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1. Introduction 

This thesis focuses on the engineering asset management approach, specifically, the 

improvement of the probability of failure model evaluating underground power 

transmission cables. This chapter introduces the background information of the 

underground power transmission cable, as well as outlines the structure of this Ph.D. 

thesis. 

 

1.1 General information of underground power transmission cable 

Underground power cables are widely used in power transmission and distribution 

networks because they provide reliable, safe, and incur minimum aesthetic impact. Oil-

impregnated paper-insulated cables have been installed for carrying high voltages since 

1960s [1]. The nature of the underground power transmission cable is introduced in 

three sections: a) Design of underground power transmission cable. b) Power 

transmission cable for civil and commercial use. c) Failure of power transmission cable 

and its consequences.  

 

a) Design of underground power transmission cable 

Power transfer, here specifically the electricity transfer, is a complicated engineering 

task on a very large scale. Due to its complexity, there is a variety of types to fulfil 

the requirements of usage diversities.  

One industry leading company classifies the cables in use in five types [2]: 

 XLPE cables (Cross Linked Polyethylene Extruded) 33kV to 400kV 

 FFC (Fluid Filled Cables) 33kV to 400kV 

 PPL-FFC (Paper Polyethylene Laminated) 275kV and 400kV 

 MIND (Mass Impregnate Non Draining) up to 33kV 

 GIL (Gas Insulated Lines) 
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This research focuses on the cables started commission around the 1970s, and during 

this period of time, the major cable designs follow FFC (Fluid Filled Cables). 

According to [2], of all the installed cables within the electricity network, the 

majority of the fluid filled cables were installed in the 1970s. Figure 1-1 gives a 

visualization of underground power cables.  

The power transmission cable has a central oil duct inside a copper conductor which 

carries the load current. The conductor is insulated using successive layers of paper 

which are impregnated with pressurized oil in order to provide dielectric insulation. 

These cables generally have a lead or aluminium metallic sheath, which serves a 

number of purposes such as; retaining the insulating oil within the cable insulation, 

allowing oil pressurization, preventing the ingress of air and moisture into the 

insulation and providing mechanical support for the cable. The particular design of 

the cable considered in this thesis uses a lead sheath. Due to poor creep resistance, 

the lead sheath is not able to hold the internal pressure alone. To overcome this 

limitation, phosphor-bronze reinforcing tapes (tin - 0.93%, phosphorus - 0.02%, 

copper – to balance the rest) are wound over the cable’s lead sheath after bitumen 

impregnated bedding tape has been applied. These reinforcing tapes are vital to the 

hydraulic security of the cable. If they are damaged the lead sheath will creep and 

eventually crack, leading to a fluid leak. The cable is finally given extruded PVC/PE 

over sheath.  

Oil-filled power transmission cable can be identified as two sub-categories with each 

individual range of inner oil pressure [3]: 

1. A single cable with a centrally located oil channel, with the oil under low or 

medium pressure (0.1~0.3 𝑀𝑁 𝑚2 = 100~300 𝑘𝑃𝑎⁄ ). 

2. Multicore high-pressure cable (1.4~1.5 𝑀𝑁 𝑚2⁄ = 1400~1500 𝑘𝑃𝑎). 
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Figure 1-1: A typical underground power cable layout [2] 

 

Further of Figure 1-1, a cut-section of the general Fluid Filled Cable design is shown in 

Figure 1-2 below, which explains the inner structure of the power cables under research. 

The protection phosphor bronze tape has a thickness of 0.15mm. According to TAIHAN 

Electric Wire Co., Ltd [4], for 275 kV underground power transmission cables, the 

nominal area is between 600 and 2000 𝑚𝑚2, the paper insulation thickness is about 

17.5 mm to 19.5 mm, the thickness of the sheath is around 2.0 to 2.5 mm, and the 

approximate overall diameter of the power cable is between 99 to 128 mm. 
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a) 

 

b) 

Figure 1-2: a) 3D representation for the components in the underground power 

1. PVC over sheath 

2. Tin bronze tape with 

bitumen layer 

3. Lead sheath 

4. Paper insulation 

5. Conductor + oil duct 
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transmission cable [5] b) Cut-section of the underground power transmission cable [6] 

These cables have a paper insulation, wrapped around the central copper conductor and 

impregnated with fluid under pressure. The metallic tapes are wrapped around the paper 

insulation to reinforce the papers and retain the fluid pressure. 

Outside the paper insulation, lead sheath covers the paper components. If it is exposed 

to ground water and other substances, the lead will deteriorate resulting in the ingress 

of water. To prevent this a layer of outer platic sheath wraps the inner layers for 

providing further insulation and prevent the potential corrosion, which is the PVC over 

sheath, shown in Figures 1-2 a) and 1-2 b). 

Between the PVC over sheath and the lead sheath there is usually an additional layer of 

copper tapes (phospher bronze to be more accurate), this is to help the support of lead 

sheath and to prevent swelling as a result of the internal fluid pressures. [7] 

To ensure the integrity of the cable, the outer sheath is covered in a semi-conductive 

material, which allows any defects in the outer sheath to be detected. 

 

b) Power transmission cable for civil and commercial use 

According to [2], currently the major power supplier, the National Grid plc. owns the 

high voltage electricity transmission system in England and Wales and operates the 

system throughout Great Britain at 275,000 and 400,000 volts (275kV and 400kV). This 

system contains approximately 7,200 kilometres (4,470 miles) of overhead line, 1,400 

kilometres (870 miles) of underground cable and about 330 substations. A map is 

provided here which shows an overview of the energy operations geographically below 

in Figure 1-3 [8]. 
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Figure 1-3: Gas and electricity network route maps [8] 
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According to the studies by the Institution of Civil Engineers [9], electricity 

transmission started around 1926. The initial national grids had 132kV in voltage. Due 

to the significant growth in gross domestic product and electricity demand in the 1950s, 

the UK created the Central Electricity Generating Board (CEGB) and started the 

building of a 400kV supergrid. Following the initial national grid developments in the 

1920s, the distribution of electricity is generally through three voltage levels, the 33kV, 

11kV and low voltage. Currently there are approximately 25 million customers in Great 

Britain. 

Apart from the domestic users, Great Britain is also involved in interconnections with 

other countries for example, by the year 2014, there were four interconnectors from 

Great Britain: 

 2GW to France 

 1GW to Netherlands 

 500MW to Northern Ireland 

 500MW to the Republic of Ireland 

 A fifth interconnector to Belgium is under consideration 

 

c) Failure of power transmission cable and its consequences 

According to [2], cables have an asset life of around 60 years, and they are regularly 

inspected and tested to ensure the cable insulation and joints are operating correctly. If 

a failure occurs on a 400kV underground cable, on average, due to the difficulty in 

locating, excavating and undertaking technically involved repairs, it will be out of 

service for a period 25 times longer than 400kV overhead lines.  

Among all the failure reasons for underground power transmission cables, fluid leaks, 

faulty joints and accessories, sheath faults, water cooling failures and third-party 

damages are the majority causes. After a failure is detected, it takes from two to six 

weeks to locate the fault or fluid leak and repair the cable. At the same time, excavations 
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may be required, which will lead to road closures and traffic management measures. 

Based on the experience of construction, some of the excavations could be at the scale 

of 4𝑚 × 30𝑚. [2] 

The emergency failure of underground cables can cause sudden power offs for which it 

takes a long period of time to recover. This not only causes costs for the power 

supplying companies, but can create inconvenience and disturbance to civilians’ 

everyday life as well as the functioning of public services, factory productions, 

industrial facilities etc.  

To avoid such costly consequences, the best solution is to avoid failure and process the 

maintenance before failure occurs, where the accuracy of engineering asset 

management plays a significant role. This research puts the focus on the improvement 

of engineering asset management accuracy and feasibility. 

 

1.2  Objective of the PhD research and structure of thesis 

The aim of this research is to improve the existing model currently applied in the 

industry in the practise of ‘Engineering Asset Management’, which is to estimate the 

probability of failure on power cables throughout their servicing lives, in order to enable 

a more accurate prediction of cable lives or the probability of failure of cables to assist 

the asset management decisions.  

This thesis will follow the following structure, excluding Chapter 1 as the introduction 

chapter: 

Chapter 2 gives the information of Literature Review, including the available data and 

the experimental results of related research topic. Chapter 3 is the first research result 

chapter, it gives details for the simulation of pit depth distribution on the surface of the 

phosphor bronze protection layer. Chapter 4 discusses the pit to crack transfer 

probability, this is a novel explanation to explain the experimental results that do no 

follow the conventional crack propagation theory. Chapter 5 provides the definition of 



28  

probability of failure according to the mechanism-based model, this model is 

summarised from the research results in Chapter 3 and Chapter 4. Chapter 6 provides 

a machine learning approach (Bayesian Inference) to the asset management evaluation 

of the underground power transmission cable, this is a fundamental concept for 

developing a ‘Intelligent Power Grid’ which the asset probability of failure and the 

engineering asset pricing can be dynamically updated and be more up to date. Chapter 

7 is the conclusion chapter and the Chapter 8 provides an overview of the future work. 
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2. Literature Review 

In this literature review chapter, the following fundamental topics are presented:  

 Engineering asset management 

 Corrosion of materials 

 Pitting corrosion and corrosion fatigue 

 Research methodologies for engineering asset management against corrosion 

 Existing data (from published documents, e.g the dimension of cables, the inner 

pressure, etc.) 

 Experimental data (collected from provided samples in this study, e.g pit depth 

distribution) 

This thesis uses data obtained from open literature and internet sources, including the 

designed life of typical underground power transmission cables, the existing asset 

management strategy by Ofgem, the typical section lengths of the underground power 

transmission cables, the Asset Health Index concept and relevant estimation of 

remaining life of cables in service, etc, listed below: 

 https://www.nationalgrid.com/sites/default/files/documents/39111-

Undergrounding_high_voltage_electricity_transmission_lines_The_technical_iss

ues_INT.pdf 

 https://www.ofgem.gov.uk/ofgem-publications/56018/15735-

kemangetassetmgtpub.pdf 

 https://www.ofgem.gov.uk/ofgem-publications/54026/tx-ntwk-output-measures-

nget-appendix.pdf 

 http://www.forewind.co.uk/uploads/files/TeessideAB/Application_Documents/7.

Other_Statutory_Documents/7.2_Cable_Details_and_Grid_Connection_Statemen

t.pdf 

The above URLs lead to information from Ofgem, KEMA, National Grid Ltd., 

https://www.nationalgrid.com/sites/default/files/documents/39111-Undergrounding_high_voltage_electricity_transmission_lines_The_technical_issues_INT.pdf
https://www.nationalgrid.com/sites/default/files/documents/39111-Undergrounding_high_voltage_electricity_transmission_lines_The_technical_issues_INT.pdf
https://www.nationalgrid.com/sites/default/files/documents/39111-Undergrounding_high_voltage_electricity_transmission_lines_The_technical_issues_INT.pdf
https://www.ofgem.gov.uk/ofgem-publications/56018/15735-kemangetassetmgtpub.pdf
https://www.ofgem.gov.uk/ofgem-publications/56018/15735-kemangetassetmgtpub.pdf
https://www.ofgem.gov.uk/ofgem-publications/54026/tx-ntwk-output-measures-nget-appendix.pdf
https://www.ofgem.gov.uk/ofgem-publications/54026/tx-ntwk-output-measures-nget-appendix.pdf
http://www.forewind.co.uk/uploads/files/TeessideAB/Application_Documents/7.Other_Statutory_Documents/7.2_Cable_Details_and_Grid_Connection_Statement.pdf
http://www.forewind.co.uk/uploads/files/TeessideAB/Application_Documents/7.Other_Statutory_Documents/7.2_Cable_Details_and_Grid_Connection_Statement.pdf
http://www.forewind.co.uk/uploads/files/TeessideAB/Application_Documents/7.Other_Statutory_Documents/7.2_Cable_Details_and_Grid_Connection_Statement.pdf
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FOREWIND etc. which all play an important role in the U.K. power transmission 

industry. 

2.1 Engineering asset management 

Amadi-Echendu et al. [10] define engineering asset management as ‘the total 

management of physical, as opposed to financial, assets’. It is an association of 

engineering capability and economic cost and value. This is especially an important 

concept for governments and profitable engineering-based companies. Due to the 

diversity of the engineering industry, various methods to link engineering capability 

and financial cost exist.  

The concept of asset management is fundamentally to achieve the greatest return for all 

investments, including the monitoring and maintaining facilities systems and providing 

the best possible service to users. 

The typical asset management can be further divided into 

a. Financial asset management: Or in another word, the investment management. This 

type of investment manages investment funds, in chasing the best return/investment 

ratio in the financial sector. 

b. Infrastructure asset management: This is a combination of management, financial, 

economics, engineering and other practices applied to physical assets with the 

objective of providing the required level of service in the most cost-effective manner. 

The infrastructure asset management focuses on the entire lifecycle monitoring – 

including design, construction, commissioning, operating, maintaining, repairing, 

modifying, replacing and decommissioning/disposal.  

c. Enterprise asset management: This is the business of processing and enabling 

information systems that support management of an organization’s assets, both 

physical assets and non-physical assets. This asset management category owns its 

specific International Organization for Standardization, the ISO 55000 series 
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provides terminology, requirements and guidance for implementing, maintain and 

improving an effective asset management system. 

d. Public asset management: This is an expension of the enterprise asset management 

(EAM) by incorporating the management of all things of value to a municipal 

jurisdiction and its citizens’ expectations. An EAM requires and asset registry 

(inventory of assets and their attributes) combined with a computerized maintenance 

management system (CMMS). All public assets are interconnected and share 

proximity, possible through the use of geographic information system (GIS). 

In this section, the management method of the industry and Office of Gas and Electricity 

Markets (Ofgem) on the evaluation of underground power cable capabilities are 

introduced. 

2.1.1  A typical asset management method by the power supply industry 

One typical method applied by the industry is a system known as the Asset Health Index 

(AHI) to evaluate the condition of underground power cables [11]. The base of this 

evaluation is shown in the following Table 2-1. In this table, AHI value equals to 1 

being the most critical and equals to 3 or 4 being on the safe side [11]. 

 

Table 2-1: Asset Health Index [11] 

Score Condition Criteria 

1 Remaining useful life 0~2 years 

1R Remaining useful life 2~5 years 

2 Remaining useful life 5~10 years 

3 & 4 Remaining useful life > 10 years 

 

Relevant to the Asset Health Index above the estimation of remaining lives of the cables 

is shown in Table 2-2. 
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Table 2-2: Estimated remaining service life (Years) to Asset Health Index [11] 

            Criticality  

AHI 
Very High High Medium Low 

1 0~2 0~2 2~5 2~5 

2 5~10 5~10 5~10 10+ 

3 10+ 10+ 10+ 10+ 

4 10+ 10+ 10+ 10+ 

To summarize the above method, cables are being evaluated under four levels of 

criticality by observation, which will automatically lead to the related estimation of 

remaining life. Criticality is based on the historical record of maintenance, the observed 

condition of the power cables and the locations of specific power supplement lines. This 

is an industry defined classification.   

 

2.1.2  Ofgem DNO Common Network Asset Indices Methodology 

The following is a summary of the methodology proposed by Ofgem from its 

publication for asset management [12]. The general method is introduced in this section, 

and the application of this method is given as a working example in Appendix I in this 

thesis. This method contains a large amount of table referencing for the correct 

categories of evaluated cables. These tables are not given in this thesis, but they are 

publicly available. (Sentences are deleted) 

The Ofgem method follows the 9 major steps below (with reference to the specific page 

of the manual, which is represented by the word ‘Code’): 

1) Calculation of general probability of failure 

From the Design Code, the possibility of failure is calculated as (Code, p.30) 
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𝑃𝑜𝐹 = 𝐾 × [1 + (𝐶 × 𝐻) +
(𝐶 × 𝐻)2

2!
+
(𝐶 × 𝐻)3

3!
] 

 

By observation of this mathematical expression, it is easy to recognize as the Taylor 

Series Expansion of an exponential function, with the first four terms kept. C is a 

constant that controls the shape of the curve and H represent the Health Score. 

Where : 

 𝐼𝑓 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 > 4, 𝑡ℎ𝑒𝑛 𝐻 =

𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑟 𝐹𝑢𝑡𝑢𝑟𝑒) 

 𝐼𝑓 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 ≤ 4, 𝑡ℎ𝑒𝑛 𝐻 = 4 

 𝐾 𝑎𝑛𝑑 𝐶 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

The Value of both K and C are to the Code Table 21 in Appendix B (Code, p.106). From 

this it can be concluded that for Pressurized Cable (EHV UG Cable (Oil) and 132 kV 

UG Cable (Oil)), K-value is 2.0944%, C-value is 1.087 and Health Score Limit is 4. 

 

2) Calculation of normal expected life 

Normal Expected Life is to be found in Table 20 Appendix B of the Code, corresponds 

to a Health Score of 5.5. 

For 33kv UG Cable (Oil) with Lead sheath-Copper conductor, 66kv UG Cable(Oil) with 

Lead sheath- Copper conductor and 132kv UG Cable(Oil) with Lead sheath- Copper 

conductor, the Normal Expected Life are all 80 years. 

 

3) Calculation of expected life 

The Expected Life calculation involves the Location Factor and the Duty Factor, and 

the calculation method is (Code, p.32) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒 =
𝑁𝑜𝑟𝑚𝑎𝑙 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒

(𝐷𝑢𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟)
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As in previous Step 2 the Normal Expected Life is 80 years. 

∴ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒 =
80

(𝐷𝑢𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟)
 

Calculation of Location Factor 

The general Location Factor consists of four different aspects, including: 

i) Distance from coast factor 

ii) Altitude factor 

iii) Corrosion category factor 

iv) Environment factor (indoor/outdoor) 

The Distance from Coast Factor can be found in Table 22 (Code, p.106) 

As the underground cable shall not be influenced by the distance from coast, it is chosen 

as default and equals to 1. 

The Altitude Factor can be found in Table 23 (Code, p.107) 

As the underground cables are buried and so should not be influenced by the altitude, 

therefore, the default value is also chosen here as 1. 

The Corrosion Category Factor can be found in Table 24 (Code, p.107).  

Although no category listed in the table fits the underground cable environment for 

corrosion, the underground environment is complicated, and can vary from the lowest 

value to the highest value. In this working example, three values are chosen for the 

evaluation of cable in Location 1, the lower limit value of 0.75, the upper limit value of 

1.6 and the typical default value of 1. 

The Environment Factor is determined directly as the underground power transmission 

cables are buried outdoor. 

 

After obtaining all the necessary values for the Location Factor determination, under 

the Environment Factor classified as ‘Outdoor’, the calculation of Location factor is as 

follows in two categories (Code, p.43): 
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1) If the maximum of the Distance From Coast Factor, Altitude Factor and Corrosion 

Factor is greater than 1, which in this study case would be when 

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 = 1.60, then 

 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

= 𝑀𝐴𝑋(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐹𝑟𝑜𝑚 𝐶𝑜𝑎𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟, 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝐹𝑎𝑐𝑡𝑜𝑟, 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟)

+ (((𝐶𝑂𝑈𝑁𝑇 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1) − 1) × 𝐼𝑁𝐶) 

 

Here in this example only one factor is greater than one, INC in the above equation 

represents for Increment Constants, and can be found in Table 25 (Code, p.107). Except 

the Switchgear, Transformers, Submarine Cables which has an INC of 0.05, the rest of 

the infrastructures are with an INC of 0, as with the study of underground cables, the 

INC is 0.  

Condition 1:  

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1 = 1.6 

 

2) If the maximum of the Distance From Coast Factor, Altitude Factor and Corrosion 

Factor is not greater than 1, which in this study case would be when 

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 0.75 and 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑡𝑦𝑝  = 1.00 then  

 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

= 𝑀𝐼𝑁(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐹𝑟𝑜𝑚 𝐶𝑜𝑎𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟, 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝐹𝑎𝑐𝑡𝑜𝑟, 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟) 

Here 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 = 0.75 

And 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 3 = 1 
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Calculation of Duty Factor (Code, p47)  

For the Duty Factor calculation, when dealing with cables, there are two duty factors to 

be considered, DF1 and DF2. The calculation for Duty Factor with both DF1 and DF2 

is as follows (Code, p.48): 

 

𝐷𝑢𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 = 0.5 × 𝐷𝐹1 + 0.5 × 𝐷𝐹2 

 

The Duty Factor can be checked from Table 30 (Code, p.49) 

 

4) Calculation of 𝛽1 (initial ageing rate) 

The equation calculating the initial ageing rate is as follows (Code, p.32): 

 

𝛽1 =
ln (

𝐻𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑓𝑒
𝐻𝑛𝑒𝑤

)

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒
 

Where: 

 𝐻𝑛𝑒𝑤 𝑖𝑠 𝑡ℎ𝑒 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑎 𝑛𝑒𝑤 𝑎𝑠𝑠𝑒𝑠𝑡, 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0.5 

 𝐻𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑓𝑒𝑖𝑠 𝑡ℎ𝑒 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑒𝑡 𝑤ℎ𝑒𝑛 𝑖𝑡 𝑟𝑒𝑎𝑐ℎ𝑒𝑠  

𝑖𝑡𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑓𝑒, 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 5.5  

 

5) Calculation of initial health score 

The calculation for the Initial Health Score is as (Code, p.32): 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 = 𝐻𝑛𝑒𝑤 × 𝑒
(𝛽1×𝑎𝑔𝑒) 

Where:  

 𝐻𝑛𝑒𝑤 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑎𝑠𝑠𝑒𝑡, 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0.5 

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝑖𝑠 𝑐𝑎𝑝𝑝𝑒𝑑 𝑎𝑡 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 5.5 

 𝛽1 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑔𝑒𝑖𝑛𝑔 𝑟𝑎𝑡𝑒  
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 𝑎𝑔𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑒𝑡 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠 

 

6) Calculation of current health score 

The current Health Score is modified from the Initial Health Score, the calculation for 

this is (Code, p.33): 

 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒

= 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 × 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝐹𝑎𝑐𝑡𝑜𝑟

× 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 

Where 

𝐼𝐹 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 > 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝐶𝑎𝑝 

𝑇𝐻𝐸𝑁 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 = 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝐶𝑎𝑝 

 Current Health Score is capped at 10 

 

Then the Current Health Score is compared with the Health Score Collar (Code, p.34) 

 

𝐼𝐹 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 < 𝑀𝐴𝑋(𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝐶𝑜𝑙𝑙𝑎𝑟, 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶𝑜𝑙𝑙𝑎𝑟) 

𝑇𝐻𝐸𝑁 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 = 𝑀𝐴𝑋(𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝐶𝑜𝑙𝑙𝑎𝑟, 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶𝑜𝑙𝑙𝑎𝑟) 

 

To calculate the Current Health Score, the Health Score Factor, or the Health Score 

Modifier is determined by: (Code, p.49) 

i. Observed Condition Modifier 

ii. Measured Condition Modifier 

Each of the condition modifier would contain three elements: 

i. A Condition Input Factor 
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ii. A Condition Input Cap 

iii. A Condition Input Collar 

As stated on (Code, p.60), there are no Observed Condition Inputs for cable assets other 

than Submarine Cables. For these assets: 

i) The Observed Condition Factor shall be set to 1 

ii) The Observed Condition Cap shall be 10 

iii) The Observed Condition Collar shall be 0.5 

From (Code, p.62), the Measured Condition for both EHV cable (oil) and 132kV cable 

(oil) are ‘Leakage’. 

The Measured Condition Modifier, from Table 15 (Code, p.63), for both EHV cable (oil) 

and 132kV cable (oil),  

 

{
𝐹𝑎𝑐𝑡𝑜𝑟 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 1 = 1.5                        
𝐹𝑎𝑐𝑡𝑜𝑟 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 2 = 1.5                        
𝑀𝑎𝑥.𝑁𝑜. 𝑜𝑓 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟𝑠 = 1

 

 

The next step is to find out the maximum and minimum value for Measured Condition 

Input, from Table 172 (Code, p.142), for EHV Cable (Oil) under the condition of 

Leakage: 

 

{
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 1.0
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 = 2.0

 

{
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑎𝑝𝑚𝑖𝑛 = 10
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑎𝑝𝑚𝑎𝑥 = 10

 

{
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑜𝑙𝑙𝑎𝑟𝑚𝑖𝑛 = 0.5
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑜𝑙𝑙𝑎𝑟𝑚𝑎𝑥 = 8.0

 

 

From Table 179 (Code, p.143), for 132kV Cable (Oil) under the condition of Leakage 

{
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 1.0
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 = 2.0
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{
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑎𝑝𝑚𝑖𝑛 = 10
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑎𝑝𝑚𝑎𝑥 = 10

 

{
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑜𝑙𝑙𝑎𝑟𝑚𝑖𝑛 = 0.5
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑜𝑙𝑙𝑎𝑟𝑚𝑎𝑥 = 8.0

 

 

It can be concluded that for the cables protected by oil the factors being used are the 

same. 

After obtaining all the factors in the Health Score Factor section, a ‘Combining Factors 

Using a Modified Maximum and Increment (MMI)’ Technique is applied for the 

calculation of the real Health Score Factor. ( Code, p.50 & 51) 

 

(a) Calculating the minimum value for Health Score Factor 

 

 𝑉𝑎𝑟1 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝐹𝑎𝑐𝑡𝑜𝑟𝑠 =

  min
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

(
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟
)=1.0 

 𝑉𝑎𝑟2 = 2𝑛𝑑 𝐿𝑜𝑤𝑒𝑠𝑡 𝑜𝑓 𝐹𝑎𝑐𝑡𝑜𝑟𝑠 = 1 

 𝑉𝑎𝑟3 =
𝑉𝑎𝑟2−1

𝐹𝑎𝑐𝑡𝑜𝑟 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 2
=

0

1.5
= 0 

 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 𝑉𝑎𝑟1 + 𝑉𝑎𝑟3 = 1 

 

(b) Calculating the maximum value for Health Score Factor 

 

 𝑉𝑎𝑟1 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝐹𝑎𝑐𝑡𝑜𝑟𝑠 =

 max
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

(
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟
) = 2.0 

 𝑉𝑎𝑟2 = 𝐸𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑉𝑎𝑟1 

o 𝐹𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟𝑠 𝑤ℎ𝑒𝑟𝑒 (𝐹𝑎𝑐𝑡𝑜𝑟 − 1) >

0, 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 1 
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o 𝑆𝑢𝑚 (𝐹𝑎𝑐𝑡𝑜𝑟 − 1) 𝑓𝑜𝑟 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑛 −

1 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒;𝑤ℎ𝑒𝑟𝑒 𝑛 =

𝑀𝑎𝑥.𝑁𝑜. 𝑜𝑓 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟𝑠, 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒, 𝑛 = 1, ∴

𝑛𝑒𝑒𝑑 𝑡𝑜 𝑠𝑢𝑚 𝑢𝑝 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 0 𝑓𝑎𝑐𝑡𝑜𝑟𝑠, 𝑤ℎ𝑖𝑐ℎ 𝑔𝑖𝑣𝑒𝑠 𝑉𝑎𝑟2 =

0 

 𝑉𝑎𝑟3 =
𝑉𝑎𝑟2

𝐹𝑎𝑐𝑡𝑜𝑟 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 1
= 0 

 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 = 𝑉𝑎𝑟1 + 𝑉𝑎𝑟3 = 2.0 

 

The Reliability Factor (Code, p.69) has a value between 0.6 and 1.5 with a default value 

of 1, written as 

 

{

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 0.6
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 = 1.5
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑑𝑓𝑡  = 1.0

 

 

7) Calculation of 𝛽2 (current ageing rate) 

It can be regarded that for the current asset the age is over 10 years (Code, p.34). 

𝛽2 =
ln (

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒
𝐻𝑛𝑒𝑤

)

𝐴𝑔𝑒
 

 

8) Calculation of future health score 

The Future Health Score is calculated as (Code, p.36): 

 

𝐹𝑢𝑡𝑢𝑟𝑒 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 × 𝑒(
𝛽2

𝑟⁄ )×𝑡 

Where:  

 𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑡𝑢𝑟𝑒 𝑦𝑒𝑎𝑟𝑠 
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 𝐹𝑢𝑡𝑢𝑟𝑒 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝑖𝑠 𝑐𝑎𝑝𝑝𝑒𝑑 𝑎𝑡 15 

 r is the Aging Reduction Factor  

 

The Aging Reduction Factor is found from Table 209 (Code, p.149) 

 𝐼𝐹 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 < 2, 𝑇𝐻𝐸𝑁 𝐴𝑔𝑒𝑖𝑛𝑔 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 1 

 𝐼𝐹 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 > 5.5, 𝑇𝐻𝐸𝑁 𝐴𝑔𝑒𝑖𝑛𝑔 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 =

1.5 

 𝐼𝐹 2 ≤ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 ≤

5.5, 𝑇𝐻𝐸𝑁 𝐴𝑔𝑒𝑖𝑛𝑔 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒−2

7
+ 1 

 

9) Calculation of current and future possibility of failure 

It can be observed from the above calculation that the distribution of the probability of 

failure is of the function 

𝑃𝑜𝐹 = 𝐾 × [1 + (𝐶 × 𝐻) +
(𝐶 × 𝐻)2

2!
+
(𝐶 × 𝐻)3

3!
] 

 

 

2.2 Corrosion of materials 

In this section, a brief introduction of the corrosion effect on materials are introduced, 

including: 

- Hazards and consequences of corrosion 

- Corrosion mechanism and types of corrosion 

- Caustic corrosion 

 

2.2.1 Hazards and consequences of corrosion 
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According to ASM International [13], corrosion is defined as ‘A chemical or 

electrochemical reaction between a material, usually a metal, and its environment that 

produces a deterioration of the material and its properties’. With this definition, the 

deterioration of the material and its properties lead to hazards, and will especially cause 

consequences. For example, metal corrosion has an impact on U.S. economy with 

almost $300 billion loss per year. By applying the corrosion-resistant materials and the 

best corrosion-related technics, this cost can reduce by approximately one-third [13]. 

According to the project led by Chinese Academy of Science, introduced by Wei Ke 

[14], in 2002, the direct cost by corrosion damage in China exceeded 500 billion CNY, 

occupying 5% of GNP of the same year. 

All material will react with the surrounding medium, from everyday life, to industrial 

productions. Especially in industrial production, corrosion causes leakage to equipment, 

leading to the failure of equipment, and can even cause the injury or deaths of operating 

technicians. In such reason, the research of corrosion is highly focused and valued in all 

countries.  

 

2.2.2 Corrosion mechanism and types of corrosion 

2.2.2.1 Corrosion mechanism 

Corrosion can be regarded as the process of two kinds of mechanisms, the chemical 

corrosion and the electrochemical corrosion. 

Chemical corrosion: 

The chemical corrosion mechanism is the corrosion process without the production of 

electricity currents. As for the material, the surface reacts with the material it contacts, 

produces an oxidation-reduction reaction and this reaction consumes the material 

surface. For example, in chemical plants the process that steel reacts with chlorine: 

3𝐶𝑙2 + 2𝐹𝑒 = 2𝐹𝑒𝐶𝑙3 
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The above chemical reaction produces no electricity current, hence it is a type of 

chemical corrosion. 

Electrochemical corrosion: 

Electrochemical corrosion involves the release of ions to the environment and 

movement of electrons within the material, this mechanism can occur only if the 

environment can contain ions and the material can conduct electrons [15]. 

For example, submerge iron (material property not well-distributed) into hydrochloric 

acid, there is the following reaction: 

𝐹𝑒 + 2𝐻𝐶𝑙 → 𝐹𝑒𝐶𝑙2 + 𝐻2 ↑ 

Which can be further written as: 

𝐹𝑒 + 2𝐻+ + 2𝐶𝑙− → 𝐹𝑒2+ + 𝐶𝑙2
2− + 𝐻2 ↑ 

In the above electrochemical reaction, 𝐶𝑙− was not involved in the reaction, the real 

reaction is: 

𝐹𝑒 + 2𝐻+ → 𝐹𝑒2+ + 𝐻2 ↑ 

Which leads to the real electrochemical reaction as: 

{
𝐴𝑛𝑜𝑑𝑒: 𝐹𝑒 → 𝐹𝑒2+ + 2𝑒                (𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛)

𝐶𝑎𝑡ℎ𝑜𝑑𝑒: 2𝐻2 + 2𝑒 → 𝐻2 ↑          (𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)
 

2.2.2.2 Types of corrosion 

 General corrosion 

Also called the ‘uniform corrosion’, general corrosion is the uniform loss of metal over 

an entire surface, and it is characterized and expressed as a mass loss per unit area and 

unit of time [16]. This type of corrosion is developed at a uniform speed, yet slow in 

progress. It is considered as the most common form of corrosion and particularly 

responsible for most material loss. 

 Local corrosion 
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Local corrosion happens when a passive metal meets corrosive environment, it develops 

at discrete sites where other protective passive film has broken down. This type of 

corrosion usually accelerates with the progress of time [17].  

Local corrosion can be further sub-divided into the following types: 

i) Galvanic corrosion 

ii) Crevice corrosion 

iii) Pitting corrosion 

iv) Intergranular corrosion 

v) Selective corrosion 

vi) Stress corrosion 

vii) Corrosion fatigue 

viii)  Hydrogen damage 

  

i) Galvanic corrosion 

‘Galvanic corrosion (also called 'dissimilar metal corrosion' or wrongly 'electrolysis') 

refers to corrosion damage induced when two dissimilar materials are coupled in a 

corrosive electrolyte’ [18]. Due to the effect of oxygen concentration difference, this 

forms a concentration cell. The electrode reaction of galvanic corrosion is similar to that 

of the general corrosion. For example, the reaction between carbon steel tube and 

titanium tube under sea water, according to the galvanic series shown in the following 

Figure 2-1. 
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Figure 2-1: Galvanic series [19] 

 

 

The electrode reaction is as follows: 

 

 

{
 

 
𝐴𝑛𝑜𝑑𝑒:      𝐹𝑒 → 𝐹𝑒2+ + 2𝑒                                                              
𝐶𝑎𝑡ℎ𝑜𝑑𝑒:   0.5𝑂2 + 𝐻2𝑂 + 2𝑒 → 2𝑂𝐻−                                           

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛:  𝐹𝑒2+ + 2𝑂𝐻− → 𝐹𝑒(𝑂𝐻)2                                          

4𝐹𝑒(𝑂𝐻)2 + 2𝐻2𝑂 + 𝑂2 → 4𝐹𝑒(𝑂𝐻)3
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 Further reaction: 

{
3𝐹𝑒2+ + 4𝐻2𝑂 → 𝐹𝑒3𝑂4 + 8𝐻

+ + 2𝑒

𝐹𝑒2+ → 𝐹𝑒3+ + 𝑒                                     
𝐹𝑒3+ + 3𝐻2𝑂 → 𝐹𝑒(𝑂𝐻)3 + 3𝐻

+       

 

It is unavoidable in industry to use a combination of metal materials. For example, at 

the connection of tube and cast iron/steel plate in heat exchangers, the plate is under 

potential accelerated corrosion.  

 

ii) Crevice corrosion 

‘Crevice corrosion is a localized form of corrosion usually associated with a stagnant 

solution on the micro-environmental level. Such stagnant microenvironments tend to 

occur in crevices. Process such as those formed under gaskets, washers, insulation 

material, fastener heads, surface deposits, disbonded coatings, threads, lap joints and 

clamps. Crevice corrosion is initiated by changes in local chemistry within the crevice’ 

[20]. 

 

Figure 2-2: Crevice in metal under water (adapted from [20]) 
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Figure 2-3: Crevice corrosion process (adapted from [20]) 

A typical electrode reaction is as follows: 

 𝐴𝑛𝑜𝑑𝑒: {
 𝐹𝑒 → 𝐹𝑒2+ + 2𝑒                              
𝑀𝐶𝑙 + 𝐻2𝑂 → 𝑀𝑂𝐻 + 𝐻+ + 𝐶𝑙−

                  (𝐼𝑛 𝑐𝑟𝑒𝑣𝑖𝑐𝑒) 

 𝐶𝑎𝑡ℎ𝑜𝑑𝑒: 𝐻2𝑂 + 0.5𝑂2 + 2𝑒 → 2𝑂𝐻−                           (𝑂𝑢𝑡 𝑜𝑓 𝑐𝑟𝑒𝑣𝑖𝑐𝑒)   

Anode reaction is within the crevice and is an accelerated corrosion, the cathode 

reaction is outside the crevice and is a minor corrosion. Crevice corrosion often happens 

at the contact area under screw caps, also under the sea. It can happen at the position 

where sea plants grow on the metal. 

 

iii) Pitting corrosion 

‘Pitting corrosion is a localized form of corrosion by which cavities or "holes" are 

produced in the material. Pitting is considered to be more dangerous than uniform 

corrosion damage because it is more difficult to detect, predict and design against of. 

Corrosion products often cover the pits. A small, narrow pit with minimal overall metal 
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loss can lead to the failure of an entire engineering system’ [21]. It happens the most in 

the environment with the existence of 𝐶𝑙−, the reaction process is similar to that of the 

crevice corrosion: 

𝑀+ + 𝐶𝑙− → 𝑀𝐶𝑙                                                (𝐼𝑛 𝑝𝑖𝑡) 

𝑀𝐶𝑙 + 𝐻2𝑂 → 𝑀𝑂𝐻 + 𝐻+ + 𝐶𝑙−                   (𝑂𝑢𝑡 𝑜𝑓 𝑝𝑖𝑡) 

The unevenness of the metal surface, e.g. scratch, sunken, impurity, are commonly the 

start points of pitting corrosion. When the medium is with both halogen ions and oxidant, 

it is easy for pitting corrosion to happen, for example, 𝐶𝑢𝐶𝑙2 and 𝐹𝑒𝐶𝑙3  are both 

strong pitting corrosion agents.  

 

Figure 2-4: Pitting corrosion under microscope [21] (the black area the arrow is pointed 

at shows a deep pit, with a circle of white corrosive reaction products surrounding the 

deep pit, other small sunken in this figure shows the imperfection of metal surface, 

which are the external scratch and light damage to the surface of the metal) 

 

Pits developed from pitting corrosion can be different in shapes, e.g. through pits shown 

in Figure 2-5 and sideway pits shown in Figure 2-6. 
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Figure 2-5: Through pits (adapted from [21]) 

 

 

 

Figure 2-6: Sideway pits (adapted from [21]) 

 

The pitting corrosion is the major type of corrosion in this research, and will be 

discussed in more details in Section 2.3. 
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iv) Intergranular corrosion 

‘The microstructure of metals and alloys is made up of grains, separated by grain 

boundaries. Intergranular corrosion is localized attack along the grain boundaries, or 

immediately adjacent to grain boundaries, while the bulk of the grains remain largely 

unaffected’ [22].  

When intergranular corrosion appear, the appearance and the shape of the metal stay 

almost unchanged, most metal remains its metallic lustre. However, the strength and 

the ductility of the metal decrease severely, when cold bended, there are cracks appear 

on metal surfaces, the metal can even lose its metallic lustre. For nonferrous metal 

aluminium, if small amount of iron sediments appear at the grain boundary, this will 

cause intergranular corrosion.  

 

 

Figure 2-7: A typical figure of intergranular corrosion [23] 
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Each individual grain is a distinct crystal with its own orientation. The areas between 

the grains are known as grain boundaries. Within each grain, the individual atoms form 

a crystalline lattice. Corrosion happening among the gaps of these grain boundaries are 

the fundamental mechanisms of the intergranular corrosion effects. 

 

v) Selective corrosion 

Selective corrosion, also known as dealloying or selective leaching, refers to the 

selective removal of one element from an alloy by corrosion processes [24]. There are 

three common selective corrosion forms. 

- Brass is an alloy with 30% Zn and 70% Cu. Among the two elements, Zn is more 

active, therefore will dissolve with corrosion reaction. When selective corrosion is 

happening to brass alloy, it will turn from yellow brass colour into 

purple/red/copper colour. 

- Graphitization corrosion. ‘When steel is exposed to elevated temperatures for long 

periods, metallurgical degradation of the steel’s microstructure matrix occurs to 

form free graphite (carbon) and iron (ferrite). At elevated temperatures, carbon 

tends to migrate to the grain boundaries, leading to the formation of graphite 

nodules, which have an embrittling effect on metal’ [25]. 

 

vi) Stress corrosion 

Stress corrosion, also known as stress corrosion cracking (SCC), is the cracking induced 

from the combined influence of tensile stress and a corrosive environment 

[26]. Materials in certain corrosive medium, when under no external forces, the 

corrosion effect is minor, but when the tensile stress reaching certain limits, brittle 

cracking can even happen on ductile metals. The brittle cracking does not usually show 

any sign before happening, hence can cause catastrophic consequences. Three 

requirements are usually fulfilled for SCC: sensitive material, tensile stress and certain 
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corrosive medium. 

 

vii) Corrosion fatigue 

‘Corrosion-fatigue is the result of the combined action of an alternating or cycling 

stresses and a corrosive environment’ [27].  

Corrosion fatigue has the following features: 

a. There is no fatigue limit. 

b. Different from SCC, as long as there is existence of corrosive medium, corrosion 

fatigue can still happen on pure metal. 

c. The corrosion fatigue strength of a metal is related to its corrosion resistance. 

d. Normally, corrosion fatigue starts from scratch or sunken at the surface of metal. 

There are many sources of cracking. The corrosion fatigue cracks are mostly trans- 

granular, with small amount of cracks being intergranular fractures.  

e. Corrosion fatigue cracking is brittle fracture. There is no macroscopic plastic 

deformation. Along the crack there is corrosion product. 

 

 

 

 

viii)  Hydrogen damage  

Hydrogen damage is caused by the existence of hydrogen or the reaction between 

hydrogen and certain components in the material, which affects the mechanical 

properties of materials with reduction in ductility and toughness [28]. Hydrogen damage 

can be further divided into, hydrogen corrosion, hydrogen blistering, and hydrogen 

embrittlement. 

 Hydrogen corrosion: Hydrogen particle release 𝐻+ ion, cause acid environment 

which enables corrosion. 
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 Hydrogen blistering: Metal infused 𝐻  atom in hydrogen environment, 

temperature decreases gather and form 𝐻2 bubbles like blisters near surfaces. 

 Hydrogen embrittlement: Metal becomes brittle and fracture due to the introduction 

and subsequent diffusion of hydrogen into the metal. 

 

2.2.3 Caustic corrosion 

Caustic corrosion can be described as the corrosive interaction of sufficiently 

concentrated sodium hydroxide with a metal, producing distinct hemispherical or 

elliptical depressions [29]. Caustic corrosion is also known as “caustic attack”, “caustic 

gouging” or “ductile gouging” [30, 31]. 

In caustic corrosion, except the fundamental reaction product of 𝐹𝑒(𝑂𝐻)2 , the 

following reaction also happens, which produces large amount of hydrogen: 

{

3𝐹𝑒 + 7𝑁𝑎𝑂𝐻 → 𝑁𝑎3𝐹𝑒𝑂3 ∙ 2𝑁𝑎2𝐹𝑒𝑂2 + 7𝐻                   
𝑁𝑎3𝐹𝑒𝑂3 ∙ 2𝑁𝑎2𝐹𝑒𝑂2 + 4𝐻2𝑂 → 7𝑁𝑎𝑂𝐻 + 𝐹𝑒3𝑂4 + 8𝐻
𝐻 + 𝐻 → 𝐻2                                                                                   
3𝐹𝑒 + 4𝐻2𝑂 → 𝐹𝑒3𝑂4 + 4𝐻2                                                    

 

 

2.3 Background of pitting corrosion and corrosion fatigue 

The flowchart of the cable failure process under the corrosion fatigue influence is shown 

in Figure 2-8: 

 

Figure 2-8: Flowchart of cable failure process [6] 
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2.3.1 Pit initiation 

According to Soltis’s [32] review on the mechanisms of pit initiation, the widely-

recognised cause of pit initiation is the passivity breakdown. It was summarised by 

Böhni that the passivity breakdown is caused by three main mechanisms [33]: the 

penetration mechanism, the film mechanism and the adsorption mechanism. These are 

illustrated in Figure 2-9 to Figure 2-11. 

 

 

 

 

Figure 2-9: Penetration mechanism and phase diagram of a passive film with related 

processes of ion and electron transfer within the film at its phase boundaries (adopted 

from [33]) 
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Figure 2-10: Mechanical film breakdown mechanism and related competing processes 

(adapted from [33]) the passive film protecting the surface of metal is damaged due to 

external reasons, this gives the gap for electrolyte with aggressive ions to enter the gap 

created and react with the inner active metal atoms. This eventually leads to the pit 

initiation and cause pit growth. 

 

 

 

 

Figure 2-11: Adsorption mechanism with increased local transfer of metal ions and 

related corrosion current density, 𝑖𝑐, caused by complexing aggressive anions leading 
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to thinning of the passive layer and increases in field strength and final free corrosion 

current density 𝑖𝑐,ℎ within the pit (adapted from [33]) 

 

In this research, although the study is about the total process of metal failure, the pit 

initiation time is ignored because this has little influence. Pitting initiation is considered 

to be happening in a sudden immediately after the initiation mechanism, the time is 

considered as to short to impact the servicing life which is as long as decades. The 

mechanism and electro-chemical reaction is not considered at the first stage of the 

failure process, and here the pit initiation will not be discussed in further details.  

 

2.3.2 Pitting corrosion 

Pitting corrosion is commonly considered as the most damaging form of corrosion for 

metals used in underground applications because it is very difficult to detect, predict 

and mitigate [34]. It is characterized as a localized accelerated dissolution of metal that 

occurs due to the breakdown of the protective passive film on a metal surface [35]. Most 

of the pitting corrosion behaviours are studied on materials such as aluminium alloy 

[36-40] and stainless steel [41-44]. Few studies have been carried out on the phosphor 

bronze [45, 46].  

When the cable is buried underground, moisture can penetrate through the outer 

polymer sheath and initiate corrosion on the phosphor bronze reinforcing tapes [45-47]. 

Hence the tape is under the risk of combined effect of a slow rate localized 

environmental corrosion and mechanical fatigue due to the cyclic pressure resulted from 

the oil.  

It is essential to measure the pit depth distribution, since only a small part of the long 

cable can be experimentally analysed. Many methods and tools are found in the 

literature for measuring the pit depth, mainly for ferrous materials. Magnetic Flux 
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Leakage is used in a data fitting work for steel [48]. X-Ray Computed Tomography 

(XCT) or Scanning Electron Microscopy (SEM) can be used to observe single pit 

morphology. The majority of the literature deals with the pit penetration problem, where 

the deepest pit causes failure [49]. Non-destructive Testing (NDT) methods such as 

ultrasonic, tangential radiography and eddy current techniques are not applicable due to 

less thickness of the material and the fact that the pits are filled in with corrosion 

products [50, 51]. Optical and mechanical profilometers, 3D Laser Scanner, and pit 

gauge cannot be used due to the difficulty of removing the corrosion products within 

the pits [51]. Moreover, measurement tools are usually available for relatively large pits 

(> 100 µm). In contrast, on the surface of the reinforcing phosphor bronze tapes, the 

pits of interest are very small (less than about 100 microns) and filled with corrosion 

products. For these reasons metallographic examination is found to be suitable for the 

pit depth measurement of the tapes because it allows to overcome the problem of 

removing the corrosion products, while at the same time allowing to obtain the pit depth 

distribution in a systematic way.  

A number of oil leak events have been detected over the years on cable circuits due to 

rupturing of the lead sheath under the oil pressure. The vulnerability of phosphor-bronze 

reinforcing tapes to corrosion has been identified as the cause of these failures [52, 53]. 

The corroded reinforcing tape with the fractured face is shown in Figure 2-12. 
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Figure 2-12: (a) Outer and inner surface of the tape covered with bitumen (b) Outer 

and inner surface of the tape after bitumen removal with pentane (c) Example of tape in 

the mounting machine. Note the supporting clips necessary due to the small thickness 

of the tape (d) Cross-sectional view of the corrosion pits that are taken perpendicularly 

to the longitudinal axis of the tape (e) Corroded reinforcing phosphor bronze tape 

surface with a fracture end on the left (thickness of the tape about 150 µm) [5] 
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2.3.3 Pit-crack transfer 

There models existing for the pit-crack transfer all originating from two basic ones 

which characterize the corrosion fatigue crack nucleation process: a critical pit size 

model [7, 54] and a pit growth/crack growth competition model [55, 56]. Both models 

consider corrosion pit as an equivalent surface crack and its growth rate is described by 

the pit kinetics. In the critical pit size model, the pit grows to a critical size; a corrosion 

fatigue crack is considered to have nucleated from it when the local mechanical 

condition is adequate for the onset of the crack growth. The critical condition is defined 

in terms of the threshold stress intensity factor for corrosion fatigue (𝛥𝐾𝑡ℎ)[57-59]. On 

the other hand, in the competition model the pit growth law of a corrosion pit is 

formulated using fracture mechanics. The occurrence of corrosion fatigue nucleation is 

defined by a critical pitting condition (𝛥𝐾𝑝) at which the crack growth rate exceeds 

the pit growth rate. These two models provide a framework for predicting corrosion 

fatigue life by correlating fracture mechanics parameters to the crack nucleation [55, 

56]. However, the usefulness and applicability of these models is not yet fully 

established, because quantitative evidence is still missing. 

Kondo [56] introduced the basic requirements for predicting the pit-crack transfer, 

consisting of two rules: first, the pit depth must reach a threshold value in order to 

initiate the transition. Second, at the transfer depth, the crack propagation rate is larger 

than the growth rate of pitting corrosion. The pitting corrosion growth rate is estimated 

using a basic power law, which was first introduced by Romanoff [60]. The power law 

model has proved to be successful in a variety of materials, for example, aluminium 

alloy [61-63], steel [44, 64, 65] and tin bronze in the author’s previous work [6]. 
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2.3.4 Crack propagation 

The most basic and widely applied model in crack propagation is Paris’ Law. For 

example, Bechhoefer et al. [66] modified Paris’ Law and applied it to life prediction on 

aircraft components. Researchers have also discussed the determination and influence 

of stress intensity factor K on crack propagation in different materials, e.g. 

microcapsule-toughened epoxy [67] and aluminum alloy foams [68]. Furthermore, 

Pugno et al. [69] provided a complete discussion of Paris’ Law and proposed a new 

equation to generalize it. 

To monitor the total failure process of specific materials in engineering applications, 

some researchers proposed to combine pitting corrosion and crack propagation [58, 59, 

70]. Among these works, pit-crack transfer is a crucial factor, as it influences the 

prediction of material life before failure.  

Recently, a combination of deterministic and statistical approaches was developed by 

Engelhardt and Macdonald [71] and applied to model the evolution of cracks in steam 

turbines starting from pits [72]. Similarly, Turnbull [70] developed a model based on 

deterministic equations with statistically distributed input parameters. The model uses 

Kondo’s condition for the pit to crack transition and captures the statistical variability 

of pit and crack growth using a Monte Carlo method where input values are chosen at 

random from statistical distributions. It is successfully applied to the simulation of the 

time-evolution of the pit depth distribution and percentage of pits that transform into 

stress corrosion cracks for the case of steam turbine steel discs. The simulation not only 

reflected the trends in the experimental measurement, but also reproduced the statistical 

variability or noise associated with the measurements. These models are rarely tested 

over long term real data on corrosion fatigue life. In addition to this, Turnbull [73] used 

a probability theory to describe the transfer (‘Transfer Probability’), suggesting that it 

is not always the pit with the largest depth that transfers from pitting corrosion to crack 

propagation. All pits with different depths have a certain probability of transfer. A 
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cumulative distribution function (CDF) from the Weibull distribution was applied by 

Turnbull to describe this transition.  

 

 

2.4 Research methodologies for engineering asset management against 

corrosion 

Probabilistic and statistical techniques are used to model the pit growth because of a) 

the stochastic nature of pit growth [74] and b) lack of precise electrochemical technique 

to measure the pit depth [75]. Nathan and Dulaney [76] emphasised the importance of 

using statistical approaches to model the localized pitting corrosion. Sheikh et al. [77] 

modelled the stochastic nature of the growth of the deepest pit. Johnsen and Hilfer [78] 

predicted the stochastic evolution of corrosion front using statistical methods by a time 

sequence of random corrosion events. Wei [79] presented a probabilistic model to 

predict the growth of corrosion pits in aluminium alloys in aqueous environments. 

Engelhardt and Macdonald [80] modelled pit depth distribution using damage function 

analysis, which was successfully applied to the pitting corrosion of iron in neutral 

chloride solutions. Komukai and Kasahara [81] as well as Isogai, Katano and Miyata 

[82], applied extreme value models to study pitting corrosion. Valor et al. [83] 

introduced Markov Chain models for the stochastic modelling and Cavanaugh et al. [84] 

used neural network approaches for modelling pit growths. 

Monte Carlo simulation is widely used to determine a statistical distribution that can 

best fit the real-life corrosion phenomenon. The Monte Carlo method has shown to give 

simulation results that are consistent with experimental data; in the process, a better 

understanding - at least qualitative - of pitting corrosion can be achieved and, more 

importantly, predictions can be made. Shibata [85] applied the Monte Carlo simulation 

to validate the pit depth distribution obtained from experiments. Monte Carlo 

simulations are successfully used to model the pit growth of the most common industrial 
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materials such as aluminium alloy [79, 86, 87] and steel [44, 64, 65]. These simulations  

can also be combined with degradation models to perform reliability analysis for 

infrastructures [88]. Davey et al. [89] used the Monte Carlo method to model the 

initiation of pitting corrosion, and established an atlas of risk for undersea metals. Ossai 

et al. [90] developed a 2D fussy Monte Carlo simulation to estimate a corrosion wastage 

rate for pipelines using both Markov modelling and Monte Carlo simulation. Murer and 

Buchheit [91] applied Monte Carlo to fit the experimental pit depth distribution for 

aluminium alloy. These simulations were also used to characterize the randomness of 

pit growth in different environmental conditions. The distributions applied for these 

simulations are determined by certain parameters which include the type, mean, 

variance, location, scale, shape, etc. According to Caleyo et al. [82] and Velazquez et 

al. [75], these parameters can vary due to environmental effects. 

The estimation of the remaining life of engineering assets is an important assistance to 

decision making in the modern industry. The precision in life estimation, especially 

when interpreted as the probability of failure of engineering assets, enhances the 

confidence to the decisions on the reliabilities of infrastructures. The decisions are 

closely related to the living quality of civilians, the financial budgets of governments 

and the profits of companies. This study focuses on estimating the probability of failure 

of underground power transmission cables, with results based on existing data from the 

industry. The foundation of this research is an existing experience-based probability of 

failure model investigated and summarised by KEMA [92]. This model generalises the 

probability of failure of all cables into one universal function. The disadvantage is 

obvious: such a model cannot account for the variety of cable conditions. As more 

cables approach the designed servicing age, the predictions fail to be convincing. In the 

author’s recent work, life estimation of power cables was based on computer modelling 

of a pit depth distribution using Monte Carlo simulations [5] and a complete failure 

process analysis based on the concept of pit-crack transfer probability [6]; these two 
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topics will be further discussed in details in Chapter 5 and Chapter 6. Compared to the 

experience-based model, these research results are considered as the information with 

a different approach to the same engineering asset data. The Bayesian Inference method 

is applied as a conjunction to update the experience-based model with the mechanism-

based model. 

When discussing engineering asset management, there are two major approaches in the 

assistance of decision making: the remaining life estimation (can be seen in section 

2.1.1 which discussed the industry application of asset management strategy) and the 

probability of failure estimation (can be seen in section 2.1.2 which discussed the 

Ofgem approach on asset management). The approach of remaining life estimation has 

been researched widely in different engineering disciplines. Martin et al. [93] studied 

the remaining life of the transformer insulation and concluded that the remaining life is 

strictly related to paper insulation degradation. Khalifa et al. [94] developed a 

quantitative model for gas turbines on a risk-based maintenance and remaining life 

assessment. Segovia et al. [95] created a Cox model based on corrosion studies 

estimating the remaining life of power transmission towers. Ahmadzadeh and Lundberg 

[96] applied an artificial neural network (ANN) method in the remaining useful life 

estimation of grinding mills. Animah and Shafiee [97] discussed the remaining life 

estimation for offshore oil and gas assets, with a proposal for the decision making of 

life extension. 

The other approach - probability of failure estimation - is discussed by the following 

researchers. Su et al. [98] applied a one-dimensional integral approach to the probability 

of failure estimation for geotechnical structures. Wang et al. [99] discussed the failure 

probability for an ethylene cracking furnace tube, which is a key component in the 

petrochemical industry. Zhou et al. [100] analysed the probability of failure of multi-

storied reinforcement-concrete structures based on the evaluation of seismic control 

effect. Liang et al. [101] evaluated the failure rate of a power transformers and proposed 
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a decision strategy for replacement. Seo et al. [102] studied the probability of failure 

model based on the safety factor in a water supply network; the determination of safety 

factor was related to the fundamental mechanism of corrosion in water pipes. 

Furthermore, based on the same fundamental pitting corrosion studies, Kioumarsi et al. 

[103] discussed the failure probability of steel bars in a reinforced concrete beam. 

Among the proposals of remaining life estimation and the probability of failure 

estimations, the following methods have proved to be the popular approaches. The 

Monte Carlo method is used in near-reality data simulations [99, 104], the neural 

network algorithm is applied to data processing [104, 105] and the Weiner process is 

used in remaining-life model building [8, 106]. Currently, the Bayesian Inference 

approach to update the old-information model with new information model is not 

widely used, especially in engineering disciplines. Mosallam et al. [107] applied a 

Bayesian approach to remaining life estimation, but mainly focused on the algorithm of 

discrete Bayesian filtering. Wang et al. [106] applied the Bayesian Inference algorithm 

to model updating. However, with insufficient pre-processing of data, an over-

simplified assumption, and the simplification in handling the Bayesian Inference 

function, the process of this algorithm is not suitable to provide the potential of general 

application in the engineering field. Apart from the engineering field, Bayesian 

Inference is a key algorithm in the machine learning field, for example used for the 

prediction of human behaviour [108, 109], public application like credit card 

applications and artificial intelligence [110-112], and the extension of machine-learning 

related fundamental theories [113-116], etc. 

 

2.5 Models for corrosion and fatigue 

In this section the fundamental models are discussed. As the major mechanism for the 

failure of the phospher bronze is corrosion fatigue, the sub-sections will be divided into 

the fundamental model of pitting corrosion, and the fundamental model of mechanical 
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fatigue. 

 

2.5.1 Models for corrosion 

The corrosion model, fundamental to Chapter 3 for the simulation of pit depths 

distribution, is the power law first proposed by Romanoff [60]:  

𝑦(𝑡) = 𝛼 × 𝑡𝛽 −− −−−−(2 − 1) 

where y is the pit depth, t is the time and α and β are constants. This is a mathematical 

model describing the pit depth growth to be time dependent. This is a simple model 

regardless of multiple mechanisms that caused the pitting, for example, the pit initiation, 

the electro-chemical reactions of pit growth etc. It can be regarded as a statistical model 

which focuses on describing the pattern of pits. The parameter α is normally represented 

by a type of distribution, this distribution with certain numbers of parameters is usually 

curve fitted via laboratory experimental data. The parameter β is a geometry related 

value, usually within the range of 0.2 to 1. 

 

2.5.2 Models for fatigue 

a) Paris’ Law for crack propagation 

The fundamental yet classical theory in the fatigue crack propagation is the Paris’ Law, 

also called the Paris-Erdogan Law. It was first introduce by Paris [117] in 1961. The 

model is related to the stress intensity factor and is expressed as: 

𝑑𝑎

𝑑𝑁
= 𝐶Δ𝐾𝑚 −−− −−−− (2 − 2) 

In which 𝑎 is the crack length, 
𝑑𝑎

𝑑𝑁
 is the crack growth rate, 𝐶 and 𝑚 are material, 

environment and stress ratio related constants, and Δ𝑘 represents the stress intensity 

factor.  

b) Kondo’s theory on the pitting corrosion to crack propagation transfer 

Kondo [56] introduced the basic requirements for predicting the pit-crack transfer, 
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consisting of two rules: first, the pit depth must reach a threshold value in order to 

initiate the transition. Second, at the transfer depth, the crack propagation rate is larger 

than the growth rate of pitting corrosion.  

 

c) Turnbull’s proposal on pitting corrosion to crack propagation transfer 

Turnbull [73] used a probability theory to describe the transfer (‘Transfer Probability’), 

suggesting that it is not always the pit with the largest depth that transfers from pitting 

corrosion to crack propagation. All pits with different depths have a certain probability 

of transfer.  

 

2.5.3 A modified crack growth model by author’s research team within the 

project 

A member of the author’s research team1 provided a modified crack propagation model 

which is the fundamental theory of Chapter 5, the following is the description of this 

modified crack propagation model. It is referred to as ‘Crack growth rate under high 

mean stress’. 

From the work of Turnbull the crack growth rate is given by [70, 73] 

d𝑥

d𝑡
= 𝐶𝛥𝜎𝑝𝑥𝑞 −−− −−−(2 − 3) 

where x is the crack length (for consistency with pit depth), 𝛥𝜎 is the stress amplitude, 

C is a constant for the same type of crack and p=2q (same as for long cracks used in 

Linear Elastic Fracture Mechanics [70]) and q are material constants. Since for the same 

pit depth, the pit growth rate is statistically distributed, it would be expected that the 

crack growth rate will also follow a similar distribution. The above equation cannot be 

used in the cable life prediction as the failure is dominated by the effect of mean stress.  

                                                 
1 Sivashangari Gnanasambandam, co-author of the author’s two publications. 
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Various empirical approaches have been proposed in the literature to address the effect 

of mean stress. For example, Zhang et al. [118] suggested to modify the stress amplitude 

such that  

𝛥𝜎∗ =
∆𝜎

[
1 − 𝑅
1 + 𝑅]

𝑠 − −−−−−(2 − 4) 

where 𝑅 =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
 and s = 0.5 for copper alloys [119]. Different modifications have also 

been put forward by Smith, Watson and Toppers [120] who proposed the effect of mean 

stress as a geometric mean of the maximum stress and the stress amplitude and is given 

below  

𝛥𝜎∗ = √𝜎𝑚𝑎𝑥∆𝜎 − − − − −−(2 − 5) 

This approach is called SWT method and it does not depend on any material property. 

Walker [121] introduced an additional material property γ into the above equations as 

shown in equation (2-6). The value of γ ranges from 0.4 to 0.8.  

𝛥𝜎∗ = 𝜎𝑚𝑎𝑥
1−𝛾∆𝜎𝛾 −−−−−−(2 − 6) 

Klesnil and Lukas [122] proposed an empirical relation to account the effect of mean 

stress as shown below 

𝛥𝜎∗ =
∆𝜎

(1 − 𝑅)𝛾
−−−−− (2 − 7) 

where the value of γ lies between 0.5 to 0.75. We have tested all these empirical 

equations and concluded that none of them is valid for the cable failure. A possible 

reason is perhaps that the mean stress in the underground cable is much higher than the 

stress amplitude. In order to capture the cable failure observed in the field data over the 

long term, it is proposed to modify equation (2-3) similar to the ripple loading with high 

mean stress and very small amplitude loading as follows  

d𝑥

d𝑡
= 𝐶(𝛥𝜎∗)𝑝𝑥𝑞 −−−−− (2 − 8) 



68  

where 𝛥𝜎∗ = 𝜎𝑚𝑒𝑎𝑛 + ∆𝜎. The exponents for ∆𝜎 and 𝑥 have been separated and we 

represented the effective stress as a sum of mean stress and daily alternating stress. 

Equation (2-8) can be interpreted as an empirical rate equation for crack propagation 

under a combination of high mean stress and small stress amplitude. Its justification is 

the fact that it can capture the field data collected over 30 years in this work.  

In particular, two failure cases at two different cable locations are studied for asset 

management modelling. The material properties and geometries of the tape and lead 

sheath used in calculations for the two specific cables were listed previously in Table 2-

3.  

Mean (𝜎𝑚𝑒𝑎𝑛)   and alternating stress (∆𝜎)  are calculated as follows [53]: The 

reinforcing tapes experience variation in stress because of the cable internal oil pressure 

and temperature variation (due to variation of electricity demand with time),  

                    𝜎𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≌
𝑟𝑡
𝑡𝑡
−−−−− (2 − 9) 

                   ∆𝜎 = 𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 𝜎𝑡ℎ𝑒𝑟𝑚𝑎𝑙 −−−−− (2 − 10) 

                   𝜎𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ≌
𝛼𝑠
′ − 𝛼𝑡

′

1
𝐸𝑡
+
1
𝐸𝑠

𝑡𝑡
𝑡𝑠

𝛥𝑇 −− − − −−− (2 − 11) 

where 𝑟𝑡 is the radius at which the tape is wrapped around the lead sheath, 𝑡𝑡 is the 

tape thickness, 𝑝 is the inner pressure,  𝑇 is the temperature in 𝐾, 𝛼′ is the linear 

expansion coefficient, E is the Young modulus, t is the thickness, and the subscripts s 

and t indicate the lead sheath and the phosphor bronze tape respectively. Mean (𝜎𝑚𝑒𝑎𝑛) 

stress is calculated from the average of the stress exerted due to static pressure over the 

operating period and the  𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  is calculated from the daily variation of 

stress due to static pressure. The measured values of mean stresses and alternating 

stresses of the two failed cables were provided in Table 2-4. 
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2.6  Unresolved issues and the purpose of this thesis 

Following the previous sections, it can be observed that there are several issues existing 

regarding the in-depth of the researches. These unsolved issues are listed and explained 

below: 

 

Macroscopic mathematical description of pit depth distribution of bronze 

First of all, the current research in the corrosion filed focuses on the microscopic 

reaction observation. The electro-chemical reactions on metal material surfaces are 

studied, though they are normally focusing on individual pit. The issue of researching 

on individual pit is: corrosion pits are at small scales, in the size of micrometres, 

normally on the surface of any material with a period of time of usage, the number of 

corrosion pits is large, each pit can be a result of complicated electro-chemical reactions, 

which means that they are microscopically random. The study of single pit corrosion 

may not be able to explain the majority of randomness in the corrosion phenomenon. 

Furthermore, steel and aluminium are among the most popular materials in the 

researching of corrosion phenomenon and they are considered as the most important 

fundamental materials in the engineering industry. The power transfer cables being 

researched in this thesis, fails due to the corrosion fatigue effect of a reinforcing tape 

layer within the cables. The layer is of the phosphor bronze material which has limited 

amount of research track records. As the study of this phosphor bronze material is 

crucial to the understanding of the failure mechanism in power transmission cables, the 

research in this thesis is carried out.  

In Chapter 3 of this thesis, the modelling of pit depth distribution in a macroscopic scale 

for the phosphor bronze material is carried out in order to fill the blank of research on 

macroscopic pit depth distribution on phosphor bronze material. 
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The understanding of the corrosion pit transfer to crack propagation mechanism 

The current classical understanding for the corrosion fatigue mechanism is proposed by 

Kondo [56] which states that when pitting corrosion and fatigue cracking happening at 

the same time (corrosion fatigue), it is always the fastest growing corrosion pit (which 

is also the deepest pit) that transfers into a more serious condition of crack propagation, 

and this is the main cause of the failure of the material. The experiment carried out 

during the research of this thesis showed different phenomenon, which for many 

phosphor bronze reinforcing tapes being studied is not the deepest pit measured that 

caused the final failure, but rather pits that grew slower and of less depth. 

To solve the issue that the experimental phenomenon cannot be explained by the 

classical theory, in this thesis, a statistical approach is proposed on the explanation. This 

approach assumed that for every pit on the surface of metal there is a probability that it 

would transfer to crack propagation under cyclic loading, it is just that deeper pits have 

larger probabilities than smaller pits for the transfer, which enhanced the classical theory 

so to explain the actual experimental phenomenon. 

 

The limits of the probability of failure model for power transmission cables in the 

industry 

Currently there are several models used in the industry for the estimation of probability 

of failure for underground power transmission cables, for example, a single normal 

distribution applying to all underground cables, or, define cables at 4 criticality levels 

and define a fixed remaining life estimation for each level. 

The limits and disadvantages are obvious. The environment of all underground power 

transmission cables are different and complicated, therefore, a universal single function 

model cannot give the most complete information for the varieties of situations. Also to 

classify cables in four criticality levels show the problem of too ambiguous too. The 
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fact is, each cable is with a unique condition and the development to failure in each 

cable is not identical. 

To solve this problem, I proposed a new definition of the probability of failure based on 

the chemical and physical characters of each individual cable. In addition, these 

individual models are combined with the existing industry models for a most complete 

inclusive of cable information and data. I name these combined models ‘Tailored 

probability of failure model’ which gives the most fitted estimation on the probability 

of failure for each individual cable. 

 

The objective of this thesis 

First of all, from the literature, there is little research done on the pitting corrosion of 

phosphor bronze material. The lack of such information meaning the existing model for 

failure prediction is inaccurate at a industrial level of application. With this issue in 

mind, the initial motivation of this thesis is to provide the novel simulation of pit depth 

distribution on phosphor bronze material which is a vital component in the underground 

power transmission cables. 

Second, by acknowledging the pit depths distribution, it is essential in failure prediction 

that the crack propagation should follow the pitting corrosion procedure. The 

experimental results cannot be perfectly explained by the existing theory of pit to crack 

propagation, which requires a novel theory in explanation. A statistical approach is 

applied to link the pitting corrosion and crack propagation in a reasonable way.  

Last, the result of the two motivations leads to life estimation of underground power 

transmission cables, which then leads to the calculation of probability of failure of the 

cables. However, there are existing industry-level models which discuss the same goal. 

To enable the research output is of use in the energy industry, the final motivation is to 

integrate the research results into the existing models, which leads to the machine 
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learning approach, specifically the Bayesian network approach in updating the 

empirical industry model by the research output of this thesis.  

To represent the procedure of the research chapters, a flowchart is provided below. 

 

Flowchart of research output: 

 

 

  

Simulation of pit depth distribution using 
statistical distributions

Apply a pit-crack transfer probability on life 
estimation of the phosphor bronze 

protection tape

Integrate the mechanism-based probability 
of failure model with the existing 

empirical-based probability of failure 
model with a Bayesian Network method
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3. Modelling of pit depth distribution for 

phosphor bronze tapes used in 

underground power transmission cables 

The purpose of this chapter is to develop a mathematical model describing the pit depth 

distribution on the surface of the phosphor bronze material. A simple power law 

involving two parameters is applied, to achieve a balance between simplicity and 

accuracy. It is of the interests of both industry and research output that when a certain 

model can explain the physical phenomenon, then the simpler the model the better. The 

power law applied in this chapter is a statistical model, this approach is made as the real 

mechanism is complicated and the data is limited in discovering the effects of all 

mechanisms. The modelling procedure consists of the following major steps: 

1) Laboratory measurement of pit depths on available phosphor bronze tape samples 

and data collection. 

2) Mathematical simulation on pit depth distribution model. 

3) Simulation results and discussion of the model.  

The laboratory scanning of pit depth, done by the co-authors of the jointly published 

paper [5], is greatly acknowledged. A brief description of the experimental work is 

included in this chapter for completeness. This chapter is entirely based on one 

publication of the author (first-author publication) [5], extended with additional details 

in the methodology and result sections. In this chapter, Figure 2-11 (re-print), Figure 3-

1, Figure 3-7, Figure 3-9, Figure 3-10, Figure 3-11, Figure 3-12, Figure 3-13, Figure 3-

14 and Figure 3-15 are in the published journal paper, the rest of the figures shown here 

are for extended details. 

 

3.1  Laboratory measurement of pit depths and data collection  
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The measurement presented in this sections was performed by the co-authors of a joint 

paper [5]. 

Reinforcing tapes of different service ages and from different environments are 

analysed to find the pit depth distribution using metallographic methods as discussed 

below. 

The pit depth data extraction follows a three-step procedure: tape cleaning, sample 

preparation and pit depth measurement. For the tape cleaning, sample preparation and 

pit depth measurement, the methods discussed in ASTM standard is followed [123]. 

Tape cleaning: The tape was cleaned as it was initially covered by bitumen. In this 

process, bitumen is dissolved and removed with extra pure n-pentane by immersion of 

the tape sample in a sequence of three pentane baths and gently removing all the sticky 

bitumen with the aid of cotton buds. The process takes from 10 to 30 seconds and the 

tape does not show any signs of corrosion due to the cleaning process. 

Sample preparation: Once a piece of tape has been cleaned, samples can be prepared 

by cutting the tape in small rectangular samples every 0.5 cm along the tape’s 

longitudinal axis. Each tape sample is mounted in groups of two sections per mounting 

by keeping the upper sides of the tape in the same direction and marking the lower side 

so to distinguish between the two after the mounting is complete. A conductive phenolic 

mounting resin was used. The sample was then ground/polished with a succession of 

SiC paper starting form 240 grit to a 1 micron finishing. The area immediately next to 

the cut edge will be removed in the grinding process, so that local plastic deformation 

near the cut will not alter the pit depth measurement. Finally the samples were immersed 

in an ultrasonic bath with methanol for 3 minutes at room temperature in order to 

remove any polishing residue from the polished surface. The tape before and after the 

cleaning is shown in Figure 2-11 (a) and 2-11 (b), the mounted sample is shown in 

Figure 2-11 (c). 

Pit depth measurement: The procedure listed in the ASTM standard G46 [124] to 
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measure the pit depth is followed as below. 

- Locate the mounted reinforcing tape under the optical microscope.  

- Start from the top surface section edge with 5x lens and sequentially increase 

the lens magnification and refocus till the edge is visualised with a 50x lens. 

Focus is obtained with the coarse focusing knob for the 5x, 10x, and 20x lens, 

while the fine-focusing knob is necessary for the 50x lens.  

- Start from the edge, use the X-Y knobs to move the image along the tape top 

surface, stop and measure each pit encountered till the entire top surface length 

of the sample has been scanned.  

- Perform the readings by drawing multiple measuring lines and measuring each 

pit on the deepest point. In this way there is no need to stop and record each pit 

dimension singularly, but the measurements for a single sample can be recorded 

altogether at the end of the analysis of the sample. 

- Calculate the probability of occurrence for a pit depth range which is the number 

of pits counted in the given pit range divided by the total number of pits in the 

tape. 

 

3.2 Mathematical simulation on pit depth distribution model 

The modelling consists of three stages as shown in the flowchart (as Figure 3-1) and 

explained in detail below: 
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Figure 3-1: Flowchart for pit growth modelling using Monte Carlo simulations [5] 

 

Stage 1: Pit growth modelling 

The mathematical model used to calculate the pit depth is a time dependent power law 

which was first introduced by Romanoff [60]. 

𝑦(𝑡) = 𝛼 × 𝑡𝛽               (3 − 1) 

where y is the pit depth, t is the time and α and β are constants. In this model, β is an 

unknown constant and α is also unknown but chosen from a random distribution and 

both the parameters are determined by the best statistical fit to the experimental pit 

depth distributions using Monte Carlo simulations. 
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Stage 2: Determination of pit growth parameter β and choosing best distribution 

for α  

Monte Carlo simulations are used to simulate the pit growth which is modelled by 

Equation (3-1). For most of the materials the value β is in the range of 0.2 to 1 [44]. The 

parameter α is unknown and is assumed to follow a probability density function (PDF) 

which gives the best fit to the experimental pit depth distribution.  

The probability distributions considered for selection of α are shown here. Each general 

distribution function is given for reference: 

 Exponential distribution with one parameter 

𝑓(𝑥|𝜆, 𝑘) = {
0                  𝑥 < 0
𝜆𝑒−𝜆𝑥          𝑥 ≥ 0

      (3 − 2) 

Where  

o 𝜆 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

 Normal distribution with two parameters 

𝑓(𝑥|𝜇, 𝜎2) =
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2           (3 − 3) 

Where 

o 𝜇 ∈ 𝑹 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑒𝑞𝑢𝑎𝑙𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

o σ 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑎𝑙𝑠𝑜 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

 Gamma distribution with two parameters 

𝑓(𝑥|𝑘, 𝜃) =
1

Γ(𝑘)𝜃𝑘
𝑥𝑘−1𝑒−

𝑥
𝜃      (3 − 4) 

Where 

o 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

o 𝜃 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

o Γ(𝑘) 𝑖𝑠 𝑡ℎ𝑒 𝐺𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Γ(𝑘) = ∫
𝑡𝑘−1

𝑒𝑘
𝑑𝑘

∞

0

        (3 − 5) 

 Weibull distribution with two parameters 



78  

𝑓(𝑥|𝜆, 𝑘) = {

0                                      𝑥 < 0

𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒−(
𝑥
𝜆
)
𝑘

           𝑥 ≥ 0
        (3 − 6) 

o 𝜆 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

o 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

 Generalized Extreme Value (GEV) distribution with three parameters 

𝑓(𝑥|𝜇, 𝜎, 𝜉) =
1

𝜎
𝑡(𝑥)𝜉+1𝑒−𝑡(𝑥)     (3 − 7) 

Where 

𝑡(𝑥) = 𝑓(𝑥) =

{
 

 
(1 + 𝜉 (

𝑥 − 𝜇

𝜎
))

−1 𝜉⁄

        𝑖𝑓 𝜉 ≠ 0

𝑒−
(𝑥−𝜇)

𝜎⁄                               𝑖𝑓 𝜉 = 0

         (3 − 8) 

o 𝜇 ∈ 𝑹, 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑖𝑡𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

o 𝜎 > 0, 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑜𝑡𝑟 

o 𝜉 ∈ 𝑹, 𝑖𝑠 𝑡ℎ𝑒 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

The Monte Carlo simulation protocol to find β and the best distribution for the 

parameter α is as follows. At known time (t), number of pits (n), number of iterations 

(N), and by varying β from 0.2 to 1, the pit depth is calculated from Equation (3-1) for 

each distribution of α listed above. The generated pit depth is compared with the actual 

pit depth distribution to find the value of β using the best fit from the statistical t test. 

The same procedure is followed for all the five distributions of α and their 

corresponding t test values for the best fitted β are compared to get the appropriate 

distribution for α. 

A very important application of the Student’s t test is to determinate whether two sets 

of data are significantly different from each other. This test can be applied to samples 

with a normal distribution, or samples with a normal distribution tendency proved by 

the central limit theory [125]. 
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Stage 3: Optimization of all the parameter of the selected pdf (α) 

The parameters of the best distribution are derived by fitting the data obtained into the 

actual pit depth distribution. The Monte Carlo simulation protocol to optimize all the 

parameters of best distribution is as follows. At known time (t), number of pits (n), 

number of iterations (N), and a determined value of β from stage 2, the pit depth is 

calculated from Equation (3-1) by varying three parameters of α. At a given value of α 

and for each iteration, the generated 1 million pit depths are compared with the actual 

pit depth distribution and the optimized parameters for the distribution is obtained using 

the best fit from the statistical method. 

In the literature, a number of statistical methods such as ANOVA [126], K-S test [44] 

and Anderson Darling goodness-of-fit test [127] are used to compare the difference 

between experiment and simulated pit depth distribution. The statistical test applied in 

our method for comparing the experimental data is the ANOVA (analysis of variance), 

a method which is commonly used in pitting corrosion.   

 

3.3  Simulation results and discussion of the model 

Pit depths were extracted from the tape samples with different service age and also from 

different locations using metallographic methods as discussed in section 3.1. The 

obtained pit depth distributions were modelled using Monte Carlo simulations as 

described in section 3.2. The results obtained from pit depth extraction and the 

modelling are elaborated in detail in the following sections. 

 

3.3.1 Experimental pit depth distribution 

The pit depths are extracted from the various samples of reinforcing tapes using 

metallographic methods. According to Chapter 2, the experimental data is already 

provided. First of all, the measurement pit depths data for all failure cases are plotted in 
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bar charts below, for a universal comparison of data. Instead of comparing the number 

of pits being counted within each pit depth range, a probability of occurrence of pits is 

introduced. The probability of occurrence is calculated as the number of pits occurring 

within a pit range divided by the total number of pits measured at one location. These 

experimental results are shown in the following figures for visual assistance.  
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Figure 3-2: Pit depth measurement of Site 1 at 38 years (first failure) (re-produced from 

[5] 
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Figure 3-3: Pit depth measurement of Site 1 at 44 years (second failure) (reproduced 

from [5]) 
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Figure 3-4: Pit depth measurement of Site 2 (43 years) (re-produced from [5]) 
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Figure 3-5: Pit depth measurement of Site 3 (28 years) (re-produced from [5]) 
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Figure 3-6: Pit depth measurement of Site 4 (41 years) (re-produced from [5]) 
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In addition to the pit distributions above, Figure 3-7 is plotted to validate that the 

experimental pit depth distribution follow a constant pattern. Taken from the same 

phosphor bronze tape, two experiments count pit depths each containing 16 samples are 

carried out. This is the original measurement of Site 2 phosphor bronze samples. 

 

Figure 3-7: Pit depth distributions for 2 sets of samples belonging to the same piece of 

tape (re-produced from [5]) 
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The above figures, Figure 3-2 to Figure 3-7, are plotted for the observation of a pattern 

of distributions. The observed pattern is used as an initial assumption of the potential 

statistical distributions for further simulation. Especially Figure 3-7 is regarded as an 

evidence that the pit depths remain the same pattern of distribution throughout the years 

of developing, which provides the an assumption that one statistical distribution can be 

used to simulate the entire process of pitting corrosion phenomenon.  

 

3.3.2 Pit growth modelling: Determination of pit growth parameter β and 

selection of probability distribution for α 

Monte Carlo simulations are performed to calculate the pit depth using Equation (3-1) 

with the parameters:  

- β varying from 0.2 to 1. 

- α is chosen from one of the 5 distributions mentioned in Section 3.2  

First of all, the comparison of simulation results and experimental data is done for Site 

1. For each distribution, by varying β, the pit depth distribution is calculated for a 

reinforcing tape of service age 38 and compared with their corresponding experimental 

pit depth distribution using the t test.  

One of the t test applications is the comparison of the similarity between two sets of 

data. One major step in the t test application is to reference the t test table which is given 

here. 
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Table 3-1: T test table [128] 

 

 

The experimental data contains 39 samples (38 degrees of freedom). According to the t 

test distribution table, to reject the null hypothesis (the simulation results and 

experimental data do not have a significant difference), the t test value should be smaller 

than approximately 2.021 with pre-determined p value as 0.05. Any probability 

distribution for α with a certain value of β (between 0.2 to 1) which gives the value 

smaller the t test value will be selected as the best distribution for α and the 

corresponding β value is fixed as a constant value for β. 

On a trial and error basis, the range of parameters in the probability distribution is fixed 



89  

based on the t test results. All the probability distributions are further tested with the pit 

depth data at 44 years and their applicability is assessed by t test.  

 

Table 3-2: T test value table showing the results of simulation for 5 different types of 

distributions [5] 

 

Distribution Type 
38 Years 

distribution 

44 Years 

distribution 
Conclusion 

Normal 2.1061 > 2.021 2.3454 > 2.021 
Exceeding the T test 

value 

Exponential 2.0627 > 2.021 3.1495 > 2.021 
Exceeding the T test 

value 

Two parameter 

Weibull 
1.6742 < 2.021 2.3805 > 2.021 

Exceeding the T test 

value 

Three parameter 

GEV 
1.4283 < 2.021 2.0196 < 2.021 

T test value under 

boundary value 

Gamma 1.5544 < 2.021 2.4025 > 2.021 
Exceeding the T test 

value 

 

From Table 3-2 it can be easily observed that all four distributions except for the GEV 

distribution rejected the null hypothesis. GEV distribution achieved an acceptable t- test 

results for both 38 and 44 years pit depth data obtained from the same location. So the 

GEV distribution with three parameters is selected for the random parameter α. The 

corresponding value of β for the GEV distribution varied from 0.3 to 0.32. Theoretically, 

𝑝𝑖𝑡 𝑑𝑒𝑝𝑡ℎ ∝  𝑡
1

3, this is due to the geometry assumption of pit growth [129-140], which 

means the β value shall be approximately 0.33, provided that the pit shape is 

hemispherical in nature [141].  
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Figure 3-8: A representation of pit growth in hemispherical geometry 

 

Pit depth is assumed to grow at a constant volume speed, which means a constant 

volume growth in unit time. The volume of hemisphere is: 

𝑉 =
2

3
𝜋𝑟3        (3 − 9) 

According to the assumption of constant volume speed, it can be expressed as: 

𝑑𝑉

𝑑𝑡
=
𝑑
2
3𝜋𝑟

3

𝑑𝑡
= 𝐶 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)       (3 − 10) 

Which leads to: 

𝑑𝑟

𝑑𝑡
1
3⁄
= (

𝐶

2
3𝜋
)

1
3⁄

= 𝐶′ (𝑎𝑙𝑠𝑜 𝑟𝑒𝑔𝑎𝑟𝑑𝑒𝑑 𝑎𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)   (3 − 11) 

In the above equation (3-11) 𝑟 is the radius of the hemisphere, which is the same as pit 

depth and 𝑡 is time. This deduction procedure proves that pit depth is related to 𝑡
1
3⁄ . 

This hemispherical assumption can be further justified by the observed pit shape in the 

tape sample, shown in Figure 2-11 (d). It can be concluded that the pit growth follows 

the theoretical geometry assumption, and the β value is fixed as 0.33. 

 

3.3.3 Pit depth evolution and distribution 

Pit growth is modelled using Equation (3-1) and the Monte Carlo (MC) method, as 

explained in Section 3.2. Pit depth is calculated by keeping constant value for β as 0.33 
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and using the three parameter GEV distribution for α in Equation (3-1). The three 

parameters of α (scale parameter (σ), location parameter (μ) and shape parameter (ξ)) 

are optimized by comparing the experimental and simulated pit depth distributions 

using ANOVA test.  

Although the simulation results suggested that the GEV distribution is the pattern that 

proved to be the most accurate, it is not a widely used distribution format in the 

corrosion field. The standard format of the possibility density function regarding to the 

GEV distribution was given previously in Equation (3-7) and Equation (3-8). 

Each simulation uses 10000 number of pits and 1000 number of iterations. In total, 

10000000 pits are involved in each simulation. All the pits follow the GEV distribution 

with the same three parameters. The probability of occurrence for a pit depth range is 

calculated similarly to the experiment data.  

Monte Carlo simulations are performed to calculate the pit depth distribution of the 

reinforcing tape over two different years (38 and 44 years) under the same 

environmental conditions, which means that the samples taken for these two years are 

from the same location. First, GEV distribution is applied for the tapes of service at 38 

years. The optimized parameters of α that gave the best fit to the experiment pit depth 

distributions using ANOVA tests are 𝜎 = 0.5, 𝜇 = 3.4 and 𝜉 = 0.5.  Then, using the 

GEV distribution with the same three parameters (𝜎 = 0.5, 𝜇 = 3.4 and 𝜉 = 0.5), the 

pit depth distribution for the tapes of service at 44 years is calculated. The simulated pit 

depth distribution fitted well with the experiment pit depth distribution of the 

reinforcing tapes of service life 44 years. Comparisons between the simulated pit depth 

and experimental pit depth distribution of age 38 and 44 years are shown in Figure 3-9 

and Figure 3-10, respectively. 
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Figure 3-9: Comparison between experiment and simulation pit depth distributions of 

reinforcing tape of age 38 years [5] 
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Figure 3-10: Comparison between experiment and simulation pit depth distributions of 

reinforcing tape of age 44 years [5] 
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It can be observed from both the figures that there is a relatively high probability for the 

shallower pits to appear and the probability of occurrence severely decreases with the 

increased depths of the pits. It can be observed that the difference between the 

experiment and simulation curves are relatively high at smaller pits compared to the 

tails of both curves; this is due to the difficulty in measuring shallow pits which 

normally results in counting errors. Further, the line plot in Figure 3-11 reflected the 

shifting of the distribution pattern with the progress of the time.  
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Figure 3-11: Comparison between simulation pit depth distributions of reinforcing tape 

of both age 38 years and 44 years [5] 



96  

In order to capture the growth of pit depth distribution over the time, an analytical 

mathematical model is developed. The theoretical pit depth distribution at 2-year, 5-

year, 10- year, 20-year, 35-year and 50-year time are plotted in Figure 5-12. 

 

Figure 3-12: Theoretical pit depth distribution with evolution of time [5] 

 

Therefore, we observed that the simple pit growth law in Equation (3-1) is capable of 

predicting the evolution of pit depth distribution consisted with the experimental 

observations. This result shows that the three parameters optimized by comparing the 

pit depth distribution at 38 years can be successfully applied to find the pit depth 

distribution at 44 years. It proves that the model is able to predict the evolution of pit 

depth with time. 

 

3.3.4 Pit depth distribution at different environmental conditions 

The same methodology is applied to fit the pit depth distributions of the reinforcing tape 

extracted from different environmental conditions (named as Site 1 to 3).  



97  

The change in the environmental condition is incorporated into the present approach by 

changing only location factor μ and by keeping the other two parameters (scale 

parameter (σ) and shape parameter (ξ)) as constants for the GEV distribution of α. The 

value of the two parameters were fixed based on previous calculations (σ = 0.5 and ξ = 

0.5). The only changing parameter for optimization of simulation is the location factor 

μ for which the best value is identified using ANOVA test by comparing experimental 

and simulated pit depth distributions at different sites. 

For Site 1, the parameters for the GEV distribution after fixing σ and ξ are 𝜎 = 0.5, 𝜇 =

4.7 and 𝜉 = 0.5  and the comparison between the simulated and experimental pit depth 

distributions is shown in Figure 3-13.  
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Figure 3-13: Comparison between experiment and simulation pit depth distributions of 

reinforcing tape of age 43 years (Site 1) [5] 
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It can be concluded from the Site 1 simulation that a fixed three parameter distribution 

for α may not be the best choice to fit the pit growth distribution in different 

environmental conditions. However, by changing only one of the three parameters, 

which is the location parameter μ, the fitting can achieve an optimum result. This can 

be explained as follows: the location parameter μ is influenced by multiple 

environmental factors, most likely the temperature and soil properties.  

The same methodology is followed for Site 2, for which the optimized parameters are 

𝜎 = 0.5, 𝜇 = 5.2 and 𝜉 = 0.5.  The comparison between the simulated and experiment 

pit depth distributions are shown in Figure 3-14. 
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Figure 3-14: Comparison between experiment and simulation pit depth distributions of 

reinforcing tape of age 28 years (Site 2) [5] 
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At Site 2, the environmental condition makes the pits grow faster than at the other 

locations, as can be seen from the deepest pit reaching the range of 90-96 μm. The pit 

growth equation predicted the high pit growth rate very close to the experimental 

observation by only changing the parameter μ. 

The comparison between the simulated and experimental pit depth distributions at Site 

3 is shown in Figure 3-15 and the optimized parameters are 𝜎 = 0.5, 𝜇 = 1.9 and 𝜉 =

0.5.  
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Figure 3-15: Comparison between experiment and simulation pit depth distributions  

of reinforcing tape of age 41 years (Site 3) [5] 
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The maximum pit depth measured on tape sample from site 3 is within the 22-23 μm 

range which is very low compared to other sites and it is well taken care of by the low 

value of the location factor (μ = 1.9) in the simulation. It can be observed that for smaller 

pits, unlike the larger pits, the agreement between the experimental results and the 

simulation results do not match. 

From the above simulations in different sites corresponding to different environmental 

conditions, we can conclude that the power law equation simulated from the three 

parameter GEV distribution is successful in representing the evolution of pit depth over  

time and also pit depth in different environmental conditions. Furthermore, the mean of 

the GEV distribution gives the direct indication of the corrosion level of the 

environment. Mean pit depth of the reinforcing tape is calculated from the mean of the 

GEV distribution as 

𝑦𝑚𝑒𝑎𝑛 = (𝜇 + 𝜎 ×
Γ(1 − 𝜉) − 1

𝜉
) × 𝑡𝛽           (3 − 12) 

From the simulation result already discussed above, the parameter σ is set as 0.5, ξ as 

0.5, and β as 0.33. By substituting the values into the model, a specific pit growth model 

for the mean level of pit depths can be obtained for phosphor bronze material as, 

𝑦𝑚𝑒𝑎𝑛 = (𝜇 + Γ(0.5) − 1) × 𝑡
0.33             (3 − 13) 

which gives, 

𝑦𝑚𝑒𝑎𝑛 = (𝜇 + √π − 1) × 𝑡0.33             (3 − 14) 

where μ is a measure of corrosion factors in different environments, with a close link to 

humidity, pH level, temperature, pressure, etc. The obtained mean pit depths for the 

reinforcing tapes at different environmental conditions is given in Table 3-3, indicating 

the extent of corrosion at the different sites. 
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Table 3-3: Calculated mean pit depths of the reinforcing tapes at different environments 

[5] 

Time (Years) μ 𝒚𝒎𝒆𝒂𝒏 (𝝁𝒎) 

38 3.4 13.8586 

44 3.4 14.5456 

43 4.7 18.9333 

28 5.6 19.1368 

41 1.9 9.1018 

 

The parameter μ value in this chapter is the deterministic value to evaluate the corrosion 

criticality of the existing cables. The larger the location parameter μ is, the more 

corrosive the phosphor bronze layer wrapping the cable is. The value of parameter μ 

also leads to the results of mean pit depths 𝑦𝑚𝑒𝑎𝑛, this provides a more straight forward 

comparison for the corrosive environment, the higher the mean pit depth is the more 

corrosive the environment the cable is buried in.  
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4. Life prediction of phosphor bronze reinforcing tape 

used in underground power cables: - applying the pit 

to crack transfer probability 

In this chapter, a proposal is made to explain the entire procedure of the corrosion 

fatigue failure phenomenon. According to the conventional theory, the failure of metal 

material by corrosion fatigue mechanism is due to the deepest growing pit. The deepest 

corrosion pit eventually transfers into crack propagation, so that the pit growth speed 

will then be controlled by the fatigue mechanism. As the pit growth speed controlled by 

crack propagation is much faster than that of pitting corrosion, this fast propagation 

speed will lead to the final failure of the material. However, a new phenomenon is 

observed during this research and from laboratory experimental results. An 

underground power transmission cable fails due to the failure of the phosphor bronze 

protection layer, as stated in the previous chapters. The phosphor bronze protection 

layer has a dimension of 152.4 𝜇𝑚 of thickness, which means that for the failure to 

occur, at a certain spot on the tape, a crack grows until a depth close to this thickness, 

resulting in the eventual failure. During the experiment on the pit depth scanning and 

measurement, described in Chapter 2, among all the pits being measured, only within 

the sample from Site 3 a relatively deep pit was observed which was 96 𝜇𝑚 in depth. 

The rest of the failure cases did not provide very deep pit depth measurement results;  

for Site 1 on both years of failure cases, the deepest pits were 21 𝜇𝑚 and 44 𝜇𝑚 

respectively. At Site 2 the deepest pit measured was 59 𝜇𝑚. These deepest depths 

merely reached 40% of the total thickness of the phosphor bronze layer. This was hardly 

the proof that the deepest pit was the main influential reason for the failure cases.  

According to the above described observation, the proposal of ‘corrosion pit to crack 

propagation transfer probability’ is carried out. The main approach of this proposal is 

that throughout the entire process of corrosion fatigue on metal materials, at each time 
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point there is a probability for all depths of pits to transfer into crack propagation  

resulting in the final failure, but the smaller pits with shallower depths have smaller 

probability comparing to the larger pits with deeper depths.  

This approach to analyse the entire failure process of corrosion fatigue mechanism is 

discussed in the following sub-sections, from pit initiation to failure, the process follows 

the sequence mentioned in Figure 2-7. 

The objective of the work in this chapter is to develop an accurate model for determining 

the cable life, based on the corrosion fatigue failure mechanism. Here in this research 

the tape corrosion fatigue failure process is characterized using Kondo’s criteria of pit 

to crack transition [55, 56] and the parameters of interest are modelled using Monte 

Carlo simulations. The proposed model is an integrated approach to use existing models 

with necessary modifications needed to predict the cable failure life of over 40 years 

old. Further, within this chapter validations are given on testing the hypothesis that the 

most likely pit-crack transfer may not happen at the largest pit, but at a pit of any size 

within the reasonable range. 

 

4.1 Model description 

In the previous work (Chapter 3), it was demonstrated that the failure mechanism of 

phosphor bronze reinforcing tapes is corrosion fatigue, based on stress calculation and 

analysing the morphology of the cracked surfaces [53]. Typical characteristics of 

corrosion fatigue, such as corrosion pits on tape surface, multi- cracks in association 

with corrosion pits, and fatigue striation on the fractured face, are found in the failed 

reinforcing tape (Figure 4-1a & 4-1b). 
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Figure 4-1: (a) 3D optical microscopy image showing pits on the outer surface of the 

tape (b) SEM image of corrosion fatigue crack starting from a pit [53]. The crack in the 

cross section shown was normal to the direction of the applied load (longitudinal axis 

of the tape). [6] 

 

In this work, a probabilistic model similar to the Turnbull model [70, 73] was applied 

to find the corrosion fatigue life of the tapes. The essential features of modelling pit 

growth and its transition to crack are described in detail below. The structure of the 

methodology is shown as a flowchart in Figure 4-2. 

(b) 
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Figure 4-2: Pictorial representation for the structure of the methodology in this chapter 

[6] 

 

4.1.1 Pit Initiation 

The pit initiation is due to the electro-chemical reactions between the components of 

the metal material and the environment. The exact initiation mechanism is not fully 

understood and being continuously studied. For example, Soltis [32] provides a 

summary of existing information on pit initiation. Apart from the initiation theory, the 

pit initiation rate is another focus, which can be seen in the work of McCafferty [142] 

and Cavanaugh [143]. However, compared to the total service life of the power 

transmission cable in [6] and the present study, the pitting initiation time is short enough 

to be ignored. The pitting initiation will not be considered in the total service life 

calculation in the study within this chapter. Pitting initiation is considered to be 

happening in a sudden immediately after the initiation mechanism, the time is 

considered as to short to impact the servicing life which is as long as decades. 
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4.1.2 Pitting Corrosion 

Pit growth is modelled using the power law and also a pit depth distribution model using 

analytical equations is developed. 

It is important to deduce a general expression for the pit depth distribution through the 

power law. It is assumed that after initiation, all pits grow continuously. The average 

growth rate at year 𝑡 is considered as the pit depth at year 𝑡 divided by time, i.e., we 

have: 

𝑃𝑖𝑡 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 =  
𝑃𝑖𝑡 𝑑𝑒𝑝𝑡ℎ 𝑎𝑡 𝑦𝑒𝑎𝑟 𝑡

𝑡
− − − − − −(4 − 2) 

The probability density function (PDF) of 𝛼 in Equation (3-1) is known as: 

𝐺𝐸𝑉𝑃𝐷𝐹 =  
1

𝜎
𝑔(𝑥)𝜉+1𝑒−𝑔(𝑥) −−−−−−(4 − 3) 

Where 

𝑔(𝑥) = {
(1 + (

𝑥 − 𝜇

φ
) 𝜉)−1 𝜉⁄          𝑖𝑓  𝜉 ≠ 0

𝑒−(𝑥−𝜇) φ⁄                   𝑖𝑓   𝜉 = 0

− − − − −−(4 − 4) 

For example, the pit depth distribution at the end of Year 1 is given by: 

𝑃(𝑥) = 𝛼 × 𝑡𝛽 = 𝐺𝐸𝑉𝑃𝐷𝐹 × 10.33 = 𝐺𝐸𝑉𝑃𝐷𝐹 𝑜𝑓 𝛼 − − − − − −(4 − 5) 

The above expressions are used to determine the distributions of the annual growth rate 

for all pits. 

In Chapter 3, pit depth distributions for two failure cases at 38 years and 43 years 

respectively were described successfully by using the Monte Carlo simulation. In this 

chapter, the mathematical model is developed to calculate the pit depth distribution for 

tin bronze tape without repeatedly applying the rather time-consuming Monte Carlo 

simulation.  

The concept of pit depth distribution is illustrated with a working example provided. In 

Figure 4-3, two curves represent the development of pit depth distribution of the same 

cable.  
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Figure 4-3: Example plot for time related pit depth distribution calculation [6] 
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The solid curve shows the pit depth distribution at the end of Year 1 and the dotted curve 

of Year 𝑡. Taking an interval of pit depth at Year 1, [n (n+1)] 𝜇𝑚, the shadowed area 

represents the probability of occurrence of the range. At Year t, the lower boundary of 

the range grow to 𝑛 × 𝑡0.33 𝜇𝑚, the upper boundary of the range grow to (𝑛 + 1) ×

𝑡0.33 𝜇𝑚, where the new shadowed area represents the probability of occurrence of the 

development of pit depths. Obviously, the two shadowed intervals take up the same area. 

This relationship can be repressed by the following equation: 

 

∫ (𝐺𝐸𝑉𝑃𝐷𝐹 𝑓𝑜𝑟 𝛼) 𝑑𝑥
(𝑛+1)

𝑛

= ∫ (𝑁𝑒𝑤 𝐺𝐸𝑉𝑃𝐷𝐹 𝑎𝑡 𝑡 𝑦𝑒𝑎𝑟𝑠) 𝑑𝑥
(𝑛+1)×𝑡0.33

𝑛×𝑡0.33
− −(4 − 6)  

 

Applying this concept, a matrix can be written representing the probability of 

occurrence for all pit depth intervals. This matrix is referred to as ‘Base Pit Depth 

Distribution’, it represents the probability of occurrence of pits within all 1 𝜇𝑚 of 

interval: 

𝐵𝑎𝑠𝑒 𝑃𝑖𝑡 𝐷𝑒𝑝𝑡ℎ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =

[
 
 
 
 
 
 
 
 
 
 
 ∫ (𝐺𝐸𝑉𝑃𝐷𝐹 𝑓𝑜𝑟 𝛼) 𝑑𝑥

1

0

∫ (𝐺𝐸𝑉𝑃𝐷𝐹 𝑓𝑜𝑟 𝛼) 𝑑𝑥
2

1

⋮
⋮

∫ (𝐺𝐸𝑉𝑃𝐷𝐹 𝑓𝑜𝑟 𝛼) 𝑑𝑥
𝑑

𝑑−1

∫ (𝐺𝐸𝑉𝑃𝐷𝐹 𝑓𝑜𝑟 𝛼) 𝑑𝑥
𝑑+1

𝑑 ]
 
 
 
 
 
 
 
 
 
 
 

− − − − − (4 − 7) 

 

Then at any time t (years), the pit depth distribution matrix can be further expressed as: 
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𝑃𝑖𝑡 𝐷𝑒𝑝𝑡ℎ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡 𝑡 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 ∫ (𝐺𝐸𝑉𝑃𝐷𝐹 𝑓𝑜𝑟 𝛼) 𝑑𝑥

1
𝑡0.33⁄

0
𝑡0.33⁄

∫ (𝐺𝐸𝑉𝑃𝐷𝐹 𝑓𝑜𝑟 𝛼) 𝑑𝑥

2
𝑡0.33⁄

1
𝑡0.33⁄

⋮
⋮

∫ (𝐺𝐸𝑉𝑃𝐷𝐹 𝑓𝑜𝑟 𝛼) 𝑑𝑥

𝑑
𝑡0.33
⁄

𝑑−1
𝑡0.33
⁄

∫ (𝐺𝐸𝑉𝑃𝐷𝐹 𝑓𝑜𝑟 𝛼) 𝑑𝑥

𝑑+1
𝑡0.33
⁄

𝑑
𝑡0.33
⁄ ]

 
 
 
 
 
 
 
 
 
 
 
 
 

− (4 − 8) 

 

4.1.3 Fatigue 

Fatigue is the weakening of a material caused by repeatedly applied loads. In this 

research, due to the oil protection being pump through the sheath of the cable, the 

pressure caused by the pumped oil is of cyclic effect. This leads to the fatigue of the 

protection phosphor bronze tape. This is especially dangerous when combined with 

pitting corrosion on the surface of the material, as the initiated corrosion pits provides 

initial crack mechanism and can be damaged severely in great speed by the fatigue 

mechanism.  

An un-used piece of phosphor bronze tape is regarded of experiencing two major stage 

after pit initiation on the surface before failure. The first stage being corrosion speed 

over the crack propagation speed, which means corrosion speed controls, the bronze 

tape is serviceable but is weakening. The second stage being the crack propagation 

speed over corrosion speed, which means crack propagation speed controls. At the 

second stage the crack grows so fast that the time is neglectable on a 150 𝜇𝑚 thickness. 
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The crack propagation model under fatigue in this chapter is a modification of the Paris’ 

Law: 
𝑑𝑎

𝑑𝑁
= 𝐶Δ𝐾𝑚. In which 𝑎 is the crack length, 

𝑑𝑎

𝑑𝑁
 is the crack growth rate, 𝐶 

and 𝑚 are material, environment and stress ratio related constants, and Δ𝑘 represents 

the stress intensity factor.  

 

4.1.4 Procedure to calculate cable life 

The cable life of the bronze tape is defined as the time for a pit to grow to the point of 

pit-crack transition and is calculated by using all the above equations as shown in a 

schematic diagram (flowchart). Three stages of the method are explained in detail below. 

 

Stage 1: Determination of pit growth parameter and analytical equation 

The pit depth distribution is modelled using the Equation (4-1) and the coefficients of 

the equations (𝛽 and 𝛼) are determined by Monte Carlo simulations [4]. The analytical 

form of the equation is derived using Equations (4-8). 

 

Stage 2: Optimization of pit to crack transfer 

Next step is to determine the two parameters which control the pit-crack transfer 

probability (CDF of Weibull distribution) of the tin bronze material as given in Equation 

(4-9). A global optimization algorithm is used with the detailed steps provided as 

follows: 

i. A combination of 2 parameters (𝜆, 𝑘)  determining the pit-crack transfer 

probability function is chosen from all the potential combinations. It is convenient 

to express the pit depth distribution in a matrix format with a 1 𝜇𝑚 interval such 

that 
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𝑃𝑖𝑡 − 𝑐𝑟𝑎𝑐𝑘 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥

=

[
 
 
 
 
 
 
 
 
 
 
 ∫ (1 − 𝑒−(𝑥 𝜆⁄ )𝑘) 𝑑𝑥

1

0

∫ (1 − 𝑒−(𝑥 𝜆⁄ )𝑘) 𝑑𝑥
2

1

⋮
⋮

∫ (1 − 𝑒−(𝑥 𝜆⁄ )𝑘) 𝑑𝑥
𝑑

𝑑−1

∫ (1 − 𝑒−(𝑥 𝜆⁄ )𝑘) 𝑑𝑥
𝑑+1

𝑑 ]
 
 
 
 
 
 
 
 
 
 
 

− − − (4 − 9) 

 

ii. Pit depth distributions are obtained for each working year using the model 

described in section 4.1.2.2. As in the steps further on there will be definitions in 

the algorithm with names including the natural numbers 1 & 2 to avoid confusion 

in the labelling, all data related to Site 1 mentioned previously in all chapters will 

be re-named as Location A. Following the same principle, all data related to Site 2 

will be re-named as Location B. i.e. from Year 1 to 38 for Location A and Year 1 

to 43 for Location B, following the individual three parameters provided in Table 

4-1.  

 

Table 4-1: Basic information of samples from Location A and Location B [6] 

Sample Label Year of Failure Pit Depth Distribution Parameter 

Location A 38 φ = 0.5, μ = 3.4, k = 0.5 

Location B 43 φ = 0.5, μ = 4.7, k = 0.5 

 

iii. For the pit depth distribution of each working year, the pit depth distribution matrix 

at 𝑡 (Equation (4-8)) is multiplied with the pit-crack transfer probability matrix in 

stage 1. The products of the two equations are named as ‘Failure Likelihood’. 

Within this stage, a discriminant condition is applied from assumptions made in 
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section 4.1.4. For all the ‘Failure Likelihood’ calculations, only the results for the 

pits deeper than the minimum threshold pit depth of transfer are considered. 

iv. For Location A, multiplying the probability matrix of each potential pit-crack 

transfer by the pit depth distribution Matrix at Year 𝑡1 (1 ≤ 𝑡1 ≤ 38), creates a 

‘Failure Likelihood’ consisting of 150 elements, representing pit depths intervals 

from [0 1] 𝜇𝑚 to [149 150] 𝜇𝑚. The largest element is considered as ‘Maximum 

Failure Likelihood Location A’ under one potential pit-crack transfer probability 

function. Again the largest element among these 38 is the ‘Maximum Failure 

Likelihood 2 Location A’ of this function. For Location B, under the same potential 

pit-crack transfer function, except for the fact that there are 43 ‘Maximum Failure 

Likelihood 1 Location B’ elements, because 1 ≤ 𝑡1 ≤ 43. The ‘Maximum Failure 

Likelihood 2 Location B’ is obtained in the same method. 

v. With each potential pit-crack transfer function, a summation of the ‘Maximum 

Failure Likelihood 2’ is made: 

 

𝑆𝑢𝑚 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 2

= 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 2 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1

+𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 2 − (4 − 10) 

 

Which means that with all potential functions, there are equal numbers of ‘Sum 

Maximum Likelihood 2’. The largest value among them is the final result of the 

optimization. The corresponding transfer pit depths, year of transfer (𝑡1 and 𝑡2), 

as well as the pit-crack transfer function are also the outcome of this analysis. 

 

Stage 3: Determination of crack growth parameters (Paris law constants) and 

cable life 

The transfer pit depth can be further used to determine parameters in Paris’ Law and 
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also to establish a life prediction model for the power transmission cables. 

The relationship between the pitting corrosion growth rate and the crack propagation 

growth rate can be established as: 

 

𝑃𝑖𝑡𝑡𝑖𝑛𝑔 𝑐𝑜𝑟𝑟𝑠𝑜𝑖𝑜𝑛 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 = 𝑉𝑝(𝑥)

= 𝐶𝑟𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒

= 𝑉𝑐(𝑥) − − − (4 − 11) 

 

This leads to the expression of: 

 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑝𝑖𝑡 𝑑𝑒𝑝𝑡ℎ

𝑌𝑒𝑎𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
= 𝐶(Δk)𝑚 = −−−−−(4 − 12) 

 

where C and m are Paris Law constants. The above equation is used to calculate the 

cable life for given Paris law constants. 

 

4.2 Results and discussions 

The pit depth distribution of the reinforcing tape is the starting point to calculate the life 

of the power cable. First the simulated pit depth distribution is modelled with an 

analytical equation and used to calculate the pit to crack transfer probability. Then, Paris 

constants are calculated to predict the cable life. 

 

4.2.1 Results for pit growth modelling 

Pit depth distribution is modelled using the power law (Equation (4-1)) as detailed in 

our previous work [4] using Monte Carlo simulations. The analytical equation for the 

pit depth distribution is derived using Equation (4-8). 

To validate the analytical method, data from a working cable is used for comparison 



117  

between the mathematical analytical pit depth distribution model and the Monte Carlo 

simulation method. Shown in Figure 4-4, the red curves represent the Monte Carlo 

method, the blue curves represent the analytical pit depth distribution equation. Under 

the simulation of 100 pits, which is a relatively small number, both models appear to 

have a similar shape, but still with some differences. When increasing the simulation 

pit number to 1 million, as shown in Figure 4-5, there is basically no difference observed 

between the two models, which proves the validity of the model. 
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Figure 4-4: The theoretical pit depth distribution with time model compared to the 

Monte Carlo simulation pit depth distribution model with an initial pit number of 100 

[6] 
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Figure 4-5: The theoretical pit depth distribution with time model compared to the 

Monte Carlo simulation pit depth distribution model with an initial pit number of 1 

million [6] 
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4.2.2 Results for pit to crack transfer  

A relationship between the pit growth speed and the crack propagation speed is shown 

in Figure 4-6. Pit to crack transfer is calculated using Equation (4-9).  

 

 

Figure 4-6: Two stages of failure case where pitting corrosion transfers into crack 

propagation [6] 

 

An optimization procedure is carried out to calculate the two parameters (λ and k) used 

in the equation. The boundary condition is required to do the simulation and the derived 

parameters are explained below.  
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4.2.2.1 Boundary conditions for pit-crack transfer probability function 

The thickness of the tin bronze tape is 150 𝜇𝑚. A pit depth of 150 𝜇𝑚 is therefore the 

maximum limit. Moreover, any transfer function (Weibull CDF) reaching 100% when 

pit depth  𝑥 < 150𝜇𝑚 is considered as invalid. This is regarded as the upper boundary 

of the transfer function. The lower boundary of the transfer function is determined by 

the threshold pit depth for both locations. As previously mentioned in Section 3.1.3, the 

only unknown information is the threshold of the stress intensity factor. However, 

according to Kunz and Collini [144], there are results obtained for threshold stress 

intensity factors of coarse grain (CG) copper and Annealed CG copper. The results rely 

on the R-ratio, which is the ratio of the minimum value of cyclic stress and the 

maximum value of the cyclic stress. In the case of Location A, 𝑅1 = 0.9856 and for 

Location B, 𝑅2 = 0.9719. For the results of these two R-ratios, it can be estimated that 

the threshold intensity factor can be as low as 1.5 𝑀𝑃𝑎√𝑚.  Applying this threshold 

intensity factor value to Equation (3-10), it is estimated that the initial threshold pit 

depth for Location A is 35 𝜇𝑚 and the threshold pit depth for Location B is 60 𝜇𝑚. 

These two values are used to select the valid (𝜆, 𝑘)  combinations from all initial 

choices of 𝜆  and 𝑘  combinations. A representative curve of pit-crack transfer 

probability is shown in Figure 4-7. 
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Figure 4-7: A representative curve among all the potential pit to crack transfer 

probability functions (cumulative distribution function of the Weibull distribution) [6] 

 

The application of the above boundary conditions is considered as a pre-selection step 

with the purpose to accelerate the optimization. Without this step, the number of 

equations that are involved in optimization can be observed from Figure 4-8.  
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Figure 4-8: Potential pit to crack transfer probability functions represented in Weibull 

CDF plots [6] 
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To describe the boundary conditions in more detail, two conditions have to be fulfilled 

regarding the threshold pit depths for two locations:  

1. The probability of transfer is 0 at a pit depth of 35 𝜇𝑚.  

2. The probability of transfer is larger than 0 starting from pit depth of 60 𝜇𝑚. A range 

of the potential pit to crack transfer curves can be seen in Figure 4-9.  

 

Figure 4-9: Possible transfer curves [6] 
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The above simulation requires a large number of calculations as the approach of the 

algorithm is simply universal optimization. During the process to obtain results of this 

chapter, coding skills to speed up the calculation are applied. It is calculated by parallel 

programming with the assistance of the High Performance Computing (HPC) ALICE 

from the University of Leicester. This speed up can be seen in the code provided related 

to this chapter of research in Appendix III. 

 

4.2.2.2 Parameters (𝝀, 𝒌) for pit-crack transfer probability function 

From section 4.1.5, one of the final results of the optimization algorithm is the 

identification of parameters (𝜆, 𝑘) in the transfer function. With the current data, the 

simulation result is (𝜆, 𝑘) = (109.3, 6.1). A plot of the determined transfer function 

using these two parameters is shown in Figure 4-10.  
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Figure 4-10: Determined pit to crack transfer probability function plot [6] 

 

The mathematical expression for this pit-crack transfer probability function is therefore 

given by: 

𝑃(𝑥) = 1 − 𝑒−(𝑥 109.3)⁄ 6.1

− −−−−−− (4 − 19) 

 

The transfer pit depth for cables at Location A is 113 𝜇𝑚 and the transfer pit depth for 

cables at Location B is 111 𝜇𝑚.  

 

4.2.3 Determination of crack growth (Paris Law) parameters 

With the simulation results mentioned above, the relationships between the pitting 

corrosion growth rate and the crack propagation growth rate can be established 

according to a general expression given in equation (4-18). The shape factor Y was 
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taken as 1 to be on the safe side. By the nature of Paris’ Law, it can be assumed that 

𝑝 = 2𝑞, which gives the parameters of the modified Paris’ Law as:  𝐶 = 0.108, 𝑝 =

0.453, 𝑞 = 0.226. 

This gives the final expression of Paris’ Law as: 

𝑉𝑐(𝑥) = 0.108 × (𝜎𝑚𝑒𝑎𝑛 + 𝛥𝜎)
0.453 × 𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

0.226 −−(4 − 20) 

In this expression the pit depth is given in the unit of 𝜇𝑚, time in the unit of years, and 

stress in the unit of MPa. 

 

4.2.4 Cable life prediction 

The above key parameters such as pit growth parameters, pit to crack parameters and 

transfer depth are critical to life prediction of power transmission cables. To calculate 

the service life of any working cable, the first step is to simulate the pit depth 

distribution on the surface of tin bronze tape by the method developed in [6]. The result 

is a combination of three parameters (𝜎𝑠𝑎𝑚𝑝𝑙𝑒 , 𝜇𝑠𝑎𝑚𝑝𝑙𝑒 , 𝑘𝑠𝑎𝑚𝑝𝑙𝑒) which governs the 

GEV distribution. In the second step, upon obtaining the three governing parameters, a 

pit depth distribution of any year can be obtained using the model described in section 

4.1.2. In the third step, multiplying the pit depth distribution with the determined pit-

crack transfer function, the transfer pit depth of the sample can be obtained, naming it 

𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟. From Equation (4-20), the cable life prediction function can be written as: 

 

𝑡𝑐𝑎𝑏𝑙𝑒 =
𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

0.774

0.108 × (𝜎𝑚𝑒𝑎𝑛 + 𝛥𝜎)0.453
−−−−(4 − 21) 

 

4.2.5 Validation of life prediction model on existing circuit 

The life prediction model is applied to 10 existing cables to validate the accuracy of 

prediction. In Table 4-2, the key parameters for determining pit depth distribution are 

given, which from the previous results, are a variety of location parameters 𝜇 for the 
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GEV distribution. With the location parameters 𝜇, the corresponding pit-crack transfer 

pit depths are also given in Table 4-2. 

 

Table 4-2: Location parameter 𝜇 for cables and corresponding transfer pit depths [6] 

Location Pit depth distribution 

parameters 

Transfer pit depth (𝝁𝒎) 

Location 1 φ = 0.5, μ = 3.0, k = 0.5 114 

Location 2 φ = 0.5, μ = 2.2, k = 0.5 115 

Location 3 φ = 0.5, μ = 1.0, k = 0.5 115 

Location 4 φ = 0.5, μ = 3.0, k = 0.5 114 

Location 5 φ = 0.5, μ = 2.8, k = 0.5 114 

Location 6 φ = 0.5, μ = 1.8, k = 0.5 115 

Location 7 φ = 0.5, μ = 1.0, k = 0.5 115 

Location 8 φ = 0.5, μ = 1.0, k = 0.5 115 

Location 9 φ = 0.5, μ = 1.0, k = 0.5 115 

Location 10 φ = 0.5, μ = 2.0, k = 0.5 115 

 

It can be observed from Table 4-2 that the transfer pit depth are within a small range, 

from 114 𝜇𝑚 to 115 𝜇𝑚. This may show that for the specific material – the phosphor 

bronze, it is the property of the material that the crack propagation starts to dominate at 

this depth after corrosion pitting initiated and grow to this depth. The evidence of this 

assumption shall be further evaluated through laboratory work. 

The prediction years can be interpreted as a relative failure probability comparing to the 

solid failure cases. According to this concept, for the different cable sections shown in 

Figure 4-11 to Figure 4-20 it is possible to consider the failure probabilities relative to 

the failed section probabilities. The closer a prediction year of certain section is to the 

failed section, the higher probability of failure this specific section has. From Figure 4-
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11 to Figure 4-20, the prediction year at which 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 of cable 

sections are shown in the scatter plot format for all 10 locations. The cable data were 

referenced to the current year of 2017. A few known conditions of the cable sections 

are taken for the validation of the proposed life prediction model: 

 Section 46 of Location 1 was known to be corroded; according to the model the 

predicted year is 2012, which falls below the referencing line of 2017. See Figure 

4-11. 

 Section 46 and Section 61 of Location 2 were decommissioned, the predicted years 

are 2015 and 2009; Section 65 of Location 2 were known failure, the predicted year 

is 2009, which falls below the referencing line of 2017. See Figure 4-12. 

 Section 93 of Location 4 was decommissioned, the predicted year is 2015, which 

falls below the referencing line of 2017. See Figure 4-14. 

 Section 176 of Location 5 was known failure, the predicted year is 2016, which 

falls below the referencing line of 2017. See Figure 4-15. 

 Section 108 of Location 6 was known corroded, the predicted year is 2014, which 

falls below the referencing line of 2017. See Figure 4-16. 

 Section 2 and Section 54 of Location 7 were known to be corroded, the predicted 

years for the two sections are 2011 and 2010, which falls below the referencing line 

of 2017. See Figure 4-17. 

From the above information, the results can be considered as providing relatively 

accurate predictions with ‘positive error’. One would want the model to predict failures 

when there are failures and should not predict success when there are failures. Such a 

‘positive error’ is tolerable from a safety point of view. However, if the model predicts 

failure and no failure has occurred, then the negative error can be expensive because of 

unnecessary repairs, but it is not unsafe. 
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Figure 4-11: Validation of life prediction model by prediction year at which 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 of different cable sections at Location 1 [6] 
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Figure 4-12: Validation of life prediction model by prediction year at which 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 of different cable sections at Location 2 [6] 
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Figure 4-13: Validation of life prediction model by prediction year at which 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 of different cable sections at Location 3 [6] 
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Figure 4-14: Validation of life prediction model by prediction year at which 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 of different cable sections at Location 4 [6] 
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Figure 4-15: Validation of life prediction model by prediction year at which 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 of different cable sections at Location 5 [6] 
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Figure 4-16: Validation of life prediction model by prediction year at which 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 of different cable sections at Location 6 [6] 
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Figure 4-17: Validation of life prediction model by prediction year at which 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 of different cable sections at Location 7 [6] 



137  

 

Figure 4-18: Validation of life prediction model by prediction year at which 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 of different cable sections at Location 8 [6]  
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Figure 4-19: Validation of life prediction model by prediction year at which 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 of different cable sections at Location 9 [6] 
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Figure 4-20: Validation of life prediction model by prediction year at which 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 of different cable sections at Location 10 [6] 



140  

4.3 Achievements of this research chapter 

This chapter provided additional insights into the entire failure process of the phosphor 

bronze tape in underground power transmission cables. Following an accurate Monte 

Carlo simulation on pit depth distributions, a probability description of pitting corrosion 

to crack propagation probability transfer function has been introduced in this study, 

covering the following points: 

 A pit depth distribution model is developed. Combined with the author’s 

previous research results on pit depth distribution on specific years [6], this 

study provides a model that can describe pit depth distribution for any requested 

point in time. 

 An equation of the crack propagation in reinforced tin-bronze tape is given, 

under the assumption of a high mean stress and a relatively low alternating stress, 

for which all parameters are fixed numerically. 

 A function of the pitting corrosion to crack propagation probability is given 

using the cumulative distribution function of the Weibull distribution, with all 

parameters are fixed numerically. 

 A proposal for applying this ′𝑃𝑖𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 → 𝑃𝑖𝑡𝑡𝑖𝑛𝑔 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 → 𝑃𝑖𝑡 −

𝑐𝑟𝑎𝑐𝑘 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 → 𝐶𝑟𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 → 𝐹𝑎𝑖𝑙𝑢𝑟𝑒′ whole process analysis 

to the prediction of underground power transmission cable service life is given. 
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5. Defining probability of failure for both the 

empirical-based model and the mechanism-based 

model 

From this chapter, the rest of the research results are based on mathematical algorithms 

in processing the existing data and research results. Chapter 5 discusses the definition 

of probability of failure for both the empirical-based model applied in the power 

supplement industry and the mechanism-based model which is a deduction of the results 

from previous research Chapter 3 and Chapter 4.  

The reason to develop a probability of failure model is for the service of the next Chapter 

6, which discusses the model updating algorithm applying the Bayesian Inference. As 

for Bayesian Inference algorithm, the requirement of models are that they must be 

probability density functions, and the model from Chapter 4 is a life estimation model. 

Due to this reason, the life estimation model is transferred into a probability of failure 

model. This chapter is divided into two sections: the first section discusses the 

probability of failure from the empirical-based model and the second section gives the 

definition and results of the probability of failure (PoF) by the mechanism-based model. 

 

5.1 A hypothesis based on the current industrial asset management 

model 

The current industrial asset management model is based on the normal distribution 

which is pictorially shown in Figure 5-1. 
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Figure 5-1: Pictorial representation of the cable replacement model in the power 

supplement industry 

 

The power transmission cables being used owns a natural property, which is the 

anticipated life. Due to the complexity of the environment these cables are constructed 

and the multiple types of services these cables provide, the anticipated life for 

underground power transmission cables is not a fixed value, but is in a format of 

distribution, to be more specifically, a normal distribution which is widely used in the 

industry for estimations. The median of the distribution represents the life for majorities 

of cables. The minimum anticipated life of the cable represents the earliest anticipated 

failure of cable, this may be due to more heavy usage or the cable being used in a more 

critical environmental condition. The maximum anticipated life of the cable means the 

contrary of the minimum anticipated life, the cables are subject to ideal conditions and 

last longer than the majority of the similar cables. The minimum anticipated life and the 
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maximum anticipated life bonds the 95% confidence of cable life estimation distribution, 

which is four times the standard deviation of the distribution (4𝜎).  

In the current definition being used in industry, cables are investigated each year and 

are then labelled with replacement priorities. This replacement priority can be regarded 

as a timescale for the criticality of the cables. The timescale is normally represented by 

a range of remaining life, this range varies in relation with the criticality conditions of 

the investigated cables. In this chapter, two cables subject to two different levels of 

criticality is given. Cable 1 is a critical cable with a relatively light issue, the timescale 

for replacing this cable is 5~10 years. Cable 2 is a critical cable with severe corrosion 

and requires immediate replacement, the timescale for replacing this cable is 0~2 years. 

These two assumed timescales for cable replacement will be used in the results section 

as numerical examples for the method and algorithms introduced in this research. The 

details of Cable 1 and Cable 2 with their assumed conditions are shown in Table 5-1. 

 

Table 5-1: Summary of existing cable data used in this chapter 

Location Criticality Estimated Remaining Life  

Cable 1 Light 5~10 

Cable 2 Severe 0~2 

The anticipated life of underground power transmission cable is arguably between 30 

to 70 years depending on the estimation of different power providers and research 
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institutes [145-148]. To demonstrate the algorithm in this paper, the median of the 

anticipated life is taken as 50 years and the 4𝜎 is bounded by 30 years and 70 years, 

as seen in Figure 5-2. The equations in the following are all deduced in general 

expressions, while the figures are plotted as a typical solution for the above-mentioned 

values. 

 

 

Figure 5-2: Assumed AHI=1 cable with the life anticipation distribution 

 

The above Figure 5-1 and Figure 5-2 can be explained as: with the increase of cable life, 

there is a increasing percentage of cable population entering the condition that a 

replacement is required, the amount is the shaded area in red in Figure 5-1 and Figure 

5-2. This lead to the conclusion that the older the cables get, the fewer stays in the ‘safe 

zone’ which is the unshaded area under the normal distribution bell-shaped curve. The 

explanation can be represented by Figure 5-3 below. Which plots the amount of cables 

within ‘safe zone’ with the increasing of cable life. 
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Figure 5-3: Cable with criticality evaluation of severe line plot explaining the assumed 

condition of Figure 5-2 

 

The fundamental steps obtaining the empirical-based probability of failure model from 

the industry is based on numerical demonstration of Cable 1. The other location of cable 

used the same procedure of algorithm, these results are shown in the validation.  

The general expression of normal distribution probability density function (PDF) is: 

𝑃𝐷𝐹𝑛𝑜𝑟𝑚𝑎𝑙 =
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2 −−−−− (5 − 1) 

The existing model in the industry extracted from [149, 150], is with no specific 

mathematical function given to describe the remaining asset life estimation. However, 

it is known that the data is a mathematical description of the normal distribution. Plus, 
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the 2 cables being researched, Cable 1 and Cable 2, are assumed to be with a light and 

severe criticality respectively. When defining the probability of failure of the empirical 

model used in industry, it can be explained with the assistance of Figure 5-2 and Figure 

5-3 as: with the increase of cable life, there is an increasing percentage of cable 

population entering the condition that a replacement is required, the amount is the 

shaded area in red in Figure 5-2. This lead to the conclusion that the older the cables 

get, the fewer stays in the ‘safe zone’ which is the unshaded area under the normal 

distribution bell-shaped curve.  

It can be seen in Table 5-1 that, if the evaluated cable is show obvious sign of 

deterioration, the cables with an assumed light criticality is with 5~10 years of 

replacement priority range. While the cables with an assumed severe criticality is with 

0~2 years of replacement priority range. The replacement priority range can be 

interpreted as the upper and lower boundaries for the confidence of remaining life 

estimation. The lower boundary within the range is considered as a conservative 

estimation of the cable condition, while the upper boundary within the range is 

considered as a liberal estimation of the cable condition. With the above definitions, the 

probability of failure (PoF) functions for Cable 1 and Cable 2 in both conservative and 

liberal estimations are given below.  
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Figure 5-4: Conservative probability of failure by empirical-based model for cable with 

a criticality evaluation of severe 

 

The function representing the PoF for cable with a criticality evaluation of severe is the 

CDF of normal distribution with parameters {
𝜇 = 50
𝜎 = 10

 and can be written as: 

𝑃𝑜𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 =
1

2
[1 + erf (

𝑡 − 𝜇

𝜎√2
)] − − − −(5 − 2) 

Where taking 

𝑚 =
𝑡 − 𝜇

𝜎√2
− − − −(5 − 3) 

Then 

erf(𝑚) =
2

√𝜋
∫ 𝑒−𝑟

2
𝑑𝑟

𝑚

0

−−−−(5 − 4) 

 

Liberally, for the cables with a criticality evaluation of severe, there is a estimated 
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remaining life of 2 years. This gives the other range limit of the empirical probability 

of failure estimation, which can be called the ‘liberal estimation of PoF’. Observing the 

original evaluation plot from Figure 5-3, if the cables entered the Criticality Severe zone 

but have a further 2 years of servicing life, the plot in Figure 5-3 would shift to the 

positive x-axis direction (Age axis) for 2 years in order to represent the boundaries for 

the cables to enter the ‘Critical Zone’ under the liberal approach. This is shown here in 

Figure 5-5. 

 

 

  

Figure 5-5: Liberal estimation shift from the original criticality severe evaluated plot 

 

This further provides the liberal estimation of the PoF for criticality severe evaluated 

cables, which is interpreted as a confidence range. This range is plotted in Figure 5-6 
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combining the PoF estimation in conservative and liberal approaches. The liberal 

estimation of PoF for criticality severe evaluated cable is with parameters {
𝜇 = 52
𝜎 = 10

 

substituting into equations (5-2) to equation (5-4). 

 

 

Figure 5-6: Liberal and conservative PoF by industry applied empirical model (upper 

and lower boundaries for criticality severe evaluated cables) 

 

As the critical cables are assumed to be evaluated as either severe or light, it is also 

necessary to deduce the PoF function for criticality light evaluated cables. Repeating 

the procedure for criticality severe evaluated cables, the line of criticality light cables is 

assumed to be based on the original normal distribution parameters too. From Table 5-

1, when a cable is evaluated as light criticality, there is an estimated of 5~10 years of 
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servicing life left, similar to the strategy of criticality severe evaluated cables, the 5 year 

remaining life is considered as a conservative estimation while the 10 years is taken as 

a liberal estimation. By shifting the plot to the positive x-axis (Age axis) of 5 years, this 

is the conservative plot according to which the cables currently evaluated as criticality 

light evaluated cable enter the ‘Critical Zone’. And by shifting the plot to the positive 

x-axis (Age axis) of 10 years, this leads to the liberal estimation that the cables will 

enter the ‘Critical Zone’. The plot of both the conservative and liberal estimations 

comparing to the original criticality evaluation plot is shown in Figure 5-7: 

 

 

Figure 5-7: The comparison of original plot and both the conservative and liberal 

interpretation of estimation 
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The PoF function for criticality light evaluated cables is deduced from the ‘Plot for 

estimation of failure’, the conservative boundary is with anticipated normal distribution 

parameters of {
𝜇 = 55
𝜎 = 10

. And the liberal boundary follows the anticipated normal 

distribution parameters of {
𝜇 = 60
𝜎 = 10

. After the determination of the parameters, the 

function is obtained using the same method as for criticality severe evaluated cable. The 

probability of failure for both conservative and liberal estimations are shown below in 

Figure 5-8. 

 

 

Figure 5-8: PoF plot for criticality light evaluated cable (both conservative and liberal 

estimations) 
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A pictorial representation of the probability of failure functions for all mentioned above 

is shown in Figure 5. 

The conservative probability density function for severe criticality of cable evaluation: 

𝑃𝐷𝐹𝐴𝐻𝐼=5𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 =
1

√2𝜋𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

𝑒
−
(𝑥−𝜇𝑡𝑦𝑝𝑖𝑐𝑎𝑙)

2

 2𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

−−−−− (5 − 5) 

The liberal probability density function for severe criticality of cable evaluation: 

𝑃𝐷𝐹𝐴𝐻𝐼=5𝑙𝑖𝑏𝑒𝑟𝑎𝑙 =
1

√2𝜋𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

𝑒
−
((𝑥−2)−𝜇𝑡𝑦𝑝𝑖𝑐𝑎𝑙)

2

 2𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

 − − − − − (5 − 6) 

The conservative probability density function for light criticality of cable evaluation: 

𝑃𝐷𝐹𝐴𝐻𝐼=4𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 =
1

√2𝜋𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

𝑒
−
((𝑥−5)−𝜇𝑡𝑦𝑝𝑖𝑐𝑎𝑙)

2

 2𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

−−− −(5 − 7) 

The liberal probability density function for light criticality of cable evaluation: 

𝑃𝐷𝐹𝐴𝐻𝐼=4𝑙𝑖𝑏𝑒𝑟𝑎𝑙 =
1

√2𝜋𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

𝑒
−
((𝑥−10)−𝜇𝑡𝑦𝑝𝑖𝑐𝑎𝑙)

2

 2𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

−−−−− (5 − 8) 

All the conservative and liberal estimations for criticality light and severe evaluated 

cables are combined for comparison and are shown in the following Figure 5-9: 
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Figure 5-9: Empirical model on probability of failure for cables with light and severe 

criticality evaluation interpreted from industry 

 

As observed in Figure 5-9, take year 60 as an example, for light criticality, the estimated 

probability of failure is within the range of 0.8 to 0.84. And for severe criticality, the 

estimated range is between 0.5 to 0.7. This estimation range can direct the decision 

making of maintenance or replace, especially when this result is applied into the 

estimation of invest/obtain ratio in the engineering asset management.  

 

5.2 A corrosion fatigue mechanism-based model on cable life 

estimation 

A corrosion fatigue mechanism based model for cable life estimation is extracted from 

previous work, which was described in Chapter 3 and Chapter 4. The following is a 

brief summary of the life estimation model: 

 

5.2.1 Obtaining the pit depth distribution 
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Basically, to estimate the life of a targeting cable, a section of the tin bronze tape must 

be obtained in order to measure the corrosion pit depths on its surface. Then applying 

the Monte Carlo simulation and transfer the experimental pit depths distribution into a 

theoretical GEV distribution [5]. Generally, the pit depth distribution of the targeting 

cable at any calendar year 𝑌 (e.g. current year is 2018), can be written in the format 

as: 

𝐹(𝑥) = 𝛼 ∙ (𝑌 − 𝑐𝑜𝑚𝑚𝑖𝑠𝑖𝑜𝑛 𝑦𝑒𝑎𝑟)0.33 −−−−− (5 − 9) 

In which 𝛼 follows the GEV distribution. [5] describes this procedure in detail. 

 

5.2.2 Obtaining the pit-crack transfer pit depth 

Chapter 4 introduced a pit-crack transfer probability function which can be expressed 

in the form of the cumulative distribution function of the Weibull distribution: 

𝑃(𝑥) = 1 − 𝑒−(𝑥 109.3)⁄ 6.1

−−−−− (5 − 10) 

The pit depth distribution equation (5-9) is then multiplied by this pit-crack transfer 

probability equation (5-10). The pit depth with the highest probability from the product 

function is considered as the transfer pit depth, naming it 𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟.  

𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = max(𝐹(𝑥)𝑃(𝑥))

= max [ 𝛼 ∙ (𝑌 − 𝑐𝑜𝑚𝑚𝑖𝑠𝑖𝑜𝑛 𝑦𝑒𝑎𝑟)0.33 ∙ (1 − 𝑒−(𝑥 109.3)⁄ 6.1

)] − −

− − − (5 − 11) 

 

5.2.3 Processing the existing data for cable sections 
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In Chapter 4, 10 cables were studied leading to the publication of [5, 6]. Here data were 

extracted from two of these cables, which are referred as Cable 1 and Cable 2. Cable 1 

is taken as the example describing the data processing. The processing of data for cable 

sections consist of two types: the geological data and the stress data. The geological 

data includes the number of cable sections, the length of each cable section and the 

elevation of each cable section. Two sets of geological profile data are assumed for both 

Cable 1 and Cable 2 to simulate the real situations. For Cable 1, this set of geological 

profile data is plotted in Figure 5-10, there are 57 sections of cable in Cable 1, the 

elevation and horizontal coordinates of the cables are hypothetical to simulate the field 

work scenario.  
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Figure 5-10: Geological data for Cable 1 

 

From this information the length of each individual section of cable is calculated. All 

the sections of this cable services under a uniform alternating stress of 𝜎𝑚𝑒𝑎𝑛 =

0.69 𝑀𝑃𝑎, but each individual section is under a different mean stress 𝜎𝑚𝑒𝑎𝑛𝑖 , 𝑖 =

1~57. The data of mean stress against the length of cable is plotted in Figure 5-11. The 

discrete points in Figure 3 are the average mean stress values, the continuous function 

describing the relationship between mean stresses and cable length coordinates is 

simulated by natural cubic splines algorithm. For 57 sections of cable it requires 56 

continuous piecewise cubic functions with a smoothing factor of 𝑝 = 6 × 10−4 , 

covering the entire length of the power cable. 
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Figure 5-11: Mean stress vs Length of cable for Cable 1 (curves connecting mean 

stresses are simulated by natural cubic splines algorithm) 

 

The mean stresses are assumed to be continuous throughout the entire cable for one 

location, without extreme changes. The approach here is to use a set of cubic equations,  

to create a smooth curve fitting for all the mean stresses data within each location. This 

is better known as the cubic spline method. The smooth factor to fit the curve to the data 

is specially chosen, which is the largest value that can allow the fitted curve to go 

through all data points. By this curve fitting approach, the equation set of mean stresses 

is: 

𝑨𝟏 ∙ 𝒙 = 𝟎 − − − −(5 − 12) 

Here 𝑨𝟏 is the set of equation coefficients of curve fitting equation set referencing to 
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Cable 1 data. 𝒙 is the variable set for cubic equations, as: [

𝑥3

𝑥2
𝑥
1

]. For example, after  

determining of the set of equations, the first and leading cubic equation is: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛1 = −1.12 × 10
−7𝑥3 + 0 × 𝑥2 + 0.029888𝑥 + 103.8308 − −(5 − 13) 

The following table gives the values of coefficient matrix 𝑨𝟏.  

 

Table 5-2: Coefficient matrix 𝑨𝟏 for cubic spline curve fitting of Cable 1 mean stress 

vs length of cable data 

(Table shown in Appendix II) 

 

By applying the same approach to the data of Cable 2, the cubic spline equation set is 

as: 

𝑨𝟐 ∙ 𝒙 = 𝟎 − − − −(5 − 14) 

And the coefficient matrix 𝑨𝟐 is given in Table 5-3. 

 

Table 5-3: Coefficient matrix 𝑨𝟐 for cubic spline curve fitting of Cable 2 mean stress 

vs length of cable data 

(Table shown in Appendix II) 

 

 

 

5.2.4 Defining mechanism-based probability of failure model 

From the previous Chapter 4, the life estimation of underground power cable within this 

research can be generalised by: 

𝑡𝑐𝑎𝑏𝑙𝑒 =
𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

0.774

0.108 × (𝜎𝑚𝑒𝑎𝑛 + 𝛥𝜎)0.453
−−−−(5 − 15) 

The combined stress 𝜎𝑠𝑢𝑚 = 𝜎𝑚𝑒𝑎𝑛 + 𝛥𝜎 are known variables. 
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When the continuous mean stress fitting results from the above Equation (5-10) and 

Equation (5-11) will be substituted individually into Equation (5-12), the result is a 

continuous function with the result of life estimation based on the existing datasets. The 

life estimation of the entire power cable of Cable 1 is shown in below Figure 5-12 and 

the life estimation of Cable 1 is shown in below Figure 5-13. 

 

  

Figure 5-12: Life estimation by length of cable of Cable 1 
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Figure 5-13: Life estimation by length of cable of Cable 1 

 

Figure 5-13 for Cable 1 is used to explain the definition for the mechanism-based 

probability of failure model. The probability of failure at each year after the cable 

commission is defined as the percentage of the length of the estimated failed cable 

occupying the total length of the cable. In Figure 5-13, this definition is explained with 

the assistance of 40 years and 50 years after cable commission as examples. The dashed 

line at year 40 in Figure 5-13, cut the estimated life plot into two parts: the section of 

the plot above the line represents the cable with an estimated life of over 40 years, while 

the plot below represents the cable with an estimated life of less than 40 years (shaded 

in blue). The projection of the estimated life plot on the horizontal line at 40 years is the 

length of the cable predicted of failure. The probability of failure at year 40 is then 

calculated as the total length of blue straight line over the length of the entire power 

cable: 
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𝑃𝑜𝐹40 =
∑ 𝑙𝑏𝑙𝑢𝑒
𝐿𝐶𝑎𝑏𝑙𝑒 1

− −−−− (5 − 16) 

Here the 𝑙𝑏𝑙𝑢𝑒 represents the length of all predicted failed cable parts at year 40, and 

𝐿𝐶𝑎𝑏𝑙𝑒 1 is the entire length of the cable at Cable 1. 

With the same definition, at year 50, the predicted failed cable is below the horizontal 

dashed line at 50 years, under the shaded red areas. The total length of failed cable is 

the combination of the horizontal red straight lines. The probability of failure is then 

calculated as follows: 

𝑃𝑜𝐹50 =
∑ 𝑙𝑟𝑒𝑑
𝐿𝐶𝑎𝑏𝑙𝑒 1

− −−−− (5 − 17) 

Here 𝑙𝑟𝑒𝑑 corresponds to the entire length of all predicted failed cable parts at year 50. 

It is easy to observe that under this definition, the probability of failure for the cable 

increases from 0 at the minimum estimated life point of the plot until reaching 100% at 

the maximum estimated life point of the plot. 

The PoF for the cable at Cable 2 under this definition is plotted in Figure 5-14, shown 

in a solid blue line. Also the PoF following the same approach for Cable 1 is plotted 

below in Figure 5-15. 
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Figure 5-14: Mechanism-based probability of failure for Cable 2 

 

The PoF plotted by the solid blue line is then fitted with a continuous function in order 

to be generalised mathematically. The fitted probability of failure function is a CDF of 

the Weibull distribution. The curve fitting technic can provide one reasonable function 

which can describe this result while achieving a close fit. Due to the fact that the Weibull 

distribution is known for its application in failure analysis [151-154] (including 

mechanical failure analysis), it is also used to fit the PoF in this study. The fitted function 

is plotted in Figure 5-14 with red dashed line in comparison with the actual result. The 

statistical similarity between the actual result and the fitted function is provided in Table 

5-3.  
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Table 5-4: Statistical evaluation of similarity between the actual PoF and the fitted 

function describing the probability of failure for the mechanical-based model 

Location Evaluation Function 

Cable 1 
𝑅2 = 0.9947 

𝑓(𝑡) = 1 − 𝑒−(
𝑥

46.24
)
15

 
𝑆𝑆𝐸 = 0.2298 

Cable 2 
𝑅2 = 0.9948 

 𝑆𝑆𝐸 = 0.3271 

 

The function for Location 2 with service life 𝑡 as variable is: 

𝑓𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 2(𝑡) = 1 − 𝑒
−(

𝑡
46.24

)
15

−−−−− (5 − 18) 

 

 

Figure 5-15: Mechanism-based probability of failure for Cable 1 
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The function for Cable 1 with service life 𝑡 as variable is: 

𝑓𝐶𝑎𝑏𝑙𝑒 1(𝑡) = 1 − 𝑒−(
𝑡

46.24
)
15

−−−−− (5 − 19) 

The evaluation to select the function that fits the best in Table 5-4 follows two standards, 

the 𝑅2 and the 𝑆𝑆𝐸. 𝑅2 is known as the coefficient of determination, which is the 

proportion of the variance in the dependent variable that is predictable from the 

independent variable: the higher the 𝑅2  value, the better a function describes the 

dataset [155]. 𝑆𝐸 is the short form of ‘sum of squared errors of prediction’, it is the 

sum of the squares of residuals, and a small 𝑆𝑆𝐸 value shows the model fits the data 

well [156].  

In the final step of this chapter, the fitted functions for mechanism-based probability of 

failure of Cable 1 is compared with the range of the empirical-based PoF functions and 

are plotted and shown in the following figures. 
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Figure 5-16: The probability of failure for Cable 1 under the definition from the 

mechanism-based model (Upper) The fitted function comparing to the conservative and 

liberal probability of failure function by empirical-based model (Lower) 
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In this chapter two models relating to the probability of failure for power cables are 

developed. An empirical-based model which is concluded from the application of the 

power supplement industry, this model is developed by summarizing the parameters of 

the existing normal distribution. A mechanism-based model is developed based on the 

pit depth distribution and the pit to crack transfer probability model which provided 

the estimation of crack propagation time, this model is developed based on a 

developed phosphor bronze tape entire failure model and a simulation using statistical 

distribution.  
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6. A machine-learning algorithm approach on power cable 

probability of failure updating 

In this chapter, the mechanism-based probability of failure model is combined with the 

empirical-based probability of failure model using a common algorithm in the machine 

learning field - the Bayesian Inference algorithm. Following the results in Chapter 3, 

Chapter 4 and Chapter 5, the procedure of the algorithm to update the old model to 

achieve more accurate predictions of cable failure rate is shown in the following 

sections. 

 

6.1 Fundamental Bayesian Inference modelling 

Bayesian Inference is an application of Bayes’ theorem [157], which can be written in 

this general format: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
− − − −− −(6 − 1) 

In this function: 

 𝑃(𝐴) is the prior probability, which is an estimation of probability of event A 

before the data of event B is observed. It is also called the marginal probability of 

event A. 

 𝑃(𝐵) is considered as the prior probability of event B without the influence of 

event A. It is also called the marginal probability of event B. 

 𝑃(𝐵|𝐴) is the conditional probability of event B given the information of event 

A. It is the posterior probability of event B given the observation of event A. 

 𝑃(𝐴|𝐵) is the conditional probability of event A given the information of event 

B. It is the posterior probability of event A given the observation of event B. 

Chapter 5 described two probabilities of failure models. Both are continuous functions 

with time as the only variable. With regard to the continuous functions, the Bayesian 



168  

Inference function has another format of expression [158]: 

 

𝑝(𝜃|𝑦) =
𝑝(𝜃)𝑝(𝑦|𝜃)

𝑝(𝑦)
− − − − − −(6 − 2) 

Where  

𝑝(𝑦) = ∫𝑝(𝜃)𝑝(𝑦|𝜃) 𝑑𝜃 − − − −− (6 − 3) 

 

Substituting Equation (6-3) into (6-2), it can be concluded that under the condition of 

continuous function, the Bayesian Inference function is: 

 

𝑝(𝜃|𝑦) =
𝑝(𝜃)𝑝(𝑦|𝜃)

∫ 𝑝(𝜃)𝑝(𝑦|𝜃) 𝑑𝜃
− − − − − (6 − 4) 

 

The explanation of each term from the above function is shown as follows for the 

feasibility of its application in this research: 

 𝑝(𝜃) represents the probability density function derived from the probability of 

failure function, concluded from the empirical model applied by industry. It is a 

prior probability where the evidence of data was not observed or not clear.  

 𝑝(𝑦|𝜃) is the probability density function derived from the probability of failure 

function, concluded from the mechanism-based model from Chapter 5. This 

conditional probability can be interpreted as follows: given the documented critical 

underground power cable information 𝜃, the novel probability with new observed 

information 𝑦 (specifically, the up to date research results in [5, 6]). 

 The rest of the terms can be calculated. The difficulty is to calculate the marginal 

likelihood ∫𝑝(𝜃)𝑝(𝑦|𝜃) 𝑑𝜃, where it is an integration of a complex function. This 

complicated integration requires a set of algorithms and will be discussed in the 

Section 6.3. 

 



169  

6.2 Probability density function models 

From the description of section 6.1, the requirement of both functions 𝑝(𝜃)  and 

𝑝(𝑦|𝜃) is that they shall both be probability density functions. Due to this requirement, 

the PoF functions in Chapter 4 are all transferred into probability density functions. 

 

6.2.1 PDF for empirical-based model 

As stated previously in Chapter 5, the empirical PoF model is described as the 

cumulative distribution function of the normal distribution with a range for each Asset 

Health Index evaluation. The parameters for criticality severe evaluated cables in a 

conservative estimation are: 

 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑓𝑜𝑟 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑠𝑒𝑣𝑒𝑟𝑒𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 : {
𝜇 = 50
𝜎 = 10

− − − −(6 − 5) 

 

The parameters for criticality severe evaluated cables in a liberal estimation are: 

 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑓𝑜𝑟 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑠𝑒𝑣𝑒𝑟𝑒𝑙𝑖𝑏𝑒𝑟𝑎𝑙 : {
𝜇 = 52
𝜎 = 10

− − − −(6 − 6) 

 

And the parameters for criticality light evaluated cables in a conservative estimation are: 

 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑓𝑜𝑟 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑙𝑖𝑔ℎ𝑡𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 : {
𝜇 = 55
𝜎 = 10

− − − −(6 − 7) 

 

The parameters for criticality light evaluated cables in a liberal estimation are: 

 

𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑓𝑜𝑟 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑙𝑖𝑔ℎ𝑡𝑙𝑖𝑏𝑒𝑟𝑎𝑙 : {
𝜇 = 60
𝜎 = 10

− − − −(6 − 8) 

The general form of the probability density function (PDF) of normal distribution is 
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given again here: 

 

𝑃𝐷𝐹 =
1

√2𝜋𝜎2
𝑒
− 
(𝑥−𝜇)2

2𝜎2 −−−−(6 − 9) 

 

With the above information, the PDF function for both AHI=1 cables and AHI=2 cables 

in conservative and liberal estimation can be written in the following functions: 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑃𝐷𝐹𝑆𝑒𝑣𝑒𝑟𝑒 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 =

1

√2𝜋𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

𝑒
−
(𝑥−𝜇𝑡𝑦𝑝𝑖𝑐𝑎𝑙)

2

 2𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

    

𝑃𝐷𝐹𝑆𝑒𝑣𝑒𝑟𝑒 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦𝑙𝑖𝑏𝑒𝑟𝑎𝑙 =
1

√2𝜋𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

𝑒
−
((𝑥−2)−𝜇𝑡𝑦𝑝𝑖𝑐𝑎𝑙)

2

 2𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

       

𝑃𝐷𝐹𝐿𝑖𝑔ℎ𝑡 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒
=

1

√2𝜋𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

𝑒
−
((𝑥−5)−𝜇𝑡𝑦𝑝𝑖𝑐𝑎𝑙)

2

 2𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

𝑃𝐷𝐹𝐿𝑖𝑔ℎ𝑡 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦𝑙𝑖𝑏𝑒𝑟𝑎𝑙
=

1

√2𝜋𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

𝑒
−
((𝑥−10)−𝜇𝑡𝑦𝑝𝑖𝑐𝑎𝑙)

2

 2𝜎𝑡𝑦𝑝𝑖𝑐𝑎𝑙
2

       

− − − −(6 − 10) 

 

6.2.2 PDF for mechanism-based model 

From the results in Chapter 5, the PoF by mechanism-based model is in the cumulative 

density function format of the Weibull distribution, which for Cable 1 and Cable 2 the 

PoF functions are as follows: 

 

{
𝑃𝑜𝐹𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 2 = 1 − 𝑒−(

𝑥
46.24

)
15

𝑃𝑜𝐹𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 7 = 1 − 𝑒−(
𝑥

53.52
)
10 −−−−(6 − 11) 

 

The PDF of the Weibull distribution is in the general format of: 
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𝑓(𝑥|𝜆, 𝑘) = {

0                                      𝑥 < 0

𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒−(
𝑥
𝜆
)
𝑘

           𝑥 ≥ 0
  − − − −   (6 − 12) 

o 𝜆 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

o 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

 

It can be concluded that based on the fitted parameters given in function set (6-11) the 

PDF of both Cable 1 and Cable 2 PoF functions are as: 

 

{
 

 𝑃𝐷𝐹𝐶𝑎𝑏𝑙𝑒 1 = 0.187 × (
𝑡

53.52
)
  9

× 𝑒−(
𝑡

53.52
)
10

𝑃𝐷𝐹𝐶𝑎𝑏𝑙𝑒 2 = 0.325 × (
𝑡

46.24
)
14

× 𝑒−(
𝑡

46.24
)
15 −−−−(6 − 13) 

 

6.3 Assumptions and results of Bayesian Inference modelling 

To simplify the expressions, here in, the probability of failure models stated in previous 

sections are replaced by:  

 

{

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑀𝑜𝑑𝑒𝑙 𝑃𝐷𝐹 = 𝐹(𝑡)                   

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 − 𝐵𝑎𝑠𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑀𝑜𝑑𝑒𝑙 𝑃𝐷𝐹 = 𝐺(𝑡)

𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑀𝑜𝑑𝑒𝑙 𝑃𝐷𝐹 = 𝑈(𝑡)                        

− −(6 − 14) 

 

The Bayesian Inference model stated in Section 6.1 therefore is written as: 

 

𝑈(𝑡) =
𝐹(𝑡)𝐺(𝑡)

∫𝐹(𝑡)𝐺(𝑡)𝑑𝑡
− − − − − (6 − 15) 

 

In Equation (6-15), the terms 𝐹(𝑡) and 𝐺(𝑡) are known. The difficulty exists for the 
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calculation of denominator in Equation (6-15): with the multiplication of two functions, 

𝐹(𝑡)  being an exponential function and 𝐺(𝑡)  a rational function, the analytical 

solution is hard to obtain. Instead, a numerical algorithm is applied to solve the problem 

as stated in the following sections. 

 

6.3.1 Markov Chain Monte Carlo (MCMC) method 

In this section, the purpose of the algorithm is to calculate the value of the denominator 

in Equation (6-15). Rewriting the denominator of Function (6-15): 

 

𝐷 = ∫𝐹(𝑡)𝐺(𝑡)𝑑𝑡 − − − − − (6 − 16) 

 

Under the strong law of large numbers (LLN) and the central limit theorem (CLT), when 

the numbers of sampling from the domain of 𝑡 are very large and fulfil the requirement 

of independent sampling from function 𝐹(𝑡) ,the value of the integration is 

approximately the expectation of function 𝐺(𝑡), which can be expressed as: 

 

𝐷 = ∫𝐹(𝑡)𝐺(𝑡)𝑑𝑡 = 𝐸[𝐺(𝑡)] ≈
1

𝑁
∙∑𝐺(𝑡𝑖)

𝑁

𝑖=1

−−−−− (6 − 17) 

 

The algorithm applied here to withdraw independent sampling from the function 𝐹(𝑡) 

is the random walk Metropolis Hastings algorithm. These steps were followed to 

construct the sequential independent sampling: 

1) Initialise state 𝑋0 = [𝑡0] arbitrarily, the purpose is to construct a Markov chain 

containing states 𝑋0, 𝑋1, 𝑋2,⋯ , 𝑋𝑁 ∈ 𝒳. 

2) Let 𝑥, 𝑥′ ∈ 𝒳 are states in the Markov chain, propose an initial distribution 

𝑟(𝑥′|𝑥), in order to construct the Markov chain. The proposed distribution must 

satisfy detailed balance, where a factor 𝑙(𝑥′|𝑥) can enable that  
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𝑟(𝑥′|𝑥)𝑓(𝑥)𝑙(𝑥′|𝑥) = 𝑟(𝑥|𝑥′)𝑓(𝑥′) − − − −(6 − 18) 

In fact, this factor 𝑙(𝑥′|𝑥) can be solved as: 

𝑙(𝑥′|𝑥) = 𝑚𝑖𝑛 {1,
𝑟(𝑥|𝑥′)𝑓(𝑥′)

𝑟(𝑥′|𝑥)𝑓(𝑥)
} − − − −(6 − 19) 

Define a factor in Equation (8-19) as: 

𝛼 =
𝑟(𝑥|𝑥′)𝑓(𝑥′)

𝑟(𝑥′|𝑥)𝑓(𝑥)
− − − −(6 − 20) 

Where 𝛼 is called the acceptance rate for state transfer. The acceptance rate for 

a successful construction of Markov Chain is around 23.4% [159].  In this 

current algorithm, the proposed distribution 𝑟(𝑥′|𝑥) is set to be a Gaussian 

distribution which is a symmetric distribution. Only with this condition the 

acceptance ratio 𝛼 from Function (6-20) can be simplified as: 

𝛼 =
𝑓(𝑥′)

𝑓(𝑥)
− − − −(6 − 21) 

3) Simulate a random number 𝑈 from a uniform distribution 𝑈(0,1), if 𝑈 <

 𝑙(𝑥′|𝑥) = 𝑚𝑖𝑛 {1,
𝑓(𝑥′)

𝑓(𝑥)
} = 𝑚𝑖𝑛{1, 𝛼} , then transfer state 𝑥  to state 𝑥′ , 

otherwise state 𝑥 stays at 𝑥 for the next round. 

4) Repeat the steps from initial state 𝑋0 = [𝑡0]  in Step 1) to Step 3) for 𝑁 

rounds, until the samplings become stable and convergent, these states 

𝑋0, 𝑋1, 𝑋2,⋯ , 𝑋𝑁 form a Markov chain independent sequential sampling from 

function 𝐹(𝑡). 

With the above independent sequential samplings from 𝐹(𝑡), the integration result in 

Equation (6-17) can be obtained.  

Supplied with the working example from values of parameters in Cable 1, the pit-crack 

transfer pit depth is 𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 115 𝜇𝑚. And the above Bayesian Inference algorithm 

is applied as an example to update the original Cable 1 liberal estimation of the 

probability of failure model. The sequential samplings in the above steps corresponding 

to 𝐹(𝑡) is shown in Figure 6-1, which is an example of the samplings with 10000 

values. The red points are the accepted samplings for 1 trial. They are then all taken out 
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and form one sequence of independent sampling which is also plotted in Figure 6-2. 

  

 

Figure 6-1: One trial of Markov Chain construction by Metropolis Hastings algorithm 

sampling with trial elements of 10000, among which only the accepted values are 

plotted (upper)Fluctuation of all the accepted values (bottom) 
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Figure 6-2: Values of 𝐺(𝑡𝑖) corresponding to the samplings shown in Figure 7 

 

Due to the randomness of the Monte Carlo algorithm, the results appear to be different 

at small scale with each array of sequential sampling. To balance this randomness and 

achieve convincing and stable results, the above steps of samplings are carried out 1000 

times in order to obtain an average value for the expected value of 𝐺(𝑡𝑖); the result is: 

𝐷 ≈ 0.0287. 
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6.3.2 Expression of the Bayesian Inference updated model 

Taking the result of the denominator and substituting the value of 𝐷 into Equation (6-

15), the result is the Bayesian Inference probability density. Shown as an example in 

Figure 6-5 is the plot of the Bayesian Inferenced probability density function for the 

liberal estimation.  

 

 

Figure 6-3: The plot of the Bayesian Inferenced probability density function of the 

liberal estimated model of Cable 1 

 

When applying another curve fitting for which the result is a Gaussian distribution, the 

probability density function is written as follows: 

𝑈(𝑡)𝐶𝑎𝑏𝑙𝑒 1 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 ≈ 0.0559 × 𝑒
−
(𝑡−55)
2×7.162

2

−− −−(6 − 22) 

This leads to the updated probability of failure function as: 
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𝑃𝑜𝐹𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝑎𝑏𝑙𝑒 1 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 ≈ ∫0.0559 × 𝑒
−
(𝑡−55)
2×7.162

2

𝑑𝑡 − − − −(6 − 23) 

 

The calculation of the updated PoF function for liberal estimation in Cable 1, both the 

conservative and liberal updated PoF function for Cable 2 are shown in Table 6-1. 

 

Table 6-1: ‘Tailored probability of failure function’ for all critical locations 

Location ‘Tailored probability of failure function’ 

Cable 1 (Conservative) 𝑃𝑜𝐹𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝑎𝑏𝑙𝑒 1 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 ≈ ∫0.0559 × 𝑒
−
(𝑡−55)
2×7.162

2

𝑑𝑡 

Cable 1 (Liberal) 𝑃𝑜𝐹𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝑎𝑏𝑙𝑒 1 𝑙𝑖𝑏𝑒𝑟𝑎𝑙 ≈ ∫0.0616 × 𝑒
−
(𝑡−60)
2×6.492

2

𝑑𝑡           

Cable 2 (Conservative) 𝑃𝑜𝐹𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝑎𝑏𝑙𝑒 2 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 ≈ ∫0.0548 × 𝑒
−
(𝑡−50)
2×7.32

2

𝑑𝑡 

Cable 2(Liberal) 𝑃𝑜𝐹𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝑎𝑏𝑙𝑒 2 𝑙𝑖𝑏𝑒𝑟𝑎𝑙 ≈ ∫0.0571 × 𝑒
−
(𝑡−52)
2×72

2

𝑑𝑡           

 

 

6.4 Explanation of the Bayesian Inferenced models 

The two plots shown here, Figure 10 and Figure 11, provide a comparison among the 

original conservative/liberal estimation and the updated conservative/liberal estimation 

for both Cable 1 and Cable 2. 
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Figure 6-4: Comparison of Bayesian Inferenced model and original industrial 

replacement priority model for probability of failure estimation (both conservative 

and liberal of Cable 1) 
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Figure 6-5: Comparison of Bayesian Inferenced model and original industrial 

replacement priority model for probability of failure estimation (both conservative and 

liberal of Cable 2)  
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Take the service age of 65 years as an example, for both locations, with the cable 

reaching higher servicing life, the probability of failure increases rapidly and are 

reaching higher probability values compared to the existing model. While for the 

relatively short service age, these are of lower probability of failure compared to the 

existing model. This result shows the updated model after one round of new research-

based information being input into the original model and it shows the development 

trend of such a statistical evaluation model with the learning process. The purpose to 

introduce this learning model is that, with potentially large amounts of data being 

available in the industry, this algorithm can learn to evolve itself by adapting to any 

formats of further input. Thus, this algorithm can always give an output of evaluation 

of engineering assets based on the most complete sets of available data sources. This 

will enable a more versatile solution to asset management decision making than the 

current fixed evaluation model. 
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7. Conclusions 

In this final chapter, conclusions are given to summarize the results and achievements 

of this PhD research.  

 

7.1 Conclusion on modelling the pit depth distribution (Chapter 3) 

In Chapter 3 the research focused on the pitting corrosion effect of the phosphor bronze 

used in underground electricity cables and the major outcomes. Reinforcing phosphor 

bronze tape, which was under commission for decades, was used to get pit depth 

distribution using the metallographic method. This data is valuable as very few studies 

exist on the pitting corrosion of phosphor bronze material. Pit depth is modelled using 

a power law and by using Monte-Carlo simulation and statistical methods. The pit 

growth parameter α follows a three parameter GEV distribution, and β as a fixed value 

of 0.33. The simple power law combined with the distribution can capture the evolution 

of pit growth, with validation case using two reinforcing tape samples extracted from 

the same site at two different years. The power law can successfully simulate pit depth 

distribution at different environment conditions. 

 

7.2 Conclusion on modelling pit growth and pit to crack transfer 

probability (Chapter 4) 

 

In summary, Chapter 4 provided further insights into the entire failure process of the 

phosphor bronze tape in underground power transmission cables. Following an accurate 

Monte Carlo simulation on pit depth distributions, a probability description of pitting 

corrosion to crack propagation probability transfer function is introduced in this study. 

A pit depth distribution model is developed. Combined with the author’s previous 

research results on pit depth distribution on specific years [6], this study provides a 
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model that can describe pit depth distribution for any requested point in time. An 

equation of the crack propagation in reinforced tin-bronze tape is given, under the 

assumption of a high mean stress and a relatively low alternating stress, for which all 

parameters are fixed numerically. A function of the pitting corrosion to crack 

propagation probability is given using the cumulative distribution function of the 

Weibull distribution, with all parameters are fixed numerically. A proposal for applying 

this ′𝑃𝑖𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 → 𝑃𝑖𝑡𝑡𝑖𝑛𝑔 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 → 𝑃𝑖𝑡 − 𝑐𝑟𝑎𝑐𝑘 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 →

𝐶𝑟𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 → 𝐹𝑎𝑖𝑙𝑢𝑟𝑒′  whole process analysis to the prediction of 

underground power transmission cable service life is raised. 

 

7.3 Conclusion on modelling power transmission cable probability of 

failure (Chapter 5) and a machine learning approach (Bayesian 

Inference) to power cable probability of failure (Chapter 6) 

The combined research of Chapter 5 and Chapter 6 introduced the Bayesian Inference 

method in combining two probability of failure models for underground power 

transmission cables, one being the empirical model from the industry being introduced 

by KEMA, based on prior experience and knowledge, the other one being the 

mechanism-based model which was recently developed [5, 6] based on the corrosion 

fatigue mechanism on phosphor bronze protection layers in cables. This combination 

enables a ‘Tailored probability of failure’ model for each cable locations. The ‘Tailored 

probability of failure model’ is of higher accuracy in estimating the probability of failure 

for two reasons: 1. The updated model has a more complete background information 

compared to the previous model. With a deeper understanding of the failure mechanism, 

this model fits the phenomenon of failure cases better. 2. The updated model is ‘tailored’ 

to different locations. Instead of using a universal model for all locations, this model 

enables the distinction of the divergent conditions at the different cable locations, and 

is thus more suitable for estimations. 
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The Bayesian Inference method applied in Chapter 6 to engineering problems creates 

the concept of ‘Intelligent Assets’. This concept is based on the fact that the aging and 

failure control is dynamic with the continuous updating of knowledge and information 

from the asset itself. Similar to machine learning, this is the assets’ ‘self-learning’. With 

each input of further information, the decisions on asset management become more 

accurate. 
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Future Work: 

The newly created concept of the underground power grids ‘self-update’ in order to give 

a most up-to-date estimation of the probability of failure throughout its service life, 

introduced in this thesis, requires a continuous input of the experimental corrosion data. 

This study has discussed the updating of cables which started the commissions in the 

1960s to 1970s, as these cables are critical at the current moment. The same research 

approach can be applied to all power grids containing the most recent instalments in 

order to give not only engineering reliability advices, but also support the decision 

making from a financial perspective. 

Overall, this research is to provide consultancy on engineering asset management, in 

the decision making on strategies towards existing cables. Whether to repair a cable 

section, exchange a cable section or replace the entire cable line is based on the 

confidence to predict the probability of failure of the power cables. This leads to a 

significant difference in the investment of the power companies, the government and 

also influences greatly on the civilian’s expenses on energy resources. By applying the 

‘Intelligent Asset’ approach on all power cables, it will enable a more economically 

accurate decision making, which will benefit all parties. 
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Appendix I 

 

Working example of the DNO common network asset indices 

methodology [12] 
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Ofgem is the short form of Office of Gas and Electricity Markets and it acts as the 

government regulator for the electricity and downstream natural gas markets in Great 

Britain. In this section the asset management approach by Ofgem is introduced and to 

help with the understanding of the entire process, a working example is also given. The 

Ofgem document is published with open access which can be downloaded from its 

official website, but it is also attached with this thesis as a supporting document in the 

USB/CD submitted along with this thesis. In the following working example, all the 

values extracted from this document is referenced with the original page numbers and 

table labels for a clear rundown to follow.  

As stated previously, the evaluation of cable conditions by the DNO common network 

asset indices methodology follows 9 steps: 

1) General probability of failure 

2) Normal expected life 

3) Expected life 

4) 𝛽1 (initial ageing rate) 

5) Initial health score 

6) Current health score 

7) 𝛽2 (forecast aging rate) 

8) Future health score - deterioration 

9) Calculation of current and future probability of failure 

This chapter is based on cable data of Location 1 mentioned in Chapter 3, for which one 

failure case was detected after 38 years of servicing. Following the steps of evaluation, 

details are given below for the working example. When referencing a certain page of 

the ‘DNO common network asset indices methodology’, this document is mentioned as 

‘Code’ for simplification.  
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Step 1: General probability of failure 

From the Design Code, the possibility of failure is calculated as (Code, p.30) 

 

𝑃𝑜𝐹 = 𝐾 × [1 + (𝐶 × 𝐻) +
(𝐶 × 𝐻)2

2!
+
(𝐶 × 𝐻)3

3!
] 

 

By observation of this mathematical expression, it is easy to recognize as the Taylor 

Series Expansion of an exponential function, with the first four terms kept. C is a 

constant that controls the shape of the curve and H represent the Health Score. 

Where : 

 𝐼𝑓 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 > 4, 𝑡ℎ𝑒𝑛 𝐻 =

𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑟 𝐹𝑢𝑡𝑢𝑟𝑒) 

 𝐼𝑓 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 ≤ 4, 𝑡ℎ𝑒𝑛 𝐻 = 4 

 𝐾 𝑎𝑛𝑑 𝐶 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

The Value of both K and C are to the Code Table 21 in Appendix B (Code, p.106). From 

this it can be concluded that for Pressurized Cable (EHV UG Cable (Oil) and 132 kV 

UG Cable (Oil)), K-value is 2.0944%, C-value is 1.087 and Health Score Limit is 4. 
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Step 2: Normal Expected Life 

Normal Expected Life is to be found in Table 20 Appendix B of the Code, corresponds 

to a Health Score of 5.5. 

For 33kv UG Cable (Oil) with Lead sheath-Copper conductor, 66kv UG Cable(Oil) with 

Lead sheath- Copper conductor and 132kv UG Cable(Oil) with Lead sheath- Copper 

conductor, the Normal Expected Life are all 80 years. 
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Step 3: Expected Life 

The Expected Life calculation involves the Location Factor and the Duty Factor, and 

the calculation method is (Code, p.32) 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒 =
𝑁𝑜𝑟𝑚𝑎𝑙 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒

(𝐷𝑢𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟)
 

 

As in previous Step 2 the Normal Expected Life is 80 years. 

 

∴ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒 =
80

(𝐷𝑢𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟)
 

 

Calculation of Location Factor 

The general Location Factor consists of four different aspects, including: 

v) Distance from coast factor 

vi) Altitude factor 

vii) Corrosion category factor 

viii) Environment factor (indoor/outdoor) 

The Distance from Coast Factor can be found in Table 22 (Code, p.106) 

As the underground cable shall not be influenced by the distance from coast, it is chosen 

as default and equals to 1. 

The Altitude Factor can be found in Table 23 (Code, p.107) 

As the underground cables are buried and so should not be influenced by the altitude, 

therefore, the default value is also chosen here as 1. 

The Corrosion Category Factor can be found in Table 24 (Code, p.107).  

Although no category listed in the table fits the underground cable environment for 

corrosion, the underground environment is complicated, and can vary from the lowest 

value to the highest value. In this working example, three values are chosen for the 
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evaluation of cable in Location 1, the lower limit value of 0.75, the upper limit value of 

1.6 and the typical default value of 1. 

 

 

Represented by the group: 

{

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 0.75
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 = 1.60
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑡𝑦𝑝  = 1.00

 

 

The Environment Factor is determined directly as the underground power transmission 

cables are buried outdoor. 

 

After obtaining all the necessary values for the Location Factor determination, under 

the Environment Factor classified as ‘Outdoor’, the calculation of Location factor is as 

follows in two categories (Code, p.43): 

3) If the maximum of the Distance From Coast Factor, Altitude Factor and Corrosion 

Factor is greater than 1, which in this study case would be when 

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 = 1.60, then 

 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

= 𝑀𝐴𝑋(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐹𝑟𝑜𝑚 𝐶𝑜𝑎𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟, 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝐹𝑎𝑐𝑡𝑜𝑟, 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟)

+ (((𝐶𝑂𝑈𝑁𝑇 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1) − 1) × 𝐼𝑁𝐶) 

 

Here in this example only one factor is greater than one, INC in the above equation 

represents for Increment Constants, and can be found in Table 25 (Code, p.107). Except 

the Switchgear, Transformers, Submarine Cables which has an INC of 0.05, the rest of 

the infrastructures are with an INC of 0, as with the study of underground cables, the 

INC is 0.  
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Condition 1:  

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1 = 1.6 

 

4) If the maximum of the Distance From Coast Factor, Altitude Factor and Corrosion 

Factor is not greater than 1, which in this study case would be when 

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 0.75 and 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑡𝑦𝑝  = 1.00 then  

 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

= 𝑀𝐼𝑁(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐹𝑟𝑜𝑚 𝐶𝑜𝑎𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟, 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝐹𝑎𝑐𝑡𝑜𝑟, 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟) 

Here 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 = 0.75 

And 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 3 = 1 

 

Calculation of Duty Factor (Code, p47)  

For the Duty Factor calculation, when dealing with cables, there are two duty factors to 

be considered, DF1 and DF2. The calculation for Duty Factor with both DF1 and DF2 

is as follows (Code, p.48): 

 

𝐷𝑢𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 = 0.5 × 𝐷𝐹1 + 0.5 × 𝐷𝐹2 

 

The Duty Factor can be checked from Table 30 (Code, p.49) 

For DF1, if the maximum utilization under normal operating conditions is lower than 

50%, then the minimum value for DF1 can be obtained as 0.8, in the worst case if the 

utilization is over 100%, then the maximum value for DF1 can achieve 1.8, listed below 

as 
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{
𝐷𝐹1𝑚𝑖𝑛 = 0.8
𝐷𝐹1𝑚𝑎𝑥 = 1.8

 

 

For DF2, if the value for Operating Voltage/Design Voltage is lower than 40%, then the 

minimum value for DF2 is 0.7, but in the worst case if the value is over 70%, then the 

value of DF2 can achieve 1. 

 

{
𝐷𝐹2𝑚𝑖𝑛 = 0.7
𝐷𝐹2𝑚𝑎𝑥 = 1.0

 

 

By the above two circumstances, upper boundary and lower boundary of the duty factor 

can be listed as, 

 

{
𝐷𝑢𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 0.8 × 0.5 + 0.7 × 0.5 = 0.75
𝐷𝑢𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 = 1.8 × 0.5 + 1.0 × 0.5 = 1.40

 

 

Sum up from the above calculations and the range of the expected life is: 

 

{
 
 

 
 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒𝑚𝑖𝑛 =

𝑁𝑜𝑟𝑚𝑎𝑙 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒

(𝐷𝑢𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 × 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥)
=

80

1.40 × 1.60
= 35.71 𝑦𝑒𝑎𝑟𝑠

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒𝑚𝑎𝑥 =
𝑁𝑜𝑟𝑚𝑎𝑙 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒

(𝐷𝑢𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 × 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛)
=

80

0.75 × 0.75
= 142.2 𝑦𝑒𝑎𝑟𝑠
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Step 4: 𝜷𝟏 Initial Ageing Rate 

The equation calculating the initial ageing rate is as follows (Code, p.32): 

 

𝛽1 =
ln (

𝐻𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑓𝑒
𝐻𝑛𝑒𝑤

)

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒
 

Where: 

 𝐻𝑛𝑒𝑤 𝑖𝑠 𝑡ℎ𝑒 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑎 𝑛𝑒𝑤 𝑎𝑠𝑠𝑒𝑠𝑡, 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0.5 

 𝐻𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑓𝑒𝑖𝑠 𝑡ℎ𝑒 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑒𝑡 𝑤ℎ𝑒𝑛 𝑖𝑡 𝑟𝑒𝑎𝑐ℎ𝑒𝑠  

𝑖𝑡𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑓𝑒, 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 5.5  

 

 

Regarding to the above Expected Life range, there is also a range for the initial ageing 

rate, listed as 

 

{
 
 

 
 
𝛽1𝑚𝑎𝑥 =

ln (
5.5
0.5
)

35.71
= 0.06715

𝛽1𝑚𝑖𝑛 =
ln (

5.5
0.5
)

142.2
= 0.01686
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Step 5: Initial Health Score 

The calculation for the Initial Health Score is as (Code, p.32): 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 = 𝐻𝑛𝑒𝑤 × 𝑒
(𝛽1×𝑎𝑔𝑒) 

Where:  

 𝐻𝑛𝑒𝑤 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑎𝑠𝑠𝑒𝑡, 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0.5 

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝑖𝑠 𝑐𝑎𝑝𝑝𝑒𝑑 𝑎𝑡 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 5.5 

 𝛽1 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑔𝑒𝑖𝑛𝑔 𝑟𝑎𝑡𝑒  

 𝑎𝑔𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑒𝑡 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠 

With the working example calculated according to the properties of Location 1, this 

circuit of cable started commission in the year 1970, by the year within the period of 

the research project and this calculation was done 2016, in total it is already with 46 

years of usage. The variable:  

𝑎𝑔𝑒 = 46 𝑦𝑒𝑎𝑟𝑠 

From this the upper and lower limit of the Initial Health Score are the following: 

 

{
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑛 = 𝐻𝑛𝑒𝑤 × 𝑒

(𝛽1𝑚𝑖𝑛×𝑎𝑔𝑒) = 0.5 × 𝑒(0.01686×46) = 1.08590

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑥 = 𝐻𝑛𝑒𝑤 × 𝑒
(𝛽1𝑚𝑎𝑥×𝑎𝑔𝑒) = 0.5 × 𝑒(0.06715×46) = 10.9765

 

 

As 10.9765 is over the capped Initial Health Score 5.5, 

 

∴  {
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑛 = 𝐻𝑛𝑒𝑤 × 𝑒

(𝛽1𝑚𝑖𝑛×𝑎𝑔𝑒) = 0.5 × 𝑒(0.01686×46) = 1.08590

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑥 = 𝐻𝑛𝑒𝑤 × 𝑒
(𝛽1𝑚𝑎𝑥×𝑎𝑔𝑒) = 𝐶𝑎𝑝𝑝𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐼𝐻𝑆 = 5.50

 

 

Here a compromise had to be made according to the Code, which gave the upper limit 

of the Initial Health Score a shrink of around 50%. As the purpose of this working 

example is to discover the imperfection of the method mentioned in the Code, the 

calculation of the values which do not follow the capped option is also given for 

comparison. All the un-capped calculation results in this chapter will be shown in red. 
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Here if the Initial Health Score is not capped:  

{
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑛 = 𝐻𝑛𝑒𝑤 × 𝑒

(𝛽1𝑚𝑖𝑛×𝑎𝑔𝑒) = 0.5 × 𝑒(0.01686×46) = 1.08590

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑥 = 𝐻𝑛𝑒𝑤 × 𝑒
(𝛽1𝑚𝑎𝑥×𝑎𝑔𝑒) = 0.5 × 𝑒(0.06715×46) = 10.9765

 

 

The values in red colour shows the calculation results following the exact same 

procedures but not capped by any pre-set values, the purpose is to compare the extent 

of difference between the capped and un-capped results. 
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Step 6: Current Health Score 

The current Health Score is modified from the Initial Health Score, the calculation for 

this is (Code, p.33): 

 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒

= 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 × 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝐹𝑎𝑐𝑡𝑜𝑟

× 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 

Where 

𝐼𝐹 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 > 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝐶𝑎𝑝 

𝑇𝐻𝐸𝑁 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 = 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝐶𝑎𝑝 

 Current Health Score is capped at 10 

 

Then the Current Health Score is compared with the Health Score Collar (Code, p.34) 

 

𝐼𝐹 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 < 𝑀𝐴𝑋(𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝐶𝑜𝑙𝑙𝑎𝑟, 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶𝑜𝑙𝑙𝑎𝑟) 

𝑇𝐻𝐸𝑁 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 = 𝑀𝐴𝑋(𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝐶𝑜𝑙𝑙𝑎𝑟, 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶𝑜𝑙𝑙𝑎𝑟) 

 

To calculate the Current Health Score, the Health Score Factor, or the Health Score 

Modifier is determined by: (Code, p.49) 

iii. Observed Condition Modifier 

iv. Measured Condition Modifier 

Each of the condition modifier would contain three elements: 

iv. A Condition Input Factor 

v. A Condition Input Cap 

vi. A Condition Input Collar 

As stated on (Code, p.60), there are no Observed Condition Inputs for cable assets other 
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than Submarine Cables. For these assets: 

iv) The Observed Condition Factor shall be set to 1 

v) The Observed Condition Cap shall be 10 

vi) The Observed Condition Collar shall be 0.5 

From (Code, p.62), the Measured Condition for both EHV cable (oil) and 132kV cable 

(oil) are ‘Leakage’. 

The Measured Condition Modifier, from Table 15 (Code, p.63), for both EHV cable (oil) 

and 132kV cable (oil),  

 

{
𝐹𝑎𝑐𝑡𝑜𝑟 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 1 = 1.5                        
𝐹𝑎𝑐𝑡𝑜𝑟 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 2 = 1.5                        
𝑀𝑎𝑥.𝑁𝑜. 𝑜𝑓 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟𝑠 = 1

 

 

The next step is to find out the maximum and minimum value for Measured Condition 

Input, from Table 172 (Code, p.142), for EHV Cable (Oil) under the condition of 

Leakage: 

 

{
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 1.0
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 = 2.0

 

{
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑎𝑝𝑚𝑖𝑛 = 10
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑎𝑝𝑚𝑎𝑥 = 10

 

{
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑜𝑙𝑙𝑎𝑟𝑚𝑖𝑛 = 0.5
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑜𝑙𝑙𝑎𝑟𝑚𝑎𝑥 = 8.0

 

 

From Table 179 (Code, p.143), for 132kV Cable (Oil) under the condition of Leakage 

{
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 1.0
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 = 2.0

 

{
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑎𝑝𝑚𝑖𝑛 = 10
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑎𝑝𝑚𝑎𝑥 = 10

 

{
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑜𝑙𝑙𝑎𝑟𝑚𝑖𝑛 = 0.5
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑜𝑙𝑙𝑎𝑟𝑚𝑎𝑥 = 8.0
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It can be concluded that for the cables protected by oil the factors being used are the 

same. 

After obtaining all the factors in the Health Score Factor section, a ‘Combining Factors 

Using a Modified Maximum and Increment (MMI)’ Technique is applied for the 

calculation of the real Health Score Factor. ( Code, p.50 & 51) 

 

(c) Calculating the minimum value for Health Score Factor 

 

 𝑉𝑎𝑟1 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝐹𝑎𝑐𝑡𝑜𝑟𝑠 =

  min
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

(
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟
)=1.0 

 𝑉𝑎𝑟2 = 2𝑛𝑑 𝐿𝑜𝑤𝑒𝑠𝑡 𝑜𝑓 𝐹𝑎𝑐𝑡𝑜𝑟𝑠 = 1 

 𝑉𝑎𝑟3 =
𝑉𝑎𝑟2−1

𝐹𝑎𝑐𝑡𝑜𝑟 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 2
=

0

1.5
= 0 

 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 𝑉𝑎𝑟1 + 𝑉𝑎𝑟3 = 1 

 

(d) Calculating the maximum value for Health Score Factor 

 

 𝑉𝑎𝑟1 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝐹𝑎𝑐𝑡𝑜𝑟𝑠 =

 max
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

(
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟
) = 2.0 

 𝑉𝑎𝑟2 = 𝐸𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑉𝑎𝑟1 

o 𝐹𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟𝑠 𝑤ℎ𝑒𝑟𝑒 (𝐹𝑎𝑐𝑡𝑜𝑟 − 1) >

0, 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 1 

o 𝑆𝑢𝑚 (𝐹𝑎𝑐𝑡𝑜𝑟 − 1) 𝑓𝑜𝑟 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑛 −

1 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒;𝑤ℎ𝑒𝑟𝑒 𝑛 =

𝑀𝑎𝑥.𝑁𝑜. 𝑜𝑓 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟𝑠, 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒, 𝑛 = 1, ∴



199  

𝑛𝑒𝑒𝑑 𝑡𝑜 𝑠𝑢𝑚 𝑢𝑝 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 0 𝑓𝑎𝑐𝑡𝑜𝑟𝑠, 𝑤ℎ𝑖𝑐ℎ 𝑔𝑖𝑣𝑒𝑠 𝑉𝑎𝑟2 =

0 

 𝑉𝑎𝑟3 =
𝑉𝑎𝑟2

𝐹𝑎𝑐𝑡𝑜𝑟 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 1
= 0 

 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 = 𝑉𝑎𝑟1 + 𝑉𝑎𝑟3 = 2.0 

 

The Reliability Factor (Code, p.69) has a value between 0.6 and 1.5 with a default value 

of 1, written as 

 

{

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 0.6
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 = 1.5
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑑𝑓𝑡  = 1.0

 

 

The Reliability Collar is set to be 0.5. 

Summing up this section, the range of current health score is 

 

{
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑛 = 1.08590 × 1.0 × 0.6 = 0.65154                                    
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑥 = 5.50 × 2.0 × 1.5 = 16.5 > 𝐶𝑎𝑝𝑝𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 10 = 10

 

 

If the Current Health Score is not capped here, 

{
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑛 = 1.08590 × 1.0 × 0.6 = 0.65154
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑥 = 10.9765 × 2.0 × 1.5 = 32.9295

 

 

Then the Current Health Score is compared with the Health Score Collar. 

Since the minimum of the Health Score Collar and Reliability Collar are both 0.5, and 

the minimum value from the calculation is 0.65154>0.5, so the minimum value of the 

Current Health Score can be kept. Moreover, the maximum Health Score Collar is 8 and 

the maximum value of Reliability Collar is 0.5, and 10>8, so the maximum value of 

Current Health Score can also be kept as 10. 
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Step 7: 𝜷𝟐 (Forecast Ageing Rate) 

It can be regarded that for the current asset the age is over 10 years (Code, p.34). 

𝛽2 =
ln (

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒
𝐻𝑛𝑒𝑤

)

𝐴𝑔𝑒
 

 

∴

{
 
 

 
 
𝛽2𝑚𝑖𝑛 =

ln (
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑛

𝐻𝑛𝑒𝑤
)

𝐴𝑔𝑒
=
ln (

0.65154
0.5

)

46
= 5.755 × 10−3

𝛽2𝑚𝑎𝑥 =
ln (

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑥
𝐻𝑛𝑒𝑤

)

𝐴𝑔𝑒
=
ln (

10
0.5
)

46
= 0.06512                      

 

 

If the value here is not capped, then the Forecast aging rate is as follows: 

{
  
 

  
 
𝛽2𝑚𝑖𝑛 =

ln (
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑛

𝐻𝑛𝑒𝑤
)

𝐴𝑔𝑒 × 𝐴𝑔𝑒𝑖𝑛𝑔 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥
=
ln (

0.65154
0.5

)

46
= 5.755 × 10−3

𝛽2𝑚𝑎𝑥 =
ln (

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑥
𝐻𝑛𝑒𝑤

)

𝐴𝑔𝑒 × 𝐴𝑔𝑒𝑖𝑛𝑔 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛
=
ln (

32.9295
0.5

)

46
= 0.091    
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Step 8: Future Health Score – Deterioration  

The Future Health Score is calculated as (Code, p.36): 

 

𝐹𝑢𝑡𝑢𝑟𝑒 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 × 𝑒(
𝛽2

𝑟⁄ )×𝑡 

Where:  

 𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑡𝑢𝑟𝑒 𝑦𝑒𝑎𝑟𝑠 

 𝐹𝑢𝑡𝑢𝑟𝑒 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝑖𝑠 𝑐𝑎𝑝𝑝𝑒𝑑 𝑎𝑡 15 

 r is the Aging Reduction Factor  

 

The Aging Reduction Factor is found from Table 209 (Code, p.149) 

 𝐼𝐹 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 < 2, 𝑇𝐻𝐸𝑁 𝐴𝑔𝑒𝑖𝑛𝑔 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑖𝑛 = 1 

 𝐼𝐹 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 > 5.5, 𝑇𝐻𝐸𝑁 𝐴𝑔𝑒𝑖𝑛𝑔 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 =

1.5 

 𝐼𝐹 2 ≤ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 ≤

5.5, 𝑇𝐻𝐸𝑁 𝐴𝑔𝑒𝑖𝑛𝑔 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑚𝑎𝑥 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒−2

7
+ 1 

 

As here it is a working example of the method, take 20 years from 2016 as the future 

prediction assumption for Location 1, the variable of years in the future 

𝑡𝑓𝑢𝑡𝑢𝑟𝑒−𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1 is as follows: 

 

𝑡𝑓𝑢𝑡𝑢𝑟𝑒−𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1 = 20 𝑦𝑒𝑎𝑟𝑠 
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∴

{
  
 

  
 𝐹𝑢𝑡𝑢𝑟𝑒 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑛 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 × 𝑒

(
𝛽2𝑚𝑖𝑛

𝑟𝑚𝑎𝑥
⁄ )×𝑡𝑓𝑢𝑡𝑢𝑟𝑒−𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1

                                               = 0.65154 × 𝑒(
5.755×10−3

1.5⁄ )×20 = 0.7035

𝐹𝑢𝑡𝑢𝑟𝑒 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑥 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 × 𝑒
(
𝛽2𝑚𝑎𝑥

𝑟𝑚𝑖𝑛
⁄ )×𝑡𝑓𝑢𝑡𝑢𝑟𝑒−𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1

                                                                    = 10 × 𝑒(
0.06512

1⁄ )×20 = 36.7811 > 𝐶𝑎𝑝𝑝𝑒𝑑 15 = 15

 

 

If the values calculated in this section are not capped, the actual values are as follows: 

{
 
 
 

 
 
 𝐹𝑢𝑡𝑢𝑟𝑒 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑛 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 × 𝑒

(
𝛽2𝑚𝑖𝑛

𝑟𝑚𝑎𝑥
⁄ )×𝑡𝑓𝑢𝑡𝑢𝑟𝑒−𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1

                                               = 0.65154 × 𝑒(
5.755×10−3

1.5⁄ )×20 = 0.7035

𝐹𝑢𝑡𝑢𝑟𝑒 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑥  = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 × 𝑒
(
𝛽2𝑚𝑎𝑥

𝑟𝑚𝑖𝑛
⁄ )×𝑡𝑓𝑢𝑡𝑢𝑟𝑒−𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1

                                          = 32.9295 × 𝑒(
0.06512

1⁄ )×20 = 121.1183
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Step 9: Calculation of Current and Future Probability of Failure 

It can be observed from the above calculation that the distribution of the probability of 

failure is of the function 

 

𝑃𝑜𝐹 = 𝐾 × [1 + (𝐶 × 𝐻) +
(𝐶 × 𝐻)2

2!
+
(𝐶 × 𝐻)3

3!
] 

 

And the health score H, as calculated above, if being capped, can be as low as H=4 and 

as high as H=15,  

 

{
𝑃𝑜𝐹min−20 𝑦𝑒𝑎𝑟𝑠 𝑓𝑢𝑡𝑢𝑟𝑒 = 59.7%       

𝑃𝑜𝐹max−20 𝑦𝑒𝑎𝑟𝑠 𝑓𝑢𝑡𝑢𝑟𝑒 = 1827.76%
 

∴ 59.7% ≤ 𝑃𝑜𝐹𝑌𝑒𝑎𝑟 2036 ≤ 100% 

 

Form the maximum value of the probability of failure it can be seen that at 66 years 

after commission for the cable in Location 1, under the worst condition it cannot last 

until that age. But if the condition is good without much corrosion, it can maintain 

functional and have a probability of failure rate at 66 years for as low as 59.7%. 

 

If the calculated value is not capped here, the values would be: 

0.0804% ≤ 𝑃𝑜𝐹 ≤ 815000% 

Apparently until here the un-capped value does not make sense anymore, as the 

probability of failure cannot achieve anywhere beyond 100%, so the capped value is 

useful for the lower value of calculation, but cannot reflect the worst condition that 

happen on the power cables as the actual value is far more serious than 100%. 
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Table of matrixes in Chapter 5 
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Table 5-2: Coefficient matrix 𝑨𝟏 for cubic spline curve fitting of Cable 1 mean stress 

vs length of cable data 

Coefficient of 𝑥3 Coefficient of 𝑥2 Coefficient of 𝑥 Coefficient of constant term 

-1.12E-07 0 0.029888 103.8308 

1.39E-07 -7.95E-05 0.011122 109.4081 

-4.14E-08 2.19E-05 -0.00288 109.4114 

2.69E-08 -8.24E-06 0.00043 109.4095 

-2.63E-08 1.11E-05 0.001128 109.4104 

3.07E-09 -8.15E-06 0.001862 109.9698 

1.44E-08 -5.82E-06 -0.00167 109.9699 

9.07E-09 5.08E-06 -0.00185 109.41 

-1.59E-08 1.19E-05 0.002426 109.4102 

-9.07E-08 -1.08E-07 0.005416 110.5306 

2.23E-07 -6.65E-05 -0.01084 110.5276 

-5.44E-07 9.41E-05 -0.00425 107.1858 

1.21E-06 -0.00031 -0.05584 103.8168 

-1.42E-06 0.000631 0.028151 89.89969 

8.53E-07 -0.00048 0.067382 115.143 

-3.10E-07 0.00017 -0.01194 115.1687 

8.64E-08 -6.28E-05 0.014791 117.947 

1.25E-09 1.34E-06 -0.00042 119.0706 

1.25E-09 2.29E-06 0.000494 119.07 

-4.58E-08 3.21E-06 0.001852 119.3504 

1.00E-07 -2.97E-05 -0.00449 119.3489 

-1.46E-07 4.20E-05 -0.00156 117.9518 

1.86E-08 -6.51E-05 -0.0072 117.9488 
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1.92E-07 -5.12E-05 -0.03628 112.3687 

-4.86E-07 9.14E-05 -0.02633 103.1651 

1.18E-06 -0.00025 -0.06469 95.6175 

-1.77E-06 0.000564 0.006793 81.70213 

1.83E-06 -0.00068 -0.02053 91.45303 

-1.23E-06 0.000626 -0.03348 72.65294 

4.36E-07 -0.00027 0.052197 83.77749 

-1.04E-07 4.06E-05 -0.00369 86.58405 

1.01E-07 -3.67E-05 -0.00273 86.57846 

-1.19E-07 3.85E-05 -0.00228 85.18165 

1.03E-07 -4.95E-05 -0.00501 85.17834 

-4.13E-08 2.90E-05 -0.01023 82.39108 

6.30E-08 -2.13E-06 -0.00346 80.99922 

-1.25E-07 4.55E-05 0.007473 81.00141 

1.90E-07 -5.07E-05 0.006146 83.78763 

-2.05E-07 9.39E-05 0.017076 85.18296 

9.99E-08 -6.06E-05 0.025435 92.15772 

-2.76E-07 1.55E-05 0.01396 96.34282 

7.57E-07 -0.0002 -0.03199 96.33226 

-1.03E-06 0.000379 0.014506 87.98338 

1.11E-06 -0.00043 0.002542 99.34395 

-1.31E-06 0.000482 0.017823 90.98814 

1.33E-06 -0.00058 -0.0102 105.1802 

-8.09E-07 0.00048 -0.03796 86.14604 

2.50E-07 -0.00015 0.047867 94.50206 

-1.38E-07 4.46E-05 0.02071 101.2029 
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-3.86E-08 -5.97E-05 0.016895 107.0593 

3.03E-07 -8.80E-05 -0.01922 107.0574 

-4.54E-07 0.000139 -0.00661 101.4857 

5.04E-07 -0.00021 -0.026 101.1928 

-2.12E-07 0.000175 -0.03581 88.93536 

-3.09E-07 1.14E-05 0.012438 87.74073 

8.96E-07 -0.00024 -0.04778 85.97097 

-1.32E-06 0.000488 0.019909 73.44661 

2.09E-06 -0.00057 -0.0032 88.39446 

-1.84E-06 0.000883 0.068643 82.86941 

-5.77E-07 -0.00019 0.203222 116.3206 

1.10E-06 -0.00053 0.062452 144.2174 

-2.72E-07 0.000138 -0.0171 144.2403 

7.20E-08 -3.66E-05 0.004547 144.2274 

-1.87E-08 9.66E-06 -0.00122 144.2307 

4.80E-09 -2.54E-06 0.000328 144.2298 

-1.36E-09 6.86E-07 -8.57E-05 144.23 

6.80E-10 -2.20E-07 1.79E-05 144.23 

-7.07E-10 8.27E-08 -2.55E-06 144.23 
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Table 5-3: Coefficient matrix 𝑨𝟐 for cubic spline curve fitting of Cable 2 mean stress 

vs length of cable data 

Coefficient of 𝑥3 Coefficient of 𝑥2 Coefficient of 𝑥 Coefficient of constant term 

-2.68E-07 0 0.01187 143.9927 

-3.96E-07 -0.00017 -0.02376 143.9913 

1.52E-06 -0.00042 -0.1478 127.7808 

-1.16E-06 0.000636 -0.09776 90.0268 

5.10E-07 -0.00025 0.000214 87.28334 

-8.65E-08 0.000138 -0.02965 79.20596 

-3.24E-07 7.15E-05 0.023955 79.20237 

7.42E-07 -0.00018 -0.00308 84.58935 

-1.54E-06 0.000392 0.051795 84.62277 

1.82E-06 -0.00079 -0.04998 97.7765 

-8.26E-07 0.000608 -0.09635 63.6664 

8.55E-09 -2.49E-05 0.052723 64.98166 

9.29E-08 -1.82E-05 0.04155 77.13916 

-1.47E-07 5.20E-05 0.050081 87.9424 

-4.84E-07 -5.84E-05 0.048483 101.4434 

1.06E-06 -0.00044 -0.08187 101.4246 

-5.13E-07 0.000384 -0.09624 69.05568 

3.72E-07 -1.61E-05 -0.00087 60.94116 

-1.19E-06 0.000277 0.067753 66.35557 

1.42E-06 -0.00066 -0.03471 81.70391 

-6.52E-07 0.00047 -0.08646 52.29075 

9.33E-08 -4.03E-05 0.02538 50.10255 

-1.52E-07 3.12E-05 0.023057 55.51245 
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1.92E-07 -8.53E-05 0.009246 60.90656 

-1.33E-07 6.23E-05 0.003369 60.91325 

1.81E-07 -3.90E-05 0.009265 63.60686 

-2.49E-07 9.69E-05 0.023718 66.3143 

1.24E-07 -9.00E-05 0.025444 74.40627 

-7.93E-08 5.69E-06 0.003831 77.11203 

5.40E-07 -5.60E-05 -0.00923 77.10381 

-1.56E-06 0.000352 0.065092 79.83102 

1.81E-06 -0.00082 -0.05055 93.70627 

-7.98E-07 0.000578 -0.11157 57.62608 

-1.32E-07 1.31E-05 0.027954 53.00334 

3.78E-08 -7.44E-05 0.014388 58.40831 

2.33E-07 -4.97E-05 -0.0126 58.40804 

-2.20E-07 0.000103 -0.00091 55.71453 

4.97E-08 -5.55E-05 0.010569 58.4073 

2.22E-07 -1.93E-05 -0.00763 58.40828 

-3.24E-07 0.000137 0.019886 58.41546 

6.85E-08 -9.43E-05 0.02996 66.50608 

2.74E-07 -4.47E-05 -0.00359 69.20795 

-3.23E-07 0.000138 0.017231 69.21597 

-1.28E-07 -5.04E-05 0.03431 75.41804 

3.13E-07 -0.00013 -0.00208 79.2356 

-1.90E-07 9.07E-05 -0.01086 75.73502 

2.25E-07 -5.24E-05 -0.00122 75.72586 

-7.99E-07 0.00012 0.016007 75.74023 

3.33E-06 -0.00045 -0.06096 75.68873 
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-5.42E-06 0.001737 0.22113 75.81745 

2.88E-06 -0.00167 0.235313 148.547 

-6.28E-07 0.000415 -0.06697 148.6651 

1.76E-07 -0.00011 0.017589 148.622 

-8.56E-08 3.58E-05 -0.00373 148.6326 

6.32E-08 -1.26E-05 0.000645 148.6285 

-3.42E-08 3.64E-06 -0.00012 148.631 
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