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Abstract

European sovereign debt crisis has become a very popular topic since late
2009. In this paper, sovereign debt crisis is investigated by calculating
the probabilities of the potential future crisis of 11 countries in the Euro-
pean Union. We use sovereign spreads of the European countries against
Germany as targets and apply the GARCH based vine copula simulation
technique. The methodology solves the difficulties of calculating the prob-
abilities of rarely happening events and takes sovereign debt movement de-
pendence, especially tail dependence, into consideration. Results indicate
that Italy and Spain are the most likely next victims of the sovereign debt
crisis, followed by Ireland, France and Belgium. The UK, Sweden and
Denmark, which are outside the euro area, are the most financially stable
countries in the sample.

1. Introduction

The ongoing European sovereign debt crisis originated in Greece, but
the impact has spread all over the European Union especially in the euro
area. On 8th Dec, 2009, rating agency Fitch cut Greece’s long-term debt
from A- to BBB+. Because of the lack of confidence in investing in Greek
government bonds, the yield of 10-year government bonds jumped up signif-
icantly. In the mean time, the bond yield of peripheral European countries
Spain and Portugal also increased along with Greece. In Ireland and Italy,
however, the yields decreased. This phenomenon shows that yield differen-
tials across European bond markets have not been wiped out completely,
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although accelerated financial integration among euro bond markets has
been widely expected, since the macroeconomic and fiscal indicators have
shown significant improvement for the higher risk euro markets, creating a
potential for those members to converge with lower risk members in terms of
bond returns. Finding the relationship between the yields of these countries’
sovereign bonds might be a useful way to understand how they will influ-
ence each other, especially in extreme events. This information could then
be used to assess the risk level of a sovereign bond. In order to achieve this,
a GARCH based vine copula simulation method to analyse the sovereign
debts in the European Union is proposed in this paper.

As a popular multivariate modeling tool, copula is widely used in many
fields where the multivariate dependence matters, such as actuarial science
(Frees et al., 1996), biomedical studies (Wang and Wells, 2000), engineering
(Genest and Favre, 2007) and finance (Embrechts et al., 2003). In finance,
the misuse of the copula method in the pricing of collateralized debt obli-
gations (CDO) is considered by journalists to be one of the reasons that
led to the global financial crisis of 2008 - 2009 (Salmon, 2009; Jones, 2009).
The copula approach provides a method of isolating the description of the
dependence structure and understanding the dependence at a deeper level.
It expresses dependence on a quantile scale, which is useful for describing
the dependence of extreme outcomes and is natural in a risk-management
context. Due to the advantages of the copula method, it is an ideal tool
for analysing the relationship of sovereign debts between countries in the
European Union.

The main difficulty about sovereign debt crisis analysis is that the crisis
rarely happens. It is extremely hard for statisticians to analyse an event
which has never happened before. In order to solve this issue, this paper uses
simulation methods to create unknown situations. This paper replicates
10000 iterations of a 365 future day simulation of sovereign spreads against
Germany of 11 countries in the European Union. In the mean time, the
relationships between the countries are considered. Then, the percentage
chance of the crisis events is calculated, which is the probability of future
crisis. In terms of defining crisis events, Sy (2004)’s definition of sovereign
debt crisis is adopted, which is that sovereign spread against the US is
more than 1000 basis points. In the same manner, a country experiencing
a sovereign debt crisis is defined as being when its sovereign spread against
Germany is greater than 1000 basis points in this research.

The contribution of this research is fourfold: firstly, this is the first analy-
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sis of extreme value and tail dependence of sovereign debt spread movement
in the European Union; secondly, this study conducts the comparison be-
tween 11 countries in the European Union at the same time; thirdly, this
paper uses vine copulas to deal with large numbers of dimensions and sat-
isfies the wide range of dependence, flexible range of upper and lower tail
dependence, computationally feasible density for estimation, and closure
property under marginalization simultaneously; fourthly, which is also the
key feature of this paper, the research identifies the risk level of sovereign
debt in different countries in the European Union.

Daily 10-year government bond yields from 18/06/1997 to 12/03/2012 in
Belgium, Denmark, France, Germany, Greece, Ireland, Italy, Netherlands,
Portugal, Spain, Sweden and the UK are used in this research.

The results show that the estimated crisis probabilities of Greece and
Portugal in the next 365 days are 100% and 99.77%, which is consistent
with the situation that they are already in crisis. Spain and Italy show great
potential to be the next victims in one year’s time. France and Belgium
show some instability in the results and the probability of crisis is fairly
high: 63.13% and 60.14% respectively. Netherlands is next with an almost
1 in 4 chance of crisis and it is the most stable country in the euro area.
In the mean time, countries outside the euro area in the sample which are
the UK, Sweden and Denmark show the greatest stability in their sovereign
bonds.

The remainder of the paper is as follows. Section 2 is a literature re-
view in sovereign debt analysis and copula methods. Section 3 is the data
description. Section 4 discusses the bivariate relationships of these pairs of
countries. Section 5 explains the vine copula approach. Section 6 shows the
results of simulation and calculation of the risk levels of the countries. And
Section 7 concludes.

2. Literature review

The literature on sovereign debt analysis generally uses sovereign bond
spread between a target country and a benchmark country to assess the
default risk level of the target country. Structural approaches developed
from the Merton model 1974 and reduced form models such as the Jarrow
and Turnbull (1995) approach are the two main streams.

The structural approaches explain the sovereign spread endogenously
using both enterprise value volatility and firm default definition. The pit-
falls of these approaches are not only their difficulty and lack of accuracy to
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define appropriate country-specific proxy variables for the level of indebted-
ness, but also they disregard the fact that default incentives of a country are
more complicated than those of enterprises. The reduced form approaches
use different macro variables as the determinants of the sovereign default
risk. Literature such as Reinhart et al. (2003), Eichengreen et al. (2003)
and Goldstein and Turner (2004), analyse the sovereign debt risk of emerg-
ing market economies. Their focus is on the sustainability of the sovereign
debt and the currency mismatches. They measure default risk by using
country credit ratings. The disadvantage of these approaches is that these
credit ratings are inefficient and cannot be adjusted in a timely manner to
adapt to the market data when a big crisis is ongoing. Most recently, Dötz
and Fischer (2010) use a GARCH-in-mean based reduced form model to
analyse the factors triggering the sovereign spread movement in the Euro-
pean Union and the result shows that the expectation of loss is the main
reason sovereign spreads widened during the recent global financial crisis.
Nonetheless, both structural and reduced form approaches face a problem:
they ignore the yields movement dependence with other countries, which is
especially important inside the European Union.

Both multivariate extreme value theory (EVT) and copula method can
solve these problems in order to capture the probabilities of rare events.
Multivariate EVT is developed by de Haan and Resnick (1977) for limiting
distribution of the componentwise maximum of independent and identically
distributed (i.i.d.) random vectors. The technique has since been compre-
hensively developed. Although in the literature multivariate EVT are avail-
able in a d-dimensional context, the computational complexity increases
significantly with the increase of d (Fougères, 2003). For instance, applica-
tions which are done by de Haan and de Ronde (1998), Bruun and Tawn
(1998), de Haan and Ferreira (2006) as with most work done in the multi-
variate EVT context, are limited to 2 and 3 dimensions. With reference to
copula method, there is a large body of literature using copulas in a financial
context (Bouyé et al., 2000; Embrechts et al., 2003; Cherubini et al., 2004).
Most of them are used to compute Value at Risk (VaR) and expected short-
fall (ES) of the stock or bond portfolio by applying single copula families
such as elliptical copulas and Archimedean copulas. There are many limi-
tations on those copula families applied in the above literature. Elliptical
copulas are widely used, but they cannot model the financial tail depen-
dence very well (Patton, 2008). Archimedean copulas are not satisfactory
for modeling with dimensions higher than two (Joe, 1997). Multivariate
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Archimedean copulas only allow exchangeable structure with a narrower
range of negative dependence in a higher dimension (McNeil and Nesle-
hova, 2009). Partially symmetric copulas extend Archimedean to a class
with a non-exchangeable structure, but the dependence they provide are
not particularly flexible (Joe, 1993). Mix-id copulas in Joe and Hu (1996)
provide flexible positive dependence by construction, but only upper tail
dependence is flexible not lower tail. Demarta and McNeil (2005) provides
multivariate skewed-t copulas, which model well, but are computationally
more involved. Similarly to multivariate EVT, these copula methods experi-
ence limitation about dimension. Vine copulas were proposed by Joe (1996)
and explained in detail by Bedford and Cooke (2002). At that time, vine
copulas models were a graphical model using bivariate copulas to construct
multivariate copulas. Aas et al. (2009) run statistical inference on two types
of vines: canonical vine (C-vine) and drawable vine (D-vine). These mod-
els have been improved by Nikoloulopoulos et al. (2012) which can satisfy
most of the features that should be included in a copula model: firstly, a
wide range of dependence including both positive and negative dependence;
secondly, a flexible range of upper and lower tail dependence; thirdly, and
most importantly, computationally feasible density for estimation, even for
high dimension estimation. According to the aim of this analysis, which
is focusing on the interactions of the 11 countries and assessing the crisis
probabilities of countries simultaneously, vine-copula method is preferred to
other models above.

In this paper, a GARCH based Vine copula method is used to analyse
the tail dependence and calculate probabilities of sovereign debt crisis of
these countries in certain periods of time in the European Union.

3. Data

Daily 10-year government bond yields from 18/06/1997 to 12/03/2012 in
Belgium, Denmark, France, Germany, Greece, Ireland, Italy, Netherlands,
Portugal, Spain, Sweden and the UK are used in this research. All data are
collected from Thomson Reuters ECOWIN. The target variable, sovereign
spread against Germany, is calculated as

∆(ij − i∗),

where j = 1, . . . , d, ij is 10-year government bond yield of a target country,
and i∗ is 10-year government bond yield of Germany.

5



4. Bivariate copula analysis

4.1. GARCH filter

Vine copula modeling proceeds in three stages. In the first stage, the
model for the individual variables (i.i.d) is selected, which is the marginal
distribution. For financial time series data, a GARCH filter with innova-
tion being student-t distribution is applied for the purpose of making the
data independent and identically distributed (Aas and Berg, 2009). Us-
ing Box-Jenkins analysis method (Box and Jenkins, 1970), all ∆(ij − i∗)
are determined to be MA(1) process. In order to find the best model
to fit the series, MA(1)-GARCH(1,1), MA(1)-EGARCH(1,0)1 and MA(1)-
TGARCH(1,1) are proposed in this stage. Q-statistic (Ljung and Box,
1978) and ARCH LM test (Engle, 1982) are conducted at the same time for
testing autocorrelation of residuals and squared residuals respectively.

The MA(1)-GARCH(1,1) model can be expressed as follows:

∆(i− i∗)t,j = µj + εt,j + θεt−1,j, (1)

εt,j = zt,jσt,j, (2)

σ2
t,j = α0,j + α1,jε

2
t−1,j + β1,jσ

2
t−1,j, (3)

where j = 1, . . . , d, t = 1, . . . , T , ∆(i − i∗) is sovereign spread against
Germany (i∗) of a target country (i), zt ∼ T (0, 1, ν), The conditions of
coefficients that ensure positive volatility and existence of second moment
are α1 > 0, β1 > 0 and α1 + β1 < 1.

The MA(1)-EGARCH(1,0) model may generally be specified as follows:

∆(i− i∗)t,j = µ+ εt,j + θεt−1,j, (4)

εt,j = zt,jσt,j, (5)

lnσ2
t,j = α0,j + γ1,j(|

εt−1,j

σt−1,j

| − E| εt−1,j

σt−1,j

|) + β1,jlnσ
2
t−1,j, (6)

where j = 1, . . . , d, t = 1, . . . , T , ∆(i − i∗) is sovereign spread against
Germany (i∗) of a target country (i), zt ∼ T (0, 1, ν).

The MA(1)-TGARCH(1,1) model is represented by the expression:

∆(i− i∗)t,j = µ+ εt,j + θεt−1,j, (7)

εt,j = zt,jσt,j, (8)

σt,j = α0,j + α1,j|zt−1,j|+ β1,jσt−1,j + δ1,jzt−1,j, (9)

1MA(1)-EGARCH(1,1) was also considered, and all the coefficients α1 are insignifi-
cant.
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where j = 1, . . . , d, t = 1, . . . , T , ∆(i − i∗) is sovereign spread against
Germany (i∗) of a target country (i), zt ∼ T (0, 1, ν). The conditions of
coefficients which guarantee positive conditional volatility are α0 > 0, α1 >

0, β1 > 0, |δ1| < α1 and α1
2+β1

2+δ1
2+2α1β1ν1 < 1, where ν1 =

√
ν−2
π

Γ( ν−1
2

)

Γ( ν
2

)

for zt is student-t distributed (Rodriguez and Ruiz, 2012).
Table 1,2 and 3 present the results of MA(1)-GARCH(1,1), MA(1)-

EGARCH(1,0), MA(1)-TGARCH(1,1), respectively. In Table 1, all the
coefficients satisfy the condition α1 > 0, β1 > 0 and α1 + β1 < 1, which
ensure the positive conditional volatility and confirm the existence of sec-
ond moment of a standard GARCH model. In Table 3, all the coeffi-
cients meet the requirements α0 > 0, α1 > 0, β1 > 0,|δ1| < α1 and
α1

2+β1
2+δ1

2+2α1β1ν1 < 1, which guarantees positive conditional volatility
as well as the existence of the second moment of a TGARCH model. Accord-
ing to Akaike information criterion (Akaike, 1974), MA(1)-TGARCH(1,1)
model fits the data the best, and then MA(1)-EGARCH(1,0), and last place
is MA(1)-GARCH(1,1). However, in MA(1)-TGARCH(1,1) model, coeffi-
cients δ of DEN, FRA, and POR are insignificant in 95% confidence interval,
which means there is no threshold effect in these models. In the mean time,
ARCH LM tests of MA(1)-TGARCH(1,1) in FRA, POR and UK indicate
autocorrelation of squared standardized residuals. The above results sug-
gest that MA(1)-TGARCH(1,1) fit for BEL, GRE, IRE, ITA, NET, SPA,
SWE the best. The next best model MA(1)-EGARCH(1,0) is considered
for DEN, FRA, POR and UK. ARCH LM tests of MA(1)-EGARCH(1,0)
imply that there are autocorrelations in squared standardized residuals for
FRA and UK. With the insignificant coefficients of threshold parameter in
MA(1)-TGARCH(1,1), this suggests the series of FRA and UK could be
symmetric. Q-Statistics are mostly insignificant in 95% significance level,
which represents no autocorrelation in the residuals.

In summary, the best model fit for BEL, GRE, IRE, ITA, NET, SPA
and SWE is MA(1)-TGARCH(1,1); the best model fit for DEN and POR is
MA(1)-EGARCH(1,0); and the best model fit for FRA and UK is MA(1)-
GARCH(1,1).
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Table 1: Results of MA(1)-GARCH(1,1)

BEL DEN FRA GRE IRE ITA NET POR SPA SWE UK
µ -0.0002 -0.00031 2.07E-05 -0.00031 -0.00024 -0.00027 -0.00014 -0.00016 -0.0003 -0.00046 2.32E-05
θ -0.35547∗ -0.46821∗ -0.47978∗ -0.27817∗ -0.33931∗ -0.28703∗ -0.49628∗ -0.35214∗ -0.31153∗ -0.23441∗ -0.19524∗

α0 3.49E-06∗ 3.12E-05∗ 2.82E-06∗ 3.31E-05∗ 8.15E-06∗ 1.91E-06∗ 2.46E-06 2.15E-05∗ 2.83E-06∗ 5.02E-05∗ 2.13E-05∗

α1 0.142989∗ 0.169135∗ 0.113557∗ 0.192742∗ 0.154521∗ 0.098451∗ 0.135867∗ 0.206958∗ 0.117413∗ 0.125711∗ 0.055155∗

β1 0.856011∗ 0.806349∗ 0.885443∗ 0.806258∗ 0.844479∗ 0.900549∗ 0.863133∗ 0.792042∗ 0.881587∗ 0.835442∗ 0.930337∗

ν 4.74224∗ 5.109619∗ 4.925748∗ 4.378324∗ 4.900171∗ 5.2668∗ 4.430659∗ 4.015165∗ 4.774563∗ 5.781193∗ 5.646772∗

α1 + β1 0.999 0.975484 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.961153 0.985493
AIC -4.87767 -4.57883 -4.99516 -2.75439 -4.16988 -4.34567 -5.3233 -3.96323 -4.56947 -4.1455 -3.9174
Q-stat for standardized residuals
lag1 2.653 0.406 0.307 2.998 6.952 0.008 0.005 1.299 1.367 1.368 0.645
lag3 2.999 0.828 0.772 4.339 7.494 0.586 0.793 2.442 3.087 3.603 2.808
lag7 10.323 7.547 6.528 6.456 10.531 4.343 3.125 4.442 5.409 9.304 6.06
ARCH LM test
lag2 0.5451 0.059 4.324 0.003 1.692 0.826 0.047 1.497 1.244 5.369 3.268
lag5 1.3756 0.223 9.373 0.241 3.104 2.16 0.348 4.204 4.48 6.654 4.043
lag10 3.862 0.562 11.387 0.582 4.894 3.05 1.111 9.164 6.899 7.933 7.527

Note:* is significant in the 95% confidence interval.
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Table 2: Results of MA(1)-EGARCH(1,0)

BEL DEN FRA GRE IRE ITA NET POR SPA SWE UK
µ -0.00019 -0.00029 1.92E-05 0.000187 -0.00014 -0.00017 -0.00018 -0.00014 -0.00026 -0.00039 -0.00011
θ -0.34243∗ -0.45268∗ -0.48048∗ -0.24924∗ -0.33173∗ -0.27014∗ -0.48491∗ -0.33622∗ -0.30217∗ -0.23033∗ -0.18705∗

α0 -0.05887∗ -0.15162∗ -0.06527∗ -0.06603∗ -0.03301∗ -0.01592∗ -0.03989 -0.05047∗ -0.02427∗ -0.24019∗ -0.05975∗

β1 0.992167∗ 0.979542∗ 0.991508∗ 0.987961∗ 0.995293∗ 0.997969∗ 0.995033∗ 0.992279∗ 0.99662∗ 0.965449∗ 0.991166∗

γ1 0.276111∗ 0.173309∗ 0.257267∗ 0.265489∗ 0.198386∗ 0.162121∗ 0.189471∗ 0.273383∗ 0.208379∗ 0.200036∗ 0.092029∗

ν 3.996966∗ 5.207032∗ 4.26362∗ 3.466955∗ 4.458685∗ 4.523871∗ 3.726167∗ 3.519717∗ 4.033725∗ 5.839347∗ 5.807454∗

AIC -4.88445 -4.58675 -5.00522 -2.78533 -4.16871 -4.36446 -5.33835 -3.97388 -4.58738 -4.14811 -3.92529
Q-stat for standardized residuals
lag1 2.29 1.158 0.12 2.065 2.995 0.222 0.029 0.001 2.058 2.011 0.001
lag3 2.676 1.911 0.409 3.76 3.824 1.289 0.307 0.098 6.505 4.747∗ 1.731
lag7 10.442 8.312 6.89 7.761 8.618 5.067 2.124 2.291 7.725 10.026 5.45
ARCH LM test
lag2 0.581 0.592 7.594∗ 0.173 0.611 2.05 0.0097 5.552 1.698 5.609 42.111∗

lag5 0.914 0.72 12.381∗ 0.327 0.801 2.788 0.202 6.975 3.048 6.075 42.579∗

lag10 2.151 1.147 18.847∗ 0.584 1.195 3.239 0.49 12.208 4.343 6.561 45.534∗

Note:* is significant in the 95% confidence interval.
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Table 3: Results of MA(1)-TGARCH(1,1)

BEL DEN FRA GRE IRE ITA NET POR SPA SWE UK
µ -0.00013 -0.00034 1.68E-05 4.19E-05 -0.0001 -0.00015 -0.00014 -0.00016 -0.00024 -0.00044 -0.00012
θ -0.34019∗ -0.44969∗ -0.48155∗ -0.24573∗ -0.33402∗ -0.26643∗ -0.48293∗ -0.33827∗ -0.30044∗ -0.22685∗ -0.18653∗

α0 0.000142∗ 0.000588∗ 0.000174∗ 0.000535∗ 0.000158∗ 6.12E-05∗ 0.000101 0.000345∗ 0.00011∗ 0.000913∗ 0.000357
α1 0.156665∗ 0.113818∗ 0.14433∗ 0.19591∗ 0.125661∗ 0.108066∗ 0.144631∗ 0.174769∗ 0.139214∗ 0.105767∗ 0.053928∗

β1 0.876154∗ 0.890765∗ 0.89129∗ 0.851958∗ 0.894857∗ 0.910654∗ 0.891647∗ 0.870463∗ 0.8955∗ 0.892559∗ 0.949712∗

δ1 -0.02407∗ -0.0016 -0.01639 -0.03508∗ -0.02487∗ -0.02553∗ -0.01252∗ -0.01672 -0.02581∗ 0.00323∗ 0.00139∗

ν 3.937861∗ 5.176186∗ 4.265713∗ 3.5826∗ 4.623747∗ 4.55136∗ 3.770753∗ 3.598538∗ 4.161302∗ 5.829874∗ 5.724568∗

condition 0.986182 0.956137 0.999887 0.994651 0.980641 0.984313 0.995846 0.997733 0.999783 0.949083 0.981343
AIC -4.89272 -4.5909 -5.00669 -2.7918 -4.17984 -4.37049 -5.35006 -3.98503 -4.59574 -4.15006 -3.92382
Q-stat for standardized residuals
lag1 1.133 1.59 0.025 2.935 2.621 0.272 0.085 0.142 3.204 1.923 0.022
lag3 1.702 2.183 0.353 3.066 3.093 0.923 0.591 0.231 5.182 4.702 1.722
lag7 9.507 9.011 6.984 10.861 7.329 4.623 3.03 2.062 7.576 9.93 5.643
ARCH LM test
lag2 1.818 1.086 10.45∗ 0.697 1.277 2.241 0.432 9.936∗ 1.269 5.387 42.88∗

lag5 2.603 1.189 15.02∗ 0.907 1.601 3.219 0.555 11.554∗ 2.601 5.752 43.48∗

lag10 4.145 1.479 21.17∗ 1.201 2.162 3.669 0.891 16.062∗ 3.963 6.123 46.99∗

Note:* is significant in the 95% confidence interval. The “condition” is the calculated condition α1
2+β1

2+δ1
2+2α1β1ν1, where ν1 =

√
ν−2
π

Γ( ν−1
2 )

Γ( ν2 )

and if it is smaller than 1, there will be guaranteed positive conditional volatility and second moment for TGARCH model.

10



4.2. Bivariate copula analysis

In the second stage, pairs of data using various families are modeled in
order to select the proper copula family by goodness-of-fit tests. Different
copula families have different characteristics of tail dependence that allow us
to identify the tail-dependence between different pairs. In the third stage,
we construct a vine using copula families which are estimated in the second
step. The vine type selection and copula indexing are involved in this stage
as well.

In the first stage, the different GARCH filters are applied in this research.
In the second stage, the Vuong (1989) test and the Clarke (2007) test are
used to select the best copulas that fit the pairs as goodness-of-fit tests.
These two tests compare two models against each other. Based on their
null hypothesis, the tests will identify the better model by a statistically
significant decision. Belgorodski (2010) proposes a method using these two
tests for copula selection.

Using this method, a bivariate copula model A is compared with all other
possible bivariate copula models. If copula model A outperforms another
copula model, a score of “+1” is assigned to model A, and at the same
time a score of “−1” will be added to the other copula model. No score
will be added when the test cannot identify which model is better. There
is a total score which sums up the scores we get from all these pairwise
comparisons. Both the Vuong test and the Clarke test are likelihood ratio
based and use the common Kullback-Leibler information criterion, which
measures the distance between two statistical models. For instance, c1 and
c2 are two bivariate copula with estimated parameters θ̂1 and θ̂2 respectively.
The Vuong test requires a sum, ν, of the log differences of their point-wise
likelihoods mi. For observations ui,j, i = 1, . . . , N , j = 1, 2,

mi = log

[
c1(ui,1, ui,2|θ̂1)

c2(ui,1, ui,2|θ̂2)

]
, (10)

and then

ν =
1
n

∑N
i=1 mi√∑N

i=1(mi − m̄)2

. (11)

The null hypothesis of the Vuong test is

H0 : E(mi) = 0,∀i = 1, . . . , N.
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Vuong (1989) shows that ν is asymptotically standard normal distributed.
Therefore, model A is preferred against model B at level α if

ν > Φ−1
(

1− α

2

)
. (12)

In the same manner, if ν < −Φ−1
(
1− α

2

)
,then model B is chosen.

Nonetheless, if |ν| ≤ Φ−1
(
1− α

2

)
, then the test cannot identify if there

is a better one which will not reject the null hypothesis of the test as well.
On the other hand, the null hypothesis of the Clarke test is

H0 : P (mi > 0) = 0.5,∀i = 1, . . . , N,

and the test statistic is specified as

B =
N∑
i=1

1(0,∞)(mi), (13)

where 1 is proposed by Clarke (2007) as the indicator of the function. It
is binomial distributed with parameters N and p = 0.5. Based on this,
the critical values can be obtained. Model A is considered statistically
equivalent with model B if B is not significantly different from the expected
value Np = N

2
. Both test statistics from equations (12) and (13) can be

corrected for the number of parameters used in the models by using AIC.
Table 4 and Table 5 show the goodness-of-fit test results of bivariate

copula modelling. 11 copula families are chosen which include Gaussian,
Student-t, Clayton, Gumbel, Frank, BB1, BB7, and the survival copulas
of the Clayton (s.Clayton), Gumbel (s.Gumbel), BB1 (s.BB1) and BB7
(s.BB7)2 in both tests. In these candidates, families represent various
strengths of tail behaviour. For instance, Frank copulas show tail indepen-
dence which is also considered as a benchmark for tail dependence, Gumbel
copulas show only upper tail dependence while Clayton copulas show only
lower tail dependence. Student-t copulas show reflection symmetric upper
and lower tail dependence and BB families show different upper and lower
tail dependence. From the results of the Vuong test, student-t copula fam-
ily fits 53 out of 55 pairs best in all 11 copula families, although t copula
of three pairs (NET.SWE, SPA.SWE, NET.DEN) share the highest score

2In terms of bivariate copula families and their functions and properties, please see
Appendix I.
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with both survival form of BB1 and survival form of BB7 families. Addition-
ally, both survival form of BB1 and survival form of BB7 families indicate
asymmetric upper and lower tail dependence. GRE.SWE and POR.SWE
are modeled best by Frank copula, which shows no tail dependence of the
pairs, according to Vuong test. On the other hand, the Clarke test shows
that student-t copula family fits all 55 pairs better than the others, which
means these pairs tend to have symmetric upper and lower tail dependence.
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Table 4: Bivariate goodness-of-fit Vuong test

Pairs Gaussian t Clayton Gumbel Frank BB1 BB7 s.Clayton s.Gumbel s.BB1 s.BB7
BEL.DEN -6 10 -3 -5 -7 4 4 -9 4 4 4
BEL.FRA -7 10 -8 -2 -3 6 2 -9 2 7 2
BEL.GRE -7 10 -7 0 -7 4 6 -6 -2 4 5
BEL.IRE -8 10 -7 -1 -5 4 4 -8 1 5 5
BEL.ITA -6 10 -9 -1 -6 5 5 -7 -1 5 5
BEL.NET -7 10 -8 0 2 5 0 -9 1 6 0
BEL.POR -8 10 -8 -3 -3 4 2 -8 3 7 4
BEL.SPA -8 10 -8 0 -4 5 4 -8 -1 5 5
BEL.SWE -2 7 -2 -1 0 -1 -1 -1 1 1 -1
BEL.UK -5 8 -5 -4 0 4 2 -10 3 5 2
DEN.FRA -6 10 -6 -3 -7 4 4 -7 3 4 4
DEN.GRE -6 10 -7 -5 3 3 -1 -9 4 6 2
DEN.IRE -6 10 -6 -1 -4 4 2 -8 3 3 3
DEN.ITA -7 10 -6 -3 -6 4 4 -7 3 4 4
DEN.NET -4 6 -6 -3 -8 5 5 -8 1 6 6
DEN.POR -7 10 -7 -3 3 4 0 -8 2 5 1
DEN.SPA -6 10 -6 -4 -6 4 4 -7 3 4 4
DEN.SWE -4 10 -9 -3 -4 6 2 -9 1 7 3
DEN.UK -5 10 -8 0 -2 4 2 -6 -1 4 2
FRA.GRE -8 10 -8 3 -4 3 3 -6 -1 4 4
FRA.IRE -8 10 -8 0 2 4 1 -8 1 5 1
FRA.ITA -6 10 -9 -1 -5 5 5 -8 -1 5 5
FRA.NET -7 10 -7 -2 -1 6 1 -10 3 6 1
FRA.POR -7 10 -7 -2 2 5 1 -10 2 5 1
FRA.SPA -8 10 -8 0 0 7 0 -8 0 7 0
FRA.SWE -6 9 -3 -1 -1 0 -1 -3 2 3 1
FRA.UK -5 8 -6 -4 -5 4 4 -9 4 5 4
GRE.IRE -7 10 -7 0 -7 4 6 -7 -1 3 6

Continued on next page
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Table 4 –continued from previous page
Pairs Gaussian t Clayton Gumbel Frank BB1 BB7 s.Clayton s.Gumbel s.BB1 s.BB7
GRE.ITA -8 10 -8 0 -5 5 3 -7 0 5 5
GRE.NET -6 10 -6 -1 -4 3 2 -6 0 5 3
GRE.POR -7 10 -10 4 -5 4 4 -5 -3 4 4
GRE.SPA -7 10 -7 0 -7 4 6 -6 -2 4 5
GRE.SWE -1 7 -6 -6 8 1 -4 -9 3 7 0
GRE.UK -3 9 -5 0 0 3 -1 -6 0 3 0
IRE.ITA -7 10 -7 -1 -7 4 4 -7 1 5 5
IRE.NET -8 10 -8 1 2 5 1 -8 1 4 0
IRE.POR -7 10 -7 -1 -7 5 5 -7 -1 5 5
IRE.SPA -8 10 -7 -1 -5 4 4 -8 1 5 5
IRE.SWE 0 7 -1 -3 2 -1 -1 -3 -1 3 -2
IRE.UK -6 10 -5 0 2 3 0 -8 2 3 -1
ITA.NET -8 10 -8 1 0 6 1 -8 1 5 0
ITA.POR -8 10 -8 -2 -3 5 2 -8 2 7 3
ITA.SPA -6 10 -9 -1 -6 5 6 -7 -1 5 4
ITA.SWE -3 10 -7 0 0 2 -1 -6 0 3 2
ITA.UK -6 10 -6 0 -6 3 3 -7 3 3 3
NET.POR -7 10 -8 -1 3 5 0 -9 1 6 0
NET.SPA -7 10 -8 -1 3 5 0 -9 2 5 0
NET.SWE -6 7 -4 -5 -6 1 1 -6 4 7 7
NET.UK -5 10 -6 -4 -6 4 4 -8 3 4 4
POR.SPA -9 10 -7 -2 -3 5 2 -8 2 7 3
POR.SWE 2 6 -4 -4 10 0 -6 -5 1 3 -3
POR.UK -4 8 -4 -4 7 3 -4 -10 6 5 -3
SPA.SWE 1 2 0 -3 1 0 0 -5 0 2 2
SPA.UK -5 8 -5 -5 -1 4 2 -10 4 6 2
SWE.UK -4 7 -6 0 -3 4 3 -6 0 4 1

Note: There is no order in the pair names. Bold format indicates the best candidate.
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Table 5: Bivariate goodness-of-fit Clarke test

Pairs Gaussian t Clayton Gumbel Frank BB1 BB7 s.Clayton s.Gumbel s.BB1 s.BB7
BEL.DEN -9 10 -3 -3 -6 3 6 -9 2 1 8
BEL.FRA -6 10 -8 -2 8 6 -3 -10 2 4 -1
BEL.GRE -9 10 -8 0 -4 3 7 -7 -2 5 5
BEL.IRE -9 10 -6 -4 6 5 2 -9 0 3 2
BEL.ITA -6 10 -10 -1 8 5 -1 -8 -1 5 -1
BEL.NET -6 10 -8 0 8 6 -3 -10 2 4 -3
BEL.POR -9 10 -6 -4 8 6 0 -9 0 4 0
BEL.SPA -6 10 -9 0 4 7 -1 -9 -1 7 -2
BEL.SWE -10 10 -5 -1 -6 3 1 -6 6 2 6
BEL.UK -8 10 -5 -4 -3 5 4 -10 3 3 5
DEN.FRA -9 10 -5 -2 -5 3 6 -9 0 4 7
DEN.GRE -8 10 -6 -3 4 3 -2 -10 5 4 3
DEN.IRE -9 10 -6 -2 -5 4 5 -8 2 3 6
DEN.ITA -9 10 -6 -2 -5 5 5 -8 0 3 7
DEN.NET -8 10 -5 -2 -5 3 7 -10 0 4 6
DEN.POR -9 10 -6 -3 4 2 -2 -9 5 5 3
DEN.SPA -9 10 -4 -2 -7 3 6 -8 2 1 8
DEN.SWE -6 10 -8 -3 8 6 1 -10 0 3 -1
DEN.UK -8 10 -8 0 -3 4 4 -8 -1 6 4
FRA.GRE -10 10 -7 -1 -4 4 6 -7 -1 6 4
FRA.IRE -9 10 -6 -3 8 4 0 -9 1 2 2
FRA.ITA -6 10 -9 -1 8 3 1 -9 -1 4 0
FRA.NET -6 10 -8 -1 8 5 -2 -10 2 5 -3
FRA.POR -8 10 -6 -3 8 4 -3 -10 2 4 2
FRA.SPA -6 10 -8 -1 8 5 -3 -10 2 5 -2
FRA.SWE -10 10 -6 -1 -6 2 3 -6 5 2 7
FRA.UK -8 10 -6 -3 -3 6 4 -10 1 4 5
GRE.IRE -10 10 -8 0 -4 2 7 -6 -2 5 6

Continued on next page
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Table 5 –continued from previous page
Pairs Gaussian t Clayton Gumbel Frank BB1 BB7 s.Clayton s.Gumbel s.BB1 s.BB7
GRE.ITA -10 10 -8 -2 7 3 2 -6 -1 4 1
GRE.NET -10 10 -7 -1 -4 6 5 -7 -1 4 5
GRE.POR -9 10 -9 0 7 4 2 -6 -4 3 2
GRE.SPA -9 10 -9 0 -4 4 6 -6 -2 6 4
GRE.SWE -7 10 -7 -3 7 2 -3 -10 4 5 2
GRE.UK -9 10 -7 -1 -4 4 2 -8 6 3 4
IRE.ITA -9 10 -6 -4 1 6 3 -9 0 4 4
IRE.NET -9 10 -7 -1 8 6 0 -8 0 2 -1
IRE.POR -10 10 -7 -2 1 5 3 -7 -1 5 3
IRE.SPA -10 10 -6 -4 6 5 2 -8 0 3 2
IRE.SWE -9 10 -6 -1 -4 2 0 -7 4 6 5
IRE.UK -9 10 -6 -3 -1 3 1 -9 7 3 4
ITA.NET -7 10 -7 -2 8 5 -1 -10 0 4 0
ITA.POR -9 10 -6 -2 8 6 -2 -9 0 4 0
ITA.SPA -6 10 -10 -1 5 7 -1 -8 -2 6 0
ITA.SWE -8 10 -8 -2 -4 6 4 -8 2 4 4
ITA.UK -9 10 -5 -2 -5 3 6 -9 3 2 6
NET.POR -8 10 -6 -2 8 4 -4 -10 2 5 1
NET.SPA -8 10 -6 -1 8 5 -4 -10 2 5 -1
NET.SWE -10 10 -4 -3 -7 1 5 -6 2 4 8
NET.UK -8 10 -6 -2 -4 5 5 -10 0 3 7
POR.SPA -10 10 -6 -3 8 6 -1 -8 0 4 0
POR.SWE -7 9 -8 -2 7 2 -3 -9 6 4 1
POR.UK -8 10 -6 -3 6 1 -3 -10 6 5 2
SPA.SWE -9 10 -5 -2 -6 4 0 -7 4 5 6
SPA.UK -8 10 -6 -3 -3 5 4 -10 2 4 5
SWE.UK -8 10 -8 -1 -4 4 6 -8 0 5 4

Note: There is no order in the pair names. Bold format indicates the best candidate.
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5. Vine Copula approach

5.1. Introduction of Vine Copulas

In order to improve the copula method with regard to a wider range
of dependence, a more flexible range of upper and lower tail dependence,
a larger dimension and a computationally feasible density for estimation,
vine copulas became a handy copula technique.

A d-variate copula C(u1, . . . , ud) is a cumulative distribution function
(cdf) with uniform marginals on the unit interval. According to Sklar
(1959), if Fj(xj) is the cdf of a univariate continuous random variable Xj,
then C(F1(x1), . . . , Fd(xd)) is a d-variate distribution for X = (X1, . . . , Xd)
with marginal distributions Fj,j = 1, . . . , d. Conversely, if Fj,j = 1, . . . , d
is continuous, then there exists a unique copula C as

F (x) = C(F1(x1), . . . , Fd(xd)),∀x = (x1, . . . , xd), (14)

which is called the theorem of Sklar (1959). While a d-dimensional vine
copula are built by d(d − 1) bivariate copulas in a (d − 1)-level tree form.
There are different ways to construct a copula tree. C-vines and D-vines
are the selected tree types in this paper. In a C-vine tree, the dependence
with respect to one particular variable, called first root node, is modeled
by bivariate copulas for each pair. Conditioned on this variable, pair wise
dependencies with respect to a second variable are modeled, which is called
the second root node. In general, a root node is chosen in each tree and all
pairwise dependencies with respect to this node are modeled conditioned
on all previous root nodes (see Figure 1 left panel). According to Aas et al.
(2009), this gives the following decomposition of a multivariate density,

f(x) =
d∏

k=1

fk(xk)×
d−1∏
i=1

d−i∏
j=1

ci,i+j|1:(i−1)(F (xi|x1, . . . , xi−1), (F (xi+j|x1, . . . , xi−1)|θi,i+j|1:(i−1)),

(15)
where fk,k = 1, . . . , d, denote the marginal densities and ci,i+j|1:(i−1) bi-
variate copula densities with parameter(s) θi,i+j|1:(i−1) (here ik : im means
ik, . . . , im). And the outer product runs over the d − 1 trees and root
nodes i, while the inner product refers to the d − i pair-copulas in each
tree i = 1, . . . , d− 1.

A D-vine chooses the order of these pairs in a different way (see Figure
1 right panel). In the first level of the tree, the dependence of the first and
second variable, the second and the third, the third and the fourth, and so
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Source: Brechmann and Schepsmeier (2012)

Figure 1: Examples of 5-dimensional C- (left) and D-vine (right)

on, are used. That means in a 5-dimensional vine copula, in the first level
of the tree, pairs (1, 2), (2, 3), (3, 4), (4, 5) have been modeled. While in the
second level of the tree, conditional dependence of the first and third given
the second variable (pair (1, 3|2)), the second and fourth given the third
(pair (2, 4|3)), and so on. In this way it continues to construct the third
level up to the d − 1 level. According to Aas et al. (2009) the density of a
D-vine is,
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f(x) =
d∏

k=1

fk(xk)×

d−1∏
i=1

d−i∏
j=1

cj,i+i|(j+1):(j+i−1)(F (xj|xj+1, . . . , xj+i−1), (F (xj+i|xj+1, . . . , xj+i−1)|θj,j+i|xj+1,...,xj+i−1
),

(16)

where the outer product runs over the d−1 trees, while the pairs in each tree
are designated by the inner product. In order to get the conditional distri-
bution functions F (x|v) for an m-dimensional vector v, one can sequentially
apply the following relationship,

h(x|v,θ) := F (x|v) =
∂Cxvj |v−j(F (x|v−j), F (vj|v−j)|θ)

∂F (vj|v−j
, (17)

where vj is an arbitrary component of v and v−j denotes the (m − 1)-
dimensional vector v excluding vj. Further Cxvj |v−j is a bivariate copula
distribution function with parameter(s) θ specified in tree m.

5.2. Vine copula estimation

Vine copulas can be constructed by the bivariate copulas estimated in
section 4.2. Two types of vine are chosen to be estimated, C-vine and
D-vine. Then one will choose the better vine based on their value of log-
likelihood.

First, a C-vine has been conducted. In order to achieve the best per-
formance of the C-vine, d− 1 pairs of countries should be carefully chosen.
According to Aas and Berg (2009), empirical rules can be applied to select
to vine order.

1. Select the first root node that has strong dependence with all other
variables;

2. List the most dependent variables with the first root node as decreas-
ing in dependence order;

3. List the least dependent variables with the first root node as increasing
in dependence order;

4. Sequentially list the least dependent variable with the previous se-
lected.
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Table 6 shows the dependence of pairs according to Kendall’s τ . Kendall’s
τ is a rank correlation coefficient which developed by Kendall (1938). It is
calculated as follows. Let (x1, y1), (x2, y2), . . ., (xn, yn) be a set of obser-
vations of the joint random variables X and Y respectively, such that all
the values of (xi) and (yi) are unique. Any pair of observations (xi, yi) and
(xj, yj) are said to be concordant if the ranks for both elements agree: that
is, if both xi > xj and yi > yj or if both xi < xj and yi < yj. They are said
to be discordant, if xi > xj and yi < yj or if xi < xj and yi > yj. If xi = xj
or yi = yj, the pair is neither concordant nor discordant.

τ =
(number of concordant pair)− (number of discordant pair)

1
2
n(n− 1)

The first root node should have strong dependence with all other variables.

Table 6: Country-pair dependence based on Kendall’s τ

Pair τ Pair τ Pair τ
BEL.DEN 0.113469 FRA.GRE 0.165981 IRE.SWE 0.08461
BEL.FRA 0.526231 FRA.IRE 0.250222 IRE.UK 0.122281
BEL.GRE 0.193722 FRA.ITA 0.337805 ITA.NET 0.313732
BEL.IRE 0.29413 FRA.NET 0.56691 ITA.POR 0.358453
BEL.ITA 0.412142 FRA.POR 0.310606 ITA.SPA 0.507106
BEL.NET 0.523141 FRA.SPA 0.461769 ITA.SWE 0.126307
BEL.POR 0.356663 FRA.SWE 0.066616 ITA.UK 0.107109
BEL.SPA 0.537487 FRA.UK 0.154579 NET.POR 0.299719
BEL.SWE 0.058031 GRE.IRE 0.202541 NET.SPA 0.443678
BEL.UK 0.151617 GRE.ITA 0.299755 NET.SWE 0.071075
DEN.FRA 0.13127 GRE.NET 0.13684 NET.UK 0.160818
DEN.GRE 0.201002 GRE.POR 0.297087 POR.SPA 0.384536
DEN.IRE 0.112917 GRE.SPA 0.228495 POR.SWE 0.12385
DEN.ITA 0.123432 GRE.SWE 0.198992 POR.UK 0.193094
DEN.NET 0.16681 GRE.UK 0.114702 SPA.SWE 0.082487
DEN.POR 0.179232 IRE.ITA 0.274777 SPA.UK 0.139775
DEN.SPA 0.103206 IRE.NET 0.255291 SWE.UK 0.127193
DEN.SWE 0.348671 IRE.POR 0.337959
DEN.UK 0.180609 IRE.SPA 0.314839

Note: There are no order in the pair names.

In this case, Ireland shows the strongest dependence with others. Applying
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the rest of the rules, the order of the C-vine is chosen as SPA, BEL, DEN,
FRA, GRE, IRE, ITA, NET, POR, SWE, UK. The estimated dependence
parameters are shown in Table 7. The log-likelihood function of the C-vine
copula with parameter θCV is as follows:

`CV (θCV |u) =
N∑
k=1

d−1∑
i=1

d−i∑
j=1

log[ci,i+j|1:(i−1)(Fi|1:(i−1), Fi+j|1:(i−1)|θi,i+j|1:(i−1))],

(18)
where Fj|i1:im := F (uk,j|uk,i1 , · · · , uk,im) and the marginal distribution are
uniform.

22



Table 7: Estimated C-vine copula parameters (Log-likelihood = 12934.83)

Level-1
margin∗: 91 92 93 94 95 96 97 98 9a 9b
family: t t t t t t t t t t

θ̂1 0.785636 0.162843 0.692354 0.343322 0.508532 0.757037 0.65892 0.616534 0.124844 0.215362

θ̂2 2.0001 4.599867 2.0001 2.126921 2.0001 2.0001 2.03829 2.0001 15.77393 7.204589
Level-2

margin: 12|9 13|9 14|9 15|9 16|9 17|9 18|9 1a|9 1b|9
family: t t t t t t t t t

θ̂1 0.078301 0.494936 0.045666 0.168873 0.181871 0.525246 0.206182 0.00662 0.109588

θ̂2 8.578611 3.110824 4.048904 3.658444 3.96442 3.452198 3.831343 16.10222 9.224822
Level-3

margin: 23|19 24|19 25|19 26|19 27|19 28|19 2a|19 2b|19
family: t t t t t t t t

θ̂1 0.079817 0.28738 0.112875 0.088872 0.129475 0.208854 0.525698 0.242231

θ̂2 11.87698 8.23072 11.3741 15.98879 11.707 9.281302 3.867485 7.188617
Level-4

margin: 34|129 35|129 36|129 37|129 38|129 3a|129 3b|129
family: t t t t t 90.Clayton Frank

θ̂1 -0.01066 0.021689 -0.00146 0.507135 0.025434 -0.01267 0.49029

θ̂2 8.751509 11.44785 8.198117 4.60616 8.407895 0 0
Level-5

margin: 45|1239 46|1239 47|1239 48|1239 4a|1239 4b|1239
family: t t Frank t Frank t

θ̂1 0.173071 0.234101 -0.41015 0.27752 1.047847 0.047483

θ̂2 6.216486 8.23026 0 4.326902 0 16.16467
Level-6 Level-7

margin: 56|12349 57|12349 58|12349 5a|12349 5b|12349 67|123459 68|123459 6a|123459 6b|123459
family: Frank t t 270.Joe t t t t t

θ̂1 0.553639 0.023637 0.283618 -1.01931 0.04726 -0.02059 0.117399 0.094077 -0.02442

θ̂2 0 23.86815 7.225896 0 20.07778 16.18606 12.6435 16.46889 16.44031
Level-8 (|9123456) Level-9 (|91234567) Level-10 (|912345678)

margin: 78 7a 7b 8a 8b ab
family: Joe t t 270.Clayton Frank Gaussian

θ̂1 1.003137 -0.00739 0.046393 -0.0234 0.807638 0.072738

θ̂2 0 25.25985 13.24346 0 0 0

Note(∗): It shows the bivariate margin under condition, and 1=Belgium, 2=Denmark, 3=France, 4=Greece, 5=Ireland, 6=Italy, 7=Nether-
lands, 8=Portugal, 9=Spain, a=Sweden and b=UK.
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In the case of D-vine, the empirical rule for first tree selection chooses an
order of the variables that intends to capture as much dependence as possi-
ble. According to Belgorodski (2010), it is equivalent to solving the Travel-
ing Salesman Problem (TSP). The TSP can be solved using the Cheapest
Insertion Algorithm (Rosenkrantz et al., 1977). The log-likelihood function
of a D-vine copula with parameter θDV is as follows:

`DV (θDV |u) = (19)

N∑
k=1

d−1∑
i=1

d−i∑
j=1

log[cj,j+i|(j+1):(j+i−1)(Fj|(j+1):(j+i−1), Fj+i|(j+1):(j+i−1)|θj,j+i|(j+1):(j+i−1))].

Using information from Table 6 with the algorithm, the order of D-vine
is chosen as IRE, POR, GRE, ITA, SPA, BEL, FRA, NET, UK, DEN,
SWE. Table 8 shows the estimated dependence parameters.
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Table 8: Estimated D-vine copula parameters (Log-likelihood = 12805.13)

Level-1
margin∗: 58 84 46 69 91 13 37 7b b2 2a
family: t t t t t t t t t t

θ̂1 0.554977 0.474093 0.458832 0.757037 0.785636 0.75319 0.793209 0.252631 0.279172 0.519913

θ̂2 2.0001 2.0001 2.139375 2.0001 2.0001 2.0001 2.0001 5.253718 5.590975 3.629961
Level-2

margin: 54|8 86|4 49|6 61|9 93|1 17|3 3b|7 72|b ba|2
family: t t t t t t t t t

θ̂1 0.13404 0.442381 0.09262 0.181871 0.266287 0.411756 0.074764 0.208051 0.06887

θ̂2 5.023617 2.842461 6.450827 3.96442 3.266378 3.317322 22.79576 7.173716 14.1263
Level-3

margin: 56|48 89|46 41|69 63|19 97|13 1b|37 32|b7 7a|2b
family: t t t t t BB8 t t

θ̂1 0.17359 0.347971 0.014044 0.007594 0.083558 1.139907 0.002258 -0.04332

θ̂2 5.093834 4.668656 5.872747 8.001854 6.340184 0.859126 14.36096 10.73387
Level-4

margin: 59|648 81|469 43|169 67|913 9b|137 12|37b 3a|2b7
family: t t t t t t Frank

θ̂1 0.184206 0.177932 0.007428 -0.02296 0.040587 0.000576 0.116236

θ̂2 6.146175 7.053155 10.4331 15.10297 17.18287 11.79698 0
Level-5

margin: 51|8469 83|1469 47|1369 6b|7913 92|b137 1a|237b
family: t t Frank t t 270.Clayton

θ̂1 0.08633 0.056068 -0.24771 0.007181 0.021326 -0.01147

θ̂2 7.543744 12.72372 0 13.75464 28.68429 0
Level-6 Level-7

margin: 53|18469 87|13469 4b|71369 62|b7913 9a|2b137 57|318469 8b|713469 42|b71369 6a|2b7913
family: Frank s.BB8 t t BB8 t Frank s.Gumbel t

θ̂1 0.169382 1.038112 0.104391 0.09152 1.098464 0.020014 0.974141 1.181762 0.1298

θ̂2 0 0.985067 14.97414 24.76819 0.929845 14.60283 0 0 20.13141
Level-8 Level-9 Level-10

margin: 5b 82 4a 52 8a 5a
cond. 7318469 b713469 2b71369 b7318469 2b713469 2b7318469

family: t BB8 Frank t Gaussian 270.Joe

θ̂1 0.009865 1.263496 0.899777 -0.00524 -0.03135 -1.02386

θ̂2 22.60227 0.845965 0 22.41893 0 0

Note(∗): It shows the bivariate margin under condition, and 1=Belgium, 2=Denmark, 3=France, 4=Greece, 5=Ireland, 6=Italy, 7=Nether-
lands, 8=Portugal, 9=Spain, a=Sweden and b=UK.
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According to the results from Table 7 and 8, the log-likelihood of C-vine
is 12934.83, while the log-likelihood of D-vine is 12805.13. Therefore, C-vine
is superior to D-vine.

6. Simulation

In this paper, we intend to forecast the probabilities of sovereign crisis
in these 11 countries in the future year. Therefore, the sovereign spreads
of each country for the next 365 days need to be generated. 365 groups of
error terms based on the C-vine copula parameters are simulated. 365 is
the forecast horizon of this research and it can be changed depending on
the purpose of forecast. We apply these group of error terms back into the
GARCH filters estimated in Section 4.1 to get the next 365 days’ sovereign
spreads movements of each country. Future sovereign spreads can be cal-
culated by adding spreads movement to the spreads of previous day from
12/03/2012 which is the last day in the sample. We apply the definition of
sovereign crisis is stated in Section 1, which is that sovereign spread against
Germany is more than 1000 basis points. Therefore, if one or more of these
simulated spreads are greater than 10%, the sovereign crisis in the following
year will be counted. This process is repeated 10000 times, and the times
with sovereign crisis divided by 10000 will be the probabilities of sovereign
debt crisis. The relationship can be represented by the expression as follows:

ki =

{
1 if there is at least one crisis event in future h-day simulation
0 if there is no event in future h-day simulation

The probability of the soveriegn debt crisis is expressed as

Pr =

∑N
i=1 ki
N

,

where k is a dummy in order to identify whether there will be one or more
crisis in the forecasting horizon, h is the forecast horizon (365 days) , i is
the ith simulation, Pr is the probability of sovereign crisis in target country
and N is the total number of simulations (10000).
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Table 9: Probability of sovereign debt crisis in next 365 days

Countries BEL DEN FRA GRE IRE ITA NET POR SPA SWE UK
Probability 60.14% 8.74% 62.13% 100% 71.60% 81.08% 25.86% 99.77% 87.17% 5.45% 12.87%
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Table 9 presents the results of the estimated probabilities of sovereign
crisis in the next 365 days. According to the results, Greece has the highest
probability which is 100% and is followed by Portugal (99.77%), which are
consistent with the fact that they are already in crisis. Spain (87.17%) and
Italy (81.08%) have extremely high probabilities of entering crisis. Ireland
has a 71.06% chance of entering crisis. The probability of crisis in France
and Belgium are 62.13% and 60.14% which are fairly high, and for France it
is higher than expected. Netherlands (25.86%) shows a fairly low probabil-
ity of crisis, the most stable in the euro area. The probability of countries
outside the euro area such as the UK (12.87%), Denmark(8.74%) and Swe-
den(5.45%) are very low which reveals the stability of sovereign debt in
these countries.

7. Conclusion

This paper provides a method to calculate the probability of sovereign
debt crisis which is an infrequent event. The sovereign spreads against
Germany are simulated and the dependence of those time series is considered
by applying vine copula models in the mean time. It is extremely useful in
assessing the risk level of sovereign debt crisis in the European Union. We
examined 11 countries in the European Union. Results show that Greece
and Portugal have an extremely high probability of sovereign debt crisis.
Spain and Italy are potentially the next victims of sovereign debt crisis.
Unexpectedly, France and Belgium show a fairly high risk level. Netherlands
enjoys the lowest probability of crisis in the euro area in the sample. The
UK, Denmark and Sweden show strong stability of their sovereign debt
and being outside the euro area might be the reason for this. According
to the results, the probability calculated in this paper appears to be a
very good indicator of sovereign debt default risk level. In addition, it
is a better indicator than sovereign credit default swap (CDS), because
sovereign CDS is an over the counter (OTC) traded financial instrument,
which makes tracking all the trades difficult to achieve. This indicator
can make a contribution to alerting the European Central Bank (ECB) or
governments of those countries in the European Union, as well as ranking
the risk level of each government bond in the European Union for investors.
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Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G. and Roncalli, T. (2000), ‘Copulas
for finance - a reading guide and some applications’, SSRN .

Box, G. E. P. and Jenkins, G. M. (1970), Time Series Analysis: Forecasting and Control,
Holden-Day, Inc, San Francisco.

Brechmann, E. C. and Schepsmeier, U. (2012), Modeling dependence with c- and d-vine
copulas: The r-package cdvine, Reference manual, R-CRAN.
URL: http://cran.r-project.org/web/packages/CDVine/vignettes/ CDVine-
package.pdf

Bruun, J. T. and Tawn, J. A. (1998), ‘Comparison of approaches for estimating the
probability of coastal flooding’, Journal of the Royal Statistical Society: Series C
(Applied Statistics) 47(3), 405–423.

Cherubini, U., Luciano, E. and Vecchiato, W. (2004), Copula methods in Finance, John
Wiley & Son Ltd, Chichester.

Clarke, K. A. (2007), ‘A simple distribution-free test for nonnested model selection’,
Political Analysis 15(3), 347–363.

de Haan, L. and de Ronde, J. (1998), ‘Sea and wind: Multivariate extremes at work’,
Extremes 1(1), 7–45.

de Haan, L. and Ferreira, A. (2006), Extreme Value Theory: An Introduction, Springer-
Verlag, New York.

de Haan, L. and Resnick, S. (1977), ‘Limit theory for multivariate sample extremes’,
Z.Wahrscheinlichkeitstheorie und Verw. Gebiete 40(4), 317–337.

Demarta, S. and McNeil, A. J. (2005), ‘The t copula and related copulas’, International
Statistical Review 73(1), 111–129.
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Sy, A. N. (2004), ‘Rating the rating agencies: Anticipating currency crises or debt crises?’,
Journal of Banking & Finance 28(11), 2845–2867.

Vuong, Q. H. (1989), ‘Likelihood ratio tests for model selection and non-nested hypothe-
ses’, Econometrica 57(2), pp. 307–333.

Wang, W. and Wells, M. T. (2000), ‘Model selection and semiparametric inference for bi-
variate failure-time data’, Journal of the American Statistical Association 95(449), pp.
62–72.

30



Appendix I: Properties of the Bivariate Copula Families

I.1 Elliptical copulas
Gaussian copula function is as follows:

C(u1, u2) = Φρ(Φ
−1(u1),Φ−1(u2))

Bivariate Student-t copula is as follows:

C(u1, u2) = tρ,ν(t
−1(u1), t−1(u2))

Table .10: Properties of the elliptical copula families

Name Parameter range Kendall’s τ Tail dep.(l, u)
Gaussian ρ ∈ (−1, 1) 2

π
arcsin(ρ) (0,0)

Student-t ρ ∈ (−1, 1), ν > 2 2
π
arcsin(ρ)

(
2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
, 2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

))

I.2 Archimedean copulas
The bivariate acrchimedean copulas function is:

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2))

where ϕ : [0, 1] → [0,∞] is a continuous strictly decreasing convex such
that ϕ(1) = 0 and ϕ[−1] is the pseudo-inverse as follows:

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0),
0, ϕ(0) ≤ t ≤ ∞

I.3 Rotations of the copulas
In addition to the families presented in the last 2 sections, there are

rotated versions of Clayton, Gumbel, Joe, BB1, BB6, BB7 and BB8 families
in order to deal with more dependence structure. When the families are
rotated by 180 degrees, they are also called the survival forms of the families.
The copula function of these copulas will be calculated as follows:

C90(u1, u2) = u2 − C(1− u1, u2),

C180(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2),

C270(u1, u2) = u1 − C(u1, 1− u2),

Where C90,C180 and C270 are the copula C rotated by 90,180 and 270
degree respectively.
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Table .11: Properties of bivariate Archimedean copula families

Name Function Para. range Kendall’s τ Tail dep.(l,u)

Clayton 1
θ (t−θ − 1) θ > 0 θ

θ+2 (2−
1
θ )

Gumbel (−logt)θ θ ≥ 1 1− 1
θ (0, 2− 2

1
θ )

Frank −log
(
e−θt−1
e−θ−1

)
θ ∈ < 1− 4

θ + 4D1(θ)
θ

∗
(0, 0)

Joe −log(1− (1− t)theta) θ > 1 1 + 4
θ2

∫ 1

0
tlog(t)(1− t)

2(1−θ)
θ dt (0, 2− 2

1
θ )

BB1 (t−θ − 1)−δ θ > 0, δ ≥ 1 1− 2
δ(θ+2) (2−

1
θδ , 2− 2

1
θ )

BB6 (−log(1− (1− t)θ))δ θ ≥ 1, δ ≥ 1 1 + 4
θδ

∫ 1

0
(−log(1− (1− t)θ)×

(1− t)(1− (1− t−θ)))dt
(0, 2− 2

1
θδ )

BB7 (1− (1− t)θ)−δ θ ≥ 1, δ > 0 1+ 4
θδ

∫ 1

0
(−(1− (1− t)θ)δ+1×

(1−(1−t)θ)−δ−1
(1−t)θ−1

)dt

(2−
1
θ , 2− 2

1
θ )

BB8 −log
(

1−(1−δt)θ
1−(1−δ)θ

)
θ ≥ 1, δ ∈ (0, 1] 1 + 4

θδ

∫ 1

0
(−log

(
(1−tδ)θ−1
(1−δθ−1)

)
×

(1− tδ)(1− (1− tδ−θ)))dt
(0, 0)∗∗

Note: ∗ D1(θ) =
∫ θ

0
c/θ

exp(x)−1dx is the Debye function.
∗∗ For δ = 1 the upper tail dependence coefficient is 2− 2

1
θ .

32


