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Abstract

This paper proposes two different H2−state-feedback controller synthesis algorithms for

uncertain linear, time-varying, switched systems. The synthesis algorithms are based on

a dwell-time approach which makes use of time-varying parameter-dependent Lyapunov

functions. The control laws consist of state-feedback controllers that are switched according

to external signals. The proposed synthesis algorithms are then employed to design

switched H2−state-feedback control laws for the longitudinal dynamics of the ADMIRE

fighter benchmark model.The results obtained in simulation show the merits of the proposed

approach.
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Email: emre.kemer@usak.edu.tr
2 Dept. of Electrical and Electronics Engineering, Faculty of Eng., Artvin Çoruh University, Artvin, TURKEY,
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Introduction

Switching in control has many applications in communication networks, space applications,

automotive engine control, robotics, power electronics and so on see e.g. Yuan et al. (2017).

Various stability analysis tools for switched systems are given in the literature as reported in

the survey paper of Lin and Antsaklis (2009). Common and piecewise quadratic Lyapunov

functions are used in Johansson and Rantzer Johansson and Rantzer (1998); Rantzer and

Johansson (2000) to guarantee the stability of linear switched systems that are switched

according to the system states. Briat (2017) uses the concepts of constant, minimum, maximum

and range dwell-times and linear co-positive Lyapunov functions to analyse the stability

and the stabilization of linear positive impulsive switched systems. Geromel and Colaneri

(2006); Allerhand and Shaked (2010, 2013-1) use the so-called minimum dwell-time concept

to prove stability of linear switched systems under slow switching. From performance and

stability analysis, it is often possible to derive state-feedback controller synthesis conditions.

Allerhand and Shaked (2011),Allerhand and Shaked (2013-2) obtained state-feedback

synthesis conditions for uncertain switched linear systems subject to dwell-time constraints

that permit the design of a switched state-feedback control law that meets a closed-loop L2-

performance objective. Similarly, piecewise linear quadratic Lyapunov functions are used in

Allerhand and Shaked (2013-3) for the design of robust state estimation filters.

This paper tackles the problem of H2 state-feedback controller synthesis for uncertain

switched linear systems subject to a dwell-time constraint. The paper follows the line of research

of Allerhand and Shaked (2013-3) and is closely related to the work published in Kemer and

Prempain (2018) by Kemer and Prempain. Here, the aim is to reduce the effects of a zero

mean white noise disturbance input on the output of the switched system. To this end, state-

feedback synthesis algorithms, based on the minimum dwell-time approach of Geromel and

Colaneri (2006); Allerhand and Shaked (2010, 2013-1) and on the time-varying parameter-

dependent Lyapunov functions, are proposed. Two switched H2−state-feedback controller

synthesis algorithms (namely the conditions of Theorems 1 and 2) are given. In both cases, the

state-space data of each sub-system are assumed to belong to a polytope, that is, the state-space

matrices of each sub-subsystem are written as a convex combinations of the polytope vertices. In

the first algorithm, the state-feedback controller are designed with vertex-independent Lyapunov
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Kemer, Basak and Prempain 3

functions, while, in the second theorem, these are assumed to be vertex-dependent for reduced

conservatism. In both cases, the control law consists of linear time-varying (possibly time-

invariant) state-feedback controllers that are switched according to external signals and for

which switching between state-feedback controllers is subject to a dwell-time constraint. The

conditions of the Theorems are given in terms of linear matrix inequalities (LMIs).

The proposed switched H2−state-feedback synthesis algorithms are applied to the design a

longitudinal switched state-feedback laws for the ADMIRE fighter benchmark model Forssell

and Nilsson (2005). There is an extensive literature on feedback controller designs for aircraft

systems. To cite a few: Allerhand and Shaked (2013-2) applied a switched control technique

to control the short-period mode of a F4E fighter aircraft. Cheng et al. (2018) proposes an

asynchronous switching technique that enables switching with lag. Finite-time sliding mode

and super-twisting control for fighter aircraft control are used in Raj et al. (2018). Sidoryuk et

al. (2007); Ameho and Prempain (2011) present linear parameter-varying controllers for the

ADMIRE benchmark model.

In this paper, switched H2− control laws are designed to track a load factor command for

the ADMIRE aircraft model. These are based on state-feedback controllers which are switched

according to Mach number and altitude so that the overall switched control laws cover a large

portion of the flight envelope.

The paper is organized as follows. The minimum dwell-time stability principles which will be

used in the sequel are presented in the next section. New switchedH2 state-feedback controller

synthesis conditions are given in the third section. The fourth section introduces the aircraft

fighter longitudinal control problem and describes the design of a switched integral state-

feedback control law. Simulation results are given and discussed in the fifth section. Concluding

remarks are given at the end of the paper.

Notation: Tr(.) denotes matrix trace. The hermitian operator He{.} is defined as He{A} =

A+A′. For symmetric matrices, P > 0(≥ 0) indicates that P is positive definite (semi-

definite). A symmetric matrix

[
P Q

Q′ P

]
is denoted by

[
P Q

∗ P

]
. Rn stands for the n-

dimensional Euclidean space. Rp×q is the set of p× q real matrices.
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Preliminaries

Throughout we consider the switched, time-varying, system defined as:

ẋ(t) = Aσ(t)(t)x(t) +Bu,σ(t)(t)u(t) +Bw,σ(t)(t)w(t), x(0) = 0,

z(t) = Cσ(t)(t)x(t) +Du,σ(t)(t)u(t) +Dw,σ(t)(t)w(t)
(1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, w(t) ∈ Rl is an exogenous

disturbance input and z(t) ∈ Rp is the output error. σ(t) is the switching rule defined for t ≥ 0.

There are M time-varying subsystems and so the time-dependent switching σ(t) takes values in

{1, . . . ,M}. The system matrices of the switched system are assumed to reside in the union of

the subsystems’ polytopes Ωi(t):

Ω(t) =
M⋃
i=1

Ωi(t) (2)

where the Ωi(t) are defined as:

Ωi(t) =

 Ai(t) Bu,i(t) Bw,i(t)

Ci(t) Du,i(t) Dw,i(t)

 =

N∑
j=1

ηj(t)Ω
(j)
i , (3)

where

N∑
j=1

ηj(t) = 1, ηj(t) ≥ 0, t ≥ 0 (4)

and

Ω
(j)
i =

 A
(j)
i B

(j)
u,i B

(j)
w,i

C
(j)
i D

(j)
u,i D

(j)
w,i

 (5)

In the definition above, i indexes the sub-polytopes and ranges from 1 to M . Each sub-polytope

is assumed to have N vertices indexed by integer j. The sub-system matrices are expressed

as convex combinations of the sub-polytope vertices. We will assume that the sub-polytopes

overlap and that the polytopic coordinates ηj(t) > 0, j = 1, . . . , N , time rates are bounded.
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Definition 1. If the system’s switching instants (t1, t2, . . .) satisfy

tk+1 − tk ≥ Td, k = 0, 1, . . . (6)

for some Td > 0 then Td is called a dwell-time for the system. The smallest Td for which the

global stability of the switched can be guaranteed, for any possible switching sequence, is called

the minimum dwell-time and is denoted T .

Definition 2. The time interval between the switching instant tk and tk + T is divided into

H + 1 equally spaced instants, denoted tk,h, as shown in Figure 1.

tk,0 tk,1 tk,2 tk,3 tk,H−1 tk,H tk+1,0

Minimum dwell time = T ≥ 0

Dwell time= Td

Figure 1. Definition of the time instants tk,h := tk + hT/H , h = 0, . . . , H , tk,0 := tk for all k

Stability Analysis

Throughout, we will use Lyapunov functions of the form:

V (t, x) = x′(t)Pi(t)x(t), i = 1, . . . ,M (7)

where the matrices Pi(t) are assumed to vary linearly in the intervals tk,h ≤ t ≤ tk,h+1, for all

h = 0, . . . ,H − 1 (Figure 1). The Lyapunov function V (t, x) must satisfy the following two

conditions:

Condition 1. Positive-Definiteness. If the matrices Pi(t), i = 1, . . . ,M , are symmetric

positive-definite then the positive-definiteness of V (t, x) is automatically guaranteed.

Condition 2. Time decreasing. Over the time interval tk ≤ t < tk+1, for which the i-th system

is active, the condition V̇ (t, x) < 0 for all x ∈ Rn, x 6= 0, reduces to the system of matrix
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inequalities:

Ṗi(t) +He{Pi(t)A(j)
i } < 0, j = 1, . . . , N (8)

The matrix Pi(t), for tk,h ≤ t < tk,h+1, can be written in terms of a convex sum of two

constant matrices Pi,h and Pi,h+1 as follows:

Pi(t) = r1(t)Pi,h + r2(t)Pi,h+1, 0 ≤ r1(t) ≤ 1,

0 ≤ r2(t) ≤ 1, r1(t) + r2(t) = 1, r2(t) , t− tk,h/(tk,h+1 − tk,h)
(9)

From (9) one can see that Pi(t) is positive-definite if both Pi,h and Pi,h+1 are positive-definite

matrices. The time derivative of Pi(t) is the constant matrix:

Ṗi(t) =
Pi,h+1 − Pi,h
tk,h+1 − tk,h

=
Pi,h+1 − Pi,h

T
H

. (10)

Thus, for each i ∈ {1, . . . , N}, satisfaction of (8) reduces to

Pi,h+1 − Pi,h
T
H

+He{Pi,hA
(j)
i } < 0, (11)

Pi,h+1 − Pi,h
T
H

+He{Pi,h+1A
(j)
i } < 0, (12)

j = 1, . . . ,M (13)

Pi,h+1 > 0, Pi,h > 0, h = 0, . . . ,H − 1 (14)

Between two consecutive switching instants tk and tk+1, in which the ith sub-system is active,

the Lyapunov function (7) can be written as:

V (t, x) = x′(t)Pi(t)x(t) (15)

with

Pi(t) =

{
Pi,h + (Pi,h+1 − Pi,h)

(t−tk,h)
T/H t ∈ [tk,h, tk,h+1),

Pi,H t ∈ [tk,H , tk+1).
(16)

for h = 0, . . . ,H − 1. The matrix Pi(t) changes linearly from Pi,h to Pi,h+1 for t ∈
[tk,h, tk,h+1). After t = tk,H and before the next switching instant, the matrix Pi(t) is held
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constant and equal to Pi,H . Note that a large H provides less conservative conditions but at the

expense of an increased computational complexity Allerhand and Shaked (2011). Based on the

time-varying Lyapunov function (15), the following lemma provides the basic stability analysis

tool for system (1)-(5).

Lemma 1. Allerhand and Shaked (2011). For a given T > 0, if there exist positive definite

matrices Pi,h, i = 1, . . . ,M , that satisfy the following system of LMIs:

Pi,h+1−Pi,h
T/H +He{Pi,hA

(j)
i } < 0,

Pi,h+1−Pi,h
T/H +He{Pi,h+1A

(j)
i } < 0,

(17a)

where h = 0, . . . ,H − 1,

He{Pi,HA(j)
i } < 0, (17b)

Pi,H − Ps,0 ≥ 0, s ∈ {1, . . . ,M}, s 6= i, (17c)

for all j = 1, . . . , N , then the uncertain system (1) - (5) is globally asymptotically stable for any

time-dependent switching law with dwell-time larger than or equal to T .

Note that, before the first switching instant, the Lyapunov function decreases thanks to

conditions (17b). During the time interval tk ≤ t ≤ tk + T , the conditions (17a) which come

from (11), ensure that the Lyapunov function decreases monotonically. Then, the conditions

(17b) guarantee that V (t, x) decreases after tk + T and before the next switching instant. The

Lyapunov function is ensured to be non-increasing between any arbitrary switching instants by

virtue of the conditions (17c).

In Lemma 1, the same Lyapunov matrices (16) are used for each polytopic subsystem.

A less conservative approach consists of using parameter or vertex-dependent Lyapunov

matrices which depend both on time and on the subsystems vertices. To this end, we consider

the following time-varying and parameter dependent Lyapunov function, V (t, x) defined

as:Allerhand and Shaked (2011)

V (t, x) = x′(t)Pσ(t)x(t),

Pσ(t) =
∑N

j=1 ηjP
(j)
σ(t),

∑N
j=1 ηj = 1, ηj ≥ 0,

(18)

where P (j)
i (t) is defined as:
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P
(j)
i (t) =

{
P

(j)
i,h + (P

(j)
i,h+1 − P

(j)
i,h )

(t−tk,h)
T/H t ∈ [tk,h, tk,h+1),

P
(j)
i,H t ∈ [tk,H , tk+1).

(19)

The stability of the uncertain switched system (1)-(5) can be tested with the following lemma:

Lemma 2. Allerhand and Shaked (2011). For a given T > 0, if there exist matrices

Si,h, Gi,h of compatible dimensions and positive-definite matrices P (j)
i,h , i = 1, . . . ,M, h =

0, . . . ,H, j = 1, . . . , N such that, for all i = 1, . . . ,M , j = 1, . . . , N and h = 0, . . . ,H − 1: P
(j)
i,h+1−P

(j)
i,h

T/H +He{Si,hA
(j)
i } P

(j)
i,h − Si,h +A

(j)
i

′
G′i,h

∗ −G′i,h −Gi,h

 < 0,

 P
(j)
i,h+1−P

(j)
i,h

T/H +He{Si,h+1A
(j)
i } P

(j)
i,h+1 − Si,h+1 +A

(j)
i

′
G′i,h+1

∗ −G′i,h+1 −Gi,h+1

 < 0,

[
He{Si,HA(j)

i } P
(j)
i,H − Si,H +A

(j)
i

′
G′i,H

∗ −G′i,H −Gi,H

]
< 0,

P
(j)
i,H − P

(j)
s,0 ≥ 0, ∀s ∈ {1, . . . ,M} and s 6= i,

then the uncertain system (1)-(5) is globally asymptotically stable for any time-dependent

switching rule with dwell-time greater than or equal to T .

The proof is straightforward and based on the application of the Finsler Lemma with the

parameter-dependent Lyapunov function (18). The next section uses the preceding lemmas,

namely Lemmas 1 and 2, to construct switched sub-optimal H2 state-feedback control laws

for the uncertain switched system (1)-(5).

Robust Controller Design

We introduce the following well-knownH2− result (see e.g. Scherer, Weiland (2000)).

Lemma 3. H2−optimal state-feedback control. Consider the linear time-invariant closed-

loop system:

ẋ = (A+BuK)x+Bww,

z = (C +DuK)x, (21)
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A

K

w

u

z

x
Bu

C
Bw

DwDu

Figure 2. State-feedback control configuration.

where w is the exogenous input, z is the system output error and K is a constant state-feedback

gain. If there exist symmetric positive-definite matrices Q > 0, Z > 0, matrix Y of compatible

dimensions and a scalar υ such that the following inequalities hold:

Tr(Z) < υ2,

[
Z B′w

∗ Q

]
> 0,[

He{AQ+BuY } QC ′ + Y ′D′u

∗ −I

]
< 0 (22)

then the state-feedback control law u = Kx with K = Y Q−1 is stabilizing and guarantees that

the closed-loopH2-gain is less than or equal to
√
Tr(Z).

Remark: Tr(Z) is an upper bound for the closed-loop system’sH2− gain.

The next result generalises Lemma 3 to the switched system (1)-(5).

Theorem 1. For a given T > 0, if there exist matrices Yi,h of compatible dimensions,

symmetric positive-definite matrices Z > 0 and Qi,h > 0 that solve for all i = 1, . . . ,M and
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j = 1, . . . , N , the following LMIs minimisation program:

minimise Tr(Z)

subject to[
Z B

(j)
w,i

′

∗ Qi,h

]
> 0,

[
Qi,h−Qi,h+1

T/H +He{A(j)
i Qi,h +B

(j)
u,iYi,h} Qi,hC

(j)
i

′
+ Y ′i,hD

(j)
u,i

′

∗ −I

]
< 0,

[
Qi,h−Qi,h+1

T/H +He{A(j)
i Qi,h+1 +B

(j)
u,iYi,h+1} Qi,h+1C

(j)
i

′
+ Y ′i,h+1D

(j)
u,i

′

∗ −I

]
< 0,

where h = 0, . . . ,H − 1,[
He{A(j)

i Qi,H +B
(j)
u,iYi,H} Qi,HC

(j)
i

′
+ Y ′i,HD

(j)
u,i

′

∗ −I

]
< 0,

Qi,H −Qs,0 ≤ 0, s = 1, . . . ,M, s 6= i

then the switched state-feedback control law, u = Kσ(t)x, with Ki(t) ∈ {K1(t), . . . ,KM (t)}
defined as:

Ki(t) =

{
Ȳi,h Q̄

−1
i,h t ∈ [tk,h, tk,h+1)

Yi,H Q
−1
i,H t ∈ [tk,H , tk+1,0)

(24)

where Ȳi,h = Yi,h + (Yi,h+1 − Yi,h)
(t−tk,h)
T/H and Q̄i,h = Qi,h + (Qi,h+1 −Qi,h)

(t−tk,h)
T/H , is

globally stabilizing and guarantees that the closed-loop H2-gain (i.e. the feedback association

of the uncertain switched system (1)-(5) with the feedback gains given in (24)) is less than or

equal to
√
Tr(Z) for any time-dependent switching rule with dwell-time greater than T .

Proof. The proof is based on the Lyapunov function given in (7). Closed-loop stability implies

that:

Ṗi(t) +He{Pi(t)A(j)
cl,i} < 0

where A(j)
cl,i denotes the vertices of the evolution matrix of the closed-loop system obtained

from the feedback interconnection of sub-system i and the gain Ki(t) defined above. To avoid
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couplings between the Lyapunov and the controller matrix variables, the above inequalities are

multiplied by P−1i (t) := Qi(t) from the left- and right-hand sides and become

− Q̇i(t) +He{A(j)
i Qi(t) +B

(j)
u,iYi(t)} < 0 (25)

where Yi(t) = Ki(t)Qi(t) and where the time-varying, positive-definite matrices, Qi(t) ∈
{Q1(t), . . . , QM (t)}, are defined as:

Qi(t) =

{
Qi,h + (Qi,h+1 −Qi,h)

(t−tk,h)
T/H t ∈ [tk,h, tk,h+1),

Qi,H t ∈ [tk,H , tk+1)
(26)

where h = 0, 1, . . . ,H − 1. Substituting these into Lemma 1 provides conditions that guarantee

closed-loop stability and these conditions used in conjunction with Lemma 3 conditions’

structure provide the conditions of the theorem. This completes the proof.

Remark: Theorem 1 provides time-varying state-feedback gains Ki(t) which in most cases

might not be desirable practically. Time-invariant state-feedback gains are often preferred.

These simpler time-invariant state-feedback gains can constructed if Yi,h and Qi,h are selected

independent of h.

The next result is similar but uses vertex-dependent Lyapunov matrices for reduced

conservatism.

Theorem 2. For given scalars β > 0 and T > 0, if there exist matrices Si,h, Yi,h and symmetric
positive-definite matrices Z and Q

(j)
i,h that solve for all i = 1, . . . ,M and j = 1, . . . , N the
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following LMIs minimisation program:

minimise Tr(Z)

subject to[
Z B

(j)
w,i

′

∗ Q
(j)
i,h

]
> 0, ∀h ∈ {0, . . . , H},

Q
(j)
i,h
−Q(j)

i,h+1

T/H
+He{A(j)

i S′i,h +B
(j)
u,iYi,h} S′i,hC

(j)
i

′
+ Y ′i,hD

(j)
u,i

′

∗ −I . . .

∗ ∗

Q
(j)
i,h − S

′
i,h + βA

(j)
i Si,h + βB

(j)
u,iYi,h

βC
(j)
i Si,h + βD

(j)
u,iYi,h

−βS′i,h − βSi,h

 < 0,


Q

(j)
i,h
−Q(j)

i,h+1

T/H
+He{A(j)

i Si,h+1 +B
(j)
u,iYi,h+1} S′i,h+1C

(j)
i

′
+ Y ′i,h+1D

(j)
u,i

′

∗ −I . . .

∗ ∗

Q
(j)
i,h+1 − S

′
i,h+1 + βA

(j)
i Si,h+1 + βB

(j)
u,iYi,h+1

βC
(j)
i Si,h+1 + βD

(j)
u,iYi,h+1

−βS′i,h+1 − βSi,h+1

 < 0,

where h = 0, . . . , H − 1 He{A(j)
i Si,H +B

(j)
u,iYi,H} S′i,HC

(j)
i

′
+ Y ′i,HD

(j)
u,i

′

∗ −I . . .

∗ ∗

Q
(j)
i,H − S

′
i,H + βA

(j)
i Si,H + βB

(j)
u,iYi,H

βC
(j)
i Si,H + βD

(j)
u,iYi,H

−βS′i,H − βSi,H

 < 0,

Q
(j)
i,H −Q

(j)
s,0 ≤ 0. ∀s ∈ {1, . . . ,M} and s 6= i

then the switched state-feedback controller Kσ(t)(t) with Ki ∈ {K1(t), . . . ,KM (t)} defined as:

Ki(t) =

{
Ȳi,h S̄

−1
i,h t ∈ [tk,h, tk,h+1)

Yi,H S
−1
i,H t ∈ [tk,H , tk+1)

(28)

where Ȳi,h = Yi,h + (Yi,h+1 − Yi,h)
(t−tk,h)

T/H
and S̄i,h = Si,h + (Si,h+1 − Si,h)

(t−tk,h)

T/H
, guarantees that the

closed-loop system - i.e. the interconnection between system (1)-(5) with the controller (28)- is globally stable and

such that the closed-loop H2-gain from w to z is less than or equal to
√
Tr(Z) for any switching rule with dwell-

time greater than or equal to T .
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Remark: The minimisation of Tr(Z) provides an upper bound on the systemH2−norm. Again

the theorem provides time-varying state-feedback gains. If Yi,h and Si,h are selected independent

of h then the gains become constant and are given by Ki = YiS
−1
i .

Proof. The proof is similar to that of Theorem 1 where the time-varying and parameter-

dependent positive-definite Lyapunov matrices Q(j)
σ(t)(t) ∈ {Q

(j)
1 (t), . . . , Q

(j)
M (t)} defined as:

Q
(j)
i (t) =

{
Q

(j)
i,h + (Q

(j)
i,h+1 −Q

(j)
i,h)

(t−ti,h)
T/H t ∈ [tk,h, tk,h+1),

Q
(j)
i,H t ∈ [tk,H , tk+1)

(29)

are used instead.

The robust switched state-feedback synthesis procedures are summarised below:

1. A solution of the LMIs of Theorem 1 provides the matrices Qi,h and Yi,h; substituting

these matrices into (24) gives the time-varying state-feedback controller gains Ki(t).

2. A solution of the LMIs of Theorem 2 provides the matrices Si,h and Yi,h which substituted

into (28) give the time-varying state-feedback gains Ki(t).

3. The matrices Si,h and Yi,h of Theorem 2 can be replaced by Si and Yi to obtain constant

state-feedback controller gains; then solving the modified LMIs of Theorem 2 provides

the matrices Si and Yi from which the constant state-feedback gains Ki = YiS
−1
i are

obtained.

Application to a Fighter Aircraft

Longitudinal Dynamics of the ADMIRE Model

ADMIRE is a freely and publicly available advanced simulation model of a generic fighter

aircraft Forssell and Nilsson (2005). ADMIRE was developed and maintained by the Swedish

Defense Research Agency. The aircraft features delta wing, actuated canard configuration,

inboard and outboard elevons and thrust vectoring. The model incorporates actuator and sensor

models and the simulation package includes trim and linearisation routines. ADMIRE has been

used to demonstrate various control techniques such as LPV and switched control in Sidoryuk

et al. (2007); Ameho and Prempain (2011); Kemer and Prempain (2014).
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We focus attention on the control of the load factor which involves the short-period mode

states, namely, the angle of attack, α, and pitch rate q (Table 1). At a given equilibrium flight

condition, the linearised short-period model state-space equations are:

ẋp = Aspxp +Bsp,uu+Bsp,ww,

y = Cspxp +Dsp,uu+Dsp,ww,
(30)

where xp = [α, q]′ is the model state vector, u = [δe, tss]
′ is the control input, y := nz is the

load factor output to be controlled and w = [udist, wdist]
′ are the wind disturbance components

along the x and z aircraft body axes. The subscript sp in the above stands for short-period. The

Table 1. The longitudinal dynamic parameters.

Symbol Definition Unit

α angle of attack (deg)
q pitch rate (deg/s)
nz load factor (g)
δe elevon deflection (deg)
tss throttle stick setting (-)

linear models (30) are obtained with the trim and linearisation tools of the benchmark and are

reduced according to the model reduction technique proposed by Queinnec et al. (2002).

Integral Controller

In order to track the load factor with zero steady-state error to step demands, an integrator is

introduced, as shown in Figure 3, so that the tracking error, defined as e =
∫

(r − nz)dt, satisfies

ė := r − nz = r − Cspxp −Dsp,uu−Dsp,ww (31)

where r denotes the load factor command. Combining (30) with (31) gives the augmented plant

ẋ =

[
Asp 0

−Csp 0

]
x+

[
Bsp,u

−Dsp,u

]
u+

[
Bsp,w

−Dsp,w

]
w +

[
0

1

]
r (32)

e =
[

0 0 1
]
x

with state-vector x = [x′p, e ]′.
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Figure 3. Generic state-feedback with integrator control structure

To construct a switched, polytopic state-space model that covers the flight envelope, the flight

envelope is divided into 8 overlapping cells as shown in Figure 4. The number of polytopic sub-

systems is thus M = 8. Each cell has 4 vertices in which each vertex corresponds to a Mach

number and altitude pair, about which an equilibrium state and a linearised aircraft model are

computed. Thus, the sub-systems’ vertices of the augmented model are:

Ω
(j)
i =

[
A

(j)
i B

(j)
u,i B

(j)
w,i

C
(j)
i D

(j)
u,i D

(j)
w,i

]
(33)

=


[

A
(j)
sp,i 0

−C(j)
sp,i 0

] [
B

(j)
sp,u,i

−D(j)
sp,u,i

] [
B

(j)
sp,w,i

−D(j)
sp,w,i

]
C

(j)
i D

(j)
u,i 0

 (34)

where, for instance, A(j)
sp,i is the evolution matrix of the linearised short-period aircraft model

obtained at the altitude and airspeed vertex j of cell i (Figure 4). C(j)
i and D

(j)
u,i are the

performance index weighting matrices selected by the designer and which can be chosen to

be the same over a cell.

Mach
0.4 0.6 0.8 1 1.2 1.4

A
lti

tu
de

 (
km

)

0

1

2

3

4

5

6
Flight Envelope

8 7 5

4321

6

Figure 4. The flight envelope (solid red lines) with overlapping cells (dotted blue lines)
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Based on the 32, 3-state vertex models given above (34), the switched H2−state feedback

control laws can now be designed with the synthesis conditions of Theorems 1 and 2. The

theorems conditions are programmed and solved using the Matlab YALMIP toolbox Lofberg

(2004).

Numerical results

The state-feedback gains of the switched control law are computed by solving the minimisation

LMI programs of Theorems 1 and 2. In both cases, the dwell-time was chosen as T = 0.4 s

with H = 30 and the line search parameter β = 0.04 (Theorem 2 only). For these values,

the optimisation programs are feasible and give the H2 performance given in Table 2. Both

theorems produce control laws of almost similar performance and, surprisingly, the vertex-

dependent approach with constant switched state-feedback gains produces the best performance.

Logically, the best performance should have been obtained with the time-varying state-feedback

controllers. This unexpected result is probably due numerical errors when solving the LMIs

which involve a large number of decision variables and constraints.

Table 2. H2-gain and Signal to Noise Ratio (SNR).

H2-gain SNR (dB)

Theorem 1 0.7076 9.5515
Theorem 2 time-varying gains 0.7081 9.5899

Theorem 2 constant gains 0.671 9.5563

Non-linear simulation results

The switched state-feedback integral controllers are implemented according to the diagram of

Figure 5. Mach number and altitude, which rule the switching, are assumed to be measurable.

The non-linear longitudinal model includes actuators dynamics and measurement noise. Here,

the sensors measurements are corrupted with white noises of power spectral densities Pα =

1× 10−4 deg2/Hz and Pq = 1× 10−4 deg2/s.

From an implementation standpoint, when the aircraft altitude and Mach number pair crosses

the boundary between adjacent cells and provided that the dwell-time switching constraint is

satisfied, then a will switch occur. Such a switch often introduces a discontinuity in the control
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signal. Thus, to ensure the continuity of the control signal at a switching instant, a constant, υ,

is added to control signal:

u = K(t)x+ υ, υ = u+ − u−.

where u+, (respectively u−), is the control signal after, (respectively before), the switching

instant.

+ 1/s

K2

Aircraft

Model
r

y

ė e
x

xp
u

y = nz

b

KM

K1

+ Actuators+
.

.

.

Switching

Signal

Initial

Conditions

Mach & Altitude

xp

Figure 5. Switched state-feedback control law

The non-linear aircraft model is initialised level-flight at an altitude of 2900m and a Mach

number of 0.7 (cells 2, 7 in Figure 4) with the controllers corresponding to cell 2. The output,

states and control responses obtained with the switched control laws computed with Theorems

1 and 2 are given in Figures 6, 7 and 8, respectively.

Figures 6 and 7 show very similar closed-loop responses for the three switched control laws.

A controllers switch, corresponding to the transition from cell 2 to cell 7, occurs at t = 4.3s
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n z
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Theorem 1 time−varying gain
Theorem 2 time−varying gain
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Figure 6. Closed-loop load factor responses with the switched state-feedback control laws
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Figure 7. Short-period state responses with the switched state-feedback control laws
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Figure 8. Elevator and throttle responses corresponding to the load factor command of Figure 6.

as indicated in Figure 6. Pitch rate and elevator deflection are slightly affected by the switch

as observed in Figures 7 and 8. The law designed with Theorem 1 presents a slightly higher

sensitivity to noise than the others as observed in the magnified responses plot at the top of

Figure 6. This result is also consistent with the figures of Table 2.

The laws using the time-varying state-feedback controllers exhibit some oscillatory

tendencies just after the switching instant, t = 4.3s. This issue may be problematic for higher
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disturbances and/or noise levels. In this case, the time-varying state-feedback gains do not

provide any advantage over their time-invariant counterparts. The best switched law, from an

implementation viewpoint and also from a computational design complexity, is the one obtained

with Theorem 2 which uses constant state-feedback controller gains.

Conclusion

H2 state-feedback controller synthesis algorithms for uncertain switched linear systems subject

to a dwell-time constraint are proposed following the approach of Allerhand and Shaked (2013-

3). The novel switched H2−state-feedback synthesis algorithms are applied to the design a

longitudinal switched state-feedback control laws for the ADMIRE fighter benchmark model

so that to cover a large portion of the flight envelope. For the ADMIRE benchmark problem,

the use of time-varying state-feedback controllers did not bring better performance over the

law using constant state-feedback gains. Time domain simulations show the potential of the

proposed switched control laws as these laws enable the aircraft to track a load factor command

accurately while guaranteeing attenuation against disturbances modelled as white noise signals,

over a large flight envelop.

In the future, we will consider delays in the switching signal as these can affect the control

performance significantly.
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