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Abstract: Worker assignment is a relatively new problem in assembly lines that typically is 
encountered in situations in which the workforce is heterogeneous. The optimal assignment of 
a heterogeneous workforce is known as the assembly line worker assignment and balancing 
problem (ALWABP). This problem is different from the well-known simple assembly line 
balancing problem concerning the task execution times, and it varies according to the assigned 
worker. Minimal work has been reported in worker assignment in two-sided assembly lines. 
This research studies worker assignment and line balancing in two-sided assembly lines with 
an objective of minimizing the cycle time (TALWABP). A mixed-integer programming model 
is developed, and CPLEX solver is used to solve the small-size problems. An improved 
migrating birds optimization (MBO) algorithm is employed to deal with the large-size problems 
due to the NP-hard nature of the problem. The proposed algorithm utilizes a restart mechanism 
to avoid being trapped in the local optima. The solutions obtained using the proposed algorithms 
are compared with well-known metaheuristic algorithms such as artificial bee colony and 
simulated annealing. Comparative study and statistical analysis indicate that the proposed 
algorithm can achieve the optimal solutions for small-size problems, and it shows superior 
performance over benchmark algorithms for large-size problems. 
 
Keywords: Assembly line balancing; Two-sided assembly line; Worker assignment; Migrating 
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1. Introduction 

Assembly lines are utilized extensively in manufacturing to produce standardized products 
in a process in which a set of tasks is divided among workstations, and each workstation is 
assigned workers to perform the allocated tasks (Oksuz et al. 2017). Assembly line balancing 
problems primarily aim at allocating the tasks to workstations in a balanced manner such that 
one or several objective functions are optimized. The basic version of the assembly line 
balancing problem is simple assembly line balancing problem (ALBP) with workstation 
minimization criterion, referred to as type I ALBP (Boysen et al. 2007; Chica et al. 2015). 
Another widely researched objective function is minimizing cycle time, leading to a more 
complex ALBP referred to as type II ALBP (Zhong and Ai 2017). Type I ALBP has been 



criticized for lacking real-life application and being too theoretical since the environment in 
real industry is much more complex. Hence, variants of simple type I ALBP are studied to 
tackle problems found in industry (Purnomo et al. 2013). The literature has reported that type I 
ALBPs are NP-hard (Scholl and Becker 2006), hence variants of ALBP are always more 
complex due to having more constraints.  

A variant of ALBP includes the consideration of worker assignment (Moreira et al. 2015a). 
This is an essential problem that is found in sheltered work centers for the disabled (Miralles et 
al. 2007). Certain workers might need more time to perform/operate certain tasks or are 
incapable of operating some tasks. Due to increased concern and respect for the disabled, many 
industries are employing them, and companies always are concerned about worker assignment 
in assembly lines (Blum and Miralles 2011). A task allocation that ignores this situation might 
be ineffective or even infeasible. Worker assignment and task allocation result in a new 
integrated assembly line worker assignment and balancing problem which contains two 
interacting sub-problems. Worker assignment determines the assignment of workers to 
workstations, and assembly line balancing aims at distributing tasks to workstations in a 
balanced manner while satisfying different constraints such as precedence constraint and cycle 
time constraint.  

The two-sided assembly line balancing problem (TALBP) is a variant of simple ALBP where 
workers operate tasks on two-faced workstations that are placed parallel to each other, referred 
to as mated-stations (Tang et al. 2017). This type of assembly line is widely used in industry 
since it has several advantages over the one-sided assembly line such as shorter line length, 
reduced material handling and more tool-sharing. When simultaneously taking the worker 
assignment and assembly line balancing into account for a two-sided assembly line, a new 
integrated two-sided assembly line worker-assignment and balancing problem (TALWABP) 
arises and is solved in this paper. The proposed problem belongs to the category of NP-hard 
problems. TALBP is proven to be NP-hard in the recent literature reported by Tang et al. (2017). 
If the worker assignment problem were fixed, it would be possible to utilize the proposed 
TALWABP to solve TALBP. Considered TALWABP has many worker assignments and it 
falls under the NP-hard category due to this. Figure 1 depicts an example of worker assignment 
and task allocation on a two-sided assembly line. TALWABP comprises two sub-problems: 
worker assignment and assembly line balancing. The assembly line balancing problem 
determines the detailed assignment of tasks on each mated station, while the worker assignment 
problem assigns the best-fit worker to each workstation. In the case of TALWABP, there is a 
special constraint on the preferred directions of tasks referred to as direction constraint (L-type 
tasks, R-type tasks, and E-type tasks). L-type tasks are allocated to the left side; R-type tasks 
are assigned to the right side, and E-type tasks can be assigned to the left or right side (Tuncel 
and Aydin 2014). Also, there is a special condition for tasks on mated stations: sequence-
dependent idle time (Tang et al. 2016). Sequence-dependent idle time is caused by the 
precedence constraint and utilization of two sides, and it can be reduced by optimizing the task 
sequence on workstations. Taking the sequence-dependent idle time into account, TALWABP 
should aim to optimize worker assignment, task allocation to workstations, and task sequence 
on each workstation.  
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Figure 1. Worker assignment and task allocation on a two-sided assembly line 

 
To the authors’ best knowledge, there is limited work reported on TALWABP with the 

objective of minimizing cycle time, except for Janardhanan et al. (2018) who introduced the 
problem for the first time. To tackle this new problem, this research presents the following two 
major contributions. (1) The considered problem is studied for the first time, and a new mixed-
integer programming model is formulated and solved by CPLEX solver for optimality to solve 
small-sized problems with less than 16 tasks. (2) This research develops an efficient 
metaheuristic algorithm to solve the new problem. A migrating birds optimization (MBO) 
algorithm is developed to tackle large-size problems in an acceptable CPU time. The considered 
problem is differs significantly from the traditional two-sided assembly line balancing problem 
(TALBP) and the algorithms utilized to solve TALBP are not directly applicable to the 
considered problem and this is one of the major motivation behind the work. For example, in 
literature the best reported algorithm to solve TALBP is iterated greedy algorithm and this 
cannot be utilized for a worker assignment problem which is the major component in the 
considered problem. Hence, this research focuses on utilizing new efficient algorithm rather 
than the existing algorithms utilized for TALBP. For solving complex problems in different 
applications with uncertainty and vagueness like the one considered here researchers have 
utilized fuzzy logic and metaheuristic approaches to solve them in an acceptable computation 
time and using these algorithms it helps in decision making which is very critical in such 
systems (Fahmi et al. 2018a; Fahmi et al. 2018c; Fahmi et al. 2017b; Fahmi et al. 2018e). MBO 
is a relatively new metaheuristic algorithm that has shown superior performance in solving 
similar types of optimization problems (Duman et al. 2012; Gao and Pan 2016; Zhang et al. 
2017). The main properties of the MBO are a set of individuals searching in parallel for a good 
solution. Additionally, the proposed method is improved by replacing the incumbent individual 
immediately rather than evaluating it after all the neighbor solutions are obtained; this is done 
with the aim of increasing search speed. A restart mechanism is also employed to assist MBO 
to escape from local optima. A comprehensive comparative study is carried out to test the 
performance of the improved MBO, where MBO is compared with three artificial bee colony 
algorithms and a simulated annealing algorithm to demonstrate the superiority of the proposed 
algorithm. A computational study is conducted on 156 instances introduced in Janardhanan et 
al. (2018), and the performance of the proposed method is demonstrated. There is a need of 
developing a decision support system to help production managers in their decision making 
(Al_Janabi 2018; Fahmi et al. 2018b). The work done in this paper will help them to efficiently 
allocate workers and balance the workstation with an objective of minimizing the cycle time. 
Different researchers have used different computing techniques for decision making (Amin et 
al. 2018; Fahmi et al. 2018d) and this paper utilizes metaheuristic algorithms to solve complex 
real life problems like the one considered in this paper. 



The remainder of the paper is organized as follows. Section 2 reviews the literature on 
TALBP and worker assignment respectively. The mathematical model is presented in Section 
3. Section 4 presents detailed methodology along with an illustrated example. Section 5 
presents a computational study and statistical analysis. Finally, the conclusion and future 
research directions are provided in Section 6.  

 
2. Literature review  

The study of assembly line design, balancing, and scheduling problems is widely reported in 
the literature (Dolgui et al. 2018). Although worker assignment and two-sided assembly line 
balancing have been thoroughly studied separately, there is limited work reported considering 
all the characteristics of the considered problem, namely the integrated two-sided assembly line 
worker assignment and balancing problem with cycle time minimization criterion. Hence, the 
following reviews first the recent or most cited works on two-sided assembly line balancing, 
and later presents the reported works on integrated worker assignment and balancing problem.  

 In the case of two-sided assembly line balancing problems (TALBP), Bartholdi (1993) 
presents the first work in this area by applying a first-fit heuristic to minimize the number of 
workstations. Later on, Lee et al. (2001) develop a group assignment procedure to maximize 
work-relatedness and slackness. Different researchers have utilized various metaheuristic 
algorithms as the optimization tool to minimize the number of workstations or cycle time. For 
workstation number minimization, the following algorithms are utilized: ant colony algorithms 
(Baykasoglu and Dereli 2008), tabu search algorithm (Özcan and Toklu 2008), and bee colony 
algorithms (Özbakır and Tapkan 2011). For cycle time minimization, the following algorithms 
have been reported: genetic algorithm (Kim et al. 2009), artificial bee colony algorithm (Tang 
et al. 2016), and iterated greedy algorithm (Li et al. 2016c). A detailed review and evaluation 
of these methods are presented in Tang et al. (2017).  

Apart from the contributions reported on the basic TALBP, recently more contributions are 
reported with respect to variants of the TALBP. Different variants of TALBP reported are: 
TALBP (Tang et al. 2015; Yuan et al. 2015), stochastic TALBP (Özcan 2010), mixed-model 
TALBP (Özcan and Toklu 2009), parallel TALBP (Kucukkoc and Zhang 2014; Özcan 2010), 
and robotic TALBP (Li et al. 2016a; Li et al. 2016b). Among variants, robotic TALBP is similar 
to the problem considered in this study (Li et al. 2016a). To solve this problem, Li et al. (2016a) 
develop a co-evolutionary algorithm to address task allocation and robot assignment 
respectively. Li et al. (2016b) propose a restarted simulated annealing algorithm to solve multi-
objective robotic TALBP.  

Regarding worker assignment, Miralles et al. (2007) consider sheltered work centers in 
assembly line balancing and tested the model using a case study. Chaves et al. (2007) present 
two clustering search approaches and generate a set of benchmark problems. Chaves et al. (2009) 
present a hybrid-clustering search to solve the reported benchmark problems. Miralles et al. 
(2008) present a branch-and-bound approach with three search strategies. Blum and Miralles 
(2011) develop an iterated beam search method, and this new method outperforms the clustering 
search algorithm reported in Chaves et al. (2009). Moreira et al. (2012) introduce a constructive 
heuristic based on task and worker priority rules, and this heuristic is embedded in a hybrid 
genetic algorithm. Mutlu et al. (2013) develop an iterated genetic algorithm with an iterated 
local search for determining the worker assignment. Borba and Ritt (2014) employ a heuristic 



algorithm based on beam search and task-oriented branch-and-bound algorithm to solve this 
problem. Vilà and Pereira (2014) present a station-oriented branch-and-bound algorithm with 
new lower bounds, reductions and dominance rules. This new branch-and-bound algorithm 
yields state-of-the-art results for assembly line worker assignment and balancing problem 
(ALWABP) with the cycle time minimization. Moreira et al. (2015b) address ALWABP to 
minimize the number of workstations and present a constructive insertion heuristic. 
Ramezanian and Ezzatpanah (2015) extend the ALWABP into mixed-model assembly lines and 
employ an imperialist competitive algorithm. More recently, Sungur and Yavuz (2015) report 
the hierarchical worker assignment and present an integer linear programming model to address 
it. Ritt et al. (2016) consider uncertain worker availability in ALWABP and propose local search 
heuristics. Zacharia and Nearchou (2016) tackle the bi-objective ALWABP using a multi-
objective evolutionary algorithm to minimize the cycle time and smoothness index. Akyol and 
Baykasoğlu (2016) solve ALWABP using a multiple-rule-based constructive randomized search 
(MRBCRS) algorithm. Thirty-nine task priority rules and four worker priority rules are defined. 
Performance of the proposed MRBCRS is compared with the relevant literature on benchmark 
data. A comparative study is conducted to show that the proposed MRBCRS is very effective. 
All the above-mentioned literature is related to one-sided assembly lines, and in the literature, 
only one work reports on worker assignment on two-sided assembly lines by Janardhanan et al. 
(2018); they utilize three artificial bee colony algorithms to solve the problem. 

The following literature presents work which is similar to ALWABP. Fattahi et al. (2016) 
propose a multi-objective mixed-model two-sided assembly line balancing and worker 
assignment with different skills. A particle swarm optimization (PSO) algorithm is developed 
to solve it. They compared the performance of PSO with simulated annealing (SA) algorithm 
based on several benchmark problems. Recently, Roshani and Giglio (2017) addressed a new 
problem named Multi-manned Assembly Line Balancing Problem (MALBP) in which there is 
the possibility of assigning more than one operator to each workstation according to the product 
features with the objective of minimizing cycle time for a given number of workstations; they 
developed a new mathematical model for solving the proposed problem. Most of the work 
considered workers heterogeneity in assembly lines based on the motivation of sheltered work 
centers for the disabled. Few researchers had started to look at the situation faced in assembly 
lines in the general industrial park in the presence of worker heterogeneity. Moreira et al. (2017) 
use Miltenburg’s regularity criterion and cycle time as metrics for integration of workers and 
productivity, respectively. They develop a math model and heuristics for a line balancing 
problem with these two goals, and results are reported from a set of computational experiments.  

Although the robotic two-sided assembly line balancing problem (RTALBP) (Li et al. 2016a) 
is quite similar to the considered problem, the workers and robots have different features and 
the need to study TALWABP separately is important for the following reasons: The worker can 
be assigned to any workstation, and the position of a heavy robot is fixed once it is installed. 
There are ergonomic considerations for workers to operate on an assembly line, while in the 
case of robots, maintenance and service might be required. These differences make it 
worthwhile to study the TALWABP separately. 

From the literature review, and to authors’ best knowledge, there has been limited research 
reported on TALWABP with cycle time minimization. This research presents for the first time 
a mathematical model to describe the TALWABP and develops an effective meta-heuristic 



algorithm to solve large-sized problems.  
 

3. Mathematical formulation 
This section presents the mathematical model for the TALBWAP to minimize cycle time and 

the assumptions considered in this work. Mathematical models is one of the commonly used 
methods for real life problems to be constructed as mathematical equations. The reason to use 
mathematical modelling is to better understand complex real life problems (Al-Janabi and 
Alwan 2017). These assumptions are considered based on Miralles et al. (2007) and Blum and 
Miralles (2011). In the considered two-sided assembly line, it is assumed that a single product 
is assembled with workers having different skills. The operation times for tasks depend on the 
assigned workers. It is assumed that only one worker can be assigned to a workstation and 
worker can be allocated to any workstation. The number of workers is equal to the number of 
workstations. In this study, setup times between tasks, work-in-process inventory, and parallel 
workstation are not considered. 

The following subsections introduce the mathematical model in detail and present the utilized 
parameters and indices.  

 
3.1 Notation description 
This section presents the indices, parameters, decision variables and indicator variables utilized in 
the mathematical model of the considered problem.  
A) Indices, and parameters: 
i, h, p: A task. 
j, g: A mated-station.  
k, l: A side of the line; k=1 for the left side and k=2 for the right side.  
w: A worker.  
nt: Number of tasks. 
nm: Number of mated-stations. 
ns: Number of stations, 𝑛𝑛𝑛𝑛 = 2 × 𝑛𝑛𝑛𝑛. 
nw: Number of workers, 𝑛𝑛𝑛𝑛 = 2 × 𝑛𝑛𝑛𝑛. 
I: Set of tasks, I = {1, 2,⋯ , 𝑖𝑖,⋯ ,𝑛𝑛𝑛𝑛}. 
J: Set of mated-stations, J = {1, 2,⋯ , 𝑗𝑗,⋯ ,𝑛𝑛𝑛𝑛}. 
W: Set of workers, W = {1, 2,⋯ ,𝑛𝑛,⋯ ,𝑛𝑛𝑛𝑛}.  
twiw: Operation time of task i by worker w. 
AL: Set of tasks with left direction, AL ⊆ I. 
AR: Set of tasks with right direction, AR ⊆ I. 
AE: Set of tasks with either direction, AE ⊆ I. 
P0: Set of tasks which have no immediate predecessors. 
P(i): Set of immediate predecessors of task i. 
Pa(i): Set of all predecessors of task i. 
S(i): Set of immediate successors of task i. 
Sa(i): Set of all successors of task i. 
𝑀𝑀: A larger positive number, and 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑀𝑀 when task i cannot be operated by worker w.  
𝜓𝜓: A very large positive number. 
C(i): Set of tasks whose directions are opposite to the direction of task i;C(𝑖𝑖) =



�
𝐴𝐴𝐴𝐴  if 𝑖𝑖 ∈ 𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴  if 𝑖𝑖 ∈ 𝐴𝐴𝐴𝐴
∅    if 𝑖𝑖 ∈ 𝐴𝐴𝐴𝐴

. 

K(i): Set of integers indicating directions of the task i; K(𝑖𝑖) = �
1       if 𝑖𝑖 ∈ 𝐴𝐴𝐴𝐴

2       if 𝑖𝑖 ∈ 𝐴𝐴𝐴𝐴
1,2    if 𝑖𝑖 ∈ 𝐴𝐴𝐴𝐴

. 

B) Decision variables and indicator variables: 
CT: Cycle time. 
𝑥𝑥𝑖𝑖𝑖𝑖: 1, if task 𝑖𝑖 is assigned to mated-workstation 𝑗𝑗; 0, otherwise. 
𝑛𝑛𝑖𝑖𝑖𝑖: 1, if task 𝑖𝑖 is assigned to side 𝑘𝑘; 0, otherwise. 
ywjk: 1, if worker r is assigned to mated-station j at side k; 0, otherwise. 
𝑛𝑛𝑖𝑖: Operation time of task i by one allocated worker.  
𝑛𝑛𝑖𝑖𝑠𝑠: Starting time of task i. 
𝑧𝑧𝑖𝑖𝑖𝑖: 1, if task i  is assigned earlier than task p in the same workstation; 0, otherwise. 
 
3.2 Mathematical model for TALWABP 

Based on the model presented in Borba and Ritt (2014) and Li et al. (2016a), the 
mathematical model for the considered TALWABP is developed with the cycle time 
minimization criterion and presented below: 
 

Minimize  CT (1) 
Subject to: 

� 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐽𝐽

= 1  ∀𝑖𝑖 ∈ 𝐼𝐼 (2) 

� 𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐾𝐾(𝑖𝑖)

= 1   ∀𝑖𝑖 ∈ 𝐼𝐼 (3) 

� 𝑗𝑗 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐽𝐽

 ≥� 𝑔𝑔 ∙ 𝑥𝑥ℎ𝑖𝑖
𝑔𝑔∈𝐽𝐽

   ∀𝑖𝑖 ∈ 𝐼𝐼 − 𝑃𝑃0,ℎ ∈ 𝑃𝑃(𝑖𝑖) (4) 

𝑛𝑛𝑖𝑖𝑠𝑠 + 𝜓𝜓�1 − 𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜓𝜓�1 − 𝑥𝑥ℎ𝑖𝑖�  ≥ 𝑛𝑛ℎ𝑠𝑠 + 𝑛𝑛ℎ    ∀𝑖𝑖 ∈ 𝐼𝐼 − 𝑃𝑃0,ℎ ∈ 𝑃𝑃(𝑖𝑖), 𝑗𝑗 ∈ 𝐽𝐽 (5) 
𝑛𝑛𝑖𝑖𝑠𝑠 + 𝜓𝜓�1 − 𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜓𝜓(1 −𝑛𝑛𝑖𝑖𝑖𝑖) + 𝜓𝜓�1 − 𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜓𝜓�1 −𝑛𝑛𝑖𝑖𝑖𝑖� + 𝜓𝜓�1 − 𝑧𝑧𝑖𝑖𝑖𝑖�

≥ 𝑛𝑛𝑖𝑖𝑠𝑠 + 𝑛𝑛𝑖𝑖 
∀𝑖𝑖 ∈ 𝐼𝐼,𝑝𝑝 ∈ �𝑐𝑐|𝑐𝑐 ∈ 𝐼𝐼 − �𝑃𝑃𝑎𝑎(𝑖𝑖)⋃𝑆𝑆𝑎𝑎(𝑖𝑖)⋃𝐶𝐶(𝑖𝑖)� and 𝑖𝑖 < 𝑐𝑐�, 𝑗𝑗 ∈ 𝐽𝐽,𝑘𝑘

∈ 𝐾𝐾(𝑖𝑖)⋂𝐾𝐾(𝑝𝑝) 

(6) 

𝑛𝑛𝑖𝑖𝑠𝑠 + 𝜓𝜓�1 − 𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜓𝜓(1 −𝑛𝑛𝑖𝑖𝑖𝑖) +𝜓𝜓�1 − 𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜓𝜓�1 −𝑛𝑛𝑖𝑖𝑖𝑖�+ 𝜓𝜓 ∙ 𝑧𝑧𝑖𝑖𝑖𝑖
≥ 𝑛𝑛𝑖𝑖𝑠𝑠 + 𝑛𝑛𝑖𝑖 

∀𝑖𝑖 ∈ 𝐼𝐼,𝑝𝑝 ∈ �𝑐𝑐|𝑐𝑐 ∈ 𝐼𝐼 − �𝑃𝑃𝑎𝑎(𝑖𝑖)⋃𝑆𝑆𝑎𝑎(𝑖𝑖)⋃𝐶𝐶(𝑖𝑖)� and 𝑖𝑖 < 𝑐𝑐�, 𝑗𝑗 ∈ 𝐽𝐽,𝑘𝑘
∈ 𝐾𝐾(𝑖𝑖)⋂𝐾𝐾(𝑝𝑝) 

(7) 

𝑛𝑛𝑖𝑖𝑠𝑠 ≥ 0  ∀𝑖𝑖 ∈ 𝐼𝐼 (8) 

𝑛𝑛𝑖𝑖 +𝜓𝜓�1 − 𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜓𝜓(1 −𝑛𝑛𝑖𝑖𝑖𝑖) ≥ � 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖

𝑖𝑖=1

     ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽,𝑘𝑘 ∈ 𝐾𝐾(𝑖𝑖) (9) 

𝑛𝑛𝑖𝑖 < 𝑀𝑀                                                           (10) 
𝑛𝑛𝑖𝑖𝑠𝑠 + 𝑛𝑛𝑖𝑖  ≤ 𝐶𝐶𝐶𝐶  ∀𝑖𝑖 ∈ 𝐼𝐼 (11) 



� 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖

𝑖𝑖=1

= 1    ∀𝑗𝑗 ∈ 𝐽𝐽, 𝑘𝑘 = 1,2  (12) 

��𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

2

𝑖𝑖=1

𝑛𝑛𝑛𝑛

𝑖𝑖=1

= 1   ∀𝑛𝑛 ∈ 𝑊𝑊   (13) 

 
The objective function in expression (1) optimizes cycle time. Constraint (2) and constraint 

(3) are the occurrence constraint that indicates that each task must be allocated to a workstation. 
Constraint (4) deals with precedence constraint ensuring that the predecessors of task i are 
allocated to the former or the same mated-station. Constraints (5-7) handle the sequence of 
tasks on same mated-stations. If task h is the immediate predecessor of task i and they are 
allocated to the same mated-station, the beginning time of task i is larger than or equal to the 
finishing time of task h. Constraints (6-7) take effect when a pair of tasks i and h have no 
relationship and they are allocated to the same side of the same mated-station. If task i is 
allocated earlier than task p, the beginning time of task p is larger than or equal to the finishing 
time of task i expressed in constraint (6). Otherwise, the beginning time of task i is larger than 
or equal to the finishing time of task p expressed in constraint (7) when task p is allocated earlier 
than task i. Expression (8) guarantees that the starting time of a task is larger than or equal to 
0.0, and expression (9) calculates the operation time of task i by the corresponding worker. 
Constraint (10) ensures that a task is operated by another worker when task i cannot be operated 
by worker w. Constraint (11) is the cycle time constraint that makes sure that each task is 
completed within the desired cycle time. Expressions (12-13) constrains the worker assignment, 
where the expression (12) indicates that each workstation is assigned with only one worker and 
expression (13) ensures that each worker is assigned to only one workstation.  

Recall that, different from the model in Li et al. (2016a), this model utilizes two new decision 
variables, 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑛𝑛𝑖𝑖𝑖𝑖, to determine the task assignment. Furthermore, the proposed model 
also employs one decision variable, 𝑛𝑛𝑖𝑖, to indicate the operation time of task i by the worker to 
whom this task is assigned. This new model finds the optimal solutions faster than that in Li et 
al. (2016a); a detailed comparison is presented in Section 5. 
 According to the classification in Boysen et al. (2007), a one-sided assembly line with 
worker assignment can be classified as [𝑙𝑙𝑖𝑖𝑛𝑛𝑘𝑘, 𝑐𝑐𝑐𝑐𝑛𝑛,𝑝𝑝𝑝𝑝|𝑒𝑒𝑒𝑒𝑐𝑐𝑖𝑖𝑝𝑝 |𝑐𝑐] (Moreira et al. 2015b), and 
the problem considered in this paper for a two-sided assembly line with workers assigned with 
the objective of minimizing cycle time is classified as [𝑙𝑙𝑖𝑖𝑛𝑛𝑘𝑘, 𝑐𝑐𝑐𝑐𝑛𝑛,𝑝𝑝𝑝𝑝|𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑘𝑘2, 𝑒𝑒𝑒𝑒𝑐𝑐𝑖𝑖𝑝𝑝 |𝑐𝑐].  
 
4. Proposed methodology 
To cope with complex decision making process in different areas such as manufacturing, web 
application can be utilized (Fahmi et al. 2017a; Patel et al. 2015). Assembly line balancing 
problem is one such complex decision making problems. Migrating bird optimization, a 
metaheuristic algorithm, is employed to find optimal or near-optimal solutions due to the NP-
hard nature of the problem. MBO simulates birds’ migration behavior of flying in V-shape and 
is based on local search (Duman et al. 2012). MBO is selected to solve this problem due to 
better performance over other algorithms in solving problems of a similar type (Duman et al. 
2012; Gao and Pan 2016; Zhang et al. 2017).  



In an MBO algorithm, one bird is leading the whole flock, and the remaining birds are on the 
left and right sides, and within each side, the birds follow in a line (Duman et al. 2012). The 
original MBO has four parameters: n as the number of individuals, k as the number of neighbor 
solutions, x as the number of neighbor solutions shared with the next individual, and m as the 
number of tours before replacing the leader. MBO starts with initializing n individuals, and 
subsequently, a main cycle repeats until a termination criterion is met. This cycle has three 
segments that are executed in sequence: leader improvement, block improvement, and leader 
replacement. Firstly, in the leader improvement, the leader individual tries to improve itself by 
producing and evaluating k neighbor solutions. If improvement is achieved, the incumbent 
leader individual is updated. Afterward, in the block improvement, the individuals try to 
improve themselves by evaluating x unused best neighbor solutions of the front solution 
(referred to as benefit mechanism) in the same side and its (k-x) neighbor solutions. Finally, the 
leader replacement is executed after carrying out leader improvement and block improvement 
m consecutive times, where the leading individual is removed to the ending of one side and one 
of the individuals following the leader is moved forward as the new leader. In this research, 
several improvements are employed to enhance the performance of the MBO. The following 
sections clarify the detailed segments of the proposed MBO.  

 
4.1 Encoding and decoding 

Based on contributions reported in Janardhanan et al. (2018) and Li et al. (2016a), this 
research utilizes two vectors for encoding: worker assignment vector and task permutation 
vector. Worker assignment vector is a 2 × 𝑛𝑛𝑛𝑛 vector corresponding to the workers assigned 
to workstations. Suppose the worker assignment vector is {1, 2, 4}, worker 1 is assigned to 
workstation (1,1), worker 2 is assigned to workstation (1, 2), and finally, worker 3 is assigned 
to workstation (2,2). The task permutation vector corresponds to the sequence of allocating 
tasks, and tasks on the former positions of the task permutation should be allocated first. 
Suppose that the task permutation vector is {1, 2, 4, 3, 5, 6, 8, 9, 7, 10, 11, 12}; tasks 1, 2, and 
4 should be allocated first when they are assignable.  

To transfer the two vectors into a feasible solution, an initial cycle time and a decoding 
procedure are necessary. As reported in Janardhanan et al. (2018) and Li et al. (2016a), this 
paper proposes the following iteration mechanism for cycle time update and decoding 
procedure and proposes two procedures (Procedure 1 and Procedure 2). This iteration 
mechanism ensures that the initial cycle time reduces gradually, and all individuals are 
evaluated under same initial cycle time. Decoding scheme aims to balance the workloads on 
two sides of a mated-station using Step 4, where the side with the larger remaining capacity is 
selected. The proposed decoding scheme also helps to reduce sequence-dependent idle times 
using Step 5, where assignable tasks can be started at the earliest starting time of the selected 
workstation. Section 4.3 illustrates the proposed encoding and decoding.  

 
 
 
 
 
 



Procedure 1: Cycle time update procedure 
Step 1: Set initial cycle time (CT) to a large number and best cycle 
time CT𝑁𝑁 as CT𝑁𝑁 = 𝐶𝐶𝐶𝐶. 
Step 2: Decode the individuals using CT as the initial cycle time. 
Step 3: Update CT with CT ← CT𝑁𝑁 − 1 and re-decode the 
individuals using CT as the initial cycle time when a smaller best 
cycle time CT𝑁𝑁 is achieved. 
Step 4: Update the individuals and go to Step 2 until a termination 
criterion is satisfied. 

 
Procedure 2: Decoding procedure 
Step 1: Achieve assignable task sets for both sides.  
Step 2: If both assignable task sets are empty and all tasks are 
allocated, terminate this procedure. If both assignable task sets are 
empty and some tasks remain unallocated, open a new mated-
station and go to Step1.  
If at least one assignable task set is not empty, go to Step 3. 
Step 3: Select the side whose assignable task set is not empty if 
only one assignable task set is not empty; otherwise, go to Step 4. 
Step 4: Select the side with a larger remaining capacity (smaller 
ending time) or the left side by default when the remaining 
capacities of both sides are equal if both assignable task sets are 
not empty.  
Step 5: Remove the tasks which result in sequence-dependent idle 
times from the corresponding assignable task set if some 
assignable tasks can be started at the earliest starting time of the 
selected workstation.   
Step 6: Select the assignable task, which is on the former position 
of the task permutation vector; allocate the task to the selected 
side, update the remaining capacity of the selected side, and 
finally, go to Step 1.  

 
4.2 Proposed MBO method 

This research introduces several improvements to enhance the performance of the proposed 
MBO, and the main procedure is illustrated in Figure 3 where α is the number of consecutive 
iterations before executing the restart mechanism. It should be noted that neighbor solution is 
generated by executing the neighbor operator based on the scheme followed in Janardhanan et 
al. (2018) and described in this section. Neighborhood structures have a great impact on the 
performance of neighborhood-based metaheuristic algorithms. In the reported literature for 
solving similar problems (Li et al. 2016a; Polat et al. 2016; Roshani and Giglio 2017), there are 
many neighborhood structures. Among these, insert operation and swap operation are two 
simple methods, but they have achieved promising results (Roshani and Giglio 2017) and are 
quite effective in our initial experiments. Hence, this research applies both insert operation and 
swap operation as presented in Figure 2. The utilization of two neighbor operations rather than 
one increases the search space and helps the algorithm to escape being trapped into local optima. 
As there are two vectors to be optimized, this research first selects one vector and then selects 
one of the neighbor structures randomly to modify the selected vector. 
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Figure 2. Neighbor operators 

 
//Initialization 
Initialize n individuals randomly;    

While (termination criterion is not satisfied) do  
For i=1 to m do  

//Leader improvement                    
For j=1 to k do                  

Obtain a neighbor of the leader;   
Update the incumbent one with the new one when the better or the same fitness 
is achieved and the neighbor solution is different from the incumbent one.  

Endfor 
Set a large positive number as the fitness of the individual whose original 
fitness is equal to that of the incumbent one.   
// Block improvement              
For each remaining individual      

For j=1 to (k-x) do 
Obtain a neighbor of this individual; 
Update the incumbent one with the new one when the better or the same 
fitness is achieved and the neighbor solution is different form the incumbent 
one.  

Endfor  
Replace the incumbent individual with the best one from the (k-x) neighbors 
and x unused neighbor solution of the individual in front (benefit mechanism) 
when the better or the same fitness is achieved and the neighbor solution is 
different from the incumbent one. 
Set a large positive number as the fitness of the individual whose original 
fitness is equal to that of the incumbent one. 

Endfor   
// Restart mechanism               
If (the best cycle times has not been updated for α iterative times)  
execute the restart mechanism;  
Endif 

Endfor 
//Leader replacement 
Move the current leader to the end and forward one of the following individuals as 
the new leader.  

Endwhile 
Figure 3. The procedure of the improved MBO 

 
Worker assignment vector or task permutation vector are randomly selected, and later, 

insert operation or swap operation is randomly selected to modify the selected vector. The 
procedure is like that of original MBO, but it has several advancements on leader and block 



improvement, and it also employs a restart mechanism. Specifically, the incumbent individual 
is replaced with new neighbor solutions once better fitness or the same fitness is achieved rather 
than evaluating all the neighbor solutions. This method increases the search speed and ensures 
algorithm searches around the most promising area of the search space. Additionally, this 
research sets a large positive number as the fitness of the individual whose original fitness is 
equal to that of the incumbent one. This modification tries to preserve the diversity of the 
population and avoid premature convergence of the proposed method.  

In the case of restart mechanism, this research employs it when the best cycle time has not 
been updated for α iterative times, where α is a new parameter and is set to 2 based on the 
parameter calibration. Instead of re-initializing all individuals, this research proposes a method 
similar to the scout phase in artificial bee colony algorithm (Janardhanan et al. 2018) in which 
only one individual is re-initialized. The duplicated individual, or the individual with the worst 
fitness, or the individual who has survived for the longest time is selected as the abandoned 
individual, and this abandoned individual is replaced with the best one among a set of 
β   neighbor solutions of it, and each neighbor solution is achieved by executing neighbor 
operator on the incumbent solution γ times.  
 
4.3 An illustrated numerical example 

This section illustrates a numerical example with 12 tasks, two mated-stations, and four 
workers to highlight the features of considered TALWABP. Table 1 illustrates preferred task 
directions, precedence relationships, and operation times of tasks.  

 
Table 1. Preferred directions, precedence relationships, and operation times of tasks 

Tasks Direction Successors Operation times 
Worker 1 Worker 2 Worker 3 Worker 4 

1 L 4 2 6 - - 
2 R 5 3 4 3 7 
3 E 6 2 2 3 4 
4 L 7 3 4 9 6 
5 E 7, 8, 9 1 - 1 - 
6 L 9 1 - 1 - 
7 E 10 3 6 3 - 
8 R 10 3 2 3 - 
9 E 11 2 - 3 3 
10 E - 2 - 1 5 
11 E 12 2 5 1 5 
12 R - 1 2 3 - 

 
Suppose that the initial cycle time is 8 units and the worker assignment and task permutation 

vectors are those presented in Figure 4; achieved worker assignment and task assignment are 
presented in Figure 4. It is observed that worker assignment vector is 1, 2, 4, and 3, and thus, 
workers 1, 2, 4, and 3 are assigned to workstations (1, 1), (1, 2), (2, 1), and (2, 2). Tasks 1, 2, 4, 
and 3 are in former positions of task permutation, they are first allocated and thus they are all 
allocated to mated-station 1. Based on operation times by workers as reported in Table 1, the 
operation times of tasks 1, 4, 5, and 6 by worker 1 is 2, 3, 1, and 1, and completion time of 
workstation (1, 1) is 7. Subsequently, the completion times of other workstations are determined: 
8 for workstation (1, 2), 8 for workstation (2, 1), and 7 for workstation (2, 2). Clearly, achieved 
cycle time is 8 which is the largest value of the completion times of workstations.  
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Figure 4. Worker assignment and task assignment for the numerical example 
 
5. Computational study 

This section presents detailed experiments conducted to test the performance of the proposed 
methodology. Experimental design is first introduced to explain tested problems and compared 
methods. The conducted computational study is presented along with statistical analysis.  

 
5.1 Experimental design 

This research utilizes two datasets: the dataset in Janardhanan et al. (2018) and a newly 
generated data set in this paper. For the dataset in Janardhanan et al. (2018), precedence 
relations and preferred directions are taken from Kim et al. (2009) and Li et al. (2016c), and 
operation times of tasks by workers are produced following the method used in Chaves et al. 
(2007). Table 2 summarizes these instances. There are two variabilities of the operation times 
and two percentages of task-worker incompatibilities. There are 39 benchmark instances for 
TALBP (Li et al. 2016c), and due to additional features for this problem, there are 156 instances 
for the considered TALWABP. The new instances are generated by repeating the 
aforementioned method 10 times, and thus, there are 1,560 new instances. 
 

Table 2. Summary of the tested benchmarks 
Problem nt Num. of cases nm Time variabilities Incompatibilities 

P9 9 8 2,3 Low, high Low, high 
P12 12 16 2,3,4,5 Low, high Low, high 
P16 16 16 2,3,4,5 Low, high Low, high 
P24 24 16 2,3,4,5 Low, high Low, high 
P65 65 20 4,5,6,7,8 Low, high Low, high 
P148 148 36 4,5,6,7,8,9,10,11,12 Low, high Low, high 
P205 205 44 4,5,6,7,8,9,10,11,12,13,14 Low, high Low, high 

 
To evaluate the performance of the proposed MBO, this research carries out two comparative 

studies on both datasets. For the first dataset, MBO is compared with six algorithms: partial 
swarm optimization (PSO) (Al_Janabi et al. 2018), genetic algorithm (GA), three artificial bee 
colony algorithms (ABC1, ABC2, and ABC3) (Janardhanan et al. 2018), and a simulated 
annealing algorithm (SA) (Özcan and Toklu 2009). It should be noted that these six methods 
are selected as they are the only available applied methods for the considered problems. For the 
second dataset, MBO is compared with three algorithms: co-evolutionary particle swarm 
optimization (CoPSO), discrete cuckoo search algorithm (DCS), and co-evolutionary cuckoo 
search (CoCS). These three methodologies are selected as they have been applied to solve 



robotic TALBP (similar to the considered problem), and they have achieved state-of-the-art 
results by outperforming SA, GA, and PSO. In short, in this comparative study, the proposed 
MBO is compared with nine metaheuristics, including most of the methods in TALWABP and 
the three best methodologies in robotic TALBP. To observe the performance of tested method 
under different termination criteria, this research utilizes the termination criterion of nt × nt ×
τ milliseconds, similar to ones reported in Janardhanan et al. (2018) and Li et al. (2016a) in 
which τ is set to 10, 20, and 30 respectively. It is done in this manner so that this expression 
ensures that large-size instances have more CPU time for execution.  
 
5.2 Computational study 
This section first presents computational results obtained using CPLEX solver in General 
Algebraic Modeling System 23.0 and a set of meta-heuristic algorithms when solving the dataset 
in Janardhanan et al. (2018). As parameter values have a great impact on the performance of 
algorithms, this paper first calibrates the tested algorithms using full factor design and 
multifactor analysis of variance (ANOVA) technique following Li et al. (2016a) and Roshani 
and Giglio (2017), and many others. Specifically, a largest problem instance (P205 with 6 
mated-stations, low time variabilities, and low percentages of task-worker incompatibility) is 
solved using all the combinations of parameters with termination criterion of nt × nt ×
10 milliseconds. For simplicity, the calibration process of ABC3 is provided as an example, 
and this algorithm has one parameter: population size. The initial levels of this parameter are 
set to 10, 20, 30, and 40 determined by initial experiments. Then, the algorithm runs these 
instances for 10 repeated times, and the achieved cycle times are transferred into relative 
percentage deviation (RPD) using expression (11), where 𝐶𝐶𝐶𝐶𝑛𝑛𝑝𝑝𝑛𝑛𝑒𝑒 is the cycle time by one 
combination and 𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑛𝑛 is cycle time achieved by all combinations. Subsequently, ANOVA 
technique is utilized to analyze these RPD values and determine the selected parameter’s values. 
Regarding ANOVA results, one-parameter values have a statistically important impact on the 
performance of the algorithm if the corresponding P-value is smaller than a pre-determined 
number (0.05). For simplicity, Figure 5 illustrates the mean plot of the population size with 95% 
Tukey’s honestly significant difference (HSD) confidence intervals. It is observed that the value 
of 40 has the best performance, and it is selected as the population size. As for the algorithms 
with several parameters, a multi-factor ANOVA test is carried out and the values of the 
parameters are determined in the increasing order of P-values. The detailed calibration process 
and selected parameters are omitted due to space considerations, but they are available upon 
request. 

 
𝐴𝐴𝑃𝑃𝑅𝑅 = 100 ∙ (𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠 − 𝐶𝐶𝐶𝐶𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵) 𝐶𝐶𝐶𝐶𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵⁄  (11) 

 



Population size
10 20 30 40

A
ve

ra
ge

 R
PD

0

5

10

15

20

25

 

Figure 5. Mean plot and 95% Tukey’s HSD confidence intervals of population size 
 

After determining parameter values, all algorithms are solved for the first dataset instances 10 
iterative times. As CPLEX could not solve large-size problems optimally in acceptable CPU 
time, this research first presents the computational results for small-size problems (P9, P12, and 
P16) in Table 3 where the results of only three of the five methods are presented. In Table 3, 
there are four cases for each mated-station number. Num of OPT refers to the number of cases 
solved optimally by the proposed model and the model in Li et al. (2016a); numbers under the 
algorithms are the number of cases solved to optimality within 10 times by the algorithm, and 
CPU(s) is the average computational time in seconds. It is very clear that all tested cases could 
be solved to optimality by CPLEX and by algorithms, although CPLEX needed more CPU time 
for P16 with four and five mated-stations. And the proposed model achieves the same results 
with less running time for most instances, indicating that the proposed model outperforms the 
published one in search speed. This study verifies the superiority of the algorithms over CPLEX 
solver in solving large-size instances.   
 

Table 3. Computational results for small-size problems 

Problem nm Num. of 
cases 

New model Model in Li et al. 
(2016a) Implemented algorithms 

Num of 
OPT CPU(s) Num of 

OPT CPU(s) ABC2 ABC3 MBO CPU(s) 

P9 2 4 4 0.13  4 0.19 4 4 4 2.43 
P9 3 4 4 0.17  4 0.21 4 4 4 2.43 

P12 2 4 4 0.29  4 0.38 4 4 4 4.32 
P12 3 4 4 0.99  4 1.11 4 4 4 4.32 
P12 4 4 4 2.75  4 2.97 4 4 4 4.32 
P12 5 4 4 1.64  4 3.57 4 4 4 4.32 
P16 2 4 4 1.03  4 1.57 4 4 4 7.68 
P16 3 4 4 5.70  4 19.93 4 4 4 7.68 
P16 4 4 4 93.12  4 62.21 4 4 4 7.68 
P16 5 4 4 72.31  4 300.68 4 4 4 7.68 

 
A more comprehensive study is presented in Table 4 where average RPD values by tested 

algorithm are exhibited under three termination criteria. Recall that Cbest is the best cycle time 
achieved by all the algorithms when calculating RPD values. Each cell contains the average 
value of the RPD values for several cases for 10 repetitions. From this table, it is observed that 



MBO has smallest overall average RPD of 8.70, 6.99, and 6.13 when τ = 10, 20, and 30 
respectively. In other words, MBO is the best performer among the seven tested algorithms 
under three termination criteria. Among other methods, ABC3, ABC2, SA, and ABC1 rank 
second, third, fourth, and fifth when τ = 10 and τ = 20. These results coincide with those of 
Janardhanan et al. (2018). SA ranks fifth and ABC1 ranks fourth when τ = 30 . This 
computational study suggests that the proposed MBO is the most effective methodology among 
the tested methods for considered TALWABP.  

 

Table 4. Average RPD values by implemented algorithms 

Problem Num. of cases 
Average relative percentage deviation 

CPU time(s) 
SA PSO GA ABC1 ABC2 ABC3 MBO 

τ = 10          

P9 8 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.81 
P12 16 0.31 1.88  2.66  1.09 0.63 0.78 0.00 1.44 
P16 16 0.78 1.74  1.08  0.38 0.76 0.43 0.36 2.56 
P24 16 2.92 7.35  5.30  2.44 3.30 2.65 1.65 5.76 
P65 20 14.58 42.35  18.93  13.22 13.61 12.98 10.04 42.25 
P148 36 20.87 51.81  28.26  23.32 15.99 15.84 14.37 219.04 
P205 44 18.41 55.00  23.32  19.85 15.69 15.67 13.78 420.25 

Average RPI  12.29 34.02  16.45  13.08 10.34 10.14 8.70 - 
τ = 20          

P9 8 0.00 0.00  0.00  0.00 0.00 0.00 0.00 1.62 
P12 16 0.31 0.52  2.27  0.78 0.47 0.63 0.00 2.88 
P16 16 0.78 0.97  0.98  0.13 0.38 0.14 0.00 5.12 
P24 16 2.92 6.10  4.93  2.17 3.05 2.18 1.39 11.52 
P65 20 13.59 38.92  16.89  10.57 12.16 11.89 8.50 84.50 
P148 36 16.88 48.81  25.53  18.92 12.54 12.56 11.62 438.08 
P205 44 15.53 51.41  20.90  15.85 13.24 12.92 10.92 840.50 

Average RPI  10.43 31.53  14.79  10.51 8.59 8.37 6.99 - 
τ = 30          

P9 8 0.00 0.00  0.00  0.00 0.00 0.00 0.00 2.43 
P12 16 0.31 0.21  2.03  0.63 0.31 0.63 0.00 4.32 
P16 16 0.78 0.65  0.69  0.13 0.22 0.14 0.00 7.68 
P24 16 2.92 5.58  4.38  1.99 2.70 2.00 1.31 17.28 
P65 20 13.21 36.98  15.87  9.47 11.66 11.16 7.89 126.75 
P148 36 14.83 47.10  24.32  16.54 11.01 10.93 10.10 657.12 
P205 44 14.25 49.29  19.43  13.83 11.84 11.49 9.39 1260.75 

Average RPI   9.55  30.17  13.86  9.21  7.71  7.48  6.13  - 

 
 
To ascertain that proposed MBO is statistically better than others, this research carries out a 

multifactorial ANOVA test in which algorithms and termination criteria (τ = 10, 20, 30) are 
regarded as factors. As algorithms have diverse performances on different instances, this 
research utilizes average RPD of all tested instances in one run as the response variable, similar 
to the work reported by Tang et al. (2017). There are 10 average RPD values for each 
combination as algorithms solve each case 10 times. However, homogeneity of variance is 
slightly violated as seen by results of the initial ANOVA test. Hence, this research carries out 
both an ANOVA test and a Friedman test, where the ANOVA test is utilized to analyze 
interactions between the algorithms and computational times and the Friedman test is conducted 
to ascertain the results by ANOVA test. ANOVA shows that there are statistically significant 
differences between tested algorithms, three termination criteria, and interaction of two above 



factors. The Friedman test suggests that there are statistically significant differences between 
tested algorithms under three termination criteria. This paper illustrates the means plot of the 
interaction of two factors in Figure 6, where only the best five methods are plotted for a better 
vision.  
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Figure 6. Means plot and 95% Tukey HSD confidence intervals for interactions between algorithms 

and elapsed CPU times 
Figure 6 provides a direct and clear observation of the performance of tested algorithms. 

MBO is the best performer when τ = 10, 20, 30 and ABC3 is the second-best performer. It is 
also observed that the values of average RPD decline as elapsed CPU time increases. As there 
is no overlap between the confidence interval of MBO and other methods, it is sufficient to 
state that the proposed MBO is statistically better.  

For the second dataset, each instance is solved once, and RPD is again applied to transfer the 
achieved cycle times. This section also carries out the multifactorial ANOVA test to evaluate 
the performances of the tested algorithms. As this new dataset contains 10 groups of instances 
by repeating the method in Janardhanan et al. (2018) 10 times, the ANOVA test utilizes the 
average RPD of the instances in one group in one run as the response variable, resulting in 10 
average RPD values. Again, algorithms and termination criteria (τ = 10, 20, 30) are regarded 
as factors, and Figure 6 depicts the means plot of interaction of two factors. This figure suggests 
that MBO is the best performer when τ = 10, 20, 30, DCS is the second-best performer, and 
CoPSO is the worst performer in solving this new dataset. It is also observed that no overlap 
exists between the confidence interval of MBO and other algorithms. In summary, MBO 
outperforms other methods statistically and is the best performer among the tested algorithms. 

The algorithms and proposed approach for solving a two-sided assembly line worker 
assignment and balancing problem (TALWABP) are very beneficial for real-time decision-
making and can be used by production managers in their production planning. In most cases, it 
is not possible to carry out real-time experiments on the existing system due to the cost factor 
involved. It helps managers to estimate the resource required for the considered assembly line 
based on their performance. The study can also help managers to take decisions for fully 
utilizing resources.  
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Figure 6. Means plot and 95% Tukey HSD confidence intervals for interactions between algorithms 

and running times 
 

6. Conclusion and future research 
Due to workers’ different skills, worker assignment needs to be optimized to improve 

assembly line efficiency. This research tackles an integrated two-sided assembly line worker 
assignment and balancing problem with the objective of minimizing cycle time. A mixed-
integer programming model is developed to formulate the considered problem. Migrating birds 
optimization algorithm is proposed to solve large-size problem instances, where a restart 
mechanism is developed to help the proposed MBO escape from being trapped into local optima. 
The proposed model is encoded into CPLEX solver, and it is capable of tackling small-size 
instances optimally. The proposed algorithm is tested on 156 instances and is compared with 
four algorithms. Computational and statistical analysis results demonstrate that MBO is the best 
performer and is statistically better than other methods under three termination criteria.  

A developed model helps to improve the efficiency of the workers, improve the productivity 
of the assembly line, and reduce throughput time or cycle time, and hence, it reduces assembly 
cost and makes industries more competitive. In the future, the considered problem could be 
extended by taking multiple constraints and stochastic operation times into account. More 
recent and effective methods, such as co-evolutionary algorithms, are also suggested to be 
applied to this new problem.  
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