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Abstract  

BH3 mimetics are novel targeted drugs with remarkable specificity and potency and enormous 

potential to improve cancer therapy. However, acquired resistance is an emerging problem. We report 

the rapid development of resistance in chronic lymphocytic leukemia cells isolated from patients 

exposed to increasing doses of Navitoclax (ABT-263), a BH3 mimetic. To mimic such rapid 

development of chemoresistance, we have developed simple resistance models to three different BH3 

mimetics, targeting BCL-2 (ABT-199), BCL-XL (A-1331852) or MCL-1 (A-1210477), in relevant 

haematological cancer cell lines. In these models, resistance could be attributed neither to consistent 

changes in expression levels of the anti-apoptotic proteins nor interactions among different pro- and 

anti-apoptotic BCL-2 family members. Using genetic silencing, pharmacological inhibition and 

metabolic supplementation, we report that targeting of glutamine uptake and its downstream 

signalling pathways, namely glutaminolysis, reductive carboxylation, lipogenesis, cholesterogenesis 

and mTOR signalling result in marked sensitisation of the chemoresistant cells to BH3 mimetic-

mediated apoptosis. Furthermore, our findings highlight the possibility of repurposing widely used 

drugs, such as statins, to target intermediary metabolism and improve the efficacy of BH3 mimetic 

therapy.  
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Introduction 

Failure to undergo apoptosis is a cardinal feature of cancer and several targeted therapies, 

such as the small molecule inhibitors targeting specific members of the anti-apoptotic BCL-2 family - 

navitoclax/ ABT-263 (targeting BCL-2, BCL-XL and BCL-w) and venetoclax/ ABT-199 (BCL-2 

specific) - are aimed at facilitating cancer cell clearance by enhanced apoptosis.1-4 Recently, selective 

inhibitors of BCL-XL (A-1331852) and MCL-1 (A-1210477 and S63845) have also been 

synthesised.5-7 Despite their selectivity in targeting distinct anti-apoptotic BCL-2 family members, 

and remarkable potency in inducing rapid and extensive apoptosis in a wide variety of malignancies, 

resistance to BH3 mimetics, in particular venetoclax, is starting to be reported in the clinic. Elevated 

levels of multiple members of the anti-apoptotic BCL-2 family proteins, including BCL-XL and MCL-

1, are often implicated in such chemoresistance.8-13 Although it may be possible to target these 

proteins with a combination of selective BH3 mimetics, the potential toxicities associated with such 

combination therapy may be problematic. 

 Altered metabolism is a promising approach to enhance the efficacy of chemotherapeutic 

agents, as a requirement for intermediary metabolites, such as glucose and glutamine, for the survival 

and proliferation of cancer cells is well documented.1,14-19 This is a promising approach, as drugs 

targeting different stages of intermediary metabolism are already approved or in trials for treating 

different malignancies.20,21 In this study, we report a low level of resistance that developed in chronic 

lymphocytic leukemic (CLL) cells from patients exposed to Navitoclax. To mimic this modest 

resistance, we have developed simple resistance models to different BH3 mimetics and demonstrate 

that downregulating glutamine uptake or metabolism as well as its downstream signalling cascades, 

such as reductive carboxylation, lipogenesis and cholesterogenesis, result in enhanced apoptosis of 

cancer cells resistant to different BH3 mimetics, thus highlighting the possibility that inhibition of key 

regulatory enzymes of these metabolic pathways may enhance sensitivity to BH3 mimetic therapy. 
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Methods 

Reagents and Antibodies 

ABT-263, A-1331852 and A-1210477 were from AbbVie (North Chicago, IL, USA). ABT-199, 

epigallocatechin gallate (EGCG), CB-839, simvastatin, rapamycin and torin-1 from Selleck 

Chemicals (Houston, TX, USA), Gamma-L-glutamyl-p-nitroanilide (GPNA) from Insight 

Biotechnology (Wembley, Middlesex, UK), Azaserine from Cambridge Bioscience (Cambridge, UK), 

aminooxyacetate (AOA), sodium palmitate, filipin, dimethyl α-ketoglutarate, oxaloacetate and citrate 

from Sigma-Aldrich (Gillingham, UK), L-glutamine from Life Technologies (Paisley, UK) and 

GSK2194069, SB204990, atorvastatin, pitavastatin and bafilomycin A1 from Tocris (Abingdon, UK) 

were used. Antibodies against PARP, BCL-2, MCL-1, BAX, BAK and GAPDH from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA), caspase-3, caspase-9, BCL-XL, BCL-w, BIM, PUMA, BAD, 

IDH2, ACL, ACO2, ATG5 and ATG7 from Cell Signalling Technology (MA, USA), BID from Prof. 

J. Borst (The Netherlands Cancer Institute, Amsterdam, The Netherlands), NOXA from Millipore 

(Watford, UK) and SLC1A5, GLS, GFAT, GLUD1, IDH3, FASN and HMGR from Abcam 

(Cambridge, UK) were used.  

Primary CLL cells and Cell lines 

Peripheral blood samples from CLL patients were obtained with patient consent and ethics 

committee approval (06_Q2501_122) from Leicester Haematological Tissue Bank and cultured as 

described.38 CLL samples were obtained from patients enrolled in a Phase 1/2a Study of ABT-263 

(Navitoclax) in patients with relapsed or refractory CLL (NCT00481091). Lymphocytes were purified 

and cultured in RPMI 1640 medium supplemented with 10% foetal bovine serum (FBS) (Life 

Technologies Inc.).  Alternatively, blood from patients was incubated at 37°C in 48-well plates and 

apoptosis assessed as described previously.39,40 Blood samples were collected prior to the first in vivo 

dose of navitoclax or 4 h after dosing during the lead-in-period (L1D1; Day 1 of lead-in-period), or 

day 1 of cycle 1 (C1D1), cycle 3 (C3D1) or cycle 5 (C5D1). Samples were collected 4 h after dosing 

as blood concentrations of ABT-263 were maximal at this time.41 For culture of CLL cells, mouse 
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fibroblast L cells were irradiated with 75 Gray and seeded in 24-well plates (3 x105 cells/ well). CLL 

cells were cultured at 1.5 x 106 cells / well on the L cells and removed when required by gentle 

washing with RPMI before treatment. Mantle cell lymphoma (MAVER-1), chronic myeloid leukemia 

(K562) and multiple myeloma (NCI-H929) cell lines were cultured in RPMI 1640 medium but the 

medium was supplemented with 0.02% 2-mercaptoethanol for culturing H929 cells. Cell lines were 

either from DMSZ (Braunshweig, Germany) or ATCC (Middlesex, UK) and subjected to short 

tandem repeat (STR) profiling to confirm identity.  

Resistance models 

The different resistance models to relevant BH3 mimetics were developed by treating control cells 

(represented as A in all schemes) of MAVER-1, K562 and H929 to the relevant BH3 mimetics, ABT-

199 (10 nM), A-1331852 (10 nM) or A-1210477 (5 µM), respectively. In the first resistance model, 

cells were exposed to their appropriate BH3 mimetic for 24 h followed by 2 weeks (2 w) without drug 

resulting in the cells depicted as B. These cells were further exposed to their appropriate BH3 mimetic 

for a further 24 h followed again by 2 weeks without drug resulting in C. This procedure was repeated 

a further twice resulting in E. In the second resistance model, cells were exposed to their appropriate 

BH3 mimetic for 24 h followed by 8 weeks without drug, resulting in the cells depicted as A4. The 

cells were collected every 2 weeks and labelled as A1, A2 and A3, respectively. In the third resistance 

model, cells were exposed to increasing concentrations of the appropriate BH3 mimetic, every 5 days 

(5 d) resulting in cells depicted as A-a, A-b, A-c and A-d. The fourth model of resistance was made in 

a similar manner, but the 5 d treatment period was split into a 2 d treatment, followed by 3 d without 

drug, resulting in cells depicted as A-i, A-ii, A-iii and A-iv. 

Metabolic deprivation, supplementation and apoptosis measurements 

For glutamine deprivation experiments, cells were washed with PBS and re-suspended in SILAC 

RPMI 1640 Flex Media (Life Technologies Inc.), supplemented with glucose (2 mg/mL) and 10% 

FBS, for 16 h. For supplementation studies, the indicated concentrations of metabolites were added to 

the glutamine free media, immediately before glutamine deprivation. For lipid supplementation 
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studies, sodium palmitate (dissolved in water at 70 °C for a stock concentration of 100 mM and added 

dropwise into fatty acid-free BSA (10%) to produce a final concentration of 10 mM) was 

supplemented in the culture media. The extent of apoptosis in cells following different treatments was 

quantified by FACS following staining of the cells with Annexin V-FITC and propidium iodide to 

measure phosphatidylserine externalisation, as previously described.42  

siRNA knockdowns, immunoprecipitation and western blotting 

Cells were transfected with 10 nM of siRNAs against SLC1A5 (SI00079730), GLS (SI03155019), 

GFAT (SI03246355), GLUD1 (SI02654743), IDH2 (SI02654820), IDH3 (SI00300524), ACO2 

(SI03019037), ACLY (SI02663332), FASN (SI00059752), HMGR (SI00017136), ATG5 

(SI02633946) and ATG7 (SI04344830) from Qiagen Ltd. (Manchester, UK) using Interferin 

(Polyplus Transfection Inc, NY), according to the manufacturer's protocol and processed 72 h after 

transfection. Immunoprecipitation and western blotting were carried out according to standard 

protocols.43  

Statistical Analysis 

One-way ANOVA multiple comparisons and Fishers LSD test P≤0.01 were performed for comparing 

sensitive and resistant cells. For CLL patient samples, one-way repeated measures ANOVA with 

Fishers LSD test P≤0.01 was used and statistics analysed using GraphPad Prism 6 software (La Jolla, 

CA). 
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Results 

Haematological malignancies acquire rapid resistance to BH3 mimetics 

The potential of BH3 mimetic therapy in cancer was first demonstrated in the treatment of 

BCL-2-dependent chronic lymphocytic leukemia (CLL) using navitoclax/ ABT-263. In a phase 1/2 

clinical trial of navitoclax, CLL patients were treated for an initial lead-in-period of 7 days with a low 

dose of navitoclax (100 mg daily) followed by 5-7 treatment cycles, with each cycle lasting 21 days 

during which the patients received 250 mg navitoclax daily. Analysis of the blood samples collected 

from these patients, either prior to the first in vivo dose of navitoclax or 4 h after dosing, during the 

different cycles of therapy revealed marked changes in the ability of navitoclax to induce apoptosis in 

the CLL cells (Fig. 1A). The first in vivo dose of navitoclax on day 1 of the lead-in period (L1D1) 

resulted in a time-dependent induction of apoptosis, as assessed by phosphatidylserine (PS) 

externalisation and ultrastructural changes, in comparison to the CLL cells from the same patients 

prior to treatment (Fig. 1A and Supplemental Fig. 1). A progressive increase in resistance to 

navitoclax was observed in CLL cells in vivo during the different cycles of treatment (Fig. 1A). Since 

these studies were carried out in whole blood, we wished to ascertain whether the decrease in ABT-

263-induced apoptosis in CLL cells could be attributed to chemoresistance.  To test this, CLL cells 

were isolated from these patients at the beginning of each treatment cycle and exposed to increasing 

concentrations of ABT-263. A significant decrease (3-fold difference in the IC50 values between the 

lead-in period and cycle 5) was observed in their ability to undergo ABT-263-induced apoptosis (Fig. 

1B), demonstrating that continued dosing of patients with ABT-263 resulted in a modest, yet 

significant increase in chemoresistance.  

Since chemoresistance is an emerging problem in BH3 mimetic therapy, we wished to extend 

these studies to more selective BH3 mimetics, such as ABT-199, which has replaced navitoclax 

owing to the dose-limiting thrombocytopenia associated with BCL-XL inhibition.3 Moreover, other 

selective BH3 mimetics that target BCL-XL (A-1331852) and MCL-1 (A-1210477 and S63845) have 

been introduced for use in several other malignancies.5-7 Using these BH3 mimetics and relevant 

cancer cell lines, we wished to mimic the rapid resistance observed in CLL patients following 

navitoclax (Fig. 1A and B), in order to identify ways to tackle chemoresistance, as it emerges. For 
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this, we chose the BCL-2-dependent MAVER-1, BCL-XL-dependent K562 and MCL-1-dependent 

H929 cell lines and exposed them to ABT-199, A-1331852 and A-1210477, respectively, to generate 

different resistant models (Fig. 1C and Supplemental Fig. 2). Initial exposure of the relevant cell lines 

to the corresponding BH3 mimetic resulted in a rapid, time-dependent induction of apoptosis as 

assessed by the activation of caspase-9 and -3 as well as the cleavage of the canonical caspase 

substrate, PARP (Supplemental Fig. 2A). Resistance to BH3 mimetics in these cells was generated by 

following the scheme presented (Fig. 1C), when the initially sensitive cells (A) became relatively 

resistant (E), after four exposures (within 8 weeks) to their respective BH3 mimetic (Fig. 1C). 

Similarly, a rapid resistance to the different BH3 mimetics was also observed using the other three 

resistance models (Supplemental Fig. 2B-D). The rapid and modest resistance to the different BH3 

mimetics in these cell lines was comparable to the extent of resistance observed in CLL cells during 

navitoclax therapy (Fig. 1B). 

 

Resistance to BH3 mimetics can be overcome by inhibiting multiple BCL-2 family members 

 Since resistance to BH3 mimetics has often been attributed to elevated expression levels of 

one or more anti-apoptotic BCL-2 family members, we wished to identify whether such changes 

could be responsible for the observed resistance. Comparison of the sensitive (A), intermediate (C) 

and resistant (E) cells from the different cell lines did not reveal any consistent differences in BCL-2 

family expression to explain the resistance (Supplemental Fig. 3). Therefore, we sought to identify 

whether changes in protein-protein interactions among different pro-apoptotic BH3-only members 

and their anti-apoptotic counterparts could explain the resistance to BH3 mimetics. For this, we 

performed immunoprecipitation studies to isolate the anti-apoptotic proteins bound to BIM and 

PUMA, which were abundantly expressed in the three different cell types. However, in the sensitive 

(A) and resistant (E) MAVER-1 cells, immunoprecipitation of BIM and PUMA revealed similar 

binding of BCL-2 and BCL-XL and little or no binding to MCL-1 (Supplemental Fig. 4). Similarly, no 

differences were observed in the binding of BIM and PUMA to BCL-XL and MCL-1 in sensitive and 

resistant K562 or H929 cells (Supplemental Fig. 4).  
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Although the protein expression levels and immunoprecipitation studies did not support an 

involvement of other BCL-2 family proteins in the observed resistance, the resistance to ABT-199 

observed in MAVER-1 cells was completely overcome by a combination of ABT-199 with either A-

1331852 or A-1210477, but not by either A-1331852 or A-1210477 alone, suggesting that the 

resistant cells in addition to BCL-2 also depended on BCL-XL and/or MCL-1 for survival (Fig. 1D). 

Furthermore, a combination of all three BH3 mimetics induced apoptosis in all the resistant cells, 

emphasising the importance of all three anti-apoptotic BCL-2 family members in chemoresistance in 

these cells (Fig. 1D). In K562 and H929 cells, the resistance was overcome by the combination of A-

1331852 and A-1210477, but not ABT-199, thus implicating primary roles for BCL-XL and MCL-1 in 

chemoresistance (Figs. 1E and F). Similar to the MAVER-1 cells, the chemoresistant K562 cells also 

exhibited enhanced apoptosis following a combination of all three BH3 mimetics (Fig. 1E), 

suggesting that some contribution of BCL-2 could not be totally excluded in these cells. These 

observations were almost entirely reproducible in the other three resistant models (Supplemental Fig. 

5), supporting the notion that BCL-XL and/or MCL-1 significantly contributed to the observed 

chemoresistance in the different resistance models.  

 

Modulation of glutamine uptake and/or metabolism enhances sensitivity to BH3 mimetics 

 Although the above results demonstrate that a combination of BH3 mimetics can overcome 

the resistance, such an approach targeting multiple members of the BCL-2 family requires careful 

evaluation of the therapeutic index, as these proteins perform redundant functions in the maintenance 

of normal cellular homeostasis. An alternative strategy to overcome chemoresistance to BH3 

mimetics could be achieved by altered metabolism, as depriving cells of glutamine has recently been 

shown to overcome MCL-1-mediated chemoresistance in multiple myeloma.19 In our experiments, 

glutamine deprivation for 16 h alone did not exhibit any effect on overall cell survival and yet, 

sensitised both the sensitive (A) and resistant (E) cells to BH3 mimetic-mediated apoptosis (Fig. 2A). 

The increase in apoptosis observed in both sensitive (A) and resistant (E) cells indicates that 

glutamine deprivation most likely provides an additional cytotoxic cue that induces apoptosis in the 

sensitive and resistant cells, but could also bypass the resistance mechanism in the resistant cells. 



10 

 

Nevertheless, our results suggest that targeting the glutamine metabolic pathway could enhance 

apoptosis and circumvent chemoresistance to BH3 mimetics in all our resistance models (Fig. 2A and 

Supplemental Fig. 6). To investigate the therapeutic potential of this approach, we wished to further 

understand how changes in glutamine metabolism might alter BH3 mimetic-mediated apoptosis.  

Glutamine is transported into cells primarily via the SLC1A5 transporter and metabolised to 

glutamate, primarily via glutaminase (GLS)-mediated glutaminolysis.22 Alternatively, glutamate can 

be generated from glutamine as a by-product of the hexosamine biosynthetic pathway, during the 

conversion of fructose-6-phosphate to glucosamine-6-phosphate, catalysed by the enzyme, 

glutamine:fructose-6-phosphate-amidotransferase (GFAT) (Fig. 2B).22 Glutamate can then generate α-

ketoglutarate (α-KG) either via glutamate dehydrogenase (GLUD)-mediated oxidative deamination or 

a series of aminotransferase reactions (Fig. 2B).14,22
 Downregulation by RNA interference or 

pharmacological inhibition of key players involved in both glutamine uptake and its subsequent 

metabolism restored sensitivity of chemoresistant K562 cells to A-1331852-mediated apoptosis, albeit 

to varying degrees (Figs. 2C and D). While downregulation of SLC1A5 and GLS resulted in enhanced 

sensitivity to A-1331852-mediated apoptosis in the different cell lines tested, inhibition of other 

enzymes in the glutamine metabolic pathway produced more modest effects (Figs. 2C, D and 

Supplemental Fig. 7). 

 

Targeting reductive carboxylation enhances sensitivity to BH3 mimetics 

 Metabolic supplementation of the glutamine-deprived cells with either glutamine or α-KG 

restored the resistance of K562 cells to A1331852-induced apoptosis (Fig. 3A). Since glutamine-

derived α-KG feeds into the tricarboxylic acid (TCA) cycle, we wished to explore the functions of the 

TCA cycle and its intermediates in chemoresistance to BH3 mimetics. For this, we supplemented 

glutamine-deprived cells with TCA intermediates, such as oxaloacetate and citrate. Strikingly, 

supplementation with citrate, but not oxaloacetate, restored the resistance of K562 cells to A1331852-

induced apoptosis (Fig. 3A). These results suggested that conversion of α-KG to citrate via reductive 

carboxylation may play a role in regulating sensitivity to BH3 mimetics.  
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Reductive carboxylation involves the conversion of α-KG to isocitrate (catalysed by isocitrate 

dehydrogenases 1 and 2; IDH1/2), which then generates citrate (catalysed by aconitase) (Fig. 3B).23 

While IDH1/2 catalyse reductive carboxylation of α-KG, another isoform of isocitrate dehydrogenase, 

IDH3 catalyses the reverse-conversion of isocitrate to α-KG.23 Silencing the expression of IDH2 and 

aconitase, but not IDH3, restored the sensitivity of chemoresistant K562 cells to A-1331852-mediated 

apoptosis (Figs. 3C and D), suggesting that the availability of citrate could be associated with the 

chemoresistance phenotype. To test this, IDH2-downregulated K562 cells were supplemented with 

citrate to identify whether addition of citrate could overcome the inhibition of reductive carboxylation 

and revert the associated increase in A-1331852-induced apoptosis. Indeed, cells supplemented with 

citrate, but not glutamine or α-KG, restored the chemoresistance of IDH2 downregulated cells (Fig. 

3E), thus confirming the involvement of reductive carboxylation and the availability of citrate as 

crucial players for the observed chemoresistance.  

 

Downregulation of lipogenesis and cholesterogenesis enhances sensitivity to BH3 mimetics 

 Since citrate generated as a consequence of reductive carboxylation of α-KG is a major 

source of carbon for lipid synthesis, we wished to investigate whether inhibition of lipogenesis could 

enhance sensitivity to BH3 mimetics (Fig. 4A). Using a complementary approach of genetic and 

pharmacological inhibition of ATP-citrate lyase (ACLY), which catalyses the conversion of citrate to 

acetyl-CoA,24,25 as well as Fatty acid synthase (FASN), which synthesises long chain fatty acids 

following the condensation of acetyl-CoA and malonyl-CoA,26,27 we identified that modulation of 

lipogenesis pathway, either using genetic silencing or pharmacological inhibition of ACLY (using 

SB204990) or FASN (using GSK2194069) could enhance sensitivity of cells to BH3 mimetics (Fig. 

4B, C and Supplemental Figs. 7C and D). Furthermore, metabolic supplementation with palmitate (the 

product of FASN; Fig. 4A) in cells treated with GSK2194069 reverted the sensitised cells to their 

original chemoresistant phenotype (Fig. 4D), thus obviating a requirement for FASN. These findings 

conclusively demonstrated that enhanced lipogenesis was associated with chemoresistance to BH3 
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mimetics and targeting lipogenesis could circumvent such resistance by enhancing BH3 mimetic-

mediated apoptosis. 

 Acetyl-CoA generated from citrate can also feed into the cholesterol biosynthetic pathway, 

thus resulting in enhanced cholesterol production in cells. Targeting the rate-limiting step of 

cholesterol biosynthesis (catalysed by HMG-CoA reductase; HMGR), either by genetic knockdowns 

(Fig. 4E) or pharmacological inhibition, using three widely used statins, simvastatin, atorvastatin and 

pitavastatin (Fig. 4F) reversed resistance and restored the sensitivity of cells to BH3 mimetics (Figs. 

4E, F and Supplemental Fig. 7E). Taken together, these data demonstrate that inhibition of several key 

players in lipid synthesis, including ACLY, FASN and HMGR, enhance the sensitivity to BH3 

mimetics.  

 

Targeting the mTOR signalling cascade enhances sensitivity to BH3 mimetics 

 Since glutamine metabolism has been extensively implicated in mTOR signalling,22,28 we 

speculated whether targeting mTOR kinases could enhance sensitivity to BH3 mimetics. Inhibition of 

mTOR kinases with rapamycin and torin-1 resulted in significant sensitisation of cells to BH3 

mediated apoptosis (Fig. 5A and Supplemental Fig. 7F). To identify whether torin-1-mediated 

sensitisation of cells to apoptosis was due to autophagy, we exposed the sensitive and resistant cells to 

bafilomycin A1 (Baf A1), which blocks the autophagic flux by preventing lysosomal fusion of the 

autophagosomes. Exposure to bafilomycin A1 failed to revert torin-1-mediated chemosensitisation, 

suggesting that this effect could be independent of autophagy (Fig. 5B). Furthermore, genetic 

silencing of autophagy proteins, ATG5 and ATG7, which are critical for autophagy induction, also 

failed to revert torin-1-mediated sensitisation (Fig. 5C), confirming our finding that mTOR inhibition 

circumvented resistance and enhanced sensitivity to BH3 mimetics independent of autophagy. In 

summary, our findings demonstrate that modulation of glutamine metabolism and its downstream 

signalling pathways, namely reductive carboxylation, lipogenesis and cholesterogenesis, as well as 

inhibition of mTOR signalling could enhance the therapeutic efficacy of BH3 mimetic therapy 

thereby circumventing chemoresistance to BH3 mimetics (Fig. 5D).  
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Targeting intermediary metabolism enhances sensitivity to navitoclax in primary CLL patient 

samples 

 Our results indicate that targeting different facets of intermediary metabolism enhanced 

sensitivity to different BH3 mimetics in cell lines derived from relevant haematological malignancies. 

To further extend our observations in cell lines to primary patient samples, we used CLL cells isolated 

from patients during the lead-in period (L1D1) as well as cells from the same patients after 5 cycles of 

navitoclax therapy (C5D1), as previously detailed in Figure 1. Using these samples, we wished to 

assess whether modulating glutamine metabolism would enhance apoptosis mediated by navitoclax. 

For this, we exposed CLL cells to CB-839 and Simvastatin for 24 h followed by navitoclax for 4 h 

and assessed the extent of apoptosis. In agreement with our cell line data, both CB-839 and statins 

overcame the resistance to navitoclax-mediated apoptosis in primary CLL cells (Figure 6), supporting 

the therapeutic translatability of our data from cell lines to patients. 
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Discussion 

  Anti-apoptotic BCL-2 family members have been attractive drug targets both because of their 

high expression levels in several cancers and also their well-characterised pro-survival roles. Even 

with extensive supportive in vitro data, the use of BH3 mimetics in treating cancer patients is still in 

its infancy, with venetoclax, a BCL-2 specific inhibitor, only recently receiving approval for treatment 

of refractory chronic lymphocytic leukaemia.4 The development of BH3 mimetics to target BCL-XL 

and MCL-1 in patients will be extremely valuable in the treatment of several cancer types. However 

potential mechanisms of resistance to BH3 mimetics need to be recognised as they emerge and ways 

to circumvent resistance identified. Several resistance mechanisms, including mutations of the target 

site,29 post-translational modifications,30,31 and elevated levels of anti-apoptotic BCL-2 family 

members,8,11,32,33 have already been identified. While some of these resistance mechanisms could be 

overcome by co-administration of other specific BH3 mimetics that target BCL-XL and/or MCL-1,5-7
 

such inhibitors are not yet clinically available and the potential toxicities associated with the 

simultaneous inhibition of multiple BCL-2 family members are not known.  

 Measures to overcome chemoresistance have resulted in exploring the therapeutic benefits of 

modulating intermediary metabolism in BH3 mimetic-mediated apoptosis.19,20,34 Although the 

mechanisms by which glutamine could regulate cancer cell proliferation have been extensively 

studied, the interrelationship between glutamine metabolism and apoptosis requires further study. 

Previous findings have reported a dependence on Myc for glutamine-mediated apoptosis14 and that c-

Myc activates glutaminolysis by upregulating both the glutamine transporter, SLC1A5, and 

glutaminase, GLS-1.35,36 However, we were unable to detect an increase in expression levels of Myc, 

SLC1A5 or GLS-1 in our resistance models (Fig. 3 and data not shown). The ability of glutamine to 

regulate apoptosis and/or chemoresistance could also be due to its regulatory effect on mitochondrial 

oxidative phosphorylation.20 Although we do not entirely understand how glutamine metabolism 

impinges on apoptosis at this point, our data strongly support the notion that modulating glutamine 

metabolism and its related signalling pathways, such as reductive carboxylation, lipogenesis, 

cholesterogenesis and mTOR signalling could enhance BH3 mimetic-mediated apoptosis in several 

haematological malignancies (Figs. 3-6). This is particularly promising, as glutaminase inhibitors, 
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such as CB-839 and related drugs are already in clinical trials for the treatment of several 

malignancies20,37 and other drugs targeting cholesterogenesis, such as statins are the most commonly 

prescribed drugs to millions of people worldwide. While this manuscript was in preparation, an 

independent study comparing a large cohort of CLL patients, many of whom were statin users, 

reported that response to venetoclax/ ABT-199 was enhanced among statin users in three different 

clinical trials.44 These findings highlight the possibility of repurposing several drugs targeting the 

intermediary metabolic pathways in conjunction with BH3 mimetic therapy to enhance the therapeutic 

effectiveness and overcome the emerging chemoresistance in several cancers.   



16 

 

 

Acknowledgements 

We thank AbbVie for inhibitors, Prof. J. Borst for antibodies and Dr. S. P. N. Jayne for providing us 

the CLL samples for the study. This work was supported by a NorthWest Cancer Research Grant 

CR1040 (Varadarajan and Cohen), a studentship from the Ministry of Higher Education and Scientific 

Research and University of Al-Qadisiyah, Iraq (Al-Zebeeby), a Science Without Borders studentship, 

CNPq 233624/2014-7, from the Ministry of Education, Brazil (Milani) and a studentship from Prince 

Sattam Bin Abdulaziz University, Saudi Arabia (Alotibi).  

 

Conflict of Interest Disclosure 

The authors do not have any conflict of interest. 



17 

 

References 

1 Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell 2011; 144(5): 646–
674. 

2 Tse C, Shoemaker AR, Adickes J et al. ABT-263: a potent and orally bioavailable Bcl-2 family 
inhibitor. Cancer Res 2008; 68(9): 3421–3428. 

3 Souers AJ, Leverson JD, Boghaert ER et al. ABT-199, a potent and selective BCL-2 inhibitor, 
achieves antitumor activity while sparing platelets. Nat Med 2013; 19(2): 202–208. 

4 Roberts AW, Davids MS, Pagel JM et al. Targeting BCL2 with Venetoclax in Relapsed Chronic 
Lymphocytic Leukemia. N Engl J Med 2016; 374(4): 311–322. 

5 Leverson JD, Phillips DC, Mitten MJ et al. Exploiting selective BCL-2 family inhibitors to 
dissect cell survival dependencies and define improved strategies for cancer therapy. Sci Transl 
Med 2015; 7(279): 279ra40. 

6 Leverson JD, Zhang H, Chen J et al. Potent and selective small-molecule MCL-1 inhibitors 
demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-
263 (navitoclax). Cell Death Dis 2015; 6: e1590. 

7 Kotschy A, Szlavik Z, Murray J et al. The MCL1 inhibitor S63845 is tolerable and effective in 
diverse cancer models. Nature 2016; 538(7626): 477–482. 

8 van Delft MF, Wei AH, Mason KD et al. The BH3 mimetic ABT-737 targets selective Bcl-2 
proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 
10(5): 389–399. 

9 Zhang H, Guttikonda S, Roberts L et al. Mcl-1 is critical for survival in a subgroup of non-
small-cell lung cancer cell lines. Oncogene 2010; 30(16): 1963–1968. 

10 Gores GJ, Kaufmann SH. Selectively targeting Mcl-1 for the treatment of acute myelogenous 
leukemia and solid tumors. Genes Dev 2012; 26(4): 305–311. 

11 Vogler M, Butterworth M, Majid A et al. Concurrent up-regulation of BCL-XL and BCL2A1 
induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. 
Blood 2009; 113(18): 4403–4413. 

12 Tahir SK, Smith ML, Hessler P et al. Potential mechanisms of resistance to venetoclax and 
strategies to circumvent it. BMC Cancer 2017; 17(1): 399. 

13 Bose P, Grant S. Mcl-1 as a therapeutic target in acute myelogenous leukemia (AML). Leuk Res 
Rep 2013; 2(1): 12-14. 

14 Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but 
not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 2007; 178(1): 93–
105. 

15 Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends 
Biochem Sci 2010; 35(8): 427–433. 

16 Graham NA, Tahmasian M, Kohli B et al. Glucose deprivation activates a metabolic and 
signaling amplification loop leading to cell death. Mol Syst Biol 2012; 8: 589. 



18 

 

17 Son J, Lyssiotis CA, Ying H et al. Glutamine supports pancreatic cancer growth through a 
KRAS-regulated metabolic pathway. Nature 2013; 496(7443): 101–105. 

18 Still ER, Yuneva MO. Hopefully devoted to Q: targeting glutamine addiction in cancer. Br J 
Cancer 2017; 116(11): 1375–1381. 

19 Bajpai R, Matulis SM, Wei C et al. Targeting glutamine metabolism in multiple myeloma 
enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene 2016; 
35(30): 3955–3964. 

20 Jacque N, Ronchetti AM, Larrue C et al. Targeting glutaminolysis has antileukemic activity in 
acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood 2015; 126(11): 1346–
1356. 

21 Gross MI, Demo SD, Dennison JB et al. Antitumor activity of the glutaminase inhibitor CB-839 
in triple-negative breast cancer. Mol Cancer Ther 2014; 13(4): 890–901. 

22 Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. 
Nat Rev Cancer 2016; 16(11): 619–634. 

23 Al-Khallaf H. Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular 
insight. Cell Biosci 2017; 7: 37. 

24 Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer 
Res 2012; 72(15): 3709–3714. 

25 Khwairakpam AD, Shyamananda MS, Sailo BL et al. ATP citrate lyase (ACLY): a promising 
target for cancer prevention and treatment. Curr Drug Targets 2015; 16(2): 156–163. 

26 Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. 
Nat Rev Cancer 2007; 7(10): 763–777. 

27 Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as 
molecular targets for cancer therapy. Br J Cancer 2009; 100(9): 1369–1372. 

28 Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017; 
168(6): 960–976. 

29 Fresquet V, Rieger M, Carolis C, García-Barchino MJ, Martinez-Climent JA. Acquired 
mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in 
lymphoma. Blood 2014; 123(26): 4111–4119. 

30 Konopleva M, Contractor R, Tsao T et al. Mechanisms of apoptosis sensitivity and resistance to 
the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 2006; 10(5): 375–388. 

31 Mazumder S, Choudhary GS, Al-Harbi S, Almasan A. Mcl-1 Phosphorylation defines ABT-737 
resistance that can be overcome by increased NOXA expression in leukemic B cells. Cancer Res 
2012; 72(12): 3069–3079. 

32 Chen S, Dai Y, Harada H, Dent P, Grant S. Mcl-1 down-regulation potentiates ABT-737 
lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res 2007; 
67(2): 782–791. 

33 Lin KH, Winter PS, Xie A et al. Targeting MCL-1/BCL-XL Forestalls the Acquisition of 
Resistance to ABT-199 in Acute Myeloid Leukemia. Sci Rep 2016; 6(6): 27696. 



19 

 

34 Chan SM, Thomas D, Corces-Zimmerman MR et al. Isocitrate dehydrogenase 1 and 2 mutations 
induce BCL-2 dependence in acute myeloid leukemia. Nat Med 2015; 21(2): 178–184. 

35 Wise DR, DeBerardinis RJ, Mancuso A et al. Myc regulates a transcriptional program that 
stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci 
2008; 105(48): 18782–18787. 

36 Liu W, Le A, Hancock C et al. Reprogramming of proline and glutamine metabolism contributes 
to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. 
Proc Natl Acad Sci 2012; 109(23): 8983–8988. 

37 Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between Metabolism and 
Cancer Biology. Cell 2017; 168(4): 657–669. 

38 Vogler M, Weber K, Dinsdale D et al. Different forms of cell death induced by putative BCL2 
inhibitors. Cell Death Differ 2009; 16(7): 1030–1039. 

39 Vogler M, Dinsdale D, Dyer MJS, Cohen GM. ABT-199 selectively inhibits BCL2 but not 
BCL2L1 and efficiently induces apoptosis of chronic lymphocytic leukaemic cells but not 
platelets. Br J Haematol 2013; 163(7): 139–142. 

40 Vogler M, Furdas SD, Jung M, Kuwana T, Dyer MJS, Cohen GM. Diminished sensitivity of 
chronic lymphocytic leukemia cells to ABT-737 and ABT-263 due to albumin binding in blood. 
Clin Cancer Res 2010; 16(16): 4217–4225. 

41 Roberts AW, Seymour JF, Brown JR et al. Substantial susceptibility of chronic lymphocytic 
leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or 
refractory disease. J Clin Oncol 2012; 30(5): 488–496. 

42 Varadarajan S, Poornima P, Milani M et al. Maritoclax and dinaciclib inhibit MCL-1 activity 
and induce apoptosis in both a MCL-1-dependent and -independent manner. Oncotarget 2015; 
6(14): 12668–12681. 

43 Lucas CM, Milani M, Butterworth M et al. High CIP2A levels correlate with an antiapoptotic 
phenotype that can be overcome by targeting BCL-XL in chronic myeloid leukemia. Leukemia 
2016; 30(6): 1273–1281. 

44.    Lee JS, Roberts A, Juarez D et al. Statins enhance efficacy of venetoclax in blood cancers.   
         SciTransl Med 2018; 10(445): eaaq1240.  



20 

 

Figure Legends  
 
Figure 1.  Haematological malignancies acquire rapid resistance to BH3 mimetics. (A) Blood 

samples collected from CLL patients (n=5), either prior to the first in vivo dose of navitoclax or 4 h 

after dosing during different stages of treatment - day 1 of the initial lead-in-period (L1D1), day 1 of 

cycle 1 (C1D1), day 1 of cycle 3 (C3D1) or day 1 of  cycle 5 (C5D1) - were incubated ex vivo and the 

extent of apoptosis in the CD19+ CLL cells assessed at the indicated time points by 

phosphatidylserine (PS) externalisation. (B) CLL cells isolated from these patients at the beginning of 

each treatment cycle, as indicated in the figure, were exposed in vitro to increasing concentrations of 

ABT-263, the extent of apoptosis assessed and IC50 values are shown. (C) Scheme for establishing 

resistance to specific BH3 mimetics in relevant haematological cell lines, as explained in the methods. 

Sensitive (A) and resistant (E) cells of MAVER-1, K562 and H929 cells were exposed for 4 h to 

ABT-199 (10 nM), A-1331852 (10 nM) and A-1210477 (5 μM), respectively, and apoptosis assessed. 

(D-F) Combination with some but not all BH3 mimetics restores the apoptotic sensitivity of resistant 

(E) MAVER-1, K562 and H929 cells exposed for 4 h to ABT-199 (10 nM), A-1331852 (10 nM) or 

A-1210477 (5 μM), respectively. ***P �0.001, **P�0.01; Error bars = Mean ± SEM (n=3). 

 

Figure 2. Inhibition of glutamine uptake and metabolism enhances sensitivity to BH3 mimetics. 

(A) Deprivation of glutamine (Gln) for 16 h restores the apoptotic sensitivity of resistant (E) 

MAVER-1, K562 and H929 cells to a 4 h exposure of the indicated BH3 mimetic. (B) Scheme 

representing the glutamine uptake and metabolism pathway. (C) Apoptotic sensitivity of K562 

resistant (E) cells exposed to A-1331852 (10 nM) for 4 h was restored following genetic knockdown 

for 72 h with the indicated siRNA. (D)  Apoptotic sensitivity of K562 resistant (E) cells exposed to A-

1331852 (10 nM) for 4 h was restored following pharmacological inhibition of glutamine uptake or 

metabolism with GPNA (5 mM) for 48 h, CB-839 (10 μM) for 72 h, azaserine (25 μM) for 16 h and 

AOA (500 μM) for 24 h but not with EGCG (50 μM) for 24 h. Western blots confirmed the 

knockdown efficiency of the different siRNAs. ***P �0.001, **P�0.01; Error bars = Mean ± SEM 

(n=3). 
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Figure 3. Modulation of reductive carboxylation enhances sensitivity to BH3 mimetics. (A) K562 

(A and E) cells were cultured in normal RPMI medium or glutamine-free medium with and without 

the supplementation of glutamine (2 mM), exposed to A-1331852 (10 nM) for 4 h and the extent of 

apoptosis assessed. Addition of citrate (4 mM) and α-ketoglutarate (α-KG) (4 mM) but not 

oxaloacetate (4 mM) for 16 h reversed the sensitivity of the resistant (E) cells in glutamine-deprived 

media. (B) Scheme representing the link between tricarboxylic acid (TCA) cycle and reductive 

carboxylation. (C) K562 (A and E) cells were transfected with siRNAs against IDH2, IDH3 and 

aconitase for 72 h, followed by a 4 h exposure to A-1331852 and apoptosis assessed. (D) Western 

blots confirmed the knockdown efficiency of the different siRNAs. (E) K562 (A and E) cells, 

transfected with a siRNA against IDH2 for 72 h, were glutamine deprived with and without the 

supplementation of glutamine (2 mM), α-ketoglutarate (α-KG) or citrate (both at 4 mM) for 16 h and 

the extent of apoptosis following A-1331852 (10 nM) for 4 h was assessed. ***P �0.001. Error bars = 

Mean ± SEM (n=3). 

 

Figure 4. Inhibition of lipogenesis and cholesterogenesis enhances sensitivity to BH3 mimetics. 

(A) Scheme representing reductive carboxylation, lipogenesis and cholesterogenesis. (B) Apoptotic 

sensitivity of K562 resistant (E) cells exposed to A-1331852 (10 nM) for 4 h was restored following 

genetic knockdown for 72 h of key enzymes in fatty acid synthesis. Western blots confirmed the 

knockdown efficiency of the different siRNAs. (C) Apoptotic sensitivity of K562 resistant (E) cells 

exposed to A-1331852 (10 nM) for 4 h was restored following pharmacological inhibition of key 

enzymes in fatty acid synthesis using SB204990 (1 μM) for 72 h or GSK2194069 (100 nM) for 48 h. 

(D) Metabolic supplementation of K562 (A and E) cells with palmitate (50 μM) for 48 h prior to the 

exposure of cells to GSK2194069 (100 nM) overcame the sensitisation effect of GSK2194069 on A-

1331852-mediated apoptosis. (E) genetic knockdown for 72 h of HMGR or (F) pharmacological 
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inhibition of HMGR by simvastatin (250 nM) for 72 h, atorvastatin (10 μM) for 48 h or pitavastatin (1 

μM) for 72 h. ***P �0.001; **P�0.01. Error bars = Mean ± SEM (n=3). 

 

Figure 5. Modulation of mTOR signalling enhances sensitivity to BH3 mimetics independent of 

autophagy. (A) Apoptotic sensitivity of K562 resistant (E) cells exposed to A-1331852 (10 nM) for 4 

h was restored following pharmacological inhibition of mTOR signalling using rapamycin (100 nM) 

or torin-1 (10 nM) for 16 h. (B) Inhibition of mTOR-regulated autophagy using 3-MA (10 mM) or 

bafilomycin A1 (100 nM) for 1 h, followed by torin-1 (10 nM) for a further 16 h, resulted in varying 

effects on A-1331852-mediated apoptosis. (C) Genetic knockdown of ATG5 and ATG7 for 72 h 

failed to revert torin-1 (10 nM)-mediated sensitisation of apoptosis in K562 resistant (E) cells, 

following A-1331852 (10 nM) for 4 h. Western blots confirmed the knockdown efficiency of ATG5 

and ATG7 siRNA. ***P �0.001. Error bars = Mean ± SEM (n=3). (D) Scheme representing 

glutamine uptake by SLC1A5 (inhibited by GPNA), glutaminolysis (inhibited by CB-839) to generate 

α-ketoglutarate, reductive carboxylation of α-ketoglutarate to generate citrate, which produces acetyl-

CoA by a reaction catalysed by ACLY (inhibited by SB204990), which eventually results in 

lipogenesis (inhibited by GSK2194069) and cholesterogenesis (inhibited by statins). Glutamine 

uptake, metabolism and its downstream signalling cascade can feed into mTOR signalling (inhibited 

by torin-1), all of which promote cell growth. In this study, we demonstrate that modulation of these 

distinct intermediary metabolic pathways could successfully sensitise cancer cells to BH3 mimetic-

mediated apoptosis. 

 

Figure 6. Inhibition of GLS and HMGR circumvents resistance to navitoclax-mediated 

apoptosis in primary CLL cells. CLL cells isolated from 5 patients during the initial lead-in-period 

(L1D1) or day 1 of cycle 5 (C5D1) were cultured ex vivo on feeder layer for 24 h, followed by 

exposure for a further 24 h to (A) CB-839 (50 nM) or (B) simvastatin (10 nM), and removed from the 
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feeder layer for further exposure to navitoclax (50 nM) for 4 h. The extent of apoptosis was assessed 

as before. *P �0.05. Error bars = Mean ± SEM (n=5). 
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Supplemental information  

 

Supplemental Figure S1. First in vivo dose of navitoclax resulted in marked ultrastructural 

changes in CLL cells. CLL cells isolated from two different patients prior to receiving navitoclax and 

4 h after the first in vivo dosing during day 1 of the lead-in-period (L1D1) were incubated ex vivo for a 

further 8 h, before fixation in 2% glutaraldehyde and transmission electron microscopy. CLL cells from 

patients exposed to navitoclax exhibited chromatin condensation and rupture of the outer mitochondrial 

membrane. Scale bar – 500 nm. 

Supplemental Figure S2. Rapid development of resistance to BH3 mimetic-mediated apoptosis in 

haematological cell lines. (A) Exposure of MAVER-1, K562 and H929 cells to ABT-199 (10 nM), A-

1331852 (10 nM) and A-1210477 (10 µM), respectively resulted in a time dependent induction of 

apoptosis as assessed by western blotting for the indicated proteins. (B-D) Schemes used for developing 

the other three models of drug resistance as described in the Methods. Assessment of apoptosis by PS 

externalisation showed that resistance developed in the different cellular models following exposure for 

4 h to ABT-199 (10 nM), A-1331852 (10 nM) and A-1210477 (5 µM), respectively. ***P ⩽0.001; 

Error bars = Mean ± SEM (n=3).  

Supplemental Figure S3. Resistance to BH3 mimetic-mediated apoptosis could not be attributed 

to marked changes in the expression levels of BCL2 family members. Immunoblots of BCL-2 

family members showed no major changes in the indicated cell lines, during the development of 

resistance, depicted as A, C and E. A is the sensitive parent line, whereas C and E are relatively more 

resistant to the BH3 mimetics compared to A. * in the PUMA immunoblot depicts a non-specific band. 

Supplemental Figure S4. Protein-protein interactions among anti- and pro-apoptotic BCL-2 

family proteins are similar in both sensitive and resistant cells. Immunoprecipitates of BIM and 

PUMA in MAVER-1, K562 and H929 (A and E) cells showed no major differences in the binding of 

the indicated proteins. BC represents the beads control.  
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Supplemental Figure S5. Resistance to BH3 mimetics in the different resistance models can be 

overcome by simultaneous inhibition of multiple BCL-2 members. (A-C) Sensitive and resistant 

lines of MAVER-1, K562 and H929 from the different resistance models, as explained in methods and 

depicted in Supplemental figure 2, were exposed for 4 h to ABT-199 (10 nM), A-1331852 (10 nM) or 

A-1210477 (5 µM) and the extent of apoptosis assessed by PS externalisation. ***P ⩽0.001, **P⩽0.01; 

Error bars = Mean ± SEM (n=3). 

Supplemental Figure S6. Glutamine deprivation sensitises the different cell lines to BH3 mimetic-

mediated apoptosis. (A-C) Sensitive and resistant lines of MAVER-1, K562 and H929 from the 

different resistance models, as explained in methods and depicted in Supplemental figure 2, were 

deprived of glutamine for 16 h and the extent of apoptosis assessed following a 4 h exposure to ABT-

199 (10 nM), A-1331852 (10 nM) or A-1210477 (5 µM). ***P ⩽0.001; Error bars = Mean ± SEM 

(n=3). 

Supplemental Figure S7. Modulation of intermediary metabolism enhances sensitivity to BH3 

mimetics in distinct haematological cell lines Exposure to GPNA (5 mM for 48 h), CB-839 (10 µM 

for 72 h), SB204990 (1 µM for 72 h), GSK2194069 (100 nM for 48 h), simvastatin (250 nM for 72 h) 

or torin-1 (10 nM for 24 h) enhances the sensitivity of the chemoresistant MAVER-1 and H929 cells to 

their respective BH3 mimetics. Apoptosis was assessed by PS externalisation following exposure for 4 

h to ABT-199 (10 nM) or A-1210477 (5 µM). ***P ⩽0.001; *P⩽0.1; Error bars = Mean ± SEM (n=3). 
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Supplemental information  

 

Supplemental Figure S1. First in vivo dose of navitoclax resulted in marked ultrastructural 

changes in CLL cells. CLL cells isolated from two different patients prior to receiving navitoclax and 

4 h after the first in vivo dosing during day 1 of the lead-in-period (L1D1) were incubated ex vivo for a 

further 8 h, before fixation in 2% glutaraldehyde and transmission electron microscopy. CLL cells from 

patients exposed to navitoclax exhibited chromatin condensation and rupture of the outer mitochondrial 

membrane. Scale bar – 500 nm. 

Supplemental Figure S2. Rapid development of resistance to BH3 mimetic-mediated apoptosis in 

haematological cell lines. (A) Exposure of MAVER-1, K562 and H929 cells to ABT-199 (10 nM), A-

1331852 (10 nM) and A-1210477 (10 µM), respectively resulted in a time dependent induction of 

apoptosis as assessed by western blotting for the indicated proteins. (B-D) Schemes used for developing 

the other three models of drug resistance as described in the Methods. Assessment of apoptosis by PS 

externalisation showed that resistance developed in the different cellular models following exposure for 

4 h to ABT-199 (10 nM), A-1331852 (10 nM) and A-1210477 (5 µM), respectively. ***P ⩽0.001; 

Error bars = Mean ± SEM (n=3).  

Supplemental Figure S3. Resistance to BH3 mimetic-mediated apoptosis could not be attributed 

to marked changes in the expression levels of BCL2 family members. Immunoblots of BCL-2 

family members showed no major changes in the indicated cell lines, during the development of 

resistance, depicted as A, C and E. A is the sensitive parent line, whereas C and E are relatively more 

resistant to the BH3 mimetics compared to A. * in the PUMA immunoblot depicts a non-specific band. 

Supplemental Figure S4. Protein-protein interactions among anti- and pro-apoptotic BCL-2 

family proteins are similar in both sensitive and resistant cells. Immunoprecipitates of BIM and 

PUMA in MAVER-1, K562 and H929 (A and E) cells showed no major differences in the binding of 

the indicated proteins. BC represents the beads control.  
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Supplemental Figure S5. Resistance to BH3 mimetics in the different resistance models can be 

overcome by simultaneous inhibition of multiple BCL-2 members. (A-C) Sensitive and resistant 

lines of MAVER-1, K562 and H929 from the different resistance models, as explained in methods and 

depicted in Supplemental figure 2, were exposed for 4 h to ABT-199 (10 nM), A-1331852 (10 nM) or 

A-1210477 (5 µM) and the extent of apoptosis assessed by PS externalisation. ***P ⩽0.001, **P⩽0.01; 

Error bars = Mean ± SEM (n=3). 

Supplemental Figure S6. Glutamine deprivation sensitises the different cell lines to BH3 mimetic-

mediated apoptosis. (A-C) Sensitive and resistant lines of MAVER-1, K562 and H929 from the 

different resistance models, as explained in methods and depicted in Supplemental figure 2, were 

deprived of glutamine for 16 h and the extent of apoptosis assessed following a 4 h exposure to ABT-

199 (10 nM), A-1331852 (10 nM) or A-1210477 (5 µM). ***P ⩽0.001; Error bars = Mean ± SEM 

(n=3). 

Supplemental Figure S7. Modulation of intermediary metabolism enhances sensitivity to BH3 

mimetics in distinct haematological cell lines Exposure to GPNA (5 mM for 48 h), CB-839 (10 µM 

for 72 h), SB204990 (1 µM for 72 h), GSK2194069 (100 nM for 48 h), simvastatin (250 nM for 72 h) 

or torin-1 (10 nM for 24 h) enhances the sensitivity of the chemoresistant MAVER-1 and H929 cells to 

their respective BH3 mimetics. Apoptosis was assessed by PS externalisation following exposure for 4 

h to ABT-199 (10 nM) or A-1210477 (5 µM). ***P ⩽0.001; *P⩽0.1; Error bars = Mean ± SEM (n=3). 
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