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Abstract

This paper analyzes the risk attitude and investment behavior of a group of heterogeneous

consumers who face an uninsurable background risk. It is shown that standard risk aversion

at the individual level does not imply standard risk aversion at the group level under effi cient

risk sharing. This points to a potential divergence between individual and collective portfolio

choices in the presence of background risk. We show that if the members’ absolute risk

tolerance is increasing and satisfies a strong form of concavity, then the group has standard

risk aversion.
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1 Introduction

Both conventional wisdom and empirical evidence suggest that people are more reluctant to

invest in risky assets when they face other sources of uninsurable and undesirable “background”

risk (e.g., labor income risk).1 In a seminal paper, Kimball (1993) shows that an expected-utility

maximizer with decreasing absolute risk aversion (DARA) and decreasing absolute prudence

(DAP) will have this type of response to background risk. The combination of DARA and

DAP is referred to as standard risk aversion. In the present study, we ask whether a group

of diverse individuals, who share risks effi ciently among themselves and make joint investment

decisions, will respond to background risk in the same way. Specifically, we want to identify the

conditions under which the group’s preferences (or aggregate utility function) exhibit standard

risk aversion.

It is known that if all members have DARA preferences, then the aggregate utility function

will have the same property.2 However, this is not true in general for DAP, as we will show below.

In other words, standard risk aversion at the individual level is not enough to ensure standard

risk aversion at the group level under an effi cient risk-sharing arrangement. One implication is

that a group of standard-risk-averse individuals under such arrangement may choose to increase

their exposure to risky assets in the presence of background risk. A specific example is shown

in Section 3. In this paper, we ask the question: under what conditions will collective portfolio

choices under background risk be consistent with individual choices? Our main result shows that

if each individual member’s absolute risk tolerance is increasing and satisfies a strong form of

concavity (which implies DAP) then the aggregate utility function is standard. This result has

two other implications on the group’s preferences. Firstly, since standard risk aversion implies

proper risk aversion and risk vulnerability, our result ensures that the group’s preferences will

have these properties.3 Secondly, DAP implies that the aggregate utility function has a negative

fourth derivative.4 Apps et al. (2014) show that this property is not guaranteed in general even

if all the members’utility function have negative fourth derivative.

1See, for instance, Heaton and Lucas (2000) and Palia et al. (2014) for empirical evidence.
2See, for instance, Hara et al. (2007, p.656) for a formal statement of this result.
3The notions of “proper risk aversion”and “risk vulnerability”are introduced by Pratt and Zeckhauser (1987)

and Gollier and Pratt (1996), respectively.
4This property is often referred to as “temperance.”See, Kimball (1992) and Eeckhoudt and Schlesinger (2006)

for more discussion on this property.
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2 The Model

Consider a static model with a group made up of N individuals, N being an integer greater

than one. The group has a sure amount of initial wealth W > 0, which can be invested in two

assets: a safe asset with a riskless rate of return r > 0 and a risky asset with a random rate of

return R̃. Let α and W − α denote, respectively, the amount of risky and safe investment. The

gross return from this portfolio is given by

(W − α) (1 + r) + α
(
1 + R̃

)
= ω + αx̃,

where ω ≡ W (1 + r) > 0 and x̃ ≡ R̃− r is the excess return from the risky asset. The random

variable x̃ is drawn from a compact interval X ⊆ R according to some probability distribution.

Apart from the risky investment, the group also faces an exogenous, uninsurable background

risk ỹ in final wealth. The background risk is drawn from a compact interval Y ⊆ R; it can

take both positive and negative values and is statistically independent of x̃.5 The probability

distributions of x̃ and ỹ are known to all group members, so there is no disagreement in their

probabilistic beliefs. The sum of investment returns and background risk is used to finance the

members’consumption. The group as a whole thus faces the following budget constraint:

N∑
i=1

c̃i ≤ ω + αx̃+ ỹ, (1)

where c̃i denotes member i’s consumption. Each member’s preferences can be represented by

E [ui (c̃i)] , for i ∈ {1, 2, ..., N} . The utility function ui : R+ → R is at least five times differen-

tiable, strictly increasing, strictly concave and satisfies the Inada condition lim
c→0

u′i (c) =∞.

We focus on effi cient decisions made by the group. Specifically, the members of the group col-

lectively decide on a level of risky investment (α) and an allocation of consumption (c̃1, c̃2, ..., c̃N )

5One example of such background risk is household earnigs risk. In particular, a positive value of ỹ can be
interpreted as a positive deviation in household earnings from its expected value. This can be the result of a
promotion or bonus. On the other hand, a negative value (or negative deviation from the mean) can be the result
of a layoff. The independence assumption is commonly used in the background risk literature [e.g., Pratt and
Zeckhauser (1987), Kimball (1993) and Gollier and Pratt (1996), among many others]. It is also consistent with
the empirical evidence reported in Palia et al. (2014, Table 2). There is a burgeoning literature that considers
intrahousehold risk sharing in the presence of uninsurable earnings risk [see, for instance, Mazzocco (2007) and
Ortigueira and Siassi (2013)].
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so as to maximize a weighted sum of their expected utility, i.e.,

N∑
i=1

λiE [ui (c̃i)] ,

where λi > 0 is the Pareto weight for member i; subject to (1) and c̃i ≥ 0 for all i. This problem

can be divided into two parts: First, conditional on α and the realization of (x̃, ỹ) , the group

solves a resources allocation problem:

û (z) ≡ max
{c̃1,...,c̃N}

N∑
i=1

λiui (c̃i) , (2)

subject to
N∑
i=1

c̃i ≤ z ≡ ω + αx̃+ ỹ, and c̃i ≥ 0 for all i.

For any z > 0, the constraint set of the above problem is compact. This, together with a

continuous and strictly concave objective function, ensures the existence of a unique solution.

The Inada condition ensures that each optimal c̃i is strictly positive. By the maximum theorem,

the aggregate utility function û (·) is continuous and each optimal c̃i can be determined by a

continuous function κi (z) , known as the sharing rule. By the implicit function theorem, if each

ui (·) is (m+ 1) times differentiable, then both κi (·) and û (·) are m times differentiable. Thus,

under our stated assumptions, both κi (·) and û (·) are at least four times differentiable. In

addition, û (·) is strictly increasing and strictly concave.

The second part of the group problem is to choose the level of risky investment, i.e.,

max
α
E [û (ω + αx̃+ ỹ)] . (3)

Since the optimal choice of all c̃i must be strictly positive, the group must choose α so that

z ≡ ω + αx̃ + ỹ is strictly positive for all possible realizations of (x̃, ỹ) . Depending on the

boundary values of X and Y, this can allow for short-selling of the risky asset (i.e., α < 0) or

short-selling of the safe asset (i.e., α > W ). Since the objective function in (3) is continuous

and strictly concave in α, a unique solution (denoted by α∗) exists.

4



3 Standard Risk Aversion of û

For each member i ∈ {1, 2, ..., N} , define Ai (c) ≡ −u′′i (c) /u′i (c) as the measure of absolute

risk aversion and Pi (c) ≡ −u′′′i (c) /u′′i (c) as the measure of absolute prudence. The reciprocal

of Ai (c) , denoted by Ti (c) , is the measure of absolute risk tolerance. The first derivative of

Ti (c) is referred to as absolute cautiousness [see Wilson (1968)]. Since û (·) is at least four

times differentiable, we can define the corresponding measures, Â (z) , T̂ (z) and P̂ (z) , for the

aggregate utility function. Wilson (1968) shows that there is a close connection between Ti (c),

T̂ (z) and κi (z) . Specifically,

κ′i (z) =
Ti [κi (z)]

T̂ (z)
> 0 for all i, and (4)

T̂ (z) =

N∑
i=1

Ti [κi (z)] . (5)

Differentiating both sides of (5) with respect to z gives

T̂ ′ (z) =
N∑
i=1

κ′i (z)T
′
i [κi (z)] . (6)

Since
∑N

i=1 κ
′
i (z) = 1, the absolute cautiousness of û (·) can be viewed as a weighted average of

the individuals’absolute cautiousness (evaluated under the sharing rule).

We now consider the effect of background risk on the group’s investment decision. Note that

the portfolio choice problem in (3) is no different from the one faced by a single decision-maker

(normative representative agent) with utility function û (·) . Thus, according to the variant of

Proposition 6 in Kimball (1993, p.610), any independent background risk ỹ that raises the

representative agent’s expected marginal utility under the optimal choice α∗, i.e.,

E
[
û′ (ω + α∗x̃+ ỹ)

]
≥ E

[
û′ (ω + α∗x̃)

]
, (7)

will lower the absolute value of α∗ if and only if û (·) exhibits standard risk aversion, i.e., when

both Â (·) and P̂ (·) are decreasing functions.

From (4) and (5), it is obvious that if Ti (·) is an increasing function (or equivalently, Ai (·)

is a decreasing function) for all i, then Â (·) must be decreasing. The relation between Pi (·) and

P̂ (·) is examined in Lemma 1.
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Lemma 1 The representative agent’s absolute prudence is given by

P̂ (z) ≡
N∑
i=1

[
κ′i (z)

]2
Pi [κi (z)] , (8)

with first derivative

P̂ ′ (z) =
N∑
i=1

[
κ′i (z)

]3
P ′i [κi (z)] +

2[
T̂ (z)

]2 N∑
i=1

κ′i (z)
{
T ′i [κi (z)]− T̂ ′ (z)

}2
. (9)

Proof of Lemma 1 Differentiating Ti (c) ≡ −u′i (c) /u′′i (c) with respect to c gives T ′i (c) =

−1+Ti (c)Pi (c) for all c > 0. The counterpart for û (·) is T̂ ′ (z) = −1+ T̂ (z) P̂ (z) for all z > 0.

Substituting these questions into (6), and using
∑N

i=1 κ
′
i (z) = 1 gives

T̂ (z) P̂ (z) =
N∑
i=1

κ′i (z)Ti [κi (z)]Pi [κi (z)] .

Equation (8) follows immediately by rearranging terms and applying (4). Next, differentiating

(8) with respect to z gives

P̂ ′ (z) =
N∑
i=1

[
κ′i (z)

]3
P ′i [κi (z)] + 2

N∑
i=1

κ′i (z)κ
′′
i (z)Pi [κi (z)] .

Differentiating (4) with respect to z gives

κ′′i (z) =
κ′i (z)

T̂ (z)

{
T ′i [κi (z)]− T̂ ′ (z)

}
.

Equation (9) can be obtained by combining the last two equations. �

Equation (9) shows that the first derivative of P̂ (·) can be decomposed into two parts:

The first part captures the effects of P ′i (·) on P̂ ′ (·) . In particular, this term is negative if

all group members have decreasing absolute prudence. The second term captures the ef-

fects due to the heterogeneity in absolute cautiousness across group members. Since T̂ ′ (z)

is the weighted average of {T ′i [κi (z)]}
N
i=1 under the set of weights {κ′i (z)}

N
i=1 , the expression∑N

i=1 κ
′
i (z)

{
T ′i [κi (z)]− T̂ ′ (z)

}2
is the variance of absolute cautiousness among the group mem-

bers, which is always positive. Thus, even if all members have DAP preferences, the represen-

tative agent may not. In this case, it is possible to find {x̃, ỹ} such that the group will increase
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Figure 1: An Example of Non-monotonic P̂ (·) .

their risky investment in the presence of background risk. This is demonstrated in the following

example.

Consider two individuals with preferences u1 (c) = 1−φ−1 exp (−φc) and u2 (c) =
(
c1−σ − 1

)
/ (1− σ) ,

with φ > 0 and σ > 0. Both individuals exhibit (weakly) decreasing absolute risk aversion and

(weakly) decreasing absolute prudence. When acting alone, the first agent’s choice of α is unaf-

fected by any background risk that satisfies (7), while the second agent will reduce his/her risky

investment. Suppose now the two form an effi cient risk-sharing group and suppose λ1 = 1.5,

λ2 = 1.0, φ = 0.1 and σ = 0.4. The resulting P̂ (z) , as depicted in Figure 1, is non-monotonic

and strictly increasing when z is small. Take ω = 4.5 and suppose x̃ has only two possible

states, -0.2 and 0.24, with equal probability. In the absence of any background risk, the couple’s

optimal choice of risky investment is α∗1 = 5.093. Suppose now we introduce a background risk

ỹ, which can take three possible values: -2.0, 0 and 2.6, with equal probability.6 In the presence

of ỹ, the couple will increase their risky investment to α∗2 = 5.105.

The results in our Lemma 1 are closely related to those in Hara et al. (2007, Section

4). Specifically, these authors show that effi cient risk sharing has a tendency to make T̂ (z) a

6Condition (7) is satisfied under this ỹ and α∗1. The detail of this and other parts of the example are shown in
a Technical Appendix available from the author’s personal website. In this appendix, we show that similar results
[i.e., a non-monotonic P̂ (·) and α∗2 > α∗1] can be obtained under other values of {λ1, σ, φ} .
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convex function and increase the slope of T̂ (z) /z. Thus, even if all group members have concave

absolute risk tolerance or increasing relative risk aversion (which is equivalent to a decreasing

Ti (c) /c), the representative agent may not have these characteristics. The concavity of T̂ (·) is

of particular interest here due to the following observation.7

Lemma 2 If T̂ (·) is increasing concave, then P̂ (·) is decreasing and û (·) is standard.

Lemma 2 suggests one way to establish the standardness of û (·) . The remaining question is

under what conditions will T̂ (·) be a concave function. Hara et al. (2007) have already shown

that it is not enough to have a concave Ti (·) for all i. This prompts us to consider a stronger form

of concavity, which is the notion of “ρ-concavity”as discussed in Caplin and Nalebuff (1991).

For any ρ ∈ [−∞,∞] , a nonnegative function g (·) is called ρ-concave if the transformed

function g̃ (x) ≡ [g (x)]ρ /ρ is concave. Since g (·) and g̃ (·) are equivalent when ρ = 1, the usual

notion of concavity corresponds to the case of ρ = 1.8 In general, if g (·) is ρ1-concave, then

it is also ρ2-concave for all ρ2 ≤ ρ1. If both g (·) and g̃ (·) are twice differentiable, then g (·) is

ρ-concave if and only if

g (x) g′′ (x) ≤ (1− ρ)
[
g′ (x)

]2
, for all x.

The main result of this paper is to show that if each group member’s absolute risk tolerance is

ρ-concave, for some ρ ≥ 2, then the representative agent’s absolute risk tolerance is a concave

function. This result holds regardless of whether Ti (·) is monotonic. It follows that if each

Ti (·) is increasing and ρ-concave, for some ρ ≥ 2, then T̂ (·) is increasing concave and û (·) is

standard.9

Theorem 3 Suppose for each i ∈ {1, 2, ..., N} , Ti (·) is ρ-concave, for some ρ ≥ 2, then T̂ (·) is

a concave function. If, in addition, each Ti (·) is increasing, then û (·) is standard.

Proof of Theorem 3 As shown in Theorem 4 of Hara et al. (2007), the second derivative of

T̂ (z) can be expressed as

T̂ ′′ (z) =
N∑
i=1

[
κ′i (z)

]2
T ′′i [κi (z)] +

1

T̂ (z)

N∑
i=1

κ′i (z)T
′
i [κi (z)]

{
T ′i [κi (z)]− T̂ ′ (z)

}
.

7This result has appeared in Gollier (2001b, p.166). Its proof follows immediately by noting that P̂ (z) > 0,

T̂ (z) > 0 and T̂ ′′ (z) = T̂ ′ (z) P̂ (z) + T̂ (z) P̂ ′ (z) for all z > 0.
8Quasi-concavity and logconcavity of g (·) correspond, respectively, to the cases of ρ = −∞ and ρ = 0.
9 If Ti (·) is increasing and ρ-concave for some ρ ≥ 2, then it is increasing and concave in the usual sense. Thus,

by Lemma 2, ui (·) has standard risk aversion.
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Using (4) and (6), we can rewrite this as

T̂ ′′ (z) =
1

T̂ (z)

N∑
i=1

[
κ′i (z)

] {
T ′′i [κi (z)]Ti [κi (z)] +

(
T ′i [κi (z)]

)2}−
[
T̂ ′ (z)

]2
T̂ (z)

.

Thus, it suffi ce to show that T ′′i (c)Ti (c) + [T
′
i (c)]

2 ≤ 0 for all c ≥ 0 and for all i. If Ti (·) is

ρ-concave for some ρ ≥ 2, then we have T ′′i (c)Ti (c) ≤ (1− ρ) [T ′i (c)]
2 , which implies

T ′′i (c)Ti (c) +
[
T ′i (c)

]2 ≤ (2− ρ) [T ′i (c)]2 ≤ 0.
This completes the proof. �

In the economics literature, the assumption of ρ-concavity is typically imposed on the density

function of some distributions.10 To the best of our knowledge, this is the first study that

applies this type of concavity to characterize risk preferences. Suppose individuals’absolute risk

tolerance takes a power form as in Gollier (2001a, p.189), i.e., Ti (c) = αic
φi , for some constants

αi > 0 and φi ≥ 0. Then Ti (c) is ρ-concave for some ρ ≥ 2 if and only if φi ≤ 0.5.
10For instance, Caplin and Nalebuff (1991) impose this assumption on the distribution of voters’characteristics

in a voting model; Ewerhart (2013) applies this on the distribution of bidders’characteristics in auction models.
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