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Statistical estimation protocols are one of the key means to ensure that independent and objective information
on product accuracy is communicated to end-users. Methods for validating burned area products have been de-
veloped based on a probability sample of a space by time partitioning of the population. We extend this basic
methodology to improve stratification and sample allocation, key elements of a sampling design used to collect
burned area reference data. We developed and evaluated an approach to partition each year and biome into low
and high burned area (BA) strata. Because the threshold used to separate the sampling units into low and high BA
can vary by year and biome, this approach offers a more targeted stratification than used in previous studies for
which a common thresholdwas applied to all biomes. A hypothetical population of validation datawas thenused
to quantitatively compare the precision of accuracy estimates derived from different stratification and sample
size allocation options. We evaluated two options that had been previously examined in the BA validation liter-
ature, and extended previous studies by adding two new options specifically developed for ratio estimates. Strat-
ification based onmappedBA reduced standard errors of the global burned area accuracy estimates fromone-half
to one-eighth relative to standard errors of simple random sampling. Stratifying bymapped BAwas also found to
reduce standard errors of accuracy estimates formost year by biome strata indicating that this advantage of strat-
ification and sample allocation applies generally to a range of conditions (i.e., biomes and years). Themost precise

estimates were obtained using a sample size per stratum allocation nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
whereNh is the number of units

in stratum h andBAh is themeanmapped BA for stratum h. The best sampling design from our analyseswas then
used to select a set of 1,000 samples from a hypothetical population of validation data and confidence intervals
were computed for each sample. Close to 95% of these confidence intervals contained the true population
value thus confirming the validity of confidence intervals produced from the estimates and standard errors.
. This is an o
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Biomass burning is one of the most important processes impacting
the Earth system (Bond and Keeley, 2005; Bowman et al., 2009) and
oneof themain sources of gases and aerosols emitted to the atmosphere
(van der Werf et al., 2004, 2010). The Global Climate Observing System
(GCOS) program identified Fire Disturbance as an Essential Climate
Variable (ECV) (GCOS, 2004), commonly expressed by burned area
(BA) information (Mouillot et al., 2014). Global BA products provide
the location and dates of burned surfaces at a coarse spatial resolution
(300–1000 m).

Product validation is defined as “… the process of assessing, by inde-
pendent means, the quality of the data products derived from the
pen access article under
system outputs” (CEOS-WGCV, 2012). BA products usually cover
multi-year periods and the Committee on Earth Observation Satellites
(CEOS) Land Product Validation Subgroup (LPV) highlights the impor-
tance of assessing the temporal stability of a product's accuracy by
collecting data over globally representative locations and time periods
(http://lpvs.gsfc.nasa.gov). The selection of representative samples is
particularly important when the event to be characterized is rare
and occurs in spatio-temporal clusters, e.g. fires (Chou et al., 1993;
Giglio et al., 2010). The main challenge is to define an optimal
sampling design that leads to precise accuracy estimates and allocates
the sample through several time periods and regions of interest, e.g.
years in a multiyear time period and major biomes. Throughout the
manuscript optimal sampling design refers to the design thatminimizes
the variance of an accuracy estimate, for a specific sample size (Cochran,
1977; Section 5.5). In our application, the factors evaluated that can af-
fect the optimal design are the strata and the allocation of the sample to
these strata.
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Illustration of the “voxel” sampling units proposed by Boschetti et al. (2016) for
partitioning the three-dimensional space by time population. Each sampling unit is
delimited spatially by a Thiessen Scene Area (TSA) partitioning the two dimensions of
space and temporally (the third dimension) by the time between two consecutive
Landsat images. The image at the bottom is displaced further down to illustrate
temporal spectral changes. Images are displayed as false color composites with SWIR,
NIR and red bands in the red, green and blue channels respectively.

Fig. 3. Temporal distribution of reference data availability expressed as monthly
percentage of area·time covered by Landsat image pairs separated by 16 days or fewer.
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BA reference data are commonly obtained following the recommen-
dations of the CEOS LPV (Boschetti et al., 2009), using multi-temporal
pairs of medium spatial resolution images (10–60 m). Methodological
limitations and reference data generation costs led until recently to rel-
atively small sample sizes, the selection of sites being based on expert
knowledge (Chuvieco et al., 2008; Giglio et al., 2009; Padilla et al.,
2014b; Plummer et al., 2007; Roy and Boschetti, 2009; Tansey et al.,
2008). Recently, global accuracy estimates were first produced from a
probability sampling design consisting of a spatially stratified random
sample (Padilla et al., 2014a, 2015). Boschetti et al. (2016) developed
a sampling approach based on partitioning the space by timepopulation
into three-dimensional “voxel” units defined by Thiessen Scene Areas
(TSAs) to partition space and 16-day Landsat image pairs to partition
time. Although the specific example presented by Boschetti et al.
Fig. 2. Spatial distribution of reference data availability for 2003 to 2014 expressed as
percentage of time that Thiessen Scene Areas covered by Landsat image pairs separated
by 16 days or fewer are available from the USGS archive (accessed on September 2015).
(2016) used TSAs and a time period specific to Landsat, the general ap-
proach using the voxel units can be applied to other spatial and tempo-
ral partitions. Boschetti et al. (2016) also proposed a stratification based
on a threshold of active fire counts that split each biome into two strata
representing low and high fire activity. For all geographic strata
(biomes), Boschetti et al. (2016) determined this threshold using the
20th percentile of the cumulative distribution of active fire counts.
Boschetti et al. (2016) acknowledged that additional work was needed
to investigate “the impact of different thresholds to define low and high
fire activity.” Furthermore, the allocationmethods they analysed did not
include two methods recommended by Cochran (1977; Section 6.14)
for ratio estimates. The main accuracy measures for burned area are in
fact ratios, as is for example the case of the commission and omission
error rates.

The objective of the current study is to improve the sampling design
by: (a) allowing the threshold used to define low and high burned area
strata to vary by biome and year, and (b) identifying the bestmethod for
allocating the sample to strata among those methods recommended in
the literature. The precision of the accuracy estimates obtained for the
different stratification and sample allocation methods was compared
using a hypothetical population of validation data. The hypothetical
population allows for direct comparison of the standard errors of accu-
racy estimates for the different design options evaluated. These compar-
isons provide quantitative information to guide decisions regarding
how to construct strata separating low and high burned area and how
to effectively allocate the sample to these strata.

The current research is in the framework of the validation effort of
the Fire Disturbance (Fire_cci) Phase II project (www.esa-fire-cci.org),
part of the European Space Agency's (ESA) Climate Change Initiative.
The main goal of this effort is to generate reference data that cover the
twelve year period 2003–2014. This period was defined by the time pe-
riod for which data were available for both global sensors used in the
project,MEdiumResolution Imaging Spectrometer (MERIS) andModer-
ate Resolution Imaging Spectroradiometer (MODIS).
Table 1
Population error matrix for a single Thiessen Scene Area (TSA) sampling unit. Matrix cells
express agreement (diagonal cells) or disagreement (off-diagonal cells) in terms of area
(m2) between the BA product (map) class and the reference classification of the entire
unit.

Product classification Reference classification Row total

Burned Unburned

Burned E11 E12 E1+
Unburned E21 E22 E2+
Col. Total E+1 E+2

http://www.esa-fire-cci.org


Fig. 4. Scatter plots between yi and xi for Ce, Oe, DC and relB for the hypothetical population of validation data.
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Sections 2 and 3 of the article present the methodology and results
respectively. Section 2.1 presents the definition of the voxel sampling
units, Section 2.2 documents the equations of the accuracy estimates,
and Section 2.3 describes the options for the variable used to determine
stratum boundaries and the sample allocation to strata. Section 2.4 pre-
sents the method for choosing a threshold to separate low and high BA
strata, and Section 2.5 describes the hypothetical population used to
quantify the precision of the different stratification and sample allocation
options defined in Sections 2.3 and 2.4. Section 2.6 completes the meth-
odology by describing a study to evaluate the validity of the confidence
Fig. 5. Examples of selection of an optimal threshold p* that divides a year-biome stratum into t
the cumulative sum of the BAi distribution relative to the total year-biome BA, from 0 to 1 with
intervals for accuracy measures estimated using the proposed sampling
design and sample size feasible for the Fire_cci project. Section 3.1 of
the Results presents the findings regarding the threshold for separating
low and high BA stratum and the sample allocation to strata for the global
sampling design. Section 3.2 shows the results of the precision compari-
son for the different design options for the global accuracy estimates
and Section 3.3 presents the sameprecision comparisons at the individual
biome level by year. The Results conclude with the confidence interval
coverage properties presented in Section 3.4. Sections 4 and 5 present
the discussion and conclusions of the implications of the findings.
wo parts to minimizeVðcBAÞwhile ensuring nh ≥ 2. Candidate thresholds cover the range of
increments of 0.01. Vertical lines indicate the optimal thresholds p* selected.



Fig. 6. As in Fig. 5 but for 2003 Temperate Forests and allocation methods nh∝Nh
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BAh

q
(left) and nh∝NhBAh (right).
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2. Methods

2.1. Sampling units

As in Padilla et al. (2014a, 2015) and Boschetti et al. (2016), the spa-
tial dimension of sampling units was based on LandsatWorld Reference
System II (WRS-II) to simplify data downloading and processing. The
spatial dimension of the sampling units was defined by the Thiessen
Scene Areas (TSAs) constructed by Cohen et al. (2010) and Kennedy
et al. (2010) specifically for usewith LandsatWRS-II frames. The key ad-
vantage of TSAs is that they partition the spatial domain into non-over-
lapping Landsat-like frames, which allow for a convenient computing of
unbiased estimators (Gallego, 2005).

Following the CEOS Validation protocol for BA products (Boschetti et
al., 2009), reference data are generated from two consecutive images
acquired for the same TSA. Therefore, a sampling unit is delimited spa-
tially by a TSA and temporally by the acquisition dates of two consecu-
tive images (an image pair) (Fig. 1). For the analyses presented in this
article, an image pair forms a sampling unit whenever the pair is sepa-
rated by 16 days or less (the time unit can be defined based on the im-
agery used). It is relevant to limit the time length between image pairs
to ensure the spectral signal of a fire that occurred between acquisition
times is still present in the latest image. The duration of a fire spectral
signal can be very short particularly for grasslands with wet soils.

Landsat imagery with b30% of clouds at the USGS archive (http://
landsat.usgs.gov/ on September 2015) and the temporal requirement
between image pairs specified above limits the availability of reference
data. Globally from 2003 to 2014 only 26.24% of the area·time is cov-
ered by the image pairs available at the USGS archive. Fig. 2 shows the
spatial distribution of such availability which appears to be affected by
global cloud coverage patterns and by Landsat archiving strategies.
Fig. 3 shows the temporal distribution of reference data availability
Table 2

Optimal BA thresholds p∗ for allocation nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
.

2003 2004 2005 2006 20

Tropical and Subtropical savanna 0.24 0.26 0.29 0.26 0.2
Tropical Forest 0.39 0.28 0.43 0.36 0.2
Temperate grassland and savanna 0.19 0.16 0.25 0.21 0.2
Boreal Forest 0.25 0.14 0.15 0.16 0.1
Temperate Forest 0.29 0.18 0.25 0.36 0.2
Mediterranean Forest 0.21 0.23 0.22 0.22 0.2
Others 0.15 0.18 0.31 0.13 0.1
with clear periodic peaks in the middle of the year and a large increase
from 2013 onwards, produced from the start of the Landsat 8 campaign.

2.2. Accuracy estimates

Commonly in BA validation, accuracy estimates are based on the
cross tabulation approach (Congalton and Green, 1999; Latifovic and
Olthof, 2004) as summarized by an errormatrixwhich quantifies agree-
ment and disagreement in terms of area (m2) between product and ref-
erence classifications (Table 1). For both the product and reference
classification, a pixel is coded as “burned” if fire is detected between
the dates defining the temporal dimension of the sampling unit, “un-
burned” if fire is not detected, or “no-data” for unobserved pixels (e.g.,
due to cloud coverage).

Accuracy measures are commonly ratios of combinations of error
matrix entries. For example, for the “burned” class the Commission
error ratio is

Ce ¼ E12
E1þ

ð1Þ

and the omission error ratio is

Oe ¼ E21
Eþ1

ð2Þ

where Eij refers to the population values of the error matrix entries
(Table 1). Recent publications (Padilla et al., 2014a,b, 2015) also used
theDice coefficient (DC) (Dice, 1945) andmeasures of bias.DC is partic-
ularly useful when comparing product accuracies as it combines both
error ratios (Ce and Oe) into a single summary measure of accuracy of
the category “burned”. DC has a sensible probabilistic interpretation
07 2008 2009 2010 2011 2012 2013 2014

6 0.28 0.27 0.28 0.29 0.30 0.26 0.24
9 0.35 0.41 0.28 0.36 0.37 0.27 0.39
3 0.23 0.28 0.25 0.27 0.30 0.17 0.22
4 0.19 0.14 0.16 0.16 0.20 0.18 0.18
4 0.29 0.29 0.29 0.28 0.30 0.26 0.24
2 0.18 0.18 0.21 0.24 0.17 0.17 0.19
6 0.38 0.30 0.28 0.12 0.15 0.13 0.14

http://landsat.usgs.gov/
http://landsat.usgs.gov/


Table 3
Optimal BA thresholds p∗ for allocation nh∝NhBAh .

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Tropical and Subtropical savanna 0.14 0.14 0.17 0.15 0.15 0.18 0.14 0.16 0.17 0.17 0.14 0.13
Tropical Forest 0.19 0.18 0.20 0.19 0.18 0.21 0.22 0.17 0.21 0.21 0.18 0.20
Temperate grassland and savanna 0.13 0.15 0.15 0.14 0.16 0.13 0.16 0.19 0.17 0.16 0.13 0.14
Boreal Forest 0.17 0.14 0.15 0.16 0.14 0.16 0.14 0.16 0.16 0.17 0.13 0.12
Temperate Forest 0.22 0.18 0.22 0.31 0.21 0.23 0.23 0.25 0.25 0.28 0.22 0.21
Mediterranean Forest 0.21 0.23 0.22 0.22 0.22 0.18 0.18 0.21 0.24 0.17 0.17 0.19
Others 0.14 0.11 0.17 0.08 0.13 0.22 0.17 0.13 0.06 0.08 0.14 0.09
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(Dice, 1945; Fleiss, 1981; Forbes, 1995; Hand, 1981; Hellden, 1980; Liu
et al., 2007) as it is the conditional probability that one classifier iden-
tifies a pixel as burned, given that the other classifier also identified it
as burned (Fleiss, 1981).

DC ¼ 2E11
2E11 þ E12 þ E21

ð3Þ

Bias is of interest to end-users (Mouillot et al., 2014) as it quantifies
the difference between the total area burned detected by the map ver-
sus the reference classification,

bias ¼ E1þ−Eþ1 ¼ E12−E21 ð4Þ

It is also useful to express bias relative to the reference BA, so relative
bias is defined as

relB ¼ E12−E21
Eþ1

ð5Þ

Global estimates of accuracy are computed taking into account the
stratified sampling design and using a stratified combined ratio estima-
tor (Cochran, 1977; Section 6.11) of the form

R̂ ¼ Ŷ

X̂
¼ ∑H

h¼1NhYh

∑H
h¼1NhXh

ð6Þ

where H is the number of strata, Nh is the number of sampling units in
stratum h, Yh and Xh are the means of yi and xi at stratum h, and yi
and xi are values defined for sample unit i based on the denominator
and numerator of the different accuracy measures: for Ce, yi=E12 and
xi=E1+; for Oe, yi=E21 and xi=E+1; for DC, yi=2E11 and
xi=2E11+E12+E21; and for relB, yi=E12−E21 and xi=E+1. To simplify
notation,we donot include a stratum subscript “h” andwe suppress the
subscript “i” for the Table 1 error matrix values that are associated with
sample unit i.

The variance of the ratio estimator R̂ is

V R̂
� �

¼ 1

X2 ∑
H

h¼1
N2

h 1−
nh

Nh

� �
S2uh=nh ð7Þ

S2uh ¼ 1
Nh−1

∑
Nh

i¼1
ui−Uh
� �2 ð8Þ
Table 4

Table with the sample sizes nh for each year (columns), biome (rows) and BA level (high BA o

2003 2004 2005 2006 2007

Tropical and Subtropical savanna 13 + 30 15 + 33 13 + 33 14 + 30 15 +
Tropical Forest 2 + 13 3 + 12 2 + 14 2 + 11 3 + 1
Temperate grassland and savanna 3 + 9 2 + 7 2 + 9 3 + 9 2 + 9
Boreal Forest 2 + 6 2 + 2 2 + 2 2 + 3 2 + 2
Temperate Forest 2 + 6 2 + 3 2 + 3 2 + 5 2 + 4
Mediterranean Forest 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2
Others 2 + 8 3 + 12 2 + 12 4 + 11 3 + 1
where Uh is the mean of ui for stratum h, ui=yi−Rxi, and X is the pop-
ulation total (over all strata) of xi.

The bias (Eq. (4)) and the BA based on the reference data (denoted
BAref), are expressed as population total estimates of the form

Ŷ ¼ ∑
H

h¼1
Nhyh ð9Þ

where yh is the sample mean of yi in stratum h, and yi is defined
by E12−E21 for estimating bias and yi is defined as E+1 for estimating
BAref.

The variance of the estimated total Ŷ is

V Ŷ
� �

¼ ∑
H

h¼1
N2

h 1−
nh

Nh

� �
S2yh=nh ð10Þ

S2yh ¼ 1
Nh−1

∑
Nh

i¼1
yi−Yh
� �2 ð11Þ

As noted in the previous Section, reference data are not always avail-
able. For the analyses presented in this article, the hypothetical popula-
tion used to compare variance of different stratification and sample
allocation options was defined on the basis of available reference data
to construct the population.

2.3. Options for auxiliary variable used to define strata and optimum
sample allocation

For a probability sampling design that employs stratification, the
sample size nh from each stratum may be chosen to minimize the vari-
ance of estimates. For example, the variance of a population total esti-

mate (Ŷ; e.g. BAref) is minimized if the sample size nh is proportional
to NhSyh (Cochran, 1977; Section 5).

nh∝NhSyh ð12Þ

The variance of a ratio estimator (R̂ ¼ Ŷ=X̂; e.g. all accuracy mea-
sures) depends on the deviations ui = (yi − Rxi) for each stratum. Spe-

cifically, the variance of R̂ is minimized if the sample size nh is
n the left of the “+” sign and low BA on the right) for allocation nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
.

2008 2009 2010 2011 2012 2013 2014

31 13 + 31 12 + 32 11 + 33 11 + 30 13 + 30 17 + 34 16 + 30
1 2 + 10 2 + 14 3 + 12 2 + 10 2 + 10 3 + 10 2 + 12

3 + 10 2 + 10 2 + 9 2 + 10 2 + 9 2 + 7 2 + 9
2 + 3 2 + 2 2 + 3 2 + 3 2 + 3 2 + 5 2 + 4
2 + 6 2 + 5 2 + 4 2 + 4 2 + 4 2 + 4 2 + 4
2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2

2 2 + 12 2 + 11 2 + 13 5 + 15 5 + 14 2 + 8 2 + 11



Table 5
As in Table 4 but for allocation nh∝NhBAh .

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Tropical and Subtropical savanna 59 + 10 58 + 10 57 + 12 56 + 10 56 + 10 56 + 12 59 + 10 57 + 11 50 + 11 52 + 11 60 + 10 58 + 8
Tropical Forest 5 + 2 5 + 2 5 + 2 4 + 2 6 + 2 4 + 2 5 + 2 6 + 2 4 + 2 4 + 2 5 + 2 5 + 2
Temperate grassland and savanna 6 + 2 4 + 2 5 + 2 5 + 2 5 + 2 7 + 2 5 + 2 4 + 2 4 + 2 5 + 2 4 + 2 6 + 2
Boreal Forest 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2
Temperate Forest 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2
Mediterranean Forest 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2
Others 2 + 2 5 + 2 3 + 2 7 + 2 5 + 2 3 + 2 3 + 2 4 + 2 13 + 2 10 + 2 3 + 2 5 + 2
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proportional to the product of the stratum size,Nh, and the standard de-
viation of ui for each stratum, Suh (Cochran, 1977; Section 6),

nh∝NhSuh ð13Þ

It is difficult to specify Syh and Suh at the planning stage of the sam-
pling design because reference data have not yet had been collected
and hence yi and in some cases xi are not available.

For ratio estimates andwhen xi is available for the entire population,
Cochran (1977; Section 6.14) recommends two sample allocation op-

tions depending on whether Suh is expected to be proportional to
ffiffiffiffiffiffi
Xh

q
or to Xh . At the sample design planning stage, mapped BA is the only
practical information available regarding variability so Cochran's
(1977) two suggested sample allocation methods are implemented as
follows using mapped BA as the xi value for each element i:

nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
ð14Þ

nh∝NhBAh ð15Þ

The BA product MCD64 (Giglio et al., 2009) was identified as the
most accurate product in the results of Padilla et al. (2015) and its
burned area extent estimates at sampling units (BAi) were used to im-
plement the allocation methods. Therefore, the efficiency of the alloca-
tion methods will be greater for a particular accuracy estimate as BAi

is closer to the denominator (xi) of that accuracy measure. For example,
the denominator for estimatingDC is the sumof BA in the reference data
and the BA in the product, so the effectiveness of the sample allocation
will depend on how closely mapped BA is correlated with the denomi-
nator of DC. A shortcoming of using a global BA product is that it may
miss small fires (Hantson et al., 2013; Randerson et al., 2012). If small
fires are omitted and they contribute a large area, the allocationmethod
Fig. 7.Distribution of sampled Thiessen Scene Areas (TSAs) for one realization of the sample des

on a reclassification of the 14 Olson biomes (Olson et al., 2001).
would be less effective in terms of reducing standard errors of the esti-
mates. This same shortcoming is described by Hansen et al. (1946) for
surveys of business sales, who highlighted that such errors would not
introduce bias into the sample estimates, but would diminish the vari-
ance reduction achieved by the chosen sample allocation.

2.4. Stratification and sample allocation

The stratification is constructed in three levels to allow control of
the sample size by calendar year in each of the major Olson biomes
(Olson et al., 2001) and by low and high fire activity:

– Thefirst stratification level consisted of assigning each sampling unit
to a calendar year. For consistency and simplicity, this assignment
was based on the earliest acquisition date of the Landsat image
pair. A yearly stratification is convenient as it offers flexibility
when planning the data collection. In particular, this first level of
stratification makes easy to extend the temporal period of study by
adding complete years.

– The second stratification level consisted of assigning each sampling
unit to the major biome for which the TSA had the maximum area
(Fig. 7), as in Padilla et al. (2014a, 2015) and Boschetti et al. (2016).

– The third stratification level was based on thresholds of BA.
Hansen et al. (1946) recommends for ratio estimates to stratify
the population by using thresholds of xi or another related variable.
As mentioned in the previous section, xi = mapped BA
obtained from MCD64 for sample unit i was used for this purpose.
For each allocation method, the optimal stratification was defined
by dividing sampling units into high and low BA by using a threshold
of BA specifically adapted to each year-biome stratum. Given
the available sample size for each year and biome, the threshold

was selected to minimize VðcBAÞ, the variance of the estimate of BA.
Recall that BA from the map product is the primary data available
ign proposed for allocationnh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
. The biome stratification used on this study is based



Fig. 8. Distribution of sampled Thiessen Scene Areas for one realization of the sample design proposed for allocation nh∝NhBAh .
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at the sample design planning stage that can be used to tailor the
strata construction and sample allocation to specific estimation
objectives.

The budget of the Fire_cci project allowed for 100 sampling units per
year. Hence, the optimal sample size by biome for each year can be de-
termined from the allocation methods mentioned above (Eqs. (14) and
(15)) and limiting the total sample size to 100 units per year. At least
two sampling units per stratum are needed to estimate the variance of

the ratio estimator R̂. Because the optimal allocation formulas do not
guarantee this minimum sample size per stratum, an iterative process
wasused (Appendix A) to ensure that all n ≥ 4 for all year by biome com-
binations while preserving as much as possible the sample allocation
determined from each method. The reason for requiring n ≥ 4 was be-
cause each biome by year stratum will ultimately be split into low and
high BA strata so this will allow 2 sample units per stratum after the en-
tire stratification process is complete.
Fig. 9.Relative precisionSgðR̂Þ=SdðR̂Þof selecting a BA threshold specific to each year-biome (met

Oe, for allocation methods nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
and nh∝NhBAh . SgðR̂Þ was evaluated across the full rang
To divide each biome into low and high BA strata, we use a threshold
of BA. If the BA of sampling unit i is below this threshold the unit is
assigned to the low BA stratum, and otherwise it is assigned to the

high BA stratum. This threshold is selected to minimize VðcBAÞ given
the total sample size for each year by biome stratum and the require-
ment nh ≥ 2. The BA threshold used to divide a year-biome stratum
into two BA strata then determines

– Nh,BAh and SBAh of each subsequent stratum hwhere SBAh is the pop-
ulation standard deviation of BA for all units in stratum h (here stra-
tum h refers to the low or high BA strata within a biome)

– nh, determined according to the sample allocationmethod (Eqs. (14)
or (15))

– VðcBAÞ, as it is function ofNh, nh and SBAh (Eq. (10), where Syh= SBAh).

For each allocationmethod and year and biome combination,VðcBAÞ
is estimated for a set of thresholds (denoted p) evenly distributed across
hod d) to selecting a global fixed BA threshold (method g)when estimatingDC, relB, Ce and

e of BA, with p varied from 0 to 1 in increments of 0.01.



Fig. 10. Ratio of the standard errors of the accuracy estimates from simple random

sampling divided by the standard errors for one of the stratified sampling options (nh∝Nhffiffiffiffiffiffi
Xh

q
with the dynamic thresholds, nh∝NhBAh with the dynamic thresholds, nh∝Nh with

global active fires (AF) p = 0.2 thresholds and nh∝NhSAFh with global (AF) p = 0.2).

Table 7
As in Table 6 but for omission error ratio (Oe).

2005 2006 2007 2008 2009 2010 2011

Tropical and Subtropical savanna 0.88 1.12 0.95 1.28 1.13 0.96 0.99
Tropical Forest 1.41 0.81 1.00 1.51 1.15 1.30 1.33
Temperate grassland and savanna 1.82 1.88 1.69 1.78 1.65 1.61 1.31
Boreal Forest 3.36 2.20 1.86 2.05 1.62 3.01 1.72
Temperate Forest 0.84 1.63 2.15 2.02 0.89 1.87 1.78
Mediterranean Forest 3.56 2.14 3.44 3.59 2.69 3.32 2.62
Others 1.77 1.96 1.58 1.63 1.96 1.41 1.57
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the range of the cumulative distribution percentiles from 0 to 1 in
increments of 0.01. For example, p = 0.2 would refer to a BA threshold
that divides a year and biome into a high BA stratum and a low BA
stratum, the former containing the 20% of BA. That is, all elements
with BA below the threshold established by setting p = 0.2 would be
assigned to the low BA stratum. By varying p through the range of values

between 0 and 1, the value of p that produces the smallest V(cBA) can be
determined and this optimal threshold p is then defined as p*. The de-
termination of the stratum threshold based on cumulative BA for the
units within the biome follows the approach used by Boschetti et al.
(2016).

2.5. Comparing precision of the stratification and allocation options

To compare precision of the different stratified design options, we
computed the standard errors for the accuracy estimates using
data from a hypothetical population. The hypothetical population in-
cluded the MERIS version of the Fire_cci project (under development
in the Fire Disturbance project Phase II) as the BA product being
evaluated and the MCD45 (Roy et al., 2008) product as the reference
data to validate the BA product. The time period covered by this popula-
tion is 2005–2011. The difference between these two products repre-
sents a population (i.e., complete coverage census) that approximates
a realistic pattern of classification error of BA products. The advantage
of working with a hypothetical population with complete coverage
is that it allows for evaluating many stratification and sample
Table 6
Ratio of the standard errors (SE) of Commission error ratio (Ce) obtained on each year and biom

nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
, in both cases the stratification based on optimal threshold p*.

2005 2006 2

Tropical and Subtropical savanna 1.17 1.29 1
Tropical Forest 2.00 1.44 1
Temperate grassland and savanna 1.73 1.71 1
Boreal Forest 3.83 2.95 3
Temperate Forest 1.56 1.60 2
Mediterranean Forest 3.56 2.20 3
Others 3.34 3.21 2
allocation options. Further, because we have the population we can
compute standard errors for each of these options and these standard
errors are “exact” in the sense of not being subject to sampling
variability.

This hypothetical population satisfies the conditions under which
the ratio estimators for several of the accuracy measures are best linear
unbiased estimators (Cochran, 1977; Section 6.7): (1) “The relation be-
tween yi and xi is a straight line through the origin” and (2) “The vari-
ance of yi about this line is proportional to xi”. Fig. 4 shows the scatter
plots between yi and xi for four accuracy measures, Ce, Oe, DC and relB,
and how the two specified conditions are clearly met for the first
three measures, but not for relB. Very similar distributions have been
observed for samples of validation data derived from real reference
data (see Appendix B for validation sample data presented by Padilla
et al. (2015)). According to Cochran (1977; p. 172), the relationship be-
tween xi and yi for Ce,Oe, andDC is such that theprecision for an optimal

allocation based on
ffiffiffiffiffiffiffiffi
BAh

q
(Eq. (14)) will be better than for an optimal

allocation based on BAh (Eq. (15)).
For each allocation method, relative precision for each accuracy

estimate is computed comparing the standard error when selecting
a specific per-year-biome BA threshold (denoted as d, for
“dynamic” threshold) versus the alternative of selecting a fixed
global BA threshold (denoted as g, for “global” threshold). This relative
precision is expressed as the ratio of the standard error for g to that

for d (SgðR̂Þ=SdðR̂Þ).
The precision gains of each allocation method (nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
and

nh∝NhBAh) can also be compared to the precision of accuracy estimates
that would have been obtained under simple random sampling. Preci-
sion comparisonswere also done for two other sampling designs evalu-
ated by Boschetti et al. (2016) with strata constructed using a fixed
global threshold p = 0.2 of the cumulative distribution of active fires
counts (MODIS MOD14A1 and MYD14A1 (Giglio et al., 2003)). These
other two stratified options were stratified sampling with proportional
allocation (nh∝Nh) and stratified sampling for which the standard devi-
ation of active fire counts was used in the optimal allocation formula
(nh∝NhSAFh).
e combination by sampling designwithnh∝NhBAh against the SE obtained from designwith

007 2008 2009 2010 2011

.47 1.30 1.51 1.33 1.49

.55 1.90 1.58 1.89 1.59

.83 2.30 1.90 1.76 1.83

.10 2.77 3.52 3.21 2.75

.44 1.87 0.99 1.72 1.68

.32 3.44 2.39 3.20 1.89

.92 2.50 2.81 2.95 2.78



Table 8
As in Table 6 but for burned area in the reference data (BAref).

2005 2006 2007 2008 2009 2010 2011

Tropical and Subtropical savanna 0.96 1.19 1.09 1.35 1.17 1.10 1.10
Tropical Forest 1.78 0.99 1.28 1.45 1.33 1.46 1.45
Temperate grassland and savanna 1.94 2.03 1.84 1.79 1.82 1.80 1.51
Boreal Forest 3.95 2.22 2.72 2.31 2.49 3.19 1.85
Temperate Forest 1.83 2.26 2.26 2.19 1.41 1.99 1.87
Mediterranean Forest 3.61 2.26 3.51 3.73 2.89 3.38 2.71
Others 1.67 2.23 1.26 1.84 2.13 1.79 1.93

Table 10
As in Table 9 but for omission error ratio (Oe).

2005 2006 2007 2008 2009 2010 2011

Tropical and Subtropical savanna 0.99 0.99 0.99 1.01 0.99 0.97 0.97
Tropical Forest 1.01 0.97 0.94 0.96 1.00 1.00 0.97
Temperate grassland and savanna 1.00 1.00 1.00 1.00 1.01 1.00 1.01
Boreal Forest 1.10 1.04 1.37 1.03 2.02 0.97 1.05
Temperate Forest 0.51 1.02 0.98 1.01 0.60 0.99 0.99
Mediterranean Forest 0.90 1.04 0.98 0.95 0.98 0.98 1.01
Others 1.00 1.11 1.03 0.89 0.99 1.06 1.03
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2.6. Illustration of the validity of confidence intervals

As is seen in the previous sections precision of accuracy esti-
mates are expressed with a standard error. Therefore, the validity
of a confidence interval depends on the normality of the expected
sampling distribution of the accuracy estimate. Although the per-
sampling unit accuracy estimates may follow a strongly skewed dis-
tribution (Padilla et al., 2014a), probability sampling theory spec-
ifies that the sampling distribution of an estimator will tend to
approach normality as sample size increases (Cochran, 1977;
Section 2.15).

The objective of this illustration is to demonstrate the validity of
the normal approximation and confidence interval coverage prop-
erties of intervals produced using the stratified sampling design
and sample size available for the Fire_cci project (n = 100 per
year). The confirmation study uses the hypothetical population
mentioned in the previous Section. As in Stehman (1997), sample
of units were selected from a hypothetical population large number
of times, 1000 times in this study. Each sample is selected following
the sampling designs presented in the current article, i.e. using the
stratification and sample allocationmethods presented in the previ-
ous sections.
3. Results

3.1. Stratification and sample allocation

Using the yearly sample size of 100 (as determined by the fore-
seeable budget of the Fire_cci project), the sample size allocation
for each year and biome was established using Eqs. (14) and (15).
Then, each year-biome was divided into two parts with an optimal

BA threshold (p∗) selected to minimize VðcBAÞ. Two examples of the

threshold selection for allocation nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
are provided in

Fig. 5, one for Tropical and Subtropical savanna and the other for
Table 9

Ratio of the standard errors (SE) of Commission error ratio (Ce) obtained on each year and bi

threshold of p= 0.2 against the SE obtained from design with nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
and optimal thresh

2005 2006 2

Tropical and Subtropical savanna 0.90 0.99 0
Tropical Forest 1.01 0.98 0
Temperate grassland and savanna 1.00 1.00 1
Boreal Forest 1.58 1.02 1
Temperate Forest 0.74 1.03 1
Mediterranean Forest 0.95 1.03 0
Others 1.07 1.00 1
Temperate grassland and savannah, both for year 2003. The maxi-

mum VðcBAÞ on a year-biome occurred when it was not divided,

threshold p at 1 and 0, and VðcBAÞ reached the minimum at approx-
imately p = 0.2. Fig. 6 shows two examples for the two allocations

presented (nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
and nh∝NhBAh) on a common year-biome

and illustrates how minimum VðcBAÞ occurred at different p and
hence how the optimal stratification can vary with the allocation
used.

Tables 2 and 3 show the optimal thresholds p* for all year-biome
strata. For the full set of year by biome strata, the 25th and 75th per-

centiles of p* were 0.18 and 0.29 for allocation nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
and 0.14

and 0.21 for allocation nh∝NhBAh . The large differences in the opti-
mal allocation determined from the two methods (Tables 2–5)
translated to different spatial distributions of the sample units

(Figs. 7 and 8), more homogenous in allocation nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
than in

nh∝NhBAh.
3.2. Precision comparison for global accuracy estimates

The relative precision achieved by selecting BA thresholds spe-
cific for each year-biome (named as method d for “dynamic” thresh-
olds) to selecting a fixed global BA threshold (named method g for
“global” threshold) tended to be a minimum at a global threshold

of p = 0.2 for the two allocation methods nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
and nh∝Nh

BAh (Fig. 9). The relative precision was close to 1 for a the range of
values of p between 0.1 and 0.4 indicating a “flat optimum” in
terms of choice of p. The gain in precision from using a dynamic
threshold was remarkably small for allocationnh∝NhBAh for estimat-
ing Ce and relB.

Fig. 10 shows the relative precision of the four sampling designs
analysed to the precision obtained under a simple random
ome combination by sampling design with nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
and stratification based on fixed

old p*.

007 2008 2009 2010 2011

.99 0.96 0.94 0.93 0.99

.97 1.01 0.99 1.02 0.93

.01 1.00 0.91 1.00 1.00

.14 0.97 2.01 0.96 1.01

.02 0.98 0.73 0.98 0.97

.99 0.95 0.98 0.93 1.00

.00 1.00 0.99 0.99 1.32



Table 11
As in Table 9 but for burned area in the reference data (BAref).

2005 2006 2007 2008 2009 2010 2011

Tropical and Subtropical savanna 0.98 0.98 0.98 1.01 0.98 0.97 0.96
Tropical Forest 0.97 0.91 0.87 0.92 0.99 1.00 0.99
Temperate grassland and savanna 1.01 1.00 0.97 1.00 1.01 1.00 1.01
Boreal Forest 0.96 1.00 1.12 0.99 1.79 0.96 1.01
Temperate Forest 0.96 1.01 0.98 1.02 0.96 1.01 1.01
Mediterranean Forest 0.89 1.04 0.98 0.94 0.98 0.98 1.01
Others 0.99 1.05 1.01 0.93 0.99 1.11 1.00

Table 13
As in Table 12 but for omission error ratio (Oe).

2005 2006 2007 2008 2009 2010 2011

Tropical and Subtropical savanna 1.93 1.80 1.88 1.68 1.92 1.89 1.81
Tropical Forest 2.18 2.54 2.39 1.84 2.43 2.12 2.09
Temperate grassland and savanna 2.92 2.48 2.53 2.60 2.88 2.37 2.98
Boreal Forest 2.79 2.18 1.98 2.94 4.96 2.67 2.29
Temperate Forest 1.23 2.69 1.48 2.13 1.37 1.46 1.50
Mediterranean Forest 0.97 1.75 1.12 1.40 1.66 1.23 1.32
Others 2.40 3.05 3.17 2.19 3.32 3.30 3.57
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sampling. Standard errors under simple random sampling were 2.5
to 8 times greater than those of the stratified sampling options (Fig.
10) indicating that the stratified designs offer high potential to re-

duce standard errors. Stratified sampling with nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
and dy-

namic burned area thresholds and stratified sampling with
nh∝NhSAFh and global active fires (AF) p = 0.2 thresholds were
clearly more efficient than the other options. The stratified design

with nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
yielded smaller standard errors for DC and Oe

than the stratified option with nh∝NhSAFh (4% and 10% smaller re-
spectively) but the former option had larger standard errors for Ce
and relB (5% and 4% larger respectively). The least efficient sampling
design was clearly the proportional allocation stratified design with
nh∝Nh and global BA p = 0.2 threshold (relative precision around
2.5 for all accuracy estimates).
3.3. Precision comparisons for year by biome accuracy estimates

To evaluate the different stratified allocation options in greater
depth, we examined the standard errors of the accuracy estimates
for each biome by year strata. The precision comparisons by biome
also provide insight into whether the relative performances of dif-
ferent stratification and allocation options vary by different scenar-
ios of BA. These comparisons are conducted based on standard
errors computed for a sample size of n = 100 for each combination
of year and biome thus avoiding the influence of the nh ≥ 2
requirement (see Section 2.4). We limit the results shown here to
standard errors of accuracy measures Ce and Oe and the standard
error of estimated BA determined from the reference classification.
The standard errors obtained from the stratification and allocation
based on nh∝NhBAh were almost uniformly higher than the

corresponding standard errors obtained based on nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
(Tables 6–8). Hence of the two sample allocation rules (Eqs. (14)
Table 12

Ratio of the standard errors (SE) of Commission error ratio (Ce) obtained on each year and bio

∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
and stratification based on optimal threshold p*.

2005 2006 2

Tropical and Subtropical savanna 1.51 1.59 1
Tropical Forest 1.55 2.02 1
Temperate grassland and savanna 2.33 2.00 2
Boreal Forest 2.20 1.93 1
Temperate Forest 1.29 2.55 1
Mediterranean Forest 1.79 1.55 1
Others 1.12 1.90 1
and (15)) suggested by Cochran (1977), the allocation based onffiffiffiffiffiffiffiffi
BAh

q
is preferred. This finding is also consistent with the results ob-

tained at global scale (Fig. 10) and the advantage of the allocation

using
ffiffiffiffiffiffiffiffi
BAh

q
relative to BAh is extended to estimates of DC and relB

(results not shown).

For the nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
allocation, the standard errors using a fixed

threshold of p = 0.2 were generally similar to the standard errors
obtained by searching for the optimal threshold p* (i.e., a “dynamic”
threshold) separating low and high BA strata. For most year by
biome strata, the ratio of the standard errors for estimating BAref,
Oe, and Ce is close to 1 (Tables 9–11) indicating that the choice of
a fixed global threshold of p= 0.2 will often be sufficient. In the Bo-
real Forest biome, the standard error ratio is sometimes close to 2
indicating that p = 0.2 is less favourable for this biome. The fact
that the standard errors for the fixed threshold of p=0.2 are similar
to the standard errors for a dynamic threshold is not surprising
given that the dynamic threshold chosen is often close to 0.2
(Table 2).

Lastly, a key question is whether the stratified sampling using
mapped BA to determine the strata and sample allocation provides
an advantage relative to simple random sampling (i.e., not using
the BA map in the sampling design). The ratios of the standard er-
rors for simple random sampling divided by the corresponding

standard errors of the stratified design using nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
are almost

all N1 providing strong evidence that the stratified option
enhances precision of the accuracy and BAref estimates
(Tables 12–14). Many of the ratios exceed 1.5 indicating that the
magnitude of the gain in precision is substantial (i.e., the standard
error of simple random sampling is 1.5 times greater than the stan-
dard error of the stratified option). Although there are a few cases
(biomes and years) for which simple random sampling has a small-
er standard error than stratified (all occurred in the Mediterranean
me combination by simple random sampling against the SE obtained from design with nh

007 2008 2009 2010 2011

.41 1.48 1.44 1.36 1.43

.88 1.40 1.82 1.41 1.61

.05 1.59 1.95 1.95 2.22

.86 2.20 3.23 2.22 1.64

.10 2.07 1.86 1.62 1.71

.35 1.39 1.61 1.45 2.08

.76 1.36 1.98 1.88 2.25



Table 14
As in Table 12 but for burned area in the reference data (BAref).

2005 2006 2007 2008 2009 2010 2011

Tropical and Subtropical savanna 2.41 2.30 2.24 2.10 2.47 2.27 2.20
Tropical Forest 1.81 2.44 2.10 1.89 2.39 2.16 2.26
Temperate grassland and savanna 3.36 2.60 2.50 2.79 3.06 2.18 3.28
Boreal Forest 2.17 2.37 2.36 2.98 4.54 2.92 3.13
Temperate Forest 1.83 1.84 1.43 1.68 2.36 1.48 1.37
Mediterranean Forest 0.85 1.34 0.90 0.97 1.46 1.02 1.01
Others 2.22 3.26 3.75 2.39 3.31 3.60 3.16
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biome), there are so few such cases that the stratified design can be
implemented with high likelihood that it will achieve better
precision.
3.4. Illustration of the validity of confidence intervals

Fig. 11 shows the cumulative distributions (black lines) of accuracy
expected values on the 1000 sample realizations of sampling design
Fig. 11. Empirical cumulative distribution (black lines) of expected values for each accuracymea

nh∝Nh

ffiffiffiffiffiffi
Xh

q
and per-year-biome thresholds. The 95% confidence interval of accuracy estimates o

of the intervals. Population accuracies (the target parameter) are represented with the vertica
with allocation method nh∝Nh

ffiffiffiffiffiffi
Xh

q
and per-year-biome thresholds. As

anticipated, distributions of expected values tended to normality, par-
ticularly for DC, Ce and Oe, and the 95% confidence intervals produced
from the accuracy estimates and accompanying standard errors for
each sample (horizontal grey line and black dots on the extremes of in-
tervals) contained the population observed accuracies (vertical red
lines) nearly the 95% of the times, from90% (relB) to 92% (Oe). Very sim-
ilar trends of normality were observed for allocation nh∝NhBAh.

4. Discussion

Several stratification and sample allocation options for defining
strata and allocating the sample to strata were described and evalu-
ated for reducing standard errors of accuracy estimates of burned
area (BA). The premise of stratified sampling is that the map of BA
can be used to tailor the sampling design to reduce standard errors,
and a key element of stratification is deciding a threshold of BA to
separate the sampling units (in this case defined spatially by TSAs
and temporally by available Landsat imagery) into low and high
BA strata. The approach to choosing strata and the sample allocation
is strongly influenced by the information available at the planning
sure on the 1000 sampling sample realizations of sampling designwith allocationmethod

n each sample is representedwith a horizontal grey line and two black dots in the extremes

l red lines.
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stage of the sampling design, which is the map of BA. The best pre-
cision (smallest standard errors) of the accuracy estimates general-
ly occurred at a threshold of p = 0.2 (i.e., the value of BA for the
sampling units that corresponded to 20th percentile of the cumula-
tive distribution of BA at each year-biome). This threshold coincided
remarkably close to the threshold used by Boschetti et al. (2016).
Precision at that fixed global threshold was very similar to that
obtained with the stratification proposed here which allowed dif-
ferent per-year-biome thresholds to be chosen based on the thresh-

old that minimized the variance of the estimated mapped BA, VðcBAÞ
(this approach was defined as the “dynamic” threshold). This sug-
gests that for the particular case of inferring BA accuracy at global
scale and with the current sampling units and biome delineations,
a practical BA stratification would be to use fixed global p = 0.2
thresholds. For certain year-biome combinations, optimal thresh-
olds were far from p=0.2 (see Tables 2 and 3) so a dynamic thresh-
old may be preferable in such cases. A benefit of the proposed per-
year-biome thresholds is that this method can be applied
to specific regions of interest and to other estimates of interest
(e.g. accuracy of other variables).

The different optimal stratification and sample size allocations
recommended by the two methods based on the stratum mean BA

(BAh) highlights the large impacts of allocation methods on the
standard errors produced by the sampling design. However two
sampling designs apparently different can be similarly efficient.
This is the case for one of the two designs proposed by Boschetti
et al. (2016) with allocation nh∝NhSAFh and fixed global threshold
p = 0.2 on and active fire count distribution and the allocation

nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
with the proposed per-year-biome thresholds. Those

similar efficiencies can be explained by a high correlation between
active fire counts and BA at sampling units, leading to a proportion-

ality between SAFh and
ffiffiffiffiffiffiffiffi
BAh

q
, and by the maximum precision found

when p is around 0.2. Conversely two apparently similar sampling

designs can lead to different efficiencies. The allocation nh∝Nhffiffiffiffiffiffiffiffi
BAh

q
can lead to much higher precision than the allocation nh∝Nh

BAh . This is not in agreement with the findings of Hansen et al.
(1946) who recommend the latter allocation specifically
for populations with highly skewed distribution of xi, with
relatively few sampling units with large xi values accounting for a
large proportion of the total X. This is the case of BA sampling
units which is expected to have highly skewed distributions across
all biomes (Boschetti et al., 2016; Chou et al., 1993; Giglio et al.,

2010). Conversely, the recommendation of allocation nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
made by Cochran (1977; Section 6.14) suggests that the
distribution of the ratio estimator residual variance is key to
deciding which allocation method to use. In our case, the variances
of yi tend to be proportional to xi (see Fig. 4). This relationship
would in turn explain how Suh

2 could tend to be proportional to

BAh and suggest using an allocation nh∝Nh

ffiffiffiffiffiffiffiffi
BAh

q
. The precision eval-

uation using the hypothetical population provided evidence to
support the recommendation to use this allocation method.

The common variations of efficiency among sampling designs ob-
served at global scale and at year-biome level (Tables 6–8) may be
caused by common distributions of the ratio estimator residual vari-
ances at the different scales. Therefore, this further emphasizes the gen-
eralization of the proposed stratification and sample allocation at any
scale of interest.

The good confidence interval coverage properties obtained from the
stratified design supports the validity of the confidence intervals pro-
duced from these estimates and standard errors. The frequency that
95% confidence intervals contained the true population accuracy values,
close to 95%, provides assurance that even for the relatively small sam-
ple size of 100per year the confidence intervals approximately achieved
their stated nominal coverage. The coverage properties depend on the
sampling distribution of the estimator and on the sample size
(Cochran, 1977; Section 2.15). Hence, any increase in the sample size
has a double benefit, an increase in the likelihood that confidence inter-
vals have the stated nominal coverage, and an increase of the precision
of estimates (i.e. decrease of standard errors).

As is true of any case study quantitative evaluation of precision
of different sampling options, the results of this study would not
necessarily generalize to all other BA product validation exercises.
It is challenging to construct hypothetical populations that realisti-
cally mimic patterns of classification error of BA products. We con-
structed one such population, and Boschetti et al. (2016) describe
another. For other populations the magnitude of the improvement
in precision of accuracy estimates attributable to stratification
may not match our results. However, there is reason to believe
that some improvement in precision will result in most cases. Sam-
pling theory provides support for this expected improvement as a
well-chosen stratification and sample allocation almost always pro-
vides some reduction in standard errors. More importantly, we ob-
served the reduction in standard errors due to stratification across a
fairly diverse set of biomes and years suggesting that the benefit
does extend to a broader set of conditions.

5. Conclusions

Several conclusions may be drawn from this study comparing stan-
dard errors of accuracy estimates for different stratification and sample
allocation options. First, use of the mean mapped BA per stratum (BAh)
to guide the definition of strata and sample allocation can produce sub-
stantial reductions (one-half to one-eighth) in standard errors relative
to simple random sampling. Second, for the case study hypothetical
population used in our comparative analyses, a sample size allocation

proportional to Nh

ffiffiffiffiffiffiffiffi
BAh

q
was better than an allocation proportional to

NhBAh . Third, a fixed threshold common to all year-biome strata based
on the 20th percentile of the cumulative distribution of mapped BA to
define low and high BA strata was nearly as effective as a dynamic
threshold tailored to each year-biome stratum. Lastly, the benefit of re-
duced standard errors achieved by the stratified design was found for
both global accuracy estimates and for a majority of the biome-year ac-
curacy estimates.
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Appendix A. Iteration process to allocate sample to ensure that n ≥ 4
in each year-biome

nyear,biome are initialized with Eqs. (14) or (15) and the iteration pro-
cess consist on

– At year-biome strata with nyear,biome b 4

○ nyear,biome = 4 (it is forced to be 4)
○ BAyear,biome = 0 (it is forced to be zero)

– Recalculation of new nyear=previous nyear – n added in the previous
step

– Recalculation of nyear,biome not involved in first step with Eqs. (14) or
(15) but with the updates of the previous steps

– If any nyear,biome b 4, repeat the iteration cycle keeping the updates
– The iteration process ends when all nyear,biome ≥ 4.



Appendix B. Relationship between yi and xi on samples of validation data

Fig. B1. Scatter plots between yi and xi for Ce, Oe, DC and relB on the MERIS_cci validation data presented at Padilla et al. (2015).
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Fig. B2. As in Fig. B1 but MCD45.



Fig. B3. As in Fig. B1 but MCD64.

Fig. B4. As in Fig. B1 but VGT_cci.
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Fig. B5. As in Fig. B1 but MERGED_cci.

Fig. B6. As in Fig. B1 but Geoland2.

254 M. Padilla et al. / Remote Sensing of Environment 203 (2017) 240–255



255M. Padilla et al. / Remote Sensing of Environment 203 (2017) 240–255
References

Bond, W.J., Keeley, J.E., 2005. Fire as a global ‘herbivore’: the ecology and evolution of
flammable ecosystems. Trends Ecol. Evol. 20, 387–394.

Boschetti, L., Roy, D., Justice, C., 2009. In: CalVal, C. (Ed.), International Global Burned Area
Satellite Product Validation Protocol. Part I – Production and Standardization of Val-
idation Reference Data. Committee on Earth Observation Satellites, USA, pp. 1–11.

Boschetti, L., Stehman, S.V., Roy, D.P., 2016. A stratified random sampling design in space
and time for regional to global scale burned area product validation. Remote Sens. En-
viron. 186, 465–478.

Bowman, D.M.J.S., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A.,
D'Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J.E.,
Krawchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C.I., Scott,
A.C., Swetnam, T.W., Van der Werf, G.R., Pyne, S.J., 2009. Fire in the Earth system. Sci-
ence 324, 481–484.

CEOS-WGCV, 2012. Working Group on Calibration and Validation - Land Product Valida-
tion Subgroup. (http://lpvs.gsfc.nasa.gov/).

Chou, Y.H., Minnich, R.A., Chase, R.A., 1993. Mapping probability of fire occurrence in San
Jacinto Mountains, California, USA. Environ. Manag. 17, 129–140.

Chuvieco, E., Opazo, S., Sione, W., Del Valle, H., Anaya, J., Di Bella, C., Cruz, I., Manzo, L.,
López, G., Mari, N., González-Alonso, F., Morelli, F., Setzer, A., Csiszar, I., Kanpandegi,
J.A., Bastarrika, A., Libonati, R., 2008. Global burned land estimation in Latin America
using MODIS composite data. Ecol. Appl. 18, 64–79.

Cochran, W.G., 1977. Sampling Techniques. John Wiley & Sons, New York.
Cohen, W.B., Yang, Z., Kennedy, R.E., 2010. Detecting trends in forest disturbance and re-

covery using yearly Landsat time series: 2. TimeSync - tools for calibration and vali-
dation. Remote Sens. Environ. 114, 2911–2924.

Congalton, R.G., Green, K., 1999. Assessing the Accuracy of Remotely Sensed Data: Princi-
ples and Applications. Lewis Publishers, Boca Raton.

Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology
26, 297–302.

Fleiss, J.L., 1981. Statistical Methods for Rates and Proportions. JohnWiley & Sons, Canada.
Forbes, A.D., 1995. Classification-algorithm evaluation: five performance measures based

on confusion matrices. J. Clin. Monit. 11, 189–206.
Gallego, F.J., 2005. Stratified sampling of satellite images with a systematic grid of points.

Photogramm. Eng. Remote. Sens. 59, 369–376.
GCOS, 2004. Implementation Plan for the Global Observing System for Climate in Support

of the UNFCCC. World Meteorological Organization.
Giglio, L., Kendall, J.D., Mack, R., 2003. A multi-year active fire dataset for the tropics de-

rived from the TRMM VIRS. Int. J. Remote Sens. 24, 4505–4525.
Giglio, L., Loboda, T., Roy, D.P., Quayle, B., Justice, C.O., 2009. An active-fire based burned

area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 113, 408–420.
Giglio, L., Randerson, J.T., van der Werf, G.R., Kasibhatla, P., Collatz, G.J., Morton, D.C.,

Defries, R., 2010. Assessing variability and long-term trends in burned area by merg-
ing multiple satellite fire products. Biogeosci. Discuss. 7, 1171.

Hand, D.J., 1981. Discrimination and Classification. John Wiley and Sons, New York.
Hansen, H.M., Hurwitz, W.N., Gurney, M., 1946. Problems andmethods of the sample sur-

vey of business. J. Am. Stat. Assoc. 41, 173–189.
Hantson, S., Padilla, M., Corti, D., Chuvieco, E., 2013. Strengths and weaknesses of MODIS

hotspots to characterize global fire occurrence. Remote Sens. Environ. 131, 152–159.
Hellden, U., 1980. A Test of Landsat-2 Imagery and Digital Data for Thematic Mapping, Il-

lustrated by an Environmental Study in Northern Kenya. Lund University Natural Ge-
ography Institute, Sweden.
Kennedy, R.E., Yang, Z., Cohen, W.B., 2010. Detecting trends in forest disturbance and re-
covery using yearly Landsat time series: 1. LandTrendr - temporal segmentation algo-
rithms. Remote Sens. Environ. 114, 2897–2910.

Latifovic, R., Olthof, I., 2004. Accuracy assessment using sub-pixel fractional error matrices
of global land cover products derived from satellite data. Remote Sens. Environ. 90,
153–165.

Liu, C., Frazier, P., Kumar, L., 2007. Comparative assessment of the measures of thematic
classification accuracy. Remote Sens. Environ. 107, 606–616.

Mouillot, F., Schultz, M.G., Yue, C., Cadule, P., Tansey, K., Ciais, P., Chuvieco, E., 2014. Ten
years of global burned area products from spaceborne remote sensing - a review:
analysis of user needs and recommendations for future developments. Int. J. Appl.
Earth Obs. Geoinf. 26, 64–79.

Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N.,
Underwood, E.C., D'Amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J.,
Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P.,
Kassem, K.R., 2001. Terrestrial ecoregions of the world: a new map of life on earth.
Bioscience 51, 933–938.

Padilla, M., Stehman, S.V., Chuvieco, E., 2014a. Validation of the 2008 MODIS-MCD45
global burned area product using stratified random sampling. Remote Sens. Environ.
144, 187–196.

Padilla, M., Stehman, S.V., Litago, J., Chuvieco, E., 2014b. Assessing the temporal stability of
the accuracy of a time series of burned area products. Remote Sens. 6, 2050–2068.

Padilla, M., Stehman, S.V., Ramo, R., Corti, D., Hantson, S., Oliva, P., Alonso, I., Bradley, A.,
Tansey, K., Mota, B., Pereira, J.M., Chuvieco, E., 2015. Comparing the accuracies of re-
mote sensing global burned area products using stratified random sampling and es-
timation. Remote Sens. Environ. 160, 114–121.

Plummer, S., Arino, O., Ranera, F., Tansey, K., Chen, J., Dedieu, G., Eva, H., Piccolini, I., Leigh,
R., Borstlap, G., Beusen, B., Fierens, F., Heyns, W., Benedetti, R., Lacaze, R., Garrigues, S.,
Quaife, T., De Kauwe, M., Quegan, S., Raupach, M., Briggs, P., Poulter, B., Bondeau, A.,
Rayner, P., Schultz, M., McCallum, I., 2007. An update on the GlobCarbon initiative:
multi-sensor estimation of global biophysical products for global terrestrial carbon
studies. Envisat Symposium 2007. Montreux, Switzerland.

Randerson, J.T., Chen, Y., van der Werf, G.R., Rogers, B.M., Morton, D.C., 2012. Global
burned area and biomass burning emissions from small fires. J. Geophys. Res. 117.

Roy, D.P., Boschetti, L., 2009. Southern Africa validation of the MODIS, L3JRC, and
GlobCarbon burned-area products. IEEE Trans. Geosci. Remote Sens. 47, 1032–1044.

Roy, D.P., Boschetti, L., Justice, C.O., Ju, J., 2008. The collection 5 MODIS burned area prod-
uct - global evaluation by comparison with the MODIS active fire product. Remote
Sens. Environ. 112, 3690–3707.

Stehman, S.V., 1997. Estimating standard errors of accuracy assessment statistics under
cluster sampling. Remote Sens. Environ. 60, 258–269.

Tansey, K., Grégoire, J.-M., Defourny, P., Leigh, R., Pekel, J.-F., Bogaert, E., Bartholome, E.,
2008. A new, global, multi-annual (2000–2007) burnt area product at 1 km resolu-
tion. Geophys. Res. Lett. 35, L01401. http://dx.doi.org/10.1029/2007GL03156.

van der Werf, G.R., Randerson, J.T., Collatz, G.J., Giglio, L., Kasibhatla, P.S., Arellano, A.F.,
Olsen, S.C., Kasischke, E.S., 2004. Continental scale-partitioning of fire emissions dur-
ing the 1997 to 2001 El Niño/La Niña period. Science 303, 73–76.

van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., Morton,
D.C., DeFries, R.S., Jin, Y., van Leeuwen, T.T., 2010. Global fire emissions and the con-
tribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009).
Atmos. Chem. Phys. 10, 11707–11735.

http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0005
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0005
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0010
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0010
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0010
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0015
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0015
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0015
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0020
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0020
http://lpvs.gsfc.nasa.gov/
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0030
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0030
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0035
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0035
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0040
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0045
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0045
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0045
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0050
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0050
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0055
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0055
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0060
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0065
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0065
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0070
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0070
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0075
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0075
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0080
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0080
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0085
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0085
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0090
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0090
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0095
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0100
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0100
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0105
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0105
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0110
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0110
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0110
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0115
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0115
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0115
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0120
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0120
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0120
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0125
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0125
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0130
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0130
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0130
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0130
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0135
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0135
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0140
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0140
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0140
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0145
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0145
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0150
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0150
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0150
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0155
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0155
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0155
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0160
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0160
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0165
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0165
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0170
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0170
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0170
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0175
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0175
http://dx.doi.org/10.1029/2007GL03156
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0185
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0185
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0190
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0190
http://refhub.elsevier.com/S0034-4257(17)30300-0/rf0190

	Stratification and sample allocation for reference burned area data
	1. Introduction
	2. Methods
	2.1. Sampling units
	2.2. Accuracy estimates
	2.3. Options for auxiliary variable used to define strata and optimum sample allocation
	2.4. Stratification and sample allocation
	2.5. Comparing precision of the stratification and allocation options
	2.6. Illustration of the validity of confidence intervals

	3. Results
	3.1. Stratification and sample allocation
	3.2. Precision comparison for global accuracy estimates
	3.3. Precision comparisons for year by biome accuracy estimates
	3.4. Illustration of the validity of confidence intervals

	4. Discussion
	5. Conclusions
	Acknowledgements
	Appendix A. Iteration process to allocate sample to ensure that n≥4 in each year-biome
	Appendix B. Relationship between yi and xi on samples of validation data
	References


