Synthesis of Minimum-Cost Shields for Multi-agent Systems

Suda Bharadwaj!, Roderik Bloem?, Rayna Dimitrova®, Bettina Kénighofer?, and Ufuk Topcu!

Abstract—In this paper, we propose a general approach
to derive runtime enforcement implementations for multi-
agent systems, called shields, from temporal logical specifi-
cations. Each agent of the multi-agent system is monitored,
and if needed corrected, by the shield, such that a global
specification is always satisfied. The different ways of how
a shield can interfere with each agent in the system in case
of an error introduces the need for quantitative objectives.
This work is the first to discuss the shield synthesis
problem with quantitative objectives. We provide several
cost functions that are utilized in the multi-agent setting
and provide methods for the synthesis of cost-optimal
shields and fair shields, under the given assumptions on
the multi-agent system. We demonstrate the applicability
of our approach via a detailed case study on UAV mis-
sion planning for warehouse logistics and simulating the
shielded multi-agent system on ROS/Gazebo.

I. MOTIVATION AND CHALLENGES

The use of multi-agent systems such as teams
of unmanned aerial vehicles (UAVs) has been
predicted to grow significantly in many areas of
our life. The military has highlighted the need for
coordinating teams of UAVs for use in surveillance and
reconnaissance operations in urban environments [25],
[28]. In the private sector, drones are being used
in applications from package delivery to inventory
management in warehouses [21].

Since multi-agent systems exhibit complex interac-
tions with their environment and between the individ-
ual agents, they are often difficult to understand, and
are notoriously hard to design correctly [1]. Individual
agents have to not only fulfill their local objectives and
meet their local requirements, but also abide by system-
wide or global safety requirements such as avoiding col-
lision with other agents. Distributed reactive synthe-
sis is able to automatically transform a given correc-
ness specification and a given architecture describing
the individual agents’ interaction into a correct-by-
construction implementation. Unfortunately, except for
a few restricted classes of architectures, the distributed
synthesis problem is undecidable. Even the decidable
versions of the problem lack practical solutions due to
their nonelementary complexity [26].

To address this problem, there has been a large body
of work in designing algorithms to perform agent co-
ordination and task assignment for a wide array of ap-

1Suda Bharadwaj and Ufuk Topcu are with the University of Texas
at Austin, USA

2 Roderik Bloem and Bettina Kénighofer are with the Graz Uni-
versity of Technology, AT

3 Rayna Dimitrova is with the University of Leicester, UK

plications [5], [29]. For example, software frameworks
such as UXAS [24] provide mission-level autonomy for
multi-agent systems and include capabilities from high-
level task assignment to path planning for unmanned
systems. Such frameworks often allow for dynamic
task reallocation as missions change, but in doing so,
cannot necessarily account for potential violations of
global safety specifications. This necessitates shielding
the agents at runtime from a possible task assignment
that can cause a violation of a global safety specifica-
tion.

One approach in this direction is to perform runtime
verification [4] that allows checking whether a run of a
system satisfies a given specification. An extension of
this idea is to perform runtime enforcement [8], [27] of
the specified property, by not only detecting property
violations, but also altering the behaviour of the system
in a way that maintains the desired property.

Shield synthesis [16] is a general method to automat-
ically derive runtime enforcement implementations,
called shields, from temporal logical specifications. A
shield is attached to a reactive system, monitors the
behaviour of the system (i.e., its inputs and outputs),
and corrects erroneous outputs instantaneously, but
only if necessary and as infrequently as possible.

In this paper, we introduce shield synthesis for multi-
agent systems. A shield monitors, and if needed cor-
rects the output of one or more agents in the system,
such that a given global safety specification is always
satisfied. The distributed nature of the problem gives
rise to a number of considerations to be made during
the shield synthesis procedure. In order to explore
the design space of possible shields for multi-agent
systems, we categorize shields based on three criteria
according to: (1) the interference of the shield processes
with the individual agents, (2) the assumptions on the
behaviour of the agents the shield can rely on, and (3)
the fairness of the shield w.r.t. the individual agents.

1. Quantifying interference. By construction, a shield is
guaranteed to enforce correct operation of the shielded
system. However, we might prefer one shield over
another, based on how much the shield interferes with
the system as a whole, or how it interferes with the
individual agents in case of an error. In this paper,
we introduce the notion of interference cost in order to
quantify the quality of a shield and synthesize cost-
optimal shields that minimize the interference cost for
the worst-case behavior of the multi-agent system. We
discuss different cost functions and provide algorithms

to synthesize cost-optimal shields.

2. Assumptions on the multi-agent system. The shield
synthesis procedure does not rely on the particular
implementation of the system or specifications of each
of the agents, which is the key to the practicability of
the approach. Instead, a shield has to guarantee safety
for any possible implementation. However, it is often
realistic to make assumptions on the worst-case behav-
ior of the system and synthesize optimal shields w.r.t.
the chosen interference cost under these assumptions.
A natural assumption is that wrong outputs occur
rarely, i.e., the length of all sequences of wrong outputs
is bounded. When such knowledge is available, we
compute a cost-optimal shield considering the worst-
case behavior of any system satisfying the assumptions.

3. Fair shielding. In the multi-agent setting, in which
each individual agent might have to fulfill some indi-
vidual goals, it is often important that a shield treats
all agents fairly: in case of an error, a fair shield does
not always interfere with the same agent repeatedly. In
this paper, we define a fairness notion for shields, and
discuss the corresponding synthesis procedure.

Contributions. We summarise our contributions as
follows. To the best of our knowledge, this work is the
first (1) to consider the automatic construction of run-
time reinforcement modules (we call them shields) for
multi-agent systems, (2) to discuss synthesis of shields
for multi-agent systems with quantitative objectives,
and (3) to construct shields under different assumptions
on the behavior of the system. We show the universality
and potential of our approach on several examples.

Outline. The remainder of this paper is organized as
follows. We discuss related work in Section |ll, present
a motivating case study in Section and establish
notation in Section We formalize the shield syn-
thesis problem for multi-agent systems in Section
and discuss the synthesis procedure for the different
interference constraints in Section We present our
experimental results in Section and, finally, give our
conclusions in Section

II. ReLaTED WORK

Monitoring distributed systems is an active area of
research (see [12] for a survey). Significant effort has
focused on providing efficient monitoring solutions by
exploiting distribution [3], [10], [13]. While our work
is not comparable to monitoring, exploring similar
ideas for shielding is one avenue for future work.

In the context of enforcement, in case of an error the
proposed solutions either stop system execution [27], or
suppress, insert, or delay actions [9], [17]. The approach
in [18] generates monitors that detect and prevent vio-
lations by one-step lookahead. Due to the limitation of
one-step lookahead, this method can cause deadlocks.
An alternative approach [22] circumvents this problem
by using model checking to determine for each event
whether it should be blocked, which is done online.

Fig. 1: Warehouse simulation environment in ROS.

In contrast, shields are synthesized offline, accounting
for the effect of the shield on the future execution.
None of these mentioned, nor previous works on shield
synthesis [6], [16], considers quantitative specifications
about how violations should be mitigated. In contrast,
we synthesize shields with minimal interference cost,
building on techniques for quantitative synthesis [14].

III. CasE Stupy

We present a case study used as a motivating exam-
ple in this paper. Figure[l|is a snapshot of a warehouse
environment where packages need to be moved from
shelves to a loading area to be sent for delivery. UAVs
also need to periodically visit a charging station.

The commands sent to move package(s) from the
shelves to the loading dock are used to generate task
assignments for the UAVs, and constitute the input
to the system. The task assignment for the UAVs is
sent either by a human operator who can command
a particular UAV to perform a certain task, or by an
automated system such as those in [15], [20]. To prevent
congestion and collisions, global requirements for the
multi-UAV system include not allowing more than one
UAV in a given row at the same time, not allowing the
UAVs to fly too close to each other, and not allowing
UAVs to charge or drop of packages at the same time.

The methods proposed in this paper can be used
to synthesize a shield that enforces such global safety
properties and is agnostic to the nature of the system
being protected. The shield takes the task assignment
as an input and overwrites it with a new task assign-
ment when necessary. This is then sent to a trajectory
generator which generates a minimum snap trajectory
for each UAV to accomplish its task. In the following
sections, we present the formalization of the multi-
agent shielding problem, motivated in this example.

The safety specifications for this case study, and the
results of the shield synthesis procedure are described
and discussed in more detail in Section

IV. PRELIMINARIES

1) Basic notations: We consider reactive systems with
a finite set I (O) of Boolean inputs (outputs). The input
alphabet is T; = 2!, the output alphabet is o = 29, and
Y. = X1 X Zo. The set of finite (infinite) words over L is
denoted by I* (X), and we define X = X" U X¥. We

will also refer to words as (execution) traces. We write
|o] for the length of a trace ¢ € £*. For an infinite trace
0 € XL¥ we define [0] = oco. For 07 = xox1... € I°
and oo = yoy1...- € L, we write o7 || oo for the
composition (xp, yo)(x1,y1)... € Z*. For i € N and a
word ¢ = 0go1... € L*, we define d[i] = o;, and
we define 6[i,j) = 0i0i41...0j1 if j € N and o[i, j) =
0i0it1 ... if j = oco. A language is a set L € X of words.

2) Reactive systems: Each agent in the multi-agent
system, as well as the shield, is a reactive system which
is defined by a 6-tuple P = (Q, 40, L1, Lo, 6, 1), where
Q is a finite set of states, go € Q is the initial state,
Y; is the input alphabet, Lo is the output alphabet,
0:Qx X — Q is the complete transition function, and
A: QXX — Yo is the output function. Given an input
trace o) = xox1 ... € L7, a reactive system # produces an
output trace oo = P(07) = A(qo, X0)A(q1,x1) ... € LT with
gi+1 = 0(gi,x;) for all i > 0. The set of words produced
by # is denoted L(P) = {01 || 6o € Z* | P(o1) = 00}.

3) Multi-agent reactive systems: A multi-agent reactive
system D is a tuple (P, X1, Lo), where P = {P1, ..., Pyl is
a set of agents, where each P; = (Q;, 0, Z1i, Lo,i, 0i, Ai)
is a reactive system. While multiple agents may be able
to read the same input variables to indicate broadcast
from the environment, the sets of outputs are pairwise
disjoint: for i # j, we have O; N O; = (. Furthermore,
agents cannot directly read each others outputs, that
is, for all i and j, we have O; N I; = (. The outputs
of the multiagent system D are O = |Ji.; O;, and its
inputs are I = |J; I;. The joint behaviour of the multi-
agent system is a reactive system O = (Q, qo, X1, Lo, 5, A)
defined as follows: the set Q = (X), Q; of states is formed
by the product of the states of all agents P; € . The
initial state go is formed by the initial states gqo; of all
P; € P. The transition function 0 updates, for each
agent P; € P, the Q; part of the state in accordance with
the transition function 6;, using the projection o(I;) as
input. The output function A labels each state with the
union of the outputs of all $; € P according to A;.

4) Specifications: A specification ¢ defines a set L(¢p) C
r* of allowed traces. A reactive system D realizes ¢,
denoted by D E ¢, iff L(D) C L(p). Given a set of
propositions AP, a formula in linear temporal logic (LTL)
describes a language in (2AF)?. LTL extends Boolean
logic by the introduction of temporal operators such
as O (next time), [J (globally), & (eventually), and U
(until) [23]. @ is called a safety specification if every trace
o that is not in L(¢) has a prefix 7 such that all words
starting with 7 are also not in the language L(p). We
represent a safety specification ¢ by a safety automaton
@ =(Q,90,L,0,F), where F C Q is a set of safe states.

5) Games: A game is a tuple G = (G, go, Z, 0, Acc, Val),
where G is a finite set of states, go € G is the initial
state, 0 : G X L — G is a complete transition function,
Acc : (GX XL X G — B is a winning condition
and defines the qualitative objective of the game, and
Val : (GXEZXG)Y - RU {—o00,00} is a value function

defining the quantitative objective of the game. A game
can have a winning condition, a value function, or both.
The game is played by two players: the system and the
environment. In every state g € G (starting with g), the
environment chooses an input o; € Xj, and then the sys-
tem chooses some output oo € Zo. These choices define
the next state ¢’ = 6(g, (01, 00)), and so on. The resulting
(infinite) sequence 7@ = (g0, 01,00, §1)(81,01,00,82) - .. is
called a play. A deterministic strategy for the environ-
ment is a function p, : G* = XL;. A nondeterministic
(deterministic) strategy for the system is a relation p; :
G* X X — 2% (function ps : G* X I = Zp).

A play 7 is won by the system iff Acc(m) = T. A
strategy is winning for the system if all plays = that
can be constructed when defining the outputs using
the strategy result in Acc(m) = T. The winning region
Win is the set of states from which a winning strategy
exists. A permissive winning strategy ps : G* X £; — 20
is a strategy that is not only winning for the system,
but also contains all deterministic winning strategies.

A safety game defines Acc via a set F C G of safe states:
Acc(m) = T iff g; € F for all i > 0, i.e., if only safe states
are visited in the play 7. Otherwise, Acc(m) = L. The
Biichi winning condition is Acc(r) = T iff inf(m)NF # 0,
where F C G is the set of accepting states and inf(7)
is the set of states that occur infinitely often in 77. We
abbreviate the Biichi condition as B(F). A Generalized
Reactivity 1 (GR(1)) acceptance condition is a predicate
Nity B(Ei) —» AL B(F;), with E; € G and F; € G. A
Streett acceptance condition is /\f;l B(E;) — B(F)).

The quantitative objective of the system is to mini-
mize Val(7t), while the environment tries to maximize it.

6) Properties of traces: A finite trace ¢ € L* is wrong
w.r.t. a specification ¢, if the corresponding play cannot
be won, ie., if there is no way for the system to
guarantee that any extension of ¢ satisfies ¢. An output
0o is called wrong for a trace ¢ and input oy, if it makes
the trace wrong, i.e. when o is not wrong, but - (o1, 00)
is. Given a sequence (07 || 5o |l 0p) € (X1 X Zo X Z0)™,
we denote with WIdx(G; || 6o || Gp) the positions
of occurrences of wrong outputs in op. Formally, i €
Widx(a; || Go |l o) iff Goli] is wrong for the trace
(@10, i) | 55[0,7)) and the input o;[i].

We denote with Agts = {1,...,n} the set of agent ids
of a multi-agent system D. For a set II C Agts, we
define Op; = U, O; and Lo, = 291. For oo € Lo and
i € Agts, we denote with 0p(O;) the projection of oo on
O;. For I1 € Agts, we define 6o(Or) similarly.

For 0o,0(, € Lo, the set Diff(co,0p) = {i € Agts |
00(0;) # 0,(0:)} gives the set of agents whose outputs
in 0o differ from those in ;. Let (@o | 5p) € (EoXZ0)™
be a sequence of output pairs. We call (Go || 0p) a
deviation period if (1) ooli] # o,li] for every i < [oo|
and (2) if [oo| < oo, then Go[[ool] = G5[lool]. Thus, a
deviation period is either a finite sequence (G0 || Tp)
consisting of differing outputs followed by a last letter
where the two outputs agree, or an infinite sequence

(0o |1 3p) where the outputs always differ.

V. SHIELDS FOR MULTI-AGENT SYSTEMS

In this section, we first describe how to attach a
shield to a multi-agent system. Then, we define shields
formally, and discuss different interference require-
ments on shields for multi-agent systems.

A. Attaching the Shield

A shield S = (Q,q0, X1 X Xo,XZ0,0,A) is a reactive
system that is attached to a multi-agent system D =
({P1,...,Pu}, L1, Lo). Since S has to enforce a global
specification that can refer to all inputs and outputs of
D, § is attached to the whole multi-agent system D: the
shield S monitors the outputs of all the agents and cor-
rects them if necessary. Thus, § is attached to D using
serial composition, by feeding all inputs and outputs of
the multi-agent system to the shield, which, in response
produces a possibly corrected output for the system.
Formally, given a multi-agent reactive system O =
({P1, ..., Pul, L1, Lo), with P; = (Q;, q0,i, L1i, Lo,i, 0i, Ai),
the serial composition of P and S is a reactive system Do
S = (Q,d0, X1, X0,6,A), with states Q =), Q;xQ, 4o =
(Goa,---,90,n,90), transition function 5((q1, e Gn, q),01) =
(01(q1,011), - - -, 04(qn, 011),6(g, (01,00)), where o0 is the
output of all agents 6o = (A1(q1,011), - - -, Au(qn, 01,,)), and
output function ;\((ql, <. qn,q),01) = Ag, (01,00)).

B. Shield Definition

Now we define the basic requirements that a shield
must satisfy: namely it should enforce correctness with-
out deviating from the system’s output unnecessarily.

1) Correctness: We say that a reactive system S =
(Q, 90, X1 X Lo, Lo, 6,A) ensures correctness with respect
to a safety specification ¢ if for any multi-agent system
D =({P1,..., P}, L1, Lo) it holds that (Do S) E ¢.

2) No unnecessary interference: A shield is only al-
lowed to interfere when the output of the multi-agent
system is wrong. Formally, given a safety specification
@, a reactive system S = (Q, go, L1 X Lo, Lo, 6, A) does not
interfere unnecessarily if for any multi-agent system D =
({P1, ..., Pul, L1, o) and any trace (o7 || 60) € (ZrXXo)®
of D that is not wrong, we have that S(o; || 60) = 0.

Definition 1: A shield for a given safety specification ¢
is a reactive system S = (Q, g0, ZiXZo, Lo, 6, A) such that
for any multi-agent system D = ({P4, ..., P}, X1, Lo) it
holds that (Do S) | ¢ and S does not deviate from D

unnecessarily.

C. Interference Costs and Shield Optimality

In Section we defined the qualitative require-
ments that a shield must meet. In many applications,
there are additional quantitative properties a shield
should optimize, expressing in what way it should inter-
fere with the system. Now we define several different
interference cost functions and optimization objective.

1) Interference cost functions: We formalize quantita-
tive requirements on shields by introducing the notion
of an interference cost function, which quantifies the de-
viation of the shield’s output from the system’s output.

Definition 2: An interference cost function c : LoXXo —
IN assigns a cost c(0o, () to each pair of system output
00 € Lo and shield output ob € X0, such that

’

o}
floo,00) >0 if oo # 0y,

0 ifop=o0

-]

where f is a function chosen by the system designer.
The higher the cost, the more undesirable is the cor-
responding way of interference by the shield. Thus,
the designer can assign different costs to interference
with different agents, expressing preference of one over
another. We propose two concrete cost functions.

The boolean cost function cg : Lo X Lo — {0, 1} consid-
ers the multi-agent system as a monolithic system:

’

o)
1 if oo # oy,

0 ifop=o0

C]B(GO/ 0-2)) = {

Thus, the cost for any interference is 1, no matter with
how many or with which agents the shield interferes.

The counting cost function c4 : Lo X Lo — N, on the
other hand, takes into account the number of agents
whose output is modified:

cx(00,00) = [{p € Agts | 00(Op) # o5(Op)}l.

Intuitively, the smaller the number of agents whose
output is altered by the shield, the better.

Definition 3: Let ¢ : 2o X Lo — IN be a cost function.
We define the accumulated interference cost function cacc :
L5 X ES — N based on the given cost function ¢ by

ool
cacelG0,50) =), cGolil, o).

2) Shield optimization objlecotive: In this work we con-
sider the cost-optimization objective for infinite traces
that requires minimizing the cost per deviation period.

In this objective, the task of the shield is to minimize
the worst-case accumulated cost for ending the devia-
tion period. To formalize this, we first define the set of
maximal deviation periods resulting from the execution
of a shield S under all possible behaviours of multi-
agent system and the environment.

Definition 4: Let S be a shield for a safety specifi-
cation ¢, and let 0 € ¥* be a finite trace. We define
Dev(c,S) to be the set of all deviation periods that
extend the trace (¢ || S(0)), and result from outputs
of S. Formally, if (o0 || 56) € (Lo X Lp)*®, then (6o ||
Gp) € Dev(o, S) iff it satisfies the following conditions:

« (00 || 5p) is a deviation period, and

« there exists 5; € £ such that 6, = S(7; || 50) and

the trace (o || S(0)) is a prefix of (o7 || oo || 00)-

The set Dev(a, S) consists of all finite or infinite devi-
ation periods resulting from possible future behaviours
of the multi-agent system and the environment. Our
goal is to synthesize a shield with minimal worst-case
accumulated cost over the traces in the corresponding
Dev- sets, as formalized in the next definition.

Definition 5: Let c: Lo X Lo — IN be a cost function.
A shield § is locally optimal w.r.t. ¢, if for every shield
&’ and every trace ¢ = (01 || 6p) € X* it holds that

sup Cacc(00, EE)) < sup Cacc(00, E,O)
@ollch)eDev(,S) @ollch)eDen(@,S")

With this objective, a shield plans optimally in the short

term, without considering the possibility of further

wrong outputs once the deviation period ends. There-

fore, this optimality criterion is useful when wrong

outputs of the system are expected to be rare.

D. Assumptions on the Occurrences of Faults

A shield has to enforce the global safety specification
for any possible implementation of the multi-agent sys-
tem. However, often we have some knowledge about
the the system which can be used to make assump-
tions about its worst-case behavior and synthesize cost-
optimal shields under these assumptions.

Pervious work on shield synthesis [6], [16] assumed
that the system D is correct, but that through external
faults an arbitrary number of correct outputs are re-
placed by wrong ones. To make use of this optimistic
assumption, Bloem et al. [6] used a subset construction:
when O emits a wrong output, the shield begins to
track all possible correct behaviours of O under the
current input, with the rationale that) meant to give
a correct output, but which one is unknown.

In this paper, we take a new view, in which the
system is supposed to have a real safety bug, man-
ifested by the interaction between the agents. This
case is especially important in the multi-agent setting.
When developing multi-agent systems, the individual
agents are often implemented separately, with individ-
ual goals in mind, and then combined to obtain the
final system. Since each agent has to satisfy its own ob-
jective, the design of a single agent often neglects some
global safety requirements. However, it is often realistic
to assume that the length of all sequences of wrong
outputs is bounded. This assumption can be made e.g.,
if the agents interact only rarely, and when they do,
they interact only for a bounded period of time.

We define an assumption Assumption C (X X Lo X
o)™ on the occurrences of system faults to be a set of
allowed finite traces, represented as a finite automaton.

In particular, we define Assumption(b) to be the set
of traces in which the length of each sequence of wrong
outputs does not exceed a given bound b.

Definition 6: Let b € N. The set Assumption(b) C (X X
YoXXp)® consists of all traces ¢ for which all sub-traces
G’ = ali,j] it holds that if [¢'| > b, then there exists an
index k with i < k < j, such that k ¢ WIdx(o).

We incorporate assumptions on the system in the
definition of cost-optimal shields. We modify Defini-
tion 9| (locally-optimal shields) by restricting the sets of
deviation periods to those corresponding to traces in
Assumption C (X X Zp X Lo)®. More precisely, in the
supremum for S we replace Dev(c,S) by Dev(a,S) N
{Go Il 55) | A 51 : (07 || o0 |l o) € Assumption} and
analogously for &'

E. Fair Shielding

Now we define one more constraint on the shield’s
interference: we require that a shield is fair with respect
to the different agents. The definition of fair shields
uses the notion of minimal correcting sets: a minimal
correcting set for a wrong trace is the minimal set of
agents such that modifying some of the outputs of these
agents results in correct output.

Let o = (07 1| 60)-(01,00) € (X1XXpo)" be a wrong trace.
A set IT C Agts of agents is a minimal correcting set for
o if and only if the following conditions are satisfied:

« there exists o[, € o such that Diff (oo, o(,) = IT and
the trace (o7 || 00) - (01, ab) is not wrong,
« for all oy, € Lo such that Diff(co,0(,) S T1, it holds
that the trace (o || 00) - (01, 07,) is wrong.

Mocs(0) is the set of all minimal correcting sets for o.

In order to be fair, a shield should guarantee that
each agent is treated fairly when choosing agents
whose outputs should be modified. More precisely, it
should not choose the same agent all the time when it
is possible to alternatively choose a different agent.

First, given a trace ¢ = (o || oo || 0p) € (&1 X
Lo X L) and an agent p, we define Alt(c, p) to be the
set of positions in o where there exist both a minimal
correcting set containing p and a minimal correcting set
that does not contain p. Formally, i € Alt(c, p) if and only
if i € Wldx(0) and there exist two minimally correcting
sets TI,TT € Mes((G[0,i— 11| G[0,i— 11) - (G1[i], Goli])) at
position i such that p € IT and p ¢ T1. Now, using the
sets Alt(o, p) we formally define fair shields as follows.

Definition 7: A shield S is fair if for every agent
p € Agts and trace 5 = (07 || 0o || 5p) € L(S) it holds that,
if the set Alt(g,p) is infinite, then there exist infinitely
many indices i € Alt(G, p) in which p ¢ Diff (co[i], 5[i])
(i.e., the output of p is not altered by S in step i).

VI. SYNTHESIS OF SHIELDS FOR MULTI-AGENT SYSTEMS

In this section, we study the synthesis of shields for
multi-agent systems with respect to the interference
requirements defined in Section First, we discuss
how the knowledge that all sequences of wrong out-
puts are bounded can be incorporated in the synthesis
approach. Then, we propose a synthesis approach to
construct locally-optimal shields. The synthesis proce-
dure consists of the following three steps:

1) We construct a safety game G° and compute its per-
missive winning strategy p°, such that any shield S

that implements p° ensures correctness (Do S k= @)
and S does not interfere with D unnecessarily. This
construction is similar to the one in [16].
2) We augment the game graph with the assumptions
on the occurrence of system errors.
3) We compute deterministic strategy that imple-
ments p° and satisfies the interference constraints.
We also present a synthesis algorithm for fair shields.
The first step above is common for both algorithms,
the other two depend on the interference requirements.

A. Constructing and Solving the Safety Game

Let ¢ be a safety specification represented as a safety
automaton ¢ = (Q, g0, L, 6, F). Let W C F be the winning
region of ¢ when considered as a safety game.

We construct a safety game G° such that its most
permissive strategy subsumes all possible shields that
are correct w.r.t. ¢ and that do not interfere unnecessar-
ily. The state space of G° is constructed by augmenting
the states Q of @ with two Boolean variables: (1) the
variable u is a flag that indicates wrong outputs by the
system, and (2) the variable ¢ tracks deviations between
the outputs of the system and the shield.

We construct a safety game G° = (G, gj, Z, Zo, 6°, F%)
such that G° = {(g,u,t) | g € Q,u,t € {T, L}} is the state
space, g, = (o, L, 1) is the initial state, 6° is the next-
state function, and F° is the set of safe states, such that
0°((g,u, t), (01,00), o’o) = (6(g, 01, ob), u’,t') with
(1) ' =T if 6(g,01,00) ¢ W, and 1’ = L otherwise,
(2) t' =T if oo # 0y, and t' = L otherwise;
and PP ={(gu,t) e G| (geW)A(u=1L - t=1)]. We
use standard algorithms for safety games (e.g. [19]) to
compute the winning region W* and the most permis-
sive winning strategy p°: G X I; — 2% of G°.

B. Synthesis with Assumptions on the Occurrences of Faults

Our goal is to synthesize cost-optimal shields under
the assumption that the length of sequences of wrong
outputs is bounded by some constant b. Therefore, we
construct a new game graph, that incorporates this
knowledge and that can be used to synthesize cost-
optimal shields in the next subsections. We start from
the safety game G° = (G°, g, L, Lo, 6°, F*) with winning
region W® and permissive winning strategy p°, and
a bound b € IN on the maximal length of sequences
of wrong outputs. We construct a new game G* =
(G, 85, %, Lo, 0 Acc”) where G* = W° x {0,...,b + 1}
is the set of states, g = (g;,0) is the initial state, 6
is the next-state function, such that 6°((g%, v),0,0p) =
(6°(8%, 0,0,) N p°(g°,0),v") such that

eifv<band u' =T, thenv =v+1,

e ifv<band v =1, then v =0, and

e ifv=b+1,thenv =b+1;
and Acc” is such that Acc’(m) = T iff

o 4i>0.¢7=(g},v)) withv; =b+1, or

« there are inf. many g = (gi, ui, t;, i) with t; = L.

Intuitively, the counter v tracks the length of the
current sequence of wrong outputs by the system, and
is reset to 0 when the output of the system is correct. If v
exceeds the bound b, it remains b+1 forever. Using this
counter v, we encode the assumption on the system.
Thus, the set Acc’ of wining plays in G* consists of
all infinite plays that violate the assumption plus the
infinite plays that visit infinitely often a state in which
the output of the shield does not deviate from the
system'’s output. Hence, Acc” is a GR(1) condition.

C. Synthesis of Locally-Optimal Shields

Next, we propose a procedure to synthesize shields
that minimize the cost per deviation period assuming
that all sequences of wrong outputs are bounded.

We start with the augmented game graph G* =
(G g5, L, Xo,0% Acc’) and construct a new game
G" = (G, 85, X, Lo, 0, Acc’, Val?") with value function
Val’(7t) which is an accumulated cost objective using ¢
as edge labeling: cost®’'(¢”, (o1,00), op) = c(oo,0p)-

Using the procedure described in [14], we synthesize
shields, that are winning according to Acc” (i.e., either
the assumption on the system that any sequence of
wrong outputs has a length of at most b is violated,
or infinitely often the shield does not interfere) and
optimize Val”' (i.e., the worst-case accumulated cost for
reaching the end of the deviation per deviation period).

D. Synthesis of Fair Shields

We now turn to the synthesis of fair shields. For this,
we augment the states of G° with Boolean variables
that track information about the minimal correcting sets
for each transition. We use these flags to encode the
fairness requirements for the agents.

Let Mcs(g, 01,00, W) be the set of all minimal sets of
agents such that correcting the output of these agents
results in a successor state of g that is in W. Formally,
for IT € Agts it holds that IT € Mocs(g, 01,00, W) iff
(1) there exists o, such that 6(g,05,0,) € W and
Diff(00,0p) =I1, and (2) IT is minimal (i.e., for all o, €
Yo with Diff(oo,0() G I it holds that 6(g, 01, 07,) € W).

Given G° = (G g, L, Lo, 6%, FF) with W® and p°,
we construct a game G = (G, g/ T, X0,0f, Acc’)
with set of states G/ = W° x {1, T}" x {1, T}", where
n = |Agts| is the number of agents. The initial state
is gg = (851", L"), and the transition relation &f
is such that &°((g,u,t,m,...,my,c1,...,cn),0,00) =
(0°((g,u,1),0,05) N p*((g ut),0),my,... my,c,...,c)
where for each agent p € Agts it holds that

« m, = T iff there exist minimal correcting sets
[, e Mocs(g, 01,00, W) with p e IT and p ¢ 11,
« ¢, =T iff p € Diff (00, 0,).
Intuitively, for each agent p € Agts, the flag m, is set to

T whenever the set of minimally correcting sets at that
step contains a minimally correcting set which does not

contain p, and one that does. The flag c, is set to T
whenever the output of p is corrected by the shield.

The acceptance condition Acc/ encodes the fairness
requirement on the shield for agent p using the vari-
ables m, and c,. It states for each agent p € Agts that if
a play contains infinitely many occurrences of states in
which m, = T, then it should contain infinitely many
occurrences of states in which ¢, = L and m, = T.

Thus, Acc/ is a Streett acceptance condition, and a
fair shield can be synthesized by solving a Streett game
using well-known methods [2].

VII. ExPERIMENTAL EvALUATION

Now we describe the results of applying our shield
synthesis method to several examples. We use the reac-
tive synthesis tool Slugs [7] to compute locally-optimal
shields under the assumption, that sequences of wrong
outputs are bounded by a constant b, as discussed in
Section All experiments were performed on an
Intel i5-5300U 2.30 GHz CPU with 8 GB of RAM.

A. Gridworld

In the first set of experiments, we consider a grid-
world with two agents that can move in one of the
four cardinal directions at each time step. One grid
cell is designated as a charging station. We require
global safety property ¢ = @couision N Pcharge, Where
Qcollision Tequires collision avoidance and no simultane-
ous charging, and Qg describes when and how the
agents should use the charging station. The formula
Pcharge 15 Of the form @aurge1 A Peharge2- These properties
are specified in LTL as follows:

Peharge,i = O (chargin gi = ~Ochargin g]-)

Peollision = Dﬁ(positioni = positionj) (1)

for i,j € {1,2} and i # j. The formula @, requires
that one agent cannot enter the charging area right after
the other one has left. The integer variable position; is
the position of agent i in the grid. @cuision Tequires that
the agents do not occupy the same position.

We synthesized locally-optimal shields using an in-
terference cost function ¢ that assigns higher costs for
any interferences with the first agent than for inter-
ferences with the second one. We consider different
values for the bound b on the length of sequences of
wrong outputs. A larger bound b results in more robust
shields, but also in larger state-spaces of the game, due
to the size of the counter that augments the state space.

We report the results in Table [l under case (1). The
first column gives the bound b, the second and the
third column state the number of input and output
bits of ¢. The fourth column states the total number
of variables of the constructed game (including the
variables that augment the state space) and the fifth
column gives the number of reachable states in the
game. In the last two columns, we report the synthesis

TABLE I: Results

Inp Out Game Game time time
Case | b
vars vars vars states perm cost-opt
Q) 2 16 6 28 887 245 67
5 16 6 30 3456 245 830
) 2 24 12 68 41544 3545 3019
5 24 12 70 75x10° 3545 9822

time (in seconds) to construct the permissive strategy
and the locally-optimal strategy.

An example for the interference of the shield with
the agents during an execution is shown in Figure

&S & ”

1 : :

&

(@)t (b) t2 (0) t3

Fig. 2: Green cell is the charging station. Black arrows
correspond to intended actions (outputs from the sys-
tem) and red arrows correspond to shield outputs. The
absence of an arrow indicates that the action chosen
was to stay at the same cell. In no interference is
needed. In the next time step in[2b} the shield interferes
with agent 2 to prevent collision in the charging area.
In[2d the shield forces agent 1 out of charging area, and
agent 2 to wait one time-step as agent 2 is not allowed
to enter immediately after agent 1 leaves.

B. UAV Mission Planning

We synthesized shields for 3 unmanned aerial vehi-
cles (UAVs) simulated using ROS/Gazeb for the case
study outlined in Section [[II As shown in Figure I} the
environment consists of 2 rows of shelves. We assume
there are 12 discrete package pick up points in each row
of shelves along with the drop off location and charging
station. The input of each UAV controller is its location
in (x,y,z). The possible outputs of each UAV consist
of 17 trajectories precomputed using a minimum-snap
trajectory generator that moves the UAV from one dis-
crete state to another. We consider a safety specification
@aist which captures the requirement that the controllers
should not choose trajectories that bring them within
distance less than a given threshold r. The output of
each UAV is chosen from the set T = {1,2,...,17}
where each integer corresponds to a particular trajec-
tory choice. Let the function dist : TX T — IN map each
pair of trajectories traj;, traj; € T to the closest distance
between them. We define the safety specification as

Paist = [Aizj (diSt(tr“jir trajj) 2 r). @

!We thank Jesse Quattrociocchi for his help with the simulations.

Additionally, we specify ¢@g.r which states that no
more than one UAV can move into the row of shelves
at the same time. Lastly, like only one UAV can
be at the charging station or drop-off point at any given
time and UAVs cannot be allowed to run out of power
when not in a charging station.

We assign a higher cost to the interference with the
orange UAV compared to the other two. Intuitively, this
will force the shield, where possible, to avoid inter-
fering with the orange UAV. We synthesize the shield
for two different values of b and the synthesis times
are reported in Table [I| under case (2). A video of the
simulation can be seen in https://bit.ly/20SRhx]J.

VIII. CoNncLusIiON

In this paper, we proposed a general approach to
the synthesis of shields for multi-agent systems from
temporal logic specifications. Our key contribution is
the study of quantitative objectives in the shield syn-
thesis setting. Our work is also the first to consider
fairness requirements on the shields. We introduced
the notion of interference cost, and discussed several
costs and synthesis objectives that are of interest when
considering multi-agent systems. We demonstrated the
applicability of the proposed approach on a range of
quantitative interference requirements by synthesizing
shields for a multi-UAV system.

A promising avenue for future work is to investigate
bounded synthesis [11] with quantitative objectives, in
order to synthesize distributed shields, which will en-
hance the efficiency of shields for distributed systems.

Acknowledgement: This work was supported in
part by grant DARPA W911NF-16-1-0001, grant ARO
WO911NEF-15-1-0592, and grant NSF 1652113.

REFERENCES

[1] Netflix: 5 lessons we have learned using aws (2010).

[2] 21th IEEE Symposium on Logic in Computer Science (LICS 2006),
12-15 August 2006, Seattle, WA, USA, Proceedings. IEEE Computer
Society, 2006.

[3] Andreas Bauer and Ylies Falcone. Decentralised LTL monitor-
ing. Formal Methods in System Design, 48(1-2):46-93, 2016.

[4] Andreas Bauer, Martin Leucker, and Christian Schallhart. Run-
time verification for LTL and TLTL. ACM Trans. Softw. Eng.
Methodol., 20(4):14:1-14:64, 2011.

[5] Luca Bertuccelli, Han-Lim Choi, Peter Cho, and Jonathan How.
Real-time multi-uav task assignment in dynamic and uncertain
environments. In AIAA guidance, navigation, and control confer-
ence, page 5776, 2009.

[6] Roderick Bloem, Bettina Koénighofer, Robert Konighofer, and
Chao Wang. Shield synthesis. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages
533-548. Springer, 2015.

[7] Swarat Chaudhuri and Azadeh Farzan, editors. Computer Aided
Verification - 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Proceedings, Part II, volume 9780 of
Lecture Notes in Computer Science. Springer, 2016.

[8] Ylies Falcone. You should better enforce than verify. In Runtime
Verification - First International Conference, RV 2010, St. Julians,
Malta, November 1-4, 2010. Proceedings, pages 89-105, 2010.

[9] Ylies Falcone, Jean-Claude Fernandez, and Laurent Mounier.
What can you verify and enforce at runtime? STTT, 14(3):349—
382, 2012.

[10] Ylies Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Mar-
ius Bozga, and Saddek Bensalem. Runtime verification of
component-based systems in the BIP framework with formally-
proved sound and complete instrumentation. Software and
System Modeling, 14(1):173-199, 2015.

[11] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. STTT,
15(5-6):519-539, 2013.

[12] Adrian Francalanza, Jorge A. Pérez, and César Sdnchez. Run-
time verification for decentralised and distributed systems. In
Lectures on Runtime Verification - Introductory and Advanced Topics,
pages 176-210. 2018.

[13] Adrian Francalanza and Aldrin Seychell. Synthesising correct
concurrent runtime monitors. Formal Methods in System Design,
46(3):226-261, 2015.

[14] Gangyuan Jing, Riidiger Ehlers, and Hadas Kress-Gazit. Short-
cut through an evil door: Optimality of correct-by-construction
controllers in adversarial environments. In 2013 IEEE/RS] Inter-
national Conference on Intelligent Robots and Systems, Tokyo, Japan,
November 3-7, 2013, pages 4796-4802, 2013.

[15] Atishkumar Kalyan and Steven Gregory Dunn. Automated
inventory management system, December 22 2015. US Patent
9,216,857.

[16] Bettina Konighofer, Mohammed Alshiekh, Roderick Bloem,
Laura Humphrey, Robert Konighofer, Ufuk Topcu, and Chao
Wang. Shield synthesis. Formal Methods in System Design,
51(2):332-361, 2017.

[17] Jay Ligatti, Lujo Bauer, and David Walker. Run-time en-
forcement of nonsafety policies. ACM Trans. Inf. Syst. Secur.,
12(3):19:1-19:41, 2009.

[18] Qingzhou Luo and Grigore Rosu. Enforcemop: a runtime
property enforcement system for multithreaded programs. In
International Symposium on Software Testing and Analysis, ISSTA
"13, Lugano, Switzerland, July 15-20, 2013, pages 156-166. ACM,
2013.

[19] René Mazala. Infinite games. In Erich Gradel, Wolfgang
Thomas, and Thomas Wilke, editors, Automata, Logics, and In-
finite Games: A Guide to Current Research [outcome of a Dagstuhl
seminat, February 2001], volume 2500 of Lecture Notes in Computer
Science, pages 23-42. Springer, 2001.

[20] Craig Olivo and Michael Buzaki. Method and apparatus for
warehouse cycle counting using a drone, August 25 2016. US
Patent App. 15/013,029.

[21] Jin Hock Ong, Abel Sanchez, and John Williams. Multi-uav
system for inventory automation. In RFID Eurasia, 2007 1st
Annual, pages 1-6. IEEE, 2007.

[22] Corina S. Pasareanu and Darko Marinov, editors. International
Symposium on Software Testing and Analysis, ISSTA 14, San Jose,
CA, USA - July 21 - 26, 2014. ACM, 2014.

[23] Amir Pnueli. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science, Providence, Rhode
Island, USA, 31 October - 1 November 1977, pages 46-57. IEEE
Computer Society, 1977.

[24] Steven Rasmussen, Derek Kingston, and Laura Humphrey. A
brief introduction to unmanned systems autonomy services
(uxas). In 2018 International Conference on Unmanned Aircraft
Systems (ICUAS), pages 257-268. IEEE, 2018.

[25] Tariq Samad, John S Bay, and Datta Godbole. Network-centric
systems for military operations in urban terrain: The role of
uavs. Proceedings of the IEEE, 95(1):92-107, 2007.

[26] Sven Schewe. Synthesis of distributed systems.
Saarland University, Saarbriicken, Germany, 2008.

[27] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf.
Syst. Secur., 3(1):30-50, 2000.

[28] Eduard Semsch, Michal Jakob, Dusan Pavlicek, and Michal
Pechoucek. Autonomous uav surveillance in complex urban
environments. In Proceedings of the 2009 IEEE/WIC/ACM Inter-
national Joint Conference on Web Intelligence and Intelligent Agent
Technology-Volume 02, pages 82-85. IEEE Computer Society, 2009.

[29] PB Sujit, A Sinha, and D Ghose. Multi-uav task allocation using
team theory. In Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC’05. 44th IEEE Conference on, pages
1497-1502. IEEE, 2005.

PhD thesis,

https://bit.ly/2OSRhxJ

	Motivation and challenges
	Related Work
	Case Study
	Preliminaries
	Basic notations
	Reactive systems
	Multi-agent reactive systems
	Specifications
	Games
	Properties of traces

	Shields for Multi-Agent Systems
	Attaching the Shield
	Shield Definition
	Correctness
	No unnecessary interference

	Interference Costs and Shield Optimality
	Interference cost functions
	Shield optimization objective

	Assumptions on the Occurrences of Faults
	Fair Shielding

	Synthesis of Shields for Multi-Agent Systems
	Constructing and Solving the Safety Game
	Synthesis with Assumptions on the Occurrences of Faults
	Synthesis of Locally-Optimal Shields
	Synthesis of Fair Shields

	Experimental Evaluation
	Gridworld
	UAV Mission Planning

	Conclusion
	References

