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Abstract

The application of principles of Quantum Mechanics in areas outside of physics has been getting

increasing attention in the scientific community in an emergent discipline called Quantum Cognition.

These principles have been applied to explain paradoxical situations that cannot be easily explained

through classical theory. In quantum probability, events are characterised by a superposition state,

which is represented by a state vector in a N-dimensional vector space. The probability of an event is

given by the squared magnitude of the projection of this superposition state into the desired subspace.

This geometric approach is very useful to explain paradoxical findings that involve order effects, but

do we really need quantum principles for models that only involve projections?

This work has two main goals. First, it is still not clear in the literature if a quantum projection

model has any advantage towards a classical projection. We compared both models and concluded

that the Quantum Projection model achieves the same results as its classical counterpart, because the

quantum interference effects play no role in the computation of the probabilities. Second, it intends

to propose an alternative relativistic interpretation for rotation parameters that are involved in both

classical and quantum models. In the end, instead of interpreting these parameters as a similarity

measure between questions, we propose that they emerge due to the lack of knowledge concerned

with a personal basis state and also due to uncertainties towards the state of the world and towards

the context of the questions.
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1 Introduction

The application of principles of Quantum Mechanics in areas outside of physics has been getting increas-

ing attention in the scientific community [7]. These principles have been applied to explain paradoxi-

cal situations that cannot be easily explained through classical theory. Quantum principles have been

adopted in many different domains ranging from Cognitive Psychology [10, 22, 23], Economics [13, 12],

Biology [1, 3, 2], Information Retrieval [5, 6], etc.

One of these paradoxical situations is concerned with order effects. By order effects, we mean that

the probability of, for instance, asking some question A followed by question B usually gives different

results if we pose these questions in reverse order. In purely classical models, this poses a problem

and cannot be directly explained. Since classical probability is based on set theory, this means that it is

commutative, that is, for some hypothesis H and two events A and B: Pr ( A∩B | H ) = Pr ( B∩A | H ).

This commutativity poses great challenges to accommodate situations such as order effects, because in

order to have Pr ( H | A∩B ) = Pr ( H | B∩A ), then using Bayes Rule, one would need to satisfy the

following relationship [25]:

Pr ( H | A ) · Pr ( B | H ∩A )

Pr ( B | A )
= Pr ( H | A∩B ) = Pr ( H | B∩A ) =

Pr ( A | H ∩B )

Pr ( A | B )
·Pr ( H | B ) . (1)

To accommodate these paradoxical findings, the literature turned to quantum probability to explain

these scenarios. Quantum probability models provide many advantages towards their classical counter-

parts [9]. They can represent events in vector spaces through a superposition state, which comprises the

occurrence of all events at the same time. In quantum mechanics, the superposition principle refers to

the property that particles must be in an indefinite state. That is, a particle can be in different states at the

same time. Under a psychological point of view, a quantum superposition can be related to the feeling of

confusion, uncertainty or ambiguity [7]. The vector space representation does not obey the distributive

axiom of Boolean logic and to the law of total probability. This enables the construction of more general

models that can mathematically explain cognitive phenomena such as order effects [22, 14].

One of the quantum approaches that is highly used to explain order effects is the quantum projection

model (also known as a quantum geometric model) [23, 26]. In this approach, we start to represent a

person’s beliefs in a N-dimensional superposition state (for the case of binary questions, N = 2). To

model a sequence of answers, we start by projecting this superposition state into the basis with the
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desired answer. From this basis, we perform a second projection to another basis, which represents the

desired answer for the second question, and corresponds to a rotation by φ radians of the initial basis

state. The final probability is given by performing the squared magnitude of the multiplication of all

these projections. Since projections are given by matrices and matrix multiplication is non-commutative,

then order effects can be naturally explained under this framework.

The questions that we address in this work are the following. Given that the quantum approach

consists in a geometric model that performs projections, can we obtain the same results using a classical

approach also based on projections? Is quantum theory really necessary and advantageous to explain

paradoxical findings such as order effects? And, what makes this quantum projection approach quantum,

since no complex probability amplitudes are being used in the model [7, 31]? From where do the

quantum interferences arise from and what do they mean under this context?

In this work, we pretend to make a discussion about these questions. We also propose an alternative

interpretation for the parameters that are involved in these geometric projection models that can be ap-

plied to both classical and quantum models. Current literature interprets these parameters as similarities

between questions. Under the proposed Relativistic Interpretation, these parameters emerge due to the

lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state

of the world and towards the context of the questions. So, with a relativistic interpretation of parame-

ters, we can give to both classical and quantum approaches an interpretation for the rotation of the basis

vectors and why this rotation is necessary under a cognitive point of view.

In the end, we argue that the application of the classical and quantum models should be based on

Occam’s Razor: in the presence of two competing hypothesis, the one that has the fewest assumptions

(or the one that is simpler) should be chosen. This depends much on the problem and what knowledge

we want to extract from it. If we are mainly focused on a mathematical approach that can perform pre-

dictions for order effects, abstracting the model from any interpretations or theories, which are intrinsic

to the problem, then the classical approach is the one that makes the fewer assumptions and should be

applied. If, on the other hand, we want to make a model that leverages on a more general theory to

explain its predictions, then the quantum model is more indicated.

This work is organised as follows. In Section 2, we present the results of a study from Moore

(2002) [18] in which the author collected public opinions by making two consecutive questions regarding

important people and relevant issues. The results collected in this gallup poll showed the occurrence of
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several types of order effects. In Section 3, we explain how the quantum projection model works and

how it can explain the results reported by [18]. In Section 4, we present an alternative interpretation for

the parameters involved in the quantum projection approach that is general enough to be applied to both

quantum and classical models. In Section 5, we show how a classical model can obtain the same results

as a quantum approach and also explain the paradoxical findings of order effects. In the end, we perform

a discussion in which situations one should prefer the classical or the quantum model. Finally, we end

this work with Section 6, in which we present some final discussions and the main conclusions of this

work.

2 The Gallup Poll Problem

One example of question order effects that has been widely reported over the literature corresponds to

the work of [18], where the author collected public opinions between two important people: Bill Clinton

and Al Gore. In this poll, half of the participants were asked if they thought that Bill Clinton was a

honest and trustworthy person and next they were asked the same about Al Gore. The other half of the

participants were asked the same questions, but in reversed order. In the end, there was a total of 1002

respondents.

Results showed that there was a big gap in a non-comparative context (the first questions) and a small

gap in a comparative context (the second question). Asking about Clinton first, made the probability of

the second question increase. On the other hand, asking about Al Gore first, made the probability of

the second question decrease. This phenomena is usually referred to the assimilation effect and pure

classical probability models cannot explain it, because they are based on set theory and, consequently,

they are commutative. Table 1 summarises the results obtained in the work of [18].

Clinton-First Gore-First Differences

Pr After First Question Pr(C) = 50% Pr(G) = 68% = 18% (non-comparative)

Pr After Second Question Pr(G|C) = 57% Pr(C|G) = 60% = 3% (comparative)

Effect + 7% - 8% Assimilation Effect

Table 1: Summary of the results obtained in the work of [18] for the Clinton-Gore Poll, showing an

Assimilation Effect

In the same work, [18] also reported the same experiment, but using different politicians in the

questions. The same questions as above were asked, but regarding the honesty and trustworthiness of

Gingrich and Dole. The questions were posed in different orders. The total amount of respondents in
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this experiment was 1015. Table 2 summarises the results.

Opposite to the assimilation effect, asking about Gingrich first, made the probability of the question

regarding Dole decrease. On the other hand, asking about Dole first made the probability of the ques-

tion regarding Gingrich increase. This phenomena is usually referred to the Contrast effect. Table 2

summarises the results obtained in the work of [18].

Gingrich-First Dole-First Differences

Pr After First Question Pr(G) = 41% Pr(D) = 60% = 19% (non-comparative)

Pr After Second Question Pr(D|G) = 33% Pr(G|D) = 64% = 31% (comparative)

Effect - 8% + 4% Contrast Effect

Table 2: Summary of the results obtained in the work of [18] for the Gingrich-Dole Poll, showing a

Contrast Effect.

The third poll reported in the work of [18] corresponds to a set of questions concerned with racial

hostility. In a group of 1004 respondents, two questions were asked. One was: Do you think that only

a few white people dislike blacks, many white people dislike blacks, or almost all white people dislike

blacks?. The other question was the same, but about black people. These questions were posed in

sequence and in different orders. Table 3 summarises the results.

In this case, the order how the questions were posed did not matter, since they both contributed to

an increase of the probability of the second question. This phenomena is usually referred to the additive

effect.

White People First Black People First Differences

Pr After First Question Pr(G) = 41% Pr(D) = 46% = 5% (non-comparative)

Pr After Second Question Pr(D|G) = 53% Pr(G|D) = 56% = 3% (comparative)

Effect + 12% + 10% Additive Effect

Table 3: Summary of the results obtained in the work of [18]. The table reports the probability of

answering All or Many to the questions. The results show the occurrence of an Additive Effect.

The last example in the work of [18] is concerned with a poll about Peter Rose and Joe Jackson.

Again, a set of 1061 respondents was gathered and two questions were posed in sequence. The questions

were do you think Peter Rose / Shoeless Joe Jackson should or should not be eligible for admission to

the Hall of Fame?. These questions were performed in different orders and the results obtained are

summarized in Table 4.

In this last example, the order how the questions were posed did not matter, since they both con-

tributed to a decrease of the probability of the second question. This phenomena is usually referred to
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the subtractive effect.

Peter Rose First Shoeless Joe Jackson First Differences

Pr After First Question Pr(G) = 64% Pr(D) = 45% = 19% (non-comparative)

Pr After Second Question Pr(D|G) = 52% Pr(G|D) = 33% = 19% (comparative)

Effect - 12% - 12% Subtractive Effect

Table 4: Summary of the results obtained in the work of [18] for the Rose-Jacjson Poll, showing a

Subtractive Effect.

All data reported in the work of Moore (2002) [18] constitute a violation of order effects. By order

effects, we mean the probability of, for instance, asking some question A followed by question B usually

gives different results if we pose the questions in reverse order. One way to approach this problem

is through Quantum Cognition Models. Quantum cognition is a research field that aims to explain

paradoxical findings (such as order effects) using the laws of quantum probability theory. The models

provide several advantages towards its classical counterparts. They can model events in a superposition

state, which is a vector that comprises the occurrence of all possible events. They enable events in

superposition to interfere with each other, this way disturbing the final probability outcome. These

quantum interference effects do not exist in a classical setting and constitute the major advantage of

these models, since we can use these interference effects to accommodate the paradoxical findings.

3 A Quantum Approach for Order Effectsl

In the Quantum Projection Model [7, 23, 26], a state is represented by a unit vector in a k-dimensional

complex vector space. A quantum superposition state is represented by a vector |ψ〉= α0|0〉+α1|1〉+

· · ·+αk−1|k− 1〉, where α0, . . . ,αk−1 are quantum amplitudes and the sum of their squared magnitude

must sum to 1, ∑k−1
i=0 |αi|2 = 1. In the case of the Gallup Poll presented in Section 2, the quantum states

are binary, since they correspond to a person’s yes/no answer, that is, we would represent a superposition

state |S〉 regarding the answer to Clinton’s honesty and trustworthiness person as

|S〉= s0|Cy〉+ s1|Cn〉, (2)

where Cn and Cy correspond to the answers no or yes, respectively to Clinton’s honesty question. The

variables s0 and s1 represent complex quantum probability amplitudes, which represent the initial beliefs

of a participant, before answering the question.
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Consider Figure 1 where it is represented two sets of basis states: {Ay,An} and {By,Bn}. Generally

speaking, one can look at these basis as the representation of two yes/no questions. Basis state Ay

corresponds to a yes answer to question A and is given by the state vector |Ay〉 = [ 1 0 ] and |An〉 =

[ 0 1 ] corresponds to a no answer to question A. In the same way, for the yes/no answers of question B,

we can represent the states as a rotation of questions’ A basis states. When an answer is given, we project

the superposition state |S〉 into the basis state corresponding to the desired answer. In Figure 1 (right),

we perform two sets of projections: (1) starting in the superposition state |S〉, we first make a projection

that is orthogonal to the basis state representing the yes answer of question B giving rise to the projector

PBy and (2) from the basis state By we perform another orthogonal projection to the yes basis vector

of question A, resulting in projector PAy. In Figure 1 (center), we perform the same projections, but in

reverse order: (1) starting in the superposition state |S〉, we first make a projection that is orthogonal to

the basis state representing the yes answer of question A, PAy, and then (2) from the basis state Ay we

perform another orthogonal projection to the yes basis vector of question B, PBy.

Figure 1: Example of the application of the quantum projection approach for a sequece of two binary

questions A and B. We start in a superposition state and project this state into the yes basis of question

A (left). Then, starting in this basis, we project into the basis corresponding to the answer yes of

question B (center). We can then have a different result if we reverse the order the projections (right).

In the end, the final probability of answering yes to B given that it was previously answered yes to

question A is given by the squared magnitude of the sequence of these projections. We can obtain a

different probability value by making the inverse sequence of questions. The probabilities computed

using the Quantum Projection approach give different results, matching the experimental findings of

Moore (2002) [18], in which it is shown that the order of how the questions are posed matter and have
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an impact over the results.

Pr(B = yes) = ||PAy PBy |S〉||2 + ||PAn PBy |S〉||2 6= ||PBy PAy |S〉||2 + ||PBy PAn |S〉||2 (3)

3.1 The Quantum Projection Model

For a 2-dimensional decision scenario the projection model can be described in the following points:

• Start by defining two orthonormal basis vectors for the questions, which implies that 〈An|Ay〉= 0.

One set of basis vectors that is commonly chosen is

|Ay〉=







1

0






|An〉=







0

1






,

the other set of vectors corresponds to a rotation of the above basis vectors by φ radians. The new

basis can be found by multiplying a rotation matrix Rφ with each of the basis vectors

|By〉=Rφ Ay=







Cos(φ)

Sin(φ)






|Bn〉=Rφ An=







−Sin(φ)

Cos(φ)






Rφ =







Cos(φ) −Sin(φ)

Sin(φ) Cos(φ)






. (4)

• Then, we define a superposition vector |S〉, which comprises a person’s beliefs (or features) about

some object. In this case, it corresponds to a superposition of possible answers to a given question:

to answering No (An) or Yes (Ay). Although the model can be generalized for N random variables,

we will describe the model for two random variables, which is what we need to describe the

different order effects found in the work of [18].

|S〉=√
s0 eiθ0 |Ay〉+√

s1 eiθ1 |An〉 such that,
N=1

∑
j=0

∣

∣

√
s j eiθ j

∣

∣

2
= 1. (5)

The variables s0 and s1 represent quantum probability amplitudes and the variables θ0 and θ1

correspond to their respective phase.

• When we ask question A first, this corresponds to a projection of the belief state |S〉 onto the

subspace with the desired answer. In Figure 1 (left), this vector is being projected into the subspace

Ay, which corresponds to the answer yes of question A. This projection produces the state PAy|S〉,
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which is given by

PAy = |Ay〉〈Ay|=







1 0

0 0






PAy|S〉=







√
s0 eiθ0

0






(6)

• The probability of answering yes to the first question is given by the squared magnitude of the

projected state:

||PAy|S〉||2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







s0 eiθ0

0







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=
√

s0 eiθ0 ·
(√

s0 eiθ0

)∗
= s0 (7)

• When we ask question B in the first place, this corresponds to a projection operator PBy that will

project the superposition state S into the yes basis of question B. For this, we need to define the

projector PBy and the rotation of the superposition state SR as

PBy = |By〉〈By|=







Cos2 (φ) Cos(φ)Sin(φ)

Sin(φ)Cos(φ) Sin2 (φ)






(8)

So, PBy|S〉 is given by,

PBy =
(

|Cos(φ)|2 + |Sin(φ)|2
)

∣

∣

√
s0 eiθ0 Cos(φ)+

√
s1 eiθ1 Sin(φ)

∣

∣

2
(9)

• In order to compute the probability of the sequence of answers Ay → By, we need to compute the

squared magnitude of their sequence of projections. That is, we need to compute
∣

∣

∣

∣PByPAy
|S〉

∣

∣

∣

∣

2
.

This sequence of projections is illustrated in Figure 1 (left) and corresponds answering yes to

question A and yes to question B, respectively.

Pr(ByAy) = ||PByPAy|S〉||2 =Cos2 (φ)
∣

∣

√
s0 eiθ0Cos(φ)+

√
s1 eiθ1Sin(φ)

∣

∣

2
(10)

• In the same way, we can compute the sequence of answers Bn and Ay, representing the answer yes

to question A and no to question B.

Pr(BnAy) = ||PBnPAy|S〉||2 = Sin2 (φ)
∣

∣

√
s1 eiθ1Cos(φ)−√

s0 eiθ0 Sin(φ)
∣

∣

2
(11)
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• The final probability of A being yes, Pr(Ay), is given by the sum: Pr(B → Ay) = Pr(ByAy)+

Pr(BnAy).

Pr(B → Ay) = Pr(ByAy)+Pr(BnAy) = Sin2 (φ)
∣

∣Cos(φ)
√

s1 eiθ1 −√
s0 eiθ0 Sin(φ)

∣

∣

2
+

Cos2 (φ)
∣

∣Cos(φ)
√

s0 eiθ0 +
√

s1 eiθ1Sin(φ)
∣

∣

2
(12)

• If, however, we wanted to compute the probability of By in the second question, that is, the

probability of answering yes to B after answering question A, then we would have to compute the

sequence of projections:

Pr(AyBy) = ||PAy PBy|S〉||2 =
∣

∣

√
s0 eiθ 0

∣

∣

2
Cos2 (φ) = | s0 |Cos2 (φ) (13)

• The probability of answering no to the first question A and yes to the second question B is given

by

Pr(AnBy) = ||PAn PBy|S〉||2 =
∣

∣

√
s1 eiθ 1

∣

∣

2
Sin2 (φ) = |s1|Sin(φ) (14)

• The final probability of answering yes to question B followed by question A is given by the sum

of the probabilities Pr(A → By) = Pr(AnBy)+Pr(AyBy)

Pr(A → By) =
∣

∣

√
s0 eiθ 0

∣

∣

2
Cos2 (φ)+

∣

∣

√
s1 eiθ 1

∣

∣

2
Sin2 (φ) = |s0| Cos2 (φ)+ |s1| Sin2 (φ) (15)

• In the end, setting the parameters as suggested in [7], that is θ = π/4, s0 = 0.7 and s1 = 0.3,

leads to a big gap in the non-comparative context and a small gap for the comparative context,

simulating the Assimilation Effect presented in Table 1.

Pr(Ay) = 0.7 Pr(By) = 0.96 Pr(A → By) = Pr(B → Ay) = 0.5

3.2 Discussion of the Quantum Projection Model

In the quantum projection model, it is interesting to notice that in Equation 15, the probability of an-

swering yes to question B followed by question A, does not depend on the quantum parameter θ . This

means that the quantum model collapses to its classical counterpart, since it depends only on the rotation

parameter φ and on the initial beliefs (given by s0 and s1). A deeper analysis of Equation 15 shows more
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information. If we fix the rotation parameter φ to π/4 and s1 = 1− s0 (as suggested in the example

in [7]), then we can conclude that varying the initial belief state s0 plays no role in the outcome of the

final probabilities. When making a sequence of questions, only the rotation parameter φ can change the

outcome. In another analysis, we tested how the function would evolve if we varied the rotation param-

eter φ (between 0 and 2π) and the initial belief state s0 (between 0 and 1). The outcome is Figures 2

and 3, in which one can conclude that it is possible to simulate the several order effects reported in the

work of Moore (2002) [18] by setting s0 and varying the rotation parameter φ .

In the same way, we performed a similar analysis to Equation 12, which corresponds answering yes

to the sequence of questions B → Ay. The difference is that Equation 12 does depend on the quantum

interference parameter θ . By fixing the rotation parameter φ and the initial belief state s0 with the quan-

tum interference parameter θ , this analysis showed similar results to the previous question: when we fix

the rotation parameter, the function becomes constant and both initial state s0 and quantum interference

term θ play no role in the final probability outcome. This means that when computing these probabil-

ities, only the rotation parameter will have a direct impact in the calculations. Moreover, if we fix the

quantum interference term θ = 0 (as suggested in the example contained in [7]), then we can see that

varying the rotation parameter φ also enables the possibility of representing the different types of order

effects reported in [18]: assimilation, contrast, additive and subtractive effects. In the next section, we

will address these rotation parameters more closely and propose and alternative interpretation under the

scope of quantum cognition.

Figure 2: Relation between the rotation

parameter φ and the quantum probability

amplitude s0 of Equation 15. The amplitude s1

was set to s1 = 1− s0. We can simulate several

order effects by varying the parameter φ .

Figure 3: Relation between the rotation

parameter φ and the quantum probability

amplitude s0 of Equation 12. The amplitude s1

was set to s1 = 1− s0. We can simulate several

order effects by varying the parameter φ .
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4 The Relativist Interpretation of Parameters

In the book of [7], quantum parameters in the Quantum Projection Model represent the similarity be-

tween questions. This parameter represents the angle of the inner product between the two projections.

In other works of the literature, the quantum interference parameter represents not only the similarity be-

tween two random variables (through their inner product), but also the semantical relationship between

them [20, 19].

However, under the Quantum Projection Model, we have seen in the previous section that the quan-

tum interference parameters play no role in the computation of the final probabilities. So, where do

the quantum interference effects come from in order to accommodate the violations of order effects?

One could argue that this interference comes from the rotation of the basis vectors by φ radians. In

the previous section, the rotation operator R changed the basis state Ax into Bx by applying a rotation

of φ radians. Under a cognitive point of view, this rotation is used to model the quantum interference

effects and corresponds to the change of a person’s mental beliefs [30, 31]. However, this interpretation

is independent from a quantum perspective and it holds for pure classical projection models as we will

show in Section 5.

In this section, we present an alternative interpretation of quantum interference parameters for this

projection-based approach for order effects that can accommodate both classical and quantum projection

approaches for order effects. We call it The Relativistic Interpretation of Parameters.

Under the Relativistic Interpretation of Parameters, when we pose a question to different people,

each person will represent its preferred answer in a N-dimensional vector space. For the case of binary

questions, this representation is performed in a 2-dimensional psychological space. However, the indi-

vidual is not aware in which basis he is making this representation. Each individual person has its own

basis, but it is possible to represent different beliefs from different individuals by performing a rotation

of the basis state by φ radians.

Take as example Figure 4. There are three individuals A, B and C to whom it is posed the same binary

question. Each person will represent their answer in their own 2-dimensional psychological space,

without knowing in which basis they are representing their beliefs. However, since we are assuming that

each person has its own vector space, then one can describe the beliefs of each individual in terms of

another by performing a rotation of their basis by some φ radians. For instance, assuming that individual

A is in the common |0〉 / |1〉 basis, then, individual’s C beliefs are described, under person’s A perspective,
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Figure 4: Example of the Relativistic Interpretation of Quantum Parameters. Each person reasons

according to a N-dimensional personal basis state without being aware of it. The representation of the

beliefs between different people consists in rotating the personal belief state by φ radians.

as a rotation of φA,C radians. In the same way, person’s A beliefs can be described by person’s C point of

view by performing the inverse rotation, that is, by rotating the basis −φA,C radians or φC,A radians. The

same line of thought is applied for person B.

In the end, quantum interferences arise in quantum cognition due to this lack of knowledge regarding

each person’s own basis states and due to uncertainties towards the state world.

In the next section, we will perform a discussion of whether or not we need a Quantum Approach to

model order effects.

5 Do We Need Quantum Theory for Order Effects?

So far, we presented the problem of order effects in which the probability of a sequence of events is

different if we switch the order of that sequence. This cannot be simulated by pure classical probabilistic

models, because classical probability theory is based on set theory and, consequently, events commute.

We also presented a quantum model that is widely used in the literature and can account for order

effects in a general and natural way. However, we showed that the quantum interferences do not play

any role in this quantum projection model and only the rotation of the basis vectors is necessary to

accommodate paradoxes derived from order effects. At this point, the reader might be thinking: Do

we really need quantum theory to explain order effects? Can we achieve the same results using a

classical projection counterpart of the quantum model? The answers to these questions are no and yes,
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respectively.

One can argue that the main difference between the quantum approach towards a classical projection

model is that in the first it is used complex probability amplitudes and in the later it is used real numbers.

One could argue that what makes the model quantum is the usage of these quantum amplitudes, which

in turn generate quantum interference effects, which can accommodate several paradoxical findings

reported in the literature [27, 28, 29, 4]. However, that does not hold in the quantum projection model,

since quantum interferences end up playing no role in the computation of the probabilities. Moreover,

even if the quantum interference terms did matter, then the complexity of the quantum projection model

would increase, since we would require an additional 2N free quantum interference parameters for binary

questions that would need to be fit. For the case of M possible answers, the complexity will grow to MN ,

where N is the number of questions.

5.1 A Classical Approach for Order Effects

The classical projection approach works just like the previously described quantum model with the

difference that real numbers are used instead of quantum probability amplitudes. The model works in

a N-dimensional vector space, however, in order to simulate the results obtained in the Clinton / Gore

experiment from the work of Moore (2002), we will describe the model for a 2-dimensional decision

scenario:

• Start by defining two orthonormal basis vectors for the questions. One set of basis vectors that is

commonly chosen is

|Ay〉=







1

0






|An〉=







0

1






,

the other set of vectors corresponds to a rotation of the above basis vectors by φ radians. The new

basis can be found by multiplying a rotation matrix Rφ with each of the basis vectors

|By〉= Rφ Ay =







Cos(φ)

Sin(φ)






|Bn〉= Rφ An =







−Sin(φ)

Cos(φ)






Rφ =







Cos(φ) −Sin(φ)

Sin(φ) Cos(φ)






.

(16)

• Since we are in a Euclidean space, we can define a vector |S〉, where s0 and s1 are variables
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representing real numbers.

|S〉=√
s0|Ay〉+√

s1|An〉 such that
N=1

∑
i=0

|√si|2 = 1. (17)

• The probability of answering yes to the first question A corresponds to the squared magnitude of

the projection of vector S into the yes basis of A:

PAy = |Ay〉〈Ay|=







1 0

0 0






Pr (Ay) = ||PAy|S〉||2 = |s0| (18)

• On the other hand, if we want to compute the probability of posing question B first, then the

same paradigm applies. We start with vector S and then we project this state into the yes basis of

question B:

PBy = |By〉〈By|=







Cos2 (φ) Cos(φ)Sin(φ)

Sin(φ)Cos(φ) Sin2 (φ)






(19)

Pr (Ay) = ||PBy|S〉||2 =
(∣

∣Cos2 (φ)
∣

∣+
∣

∣Sin2 (φ)
∣

∣

)

|√s0Cos(φ)+
√

s1Sin(φ)|2 (20)

• To compute the probability of the sequence of answers Ay → By, we need to compute the squared

magnitude of their sequence of projections, that is
∣

∣

∣

∣PByPAy
|S〉

∣

∣

∣

∣

2
:

Pr(ByAy) =
∣

∣

∣

∣PBy PAy
|S〉

∣

∣

∣

∣

2
= |s0|Cos2 (φ)

(

Cos2 (φ)+Sin2 (φ)
)

(21)

• In the same way, we can compute the sequence of answers Bn and Ay, representing the answer yes

to question A and no to question B.

Pr(BnAy) =
∣

∣

∣

∣PBn
PAy

|S〉
∣

∣

∣

∣

2
= |Sin(φ) (−√

s1Cos(φ)+
√

s0Sin(φ))|2 (22)

• The final probability of A being yes, Pr(B → Ay), is given by the sum: Pr(B → Ay) = Pr(ByAy)+

Pr(BnAy).

Pr (B → Ay) = Pr(ByAy)+Pr(BnAy) = |Sin(φ) (
√

s0 Sin(φ)−√
s1Cos(φ))|2+

|Cos(φ) (Cos(φ)
√

s0 +Sin(φ)
√

s1)|2
(23)
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• If, however, we want to compute the probability of By in the second question, that is, the probabil-

ity of answering yes to B after answering question A, then we would have to compute the sequence

of projections:

Pr(AyBy) =
∣

∣

∣

∣PBy
PAy

|S〉
∣

∣

∣

∣

2
= |s0|Cos2 (φ)

(

Cos2 (φ)+Sin(φ)2
)

(24)

• The probability of answering no to the first question A and yes to the second question B is given

by

Pr(AnBy) =
∣

∣

∣

∣PBy
PAn

|S〉
∣

∣

∣

∣

2
= |s1|Sin2 (φ)

(

Cos2 (φ)+Sin2 (φ)
)

(25)

• The final probability of answering yes to question B followed by question A is given by the sum

of the probabilities Pr(A → By) = Pr(AnBy)+Pr(AyBy)

Pr (A → By) = |s0|Cos2 (φ)+ |s1|Sin2 (φ) (26)

• In the end, setting the parameters as suggested in [7], that is θ = π/4, s0 = 0.7 and s1 = 0.3, this

leads to a big gap in the non-comparative context and a small gap for the comparative context,

simulating the Assimilation Effect presented in Table 1.

Pr (Ay) = 0.7 Pr (By) = 0.96 Pr (A → By) = Pr (B → Ay) = 0.5

It is important to note that, in this work, the main difference between a quantum-like model and

a classical model resumes to the fact that in the first we use amplitudes (which are complex numbers)

and in the later we use real numbers [10]. The general idea is that, by using complex numbers, when

we perform a measurement and make the squared magnitude of the projection, the usage of complex

numbers will lead to the emergence of quantum interference effects. If, on the other hand, we use real

numbers (classical model), then when we measure the length of the projection, we will never obtain any

kind of interference terms.
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5.2 Analysis of the Classical Projection Model

In the quantum model, we concluded that the quantum interference term θ plays no role in a 2-dimensional

model. In this section, we are interested to know if there is any relation between the classical model and

the quantum model. In order to do this, we started to analyse the probability of answering yes to B in

the second question, Pr(A → By). With the classical projection model one can achieve the same results

reported in the quantum model. Since in the quantum model the quantum interference terms do not

play any role in the computation of the probability of the second question (the one that has the rotated

basis vectors), then it is straightforward that it can only accommodate the paradoxical finds through the

rotation parameter φ . In the same way, the classical model only depends on this rotation parameter in

order to simulate the several order effects reported in the work of Moore (2002) [18].

We also decided to fix the rotation parameter φ , in the classical model, and verify how the input state

s0 would affect the final probabilities. The analysis showed a constant function, which means that from

the moment we specify a rotation to the model, it does not matter what the input state s0 is, because

it does not affect the final probability outcome. Just like in the quantum model, it is only the rotation

parameter that will enable the accommodation of the several order effects reported in the work of Moore

(2002) [18]. We also made a similar analysis with respect the probability of answering A in the second

question. The results obtained reinforce the evidence that the quantum projection model has the same

performance as the classical model.

5.3 Explaining Serveral Order Effects using the Classical and Quantum Projection Mod-

els

So far, we have seen that both classical and quantum models applied for the Clinton-Gore example give

similar results. In this section, we will fit the different parameters of both models in order to simulate

all order effects presented in the work of Moore (2002) [18]. Table 5 presents the results obtained.

Since quantum interference terms did not play any role in the quantum model, we can see that the values

used to fit the classical model are the same ones used to fit the quantum model. This reinforces the

conclusion that, for a 2-dimensional decision scenario, the quantum projection model collapses to the

classical model and does not provide any advantages towards the classical approach.

From Table 5, one can also note that it was possible to fit all parameters of both models in order to

accommodate the paradoxical findings reported for different order effects, namely assimilation, contrast,
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Quantum Projection Model Classical Projection Model

Experiments s0 θ φ Pr(1st ans) vs Pr(2nd ans) vs s0 φ Pr(1st ans) vs Pr(2nd ans) vs

Pr(1st ans exp) Pr(2nd ans exp) Pr(1st ans exp) Pr(2nd ans exp)

Clinton / Gore
√

0.50eiθ0 [0,2 π] 0.7133 0.50 / 0.50 0.57 / 0.57
√

0.50 0.7133 0.50 / 0.50 0.57 / 0.57

Gore / Clinton
√

0.68eiθ0 [0,2 π] 2.6516 0.68 / 0.68 0.60 / 0.60
√

0.68 2.6516 0.68 / 0.68 0.60 / 0.60

Gingrich / Dole
√

0.41eiθ0 [0,2 π] 1.4858 0.41 / 0.41 0.33 / 0.33
√

0.41 1.4858 0.41 / 0.41 0.33 / 0.33

Dole / Gingrich
√

0.60eiθ0 [0,2 π] π 0.60 / 0.60 0.60 / 0.64
√

0.60 π 0.60 / 0.60 0.60 / 0.64

While / Black
√

0.41eiθ0 [0,2 π] 0.0510 0.41 / 0.41 0.46 / 0.46
√

0.41 0.0510 0.41 / 0.41 0.46 / 0.46

Black / White
√

0.53eiθ0 [0,2 π] π 0.53 / 0.53 0.53 / 0.56
√

0.53 π 0.53 / 0.53 0.53 / 0.56

Rose / Jackson
√

0.64eiθ0 [0,2 π] 3.0216 0.64 / 0.64 0.52 / 0.52
√

0.64 3.0216 0.64 / 0.64 0.52 / 0.52

Jackson / Rose
√

0.45eiθ0 [0,2 π] π 0.45 / 0.45 0.45 / 0.33
√

0.45 π 0.45 / 0.45 0.45 / 0.33

Table 5: Prediction of the geometric approach using different φ rotation parameters to explain the

different types of order effects reported in the work of [18]. The columns Pr(1st ans) vs Pr(1st ans exp)

represent the answer to the first question obtained using the projection models and the value reported

in [18], respectively. Pr(2nd ans) vs Pr(2nd ans exp) represent the answer to the second question

obtained using the projection models and the value reported in [18].

additive and subtractive effects. One can also note that, for the subtractive effects, in the experiment

regarding Jackson / Rose, the final probability computed achieved an error of 36% when compared to

the results reported in the work of Moore (2002) [18]. This error occurred because there was no possible

way to minimize Equation 26 to such values. The most minimum value of the function was achieved

by setting the rotation parameter φ to π . Despite this problem, in general, both classical and quantum

projection approaches were proved to be similar for a 2-dimensional decision problem and were both

able to accommodate all order effects.

In the next section, we will make a brief discussion on whether to use quantum models or classical

models to accommodate order effects.

5.4 Occam’s Razor

Given that in the quantum projection approach the quantum interference θ parameter ends up not playing

any role in the calculations, the interference effects come only from the rotation of the basis (belief)

vectors. In a true quantum setting, interference effects would emerge naturally due to the nature of

complex numbers. For some event α ∈ A followed by a finite set of N partition events β j ∈ B, where

α and β j are represented by complex numbers, the total probability of event α considering just two

events, N = 2, is given by Equation 27. The resulting interference is different from the interference that

is produced by rotating the belief vectors by φ radians.

Pr(α) =
∣

∣

∣

√

β1

√

α |β1 eiθ1 +
√

β2

√

α |β2 eiθ2

∣

∣

∣

2

=

=
∣

∣

∣

√

β1

√

α |β1

∣

∣

∣

2

+
∣

∣

∣

√

β1

√

α |β1

∣

∣

∣

2

+2 ·
∣

∣

∣

√

β1

√

α |β1

∣

∣

∣

∣

∣

∣

√

β2

√

α |β2

∣

∣

∣
Cos(θ1 −θ2)

(27)
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For N random variables, Equation 27 generalises to Equation 28 [20], where one can notice an exponen-

tial growth of the quantum interference parameters θ .

Pr(α) =
N

∑
j=1

∣

∣

∣

∣

√

β j

√

α |β je
iθ j

∣

∣

∣

∣

2

+2
N−1

∑
j=1

N

∑
k= j+1

∣

∣

∣

∣

√

β j

√

α |β je
iθ j

∣

∣

∣

∣

∣

∣

∣

√

βk

√

α |βkeiθk

∣

∣

∣
·Cos(θ j −θk) (28)

For the case of order effects, interference terms end up not playing any role in order to determine

the final probabilities in a decision scenario. However, this represents an exception. Many experiments

have been conducted throughout the literature, which show that humans violate the laws of probability

theory and logic under scenarios with high levels of uncertainty. Experiments such as The Prisoners

Dilemma [24, 11, 17], The Two Stage Gambling Game [29, 15, 16] and categorization experiments [8]

show that pure classical models cannot simulate human decisions, however using quantum probability,

it is possible. The quantum interference terms that emerge from the application of complex numbers

in the representation of mental states, gives rise to a free parameter that can be used to fit and explain

these experiments. So far, the literature has proposed dynamical Quantum models [10] based on Hamil-

tonian matrices and Schrdingers equation, Quantum-Like Bayesian Networks [20] that can explain both

classical and quantum phenomena in a single model, and many more.

Summarising, both classical and quantum models are similar. Order effects can be explained by

these two frameworks intuitively, since both models take advantage of the fact that matrix multiplica-

tions are non-commutative. One could argue that what makes the model quantum is the usage of these

quantum amplitudes, which in turn generate quantum interference effects, which can be used to ac-

commodate paradoxical situations, such as order effects. However, that does not hold in the quantum

projection model, since quantum interferences end up playing no role in the computation of the probabil-

ities. Moreover, even if the quantum interference terms did matter, then the complexity of the quantum

projection model would increase, since we would require an additional 2N free quantum interference

parameters for binary questions that would need to be fit. To each input state sx there is an additional

phase parameter eiθx . For the case of M possible answers, the complexity grows to MN , where N is the

number of questions.

In the end, one can question, which approach should be used. We can either use a classical projection

approach to simulate inconsistencies of order effects or we can use a quantum projection approach.

According to Occam’s razor, in the presence two competing hypothesis, the one that has the fewest

assumptions (or the one that is simpler) should be chosen. This, of course is a very vague statement
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and we should take into account the nature of the problem itself and what we intend to prove with it.

If we are merely interested in simulating the results of some experiments, abstracting ourselves from

the interpretation and meaning of the nature of the experiment, then according to Occam’s razor, the

classical approach would be right choice. If, however, we are interested in developing a more general

theory that requires additional interpretations, then the quantum approach would be the one to go with.

So, in the end, the application of a Quantum or Classical approach depends on the nature of the problem

and in what we intend to explain (or prove) with the application of the model.

6 Conclusions

Quantum probability theory has been gaining increasing attention in fields outside of physics [21]. Its

general framework enables the representation of beliefs in a superposition state, which is a vector that

comprises the occurrence of all possible beliefs. Moreover, this vector representation decouples itself

from classical probability theory and it is not limited to the constraints of set theory. This means that

empirical findings, such as order effects, can be easily explained by the non-commutativity of matrix

operations under a quantum approach. In purely classical models, these order effects cannot be directly

explained, because set theory is commutative.

In this work, we showed how one can take advantage of the geometric-based quantum theory in

order to accommodate several order effects situations (additive, subtractive, assimilation and contrast

effects) using the gallup reports collected in the work of Moore [18]. However, we also showed that the

exact same results can be obtained using a pure classical projection model. In the end, order effects can

be explained by both frameworks intuitively, since both models are similar and take advantage of the

fact that matrix multiplications are non-commutative. Depending on how one sets the rotation operator,

one can simulate any effect reported in the work of Moore [18]. Additionally, we also proposed an

alternative interpretation for the rotation parameters used in these models, which is called the relativistic

interpretation of parameters. This interpretation states that each person makes an inference by projecting

a point in their personal N-dimensional psychological space, however, the person is not aware in which

basis this point is projected in. So, the rotation of the parameters, instead of being interpreted as a

measure of similarity (or an inner product) between questions, we state that this parameter emerges due

to this lack of knowledge concerned with the basis state and also due to uncertainties towards the state

of world and the context of the questions. With the relativistic interpretation of parameters, we can give
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to both classical and quantum approaches an interpretation for the rotation of the basis vectors and why

this rotation is necessary under a cognitive point of view.

In the end, we argue that the application of these models should be based on Occam’s Razor: in the

presence two competing hypothesis, the one that has the fewest assumptions (or the one that is simpler)

should be chosen. This depends much on the problem and what knowledge we want to extract from it. If

we are mainly focused on a mathematical approach that can perform predictions for order effects, then

the classical approach should be used. If, on the other hand, we want to make a model that leverages on

theories and interpretations to explain the its predictions, then the quantum model is more indicated.
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