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Abstract
In the current era, with increasing availability of results from genetic association studies, finding genetic instruments for 
inferring causality in observational epidemiology has become apparently simple. Mendelian randomisation (MR) analyses 
are hence growing in popularity and, in particular, methods that can incorporate multiple instruments are being rapidly 
developed for these applications. Such analyses have enormous potential, but they all rely on strong, different, and inher-
ently untestable assumptions. These have to be clearly stated and carefully justified for every application in order to avoid 
conclusions that cannot be replicated. In this article, we review the instrumental variable assumptions and discuss the popular 
linear additive structural model. We advocate the use of tests for the null hypothesis of ‘no causal effect’ and calculation 
of the bounds for a causal effect, whenever possible, as these do not rely on parametric modelling assumptions. We clarify 
the difference between a randomised trial and an MR study and we comment on the importance of validating instruments, 
especially when considering them for joint use in an analysis. We urge researchers to stand by their convictions, if satisfied 
that the relevant assumptions hold, and to interpret their results causally since that is the only reason for performing an MR 
analysis in the first place.

Introduction

In many areas of application, it is important to be able to 
distinguish a causal association from a non-causal one to 
assess the relationship between a treatment, or exposure, 
X,  and an outcome Y. In econometrics research, for exam-
ple, interest might focus on whether programmes for the 
unemployed are actually effective in increasing the chances 
of returning to work, or whether more years of schooling 
increase the expected salary from future jobs. In epidemio-
logical research, establishing the causal effect of a treatment 
or a modifiable exposure on a health outcome is crucial for 
informing decisions about treatment delivery and public 
health interventions. The randomised controlled trial (RCT) 
is the accepted ‘gold standard’ for determining causality, 

since randomisation to the exposure renders all other expla-
nations for an observed association unlikely. When it is dif-
ficult, or impossible, to randomise X and unobserved con-
founding cannot be ruled out, an established approach in 
econometrics is to switch, if possible, to the next best thing: 
find a variable that, is closely related to X, does not directly 
affect Y, and can either be actively randomised by the inves-
tigator or is randomised by nature. Such a variable is called 
an instrumental variable (IV) (Angrist and Pischke 2009).

As an example of an actively randomised IV, we can con-
ceive of a trial where unemployed individuals are randomly 
allocated to either participate in or abstain from a certain pro-
gramme and their employment status recorded a year later, or 
where individuals are randomly assigned to a particular treat-
ment and their health status monitored at a later time point. As 
not all participants comply with their allocation—some refuse 
and others enter the programme or take the treatment even if 
assigned to the control group—the actual exposure may dif-
fer from that dictated by the randomisation. Since the actual 
behaviour is affected by external circumstances or an individ-
ual’s attitudes and preferences, the exposure–outcome associa-
tion is typically confounded. However, due to the fact that the 
allocation was properly randomised, it can be exploited as an 
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IV which, in this case, is a randomised incentive or encourage-
ment providing an imperfect way to assign X.

For the schooling example where randomisation would not 
be possible, a solution is to use an individual’s month of birth 
as an IV as this is related to years of schooling via the cutoff 
date for enrolling students in many educational systems. Here, 
nature (through the birth month), rather than the investigator, 
provides the randomisation. In epidemiology, as a direct result 
of the recent explosion in findings from genetic association 
studies, there has been a heightened interest in using genetic 
variants related to exposures of interest as IVs. Again, these 
are IVs where nature randomises between parents and off-
spring according to Mendel’s laws of inheritance, and the term 
Mendelian randomisation (MR) has now become standard for 
instrumental variable methods that use genetic IVs (Davey 
Smith and Ebrahim 2003; Didelez and Sheehan 2007b; Lawlor 
et al. 2008a). In short, IVs essentially constitute an imperfect 
way of randomising the actual quantity X of interest. As it is 
imperfect, any conclusions drawn using an IV are weaker than 
those from a randomised controlled trial with full compliance. 
However, provided the underlying assumptions are satisfied, 
it does permit consistent inference about the causal effect of 
X on Y despite unobserved confounding (Greenland 2000).

In this article, we outline the basic concepts, benefits and 
challenges of IV analyses for epidemiological applications. 
We will focus particularly on the use of genetic IVs and 
hence on Mendelian randomisation studies, noting where 
these differ from other applications. To see how IVs enable 
causal conclusions, we begin by formalising the difference 
between association and causation and introduce causal 
effect measures. We define and illustrate the notion of an IV 
and emphasise the importance of establishing the validity 
of a candidate IV. To illustrate the issues for drawing causal 
conclusions, we consider the main statistical approaches 
using a single IV in a ‘one-sample’ setting where individual-
level data are available on all observable quantities. We then 
briefly discuss the additional issues and complications that 
arise with multiple IVs and also in ‘two-sample’ settings 
where the IV–exposure and IV–outcome associations are 
derived from separate studies. We conclude with a discus-
sion of current developments and challenges for Mendelian 
randomisation. We will use directed acyclic graphs (DAGs) 
throughout to illustrate the conditional independencies 
implied by the joint distribution of a set of variables (Dawid 
1979; Pearl 2000).

Basic causal concepts

To fully disentangle causal from associational concepts, 
we want to formally distinguish between the two. This is 
an important distinction in observational epidemiology, for 
example, as an exposure might be associated with a disease 

outcome but an intervention that changes the exposure levels 
will not necessarily affect disease risk and so could be inef-
fective unless the association is causal. Specifically, we say 
that a variable X is associated with another variable Y if the 
observation of one is informative, or predictive, for the other. 
Such association is encapsulated by the usual conditional 
probability notation, whereby P(Y = y ∣ X = x) describes the 
distribution of Y given that we observe X = x has occurred. 
We argue, as others have done, that the notion of intervening 
in a particular system is fundamental to any formal approach 
to causality even though this is not always explicit (Pearl 
2000; Hernán 2004; Didelez and Sheehan 2007a). Thus, 
when we say that X causes Y, we mean that an interven-
tion on X that sets it to a given value is informative for Y. 
The problem of causal inference we consider here is that of 
obtaining information on what might happen under interven-
tion from observational data where the desired intervention 
had not actually taken place.

Formal framework for causality

We adopt the notation do(X = x) , as suggested by Pearl 
(2000), to represent the intervention of setting X to a value 
x as opposed to allowing X to assume this value naturally. 
That “association is not causation” is reflected in the fact 
that the two conditional distributions P(Y = y ∣ do(X = x)) 
and P(Y = y|X = x) are not necessarily the same. The former 
depends on the value x only if X is causal for Y. It corre-
sponds directly to what we would observe in a randomised 
study (with perfect compliance). The latter depends on the 
value x for other reasons besides causality, such as when 
there is confounding or reverse causation of the X–Y rela-
tionship, and corresponds to the distribution we obtain from 
an observational study. To illustrate the difference, consider 
a hypothetical situation with binary variable X indicating 
whether an individual’s fingers are stained or not, and a 
binary outcome Y indicating the presence or absence of lung 
cancer. Then, P(Y = y ∣ X = x) describes how lung cancer 
risk can be predicted from inspection of someone’s fingers 
because they are informative for smoking which is, in turn, 
informative for lung cancer. However, an intervention on 
X, such as removing the finger staining, would render this 
no longer informative for lung cancer risk and so we would 
expect that P(Y = y ∣ do(X = x)) would not depend on x 
(Sheehan et al. 2011).

Other formal frameworks exist, the most prominent 
of which is the potential outcomes approach, where Y(x) 
denotes the value of the outcome Y if X were set (by a 
well-defined intervention) to x (Hernán 2004). In the 
case of a binary exposure, we have two potential out-
comes Y(1) and Y(0), only one of which can ever be 
observed making the other one counterfactual. For our pur-
poses, we can regard the two concepts as equivalent, i.e. 
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P(Y = y ∣ do(X = x)) = P(Y(x) = y) (Didelez and Sheehan 
2007b).

Causal effects

We define a causal effect of X on Y to be some measure of 
how Y, or its distribution, behaves under different interven-
tional settings of X. A popular causal parameter is the aver-
age causal effect (ACE) describing the average change in Y 
from setting X to some value x2 compared with another (e.g. 
baseline) value x1 . It is defined as

For binary outcomes, the above is the risk difference for the 
two possible settings of X. The causal relative risk (CRR), 
defined as

and the causal odds ratio (COR), defined analogously, are the 
more common parameters for a binary outcome Y. Obser-
vational data only permit inference on causal parameters if 
suitable conditions are satisfied; we then say that the causal 
parameter is identifiable. One such condition is that all (or a 
sufficient set of) confounders have been appropriately taken 
into account, e.g. by standarisation or using inverse prob-
ability weighting (Hernán and Robins 2006b). When this 
assumption is not reasonable and unobserved confounding 
is suspected, instrumental variable methods can provide an 
alternative approach.

The above ACE, CRR and COR are defined in terms 
of changes across the whole population and are therefore 
population parameters. In some situations, it may be more 
relevant to look at causal effects within (possibly latent) sub-
groups, especially when there is effect modification whereby 
individuals in different subgroups respond differently to 
exposure.

ACE(x1, x2) = E(Y ∣ do(X = x2)) − E(Y ∣ do(X = x1)).

CRR =
P(Y = 1 ∣ do(X = x2))

(P(Y = 1 ∣ do(X = x1))
,

Instrumental variables

We have motivated IVs intuitively via imperfect randomisa-
tion by the investigator or nature. Now we address the formal 
conditions that make an IV a valid tool for drawing causal 
conclusions. We will use the notation A⊥⊥B ∣ C to express 
that A is conditionally independent of B given C (Dawid 
1979).

Core IV conditions

We denote the exposure by X, the outcome by Y and the 
unobserved confounding between X and Y by U. So U is a set 
of variables that could be sufficient to adjust for confounding 
of the X–Y association if they could be measured. Then, a 
third observable variable G is an instrumental variable (IV), 
or an instrument for the causal effect of X on Y, if:

1. G⊥⊥U : G is (marginally) independent of U,   i.e. the 
instrument is not associated with the unobserved con-
founding between X and Y;

2. G⊥⊥∕ X : G is associated with the exposure X;
3. G⊥⊥Y ∣ (X,U) : G is conditionally independent of Y given 

the exposure X and confounding U, i.e. G and Y would 
not be associated after adjusting for both X and U.

We refer to the above as the IV core conditions and they 
are uniquely encoded in the directed acyclic graph (DAG) 
in Fig. 1a (Greenland 2000; Didelez and Sheehan 2007b; 
Didelez et al. 2010). The first condition is represented by 
the absence of an edge between G and U and all other 
paths in the graph between G and U are blocked by a col-
lider. The second condition is represented by the edge 
between G and X. However, it should be noted than many 
IV methods actually require this association to be linear, 
e.g. Corr(G,X) ≠ 0 . For the third condition, note that as 
X is a collider on the G → X → Y  path, conditioning on X 
alone opens another path between G and U. Conditioning 

G X Y

U

a

YG

U

do(X=x)
b

Fig. 1  DAGs representing, a the core conditions for G to be an IV for 
the association between X and Y in the presence of unobserved con-
founding factors U,  where the red lines represent open paths that are 
not allowed by these conditions and, b the effect of an intervention on 

X on the joint distribution of G, X, Y, U under the structural assump-
tion. A bi-directed edge represents an association that is possibly via 
a common graph ancestor
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on both X and U hence blocks all paths and there is no 
other edge between G and Y. Equivalently, the joint dis-
tribution of the four variables factorises in the following 
way:

We will often assume that this joint probability distribution 
is faithful to the graph in Fig. 1a by which we mean that 
every conditional independence in the probability distribu-
tion corresponds to a separation in the graph and so every 
edge corresponds to an association (Spirtes et al. 2000).

The three core conditions above describe how the 
four variables are related ‘naturally’. We require a fourth 
assumption to infer anything about the causal effect 
of X on Y. In particular, we should be able to envisage 
intervening on X without modifying the distributions 
p(y ∣ x, u), p(g) and p(u),  i.e. these should not change under 
do(X = x) . In other words, the distributions of G and U 
and the conditional distribution of Y, given X and U, are 
of the same form regardless of whether X has arisen “natu-
rally” or has been set by external intervention. We refer 
to this as a structural assumption: it is required to link 
the observational and the interventional regimes and we 
say that the graph is causal with respect to X (Lauritzen 
1996). Mathematically, the joint distribution under such 
an intervention is given by
4. 

where I(x = x∗) is the indicator function taking the value 
1 if x = x∗ and 0 otherwise. This structural assumption 
is often not stated explicitly, but implied by the specific 
structural model used for the analysis, e.g. a linear struc-
tural equation model. We state it explicitly as it is also 
relevant to non-parametric inference, e.g. when testing or 
computing bounds (see below).

The structural assumption essentially defines the class 
of (possibly hypothetical) interventions for which the 
IV can be used. In an MR study, for example, where X 
represents an individual’s BMI and it is suspected that U 
includes diet and amount of exercise, then use of a genetic 
variant in the FTO gene as an IV to estimate the causal 
effect of BMI on some health outcome (Frayling et al. 
2007; Timpson et al. 2009) is only informative for poten-
tial interventions that change BMI but not diet and amount 
of exercise. This is quite different from actual RCTs that 
target BMI where interventions often do consist of changes 
to diet or exercise. In other examples, such as exposure to 
alcohol or smoking, an intervention that changes the law 
so that people are prevented from smoking or drinking 
could mean that they adapt their lifestyle in other ways 
to compensate and hence the required structural assump-
tion might not be satisfied. It should be noted that in 

p(y, x, u, g) = p(y ∣ x, u)p(x ∣ u, g)p(u)p(g).

(1)
p(y, x, u, g ∣ do(X = x∗) = p(y ∣ x∗, u)I(x = x∗)p(u)p(g),

many applied MR studies, the structural assumption (1) is 
implicitly assumed when testing for and estimating causal 
effects without any discussion of its appropriateness for 
the intervention under consideration. This is a critical 
omission.

Graphically (see Fig. 1b), an intervention on X removes 
all the directed edges into X and renders G marginally 
independent of Y and U. This independence is related to, 
but should not be confused with, the exclusion restriction 
(Hernán and Robins 2006a) typically found instead of core 
conditions 1 and 3 in IV contexts where the IV is controlled 
by the investigator (see below).

Two types of instrumental variables

As noted above and in the initial motivation, there are 
two general types of IV: those that are under the control 
of, and randomised by, the investigator but with imperfect 
compliance, and those that are not, but are instead in some 
sense ‘randomised’ by nature. Much of the literature on IVs 
assumes the first case, whereas some applications, in par-
ticular Mendelian randomisation, fall into the second cat-
egory. As the two are not always clearly distinguished in the 
MR literature (Thanassoulis and O’Donnell 2009; Burgess 
and Thompson 2013, 2015; Howell et al. 2018), we feel it 
is important to highlight and discuss the differences here.

In well-conducted RCTs, with valid randomisation in a 
double-blind or comparative setting but with imperfect com-
pliance, it is a fact, and thus is not required as an assumption, 
that the IV is not affected by any baseline variables or fac-
tors. This is because randomisation breaks any association 
with measured or unmeasured pre-randomisation character-
istics predictive of the outcome Y. Hence, the IV will not be 
affected by any parts of U that are prior to randomisation. 
If the IV were randomised by the investigator, the only way 
in which core conditions 1 and 3 could be violated is by a 
‘direct’ effect of the IV either on Y or on any post-randomi-
sation parts of U,  i.e. an effect on Y that is not mediated via 
the exposure of interest X. This is the exclusion restriction 
and, in the potential outcomes framework, is expressed as 
Y(g, x) = Y(x) , i.e. G has no direct causal effect on Y via a 
route other than through X. Hence, the exclusion restriction 
can replace core conditions 1 and 3 in these situations. In 
contrast, for IVs of the second type where the instrument is 
not controlled as in Mendelian randomisation applications, 
we have to justify not only that the instrument has no effect 
on the outcome other than through X, but that it is also not 
affected by U and not otherwise confounded with Y.

Distinguishing between the two types of IV is also rel-
evant with respect to the causal parameter being targeted. In 
partial compliance situations, it is common to estimate the 
average causal effect among ‘compliers’ only, i.e. those indi-
viduals who would comply with the assignment whatever 
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their assigned group. The target parameter is then called the 
‘local average treatment effect’ (LATE) or complier causal 
effect. The LATE is identified using only the exclusion 
restriction and a monotonicity assumption, the latter stating 
that ‘defiers’ do not exist when G and X are both dichoto-
mous (Imbens and Angrist 1994; Greenland 2000) For an 
intention-to-treat (ITT) analysis under partial compliance, 
an observed association between the randomised alloca-
tion and outcome can only be due to the treatment having 
a causal effect on the outcome since the group assignment 
itself cannot affect the outcome. Under the exclusion restric-
tion and monotonicity assumptions, the association has a 
causal interpretation as the effect of treatment assignment 
for a population with comparable compliance behaviour. In 
placebo controlled trials, this would be a conservative esti-
mate of the actual complier causal effect, but not necessarily 
in other types of trial.

An argument in favour of targeting this local parameter 
is that in real life, we often cannot enforce X to be a particu-
lar value x, and since we can only provide incentives, the 
only effect that is of relevance is the effect on those who 
comply. Arguments against it are based on the fact that the 
‘compliers’ are an unidentifiable latent subgroup and that 
as incentives outside a trial may not be comparable to the 
incentive used in the trial, a population parameter is the rel-
evant quantity to target. Importantly, when the instrument 
is not an incentive controlled by the investigator, we would 
argue that the term ‘complier’ makes little sense. In an MR 
context, for instance, it would refer to the subgroup of indi-
viduals whose phenotype would always correspond to their 
genotype whatever genotype was assigned by nature. For a 
detailed discussion of issues around the two types of IVs, see 
Joffe (2011) and Dawid and Didelez (2012). Other authors 
have commented on the inappropriateness of this parameter 
for MR analyses since the degree of adherence to a non-
explicit trial protocol cannot be determined. There are also 
issues with interpreting this parameter if the IV is not causal, 
as compliance must then be defined with respect to a latent 
causal factor associated with the IV. (Swanson et al. 2017; 
Swanson and Hernán 2018).

Establishing validity for a candidate IV

Finding an IV can be a challenge. One problem is that the 
validity of core conditions 1 and 3 cannot be easily checked 
empirically as they involve the unobservable U. Instead, we 
need to use subject matter knowledge, indirect empirical evi-
dence or additional assumptions to justify them which, in 
turn, require a deep understanding of the issues involved. In 
contrast, core condition 2 can (and should) be easily tested 
by investigating the G–X association. For reasons that will 
become clearer later, we say that the IV is strong if this 
association is ‘large’ and weak otherwise. It is sometimes 

wrongly suggested that the validity of core conditions 1 and 
3 can be verified by checking that Y is not associated with G 
given X alone (possibly due to confusion with the exclusion 
restriction) or that Y and G are marginally independent—but 
these independencies are neither implied nor required for the 
core conditions to hold. As noted in “Core IV conditions”, 
X alone does not block all paths between G and Y in Fig. 1a 
since X is a collider and, trivially, these paths are not blocked 
by the empty set as there is a directed path linking G to Y. 
In the special case of all variables being binary (or discrete 
with few levels), conditions 1 and 3 impose restrictions on 
the observable variables in the form of inequalities which 
can be used for detecting gross violations of these core con-
ditions (Balke and Pearl 1994; Bonet 2001) (see “Bounds on 
causal effects” below).

Despite the difficulty, the core conditions should be 
evaluated more systematically than is typically done in the 
literature. MR studies, unlike other areas of application, 
have the potential advantage of good background biologi-
cal information with which to justify these for a genetic 
IV. Firstly, core condition 1 means that the genetic variant 
must not be associated with the sort of confounding you 
might expect for the particular X–Y relationship considered. 
When some confounders are in fact measured, it is quite 
common in practice to check association with these and 
interpret no observed association as support for core con-
dition 1 under the strong (and also untestable) assumption 
that any unobserved confounding would behave in a similar 
way (Davey Smith et al. 2007; Lawlor et al. 2008b; Palmer 
et al. 2012; Au Yeung et al. 2013; Burgess et al. 2017a). 
It is also argued that because genes are randomly assigned 
(conditionally on parental genes) at meiosis, they should be 
reasonably immune to confounding of the X–Y association 
across the population (Lawlor et al. 2008a). However, one 
has to be careful that the particular variants under considera-
tion are not also associated with lifestyle factors that could, 
in principle, confound the association between X and Y. A 
more comprehensive understanding of the underlying bio-
logical pathways is required to justify core condition 3 since 
all other pathways between the gene and outcome must be 
ruled out. If some sensible assumption can be made about 
the direction of the unobserved confounding, simple tests 
comparing the IV estimate with the ordinary observational 
estimate can also be informative (Glymour et al. 2012). Gen-
erally poor reporting of MR studies has been commented on 
elsewhere in the literature and several suggestions have been 
made for improvement (Davies et al. 2015; Glymour et al. 
2012; Swanson and Hernán 2013; VanderWeele et al. 2014; 
von Hinke et al. 2016).

Violations of the core IV conditions can occur for sev-
eral reasons. These have implications for causal inference 
and analyses can be sensitive to such violations (Hernán 
and Robins 2006a; Didelez et al. 2010). In MR studies, a 
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plausible violation arises from population stratification, 
where different sub-populations of the study have different 
allele frequencies and also happen to have different distri-
butions of unobserved risk factors for disease or different 
disease prevalences due, for example, to different cultural 
lifestyles. The former could yield an association between 
G and U,  while the latter induces an association between 
G and Y other than via X and U as depicted in Fig. 2a. If 
population stratification is fully understood, this violation 
can be handled by study design, e.g. by carrying out the 
analysis separately in each sub-population as is standard 
in epidemiological studies.

Core condition 2 does not state that the IV has to be 
causal for X,  although this is naturally the case when the 
IV is a properly randomised incentive and causality of this 
relation is actually a requirement for some IV methods in 
that particular situation (Swanson and Hernán 2018). Note 
also that the potential outcomes framework, as assumed 
in von Hinke et al. (2016) for instance, explicitly assumes 
that the IV is causal. Thus, using a genetic IV, G1, that is 
not actually causal for the exposure of interest and is only 
associated because it is in linkage disequilibrium with an 
unobserved variant, G2 , which is causal for X,   is not a 
violation. However, it would be an issue if the unobserved 
variant, G2 , were also associated with the outcome, Y, via a 
route other than through X (see Fig. 2b). In particular, core 
condition 1 for G1 would be violated if G2 were associated 
with Y via the confounders U, whereas core condition 3 
would not hold if the unobserved variant were associated 
with Y via another mechanism that does not involve X.

Furthermore, genetic variants proposed as candidate 
IVs from genetic association studies are likely to have 
pleiotropic effects on other exposures besides X, thus 
potentially violating core condition 3 if these are unmeas-
ured and cannot be adjusted for (Fig. 3). In the case where 
measurements on the pleiotropic variants are available, 
constrained instrumental variable methods can be used to 
find optimal instruments for the exposure of interest and 
for appropriate adjustment of causal analyses (Jiang et al. 
2019). Directed acyclic graphs are useful to represent what 
is believed about the underlying biology and to check the 
core assumptions (Didelez and Sheehan 2007b).

The exploitation of well-studied genetic variants with 
known functionality is essential for the success of MR stud-
ies. In particular, although current genome-wide association 
studies are discovering more and more associations between 
single nucleotide polymorphism (SNP) variants and epide-
miological exposures, the gene–exposure associations are 
often weak and may not even be reproducible making them 
unsuitable IV candidates (Taylor et al. 2014). More to the 
point, many of these variants are not yet sufficiently well 
understood to validate as IVs and researchers need to be 
prepared to continually review their suitability as IVs as the 
functional knowledge becomes available and through incor-
poration of any other relevant external knowledge (Tchetgen 
Tchetgen et al. 2013). Importantly, if there is insufficient 
prior knowledge about the genetic or confounding mecha-
nisms to justify the core conditions, it is possible that results 
from an IV analysis indicating a causal effect may very well 
have an alternative non-causal explanation.

Principles of inference with IVs

We now explain the principles underlying statistical infer-
ence about causal effects using an IV. We will not focus on 
the details here as these depend on the specific setting, e.g. 
continuous or binary outcome, and are discussed elsewhere. 
We begin by asking if there is a causal effect of X on Y at all. 
We then consider whether lower and upper bounds can be 
derived for this causal effect. Finally, we address the issue 
of getting a point estimate of the causal effect. Answering 
these questions in turn requires increasingly more restrictive 
assumptions.

G X Y

P U

a

X Y

G2 U

G1

b

Fig. 2  DAGs illustrating possible violations of the core IV assumptions due to population stratification (a), or linkage disequilibrium (b), where 
dashed red edges create violations. A bi-directed edge represents an association, possibly via a common graph ancestor

G X Y

UX2

Fig. 3  DAG illustrating violation of core condition 3 (dashed red 
lines) for a candidate IV G via its pleiotropic effects on Y via another 
exposure X2
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Testing for a causal effect by testing for a G–Y 
association

When our interest is purely in confirming whether there is 
an average causal effect of X on Y in the first place, data on a 
valid IV G (satisfying the core conditions) and the outcome 
Y, together with the structural assumption (1) and faithful-
ness, are sufficient, i.e. we do not require data on X. More 
specifically, as reasoned below, we just need to test for a 
(marginal) association between G and Y. This has some anal-
ogies with the intention-to-treat (ITT) analysis under partial 
compliance discussed earlier, although the two should not 
be confused.

We will define the ‘causal null hypothesis’ of interest to 
mean the absence of an X → Y edge as depicted by the DAG 
in Fig. 4. We note that this is ignoring the possibility of 
causal effects in subgroups defined by U which cancel each 
other out. Under the core conditions, any marginal associa-
tion between the IV, G, and the outcome, Y, can only occur if 
X has a causal effect on Y because there is no other pathway 
between G and Y that creates an association (Fig. 1a). As 
shown in Fig. 4, when there is no causal effect of X on Y, G 
and Y are marginally independent, i.e. there is no unblocked 
path between them since the path G → X ← U → Y  is 
blocked in the absence of conditioning on the collider X. 
The reverse reasoning is trickier. Lack of evidence for a G–Y 
association can mean several things: there is no causal effect, 
or the power is too low, or the IV is too weak. In rare cases, it 
could also happen that, due to interactions with unobserved 
factors, positive and negative subgroup effects ‘cancel’ each 
other out so that no overall effect is detectable. These issues 
are discussed in more technical detail in Didelez and Shee-
han (2007b).

Any suitable statistical test for association can be used 
in this context, e.g. a Chi-squared test if G has three levels 
and Y is binary. Typically, a regression of Y on G (which 
can also accommodate possible observed covariates) is used 
and a statistically significant association is evidence for the 
presence of a causal effect of X on Y. Importantly for MR 
applications and in contrast with the ITT estimate in a partial 
compliance type setting, we note that the estimate of the 
G–Y association is generally not interpretable in terms of 

a causal effect. Neither does it permit inference about the 
magnitude nor sign of a causal effect (Didelez and Sheehan 
2007b; Burgess and Small 2016; Swanson et al. 2018). It is 
purely a test for a causal effect and further assumptions must 
be made to obtain a point estimate of such an effect should 
it seem likely to be present. Hence, it is good practice to 
start an IV analysis by establishing what conclusions can be 
drawn from the G–Y association alone without additional 
assumptions. All methods that yield an estimate, standard 
error and confidence interval for the causal effect of X on Y 
make further parametric (or semi-parametric) assumptions 
over and above the core conditions. For instance, it may hap-
pen that the G–Y association is not statistically significant, 
but subsequent estimation of the causal effect of X on Y 
yields a significant result. We should then bear in mind that 
the apparent extra information ‘gained’ is mainly due to the 
additional modelling assumptions that were made. As these 
implicitly or explicitly involve the unobservable factors sub-
sumed in U, they are empirically untestable. Furthermore, it 
is common to assume that X is measured without error. All 
these additional assumptions are themselves new sources of 
bias if violated, and resulting estimates and standard errors 
can be regarded as less reliable.

Finally, we point out that the test for a G–Y association 
to assess the presence of a causal effect is also valid in case-
control studies without any further adjustment or additional 
assumptions other than a valid IV (Didelez and Sheehan 
2007b). So, even if sampling is conditional on the outcome 
Y, we still expect a G–Y association only if X has a causal 
effect on Y. This is important because IV estimation in a 
case-control study is not straightforward, whereas a test for 
the G–Y association is very simple (Didelez et al. 2010; 
Bowden and Vansteelandt 2011). For example, in an inves-
tigation into the possible causal effect of homocysteine level 
on stroke risk, the odds ratio for the genotype-stroke (G–Y) 
association, using a dichotomisation of the MTHFR C677T 
polymorphism into TT and CC carriers as a genetic IV, was 
found to be significant at 1.26 with 95 % CI (1.14, 1.40) 
(Casas et al. 2005). If the MTHFR gene is a valid instrument 
for the effect of homocysteine on stroke, this result provides 
evidence for the presence of such a causal effect.

Bounds on causal effects

In some cases, it is possible to obtain some quantitative 
information about the size of the causal effect in the form of 
lower and upper bounds using only the core IV conditions 
without further parametric assumptions. This is possible 
when G, X, and Y are discrete with few levels and data on all 
three variables are available from a single sample. In an MR 
study, for example, we might have a genetic IV with three 
levels, a binary exposure and a binary outcome. It is impor-
tant to note that the bounds are not confidence intervals for 

G X Y

U

Fig. 4  DAG illustrating the null hypothesis of no causal effect of X 
on Y by the absence of an edge between X and Y rendering G and Y 
marginally independent
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the causal effect. The interpretation of the bounds is that the 
data are compatible with values of a causal effect anywhere 
between the lower and upper bound. We do not go into tech-
nical details here as these are provided elsewhere (Manski 
1990; Balke and Pearl 1994; Palmer et al. 2011a).

Returning to the example above (“Testing for a causal 
effect by testing for a G–Y association”), we consider 
bounding the causal effect of dichotomised homocysteine 
level (low/high) on presence or absence of cardiovascular 
disease (CVD) using the MTHFR genotype (now with all 
three levels) as an IV (Palmer et al. 2011a). Since the data 
come from a case–control study, the analysis is performed 
by converting back to the required population frequencies 
under plausible assumptions about the prevalence of CVD 
(Didelez and Sheehan 2007b). With a prevalence of 6.5%, 
the ACE (causal risk difference) lies between − 0.0895 and 
0.7344 while assuming a prevalence of 2%, the bounds are 
slightly wider and the ACE lies between − 0.065 and 0.7644. 
Alternatively, the bounds can be given for the CRR (causal 
relative risk) and are 0.1272 and 41.5740, respectively, in the 
latter case. While we previously reported the IV–outcome 
association for this example as supporting the presence of 
a causal effect of homocysteine on stroke risk, the bounds 
computed here are all too wide to confirm this as they all 
include the null hypothesis of ‘no effect’. This may be partly 
due to the fact that the test in Casas et al. (2005) was based 
on a meta-analysis while the bounds above were calculated 
using only a subset of the data which was less informative.

The fact that we can bound the causal effect is interest-
ing in two regards. Firstly, it illustrates that even though the 
core IV assumptions do not imply any (conditional) inde-
pendencies among the observable variables (G, X, Y) they 
still impose some restrictions leading to such bounds, and 
these restrictions can be exploited to test the validity of the 
core IV conditions to a certain extent. Secondly, the bounds 
are ‘tight’, meaning that nothing more precise can be said 
about the causal effect without further assumptions which 
underlines the necessity of the latter if an effect estimate is 
desired—especially if the calculated bounds are too wide to 
be informative (Balke and Pearl 1994). Thus, for the above 
example, any derived estimate of the effect of homoscysteine 
level on stroke risk will depend on the additional assump-
tions that are made for point estimation.

Note that a major limitation is that if X is continuous, no 
bounds or other restrictions can be derived from the core IV 
assumptions, i.e. there are no testable implications of the 
IV assumptions and a parametric approach is thus required 
for causal inference (Bonet 2001). Conclusions drawn for a 
continuous exposure are hence completely reliant on the rel-
evant parametric modelling assumptions. This is especially 
limiting in MR analyses where the exposure is typically 
continuous and is arguably the reason why few examples 
of computing the bounds can be found in the literature. In 

fact, when the exposure of interest is continuous, it may be 
unwise to dichotomise the exposure as the chosen IV might 
not be valid for the dichotomised variable as illustrated in 
Fig. 5 (Didelez and Sheehan 2007b; Glymour et al. 2012; 
VanderWeele et al. 2014; Swanson 2017). When the bounds 
can be computed, they tend in practice to be wide and often 
include the null as in the above example and are so deemed 
‘uninformative’. We note that this is not a poor property of 
the method, but is rather a property of the data: MR data are 
often ‘uninformative’ in this sense due to the weak IVs that 
are typically used and possibly only small true causal effects, 
if any (see “IV estimation in linear and additive structural 
models” below). The width of the bounds depends on the 
strength of the IV and the amount of confounding. However, 
in contrast with Burgess et al. (2017b), we recommend that 
they be computed in the case where variables are genuinely 
discrete, if only to assess how much can be inferred without 
further assumptions (Richardson et al. 2014). In particu-
lar, bounds that do not include the null causal effect could 
lend considerable weight to reported causal findings. They 
can be calculated easily in Stata (Palmer et al. 2011a) and 
using either of two R packages, bpbounds and ivtools, that 
have recently been made available on CRAN. When sev-
eral IVs are available, bounds can be calculated for each IV 
separately and the intersection of all such bounds consid-
ered. Likewise, bounds can be calculated for a combined IV 
(Swanson 2017).

Estimation with instrumental variables

As already noted, estimation of the causal effect requires 
additional modelling assumptions over and above the core 
IV conditions. Models differ depending on the exact setting 
(e.g. continuous or binary outcome, case-control or cohort 
study) and target of inference (e.g. local versus population 
parameter, causal average effect versus causal risk ratio). 
Furthermore, different parameters can be targeted by the 
same estimator under different assumptions so attention 
should be paid to the modelling details (Hernán and Rob-
ins 2006a; Brookhart and Schneeweiss 2007; Angrist and 

G X Y

X*

U

Fig. 5  DAG illustrating the case where X∗ is an imperfect measure-
ment of X (e.g. after dichotomising) and where G is not a valid IV for 
the causal effect of X∗ on Y since G⊥⊥∕ Y ∣ (X∗,U)
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Pischke 2009; Didelez et al. 2010; Clarke and Windmeijer 
2012). It is hence important to be clear about what parameter 
is being targeted and what assumptions are being made for 
any particular analysis.

IV estimation in linear and additive structural models

Here, we give a brief overview of the simplest and most 
popular case, the linear additive structural model. Other 
models are discussed briefly in “Other IV models and esti-
mators”. We call this type of model ‘structural’ because it is 
assumed to be valid not only under observation of but also 
under intervention in X as explained earlier. It assumes that

where the first equality is due to the structural assumption. 
This model posits that the causal effect within levels of the 
confounders U is linear in the exposure X without effect 
modification by U on the chosen scale, i.e. individuals in 
confounder subgroups such as men/women, drinkers/non-
drinkers or older/younger, all react similarly to exposure. 
The unobserved confounders can predict or affect the out-
come Y in an arbitrary way h(u). The model implies that the 
average causal effect for a one unit increase in X is identified 
as ACE(x, x + 1) = �.

The parameter � cannot immediately be estimated from 
the above as we have no data on U. Moreover, we cannot 
obtain an unbiased estimate of � from a regression of Y on 
X due to correlation between U and X. Here, the IV comes 
into play. Exploiting the core IV conditions, it follows from 
the above structural linear and additive model that

suggesting a simple estimator because the ratio of the covari-
ances is in fact equal to the ratio of the regression coeffi-
cients from regressions of Y on G and of X on G:

This result has been known for a long time (Wright 1928; 
Wald 1940; Wooldridge 2002), but see Didelez et al. (2010) 
for a proof using the same notation as above.

The so-called ratio estimator (3) is simple to compute 
and has desirable statistical properties in that it is consistent. 
However, we now see why we need core IV condition 2: if 
the denominator is close to zero (relative to the measurement 
scale) the whole expression becomes very unstable and the 
variance of 𝛽  then tends to infinity. The denominator (𝛽X∣G) 
will be close to zero if the instrument G does not strongly 

(2)
E(Y ∣ X = x,U = u) = E(Y ∣ do(X = x),U = u)

= �x + h(u),

� =
Cov(Y ,G)

Cov(X,G)
,

(3)𝛽 =
𝛽Y∣G

𝛽X∣G

.

predict X; this is known as a weak instrument. It is plausible 
and can be shown formally, that the strength of the instru-
ment (as measured by the proportion of variation in X that 
it explains) and the amount of confounding are inversely 
related: if U explains a lot of the variation in X, then there 
is not much variation left for G to explain (Martens et al. 
2006). Moreover, use of a weak IV leads to loss of power 
for detecting a causal effect, if present, and also tends to bias 
the IV estimate of causal effect towards the naïve or ordinary 
least squares estimate which is precisely the bias that an IV 
analysis is trying to circumvent (Bound et al. 1995). For a 
single IV, the above ratio estimator is equivalent to the two-
stage-least-squares (2SLS) estimator: predict X from a linear 
regression of X on G, and then carry out a linear regression 
of Y on the predicted values X̂ . The latter has the advantage 
of being generalisable in a straightforward way to multiple 
instruments, but, unlike the ratio estimator, requires joint 
data on G, X and Y.

Instrument strength is related to the (adjusted) R2 from 
the regression of X on G and the corresponding F-statistic 
for the null hypothesis that the IV does not predict X at all. 
Strength is relative to sample size and hence the much-cited 
rule-of-thumb of F ≥ 10 for an acceptably strong IV is valid 
for a single IV if the focus is on the actual level of an IV-
based test. It does not provide a significance test of the null 
hypothesis at the same level for multiple IVs (Staiger and 
Stock 1997). The two values, R2 and F, should always be 
reported in any MR analysis but it is important to note that 
neither constitutes a definition of a strong/weak IV. Also, 
any data-driven approach to modelling the regression of X 
on G based on optimising R2 and F will bias the analysis 
(Sheehan and Didelez 2011).

Multiple instruments

In many applications of MR, it is possible that several vari-
ables, G1,… ,GK , are plausible candidates as instruments for 
the effect of X on Y. It is especially tempting to use databases 
of published GWAS results to identify numerous potential 
instruments for the same exposure-outcome relation.

Multiple instruments offer some potential benefits, for 
example with regard to the plausibility of assumptions. In 
particular, if each Gk separately satisfies the core IV condi-
tions, then they should all estimate the same causal effect 
and so separate estimates of the causal effect parameter 
should be roughly similar. Note that this reasoning presumes 
a homogenous causal effect as implied by the linear additive 
structural model (2). Under this model, large differences in 
the resulting estimated values possibly indicate that some 
of the core IV conditions may be violated for some of the 
instruments or, if they are all believed to be valid, that the 
model is incorrect. When the multiple IVs are independent, 
then this is the basic idea underlying an over-identification 
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test (Sargan 1958; Hansen 1982). Under model (2), similar 
estimates of the causal effect parameter thus provide evi-
dence against bias due to pleiotropy or linkage disequilib-
rium but not necessarily due to population stratification. Of 
course, this procedure will still fail to detect problems if the 
separate IV estimates are all biased in exactly the same way 
(Palmer et al. 2012; Glymour et al. 2012).

When it is implausible that the causal relationship 
between X and Y can be summarised in a single parameter, 
such as when it is not linear or when there is effect modi-
fication by observed covariates so that model (2) does not 
hold, we can exploit multiple instruments to estimate more 
parameters. Hence, multiple instruments can be used to 
estimate more complex causal models. However, in such 
a case all instruments have to be sufficiently strong as well 
as sufficiently unrelated to provide the required increase in 
information.

Multiple IVs and 2SLS

With a single IV, the 2SLS estimator is asymptotically unbi-
ased for the average causal effect but it is subject to finite 
sample bias which is exacerbated when the instrument is 
weak (Bound et al. 1995). Under model (2) with � the vector 
of IVs, 2SLS estimation easily accommodates multiple IVs 
by fitting a regression of X on all G1,… ,GK jointly in the 
first stage. The additional instruments can serve to reduce 
weak-IV-bias provided they also increase the amount of vari-
ation explained in the exposure X. However, adding very 
weak, or virtually ‘redundant’ IVs, could actually increase 
the bias as this is likely to lead to over-fitting the first-stage 
regression and renders the occurrence of an accidental cor-
relation between an instrument and unobserved confounding 
U more likely. Other estimators, such as the limited infor-
mation likelihood and continuous updating estimators, have 
been shown to be more robust to weak IV bias (Sheehan and 
Didelez 2011; Davies et al. 2015).

Multiple IVs and allele scores

In MR applications it has become popular to use genetic risk 
or allele scores composed of several SNPs rather than a sin-
gle genetic variant. Such a score S is given as the weighted 

average of the multiple IVs/SNPs: S =
∑

k wkGk . The IV 
estimate of � is then obtained by regressing X on S at the 
first stage and then proceeding as usual. For this procedure 
to result in a consistent estimator of the causal effect, the 
score S needs to satisfy the IV core conditions; in particular 
it must be sufficiently informative for X (core condition 2) 
as measured by the S − X association. A violation of the 
other core conditions will typically occur, if one or more 
of the Gk ’s are themselves not valid IVs, so that we can say 
that all G1,… ,GK need to be valid for the score to be valid 
(Swanson 2017).

To see the advantage of using an allele score, first note 
that 2SLS is equivalent to determining the weight wk of each 
IV Gk as the regression coefficient from a multiple regres-
sion of X on G1,… ,GK jointly on the same data used for 
the whole analysis. As mentioned above, this easily gives 
rise to weak IV bias due to overfitting. Typically, however, 
the weights for an allele score are determined in a different 
way and several suggestions for how to do this have been 
proposed. If joint data are not available, as is often the case, 
one could obtain the weights for each SNP Gk from a simple 
regression of X on Gk alone. This is equivalent to 2SLS if 
the instruments are independent, but will not suffer from 
weak-IV-bias if a different data source is used for these K 
individual regressions than for the second stage. In prin-
ciple, IVs do not have to be independent to be combined 
into a valid allele score in a one-sample setting (Fig. 6a). 
However, the weights for correlated IVs should ideally be 
obtained from a regression of X on G1,… ,GK jointly and 
based on external data (Burgess et al. 2016). More generally, 
one could make use of other external information, e.g. other 
data sources or subject matter knowledge, to determine the 
weights. The number of parameters could be reduced by 
restricting the weights to be a constant wk ≡ w for all Gk , as 
in an unweighted score, or by partitioning G1,… ,GK into 
two groups, one with (the same) high weight and the other 
with low weight. Most allele scores implicitly assume an 
additive genetic model whereby each SNP has an approxi-
mately additive per allele effect on X: an unweighted score 
assumes similar per allele effects across all SNPs. Biologi-
cal knowledge can be incorporated to distinguish between 
SNPs that can be regarded as ‘major genes’ and thus fitted 
separately in the first-stage regression and those that are 

Fig. 6  DAGs depicting an allele 
score S where a S is a perfect 
summary of possibly correlated 
G1,… ,G

k
 and b S does not 

capture all the information in 
G1,… ,G

k
 . In both cases, S is 

still a valid IV for the causal 
effect of X on Y with unob-
served confounding U 

X YS

G1

Gk

U

a

X YS

G1

Gk

G2

U

b



Human Genetics 

1 3

polygenic and can be combined into an allele score (Pierce 
et al. 2010; Palmer et al. 2012). Advantages of using allele 
scores mainly stem from either using external data or 
restricting the weights and hence reducing the number of 
parameters, as this alleviates weak IV bias provided all SNPs 
in the score are themselves valid IVs (Pierce et al. 2010; 
Palmer et al. 2012; Burgess and Thompson 2013).

Moreover, MR analyses based on allele scores seem to be 
less sensitive than 2SLS analyses to misspecification of the 
first-stage regression, i.e. using the ‘wrong’ score, but they 
are very sensitive to the choice of variants for inclusion in 
the score and to the derivation of the weights (Burgess and 
Thompson 2013). A perfect score would have the property 
that it fully summarises the information in G1,… ,GK for 
predicting X, implying X⊥⊥(G1,… ,GK)|S . This is unlikely 
to hold if restricted weights or an unweighted score are 
used, but the resulting loss of information often outweighs 
the danger of introducing bias due to overfitting an overly 
complex first stage model or score. It is important to note 
that S is still a valid IV even if X⊥⊥(G1,… ,GK)|S does not 
hold (see Fig. 6b) as long as the G1,… ,GK are valid IVs. 
It would be a problem for methods requiring a causal and 
unconfounded IV.

Multiple IVs and two samples

Up to now, we have mostly assumed a ‘one-sample’ scenario 
where individual-level data are available on all observable 
quantities, G, X and Y. The ratio estimator (3) can also be 
used in a ‘two-sample’ setting where summary data on the 
G–X and G–Y associations are taken from different studies 
under the assumption that the two underlying study popula-
tions are broadly similar (Hartwig et al. 2016). This lends 
itself to exploitation of potentially very large numbers of 
publicly available genome wide association studies (GWAS) 
providing summary information on associations between 
candidate IVs Gk and exposure X and outcome Y of interest. 
For example, in a recent MR study of the effect of age at 
puberty on asthma risk (Minelli et al. 2018), potential instru-
ments were initially selected from a large published genome 
wide meta-analysis and supplemented through a literature 
search for additional relevant genetic studies using curated 
collections such as the NHGRI GWAS Catalog (Welter 
et al. 2014) and HuGE Navigator (Yu et al. 2008). The 
MR-Base platform (http://www.mrbas e.org) has been spe-
cifically developed for MR analyses and has over 11 billion 
SNP–trait associations from almost 2000 GWAS to choose 
from (Hemani et al. 2018). In this situation, MR with multi-
ple independent IVs can be viewed as a meta-analysis where 
the individual ratio estimates corresponding to each Gk can 
be combined into a pooled inverse variance weighted (IVW) 
estimate (Burgess et al. 2017a; Thompson et al. 2016, 2017). 
The one-sample over-identification test can be replaced by 

a standard �2 test for heterogeneity such as I2 or Cochran’s 
Q-statistic used in meta-analysis (Del Greco M et al. 2015; 
Bowden et al. 2016b, 2017). Summary data methods can 
also be extended to include correlated SNPs and to construct 
allele scores (Burgess et al. 2016; Zhu et al. 2018).

Allowing for invalid IVs

The more SNPS that are considered as IVs in an MR analy-
sis, the more likely it is that they will not all satisfy the 
core IV conditions. In the one-sample setting, the method 
of Kang et al. (2016) (and further developed in Windmeijer 
et al. (2018)) permits identification of the causal effect as 
long as fewer than 50% of the IVs are ‘invalid’ without the 
need to identify the offending IVs. The approach essentially 
penalises SNPs with suspected pleiotropic effects and down-
weights them in the analysis. Analogous robust approaches 
for the two-sample setting include: MR-Egger regression 
(Bowden et al. 2015) which can potentially cope with 100% 
invalid IVs under a strong assumption about the suspected 
pleiotropic effects; a weighted median approach (Bowden 
et al. 2016a) again assuming less than 50% invalid IVs; and 
mode-based estimation (Hartwig et al. 2017) which is con-
sistent when the largest number of ‘similar’ individual SNP-
based ratio estimates derive from valid IVs. All these robust 
approaches yield estimates that are less precise than 2SLS 
or IVW estimates, but should be carried out as part of a 
sensitivity analysis to support or question causal conclusions 
(Burgess et al. 2017a). They all make different and strong 
assumptions so we would go one step further and suggest 
that more weight should perhaps be given to analyses that 
do not rely so heavily on parametric assumptions (Clarke 
and Windmeijer 2012).

Because of the increasing availability of multiple candi-
date genetic IVs, development of methods for incorporating 
multiple IVs—particularly in the two-sample setting—have 
been mainly restricted to the MR literature. Attention is 
now turning to applying such approaches to the one-sam-
ple setting as intensive phenotyping of genetic association 
study populations is taking place and individual level data 
on instrument(s), exposure and outcome can reasonably be 
expected in many situations. It should be noted that estab-
lishing the validity of a set of IVs requires additional care 
and commonly used terms such as ‘all valid’ and ‘some 
invalid’ are neither used consistently nor explicitly defined.

Other IV models and estimators

The linear and additive structural model of “IV estimation 
in linear and additive structural models‘’ may often be plau-
sible, at least as an approximation, for a limited range of X 
values. It can be shown that 2SLS has very good robustness 

http://www.mrbase.org
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properties under this model even when certain aspects, 
such as the first stage model or the way in which measured 
covariates enter the model, are misspecified (Vansteelandt 
and Didelez 2018).

These desirable properties of 2SLS do not typically carry 
over to non-linear models which are used, for instance, 
when the outcome Y is binary. For binary outcomes, a lin-
ear approach would still estimate the ACE or causal risk 
difference, but we may then prefer to report the CRR or 
COR, requiring non-linear models. Under certain parametric 
assumptions about the exposure distribution and using a log-
linear model for the second stage regression, the CRR can be 
targeted by a two-stage regression or ‘ratio-type’ estimator 
(Didelez et al. 2010). The main problem for the non-linear 
case is that the relationship between the two regressions (Y 
on G, and X on G) and the relevant causal parameter, CRR 
or COR, is no longer straightforward and estimators derived 
from these two regressions are typically biased (Vanstee-
landt and Goetghebeur 2003; Martens et al. 2006; Palmer 
et al. 2011b; Vansteelandt et al. 2011; Harbord et al. 2013). 
This is also true when the focus is on a local, or ‘complier’ 
odds ratio (Cai et al. 2011). There are other IV methods 
dealing with binary outcomes, or more generally non-linear 
structural models, but they are less intuitive than the ratio 
estimator, and less simple to construct. The CRR, for exam-
ple, can also be estimated under the weaker assumptions of 
a structural mean model or using a generalised method of 
moments estimator but identification problems can arise as 
the estimating equations sometimes have multiple solutions 
(Hernán and Robins 2006a; Clarke and Windmeijer 2010, 
2012; Burgess et al. 2014).

Targeting the COR poses additional problems due to the 
non-collapsibility of odds ratios and the situation becomes 
even more complicated if data on (X, Y, G) are obtained from 
a case–control study where bias can be induced through 
conditioning on the outcome Y. In a case–control setting, 
the distribution of confounders in the control group is typi-
cally different from that in the general population due to 
over-recruitment of cases and this can induce an undesired 
association between the IV G and the unmeasured confound-
ers U (Didelez and Sheehan 2007b). Here, ORs have to be 
used despite the problems induced by selecting on case 
status since other measures of association are even more 
sensitive to retrospective sampling (Burgess et al. 2017b). 
When good estimates of disease prevalence or population 
allele frequencies are available, an MR analysis can be re-
weighted to yield reliable estimates of the COR (Bowden 
and Vansteelandt 2011). Recent advances have been made 
using IVs for survival outcomes. Non-collapsibility of the 
hazard ratio in the popular Cox model is problematic and 
requires an approximate approach (Martinussen et al. 2019) 
whereas additive hazard models behave more like 2SLS 
(Tchetgen Tchetgen et al. 2015; Martinussen et al. 2017). 

They all require individual-level (one sample) data and are 
restricted to a single IV.

Bayesian approaches to MR analyses have also been pro-
posed (Burgess et al. 2010; Burgess and Thompson 2012; 
Jones et al. 2012) and recent work addresses the issue of 
dependent IVs (Shapland et al. 2019) and invalid IVs with 
pleiotropic effects (Berzuini et al. 2019). These methods 
have yet to gain popularity in applied studies, possibly due to 
the unavailability of user-friendly software but also, perhaps, 
because these approaches are fully parametric requiring a 
complete specification of the likelihood (which implicitly 
or explicitly includes the unobserved confounding) together 
with prior distributions on all parameters in the model. Infer-
ences are hence very sensitive to the modelling assumptions 
and prior information.

Discussion

It has never been easier or more tempting to conduct a Men-
delian randomisation study. Recent developments in genetic 
epidemiology have yielded billions of SNP–trait associations 
that can be trawled to produce hundreds of potential IVs for 
MR studies. Two-sample analyses are increasingly easy to 
conduct as statistical packages are being made more widely 
available. Indeed, the MR-Base platform integrates a data-
base of GWAS results with an interface that permits auto-
mated MR analyses using several of the methods mentioned 
in “Multiple instruments”. Although the authors explicitly 
warn against this, there is a danger that MR will become 
a ‘black box’ analysis (Hemani et al. 2018). Furthermore, 
the more IVs that are included, the more problems that can 
potentially arise and hence the more important it is to be 
clear about the research questions of interest, the causal 
parameter being targeted and the modelling assumptions that 
underlie any causal conclusions (Swanson et al. 2017). To 
this end, it could be helpful to think about what randomised 
trial would be conducted to investigate these questions were 
such a trial possible (Hernán and Robins 2016). We have 
commented on the differences between MR and randomised 
trials in this paper. However, both should give careful con-
sideration to the target population, the intervention under 
consideration and the causal effect of interest. Also, many 
of the issues to do with reporting MR analyses are similar 
to those for trials and have been commented upon by many 
authors (Swanson and Hernán 2013; Glymour et al. 2012; 
Davies et al. 2013; VanderWeele et al. 2014).

Causal inference always relies on special assumptions. 
Practitioners tend to dislike the fact that some of these 
are not verifiable empirically. However, the more familiar 
assumption of ‘there is no unmeasured confounding’ under-
lying a standardisation or propensity score analysis, for 
example, is just as untestable as the IV core conditions. The 
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limitations of such assumptions need to be fully understood 
(Hernán and Robins 2006a) and sensitivity analyses—to 
whatever untestable assumptions have been made—should 
be routinely conducted (Lash et al. 2009; Silva and Evans 
2016). In particular, justification for carrying out an MR 
analysis in the first place should always be provided as an IV 
analysis can be more biased than a naïve analysis if there is 
little or no unmeasured confounding (Brookhart et al. 2010). 
The IV core conditions should be routinely evaluated in a 
systematic way (von Hinke et al. 2016) and care should be 
taken when establishing validity of sets of SNPs jointly for 
use in an allele score, for example. As is standard practice 
in observational epidemiology, evidence should be obtained 
from as many different sources as possible, assumptions 
should be clearly discussed and reasons for accepting (or 
refuting) them provided (Glymour et al. 2012).

We have also argued that the structural assumption 
required to link the causal and observational regimes is sel-
dom mentioned, even though it is regularly assumed, and it 
does have implications for the type of intervention that can 
be considered. For the effect of age at puberty on asthma, 
for example, a proposed pharmaceutical intervention might 
invalidate this assumption and the desired causal effect on 
asthma may not be achieved. Violation of the first and third 
core conditions so that G⊥⊥∕ Y ∣ (X,U) is often modelled as 
a simple direct effect of G on Y in sensitivity analyses with 
a single parameter representing the association. While this 
makes sense mathematically, the violation can also occur 
via U (see Fig. 1a) and, as we have seen in “Establishing 
validity for a candidate IV”, can arise for different biological 
reasons. What one is willing to assume about the size and 
direction of such effects for these sensitivity analyses should 
be informed by what is biologically most plausible.

Due to the fact that many published epidemiological find-
ings cannot be replicated, there is a danger that the current 
focus on replication may get confused with actual verifica-
tion. It has hence been suggested that a range of different 
approaches—including MR—should always be used to ver-
ify epidemiological results in a process called ‘triangulation’ 
(Lawlor et al. 2016). We would agree with this but would 
stress that it is only useful if the assumptions of the different 
approaches involved are clearly justified.

Mendelian randomisation has enormous potential for 
causal inference in observational epidemiology but it 
should never be an automated process based on downloaded 
SNP–exposure and SNP–outcome associations. The under-
lying assumptions of any analysis should be systematically 
inspected for every single study and biological knowledge, 
in particular, should be incorporated. Indeed, the selection of 
SNPs to include as IVs and the assessment of their (possibly 
joint) validity are probably more important issues than the 
particular choice of analysis method (Burgess et al. 2017b). 
A test for the null hypothesis of ‘no causal effect’ should 

always be carried out and bounds for the causal effect should 
be calculated whenever possible. This is because they both 
inform on what can be inferred from core IV conditions and 
the data alone without making any additional (semi-) para-
metric assumptions. Point estimates require further—and 
typically—strong assumptions. More importantly, results 
that depend solely on specific and unverifiable parametric 
assumptions will not necessarily be replicable.

There is a tendency in the MR literature to shy away 
from drawing causal conclusions, even when these are sta-
tistically supported, and referees often advocate caution in 
interpreting results causally. We agree with Swanson and 
Hernán (2018) that the whole point of an MR analysis is 
to draw causal conclusions. Otherwise, why not base cau-
tious conclusions on a standard regression analysis which 
is a lot simpler? Indeed, it is essential to be able to use the 
word ‘causal’ for rigorous and meaningful epidemiologi-
cal research (Hernán 2018). MR estimates of causal effects 
should always be interpreted causally, but it should be made 
clear that they are conditional on the particular assumptions 
underlying the analysis. If researchers are not happy to make 
such assumptions they should not produce a point estimate 
(VanderWeele et al. 2014) and should base their inferences 
on the test of the causal null, the bounds and on sensitivity 
analyses.
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