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Abstract (216 of 250 words) 

 

Background: Accurately predicting the risk of diabetic foot ulceration (DFU) could 

dramatically reduce the enormous burden of chronic wound management and 

amputation. Yet, current prognostic models are unable to precisely predict DFU 

events. Typically, efforts have focused on individual factors like temperature, 

pressure or shear rather than the overall foot microclimate.  

Method: A systematic review was conducted by searching PubMed reports with no 

restrictions on start date covering literature published until 20 February 2019 using 

relevant keywords, including temperature, pressure, shear and relative humidity. 

We review the use of these variables as predictors of DFU, highlighting gaps in our 

current understanding and suggesting which specific features should be combined 

to develop a real-time microclimate prognostic model.  

Results: Current prognostic models rely either solely on contralateral temperature, 

pressure or shear measurement; these parameters, however, rarely reach 50% 

specificity in relation to DFU. There is also considerable variation in methodological 

investigation, anatomical sensor configuration and resting time prior to temperature 

measurements (5-20 minutes). Few studies have considered relative humidity and 

mean skin resistance.  

Conclusions: Very limited evidence supports the use of single clinical parameters in 

predicting the risk of DFU. We suggest the microclimate as a whole should be 

considered to predict DFU more effectively and suggest nine specific features which 

appear to be implicated for further investigation. Technology supports real-time in-

shoe data collection and wireless transmission, providing a potentially rich source of 

data to better predict risk of DFU. 
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Introduction  

Foot ulceration is a global problem associated with huge healthcare costs. In 

England, diabetes-related foot ulceration (DFU) costs the NHS £972 million - £1.13 

billion per year [1]. The vast majority of DFUs occur as a result of underlying 

neuropathy, peripheral vascular disease or a combination of these diseases [2]. The 

most important complication of foot ulceration is its predisposition to infection, 

which is in itself recognised as a significant cause of morbidity and mortality [3]. 

Ulcers occur annually in 2.5-10.7% of people with diabetes and, for those with 

healed DFU, the rate of recurrence within five years is 66% and risk for amputation is 

12% [4]. DFU has been shown to precede amputation in up to 85% of cases [5], so 

early prediction of ulceration risk is of paramount importance to reduce weight 

bearing physical activity levels. Effective off-loading and physical activity advice has 

been shown to decrease the development and recurrence of DFU [6]. Currently in 

the UK, for 20% of people with a DFU it takes between 14 days and 2 months to be 

assessed by a specialist footcare team, but for 9% it can be more than two months 

[7]. Delays in seeking expert assessment are associated with more severe ulcers, 

poorer healing rates and more hospital admissions [8].   

Microclimate describes the environment conditions of the foot including 

temperature, pressure, shear stress and humidity, including properties of the skin 

and underlying soft tissues (see Fig.1). For each of these components, it may be 

possible to ultimately derive thresholds which in combination give rise to an 

increased risk of DFU. Whilst the concept is relatively new, it is recognised that 

microclimate contributes to pressure ulcers [9] but little research has been done in 

relation to DFU.  
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Fig.1 The Microclimate 
 

 

 

In this systematic review, we will systematically assess the evidence about risk 

predictors of DFU in relation to a pre-specified definition of microclimate including 

temperature, pressure, shear forces, and humidity, and will discuss a possible 

microclimate-based approach to the prediction of DFU and re-ulceration. We will 

conclude by suggesting a summary of key measures within a multi-factorial 

prognostic model that might be used to attempt to predict ulcer events.  
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Methods 

Data sources, searches and study selection  

The background literature search for this systematic review on PubMed was 

conducted with no restrictions on start date covering articles until 20 February 2019. 

This included searches for “pressure diabetes foot ulcer”, “pressure in-shoe 

diabetes”, “temperature diabetes foot ulcer”, “shear diabetes foot ulcer”, “shear in-

shoe diabetes”, “humidity diabetes foot ulcer” and “moisture diabetes foot ulcer”. 

In total, 1,942 articles were identified in the initial literature review then screened 

by title and abstract, leaving 78 articles which formed the basis of this narrative 

review (see Fig.2). In the following sections, we discuss each microclimate variable 

implicated in foot ulceration.  
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Figure 2 Microclimate Review Methodology 
 
  
 
 

 

 

 

 

  

 
“temperature diabetes foot ulcer” 

222 results 

Screened by title and 
abstract  

n=24 

Current DFU Prediction 
Using Individual 

Microclimate Datasets e.g. 
contralateral temp 

n = 78 

 
“humidity diabetes foot ulcer” or 

“moisture diabetes foot ulcer” 
41 results 

Screened by title and 
abstract  

n=5 

 
“shear diabetes foot ulcer” 

60 results 
“shear in-shoe diabetes” 

10 results 

 

Screened by title and 
abstract  

n=18 

 
“pressure diabetes foot ulcer” 

1,512 results 
“pressure in-shoe diabetes” 

97 results 
 

Screened by title and 
abstract  

n=31 



Page 8 of 22 
 

Microclimate Prediction  

Contralateral Temperature  

Attempts to develop early warning systems for foot ulceration have focused 

primarily on contralateral temperature in those with diabetes and neuropathy[10], 

or a history of foot ulceration,[11] looking for evidence of inflammation that 

precedes ulceration and infection [12]. Armstrong et al. found that a week prior to 

ulceration those who developed a foot ulcer (8.4%) had a temperature difference 

that was 4.8 times greater at the site of ulceration than those who did not ulcerate 

(3.50±1.0 vs 0.74±0.05; P=.001) [13]. Their study was based on 225 individuals with 

diabetes who were at high risk of ulceration, using an infrared skin thermometer to 

measure temperatures twice daily on six locations on each foot. Study participants 

reduced physical activity until normalisation and contacted the study coordinator if 

temperature differences between contralateral locations exceeded 4°F (>2.2°C). 

Similarly, Lavery et al. found that people with diabetes, neuropathy and a history of 

foot ulceration employing standard therapy or structured foot examinations were 

4.37 and 4.71 times more likely to develop ulcers than those monitoring 

contralateral temperature and reducing physical activity when this threshold was 

reached [14]. However, van Netten et al [15] found contralateral temperature 

differences (hereafter ‘hotspots’) above the 2.2°C threshold (n=54) indicated the 

detection of diabetes-related foot complications with only 89% sensitivity and 40% 

specificity (ROC 0.656) [16]. This data was acquired from a thermal camera 

positioned within a 80 x 60 x 60 cm frame. The most optimal cut-off skin 

temperature for determining urgency of treatment was 1.35°C providing 89% 

sensitivity and 78% specificity based on any diabetes-related foot complication 

requiring immediate treatment, including any cause hospitalisation, antibiotic 

prescriptions, a diagnosis of Charcot or referral for x-ray or MRI (n=9). This study did 
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not include healthy controls, yet hotspots of more than 2.2°C have been found in a 

study of healthy feet (n=103) although the majority significantly reduced after ten 

minutes, indicating the importance of the rest interval prior to measurement [17]. In 

contrast, Macdonald et al. found 32% of those with healthy feet had at least one 

hotspot even after ten minutes resting with the subjects’ legs supported [18], many 

of which were attributed to uncontrolled factors prior to the test such as caffeine 

intake, increased physical activity, or slower rates of temperature transition 

between feet [18]. An added problem is that the difference in the severity and 

extension of peripheral vascular disease may contribute to an asymmetry of 

temperature.  

Table 1 shows how the rest period applied before measurement in these studies 

varies considerably, from 5 to 20 minutes, or individual discretion in self-

measurement. Likewise Wijlens et al. found hotspots among those with diabetes in 

8.5% of measurements yet no ulcers developed in the week after monitoring. They 

therefore suggested that the 2.2°C threshold was not valid as a single measurement 

and would require confirmation the following day [19]. Other suggestions have 

included studying the decay rates of temperature distributions [20] or combining 

both contralateral and mean temperature analysis. Higher mean resting 

temperatures have been found in those with diabetic neuropathy or a history of foot 

ulceration than non-neuropathic subjects with diabetes [21].  

To summarise, contralateral temperature differences (‘hotspots’) are important but 

have so far not provided acceptable specificity and sensitivity in prediction. 

Standardisation of both the anatomical regions being monitored and the rest period 

prior to measurement [22] is key, but we suggest combining this with analysis of 

other microclimate indicators such as pressure.    
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Table 1  Contralateral Temperature and Pressure Measurements: Anatomical Positions  

Contralateral Temperature Measurements: Anatomical Positions 
 Numbers of Research Subjects 

Freq Sensor 
Type Rest  

Metatarsals Hallux Toes Forefoot 
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Armstrong [13]     225  2D THE SM Six sites, sensor locations unspecified.  
Bagavathiappan 
[11] 

 79 33   BASE TID 5      X X X X X X      X   X X   

Killeen [16]     3 1D RSM U X  X  X X           X   X    
Lavery [33]     173 2D THE U X  X  X X         X  X       
Macdonald [18] 103     BASE CAM 10 X X X X X X X X X X             X 
Machin [17] 103     BASE TID 10 Plantar Thermal Image 
Petrova [40] 105     BASE TID &  

THE 
20 X  X  X X   X               

Van Netten [15]   54   BASE CAM 5 X  X  X X                X X 
Wijlens [19]   20   4D THE U X  X  X X         X  X       
Yavuz [21]  14 14  9 BASE CAM 10 X X X X X X      X X X          

Pressure Measurements: Anatomical Positions 
 Numbers of Research Subjects Sensor 

Type 
 Metatarsals Hallux Toes Forefoot          

 CG D DN HR DNU DFU  1 2 3 4 5 2 3 4 5            
Arts [41]   30    IS  X X X X X X X X X X     X  X       
Bacarin [42] 20  17  10  IS       X      X  X X  X X X     
Botros [43] 28 56 mixed    IS  X X X X X X X X X X     X X X       
Giocomozzi [32] 20 58 114  45  IS       X X X X X X    X  X       
Hellstrand  [44]  46 28    IS  X X  X X X         X  X       
Ledoux [34]  544 mix   47 IS  X X X X X X X X X X     X X X       
Najafi [30]     15  IS  X X X X X X X X X X     X  X       
Owings [29]     49  IS  X X X X X X     X             
Pataky [25] 15 15     TF  X  X  X X           X       

KEY 
Numbers of Research Subjects: CG = control group, D = diabetes only, DN = diabetes and neuropathy, HR = High Risk (Category 2 or 3 of the International diabetic Foot Risk Classification System), DNU = diabetes 
neuropathy and past history of foot ulceration, DFU = sample who subsequently ulcerated. X indicates a test has been carried out in this anatomical position/region of interest. Grey indicates no test reported as 
carried out with this group or in this anatomical position. 
Freq: BASE = Single reading at baseline, 1D = Once Daily, 2D = Twice Daily,  
Sensor Type: CAM = Thermal Camera, THE = Thermometer, TID = Thermal Imaging Device, RSM = Remote Sensing Mat, : IS = In-shoe insole, TF = taped to foot sensors 
Rest (minutes): U = unknown, SM = self-measurement, so no specific period of rest prior to measurement directed 
MCJ = Metatarsocuneiform joint.  
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Pressure  

The maximum physical force exerted on a region such as the plantar area of the 

foot, known as peak pressures, has been implicated in foot ulceration for some time 

[23].  Caselli et al. found barefoot forefoot pressure and forefoot-to-rear foot peak 

pressure ratios are associated with a high risk of foot ulceration (odds ratio 1.19 

[95% CI 1.11-1.28], P < 0.0001 and 1.37 [1.16-1.61], P <0.0001, respectively) [24]. 

Other studies suggest there are higher pressures in the feet of those with diabetes 

and neuropathy [25], or in people with claw/hammer deformities [26].  Peak 

pressure analysis has been advantageous in offloading treatments to minimise foot 

ulceration [27], with the development of mean plantar pressure targets [28] 

(currently 200 kPA based on Pedar sensors; www.novel.de/novelcontent/pedar) for 

those with diabetes, neuropathy and a history of ulceration [29]. Investment in in-

shoe monitoring pressure insoles for those in DFU remission over an eighteen-

month period was also found to be cost-effective given lower subsequent event 

occurrence rates (0.14 versus 0.62) [30].  

However, predicting a first ulcer from pressure readings remains problematic given 

the interrelationship of many other factors capable of influencing pressure including 

tendon stiffness and fibre disorganisation, decreased joint mobility and the degree 

of neuropathy. Murray et al. selected 63 individuals with both type 1 and type 2 

diabetes, neuropathy and a peak plantar pressure more than 10 kg/cm2 (around 98 

kPA). Six of them subsequently ulcerated within the 10-22 months re-examination 

period, but no difference was found in mean peak pressure or the number of high-

pressure areas greater than 10 kg/cm2 between the ulcer and non-ulcer group [31]. 

Measurement relied on three walkway images captured by a pedobarograph rather 

than real-time data.  

Peak pressure itself is an average derived from a number of regions of interest e.g. 

http://www.novel.de/novelcontent/pedar
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first, third and fifth metatarsal etc. which vary in pressure studies (Table 1). Useful 

in-shoe pressure ranges associated with healthy feet or those with diabetic 

neuropathy are beginning to emerge (Table 2) but Casselli’s practical approach of 

grouping pressure ranges according to a subject’s Neuropathy Disability Score (NDS) 

has yet to be replicated using in-shoe sensors [24]. This is important given reported 

differences in the pressures found by barefoot and in-shoe pressure sensors [29].   

Giacomozzi et al. found that among 134 patients risk classification correlated poorly 

with pressure distribution. They added that differences in the region of interest (e.g. 

first, third and fifth metatarsals), degree of neuropathy, BMI, age and walking speed 

rendered the studies almost impossible to compare [32]. A longitudinal study of 

Lavery et al., focusing on 1,666 people with diabetes of whom 263 later developed 

an ulcer during a 24-month period, showed that peak pressure was not a suitable 

diagnostic tool to identify high risk patients, yielding a sensitivity of only 63.5% and a 

specificity of 46.3% [33].  

Another study of peak plantar pressure and foot ulceration was carried out by 

Ledoux et al. [34] in 591 people with diabetes enrolled at a single Veterans 

Association hospital. Overall mean pressure (based on eight areas, Table 1) was 

higher for subjects who subsequently developed plantar ulcers during the follow-up 

period of 2.4 years (219 kPA vs 194). However, mean peak pressure at the heel and 

hallux was actually lower in plantar-ulcer group despite ten of the 47 ulcers 

occurring at the heel and 19 at the hallux. An increase of peak pressure at the 

metatarsals was found to predict risk of ulceration although only 12 of the ulcers 

occurred at the metatarsals. Further, this may not be generalisable to the population 

as a whole given the study participants were mostly male. It is also important to 

note that among the 544 participants who did not develop plantar ulcers, 30 

withdrew from the study due to non-plantar ulcers.  
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Table 2  In-Shoe Overall and Region-Specific Peak Pressure 

 Peak Pressure (kPA) Mean and Standard Deviation (SD) or Standard Error [SE]  
Reference Area Peak Pressure CG  DN DWU DPU DNU Sensor System 
Arts [41]*3 Hallux Max  188.0 ± 84.0 (RF) 

177.0 ± 69.0 (LF) 
   Pedar-X 

Metatarsal 1 Max  220.0 ± 70.0 (RF) 
237.0 ± 102 (LF) 

   

Metatarsal 2-5 Max  199.0 ± 60.0 (RF) 
220.0 ± 82.0 (LF) 

   

Heel Max  210.0 ± 77.0 (RF) 
213.0 ± 75.0 (LF) 

   

Bacarin [42] Overall Max 139.4 ± 76.4 205.3 ± 118.6   290.7 ± 151.5 Pedar-X 
Giacomozzi [32]2 Overall Mean 335.8 ± (19.7) 358.4 ± (18.9)3   402.6 (18.1) Pedar-X 
Ledoux [34] Overall Mean   194.0 [2 SE] 219.0 [16 SE]  F-Scan 

Hallux Mean   200.0 [4 SE] 172.0 [20 SE]  
Metatarsal 1 Mean   242.0 [4 SE] 383.0 [50 SE]  
Metatarsal 2-5 Mean   177.0 [3 SE] 220.0 [43 SE]  
Heel Mean   266.0 [3 SE] 241.0 [27 SE]  

Owings [29]1 Overall Mean     207 ± 68 
291 ± 132 

Pedar and Pliance 

Hallux Mean     214 ± 71  
304 ± 124 

Metatarsal 1 Mean     202 ± 62 
300 ± 132 

Metatarsal 2-5 Mean     204 ± 75 
263 ± 145 

Pataky [25]*3 Hallux Max 101.0 ± 39 
104.0 ± 43 

205.0 ± 94 (RF) 
165.0 ± 61 (LF) 

   Int. Electronics & 
Engineering 

Metatarsal 5 Max 97.0 ± 32 
91.0 ± 42 

160.0 ± 68 (RF) 
174.0 ± 65 (LF) 

   

Heel Max 321.0 ± 91 
298.0 ± 110 

187.0 ± 54 (RF) 
184.0 ± 63 (LF) 

   

CG = control group (without diabetes), DN = diabetes and neuropathy, DWU = Diabetes patient, without subsequent ulceration (2.4 year follow-up) 
DPU = Diabetes patient, pre-ulceration baseline, DNU = diabetes neuropathy and past history of foot ulceration  

1 Uses two different in-shoe sensor brands, hence two sets of figures, 2 Brazilian Study figures 3 Average of with and without deformities (DN group) *3 Measurements for right foot and left foot available. Botros, 
Hellstrand Tang and Najafi provide no pressure data. 
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Yavuz et al. suggest that pressure has a low predictive value given only 38% of 

plantar ulcers develop at peak pressure points [35] rather than peak shear locations 

[36]. New pressure variables continue to emerge [37,38] which remain the subject 

of debate [39] but, as with temperature, there is a strong argument not to rely on 

pressure in isolation but to analyse combined microclimate parameters when 

assessing DFU risk.  

 

Shear  

Whereas pressure is force per unit area, distributed perpendicular to the surface of 

the foot, shear stresses occur when two forces exert in opposing directions causing a 

deformation of the tissue parallel to that surface. Shear stresses have been 

technically difficult to measure [45] until recently [46]. A review of plantar shear 

stress measurements (in studies between 1980-2009) highlights the wide variation 

in shear stress ranges previously found both in healthy feet (19-86.5 kPA) and in 

those with diabetes (18-72.7 kPA), although these groups were not age-matched. 

Subsequent research suggest local peak shear stress is higher in those with diabetes 

(mean 82.0 ± 26.4 kPA) than healthy controls (64.6 ± 15.7 kPA), and higher still in 

those with diabetic neuropathy (86.4-91.3 ± 29.0-30.3 kPA) and in people with a 

history of DFU neuropathy (135.3 ± 60.6 kPA) [47]. This research begins to give us a 

range for shear forces within each group, although these data have been established 

using floor pressure plates rather than through in-shoe measurement. Shear forces 

on bare feet on a flat floor will differ significantly from in-shoe shear ranges and are 

likely to occur in different places. Compounding this it is self-evident that different 

shoes and the fit of footwear will have a significant bearing on shear stress. Zou, 

Mueller and Lott used in-shoe sensors to gather the mean peak maximum shear 

stress of 20 subjects with diabetes, neuropathy and a history of DFU and found that 
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forefoot shear was greater than rearfoot shear [48]. In-shoe shear ranges for those 

with differing degrees of neuropathy therefore also need to be collected using in-

shoe sensing equipment. This will provide an important component in microclimate 

assessment of the risk of foot ulceration or re-ulceration. Further studies are 

required to standardise methodologies, but useful reference data is emerging.  

 

Relative Humidity and Mean Skin Resistance   

Moist skin typically has friction 4 to 24 times higher than dry skin [49] and the 

coefficient of friction can increase by a factor of two with environmental changes 

from cold and dry to warm and moist [50]. Moisture increases friction between skin 

and a surface such as an insole, causing tissue deformation when different layers of 

skin move tangentially relative to each other during movement [51]. Sub-epidermal 

moisture changes can be measured using bioimpedance (i.e., measuring the 

conductive properties of skin [52]). Baird et al. measured skin hydration levels by 

analysing its electrical resistance, quantifying improvement after 25% urea cream 

application once daily over a period of six weeks [53]. In-shoe sensors have been 

tested that are capable of measuring relative humidity over an eight hour period at 

one minute intervals [54]. Both a lack of moisture and excess moisture can affect 

dermal foot health and its delicate balance. Plantar surface tissue hydration relies on 

secretions from the sweat glands. Anhydrosis is common in diabetes [55] and can 

compromise the barrier function of the skin leaving it open to infection [53]. 

Tentolouris et al. found that skin dryness positively correlates with DFU when using 

an adhesive neuropad to assess the moisture status of skin in 379 subjects with 

diabetes, (ROC 0.71, sensitivity 97.1%, specificity 49.3%) [56]. Interestingly, there are 

relatively few articles concerning humidity, friction and DFU, most being concerned 
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primarily with wound control rather than prevention [57]. A wearable sensor array 

including humidity and galvanic skin response along with environmental 

temperature and force has been trialled with 15 healthy participants within sandals 

[58]. However, its sampling rate was 20 hertz (compared to 40 Hz of some 

commercial in-shoe pressure monitoring insoles) and battery life was limited to 2.5 

hours (although potentially capable of achieving 16 hours of continuous use with 

low power electronics). Clearly, more research is needed to determine healthy 

moisture levels in feet with diabetes and neuropathy through the measurement of 

mean skin resistance, relative humidity and the associated coefficient of friction for 

skin, insole and footwear materials, to fully understand the role of hydration in skin 

breakdown and repair. These could be valuable new features to add to the 

information about the ulceration process already gleaned from shear, pressure and 

temperature, to give us the complete picture of foot microclimate.  

 

CONCLUSIONS 

DFU prediction has remained difficult in clinical practice although this systematic 

review demonstrates that there are a number of factors strongly implicated in the 

development of foot ulcers. It seems sensible to combine them together by 

monitoring in-shoe microclimate as a whole. The inclusion of relative humidity and 

mean skin resistance (skin hydration) in particular has often been overlooked and 

should form part of microclimate measurement. Sensor systems capable of 

measuring microclimate including temperature, pressure and humidity have been 

trialled [59]  but to date (1) multi-sensing examples have yet to be applied to those 

at risk of DFU and/or (2) do not provide a wireless in-shoe system that might be 

used in every day free living. A necessary first step to the development of a 
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microclimate sensing array is to summarise the microclimate variables implicated in 

ulceration to facilitate possible designs for an in-shoe microclimate sensor array.  

Our summary of microclimate variables implicated in DFU (Table 3) may prove a 

useful starting point for the design and refinement of in-shoe microclimate arrays.  

 

Table 3  Summary of Microclimate Variables Implicated in Foot Ulceration  

 

Feature No Feature Description  
1 Contralateral temperature Difference  
2 Mean temperature difference 
3 Max Peak Pressure 
4 Mean Peak Pressure 
5 Peak Shear Stress 
6 Plantar Peak Shear Stress 
7 Relative Humidity (Air channel between 

shoe and foot) 
8 Mean Skin Resistance  
9 Coefficient of Friction  

  

There is still considerable research required both to fully understand the 

interrelationship of these compact microclimate features and to narrow down 

ranges implicated in a high probability of foot ulceration. Real-time, rather than 

“snapshot” data, may offer greater potential to develop a system that uses machine 

learning or other forms of pattern recognition analysis for DFU prediction. To gather 

real-time microclimate data during free living activities, the lifespan and durability of 

sensors will be critical. Another challenge to be overcome concerns sensor 

placement configuration. The available evidence summarised in this review shows 

how the placement of sensing apparatus or definition of region of interest within the 

foot largely varies. This needs to be standardised, perhaps tailored to statistical 

studies of likely ulcer locations, or taking into account the past history of the person 

with diabetes [60].  Future research will also need well described cohorts with a 
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clear definition of neuropathy and peripheral vascular disease.  

Physical activity can also be monitored using wrist and thigh accelerometer devices 

[61] whose data can be cross referenced against microclimate data and the risks of 

ulceration. If large numbers of people can be equipped with such in-shoe sensor 

arrays, machine learning algorithms would enable us to also look for real-time 

patterns in this kind of movement data, and tools like principal components analysis 

can be used to further reduce the microclimate features identified above into a 

smaller and more manageable number of predictive components [62]. However, the 

first necessary step is to design, prototype and validate potential microclimate 

sensor arrays. Only then it will be possible to develop a better predictive model 

based on the complex and dynamic environment of the foot.  
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