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Abstract—With the ever-increasing complexity of both embed-
ded application workloads and multiprocessor platforms grows
the demand for efficient mapping heuristics able of allocating sev-
eral application workloads at runtime. The majority of promoted
mapping techniques are bespoke implementations that consider
an in-house operating system, which is developed to a particular
architecture, restricting its adoption in other platforms. This
work proposes a FreeRTOS extension that supports distributed
task mapping heuristics, which enables to balance application
workloads in multiprocessor architectures at runtime. Promoted
extension is validated through a trustworthy number of scenarios
considering large scale Cortex-M-based multiprocessor systems
executing up to 600 application tasks.

Index Terms—Dynamic Mapping, Embedded Kernel, Multipro-
cessor Systems, Modelling and Simulation.

I. INTRODUCTION

Multiprocessor embedded architectures are driven by power
wall, performance scalability and reliability challenges. Aim-
ing to effectively scale up system performance while meeting
energy-efficiency constraints, multiprocessor architectures are
dividing application workloads among multiple threads/tasks
[1]. The way such tasks are mapped onto the processing ele-
ments (PEs) has a significant impact on system performance,
energy-efficiency and reliability [2]. With 1000-processors
platforms already available in the embedded community [3],
grows the demand for distributed dynamic mapping techniques
capable of allocating multi application tasks efficiently.

Mapping techniques have been investigated over the last
years, considering different optimization goals (e.g. energy
consumption, latency, etc). Most of such mapping techniques
are customized implementations, which are developed based
on an in-house OS. While providing optimized and effi-
cient means for the mapping techniques, in-house OS based
implementations usually are processor-dependent. With the
advance of embedded processors, at some point, it will become
necessary to port such in-house implementations to a more per-
formant or energy-efficient processor architecture. Underlying
porting process is likely to lead to extra design, re-validation
and, consequentially a hidden cost that may well be quite high.

The goal of this work is to provide a version of FreeRTOS
[4] that supports a set of distributed and dynamic task mapping
heuristics, which can be easily employed by almost thirty

different processor architectures. Due to the non-intrusive
and flexible implementation, promoted extensions provide an
efficient means not only to use and extend available heuristics
but also to integrate new ones.

The main contributions of this work are the following:
• adapting FreeRTOS to support dynamic task mapping that

can be used for allocating multiple application tasks onto
large scale system;

• development of a framework based on OVPsim that
unifies software development, debugging capabilities as
well as platform configuration and evaluation;

• extensive FreeRTOS extension evaluation by using sev-
eral scenarios, including multiple real benchmarks and
platform models.

The rest of this paper is organized as follows. Section II
presents related works in OS-based mapping techniques. Pro-
posed FreeRTOS extensions are described in Section III. Sec-
tion IV presents and discusses the results. Finally, conclusions
are discussed in Section V.

II. RELATED WORKS

Researches have been proposing and validating their map-
ping techniques considering different approaches and platform
architectures. Some approaches rely on analytical or simplified
executable models [2], which are effective means to propose
and compare mapping heuristics. In such approaches either
kernel or processor architectures are abstracted away, which
may lead to a gap between what is proposed and its adoption in
a real platform. Given the increasing complexity of embedded
applications, mapping techniques are likely to be implemented
based on a kernel/OS. Table I presents the state-of-art in OS-
based mapping techniques, targeting multiprocessor platforms.
These works are ordered by publication year and classified
according to different criteria.

The works presented in [7] and [5] are the only ones
to support static mapping. In both works, tasks may be re-
mapped based on a task migration technique, which employs
different activities (e.g. context saving and restoring) that are
not handled by the task mapping process. Excluding the works
proposed by [7] and [6], the mapping control management is



TABLE I: State-of-art in OS-based mapping techniques.

Author Kernel Footprint Mapping/Management Validation Scenarios Processor architectures Abstraction Level
Busseuil et al. 2011 [5] In-house ∼60kB Static/Distributed 6x6 / 3 applications SecretBlaze RTL

Ma et al. 2013 [6] µC-OS II ∼24kB Dynamic/Centralized 3x3 / 1 application >30 Architectures RTL
Aguiar et al. 2014 [7] In-house ∼24kB Static/Centralized 6x5 / 3 applications MIPS & RiscV RTL

Mandelli et al. 2015 [8] In-house ∼25kB Dynamic/Distributed 16x16 / 10 applications Plasma Multilevel
This Work FreeRTOS ∼16kB Dynamic/Distributed 10x10 / 120 applications >30 Architectures OVPSim

distributed, which is scalable since more than one processor
is responsible for mapping the tasks.

The majority of reviewed works employ RTL platforms
described either in VHDL [5] [6] [7] [8] or SystemC [8] to pro-
mote their mapping techniques. While VHDL-based platforms
were validated through small scenarios (e.g. 6x6 platform
executing 3 application [5]), the work in [8] employs a 16x16
NoC-based multiprocessor platform with up to 10 applications.
While this work validates distributed and dynamic mapping
heuristics, it includes two kernels: one for mapper PEs and
another to slave PEs, which leads to extra design efforts.

Beyond the proposed approach, only the work described
in [6] uses a highly portable commercial kernel. In this work,
each PE is considered as a local cluster of 4 processors, which
communicate through a native message passing interface (sim-
ilar to MPI). This work is mainly devoted to researching
the local task allocation, which is defined based on system
workload and resource availability. The drawbacks of this
work are: first, the mapping control is centralized and adopted
heuristic is not efficient for large scale systems; second, the
evaluation scenario considers a 3x3 NoC-based platform that
executes a single matrix multiplication on each PE.

The original contribution of this work is the inclusion
of dynamic and distributed task mapping techniques in a
market leading RTOS kernel, which eliminates extra design
and verification time. Different from the reviewed work, the
proposed approach has been validated over different processor
architectures (e.g. ARMv6-M and ARMv7-M) considering
several and large scenarios.

III. FREERTOS EXTENSION

FreeRTOS is an open-source real-time operating system
widely used in embedded system projects. FreeRTOS has an
active development community and it provides a number of
functions (e.g. real-time schedulers, memory management, etc)
and APIs facilities, which have been validated over 30 different
processor architectures. Its small footprint also justifies the
choice of using FreeRTOS in this work. Aiming at keeping
FreeRTOS modularity and flexibility, its original structure
was maintained and promoted extensions were developed to
operate in a non-intrusive manner. Underlying extensions were
developed targeting NoC-based multiprocessor architectures
and they are described as following.

A. NoC Communication

To enable data transfers between communicating tasks and
PEs, a MPI-like API was developed. Underlying API includes
two communication primitives: MPI Send and MPI Receive,

which are used to transfer data and management control
packets devoted to inter-task communication and system man-
agement. To support the exchange of messages through the
NoC, a Task Manager (TM) with a Task Management Structure
(TMS), a Communication Buffer (CB), and a Task Location
Buffer (TLB) were incorporated into the FreeRTOS kernel.
The TMS contains for each task the local ID, the global
application ID, the task relationship ID, and the CB. While
CB stores the task outgoing messages, the TLB stores the
PE physical address where application tasks are allocated.The
CB stores the message whenever a MPI Send is invoked and it
suspends the sender task when the CB overflows. MPI Receive
blocks the task until the data are available while MPI Send
is nonblocking, unless no buffer space is available. The TM
determines the sender processor address by checking the tasks
allocation. In this case, there are two possibilities: (i) the
requested message originates from a task mapped into the
same processor, thus the TM retrieves the message data from
the local task CB and delivers it; (ii) the requested message
needs to be fetched in another processor. First, the requesting
TM sends to the target TM a service message in order to
fetch the message data. The target TM identifies the requesting
task ID and removes message from the sender CB. Further, it
resumes the task if it is suspended, than it allocates the header
descriptor and configures the DMA module with the message
to be sent. Finally, the packet is delivered and the requesting
task is resumed.

Whenever a task has to communicate with another, a System
Call instruction (e.g. SVC, for ARM ISAs) is invoked, in
user mode, triggering the System Call Handler that executes
the communication primitives. The proposed non-intrusive
extension modifies the System Call handler to treat the task
requests (e.g. send and receive) in a privilege mode, isolating
privileged operations and system resources. Note that each
System Call instruction carries an embedded number, which
is associated to a given service. These services arguments are
stacked into registers r0-r3.

Further, for each communication the network interface (NI)
triggers the interruption handler (called here as NI Handler) to
deal with incoming packets. The NI Handler manages privi-
leged system services such as message request and delivery. In
this work, a packet consists of a six 32 bits-wide flits header
followed by the payload. The header contains: the destination
address, the payload size (header plus message size), the
service request, and three flits to service parameters. An
outgoing message first allocates a header descriptor, acquires
the receiver physical address from the TLB, and configures
the Direct Memory Access (DMA) module. This module uses



the payload address to transfer the information between the
local memory to the NoC.

B. Distributed Mapping

To validate promoted FreeRTOS extensions and integrated
mapping heuristics, a distributed-memory multiprocessor plat-
form is implemented. Fig. 1 illustrates a 4x4 NoC-based
platform, with 2x2 clusters, the application path and the tasks
execution with message passing interface.
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Fig. 1: 4x4 platform instance, partitioned into 2x2 clusters.

The hardware and the software of all PEs are the same.
At the system startup, each PE assumes one of the following
roles:

• Local Manager PE (LM) - responsible for executing
functions such as task mapping within the cluster.

• Global Manager PE (GM) - beyond local management, is
responsible for the overall system management, such as
defining application-to-cluster mapping, and controlling
external devices accesses.

• Slave PE (SP) - responsible for executing application
tasks.

Note that the adoption of the same OS at all SPs enables
to assign the management task to different PEs. This feature
increases the reliability of the system since faults in manager
processors do not halt the system. Developed platform is
parametrizable, being possible to define: the platform size, the
GM position, the cluster size, the maximum number of tasks
per PE, the CB size and the application set to execute. The
CB size is also parametrizable, allowing to limit the amount
of memory to be allocated for inter task communication. The
application descriptor is stored in an external memory called
application repository which is composed by: application
header, tasks header, and precompiled task binary code.

This work deploys two task mapping heuristics: Low Energy
Communication based on Dependencies Neighbor (LEC-DN)
and Nearest Neighbor (NN) [8]. The heuristic algorithm repre-
sents the applications as task graphs based on the its character-
istics (e.g load, communication). The application information
is loaded to GM, at runtime, from the repository. The LEC-
DN heuristic reduces the communication volume through the

NoC by nearing communicating tasks that exchange a high
communication volume. The initial task mapping evaluates all
SPs inside the selected cluster, selecting the SP with the largest
number of free SPs around it. The NN heuristic considers only
the proximity of an available resource to execute a given task.
The search tests all n-hop neighbors, n varying between 1 and
the NoC limits in a spiral way, stopping when the first free
PE is found.

At system startup, the distributed mapping structure is
created according to pre-defined parameters and the NoC
communication interface and the scheduler are initialized. At
this time, all processors know the GM, the LM, and the cluster
limit (all processors within a cluster have this information).

The GM receives from the application repository requests
to map new applications. This request contains the number of
required resources to execute the application. If the available
resources are smaller than the required by the application, the
application is scheduled to execute later. The mapping begins
with SearchCluster function, which analyses the application
information and clusters available resources to send the ap-
plication header to the destination cluster LM. The target LM
receives the header and executes a mapping heuristic for the
initial tasks. After that, it sends an update TLB message to
selected PEs and the GM, and then requests to the GM to send
the task code to be allocated in destination SP. The initial tasks
are requested to the local manager to map the remaining tasks
(same task mapping flow). The destination PE receives the
task code and the function xTaskCreate creates a new task.
Then the required RAM is automatically allocated from the
FreeRTOS heap, while the underlying task is included in the
list of tasks that are ready to run. At the end of its execution,
the task calls syscall delete performing vTaskDelete, which
removes the task from the scheduler and frees the allocated
space. The kernel notifies the LM that the task is finished only
after the message buffer is empty. In turn, when the application
is finished the LM reports the availability of new resources
to GM, which maps other incoming applications or finishes
system execution.

IV. EXPERIMENTAL SETUP AND RESULTS

This work uses the OVPSim [9], an instruction accurate
simulator based on dynamic binary translation, to validate
promoted extensions. OVPSim supports the simulation of NoC
and bus-based multiprocessor platforms. The NoC was imple-
mented using OVPSim APIs (ppm and bhm), and contains
a router with five bi-directional ports (input and output data
ports), input buffers, and routing and arbiter modules. The
NoC deploys a wormhole packet switching mode, XY routing
algorithm and distributed arbitration.

In order to validate the proposed work, this Section presents
experimental results considering two task mapping heuristics.
For this purpose, three applications are used as benchmarks:
(i) DTW - Digital Time Warping (DTW), with ten tasks; (ii)
MPEG decoder, with five tasks; (iii) DJK - Dijkstra, with
six tasks. Table II presents the six evaluated scenarios. Such
scenarios use a 10x10 multiprocessor platform instance with a



TABLE II: Evaluated Scenarios (10x10 NoC-based platform).

Applications No of Apps No of Tasks
A 120 x MPEG 120 600
B 100 x DJK 100 600
C 15 x DTW, 35 x MPEG 50 325
D 65 x MPEG, 35 x DJK 100 535
E 10 x DTW, 25 x MPEG, 25 x DJK 60 375
F 15 x DTW, 5 x MPEG, 40 x DJK 60 415

5x5 cluster size with different applications. For the evaluated
scenarios, we consider a PE with an ARM Cortex-M4F with
floating point unit executing two tasks at a time.

The proposed OVP model provides performance metrics,
offering to designers low-level performance results. Such met-
rics are computed at the end of the simulation, and include: (i)
communication volume; (ii) energy spent in the NoC: charac-
terized using the method proposed by [10], calibrated using the
ST/IBM CMOS 65 nm technology at 1.0 V, adopting clock-
gating, and a 100 MHz clock frequency (iii) execution time
for each processor: characterized using the model proposed in
[11], which counts and captures the executed instructions for
a given processor, grouping them according to their behavior.

Table III presents a comparison of the two evaluated heuris-
tics, concerning 2 different metrics: (i) communication energy,
and (ii) execution time. The communication energy presents
the cost to transfer the communication volume through the
NoC. For this purpose, it considers the distance in hops
between each pair of communicating tasks.

TABLE III: Mapping heuristics evaluation.

Communication Energy (µJ) Execution Time (1K clock cycles)
NN LEC-DN NN LEC-DN

A 16.04 15.74 36493 36806
B 87.90 87.27 36554 37621
C 10.93 10.20 27875 27858
D 39.59 38.95 40036 35554
E 28.42 27.80 32117 31456
F 40.20 39.21 41857 39918

LEC-DN reduces the communication energy for all sce-
narios compared to NN. This is explained since LEC-DN
approximates all communicating tasks and NN approximates
only pairs of communicating tasks. The execution time varies
according to the scenario, depending on the communication
volume, NoC contention, mapping algorithm computation and
shared execution of tasks in the system.

Fig. 2 illustrates an example of LEC-DN mapping (scenario
C), where each colour corresponds to a different application.
Note the locality of the applications, where tasks belonging to
the same application are mapped in the same region, with a
small distance in terms of number of hops.

V. CONCLUSION

This work proposed a non-intrusive extension to FreeRTOS
enabling its adoption in large-scale multiprocessor architec-
tures with distributed-memory organization together with run-
time distributed mapping heuristics. Results showed the effec-
tiveness of the included mapping heuristics, which allocated
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Fig. 2: Application mapping in a 10x10 NoC-based platform.

communicating tasks near to each other, reducing the NoC
congestion and the communication energy. Additionally, the
use of a largely used OS ported to different ISAs facilitates
system design and validation, reducing software design cost
and time-to-market.

ACKNOWLEDGEMENTS

The authors would like to thank Imperas Software Ltd. and
Open Virtual Platforms for their support and access to their
models and simulator. Fernando Moraes and Ricardo Reis
are supported by CNPq. Luciano Ost thanks the support of
Santander Universities UK for the travel grant to Brazil.

REFERENCES

[1] J. Holt, A. Agarwal, S. Brehmer, M. Domeika, P. Griffin, and
F. Schirrmeister, “Software Standards for the Multicore Era,” IEEE
Micro, vol. 29, no. 3, pp. 40–51, 2009.

[2] M. H. Haghbayan, A. Miele, A. M. Rahmani, P. Liljeberg, and H. Ten-
hunen, “A lifetime-aware runtime mapping approach for many-core
systems in the dark silicon era,” in DATE, 2016, pp. 854–857.

[3] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran,
E. Adeagbo, and B. Baas, “A 5.8 pJ/Op 115 billion Ops/sec, to
1.78 trillion Ops/sec 32 nm 1000-processor array,” in Symposium on
VLSI Circuits, Jun. 2016.

[4] R. Barry, “FreeRTOS - Real Time Operating System reference manual,”
2011. [Online]. Available: http://www.freertos.org/

[5] R. Busseuil, L. Barthe, G. M. Almeida, L. Ost, F. Bruguier, G. Sassatelli,
P. Benoit, M. Robert, and L. Torres, “Open-Scale: A Scalable, Open-
Source NOC-based MPSoC for Design Space Exploration,” in RECON-
FIG, 2011, pp. 357–362.

[6] J. Ma, F. Fu, Z. Liu, Z. Wu, and J. Wang, “µC-OS II-based Operating
System design for cluster in NoC-based MPSoC,” in ICSPCC, 2013.

[7] A. Aguiar, S. J. Filho, F. Magalhaes, and F. Hessel, “On the design
space exploration through the Hellfire Framework,” Journal of Systems
Architecture, vol. 60, no. 1, pp. 94–107, 2014.

[8] M. Mandelli, G. Castilhos, G. Sassatelli, L. Ost, and F. G. Moraes, “A
distributed energy-aware task mapping to achieve thermal balancing and
improve reliability of many-core systems,” in 2015 28th Symposium on
Integrated Circuits and Systems Design (SBCCI), Aug 2015, pp. 1–7.

[9] “OVPsim Simulator,” 2016. [Online]. Available: http://www.ovpworld.
org/technology ovpsim

[10] W. Hu, X. Tang, B. Xie, T. Chen, and D. Wang, “An Efficient Power-
Aware Optimization for Task Scheduling on NoC-based Many-core
System,” in CIT, 2010, pp. 171–178.

[11] F. Rosa, L. Ost, R. Reis, and G. Sassatelli, “Instruction-driven timing
CPU model for efficient embedded software development using OVP,”
in ICECS, 2013, pp. 855–858.


