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Abstract

A discontinuous Galerkin (dG) method for the numerical solution of initial/boundary
value multi-compartment partial differential equation (PDE) models, interconnected
with interface conditions, is analysed. The study of interface problems is motivated by
models of mass transfer of solutes through semi-permeable membranes. The case of
fast reactions is also included. More specifically, a model problem consisting of a sys-
tem of semilinear parabolic advection-diffusion-reaction partial differential equations
in each compartment with only local Lipschitz conditions on the nonlinear reaction
terms, equipped with respective initial and boundary conditions, is considered. Gen-
eral nonlinear interface conditions modelling selective permeability, congestion and
partial reflection are applied to the compartment interfaces. The interior penalty dG
method for this problem, presented recently, is analysed both in the space-discrete and
in fully discrete settings for the case of, possibly, fast reactions. The a priori analysis
shows that the method yields optimal a priori bounds, provided the exact solution is
sufficiently smooth. Numerical experiments indicate agreement with the theoretical
bounds.

1. Introduction

Models of mass transfer of substances (solutes) through semi-per-meable mem-
branes appear in various contexts, such as biomedical and chemical engineering appli-
cations [20]. Examples include the modelling of electrokinetic flows (see, e.g., [6] and
the references therein), cellular signal transduction (see, e.g., [12] and the references
therein), and the modelling of solute dynamics across arterial walls (see, e.g., [30] and
the references therein).

This work is concerned with the development and analysis of fully discrete dis-
continuous Galerkin methods for a class of continuum models for mass transfer based
on initial/boundary value multi-compartment partial differential equation (PDE) prob-
lems, closed by nonlinear Kedem-Katchalsky (KK) interface conditions [23, 22]. Finite
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element methods for mass transfer models have been developed for the solution of so-
lute dynamics across arterial walls; see [30, 29, 28] and the references therein, while
existence results for the purely diffusing interface problem coupled with KK-type in-
terface conditions are given in [10]. Further, numerical approaches to the treatment
of interface conditions for PDE problems, resulting to globally continuous solutions
can be found, e.g., in [5, 2, 13, 27, 25]. The advantages of dG methods for interfac-
ing different numerical methods (numerical interfaces) have been identified [26, 15],
as well as their use on transmission-type/high-contrast problems, yielding continuous
solutions across the transmission interface, has been investigated [17, 8, 18, 9].

This work builds upon the recent numerical treatment of this class of problems pre-
sented in [11]. There, a dG method for the same problem is presented along with an
a priori error analysis for the space-discrete case, utilising a continuation argument, in
conjunction with a non-standard elliptic projection inspired by a classical construction
of Douglas and Dupont [16] for the treatment of nonlinear boundary conditions. The
continuation argument used in [11] was able to deliver optimal a priori bounds with re-
spect to the local mesh-size, without the need of global mesh quasi-uniformity assump-
tions (cf. [24]), at the expense of covering a more restrictive range of nonlinear growth
in the reaction terms. Here, we extend the a priori error analysis for the same method
under the weaker assumption of only local Lipschitz growth of the reaction terms. As,
perhaps, expected this is achieved at the expense of stricter mesh assumptions: roughly
speaking, these are assumptions of the form h

−d/2
min hs−1

max, where hmin and hmax are the
smallest and largest element diameters across a given mesh, d is the spatial dimension
and s is the optimal rate of approximation of finite element-type functions in the L2

norm. The fixed point argument used has been applied to other types of finite element
methods for time-dependent semilinear problems, cf. for instance [1, 19].

The remaining of this work is organized as follows. In Section 2, the PDE model
is detailed, while in Section 3 we review the dG method proposed for the advection-
diffusion part of the spatial operator incorporating the nonlinear interface conditions.
Two a priori error bounds are presented in Section 4 , one for the spatially discrete
case and one for the fully discrete case. Finally, Section 6 contains some numerical
experiments.

2. Model problem

We consider systems of parabolic semilinear PDEs on two disjoint subdomains Ω1

and Ω2 of Rd, d ∈ {2, 3}, coupled by nonlinear Neumann conditions at the interface
ΓI between the subdomains.

For n ∈ N, we define the broken space Hs := [Hs(Ω1 ∪ Ω2)]n, s ∈ R, and
introduce the model problem:
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Ω1 Ω2ΓI

Figure 1: The domain of solution is given by the two subdomains Ω1, Ω2 joining at the internal boundary
ΓI.

Find u ∈ L2(0, T ;Hs), s > 3/2, with ut ∈ L2(0, T ;H−1) such that

ut −∇ · (A∇u− UB) + F(u) = 0 in (0, T ]× (Ω1 ∪ Ω2), (1)
u(0, x) = u0(x) on {0} × Ω, (2)
u = gD on ΓD, (3)(
A∇u− X−UB

)
n|Ω = gN on ΓN, (4)

(A∇u− UB)n|Ω1 = gI(u
1,u2) on ΓI, (5)

(A∇u− UB)n|Ω2 = −gI(u
1,u2) on ΓI, (6)

where uj := u|Ω̄j∩ΓI
, j = 1, 2. Further, Ω = Ω1 ∪ Ω2 ∪ ΓI and n always denotes

the unit normal vector pointing outward of the given domain boundary. For i = 1, 2,
we assume that Ωi has Lipschitz boundary and that ∂Ωi ∩ ∂Ω has positive (d − 1)-
dimensional (Hausdorff) measure. See Figure 1 for an exemplification of the solution
domain.

We employ the following notational convention: vectors are indicated with lower
case bold symbols, n × n diagonal matrices with upper case (non-bold) symbols, and
n × d tensors with upper case bold symbols. The gradient ∇v of a vector function
v : Ω1 ∪ Ω2 → Rn in H1 is a mapping Ω1 ∪ Ω2 → Rn×d gained from component-
wise application of the gradient operation: ∇v := (∇v1, . . . ,∇vn)T. Similarly the
divergence ∇ · Q of the tensor-valued function Q : Ω1 ∪ Ω2 → Rn×d is ∇ · Q :=
(∇ ·Q1, . . . ,∇ ·Qn)T where the Qi are rows of Q. Finally, U = diag(u).

The data of the problem are defined as follows. The field B is an n × d tensor
with rows Bi ∈ C1(0, T ;W 1,∞(Ω\ΓI)

d ∩ W∞(div,Ω)), i = 1, . . . , n, and A ∈
[C([0, T ]×Ω1∪Ω2)]n×n diagonal, withA = diag(a1, a2, . . . , an), where ai : [0, T ]×
Ω1 ∪ Ω2 → R, i = 1, . . . , n. We assume that there exists a constant αmin > 0
of uniform parabolicity such that ai(t, x) ≥ αmin for all i = 1, . . . , n and (t, x) ∈
[0, T ]×Ω. For simplicity, we also require that the matrix diag(∇·B) is positive semi-
definite. Finally, F : Rn → Rn is a vector field satisfying a Lipschitz condition on
every compact set of Rn. We stress, that no global Lipschitz continuity is assumed.

The boundary ∂Ω is split into ∂Ω = ΓD ∪ ΓN, with ΓD being of positive (d − 1)-
dimensional (Hausdorff) measure. Further, we subdivide ∂Ω = ∂Ω−i ∪ ∂Ω+

i , where
∂Ω−i := {x ∈ ∂Ω : (Bin)(x) < 0} and ∂Ω+

i = ∂Ω\∂Ω−i are the inflow and outflow
parts of the boundary ∂Ω for the i-th equation. We denote by χ−i : ∂Ω−i → R the
characteristic function of ∂Ω−i ; further X− := diag(χ−1 , . . . , χ

−
n ), and X+ := I −
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X−. The Dirichlet and Neumann data are gD ∈ H1/2(ΓD)n and gN ∈ L2(ΓN)n,
respectively.

The problems on Ω1 and Ω2 are coupled by the interface conditions (5) and (6).
These state that the flux across the interface is continuous and is a given function of the
solution traces at the interface. We assume that the flux function gI takes the form

gI(u
1,u2) = p̃(u1,u2)− R(Υ1U1 + Υ2U2)(Bn)|Ω1 , on ΓI. (7)

Here, p̃ : R2n → Rn is a general function of the traces of u from both sides of the inter-
face and thus cover a number of known membranes models [23, 22, 30, 6, 11]. For in-
stance, a typical diffusion phenomenon would yield a term proportional to the solution
jump at the interface, with the constant of proportionality given by the membrane per-
meability, cf. [11]. The second term in (7) describes the net advection through the inter-
face in terms of the friction coefficients and weights Υj = diag(υj1, . . . , υ

j
n), j = 1, 2

and R = diag(r1, . . . , rn) with ri, υ
1,2
i : ΓI → [0, 1] and i = 1, . . . , n.

In view of the analysis below, we make the following (physically reasonable) as-
sumptions. We assume that p̃ ∈ C1,1(R2n) and that its Jacobian p̃′ is uniformly
bounded. Further, for every i = 1, . . . , n, the weights υ1,2

i satisfy, for any x ∈ ΓI,

υ1
i (x) + υ2

i (x) = 1,

{
υ1
i (x) ≥ υ2

i (x) if (Bin|∂Ω1)(x) ≥ 0,

υ1
i (x) < υ2

i (x) otherwise.
(8)

Throughout this work, we shall assume that the above system has a unique solution
that remains bounded up to, and including, the final time T .

3. The discontinuous Galerkin method

3.1. Finite element spaces

Let T be a shape-regular and locally quasi-uniform subdivision of Ω into disjoint
open elements κ ∈ T, such that ΓI ⊂ ∪κ∈T∂κ =: Γ, the skeleton. Further we decom-
pose Γ into three disjoint subsets Γ = ∂Ω∪Γint ∪ΓI, where Γint := Γ\(∂Ω∪ΓI). We
assume that the subdivision T is constructed via mappings Fκ, where Fκ : κ̂ → κ are
smooth maps with non-singular Jacobian, and κ̂ is the reference d-dimensional simplex
or the reference d-dimensional (hyper)cube. It is assumed that the union of the closures
of the elements κ ∈ T forms a covering of the closure of Ω; i.e., Ω̄ = ∪κ∈Tκ̄.

For m ∈ N we denote by Pm(κ̂) the set of polynomials of total degree at most
m if κ̂ is the reference simplex, and the set of all tensor-product polynomials on κ̂ of
degree k in each variable, if κ̂ is the reference hypercube. Let mκ ∈ N be given for
each κ ∈ T. We consider the hp-discontinuous finite element space

Vh := {v ∈ L2(Ω) : v|κ ◦ Fκ ∈ Pmκ(κ̂), κ ∈ T}, (9)

and set Vh := [Vh]n.
Next, we introduce relevant trace operators. Let κ+, κ− be two elements sharing

an edge e := ∂κ+ ∩ ∂κ− ⊂ Γint ∪ ΓI. Denote the outward normal unit vectors
on e of ∂κ+ and ∂κ− by n+ and n−, respectively. For functions q : Ω → Rn and
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Q : Ω→ Rn×d that may be discontinuous across Γ, we define the following quantities:
for q+ := q|κ+ , q− := q|κ− and Q+ := Q|κ+ , Q− := Q|κ− on the restriction to e,
we set

{q} :=
1

2
(q+ + q−), {Q} :=

1

2
(Q+ + Q−),

and
[[q]] := q+ ⊗ n+ + q− ⊗ n−, [Q] := Q+n+ + Q−n−,

where ⊗ denotes the standard tensor product operator, with q ⊗ w = qwT. If e ∈
∂κ ∩ ∂Ω, these definitions are modified as follows: {q} := q+, {Q} := Q+ and
[[q]] := q+ ⊗ n, [Q] := Q+n.

Further, we introduce the mesh quantities h : Ω → R, m : Ω → R with h(x) =
diamκ, m(x) = mκ, if x ∈ κ, and the averaged values h(x) = {h}, m(x) = {m}, if
x ∈ Γ. Finally, we define hmax := maxx∈Ω h and hmin := minx∈Ω h.

We shall assume the existence of a constant CA ≥ 1 independent of T such that, on
any face that is not contained in ΓI, given the two elements κ, κ′ sharing that face, the
diffusion matrix A satisfies

C−1
A ≤

∥∥A‖∞,κ‖A−1
∥∥
∞,κ′ ≤ CA. (10)

We refer to [18] on possible ways to remove this assumption; we refrain from doing so
here for simplicity of the presentation. The next result is a modification of the classical
trace estimate for functions in H1(Ω1 ∪ Ω2) + Vh; see [7] for similar results.

Lemma 1 ([11]). Assume that the mesh T is both shape-regular and locally quasi-
uniform. Then for v ∈ H1(Ω1 ∪ Ω2) + Vh, the following trace estimate holds:

2∑
j=1

‖v|Ωj‖2ΓI
≤ c1ε

(∑
κ∈T

‖∇v‖2κ + ‖h−1/2[v]‖2Γint

)
+ c2ε

−1‖v‖2, (11)

for any ε > hmax and for some constants c1 > 0 and c2 > 0, depending only on the
shape-regularity of the mesh and on the domain Ω.

3.2. Space discretization

The following dG-in-space method for the system (1), (2), (3), (4), (5), and (6)
has been introduced in [11], albeit for a slightly less general flux function. The dis-
cretization of the space variables was based on a dG method of interior penalty type
for the diffusion part and of upwind type for the advection; moreover, special care had
to be given to the incorporation of the interface conditions. The semi-discrete in space
method reads:

For t = 0, let uh(0) = Πu0, with Π : [L2(Ω)]n → Vh denoting the orthogonal
L2-projection onto Vh. For t ∈ (0, T ], find uh ≡ uh(t) ∈ Vh such that

〈(uh)t,vh〉+B(uh,vh) +N(uh,vh) + 〈F(uh),vh〉 = l(vh), for all vh ∈ Vh,
(12)
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where

B(uh,vh) :=
∑
κ∈T

∫
κ

(A∇uh − UhB) : ∇vh +

∫
ΓI

(
{UhB}+ BI[[uh]]

)
: [[vh]]

−
∫

Γint

(
{A∇uh − UhB} : [[vh]] + {A∇vh} : [[uh]]− (Σ + B)[[wh]] : [[vh]]

)
−
∫

ΓD

(
(A∇wh − X+UhB) : (vh ⊗ n) + (A∇vh) : (wh ⊗ n)− Σwh · vh

)
+

∫
ΓN

(X+UhB) : (vh ⊗ n),

(13)
and

N(uh,vh) :=

∫
ΓI

(
p̃(u1

h,u
2
h)⊗ n|Ω2 − (I− R) ({UhB}+ BI[[uh]])

)
: [[vh]], (14)

and

l(vh) :=−
∫

ΓD

(
(gD⊗n) : (A∇vh)+(X−GDB) : (vh⊗n)−ΣgD ·vh

)
+

∫
ΓN

gN ·vh,

(15)
withGD = diag(g),Uh := diag(uh), and Σ := CσAm

2h−1 denoting the discontinuity-
penalization parameter matrix with Cσ > 1 constant. Furthermore,

B :=
1

2
diag(|B1 · n|, . . . , |Bn · n|),

and
BI := (Υ1 − 1

2
I)Bn|Ω1 = (Υ2 − 1

2
I)Bn|Ω2

is diagonal with non negative entries.
To ensure the coercivity of B, the advective interface term has been split as

R = I− (I− R),

resulting into contributions in both B and N . In this way, the advective interface con-
tribution in B can be recast using the weighted mean {WhB}υ := Υ1WhB|Ω1 +
Υ2WhB|Ω2 , so that

{WhB}υ : [[vh]] = ({WhB}+ BI[[wh]]) : [[vh]], (16)

thereby resembling the typical dG upwinding for linear advection problem.
Notice also that, if the flux function takes the particular form considered in [11],

namely p̃(u1,u2) ⊗ n|Ω2 = P(u1,u2)[[u]] for some permeability tensor P, then the
diffusion term appearing in N is simply given by

∫
ΓI

P(w)[[w]] : [[vh]]. This resem-
bles the typical jump stabilisation term with the permeability coefficient replacing the
discontinuity-penalization parameter.
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3.3. Elliptic projection
A nonlinear elliptic projection inspired by a classical construction of Douglas and

Dupont [16] for the treatment of nonlinear boundary conditions, was developed in [11].
Here we review some of these developments that are necessary in the error analysis
below. For the proofs, we refer to [11].

Definition 1. For each t ∈ [0, T ] we define the elliptic projection wh ∈ Vh to be the
solution of the problem: find wh ≡ wh(t) ∈ Vh, such that

B(u−wh,vh) + λ〈u−wh,vh〉+N(u,vh)−N(wh,vh) = 0 ∀vh ∈ Vh, (17)

for some fixed λ > 0.

The constant λ > 0 in the definition above is to be chosen large enough to ensure
the uniqueness of the projection wh (see [11] for details).

Next, denoting by Ss := Hs + Vh, s ∈ R, we define the dG-norm on S1

|‖w|‖ :=

(∑
κ∈T

(
‖
√
A∇w‖2κ +

1

2
‖
√

diag(∇ ·B)w‖2κ
)

+ ‖
√

Σ[[w]]‖2ΓD∪Γint

+ ‖
√
B[[w]]‖2Γ\ΓI

+ ‖
√

BI[[w]]‖2ΓI

)1/2

,

(18)

where ‖Q‖κ :=
( ∫

κ

∑n
i=1 |Qi(x)|2 dx

)1/2
, denotes the Frobenius norm whenever Q

is a n × d tensor. We assume that (18) is a norm. This is satisfied when standard
assumptions on the solution in conjunction with the boundary conditions hold on each
subdomain, e.g., ΓD ∩ ∂Ωj has positive (d − 1)-dimensional (Hausdorff) measure for
j = 1, 2. If the interface manifold ΓI is not characteristic to the advection field, such
hypotheses can be further relaxed. We shall also make the simplifying assumption that
B is such that:

Bi · ∇(vh)i ∈ Vh, for i = 1, . . . , n, (19)

for any function vh := ((vh)1, . . . , (vh)n)T ∈ Vh. We refer to [21, 4], on ways to
circumvent this assumption for the case of scalar linear advection-diffusion problems.

The next two results show the coercivity and the continuity of the bilinear form
B(·, ·). Their proofs follow straightforward variations of well-known arguments (see,
e.g., [3, 21]) and are, therefore, omitted for brevity.

Lemma 2. For vh ∈ Vh, there exists a positive constant Ccoer, independent of vh,
such that

B(vh,vh) ≥ Ccoer|‖vh|‖2.

Lemma 3. Let Π : [L2(Ω)]n → Vh denote the L2-orthogonal projection onto Vh. For
any w ∈ Hs, s > 3/2 and vh ∈ Vh we have

|B(η,vh)| ≤ Ccont|‖η|‖B|‖vh|‖,

with Ccont > 0 constant, independent of w and of vh, where η := w −Πw and

|‖η|‖B :=
(
|‖η|‖2+‖Σ−1/2{A∇η}‖2ΓD∪Γint

+‖
√
B{η}‖2Γ+‖

√
BI{η}‖2ΓI

)1/2
. (20)
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The next result establishes the well-posedness of the problem (17) and relevant
approximation properties.

Lemma 4. Assume that u ∈ Hs, s > 3/2 for all t ∈ (0, T ]. For λ > 0 sufficiently large
and for hmax sufficiently small, the variational problem (17) has a unique solution
wh ∈ Vh for each t ∈ (0, T ]. Moreover, the following bound holds:

Ccoer|‖ρ|‖2 + λ‖ρ‖2 ≤ |‖η|‖2B,λ, (21)

and, if also ut ∈ Hs, then

Ccoer|‖ρt|‖2 + λ‖ρt‖2 ≤ |‖ηt|‖2B,λ + |‖η|‖2B,λ, (22)

where ρ := u−wh, η := u−Πu, and

|‖η|‖B,λ :=
(
Cc|‖η|‖2B + 7λ‖η‖2

)1/2
,

with Cc := (4C2
cont + 3C2

coer)/Ccoer.

Remark 1. The assumption “hmax sufficiently small” is required to counteract the lack
of monotonicity/coercivity of the interface non-linearity. It can be quantified exactly in
view the statement of Lemma 1 (cf., Lemma 3.1 in [11]), requiring ε > hmax and, in
turn, ε is required to be sufficiently small in an explicit fashion in the proof of Lemmas
4.4 and 4.5 in [11].

We conclude this section with anL2-error bound of the elliptic projection (17). This
is obtained by an Aubin-Nitsche duality-type argument, inspired by a construction of
Douglas and Dupont [16] for nonlinear boundary conditions.

The interface operator N given in (14) consists of a nonlinear component driven
by the function p̃(w) and a linear component. We characterise them by introducing
the nonlinear function p̂(w) = p̃(u1

h,u
2
h) ⊗ n|Ω2 and the linear operator L[w] :=

−(I − R)({WB}υ + BI[[w]]). Further, we abbreviate S := S1, let S∗ be the dual
space of S, and momentarily view N as an operator from S → S∗, indicated with a
calligraphic font:

N : S→ S∗, w 7→
(
v 7→

∫
ΓI

(p̂(w) + L[w]) : [[v]]
)
,

where the dependence on v represents a linear mapping S → R in S∗. Thus the
derivative N′ is a mapping S→ L(S,S∗), where L(S,S∗) denotes the linear mappings
from S to S∗. Therefore the integral

P(t,v) :=

∫ 1

0

N′(wθ(t, ·))(v) dθ,

where wθ := θu + (1− θ)wh, belongs to S∗ for each t ∈ (0, T ), v ∈ S. In particular
P(t,u(t, ·)−wh(t, ·)) ∈ S∗ and

P(t,u(t, ·)−wh(t, ·)) =

∫ 1

0

N′(wθ(t, ·))(u(t, ·)−wh(t, ·)) dθ

=

∫ 1

0

∂θ(N(wθ(t, ·))) dθ = N(u(t, ·))−N(wh(t, ·)),

(23)
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using that [0, 1] → S∗, θ 7→ N(wθ(t, ·)) is continuously differentiable as p̂ ∈
C1,1(R2n). We shall frequently abbreviate P(t, z(t, ·)) by Pz below.

We assume that there is an s ∈ (3/2, 2] such that for all α ∈ [L2(Ω)]n and β ∈
[H1/2(ΓI)]

2n there exists a solution ζ ∈ Hs of the linear dual equation:

B(v, ζ) + λ〈v, ζ〉+ 〈Pv, ζ〉 = 〈v,α〉+ 〈v,β〉ΓI
∀v ∈ H1, (24)

satisfying
2∑
j=1

‖ζ‖Hs(Ωj) . ‖α‖ + ‖β‖H1/2(ΓI). (25)

Lemma 5. Assume that the hypothesis of Lemma 4 and (24) with (25) hold true. For
λ > 0 sufficiently large, for hmax sufficiently small, the following error bound holds:

‖ρ‖ ≤ C(1 + h2
maxλ)1/2hs−1

max |‖η|‖B,λ. (26)

If in addition the Hessian p̃′′ is uniformly bounded and u,ut ∈ W 1,∞([0, T ] × ΓI)
then

‖ρt‖ ≤ C(1 + h2
maxλ)1/2hs−1

max (|‖ηt|‖B,λ + |‖η|‖B,λ). (27)

The constant C depends only on CA and the shape-regularity of the mesh.

4. DG method for the parabolic system and its error analysis

The main contribution of this work is the derivation of optimal a priori bounds
with substantially less restrictive assumptions on the reaction growth compared to the
analysis presented in [11]. This will be done at the expense of introducing certain
conditions on the mesh. This argument is motivated by ideas presented in [1, 19] for
different problems.

To this end, consider FL : Rn → Rn satisfying

|FL(x)− FL(y)| ≤ CL|x− y|, (28)

such that F(x) = FL(x), for all x ∈ Rn with |x| ≤ L := 2 max0≤t≤T ‖u(t)‖∞. This
implies, in particular, that FL(u) = F(u).

Theorem 1. Adopt the notation of Lemma 4 and the assumptions of Lemma 5. Assume
also that u ∈ L2(0, T ;Hs) ∩ L∞(0, T × Ω), s > 3/2, ut ∈ L2(0, T ;L2(Ω)), u|κ ∈
L2(0, T ;W 2,∞(κ)) ∩H1(0, T ; [Hkκ+1(κ)]n), kκ ≥ 1, κ ∈ T, and that the mesh T is
fine enough so that

h
− d2
minh

s−1
maxE((0, T ],h,u,Vh) (29)

is small enough with

E((0, T ],h,u,Vh) :=
(∑
κ∈T

∫ T

0

h2sκ
κ

(
|u|2[Hsκ+1(κ)]n + |ut|2[Hsκ+1(κ)]n

))1/2

, (30)
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for sκ = min{mκ, kκ}. Assume, finally, that F is locally Lipschitz. Then, we have

‖u− uh‖L∞(0,T ;L2(Ω)) ≤ Chs−1
maxE((0, T ],h,u,Vh), (31)

with C independent of h.

Proof. Assume initially that the locally Lipschitz continuous F is replaced with the
globally Lipschitz continuous FL from (28), and consider the modified initial/boundary
value problem described in Section 2 with F replaced by FL. Noting that FL(u) =
F(u), we conclude that the analytical solution of the modified and of the original prob-
lem coincide. Let uLh denote the numerical solution of the modified problem by the
dG method (12) with F replaced by FL.

Let eL = ρ+θL, with ρ = u−wh and θL := wh−uLh. Orthogonality implies:

〈(eL)t,θL〉+B(eL,θL) +N(u,θL)−N(uLh,θL) + 〈F(u)− FL(uLh),θL〉 = 0.

Owing to (17), this gives

1

2

d

dt
‖θL‖2 +B(θL,θL) = 〈FL(uLh)− F(u),θL〉

+N(uLh,θL)−N(wh,θL) + 〈λρ− ρt,θL〉.
(32)

Using the regularity of p̃ and (11), we have

|N(uLh,θL)−N(wh,θL)| ≤ CpB
2∑
j=1

‖θL|Ωj‖2ΓI
≤ 1

4
Ccoer|‖θL|‖2 +

λ

2
‖θL‖2,

(33)
choosing ε and λ as in the proof of Lemma 4; we refer to [11] for details. The last term
on the right-hand side of (32) can be treated as follows:

|〈λρ− ρt,θL〉| ≤
λ

2
‖ρ‖2 +

1

2λ
‖ρt‖2 + λ‖θL‖2. (34)

Since FL(u) = F(u), the reaction term can be bounded as follows:

|〈F(u)− FL(uLh),θL〉| ≤ CL
∫

Ω

|u− uLh||θL| ≤
1

2
CL
(
‖ρ‖2 + 3‖θL‖2

)
. (35)

Hence, (32) gives

‖θL(τ)‖2 + Ccoer

∫ τ

0

|‖θL|‖2 ≤ δ2
L + 3(CL + λ)

∫ τ

0

‖θL‖2, (36)

with δ2
L(t) =

∫ T
0

(CL + λ)‖ρ‖2 + λ−1‖ρt‖2dt, noting that uLh(0) = uh(0). Gron-
wall’s Lemma then implies

‖θL(τ)‖2 + Ccoer

∫ τ

0

|‖θL|‖2 ≤ δ2
Le3(CL+λ)T . (37)
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Hence the triangle inequality implies

‖eL‖L∞(0,T ;L2(Ω)) ≤ δLe3(CL+λ)T/2 + ‖ρ‖L∞(0,T ;L2(Ω))

≤ Chs−1
maxE((0, T ],h,u,Vh),

(38)

using Lemma 5 and standard L2-projection approximation estimates.
We shall show that under the mesh assumption (29), the bound (38) also holds for

u − uh. To this end, consider the standard nodal interpolation operator Iκ : Hs(κ) ∩
C(κ̄)→ Pmκ , (see, e.g., [14] for the scalar version), satisfying

|v − Iκv|Hj(κ) ≤ Chs−jκ |v|Hs(κ), (39)

for 0 ≤ j ≤ s and s ≥ 2, and

‖v − Iκv‖∞,κ ≤ Ch2
κ|v|W 2,∞(κ). (40)

Let also (Iv|κ)i := Iκvi, for v = (v1, . . . , vn) ∈ [Hs(κ) ∩ C(κ̄)]n. Then we have

max
0≤t≤T

‖uLh‖∞ ≤ max
0≤t≤T

‖uLh − Iu‖∞ + max
0≤t≤T

‖u− Iu‖∞ + max
0≤t≤T

‖u‖∞. (41)

The second and third terms on the right-hand side of (41) can be bounded using (40)
and the definition of L, respectively, giving

max
0≤t≤T

‖uLh‖∞ ≤ max
0≤t≤T

(
‖uLh − Iu‖∞ + C

(∑
κ∈T

h4
κ|u|2W 2,∞(κ)

)1/2)
+
L

2
. (42)

For the first term on the right-hand side of (42), a standard inverse estimate implies

‖uLh − Iu‖∞ ≤ C
∑
κ∈T

h
− d2
κ ‖uLh − Iu‖κ ≤ C

∑
κ∈T

h
− d2
κ

(
‖eL‖κ + ‖u− Iu‖κ

)
.

Therefore, in view of (38) and (39), we deduce from (42) the bound

max
0≤t≤T

‖uLh‖∞ ≤ Ch
− d2
minh

s−1
maxE((0, T ],h,u,Vh) + C

(∑
κ∈T

h4
κ|u|2W 2,∞(κ)

)1/2

+
L

2
.

(43)
Choosing h such that the first two terms on the right-hand side of (43) are bounded
strictly by L/2, one finds uLh = uh, thereby concluding the proof.

5. Error analysis for fully-discrete methods

We present an a priori error analysis for a simple fully discrete scheme consisting
of the above dG method in space, together with simple implicit Euler time-stepping in
time. To this end, we consider a subdivision 0 = t0 < t1 < · · · < tN = T of [0, T ],
with local timestep τk := tk − tk−1. The fully discrete scheme is defined as follows:
for k = 1, 2, . . . , N , find ukh ∈ Vh such that

〈∂ukh,vh〉+B(ukh,vh) +N(ukh,vh) + 〈F(ukh),vh〉 = 0, for all vh ∈ Vh, (44)
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with ∂ukh := (ukh − uk−1
h )/τk.

Setting ek := uk−ukh = ρk+θk with ρk := uk−wk
h and θk := wk

h−ukh, where
uk = u(tk) the exact solution to the PDE system (1)–(6) at time tk, and wk

h ∈ Vh is
given by

B(uk−wk
h,vh)+N(uk,vh)−N(wk

h,vh)+λ〈uk −wk
h,vh〉 = 0 ∀vh ∈ Vh, (45)

for λ > 0.

Theorem 2. Adopt the notation of Lemma 4 and the assumptions of Lemma 5. Assume
also that u ∈ L2(0, T ;Hs) ∩ L∞([0, T ] × Ω), s > 3/2, ut,utt ∈ L2(0, T ;L2(Ω)),
u|κ ∈ L2(0, T ;W 2,∞(κ)) ∩ H1(0, T ; [Hkκ+1(κ)]n), kκ ≥ 1, κ ∈ T, and that the
space and time meshes are fine enough so that

h
− d2
min

(
hs−1

maxE
N (h,u,Vh) +

k∑
q=1

τ2
q

∫ tq

tq−1

‖utt‖
)

(46)

is small enough, with

Ek(h,u,Vh) :=
( k∑
q=1

τk

(∑
κ∈T

h2sκ
κ

(
|u|2[Hsκ+1(κ)]n + |ut|2[Hsκ+1(κ)]n

)))1/2

, (47)

for sκ = min{mκ, kκ}, k = 1, . . . , N . Assume, finally, that F is locally Lipschitz.
Then, we have

max
0≤k≤N

‖uk − ukh‖ ≤ C
(
hs−1

maxE
N (h,u,Vh) +

k∑
q=1

τ2
q

∫ tq

tq−1

‖utt‖
)
. (48)

Proof. As before, assume for the moment that F : Rn → Rn is replaced by FL
described above and let ukLh denote the numerical solution of the modified problem by
the dG method given by (44) with F replaced by FL.

Setting ekL = ρk + θkL, with θkL := wk
h − ukLh ∈ Vh, and wk

h as above, Galerkin
orthogonality implies:

〈ukt − ∂ukLh,θ
k
L〉+B(ekL,θ

k)+N(uk,θkL)−N(ukLh,θ
k
L)+〈F(uk)− FL(ukLh),θkL〉 = 0.

Using (45), this gives

〈∂θkL,θ
k
L〉+B(θkL,θ

k
L) = 〈FL(ukLh)− F(uk),θkL〉+N(ukLh,θ

k
L)−N(wk

h,θ
k
L)

+ 〈λρk − ∂ρk + ∂uk − ukt ,θ
k
L〉.

(49)
The terms involving the semilinear form N(·, ·) can be bounded in a completely analo-
gous fashion to (33), while the last term on the right-hand side of (49) can be bounded
as follows:

|〈λρk − ∂ρk + ∂uk − ukt ,θ
k
L〉| ≤

λ

2
‖ρk‖2 +

1

2λ
(‖∂ρk‖+‖∂uk − ukt ‖)2 +λ‖θkL‖2.

(50)
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Since FL(u) = F(u), for all t ∈ [0, T ], for the nonlinear reaction term we have:

|〈F(uk)− FL(ukLh),θkL〉| ≤ CL
∫

Ω

|uk−ukLh||θ
k
L| ≤

1

2
CL
(
‖ρk‖2+3‖θkL‖2

)
. (51)

Hence, (49) gives

‖θkL‖2 + Ccoer

k∑
q=1

τk|‖θqL|‖
2 ≤ (δkL)2 + 3(CL + λ)

k∑
q=1

τk‖θqL‖
2, (52)

where

(δkL)2 = (CL + λ)
k∑
q=1

τq

(
‖ρq‖2 + λ−1(‖∂ρq‖ + ‖∂uq − uqt‖)2

)
+ ‖θ0‖2, (53)

noting that u0
Lh = u0

h. The discrete version of Gronwall’s Lemma implies

‖θkL‖2 + Ccoer

k∑
q=1

τq|‖θqL|‖
2 ≤ (δkL)2e3(CL+λ)T . (54)

Using the triangle inequality, we arrive at

max
1≤k≤N

‖ekL‖2 ≤ max
1≤k≤N

((δkL)2e3(CL+λ)T + ‖ρk‖2). (55)

To show that the right-hand side of (55) converges optimally with respect to the local
mesh-size and with respect to the time-step, we work as follows. We begin by setting
t = tk, v = ρk α = ∂ρk, β = 0, and t = tk−1, v = ρk−1 α = ∂ρk, β = 0 on
(24), respectively, with exact (dual) solutions zk and zk−1, respectively, and we use the
resulting equations to arrive at

τk‖∂ρk‖2 = 〈ρk − ρk−1, ∂ρk〉
= B(ρk, zk) + λ〈ρk, zk〉+N(uk, zk)−N(wk, zk)

−B(ρk−1, zk−1)− λ〈ρk−1, zk−1〉 −N(uk−1, zk−1) +N(wk−1, zk−1)

= B(ρk,ηzk) + λ〈ρk,ηzk〉+N(uk,ηzk)−N(wk,ηzk)

−B(ρk−1,ηzk−1)− λ〈ρk−1,ηzk−1〉 −N(uk−1,ηzk−1) +N(wk−1,ηzk−1),
(56)

with ηzk := zk−Πzk, k = 1, . . . , N , where in the last equality we used the definition
of the elliptic projection (45). Using continuity of the bilinear form, the piecewise
trace inequality discussed above, along with standard approximation estimates, one
can show

τk‖∂ρk‖2 ≤ Ch2s−2
max

∑
κ∈T

h2sκ
κ |u|2[Hsκ+1(κ)]n ;

the details are omitted here for brevity (see the proof of Lemma 4.5 in [11] for details).
Also, ‖∂uq − uqt‖, can be bounded straightforwardly using the integral form of Taylor
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expansion. The rest of the terms in δkL as in the proof of Lemma 3.6. This line of
argument results to the bound

max
1≤k≤N

‖ekL‖ ≤ (δkL)2e
3
2 (CL+λ)T+‖ρk‖ ≤ Chs−1

max

(
EN (h,u,Vh)+

k∑
q=1

τ2
q

∫ tq

tq−1

‖utt‖
)
,

whose right-hand side becomes arbitrarily small, for sufficiently small hmax and maxq=1,...,k τq .
We shall now show that, provided (46) is sufficiently small, the same bound also

holds for the dG method of the original problem. To this end, we have

max
1≤k≤N

‖ukLh‖∞ ≤ max
1≤k≤N

(
‖ukLh − Iuk‖∞ + ‖uk − Iuk‖∞ + ‖uk‖∞

)
.

For the second and third terms on the right-hand side of the above bound, we use (40)
and the definition of L, respectively, giving

max
1≤k≤N

‖ukLh‖∞ ≤ max
1≤k≤N

(
‖ukLh − Iuk‖∞ + C

(∑
κ∈T

h4
κ|uk|2W 2,∞(κ)

)1/2)
+
L

2
.

(57)
As before, the first term on the right-hand side of the above bound can be bounded
using a standard inverse estimate, viz.,

‖ukLh − Iuk‖∞ ≤ C
∑
κ∈T

h
− d2
κ ‖ukLh − Iuk‖κ ≤ C

∑
κ∈T

h
− d2
κ

(
‖ekL‖κ + ‖uk − Iuk‖κ

)
.

Therefore, in view of (38) and (39), we deduce the bound

max
0≤k≤N

‖ukLh‖∞ ≤Ch
− d2
minh

s−1
max

(
EN (h,u,Vh) +

k∑
q=1

τ2
q

∫ tq

tq−1

‖utt‖
)

+ C max
1≤k≤N

(∑
κ∈T

h4
κ|uk|2W 2,∞(κ)

)1/2

+
L

2
.

(58)

Choosing hmax small enough, at least small enough so that (46) is sufficiently small,
the first two terms on the right-hand side of (58) are dominated by L/2, which then
already implies that uLh = uh, thereby concluding the proof.

6. Numerical examples

To highlight the practicality of the fully discrete scheme, we present here a numer-
ical experiment with cubic reactions; for a numerical convergence study of the spatial
discretization with a known exact solution we refer to [11].

We set Ω = [−1, 1]2, with Ω1 = [−1, 0] × [−1, 1] and Ω2 = [0, 1] × [−1, 1], so
that ΓI = {0} × (−1, 1). We set ΓN = ∂Ω. For t > 0 we consider a system of two
advection-diffusion equations (1), (2), (4), (5), (6) with a1 = a2 = .1, B1 = B2 =
(−1,−1), and

F(u) =

(
−u3

1 + u1u2

u3
1 − u1u2

)
. (59)
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We set gN = 0 and fix the flux function (7) with p̃ = u2 − u1, Υ1 = diag(.4, .4),
Υ2 = diag(.6, .6), and R = diag(1, 1). The initial condition is

u1|Ω1 = 0, u1|Ω2 = e(y2−1)2(−4x3 + 3x+ 1), u2|Ω1 = u2|Ω2 = 0.

The computational domain is subdivided using a uniform 64× 64 mesh. The time step
is k = 10−2. We solve the problem using the fully implicit method described and anal-
ysed in the previous sections using bilinear elements. Few snapshots of the numerical
solution are shown in Figure 2. Both components of the solution are discontinuous at
the interface. Although no exact solution is available, the numerical solution appears to
be stable and convergent, when compared to numerical solutions on different meshes.
The deal.ii library was used for the above numerical experiments.
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