive Gaussian maximum likelihood 
estimation,” PLoS ONE vol.9, no.5, pp e96386, 2014. 

[42] A. Buades, B. Coll, J. M. Morel. "A non-local algorithm for 
image denoising," 2005 IEEE Computer Vision and Pattern 
Recognition, vol.2, pp. 60-65, 2005.  

[43] Y. Chen, L.M Luo, W.F Chen et al, “Nonlocal Prior Bayesian 
Tomographic Reconstruction,” Journal of Mathematical Imaging 
and Vision, vol. 30, no. 2, pp.133-146, 2008.  

[44] Y. Chen, L.M Luo, W.F Chen et al, “Joint-MAP tomographic 
reconstruction with patch similarity based mixture prior model,” 
Multiscale Modeling and Simulation, vol. 9, no. 4, pp. 1399-1419, 
2011. 

[45] L.D. Cohen and R. Kimmel, “Global Minimum for Active 
Contour Models: A Minimal Path Approach,” International 
Journal of Computer Vision, vol. 24, no. 1, pp. 57-78, 1997. 

[46] O. Wink, W. Niessen, and M. Viergever, “Multiscale vessel 
tracking,” IEEE Trans. Med. Image., vol. 23, no. 1, pp. 130–133, 
Jan. 2004. 

[47] Y. Chen, Y. Zhang, J. Yang, Q. Cao, G. Yang, J. Chen, H. Shu, L. 
Luo, J-L Coatrieux, Qianjing Feng. “Curve-like Structure 
Extraction Using Minimal Path Propagation with Backtracking,” 
IEEE Trans. Image Process., vol. 25, no. 2, pp. 988-1003, 2016 

[48] J. A. Hartigan and M. A. Wong "A K-Means Clustering 
Algorithm", Journal of the Royal Statistical Society.Series 
C(Applied Statistics), vol. 28, no. 1, pp.100-108, 1979 

[49] NVIDIA CUDATM Programming Guide (Version 3.0), 
http://developer.download.nvidia.com/compute/cuda/3.0/toolkit/
docs/NVIDIA CUDA Programming Guide.pdf. 

[50] Accelerating MATLAB with CUDA Using MEX Files (White 
Paper), http://developer.nvidia.com/object/matlab cuda.html.  

[51] Z. Wang, Alan C. Bovik, Hamid R. Sheikh and Eero P. 
Simoncelli “Image quality assessment: from error visibility to 
structural similarity” IEEE Trans. Image Process, vol. 13, no. 4, 
pp. 600-612, 2004. 

[52] C. -A. Deledalle, L. Denis, F. Tupin, "Iterative weighted 
maximum likelihood denoising with probabilistic patch-based 
weights," IEEE Trans. Image Process., vol. 18, no. 12, 
pp.2661-2672, 2009 

[53] D. Van De Ville and M. Kocher, “Nonlocal means with 
dimensionality reduction and SURE-based parameter selection,” 
IEEE Trans. Image Process., vol.  20, no. 9, pp. 2683-2690, 2011. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2615444, IEEE
Transactions on Circuits and Systems for Video Technology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 15 

Response to Comments 
Dear Editor and reviewers: 

We appreciated the comments made on our paper. They 
allowed us clarifying, improving and completing our work. We 
revised the paper carefully based on each comment, and invited 
an English professor to give a thorough checking of the 
language through the paper. Points by point replies are 
provided below and the revised version has been changed 
accordingly. The responses are written in blue color under the 
corresponding original comments. 
Reviewer(s)' Comments to Author:  
Control Number: 10535 
Title:     Structure-adaptive Fuzzy Estimation for 
Random-Valued Impulse Noise Suppression 
Authors: yang chen ; jian yang ; huazhong shu ; limin luo ; 
Jean-Louis Coatrieux ; qianjing feng 
  
We have completed the review process of the above referenced 
paper for the IEEE Transactions on Circuits and Systems for 
Video Technology.  Based on the reviewers' comments, we 
recommend that your paper undergo a Minor Revision and be 
resubmitted for consideration by the reviewers. 
---------------------------------------------------------------- 
  
Title:   Structure-adaptive Fuzzy Estimation for 
Random-Valued Impulse Noise Suppression 
Authors: yang chen ; jian yang ; huazhong shu ; limin luo ; 
Jean-Louis Coatrieux ; qianjing feng 
  
 Reviewers' and Associate Editor's Comments 
========================================== 
  
Review Number 1. 
***************** 
  
Does the revision adequately address the concerns 
expressed in the original review? 
  
Partially. 
  
Comments to the Author 
---------------------- 
  
My major concern is not about technical part, but the writing of 
this paper. The authors have to improve the paper writing. 
There are so many grammar errors in the paper. Quick 
examples are (there are more) 
1) In "A2: neighboring pixels belonging to the structure similar 
as the current point should be considered with a higher 
possibility of belonging to the same structure, and should be 

assigned a low variance in estimating the current pixel in Eq. 
(4). ",  "similar as" should be "similar to" 
2) In "Note such subscript rule also applies to other denotations 
in this paper", "denotations" should be "notations" 
3) The authors keep using "possibility " in the whole paper. It 
should be "probability". 
4) In "in each propagation window. these two paths being 
linked together.",  this is not a complete sentence. 
Response: we addressed all the above points in the revised 
paper 
 
  
I strongly encourage the authors to ask a native English speaker 
to assist you with editing. There are also some minor concerns. 
Response: we have invited a professor friend of us to give a 
thorough language checking of the revised paper 
 
 
1) Please double check Fig. 10 and 11. In Fig. 10, (a) is the 
original image, but according to the figure, it seems (e) is the 
original figure. The same problem exists in Fig. 11 that (b) 
should be the original image instead of (a). 
Response: very sorry for these errors, which were induced in 
reformatting the paper into one with less pages. We have 
carefully checked all the paper to correct them.  
 
2) Please reorganize Fig. 5 "SAFE Algorithm Outline ". The 
layout does not look good. Moreover, "SAFE Algorithm 
Outline " and "Outline of Algorithm MPSP" should not be 
named as  Fig.4 and 5. If possible, please use latex for future 
submission instead of MS word. 
Response: The outlines have been reformatted to avoid 
confusion with figures, and we agree that latex should be used 
in our future work.  
 
  
  
Review Number 2. 
***************** 
  
Comments to the Author 
---------------------- 
  
  
Some of the typos mentioned in the previous review are not 
corrected. Repeating them here, 
  
1) page 4 . Right after fig1. "We illustrate in Fig.1(a) the 
tracked minimal paths for eightuncorrupted points, and Fig.1(b) 
the results for eight uncorrupted ones."   fig1(b) are corrupted 
points. 
  
2) Figure 3. Top-row : Spelling mistake in the legend in the 
figure. It should be 'Corrupted'. Not 'Currupted'. 
  
The paper looks good otherwise. 
Response: Sorry for this repetitive errors, and we carefully 
checked the paper to correct them. 

 


