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ABSTRACT
A sample of 542 eclipsing binaries (EBs) with periods shorter than 2 days was selected from the
Microlensing Observations in Astrophysics (MOA) EB catalogue (Li et al.) for eclipse-time
variation analysis. For this sample, we were able to obtain a time series from MOA-II spanning
9.5 yr. We discovered 91 EBs, out of the 542 EBs, with detected light-travel-time effect signals
suggesting the presence of tertiary companions with orbiting periods from 250 d–28 yr. The
frequency of EBs with tertiary companions in our sample increases as the period decreases
and reaches a value of 0.65 for contact binaries with periods shorter than 0.3 d. If only those
contact binaries with periods <0.26 d are considered, the frequency even goes to unity. Our
results suggest that contact binaries with periods close to the 0.22-d contact binary limit are
commonly accompanied by relatively close tertiary companions.

Key words: methods: analytical – binaries: close – binaries: eclipsing.

1 IN T RO D U C T I O N

Microlensing is a rare astrophysical phenomenon predicted by Ein-
stein’s general relativity (Einstein 1936). Detection of microlensing
events requires the capability to monitor millions of stars simul-
taneously and was thought unachievable until the advent of CCD
cameras and wide-field observation techniques. Because of the ob-
servational strategy, microlensing surveys would result in a large
amount of photometric data of variable objects (e.g. Soszyński et al.
2016, 2017). The Microlensing Observations in Astrophysics survey
(MOA-II), for instance, has collected ∼100 TB of data for millions
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of variable objects in fields towards the Galactic bulge (GB) since
the project began in 2006 (Sumi et al. 2013) and over 8000 eclips-
ing binaries (EBs) in two MOA fields were identified recently by
Li et al. (2017). Amongst them, three contact binaries were further
discovered to exhibit light-travel-time effect (LTTE) signals in their
observed-minus-calculated (O−C) diagrams, indicating the pres-
ence of stellar tertiary companions with orbiting periods between
250 and 480 d (Li et al. 2017).

The LTTE is an effect associated with the change in orbital mo-
tion that appears in an EB with a tertiary companion, wherein the
EB’s centre of mass is no longer stationary but moving around the
barycentre of the whole three-body system (Borkovits et al. 2016).
From an observer’s point of view, the movement of the EB’s centre
of mass might be reflected by the measurement of times of eclipse
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minima that occur later or earlier cyclically than expected, due to
the finite speed of light and varying distances between the conjunc-
tion and the observer. Analysing the eclipse-time variation (ETV)
via O−C diagrams, otherwise known as the ETV method, has been
a traditional technique to detect LTTE in EBs, with or without spec-
troscopic information (Mayer 1990; Zasche et al. 2016; Zasche,
Wolf & Vraštil 2017). Nevertheless, before the era of space tele-
scope surveys, the number of EBs with detected LTTE signals was
limited and triple systems found by the ETV method tended to have
outer periods longer than several years or decades, because of poor
precision in ground-based photometry and insufficient frequency of
eclipse timings on the Earth. The majority of triple systems iden-
tified via the ETV method, unsurprisingly, come from the Kepler
space mission (Gies et al. 2012; Borkovits et al. 2015, 2016). How-
ever, stellar triples with outer periods longer than 4 yr are obviously
deficient in Kepler triple candidates, due to the limited duration
(i.e. 1470 d) of the mission. Such a bias in the population of stel-
lar triples identified via the ETV method may be reduced using
the photometric data of long-term ground-based surveys such as
MOA-II.

We are interested in searching for and investigating the population
of triple systems in the MOA EB catalogue using the time series
from MOA-II, which has a longer time span than the previous work
of Li et al. (2017). In this article, we first review the physics of
the LTTE in Section 2 and present the method of eclipse timing
in Section 3. The criteria for our sample selection are presented
in Section 4. The observation and data reduction processes are
described briefly in Section 5. We outline the analysis work in
detail in Section 6 and present the results in Section 7. We finally
discuss and conclude the article in Section 8.

2 LIGHT TRAV EL TIME EFFECT

Changes in orbital periods were already observed in many EBs a
century ago. Chandler (1888) suggested that the observed period
changes in Algol resulted from the LTTE due to the presence of
a tertiary object. However, it was after Woltjer (1922) was able to
perform an LTTE calculation that the LTTE was seriously consid-
ered as a plausible explanation. Later, Irwin (1959) proposed an
analytical model of the LTTE using the O−C diagram in terms of
stellar masses and orbital parameters. As a simple tool requiring
only photometric measurements, the O–C diagram has tradition-
ally been used to detect or study physical phenomena that induce
changes in the occurrence times of stellar events such as eclipses in
EBs and regular pulsations in Cepheid and RR Lyrae variables, etc.
For an EB, the O–C diagram represents variations in the times of its
eclipse minima, which are determined by the following equation:

� = To(E) − Tc(E) = To(E) − T0 − PsE, (1)

where To(E) and Tc(E) denote the observed and calculated times
of the Eth eclipse minimum, T0 represents the reference epoch and
Ps denotes the average eclipsing period. The general ETV model
involving the LTTE is defined by

� = c0 + c1E + c2E
2 − aAB sin i2

c

(
1 − e2

2

)
sin (ν2 + ω2)

1 + e2 cos ν2
, (2)

where the zeroth- and first-order coefficients, c0 and c1, in the poly-
nomial of E provide the corrections in T0 and Ps, respectively, while
the second-order coefficient, c2, is equal to half the rate of change
in the period, regardless of its origin. The parameters in the LTTE
term, i.e. the last term in equation (2), include eccentricity (e2), true
anomaly (ν2), argument of periastron (ω2), inclination (i2) and the

semimajor axis of the absolute orbit, aAB, equal to (mC/mABC) a2.
The period (P2) and the time of periastron (τ 2) of the tertiary object
are also needed implicitly when calculating ν2. The LTTE term,
therefore, depends on six parameters. Note that mC is the tertiary
object’s mass, mABC the total mass of the triple system, a2 the semi-
major axis of the tertiary object’s orbit around the EB’s centre of
mass and c the speed of light. The amplitude of the LTTE is defined
by

ALTTE = aAB sin i2

c

√
1 − e2

2 cos2 ω2. (3)

Unfortunately, the semimajor axis of the absolute orbit, aAB, and
the inclination, i2, are degenerate in the LTTE model. However, the
mass function, f(mC), defined as

f (mC) = m3
C sin3 i2

m2
ABC

= 4π2a3
AB sin3 i2

GP 2
2

, (4)

can be calculated when the LTTE solution is known. Then we can
calculate the amplitude of the LTTE via the approximation equation,
given by

ALTTE ≈ 1.1 × 10−4f (mC)1/3P
2/3
2

√
1 − e2

2 cos2 ω2. (5)

Note that the period and amplitude are in days and the masses
are in units of M�. The minimum mass of the tertiary object can
also be estimated by the mass function, assuming the inner binary
is of solar type, i.e. mAB = 2 M�. From equation (5), we know
that the LTTE amplitude decreases as the outer period decreases.
Because of this, and owing to insufficient precision in ground-based
photometry and difficulty in performing eclipse timing frequently
enough on Earth to cover a short-period LTTE cycle satisfactorily,
LTTEs associated with triple systems with outer periods shorter
than two years were rarely detected by ground-based telescopes
and stellar triples identified on Earth tend to be those with tertiary
periods longer than several years or even decades.

Additional dynamical perturbations may dominate over pertur-
bations due to LTTE and become observable in an O–C diagram,
if the tertiary companion interacts tightly with the inner binary in a
triple system (Borkovits et al. 2016). In the case of the inner binary
being eccentric, the ETV term corresponding to apsidal motion may
have to be included as well. The apsidal motion may be regarded
simply as linear variation in ω1, as a result of the apsidal line of
the inner binary’s orbit rotating with a constant angular velocity in
the direction of the orbital motion arising from the tidal deforma-
tion of the shapes of the binary components or relativistic effects
(Cowling 1938; Sterne 1939; Borkovits et al. 2015). Nonetheless,
the presence of a tertiary companion may induce the apsidal motion
of the inner binary to behave in a complicated manner in which
no orbital parameters, except the semimajor axes, would remain
constant (Naoz et al. 2013; Borkovits et al. 2015 and further refer-
ences therein). Since we restricted our study to short-period binaries
for which circular orbits should be established, we thus assumed
apsidal motions were negligible.

Although the detection of a LTTE signal with multiple cycles
is strong evidence for the existence of a tertiary companion in an
EB, several mechanisms, such as mass transfer between the EB’s
components, magnetic braking and the Applegate effect (Applegate
1992), can produce quadratic variation in the orbital period that
may be confused with a LTTE cycle of period longer than the data
time span. Star spots can also produce spurious ETVs that mimic
LTTE behaviour (Tran et al. 2013). In order to justify the plausibility
of a LTTE solution to the ETV curve, Frieboes-Conde & Herczeg
(1973) suggested four general criteria: (1) the shape of the ETV
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curve must follow the analytical form of a LTTE solution; (2) the
ETVs of the primary and secondary eclipses must be consistent with
each other in both phase and amplitude; (3) the estimated mass or
lower limit to the mass of the tertiary companion derived from the
mass function must be in accord with the photometric measurements
or the limit on the third light in the system; (4) the variation in the
system’s radial velocity must be in accord with the LTTE solution.
Obviously, without radial velocity data, criterion (4) could not be
satisfied. In addition to these criteria, we also employ the Bayesian
information criterion (BIC) as an extra criterion:

BIC = n ln

(
1

n

∑
i

(xi − x̂i)
2

)
+ k ln n, (6)

where xi are the measurement values, x̂i are the calculated values
from the model fit, n is the number of measurement points and k is
the number of variable parameters in the model fit. The goodness
of the BIC as a model selection criterion is that it includes the
penalty term, i.e. k ln n, to disfavour the case of overfitting by adding
parameters. We shall accept detected LTTE signals as genuine if
they satisfy the first and second criteria, as well as the fits associated
with the LTTE signals having lower values of the BIC compared
with the quadratic fits associated with the ETV produced by other
mechanisms.

3 ECLIPSE TIMING METHODS

The orbital motion of an EB, if it is purely a two-body system,
should be described and predicted exactly by Kepler’s equation as
long as apsidal motion is not involved. Thus, EBs can be used as pre-
cise clocks in astronomy. However, accurate eclipse timing is chal-
lenging on the Earth. Individual eclipses usually last a few hours.
Ground-based observation often fails to obtain complete coverage
of an eclipse, because of the poor condition of the night sky. Tradi-
tionally, the time of an eclipse minimum would be derived using the
Kwee–van Woerden method (Kwee & van Woerden 1956). Several
recent studies to look for circumbinary planets in post-common-
envelope binaries applied this method to derive the times of eclipse
minima (e.g. Lee et al. 2014; Baran et al. 2015). The Kwee–van
Woerden method, however, cannot work properly if an eclipse is
not symmetric about its minimum, the distribution of data points
over the eclipse is not even (i.e. observations over the eclipse were
not taken in regular cadences) or the number of data points cover-
ing the eclipse is too low. The Kwee–van Woerden method also, as
mentioned in Pribulla et al. (2012), usually underestimates the un-
certainties in the derived times. The eclipse template method, as far
as we know, has turned out to be an alternative method that is com-
monly used nowadays. Various ways to create an eclipse template
were proposed and used by different research groups. A high-order
polynomial fit (polyfit) was used by the Kepler group in order to
create an approximate eclipse template. A realistic eclipse template
might be derived by fitting the photometric light curve using an EB
modelling package such as PHOEBE (Prša et al. 2016).

The template generation methods mentioned so far are, however,
either impracticable or unsatisfactory for our study. Although the
template of a grazing eclipse can be generated appropriately by
a quartic polynomial using the polyfit code, we found that it
has trouble producing an appropriate template for a total eclipse. A
higher-order polynomial might be adopted to generate templates for
total eclipses, but it often yielded templates with rippling bottoms
and the minima did not correspond appropriately to the eclipse min-
ima. We desired a template generation method that was workable
for grazing and total eclipses. For these reasons, we finally decided

Figure 1. Cumulative distribution of period for 8733 EB candidates iden-
tified in the work of Li et al. (2017). The black curve shows the cumulative
distribution of period from 0.1 d to 100 d for all MOA EBs identified in
the GB9 and GB10 fields. The horizontal dashed line (green) marks a level
of cumulative probability equal to 0.5, while the vertical dashed line (red)
marks a period of 1 d.

to adopt the phenomenological light-curve model of EBs proposed
by Mikulášek (2015). Considering only the portion of an EB’s light
curve belonging to either the primary or secondary eclipse, the
model is reduced to the function of five parameters, defined by

f (ti , θ ) = α0 + α1ψ(ti , t0, d, 
), (7)

where α0 is the magnitude zero-point shift (i.e. the relative flux
baseline level in our study) and α1 < 0 is a negative multiplication
constant of the eclipse profile function, i.e.

ψ(ti , t0, d, 
) = 1 −
{

1 − exp

[
1 − cosh

(
ti − t0

d

)]}


. (8)

Note that t0 is the time of minimum of an eclipse, d > 0 is the min-
imum width and 
 > 0 is the parameter specifying the pointedness
of the minimum, such that 
 > 1 corresponds to the flat minimum
associated with a total eclipse. The procedures for timing eclipse
minima and measuring ETVs are presented in detail in Section 6.2.

4 SAMPLE SELECTI ON

MOA-II has adopted an observational strategy in which most of
its time in the sky is dedicated to routinely monitoring the same
fields towards the GB every clear night with high cadences. This
gives MOA-II an advantage over other microlensing surveys in
obtaining eclipse time measurements from short-period EBs that
would be frequent enough to reveal any short-period ETV. From
the preliminary investigation of Li et al. (2017), we know that there
are typically ∼100 eclipse time measurement points for MOA EBs
of periods shorter than a day, while this number declines to ∼19
for MOA EBs of periods between 2 and 10 d. This implies that the
MOA data should be useful for stellar companion detection and
study of the frequency of tertiary companions in contact or semi-
detached binaries. The detection of EBs in the MOA data base was
also strongly biased towards EBs of periods <1 d. About 50 per cent
of MOA EBs have periods <1 d (see Fig. 1). Interestingly, almost
all MOA EBs of periods <1 d are contact binaries. This implies that
the search for tertiary companions in MOA EBs of periods <1 d
is equivalent to studying the frequency of contact binaries with
tertiary companions. As we are concerned with the homogeneity
of the sample, we focused on studying MOA EBs with periods
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Figure 2. Folded light curves of the three EBs in our MOA samples from the GB9-9 and GB10-1 fields, which were discovered to have additional regular
periodic signals under their main eclipsing signals. (a) The main eclipsing signals. (b) The additional periodic signals. The secondary periodic signals in
MOA-330424-GB9-9 and MOA-89673-GB9-9 are the eclipsing and ellipsoidal variation curves, respectively, likely associated with EBs near them. However,
the source of the secondary periodic signal in MOA-249394-GB9-9 is uncertain. We suspect that it might be an artefact from imperfect image subtraction in
difference image analysis, owing to a bright variable star close to the EB in the images.

<2 d and attempted to obtain the full time series of MOA EBs
within this period range. There are over 4000 EBs in the MOA EB
catalogue that have periods shorter than 2 d. However, generating
light curves from the full MOA data base is expensive in terms of
computational time and data storage space. Therefore, we restricted
our study further to two subfields, GB9-9 and GB10-1, from which
the full light curves could be generated easily. 542 EBs from the
GB9-9 and GB10-1 fields fell into the period range between 0.22
and 2 d and no EB from these two subfields is of period < 0.22 d.

5 O B S E RVAT I O N S A N D DATA R E D U C T I O N

The MOA project is a Japan and New Zealand collaboration, which
began in 1995; the second stage of the project started in 2006 with a
1.8-m telescope located at the University of Canterbury Mount John
Observatory, New Zealand. The MOA-II telescope is equipped with
the MOA-cam3 wide-field camera, which consists of 10 2 k × 4 k
pixel CCDs with 15-μm pixels and provides a field of view (FOV)
of 2.18 deg2, given a pixel scale of 0.58 arcsec pixel−1. The primary
mission of the MOA project is always hunting exoplanets via mi-
crolensing. For this purpose, it has adopted a special observational
strategy, in which telescope times are spent mainly on a survey
towards 22 fixed fields of the GB. Images of these 22 fields were
taken with cadences between 10 min and 1 h through the custom
MOA-Red wide-band filter, which spans from 600 –900 nm. In each
field, there are 10 subfields corresponding to 10 CCD chips.

The data sets we obtained from the GB9-9 and G10-1 fields
span 9.5 yr and were collected from February–November every
year since 2006. Image reduction was performed following the
same procedures described in Li et al. (2017), using the difference
imaging analysis (DIA) method (Bond et al. 2001). The density of
the light curves from the GB9-9 field is approximately uniform,
while the density of the light curves from the GB10-1 field is low
during the first two years, although big gaps exist, as expected, due

to the off-season periods. The exposure time of 60 s was taken for
both fields over the entire observational time span. The observation
time was recorded in Julian Days and calculated to be midway
between the start and end times of an exposure.

6 A NA LY SIS

6.1 Period analysis

In the beginning, all the light curves of our EB samples were cleaned
following the light-curve procedure as in Li et al. (2017). In a
nutshell, we discarded outliers that are 4.0σ above or 9.0σ below
the relative flux mean, as well as detrending the light curves via
linear regression. This cleaning procedure was iterated twice before
going into the light-curve analysis. Meanwhile, we corrected the
times from Julian Days (JD) to Barycentric Julian Days (BJD).
Despite the time span of over 9 yr, we did not divide the light curves
into segments with shorter time spans in general, except for several
cases for which careful treatments in eclipse-time measurement
were needed (see Section 6.2).

Since the MOA fields towards which our EBs are located are
densely populated, blending with nearby stars might be present. On
the other hand, stellar pulsations might be present in our EBs; in
particular, a component being Cepheid or RR Lyrae, which would
pulsate regularly with a period comparable to the eclipse duration,
will distort an eclipse shape, causing the measurement of the time
of eclipse minimum to be inaccurate. Because of these problems,
we attempted first to search for an additional eclipsing or hidden
pulsation signal under the main eclipsing signal. To do so, we first
determined the average eclipsing period with which the 9.5-yr light
curve could be properly folded using conditional entropy with trial
periods P ′

s ± 0.01, where P ′
s is the average eclipsing period over two

MOA observational seasons provided in the MOA EB catalogue.
Once the new average eclipsing period was determined and after
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Figure 3. Mean light curves (left), first derivative curves (middle) and second derivative curves (right) of three representative MOA EBs. The points of ingress
and egress of an eclipse are determined by calculating a pair of minima in the second derivative curve that can define the boundaries of the eclipse well, i.e.
the pair of minima of the Mexican hat feature in the second derivative curve. In a few cases, no pair of minima in the second derivative curves corresponding
to the ingress and egress of their primary or secondary eclipses could be derived and we used the maxima and minima in the first derivative curves to define
the eclipse regions; for example, in the case of MOA-320496-GB9-9, we could not derive a pair of minima in the second derivative curve that could be used to
define the boundaries of the primary eclipse, and thus the phases of the maximum and minimum in the first derivative curve were used to represent the primary
eclipse’s boundaries.

checking the resultant folded light curve by eye to see if it was
folded properly, we binned the folded light curve in 200 bins and
created an approximate curve by calculating the mean flux value
in each bin. We then produced the residual curve by subtracting
the approximate curve from the folded light curve and unfolding it
afterwards. The residual curve was then put through period analysis
by the condition entropy algorithm, with trial periods ranging from
0.05–600 d. The residual curve folded with the output period was
inspected by eye afterwards.

In this manner, we discovered three residual light curves that
exhibited periodic signals. Fig. 2 shows the main eclipsing and
additional periodic signals of these three EBs. The additional peri-
odic signals in MOA-330424-GB9-9 and MOA-89673-GB9-9 are
obviously associated with an EB with a period of 0.421 d and an
ellipsoidal binary with a period of 1.316 d, respectively, while we
suspect that the additional periodic signal in MOA-249394-GB9-9
was an artefact due to contamination by a nearby pulsating bright
star or a bright EB that caused imperfect image subtraction in the
DIA. The additional signals detected were subtracted from the orig-
inal light curves and the average eclipsing periods were recalculated
after subtraction.

6.2 Eclipse time measurement

To measure the times of eclipse minima, the template method using
Mikulášek (2015)’s model to generate the eclipse templates was
applied. The corresponding eclipse regions were determined by
calculating the pairs of minima of the second derivative of the
folded light curve, which corresponds to the ingress and egress
phases of the eclipses. If no valid minima were obtained from the
second derivative curve, we took the pair of minima of the first
derivative curve between which the eclipse minimum is located as
the boundaries of the eclipse region. The procedures for identifying
the ingress and egress of an eclipse are as follows.

(i) Derive the mean light curve by binning the folded light curve
into 20 bins and calculating the mean flux in each bin.

(ii) Derive the first derivative curve by calculating the gradient of
the mean light curve using the function gradient() in numpy.

(iii) Derive the second derivative curve by calculating the gradi-
ent of the first derivative curve using the function gradient() in
numpy.
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Figure 4. Templates of representative MOA EB light curves. The green and red curves represent the templates for primary and secondary eclipses, respectively.
The templates were generated by fitting equation (7) to the eclipse regions of the folded light curves.

(iv) Smooth the curves in each step above using the method
of locally weighted scatter-plot smoothing (LOWESS) provided
in statsmodels, a Python module in statistics, and calculate
the phases of maximum and minimum points using the function
argrelextrem() in scipy.

(v) Take the pair of minimum points in the second derivative
curve that contain the eclipse minimum as the points corresponding
to ingress and egress of the eclipse.

To illustrate the situations for different types of EB light curve,
we take MOA-108463-GB9-9, MOA-238532-GB9-9 and MOA-
320496-GB9-9 as examples. Their mean light curves and first and
second derivative curves are shown in Fig. 3. MOA-108463-GB9-9
is an Algol-type EB, as the turning points in its mean light curve
corresponding to the ingress and egress of both eclipses can be
easily recognized by eye. Its first derivative curve resembles an
electrocardiogram, while its second derivative curve contains two
Mexican hat features associated with the primary and secondary
eclipses. In the case of MOA-238532-GB9-9, instead of yielding
typical Mexican hat features, which have single peaks at the middles
for both eclipses in the second derivative curve, double peaks were
produced, indicating the presence of four contact points, which
would be present for total eclipsing, in both eclipses. Unsurpris-
ingly, the points of ingress and egress of the eclipses can be easily
determined by calculating pairs of minima in the second derivative
curves between which the minima of their eclipses lie accordingly.
In the case of MOA-320496-GB9-9 (which seems to be a W UMa
binary), we can see that its second derivative curve fails to yield a
proper Mexican hat feature for the primary eclipse, having only a
single minimum instead of a pair of minima that would allow us
to determine the ingress and egress of the eclipse. Therefore, we
instead took the phases of the maximum and minimum in the first

derivative curve as the boundary points of the region of the primary
eclipse.1

Once the boundaries of the eclipse region were determined, the
best-fitting template was derived by fitting Mikulášek’s model, i.e.
equation (7), to the portion of the folded light curve between the
boundaries using emcee, a Python implementation of the affine-
invariant ensemble sampler for Markov chain Monte Carlo (MCMC:
Foreman-Mackey et al. 2013). The reference epoch, T0 in equa-
tion (1), in regard to the derived template was thus defined accord-
ingly as T0 = φ0Ps + τ 0, where φ0 is the phase of the template
minimum with respect to the time zero, τ 0, which we set to be τ 0

< tobs, where tobs is an observation time such that both primary and
secondary eclipses are not cut in phase when we folded the light
curve with respect to τ 0. The best-fitting templates of six EBs in our
MOA samples are shown in Fig. 4 as examples to demonstrate the
usefulness of our template-generating method for different shapes of
eclipse. Although we adopted Mikulášek’s model, i.e. equation (7)
is supposed to work for eclipse portions of detached EB light curves,
it still generated templates that represent eclipses of contact bina-
ries well in practice, even if the eclipse boundaries derived by our
algorithm turned out to be located at or close to the maxima of the
light curves, as verified by the case of MOA-124700-GB10-1 (see
Fig. 4). Once the template was generated, we unfolded the light
curve and then fitted each eclipse that had at least four data points
across the eclipse minimum with the template. The general idea

1In our sample of 542 MOA EBs, there were only a few cases in which we
failed to find the ingress and egress of eclipses from the second derivative
curves and they all seemed to be either W UMa EBs or ellipsoidal binaries,
after inspecting their folded light curves by eye. For them, it might be
more appropriate to use the light-curve maxima to define the boundaries of
their eclipse regions. Nevertheless, we did not find that it would impact the
accuracy of our eclipse timing significantly.
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Light travel time in MOA eclipsing binaries 4563

Figure 5. Examples of the O−C diagrams of the MOA EBs with spurious ETVs. Left: the O−C diagram of MOA-36543-GB9-9, in which the ETV curves
for the primary and secondary eclipses vary cyclically and are anti-correlated to each other. Right: the O−C diagram of MOA-47495-GB10-1, which appears
to have two separate curves or rapidly oscillating ETVs. The blue (diamond) points are the ETV measurements of the primary eclipses and the red (circle)
points are those of the secondary eclipses. The average uncertainties for the primary and secondary eclipses are represented by the red and blue error bars,
respectively, at the top-left corner of each figure. Note that the periods are in days.

Table 1. Boundaries of the parameters of the ETV model equation (2). Note
that d denotes days, d/c days per cycle and au astronomical units.

Parameter (unit) Lower Upper

c0 (d) −0.1 0.1
c1 (d) −0.1 0.1
c2 (d/c) −0.1 0.1
log (P2) (d) log (P2/2) log (2P2)
e2 0 0.999
ω2 0 2π

τ 2 0 1
aAB (au) 0 100

of the template method is to obtain the time of the eclipse mini-
mum by shifting the template horizontally until the template fits the
eclipse best. In reality, however, the brightness of a star may vary
over time, and hence the template parameters t0 as well as α0 and
α1 were required to vary to search for the best fit. Again, the best-
fitting parameter search was executed using emcee. As a result, the
time of the eclipse minimum was determined by the median of the
projected posterior on t0. The uncertainty in t0 was taken as the 1σ

confidence interval from the median.
The eclipse timing process described in the previous paragraph

worked properly for most of the MOA EBs we studied. There are,
however, six MOA EBs for which we could never derive periods
with which they could be folded satisfactorily. Such a problem indi-
cated that these EBs suffered significant ETVs. As improper folding
could induce significant errors in the derived eclipse templates, we
thus divided each of these EB light curves into three segments, of
which the first two segments span the first seven years evenly and the
third segment spans the last 2.5 yr. We then calculated the average
eclipsing period for each segment and generated the corresponding
templates and performed the eclipse time measurement following
the same process as mentioned in the previous paragraph.

We ignored measurement points with very large uncertainties
and inspected the resultant ETV curves afterwards. As expected,
the ETV curves of shorter period EBs are generally denser than
those of longer period EBs, given that there were more eclipsing
cycles for the shorter period EBs. Cyclic or quasi-cyclic variations
on a time-scale shorter than two MOA observation seasons (≈2 yr)

were noticeable in the O−C diagrams of several samples. A few of
them exhibit quasi-periodic ETVs for their primary and secondary
eclipses that are highly anti-correlated: for example, MOA-36543-
GB9-9 (see Fig. 5). Such anti-correlated ETVs were supposed to
be due to the presence of active star spots (Tran et al. 2013). Scat-
tering of the ETV points comparable to the average error bars on a
time-scale of one MOA observational season was common in the
O−C diagrams of our sample. In some cases, the ETV points dis-
persed such that the O−C diagrams seemed to have two separate
curves or to exhibit very rapid oscillations on very short time-scales
(<100 d), e.g. MOA-47495-GB10-1 (see Fig. 5). Orbital perturba-
tions due to very short period tertiary companions could produce
oscillating ETVs, which have been observed in the Kepler triples
(Borkovits et al. 2016). However, we also suspect that this kind of
ETV might be spurious, arising from stellar oscillations or pulsa-
tions (Borkovits et al. 2014). Given the frequency of and accuracy
in eclipse timing from the MOA data, the proper coverage of an
ETV cycle shorter than 200 d was expected to be unachievable. In
order to avoid false detection of short-period LTTE cycles due to
overfitting scattering of ETV points or possible spurious ETVs, we
restricted the search to those LTTE cycles that have periods longer
than 200 d. We also ignored the EBs in the sample with highly anti-
correlated ETV cycles without any evident long-term variation for
the LTTE analysis. Further discussion about this issue is presented
in Section 7.

6.3 LTTE analysis

The O−C diagram of each EB was constructed according to equa-
tion (1), with Ps being the average eclipsing period over the full data
time span and T0 being the time of the eclipse template minima, ex-
cept for the six special EBs mentioned in Section 6.2, for which the
average eclipsing periods and times of eclipse template minima as-
sociated with the segments of the first 3.5 yr were used instead. After
a preliminary inspection, we decided to discard ETV measurement
points with uncertainties >0.01 d (except for MOA-222739-GB9-9,
for which we accepted ETV measurement points with uncertainties
up to 0.02 d instead). Then we fitted the LTTE model, including or
excluding the quadratic term of E, to the primary and secondary
ETV curves simultaneously, using pymc (Barentsen et al. 2013),
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4564 M. C. A. Li et al.

Table 2. Orbital elements from the LTTE solutions for 65 EBs in the GB9-9 field. Note that P1 is the period of the inner binary determined by the conditional
entropy method plus the correction, c1, given by the best fit of equation (2) to the ETV curve and �P1 = 2c2, where c2 is the second-order coefficient in
equation (2), is the change in inner binary orbital period per orbital cycle in units of [day cycle−1] and mAB was taken as 2 M� when calculating (mC)min.

No. P1 �P1 P2 e2 ω2 τ 2 aAB sin i2 f ( mC) (mC)min � BIC

(d)
10−10

×(d cycle−1) (d) (deg) (MBJD) au M�
349130 0.2528512(2) – 7926(80) 0.29(1) 1(1) 53979.7(2) 7.5(1) 0.89(4) 2.7 178.07
284305 0.5086635(1) – 3428(96) 0.96(4) 88(5) 54621.65(4) 1.61(6) 0.048(6) 0.7 912.89
155278 1.0545500(2) – 1888(29) 0.7(1) 35(10) 54789.43(6) 1.1(1) 0.05(2) 0.7 3.35
145571 1.2480074(6) – 3166(84) 0.51(2) 83(5) 56119.25(4) 2.60(7) 0.23(2) 1.39 54.25
108463 1.45689719(6) – 2374(21) 0.99(1) 200(8) 55636.74(1) 2.1(8) 0.2(3) 1.38 200.73
19030 1.1797806(3) – 2590(115) 0.3(1) 309(28) 56176.1(1) 0.61(6) 0.004(1) 0.29 4.43
84829 0.3634425(5) – 6136(1911) 0.41(9) 312(11) 55152.6(4) 1.1(4) 0.004(5) 0.28 900.73
351777 0.339333891(4) – 2898(11) 0.130(9) 4(4) 54712.16(3) 0.478(2) 0.00174(3) 0.2 92.92
182318 0.39390818(1) – 3004(25) 0.47(3) 4(3) 54285.03(4) 0.327(6) 0.00052(3) 0.13 387.54
227115 0.86548591(6) – 2374(20) 0.98(2) 144(14) 54869.39(3) 0.8(3) 0.01(1) 0.41 9.28
217605 0.7081659(3) −15(1) 1617(10) 0.30(4) 142(7) 54907.54(3) 1.36(3) 0.130(9) 1.07 461.82
360672 0.35884830(2) −2.97(3) 948(1) 0.60(2) 105(2) 53915.18(4) 0.327(3) 0.0052(2) 0.3 984.98
34057 1.1061859(2) – 2752(21) 0.99(1) 320(14) 54349.35(1) 2.1(7) 0.2(2) 1.21 13.51
72704 0.97866744(4) – 1396(5) 0.51(3) 115(5) 55016.74(2) 0.68(2) 0.022(1) 0.52 36.79
17921 0.44477494(3) – 2720(169) 0.5(1) 320(12) 55506.97(10) 0.19(2) 0.00011(4) 0.08 87.01
356144 0.7865492(2) – 4424(84) 0.70(4) 6(3) 54208.43(5) 1.59(5) 0.027(3) 0.56 209.79
250567 0.34603681(2) −2.01(4) 2498(8) 0.89(2) 173(2) 54258.05(2) 0.26(2) 0.00039(10) 0.12 380.84
157806 0.5361466(6) – 3481(736) 0.21(7) 282(30) 56603.5(3) 0.4(2) 0.0008(10) 0.15 105.52
67484 0.24226037(8) −2.0(1) 3021(760) 0.74(8) 193(5) 56378.7(3) 0.34(9) 0.0006(6) 0.14 110.26
182430 0.35978161(1) – 2714(26) 0.58(5) 172(2) 53826(1) 0.37(2) 0.0009(2) 0.16 105.52
187318 0.43288552(6) 5.1(1) 844(2) 0.37(3) 236(10) 54146.46(7) 0.335(7) 0.0071(5) 0.34 759.87
220479 0.4423801(1) – 6326(587) 0.70(4) 3(3) 54182.0(1) 1.09(8) 0.004(1) 0.28 143.13
249030 0.69573952(10) – 2793(62) 0.77(4) 288(3) 55382.11(3) 1.87(5) 0.112(9) 1.0 240.62
155668 0.2972139(1) −1.7(2) 1687(43) 0.8(1) 177(8) 54362.5(1) 0.4(2) 0.004(5) 0.26 51.5
109391 0.30558171(3) – 3074(141) 0.30(6) 277(16) 55169.33(8) 0.40(2) 0.0009(1) 0.16 250.23
380523 0.34710273(8) −2.9(2) 1325(9) 0.96(5) 100(17) 54328.05(3) 0.43(5) 0.006(2) 0.32 88.28
65718 0.3320172(1) – 8436(562) 0.64(4) 36(4) 55843.9(1) 1.27(9) 0.0038(9) 0.27 138.62
22226 0.3603168(1) −4.4(3) 2460(29) 0.95(5) 354(4) 54028.1(1) 0.8(4) 0.01(2) 0.39 154.63
361861 0.2794994(1) – 7617(1234) 0.78(3) 148(4) 54606.1(2) 0.9(1) 0.0017(9) 0.2 72.07
256806 0.2665336(3) – 10918(4822) 0.69(9) 179(8) 54488.1(6) 1.6(6) 0.005(7) 0.29 10.47
303209 0.28954488(7) – 3687(127) 0.37(4) 163(5) 57488.72(4) 0.69(5) 0.0033(7) 0.26 57.64
159607 0.31115756(7) 5.7(1) 1247(4) 0.78(2) 329(2) 54001.20(4) 1.13(5) 0.12(2) 1.05 654.83
322149 0.4825322(2) – 4788(200) 0.57(3) 83(4) 56622.07(6) 1.41(8) 0.016(3) 0.46 278.28
238532 0.45366092(7) – 1093(5) 0.81(9) 137(7) 54569.77(2) 1.4(2) 0.3(2) 1.6 83.34
67250 0.4252117(1) – 8609(1761) 0.65(7) 291(9) 55993.2(3) 0.9(1) 0.0014(8) 0.19 45.69
135452 0.5006658(9) – 7711(2664) 0.69(9) 335(5) 55539.7(5) 2.6(8) 0.04(4) 0.65 238.14
101545 0.26379918(4) – 1859(39) 0.6(1) 28(14) 54933.39(9) 0.69(9) 0.013(5) 0.42 209.86
83874 0.3484025(3) – 7974(3098) 0.7(1) 146(11) 55161.9(5) 0.9(3) 0.002(2) 0.2 42.38
7772 0.31983968(5) – 1967(252) 0.8(2) 110(45) 53972.2(7) 0.21(5) 0.0003(2) 0.11 0.05
315321 0.4189762(1) – 3324(465) 0.8(1) 134(17) 55793.6(2) 1.0(3) 0.011(10) 0.4 32.31
367657 0.4167100(1) 2.4(4) 1373(12) 0.76(8) 152(6) 55080.16(2) 0.8(1) 0.03(1) 0.61 225.18
306577 0.448403(1) – 4623(1106) 0.75(9) 121(11) 53919.0(7) 1.9(6) 0.05(5) 0.69 18.2
180438 0.23953468(5) – 3569(297) 0.6(1) 170(11) 56479.3(1) 0.69(8) 0.004(1) 0.26 33.66
43392 0.7782322(2) – 2350(39) 0.25(9) 8(9) 54525.98(9) 1.14(4) 0.036(4) 0.63 167.38
357126 0.4173683(1) – 2329(68) 0.8(2) 276(16) 56126.51(3) 0.9(1) 0.019(9) 0.49 26.68
157098 0.4248364(1) −7.6(3) 1355(12) 0.8(2) 55(12) 53863.2(5) 0.38(8) 0.004(3) 0.27 17.21
372358 0.43437314(9) – 2049(54) 0.7(1) 344(9) 55682.72(5) 1.1(2) 0.04(2) 0.68 228.98
146280 0.4860822(4) – 2773(159) 0.4(2) 155(29) 54747.1(2) 1.7(3) 0.09(4) 0.92 18.23
333535 0.7721721(1) – 2940(242) 0.64(8) 205(8) 55231.6(1) 0.42(4) 0.0011(4) 0.17 12.98
325649 0.4836958(3) 11.0(9) 924(10) 0.3(1) 11(11) 54545.35(6) 0.73(6) 0.06(2) 0.78 130.24
289148 0.5670889(6) – 8259(350) 0.50(3) 56(3) 53945.4(9) 2.0(3) 0.015(8) 0.45 91.59
238768 0.30033613(3) – 2711(27) 0.99(1) 172(4) 54001.81(6) 1.7(9) 0.08(14) 0.89 116.48
265355 0.3747563(8) 10(1) 2637(700) 0.6(2) 252(19) 55911.1(4) 0.36(9) 0.0009(8) 0.16 47.26
367659 0.3096533(2) – 8107(1308) 0.67(5) 329(10) 56234.8(2) 1.6(2) 0.008(4) 0.35 127.32
117331 0.4156716(4) – 5959(672) 0.2(1) 169(47) 54583.2(8) 0.9(2) 0.003(2) 0.24 920.65
222500 0.3150402(2) – 3296(589) 0.2(2) 301(62) 56634.9(3) 0.3(1) 0.0004(4) 0.12 4.36
137966 0.4018154(3) – 3461(425) 0.2(2) 207(141) 55968.0(6) 0.4(1) 0.0010(8) 0.16 4.33
59639 1.1599840(3) – 3842(151) 0.06(6) 233(85) 54913.9(8) 0.65(3) 0.0025(4) 0.23 19.08
40690 0.4916289(5) – 4568(616) 0.2(1) 247(57) 54707.4(7) 0.9(2) 0.005(3) 0.31 0.3
129541 0.5992140(4) – 5593(1810) 0.44(10) 216(24) 56753.8(5) 0.5(2) 0.0004(6) 0.12 273.27
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Table 2 – continued

No. P1 �P1 P2 e2 ω2 τ 2 aAB sin i2 f ( mC) (mC)min �BIC

(d)
10−10

×(d cycle−1) (d) (deg) (MBJD) au M�
120170 0.42183406(7) – 2968(462) 0.5(4) 280(55) 55105.8(3) 0.17(4) 0.00007(6) 0.068 28.44
296972 0.34078361(3) −4.38(5) 1312(1) 0.038(7) 0.3(4) 54144.096(6) 1.247(4) 0.150(2) 1.14 3631.27
146665 0.31797683(10) – 4157(67) 0.007(10) 136(45) 57806.7(1) 2.95(6) 0.20(1) 1.29 576.0
218937 0.4387632(2) −5.1(4) 1026(5) 0.03(3) 355(4) 53835.0(8) 0.76(2) 0.055(5) 0.75 368.45
249394∗ 0.44615900(2) – 2310(4) 0.98(1) 151(9) 53825(1) 1.8(6) 0.2(2) 1.14 1720.68

Note: ∗ with additional periodic signal.

Table 3. Orbital elements from the LTTE solutions for 26 EBs in the GB10-1 field. Note that P1 is the period of the inner binary determined by the conditional
entropy method plus the correction, c1, given by the best fit of equation (2) to the ETV curve, and �P1 = 2c2, where c2 is the second-order coefficient in
equation (2), is the change in inner binary orbital period per orbital cycle in units of [day cycle−1] and mAB was taken as 2 M� when calculating (mC)min.

No. P1 �P1 P2 e2 ω2 τ 2 aAB sin i2 f ( mC) (mC)min �BIC

(d)
10−10

×(d cycle−1) (d) (deg) (MBJD) au M�
136114 0.43213930(7) – 10211(767) 0.73(3) 255(5) 55357.7(1) 0.80(4) 0.0007(1) 0.14 105.99
64799 0.29455691(1) – 2272(9) 0.35(2) 266(4) 54645.16(3) 0.724(8) 0.0098(3) 0.38 720.01
33369 0.234584737(3) – 1565(12) 0.55(7) 159(5) 54014.0(2) 0.077(5) 0.000025(5) 0.047 28.18
73826 0.365257839(5) – 1982(17) 0.39(5) 108(10) 53915.6(5) 0.088(3) 0.000023(2) 0.046 75.2
124700 0.29947914(3) −0.72(5) 1319(4) 0.96(4) 29(10) 54272.92(2) 0.4(2) 0.006(7) 0.32 105.24
94453 0.3549125(4) 3.8(8) 5528(674) 0.41(7) 335(18) 56547.4(2) 0.6(1) 0.0010(7) 0.17 7.44
129173 0.560314938(4) – 247.10(6) 0.04(1) 192(1) 54070.025(3) 0.296(1) 0.0566(8) 0.75 569.8
106715 0.4316864(1) – 4375(415) 0.24(4) 249(18) 54865.5(1) 0.54(5) 0.0011(4) 0.17 162.17
15762 0.5102986(4) −6.0(4) 3421(298) 0.61(3) 349(1) 55356.9(1) 1.7(1) 0.05(2) 0.74 1422.64
101793 0.38895230(4) 2.29(6) 745(1) 0.13(2) 241(23) 54471.29(7) 0.446(5) 0.0213(7) 0.51 533.97
89558 0.40350925(9) – 1963(67) 0.8(2) 288(25) 54798.1(1) 0.39(9) 0.002(1) 0.21 17.79
58083 0.2510848(3) −5.0(3) 2802(111) 0.48(6) 301(8) 54569.03(9) 0.67(6) 0.005(1) 0.3 70.96
195663 0.3003945(2) – 6545(680) 0.90(7) 204(12) 54643.1(2) 2.3(8) 0.04(4) 0.64 14.54
181626 0.37224225(6) 20.4(1) 1221(3) 0.57(3) 77(3) 54491.62(1) 0.72(1) 0.034(2) 0.61 496.58
77420 0.66270095(8) – 1484(356) 0.6(4) 156(117) 54350(1) 0.07(4) 0.00002(4) 0.042 61.24
181398 0.4134596(2) – 1708(130) 0.4(3) 278(58) 54639.6(4) 0.5(1) 0.004(3) 0.28 151.49
93468 0.49273427(6) – 3202(312) 0.6(2) 285(28) 53983.6(8) 0.20(3) 0.00011(6) 0.08 38.19
41908 0.42916153(3) – 3881(336) 0.96(4) 131(14) 55977.8(1) 0.5(1) 0.0011(9) 0.17 15.49
124463 0.8823691(2) – 1565(40) 0.8(2) 3(4) 55293.87(5) 0.9(3) 0.03(4) 0.61 23.15
89172 0.2596522(1) – 6644(2795) 0.7(1) 338(13) 56438.1(6) 0.6(2) 0.0006(9) 0.14 34.29
95682 0.38272308(9) – 2242(220) 0.2(2) 276(91) 54879.1(6) 0.29(4) 0.0006(3) 0.14 27.47
63896 0.32696380(7) 11.5(1) 1370(8) 0.73(5) 170(2) 55179.94(1) 0.48(4) 0.008(2) 0.35 124.83
174776 0.4829741(8) – 4804(489) 0.22(5) 151(11) 58491.4(1) 3.4(5) 0.2(1) 1.36 261.24
102925 0.3926504(1) – 3480(32) 0.383(2) 242.1(7) 56860.06(1) 3.19(4) 0.36(1) 1.7 3119.59
63946∗ 0.41931334(2) – 1827(51) 0.9(1) 1(2) 54515.31(10) 0.23(10) 0.0005(6) 0.13 5.76
69632∗ 0.4569038(2) – 3971(241) 0.78(2) 65(4) 57200.09(8) 0.63(6) 0.0021(6) 0.22 4.19

Note: ∗ with additional periodic signal.

another Python module of the MCMC fitting algorithms. For con-
sistency between the calculations of the polynomial terms of E in
equation (2) for primary and secondary eclipses, we added the phase
difference between the minima of primary and secondary eclipse
templates to the cycles, E, of the eclipse that is located in the sec-
ond half of the folded light curve. The LTTE term in equation (2)
depends implicitly on P2 and τ 2 via the true anomaly, ν2, which
must be calculated by solving Kepler’s equation iteratively using a
numerical method. We used Halley’s method (see, e.g. Kallrath &
Milone 2009) in our study. The calculation of ν2 in fact caused se-
rious speed issues in the parameter search using pymc. To improve
the computational speed, the calculation of ν2 was performed using
code written in Cython instead of Python/numpy.

The Metropolis–Hastings algorithm is used in pymc for distribu-
tion sampling. We adopted the built-in normal distribution function
in pymc as the likelihood function and assumed a uniform prior for

each parameter over the boundaries that we assumed to be appro-
priate (see Table 1). After testing the model-fitting algorithm, we
realized that the likelihood function might not be able to converge,
or it might converge incorrectly to a local minimum if the initial
guess of the outer period value was not close to the true value.
The difficulty in having a good guess of P2 occurred particularly
when only the partial LTTE cycle was observed. Concerning these
problems, and with usage of the New Zealand eScience Infrastruc-
ture (NeSI) high performance computing facilities, the parameter
search was carried out over a set of initial values of P2 as long
as we had no confident estimation of the value of P2 by eye. For
an ETV curve with a potential LTTE signal of period longer than
3000 d, for example, we ran the model fitting with initial values of
P2 from 2000, 3000, 4000, 5000, 6000, 7000, 8000 and 10 000 d,
respectively. For convenience, the search was over log (P2) space in-
stead, bounded between log (P2/2) and log (2P2). The initial-guess
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Figure 6. ETV curves of MOA-289148-GB9-9 and MOA-351777-GB9-9. P1 is the period of the inner binary determined by the conditional entropy method,
while P2 is the period of the tertiary companion given by the LTTE solution. The blue (diamond) points are the ETV measurements of the primary eclipses
and the red (circle) points are those of the secondary eclipses, while the green lines represent the best fits of the ETV model defined by equation (2). The
bottom panels show the residual curves. Anti-correlated behaviours between the primary and secondary ETV curves are seen on a time-scale of a year, while
the long-term trends of both curves are consistent. As can be seen in the residual curve of MOA-351777-GB9-9, for example, there is significant deviation
between the trends of the primary and secondary ETV curves during the eighth MOA observational season; however, the ETV curves also exhibit consistent
long-term variations. The uncertainties for the primary and secondary eclipses are represented by the red and blue error bars, respectively, at the top-left corner
of each figure. Note that the periods are in days.

values of other orbital parameters, including e2, ω2 and τ 2, were
taken to be the midpoints of their boundaries in principle, while the
projected semi-major axis of the absolute orbit of a tertiary com-
panion, i.e. aAB sin i2, in au was set to be 0.5 as the initial-guess
value, based on the properties of the Kepler triple candidates dis-
covered by Borkovits et al. (2016), which typically have P2 < 4 yr
and aAB sin i2 < 1 au.

Although mass transfer would happen in contact and semi-
detached binaries, the reliability of the best-fitting solution from
the LTTE model incorporating the quadratic term of E in equa-
tion (1) might be questionable, because such a combination can
easily produce a satisfactory fit to a long-term ETV curve that leads
to a false-positive LTTE detection. Therefore, we always preferred
the best-fitting solution of the LTTE model without the quadratic
term, unless the BIC value of the best fit with the quadratic term
was lower than that without the quadratic term by at least 10, indi-
cating that the best fit with the quadratic term is highly favourable.
In addition, the detection of the LTTE was accepted to be genuine
only if the BIC value of the best-fitting LTTE solution was lower
than that of the best-fitting solution of the quadratic equation of E,
which was also derived using pymc.

7 R ESULTS

7.1 The reliability of the results

We attempted to search for LTTE in all MOA EBs of periods < 2 d
in the GB9-9 and GB10-1 fields. In these two fields, there are 542
EBs within the period range we were interested in. 436 and 106 of
them come from the GB9-9 and GB10-1 fields, respectively.

Following the procedures of ETV analysis in the precious section,
there are 91 EBs for which we could derive LTTE solutions that fit
their ETV curves and, thus, we catalogized them as triple candidates.
65 of these triple candidates were identified in GB9-9, while 26
were in the GB10-1 field. The derived orbital parameters of the
triple candidates are shown in Tables 2 and 3, respectively. Whether
the LTTE solutions are reliable is always questionable, as several

mechanisms can produce ETV curves that mimic the LTTE. In
particular, we noticed that there are a certain number of cases in
which the ETVs for primary and secondary eclipses vary cyclically
and behave as though anti-correlated to each other on a time-scale
of a year, while the long-term trends were consistent, e.g. MOA-
289148-GB9-9 and MOA-351777-GB9-9 (see Fig. 6). The anti-
correlated behaviours in the ETV curves were likely attributed to
star spots present on the surfaces of the EB active components (Tran
et al. 2013). Generally, averaging the ETVs of the primary and
secondary eclipses might reduce the contribution of such spurious
ETVs. However, either the primary or secondary eclipse would
usually be missing in a cycle, thus averaging was not applicable for
the majority of MOA samples. Nonetheless, we recognized that the
best fit obtained by pymc would roughly represent the solution to
the mean ETV curve if we fitted the ETV curves of primary and
secondary eclipses simultaneously, provided that the uncertainties
in ETVs for primary and secondary eclipses are comparable.

In addition, the LTTE solution might represent the overfitting
to the ETV curve when the uncertainties in the times of eclipse
minima were overall larger than the LTTE amplitude. In particular,
the model of quadratic ETV plus LTTE could easily provide a good
fit to a ETV curve, leading to false-positive detection of LTTE. To
avoid overfitting, we used the BIC to decide whether to accept or
reject the solution from the model with more free parameters. In
our ETV analysis, we accepted the solution of the LTTE model
plus the quadratic term of E as the best-fitting one only if its BIC
value was lower than that excluding the quadratic term of E by 10.
Besides this, the detection of LTTE was accepted eventually only
if the BIC value of the LTTE solution was lower than that of the
parabolic solution. In this way, we accepted the ETV curves of 22
samples to be fitted best by the LTTE model plus the quadratic terms,
while the fits by the LTTE model without the quadratic terms were
preferred for 69 samples. Fig. 7 shows the plot of LTTE amplitudes,
ALTTE, against root-mean-square errors in eclipse timing for primary
eclipses, rms(σ p). Only about half of the detected LTTE signals had
amplitudes greater than the values of rms(σ p). Nonetheless, among
these 91 triple candidates, 88 of them have differences between
the BIC values of the LTTE and parabolic solutions larger than 10,
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Light travel time in MOA eclipsing binaries 4567

Figure 7. Amplitude of LTTE, ALTTE, versus root-mean-square of uncer-
tainty in eclipse timing for primary eclipses, rms(σ p), for 91 triple candi-
dates identified in the MOA EB sample of periods <2 d from the GB9-9
and GB10-1 fields. The red line represents ALTTE equal to rms(σ p). About
half of these 91 triple candidates have ALTTE larger than rms(σ p). The BIC
was used to decide whether the ETV model with the LTTE was accepted
or not. Note that �BIC = BIC(P(E)) − BIC(P(E) + LTTE), where P(E)
represents the polynomial of E in equation (2) and E is the cycle. 81 of these
triple candidates have � BIC > 10, indicating that the best fits of the ETV
model with the LTTE were strongly preferable. These 81 triple candidates
include all those with inner periods P1 < 0.26 d and all those with outer
eccentricities e2 > 0.9.

indicating the LTTE solutions are very strongly preferable. On the
other hand, there are two of them, MOA-40690-GB9-9 and MOA-
7772-GB9-9, that have BIC differences barely above 0, indicating
that the statistical evidence for detection of the LTTE in them is
weak, although they are still included in the list of EBs with detected
LTTE signals.

7.2 Statistics and distribution

Since we selected the EBs from the subfields GB9-9 and GB10-
1 only in terms of period alone, this represents a homogeneous
sample of EBs of periods <2 d. Therefore, it is worth examining
distributions and statistics of several interesting orbital parameters.

7.2.1 Tertiary period

The advantage of the ETV method is that we can derive the orbital
periods and eccentricities of tertiary companions from the LTTE
solutions. Fig. 8 shows the distribution of the tertiary periods of
all triple candidates in our sample, as well as the distributions for
the triple candidates in the GB9-9 and GB10-1 fields, respectively,
for comparison. We used 20 bins to bin the tertiary period from
log (P2) = 0 to log (P2) = 5. The tertiary period distribution peaked
at log (P2 ≈ 3.4), which is close to the time span of the MOA data,
i.e. 3420 d. Since a LTTE signal of period longer than 3420 d would
only have a portion of its cycle seen in the O–C diagram, it would
usually be indistinguishable from the parabolic ETV unless the
portion of the LTTE curve seen in the O–C diagram has a curvature
significantly different from that of a parabolic curve. Therefore, we
suspect that the lack of triple candidates of longer outer period is
due to the limited time span of the data. On the other side, there
is almost no detection of tertiary companions of periods < 600 d.

Figure 8. Distribution of the tertiary periods (P2) of 91 triple candidates
identified in our MOA EB sample of periods <2 d from the GB9-9 (light)
and GB10-1 (dark) fields. The distribution for the whole sample peaks at
2660 d. However, the separate distributions are not consistent with each
other. The distribution for the sample from the GB9-9 field has a sharp
peak at 2660 d, while the distribution for the sample from the GB10-1 field
appears to be bimodal with one peak at P2 ≈ 3700 d and the other at P2

≈ 1300 d. Note that the tertiary periods are binned in logarithmic bins of
20 from 102–105d. The red lines represent the time span of the MOA data,
which is about 3420 d.

Figure 9. Binary period (P1) versus tertiary period (P2) for 91 triple can-
didates identified in the GB9-9 and GB10-1 fields. All the triple candidates
have log (P2/P1) between 3 and 5, except MOA-129173-GB10-1, which has
a close tertiary companion of P2 about 247 d according to its best-fitting
LTTE solution.

MOA-129173-GB10-1 is the only one having a tertiary companion
of period shorter than 600 d.2

The lack of tertiary companions with periods < 600 d might be
related to the general formation process of contact binaries. How-
ever, we also have to point out that the LTTE amplitude increases
as the outer period increases or the mass of the tertiary compan-
ion increases, so short-period and low-mass tertiary companions
might simply be undetectable, given the uncertainties in ETV mea-

2In fact, MOA-129173-GB10-1 is one of the three triple candidates discov-
ered in the preliminary ETV investigation of Li et al. (2017). The other two
are MOA-115233-GB10-9 and MOA-360325-GB10-7 which have tertiary
companions of period 427 and 482 d, respectively. However, as we are con-
cerned with the homogeneity, we did not include these two in our sample of
MOA triple candidates for statistical analysis.

MNRAS 480, 4557–4577 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/480/4/4557/5078965 by U
niversity of Leicester Library user on 07 January 2019



4568 M. C. A. Li et al.

Figure 10. The period histogram of the 542 MOA EB sample with periods <2 d (left) and the period histogram of the subsample containing all MOA EBs
with periods <0.4 d (right) from the GB9-9 and GB10-1 fields. The portion of the whole EB sample with detected LTTE signals was filled with yellow, while
the rest was hatched with diagonal lines.

Figure 11. Frequency of the MOA EBs with detected LTTE signals. The frequency is defined as the number of EBs with detected LTTE signals over the total
number of EBs in each bin.

surements from the MOA data. Also, the existence of regular gaps
between two MOA observational seasons in the data always results
in regular gaps in the ETV curves, which in turn prevents proper
coverage of short-period LTTE signals and might make short-period
LTTE signals difficult to detect. In addition, the triple candidates
in GB9-9 and GB9 follow distinctive outer period distributions. In
particular, the tertiary period distribution of the GB10-1 sample
seemed to be bimodal, with a peak at P2 ≈ 3700 d and another
at P2 ≈ 1300 d. This could be just the effect of the small sample
size, but we suspect that the peak at P2 ≈ 1300 d resulted from the
non-uniform density of the light curves of the GB10-1 sample, in
which there are fewer data points during the first two observational
seasons because lower cadences for imaging were taken towards
the GB10 field during that period.

We also plotted the tertiary period (P2) against the inner binary
period (P1) for the 91 triple candidates, as shown in Fig. 9. All of
the triple candidates have period ratios P2/P1 between 103 and 105,
except MOA-129173-GB10-1, for which the period ratio is below
103.

7.2.2 Frequency of tertiary companions

The period distribution of our EB sample is shown in Fig. 10. The
peak occurs at around 0.5 d and the number of EBs declines rapidly

when the period is longer than 0.5 d. On the other side, there is a cut-
off at ∼0.2 d. The lack of contact binaries below 0.2 d in the MOA
EBs is consistent with the idea of the existence of a physical lower
limit of the period of contact binaries (Rucinski 1992). Looking at
the period distribution of the 91 EBs with detected LTTE signals,
69 of them (i.e. 75 per cent) have periods <0.5 d, while none of
them has a period longer than 1.5 d. The overall frequency of EBs
with detected LTTE signals is 91/542 = 0.168. If we look at the
distribution of the frequency of EBs with detected LTTE signals
over the period as shown in Fig. 11, it is interesting to note that the
frequency basically increases as the period decreases and reaches
13/20 = 0.65 when the period is shorter than 0.3 d. When we further
zoomed into the period range between 0.2 and 0.4 d, there are six
EBs in our sample with periods shorter than 0.26 d and they all have
LTTE signals detected in their O–C diagrams, giving a frequency
of having tertiary companions equal to 1. Fig. 12 shows the ETV
curves of these six EBs. The periods of their tertiary companions
range from ∼1500 d (or 4 yr) to ∼8000 d (or 22 yr). We have to
emphasize that our estimation of tertiary companion frequency is
very preliminary. To obtain a robust estimation of the frequency
of contact binaries with tertiary companions, corrections that take
all selection effects and detection limitations into account have
to be estimated through population synthesis. This would require
substantial follow-up work and is outside the scope of this article.
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Light travel time in MOA eclipsing binaries 4569

Figure 12. ETV curves of six EBs with periods <0.26 d. P1 is the period of the inner binary determined by the conditional entropy method, while P2 is the
period of the tertiary companion given by the LTTE solution. The blue (diamond) points are the ETV measurements of the primary eclipses and the red (circle)
points are those of the secondary eclipses, while the green lines represent the best fits of the ETV model defined by equation (2). Also, the average uncertainties
for the primary and secondary eclipses are represented by the red and blue error bars, respectively, at the top-left corner of each figure. The bottom panels show
the residual curves. Note that the periods are in days.

Figure 13. Distribution of outer eccentricity (e2) for 91 triple candidates
in the GB9-9 and G10-1 fields. The distribution is binned into 10 (white)
and 20 (yellow) bins, respectively, and they are plotted on top of each other
in the same graph. The distribution increases as eccentricity increases and
peaks at about e2 = 0.7−0.8. The excess of outer eccentricity is observed at
e2 > 0.9 in the triple candidates we identified.

7.2.3 Outer eccentricity

Another interesting property to look at is the distribution of the
outer eccentricities. We plotted the outer eccentricity distributions
in Fig. 13 with the number of bins 10 and 20. In the case of outer
eccentricity binned into 10 bins, the distribution was characterized
by a peak at e2 = 0.7, while, interestingly, a second peak, which
contains 10 triple candidates, was seen at e2 > 0.9. When we binned
the outer eccentricity into 20 bins instead, an excess was clearly
noticed at e2 > 0.95. Taking uncertainties in the eccentricity into
account, the outer eccentricities of these 10 triple candidates all still
fell in the range e2 > 0.9, except for one, which just fell into the range

of e2 from 0.8–0.9. Since the excess at e2 > 0.9 is still preserved for
our triple candidates when the uncertainties are concerned, such an
excess is not an artefact resulting from binning.

Nonetheless, such high-eccentricity companions are expected to
be so unstable that they would not survive, owing to long-term in-
stability, or their eccentricities would not be still maintained at such
large values if they formed with the inner binary systems at roughly
the same time, given that contact binaries such as W UMa variables
belong to old populations of ages about 4.4–4.6 Gyr (Yıldız 2014).
Thus, whether the derived LTTE solutions were physical has to be
examined carefully. We inspected the O–C diagrams of every EB
with detected LTTE signals by eye. The LTTE solutions associated
with e2 > 0.9 turned out to have unique shapes with sharp turning
points (see Fig. 14), indicating the possibility of sudden changes
in their orbit periods. In particular, such sudden period changes are
already noticeable in the O−C diagrams of MOA-284305-GB9-
9, MOA-108463-GB9-9 and MOA-249394-GB9-9. Although the
values of �BIC of their LTTE fits are much larger than 10, it
should be emphasized that a high value of �BIC simply means
that the LTTE model, equation (2), which can be recognized as a
mathematical model containing a combination of sinusoidal terms,
gives a better description than the pure parabolic model and does
not guarantee that the LTTE fit is physically reliable. Since LTTE
solutions with extremely high outer eccentricities are probably un-
physical, other reasons might be more appropriate to explain the
observed ETVs of these 10 MOA EBs. Abrupt changes or sudden
jumps in orbit periods are, in fact, not a rare phenomenon in close
binaries. Dozens of close binaries, which belong to Algol or W
UMa types, were reported to exhibit sudden jumps in their O−C
diagrams (e.g. Narusawa, Nakamura & Yamasaki 1994; Qian, Liu
& Yang 1999; Qian 2002). Mechanisms that might induce such
sudden period jumps include sudden mass exchange (Helt 1987)
or mass loss (Yang and Liu 2002) via stellar flares, variations in
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4570 M. C. A. Li et al.

Figure 14. ETV curves of 10 triple candidates with outer eccentricities e2 > 0.9. P1 is the period of the inner binary determined by the conditional entropy
method, while P2 is the period of the tertiary companion given by the LTTE solution. The blue (diamond) points are the ETV measurements of the primary
eclipses and the red (circle) points are those of the secondary eclipses, while the green lines represent the best fits of the ETV model defined by equation (2).
Also, the average uncertainties for the primary and secondary eclipses are represented by the red and blue error bars, respectively, at the top-left corner of each
figure. The bottom panels show the residual curves. Note that the periods are in days.

the internal structures (i.e. convective envelopes) of active binary
components (Qian 2002) and the rapid accretion of binaries from
circumstellar matter (Yang and Liu 2002). Also, the periodicity of
the O−C diagrams might come from magnetic cycles arising from
e.g. the Applegate effect, which can produce quasi-cyclic ETVs,
instead of the LTTE from unseen tertiary companions. Despite the
questionable reliability of the LTTE solutions, these 10 MOA EBs
show very interesting ETVs, which are worth taking notic of.

The cumulative distribution of the outer eccentricity of the MOA
triple candidates was calculated (see Fig. 15). If all 91 triple candi-
dates are taken into account, the calculated distribution lies between

a uniform distribution and a thermal distribution.3 However, as the
reliability of LTTE solutions of extremely high outer eccentricities
is quite questionable, inclusion of triple candidates with e2 > 0.9
might lead to an incorrect conclusion. We, therefore, excluded triple

3The term thermal eccentricity distribution refers to the distribution of eccen-
tricities of a population of binary stars, where every member has interacted
with each other one and reached statistical equilibrium. The normalized dis-
tribution of such a population as a function of eccentricity is f (e) = 2e de,
where e is eccentricity, derived by Jeans (1919).
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Figure 15. Cumulative distribution of outer eccentricity for the triple candi-
dates identified in the GB9-9 and GB10-1 fields. The green curve represents
the cumulative distribution for a uniform distribution of eccentricity from
0–1. The blue curve represents the cumulative distribution for the thermal
(or linear) eccentricity distribution derived by Jeans (1919). The cumulative
distributions of the outer eccentricity of the triple candidates, excluding and
including triple candidates with e2 > 0.9, in our sample are represented by
the red and black curves, respectively, and their underlaying distributions
are distinct from each other.

Figure 16. Tertiary period (P2) versus outer eccentricity (e2) for 91 triple
candidates in the GB9-9 and GB10-1 fields. The red curve is the best linear
fit, which has a correlation coefficient of 0.042, indicating there is no sig-
nificant correlation between P2 and e2 for the group of 91 triple candidates.

candidates with e2 > 0.9 and recalculated the cumulative distribu-
tion. The recalculated cumulative distribution, in contrast to the
case when all the triple candidates were included, resembles neither
a linear nor a flat distribution, indicating that the issue of whether
the detection of triple candidates with very high outer eccentricities
was real or not could lead to very different conclusions.

The plot of outer eccentricity against tertiary period is shown
in Fig. 16. The correlation coefficient was calculated to be 0.042,
indicating no correlation between the outer eccentricity and tertiary
period for our MOA sample.

8 D I S C U S S I O N A N D C O N C L U S I O N S

We carried out ETV analysis for a sample of MOA EBs of periods
<2 d in two MOA subfields, GB9-9 and GB10-1, using MOA-II data
spanning 9.5 yr. The sample contains 524 EBs, 436 and 106 in the

GB9-9 and GB10-1 fields, respectively. The Bayesian information
criterion was used as a measure for model selection between ETV
models with and without the LTTE term. In this way, we discovered
91 MOA EBs with detected LTTE signals, indicating the presence of
tertiary orbiting companions (see Fig. 6, 12, 14, 17). The distribution
of tertiary periods for our 91 triple candidates peaked sharply at
2660 d (or 7.2 yr), while there were no EBs in the sample with any
tertiary companion of orbiting period P2 > 30 yr. Given the fact that
the data spanned only 9.5 yr, it is obvious that the lack of detection
of tertiary companions with P2 > 30 yr is a consequence of the data
time span not being long enough. In addition, we suspect that the
peak at 2660 d also resulted from a selection effect due to the data
time span. Nonetheless, the significant decline in the distribution
for P2 < 103d might be related to the formation of close and contact
binaries, although it might also be due to the presence of regular
gaps in the ETV curves associated with the off-season periods.

As our sample was homogeneous in terms of period, it would be
interesting to see how the frequency of EBs with tertiary compan-
ions varies as a function of the inner binary period P1. In particular,
the group of EBs of period <0.5 d represented a homogeneous
sample of contact binaries and the detection of LTTEs in contact
binaries in this period range should suffer from the lowest selection
effect due to day–night cycles, as indicated by the number of eclipse
time measurement points we obtained. For our sample, there is an
obvious tendency for short-period contact binaries to be likely to
be accompanied by tertiary companions. The frequency of our EBs
with tertiary companions increases as P1 decreases. For our 13 con-
tact binaries with P1 < 0.3 d, the frequency reaches a value of 0.65.
Looking into these 13 contact binaries, we further found that all six
contact binaries of P1 < 0.26 d are with tertiary binaries. Since all
our detected tertiary companions have orbiting periods <104, our
results suggest that contact binaries with periods close to the 0.22-d
contact binary limit are commonly accompanied by relatively close
tertiary companions. Meanwhile, the outer eccentricity distribution
for our 91 triple candidates behaved approximately as a linear func-
tion, but an excess at e2 > 0.9 was observed. In addition, long-term
flux variations were seen in the light curves of most of our triple can-
didates. In a few cases, the flux variations are seemingly correlated
with the ETVs as inspected by eye. This kind of flux variation was
also observed in OGLE EBs with cyclic ETVs (Pietrukowicz et al.
2017). The long-term flux variations might come from the third light
from bright stars which orbit around the EBs (e.g. Derekas et al.
2011). Nonetheless, such variations might otherwise originate from
the changing luminosity of EB components associated with stellar
magnetic activity or pulsations. In particular, the Applegate mecha-
nism predicts cyclic variations in the luminosity and colours, which
are correlated with orbital period variations (i.e. the O−C cycles:
Applegate 1992; Lanza, Rodono & Rosner 1998; Lanza & Rodonò
2002). Since there is a possibility that the detected O−C cycles
for those MOA samples were driven by the Applegate mechanism,
it will be necessary to examine the correlation between long-term
flux variations and ETVs, in order to make better judgment on the
origins of their ETVs.

In addition to the actions we mentioned in the previous para-
graph, there is also much follow-up work that can be carried out in
the future. First of all, given the fact that the MOA fields we inves-
tigated overlap the OGLE fields and the OGLE observations began
earlier than MOA, it is worth investigating the possibility of includ-
ing the OGLE data to extend the time span for ETV analysis. On
the other hand, since several mechanisms such as mass transfer and
the Applegate mechanism, which are often present in contact bina-
ries, could induce long-term ETVs, the possibility of false-positive
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Figure 17. ETV curves of all the other 73 MOA triple candidates.
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Figure 17 – continued
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Figure 17 – continued
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Figure 17 – continued

MNRAS 480, 4557–4577 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/480/4/4557/5078965 by U
niversity of Leicester Library user on 07 January 2019



4576 M. C. A. Li et al.

Figure 17 – continued
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detection of LTTE in our sample has to be a concern. In this sense,
radial velocity measurements or direct imaging would be desirable
to confirm our discoveries. Also, we investigated short-period bi-
naries only in two MOA subfields, GB9-9 and GB-10-1. We did
not exploit the entire MOA EB catalogue that was established by
Li et al. (2017). Therefore, the study of the multiplicity of contact
binaries using a larger sample from the current MOA EB catalogue
is a task that could be carried out in the near future.
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Klagyivik P., 2016, MNRAS, 455, 4136
Chandler S. C., 1888, AJ, 7, 165
Cowling T. G., 1938, MNRAS, 98, 734

Derekas A. et al., 2011, Science, 332, 216
Einstein A., 1936, Science, 84, 506
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125,

306
Frieboes-Conde H., Herczeg T., 1973, A&AS, 12, 1
Gies D. R., Williams S. J., Matson R. A., Guo Z., Thomas S. M., Orosz J.

A., Peters G. J., 2012, AJ, 143, 137
Helt B. E., 1987, A&A, 172, 155
Irwin J. B., 1959, AJ, 64, 149
Jeans J. H., 1919, MNRAS, 79, 408
Kallrath J., Milone E. F., 2009, Eclipsing Binary Stars: Modelling and

Analysis, Springer, New York
Kwee K. K., van Woerden H., 1956, Bull. Astron. Inst. Netherlands, 12, 327
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