
 
 

A COMPARISON OF REMOTE SENSING 

CHANGE DETECTION METHODS FOR URBAN 

CREEP IDENTIFICATION IN NORWICH 

 

 

 

Thesis submitted for the degree of 

Doctor of Philosophy 

at the University of Leicester 

 

 

 

by 

Andrew Phillip Tewkesbury BSc 

Department of Geography 

University of Leicester 

 

2017 



Abstract 

i 
 

A COMPARISON OF REMOTE SENSING CHANGE DETECTION METHODS 

FOR URBAN CREEP IDENTIFICATION IN NORWICH 

By 

Andrew Phillip Tewkesbury 

Abstract 

Change detection is one of the most active research areas in remote sensing, driven by 

the desire to monitor the highly dynamic world around us. Modern very high 

resolution (VHR) images from satellite and aerial platforms present an opportunity to 

reveal landscape change in great detail. However, there is little research focusing on 

detailed change detection. This research addresses this problem, by investigating the 

utility of remote sensing change detection to detect fine urban changes called ‘urban 

creep’. Urban creep is the addition of impermeable surface to an existing property, 

after its initial construction. This is problematic because cumulatively, urban creep 

significantly increases flood risk. Moreover, up-to-date urban creep statistics are not 

readily available. Therefore, urban creep identification is a challenge to change 

detection research because of its subtle expression, small extent, and complicated 

contextual setting. The investigation of urban creep is conducted over the city of 

Norwich using aerial images from 2006 and 2010. The research focuses on three 

methodological areas. Firstly, statistical sampling is employed to quantify a baseline 

rate of urban creep. Secondly, a direct classification of the remotely sensed data is 

undertaken to assess the utility of the state-of-the-art in this application. And lastly, as 

a counter-point, change vector analysis (CVA) is applied to explore the utility and 

relevance of differencing methods in a complex urban change detection setting. The 

results have shown that 1) The rate of urban creep in Norwich is increasing; 2) 

Quantitative urban creep evaluation remains beyond the current state-of-the-art, but 

qualitative detection is possible; 3) Simple spectral CVA has almost no utility in this 

application. These findings contribute to knowledge by clarifying the capabilities of 

change detection techniques in detailed urban applications; building upon, and 

extending existing CVA research; and finally by adding to urban creep knowledge. 
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1 Introduction 

1.1 Overview 

Change detection is one of the most active research areas in remote sensing, driven by 

the desire to monitor the highly dynamic world around us. Change detection research 

includes applications that monitor urban areas (Homer & Xian 2011; Lu et al. 2010; 

Doxani et al. 2011), forestry (Desclée et al. 2006; Bontemps et al. 2012; Cohen & 

Fiorella 1998), the natural environment (Linke & McDermid 2012; Stow et al. 2008), 

and natural disasters (Barazzetti 2016; Martha et al. 2016). Even though the huge 

body of work has been consolidated in a number of literature reviews (Tewkesbury et 

al. 2015; Hussain et al. 2013; Lu et al. 2004; Coppin et al. 2004), the science is still 

evolving rapidly. This is in part, due to the increasing uptake of very high resolution 

(VHR) images in recent years. VHR images, with ground resolutions below 1m -often 

referred to as ‘VHR1’ within the Copernicus program (European Space Agency 2015, 

p11)-, can image change in great detail. However, there is very little research focusing 

on detailed change detection, analysing the images at large cartographic scales. This 

thesis addresses this problem, by investigating the utility of remote sensing change 

detection to address fine urban changes called ‘urban creep’. 

Urban creep is the incremental, sub-property level, addition of impermeable surfaces, 

such as the construction of new driveways or patios (Richard Allitt Associates Ltd. 

2008).  Urban creep is difficult to identify (Trioulet 2012) and is not explicitly recorded 

in land use change statistics (Perry & Nawaz 2008). However, it is important because 

in the UK, it is proven to increase flood risk (UKWIR 2010; Ofwat 2011). Urban creep is 

typically small in extent and is defined by a complicated contextual setting. 

Consequently, it poses a challenge to remote sensing change detection. Other 

researchers have sought to identify urban creep in multi-temporal aerial images 

(Duckworth 2005; Newcastle City Council 2008), but little research exists applying 

state-of-the-art remote sensing technology to the problem. This would prove 

challenging because documented issues with VHR image change detection such as 

coping with variations in viewing angle (Listner & Niemeyer 2011b) and shading 

patterns (Hussain et al. 2013) would likely confuse an analysis. Furthermore, the 
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application could prove so challenging, that the relevance of image differencing 

methods, such as change vector analysis (CVA) could be questioned. This thesis 

explores urban creep identification using remote sensing by means of a case study 

covering the city of Norwich, in the UK.  

1.2 Problem definition 

Urban creep is the addition of impermeable, sealed surfaces to a development after 

the initial construction (Wright et al. 2011). Examples include the paving over of a 

front garden, to create additional parking; a housing extension; or a paved, low 

maintenance garden. This type of impermeable surface addition is a change in land 

cover (not land use), typically from a vegetated to a non-vegetated state. This loss of 

permeable, often vegetated land is linked to a range of different impacts including 

increased flood risk, urban heat island effects and reduced biodiversity and carbon 

sequestration (Scalenghe & Marsan 2009). 

Urban creep then is incremental change, made by the occupier to an existing property. 

This change is made based on occupier lifestyle choices such as the desire for a 

modern, minimalist garden or by addressing constraints such as a lack of parking 

space. The proliferation of such activity is complex and can be linked to factors such as 

increased car ownership, a limited availability of public transport and the popularity of 

low-maintenance gardens (Greater London Authority 2005). 

This type of change may also be described as curtilage development (Department for 

Communities and Local Government 2008a) where curtilage is defined as 'A yard, 

courtyard, or piece of ground, included within the fence surrounding a dwelling house' 

(American Congress on Surveying and Mapping 1994, p133). However, curtilage is not 

purely a residential concept and relates to all land uses, with the definition based 

upon access and primary activity (Dickinson & Shaw 1977). In the same way that 

curtilage development can refer to a range of different land uses, so too does urban 

creep. Therefore parking space added to an existing industrial unit or retail outlet is 

also an example of urban creep. 

While these examples may represent small individual changes; of little apparent 

significance, their cumulative effect is now beginning to be recognised (Wright et al. 
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2011). Recent research has indicated that across London, 30 km2 of vegetated garden 

area was lost between 1998-99 and 2006-08 (London Wildlife Trust et al. 2011). Such a 

large area would no doubt have been subject to much scrutiny if concentrated in a 

few developments, yet when spread out over thousands of small modifications it is 

largely unchallenged. The combination of these small, incremental changes has a 

profound impact on local drainage and flooding. Specifically, there is a proven link 

between urban creep and increases in pluvial flooding through the sewer network 

(UKWIR 2010; Trioulet 2012; DEFRA et al. 2008). Furthermore, the magnitude of urban 

creep induced flooding far exceeds levels anticipated by small, apparently insignificant 

change (Ofwat 2011). 

Urban creep is entirely different from urban growth or ‘sprawl’. Urban growth relates 

to new developments either within the urban footprint on vacant or derelict land; or 

growing out at the fringes into agricultural, forested or unused land. Growth of this 

kind is a bold expression of change imprinting a significant visual impact on the 

landscape. Examples of this include new residential estates, retail complexes or newly 

established towns. These changes are usually associated with developmental control 

governance and a connection to the local highways, utilities and service infrastructure. 

Such governance and process act to limit development to those with significant 

societal value (Willis & Whitby 1985), while maintaining a sustainable support 

infrastructure. Therefore these changes, if legal and following process, are thoroughly 

documented and accounted. Urban creep, on the other hand, is a much more subtle 

change under limited developmental control. The combined effect of urban creep may 

be to overwhelm both infrastructure and ecosystem services beyond the initial, 

planned state of development. The concept of urban creep and urban growth is 

illustrated in Figure 1 with the use of a time series of aerial images.  
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Figure 1: Urban creep and urban growth visualised in bi-temporal aerial imagery. The aerial images are captured 
over Exeter in 2003 (left) and 2006 (right). The South East of the scene is dominated by urban growth, highlighted in 
blue shading.  The pre-urbanised region to the North West has undergone significant urban creep, highlighted in 
red. All imagery ©Airbus Defence and Space Ltd. 2017 and GeoPerspectives 2017. 

 

Urban creep identification is an under-explored avenue for remote sensing change 

detection. Early urban creep identification work by Cutting (2003) recognised that 

aerial images give very effective support to a field survey, helping to delineate the 

extent of impermeable additions. Later studies recognised the benefit that multi-

temporal aerial imagery can bring, giving two or more specific snapshots in time. For 

example, Duckworth (2005) tracked urban creep in Keighley, Bradford over three 

epochs by sampling land cover in a set of aerial images between 1972 and 2002. Perry 

& Nawaz (2008) mapped urban creep for part of Leeds using aerial images from 1971 

Urban creep Urban growth 

2003 2006 
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and 2004. Moreover, London Wildlife Trust et al. (2011) undertook a very ambitious 

project mapping the change in 1292 gardens throughout London. Each of these 

projects was the result of considerable mapping effort, prohibiting regular monitoring. 

Verbeeck et al. (2011) raise the point that remote sensing change detection, 

specifically with Object-based Image Analysis (OBIA) is an ideal technology for urban 

creep identification. However, there is very little work investigating this. A pioneering 

study by UKWIR (2010), applied a semi-automated OBIA workflow to map urban creep 

across five entire cities in the UK. This methodology is detailed further in the 

presentation by Allitt & Tewkesbury (2009), where pre-prepared OBIA land cover 

constrains a semi-automatic, layer arithmetic change detection. This work was later 

evolved by Tewkesbury (2011) to apply context to the changes with a rule-based OBIA. 

However, the full capabilities of remote sensing change detection have not been 

applied in this application.  Therefore, there is a gap to build upon the work of Allitt & 

Tewkesbury (2009) and Tewkesbury (2011) with a thorough investigation of remotely 

sensed urban creep detection. 

With urban creep detection, there is an opportunity to advance the capability of 

change detection techniques. In light of the challenges posed by VHR image change 

detection (G. Chen et al. 2012; Hussain et al. 2013) researchers have sought novel 

techniques to monitor change in the presence of view angle and shading differences. 

For example, Wu et al. (2016) and Wen et al. (2016) both compared aggregated land 

cover statistics as an indicator of urban change. Gueguen & Hamid (2016) compared 

aggregated statistics of feature shape to consistently report urban change, despite 

encountering a range of different imaging conditions. Moreover, neural networks have 

also been used to compare image patches directly to identify change (Pacifici & Frate 

2010). These pieces of research effectively tackle difficult urban monitoring 

applications by modulating scale. Specifically, change is assessed by analysing the 

structural similarity of image patches, typically around 150x150 pixels in size (Wu et al. 

2016). On the other hand, there is little research investigating large-scale change 

detection, aiming to identify fine land cover changes explicitly. Therefore, there is a 

clear gap to conduct more large-scale change detection. Urban creep identification is 

an excellent candidate application with which to focus. Unfortunately, this is a non-
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trivial undertaking because the features of interest are on a comparable scale, and 

occur in close proximity, to VHR imaging problems such as building lean and scene 

shading. Furthermore, a high level of scene understanding is required to separate 

urban creep features from other changes effectively. Therefore, future research in this 

area would need to consider: 1) land cover change, imaging anomalies and scene 

context, and 2) a change detection comparison method capable of identifying complex 

relationships. Given this challenge, research questions would focus on the capability of 

change detection in this application. A specific question could focus on the capability 

of advanced comparison methods, capable of identifying complex change, such as a 

direct classification (Tewkesbury et al. 2015). 

Given the potential complexity of urban creep identification, one could question the 

relevance of many classical change detection techniques when applied to VHR image 

change detection. Change detection techniques are rooted in a fundamental, and 

long-standing tenet that radiometric changes relate to real land cover changes (Singh 

1989), with a large amount of work dedicated to identifying strong radiometric 

changes (Adar et al. 2014; Wang 2014a; Patra et al. 2011; Sinha & Kumar 2013; 

Bruzzone & Prieto 2000). Specifically, the comparison methods: layer arithmetic, 

transformation, CVA, and hybrid change detection (Tewkesbury et al. 2015), are all 

variations of this theme. However, the position of these methods in relation to VHR 

image urban change applications is not clear in the literature. For example, there have 

been calls for new methods (Lu et al. 2014), there is strong support for the use of OBIA 

instead of image pixels (G. Chen et al. 2012; Hussain et al. 2013; Boldt et al. 2012), and 

Bruzzone & Bovolo (2013) stress the importance of separating real land cover change 

from less interesting radiometric changes. Despite these advances, there is little 

experimental work investigating the utility and relevance of differencing methods in a 

complex urban change scenario. Therefore, it is an interesting counterpoint of this 

research to formally test the utility of differencing methods when applied to urban 

creep identification. Specifically, CVA would act as an ideal, representative 

differencing method because the breadth of the technique would facilitate simple 

Euclidean similarity measures (Homer & Xian 2011), and more complicated, and 

largely unexplored multi-dimensional change vector analysis (Bovolo et al. 2012). 
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Given the complexity involved in urban creep identification we can hypothesise that 

urban creep cannot be adequately identified with CVA. This thesis seeks to identify 

how true this hypothesis is, and in doing so push the boundaries of differencing 

methods and clarify their capability in VHR urban applications. 

The city of Norwich is chosen as the case study for this research, aiming to monitor 

urban creep between 2006 and 2010. Norwich has a population of 132 500 (Office for 

National Statistics 2013) and is the primary settlement in the county of Norfolk, to the 

East of England. Norwich has a high risk of urban flooding (Wilson 2010; Pelling & Kelly 

2010) and so is an ideal candidate for urban creep monitoring. High quality aerial 

images acquired in 2006 and 2010 were made available by Airbus Defence and Space 

Ltd. to support the research. Furthermore, previous work (UKWIR 2010) has estimated 

the rate of urban creep for Norwich between 1999 and 2006. Therefore, the outcome 

of this research can give insight into the changing nature of urban creep. 

1.3 Research questions 

To focus the research, three research questions are posed. The first question relates 

to the capability of remote sensing change detection in general. It seeks to find out if 

state-of-the-art comparison methods, such as a direct classification, can effectively 

identify urban creep. In answering this question, it is hoped to gain more insight into 

the capability of large-scale urban change detection. The second question is a 

counterpoint to the first question. Specifically, it seeks to assess the utility and 

relevance of differencing methods such as CVA, when applied to a complex urban 

change application. In the course of the research, the rate of urban creep in Norwich 

will be revised. Given the social importance of the subject, this revision is in itself an 

important outcome. Therefore, the third question seeks to assess the revised rate 

against previously published research. 

1. Can a direct classification of multi-temporal VHR imagery adequately identify 

urban creep in Norwich? 

2. Can a Change Vector Analysis of multi-temporal VHR imagery adequately 

identify urban creep in Norwich? 
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3. Has the rate of urban creep in Norwich changed since the last published 

estimate? 

1.4 Research objectives 

To structure the research, six objectives are outlined detailing the intermediate 

milestones to be achieved throughout the thesis. 

1. Establish a baseline urban creep reference dataset with which to compare 

against the results of subsequent remote sensing classifications. 

2. Establish a comprehensive set of object-based features contributing to the 

description of land cover change, context, and fluctuations in scene 

illumination and viewing geometry.  

3. Identify the ‘best case’ direct classification to act as the remote sensing state-

of-the-art, and as a point of reference for subsequent CVA classifications. 

4. Exhaustively explore a range of different CVA configurations. 

5. Use the reference data to revise the rate of urban creep in Norwich. 

6. In light of the classification results, add to academic knowledge by clarifying 

the capability of change detection techniques in relation to urban creep 

identification and the wider discipline of remote sensing. 

1.5 Thesis structure 

Following on from this introduction, the thesis is structured in nine further chapters. 

Chapter 2 presents a change detection technique literature review, based on a 

previously published article (Tewkesbury et al. 2015). Chapter 3 discusses the 

challenges facing remote sensing change detection and proposes an agenda for future 

research. Chapter 4 reviews the social importance of urban creep and why it is an 

ideal application to challenge and advance change detection techniques. Chapter 5 

presents the Norwich study area and describes the reference data collection 

methodology. Chapter 6 presents the results of the reference data collection to 

include quantitative change statistics and qualitative observations. Chapter 7 

describes the remote sensing change detection methods, to include data preparation, 

feature and unit of analysis extraction, classification, and accuracy assessment. 

Chapter 8 presents the change detection results. Chapter 9 discusses all of the results, 



Chapter 1 - Introduction 

9 
 

towards impactful findings. Chapter 10 concludes the thesis, stating the contribution 

to knowledge and recommendations for future research. 
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2 Change detection techniques 

2.1 Introduction 

This chapter describes a concise, synoptic overview of change detection techniques, 

building upon, and advancing beyond existing reviews (Lu et al. 2004; G. Chen et al. 

2012; Hussain et al. 2013; Singh 1989; Coppin et al. 2004; İlsever & Ünsalan 2012). The 

review is based on the presentation of change detection techniques formulated by 

Tewkesbury et al. (2015). This presentation focuses on the unit of analysis by which 

change is analysed and the method of comparison used to decide which elements 

have changed. Furthermore, this summary of change detection techniques is a 

welcome addition to the literature because it significantly reduces the conceptual 

overlap introduced by opposing pixel and object-based methods, promotes a more 

scientific foundation for experimentation and encourages more informed method 

selection (Tewkesbury et al. 2015). 

This chapter contributes to the thesis by demonstrating a command and 

understanding of current change detection methods. The command of the discipline 

has steered this thesis to knowledge gaps and avenues for future research, which are 

presented in Chapter 3, and it also provides a foundation for rigorous change 

detection research conducted in Chapter 7. 

Remote sensing change detection is a disparate, highly variable and ever-expanding 

area of research. There are many different methods in use, developed over several 

decades of satellite remote sensing. These approaches have been consolidated in 

several reviews (Coppin et al., 2004; Hussain et al., 2013; Lu et al., 2004; Radke et al., 

2005; Warner et al., 2009) and even reviews of reviews (İlsever & Ünsalan 2012), each 

aiming to better inform applied research and steer future developments. However, 

most authors agree that a universal change detection technique does not yet exist 

(Ehlers et al., 2014), leaving end-users of the technology with an increasingly difficult 

task selecting a suitable approach. For instance, Lu et al. (2004) present seven 

categories divided into 31 techniques; making an overall assessment very difficult. 

Recent advances in Object-Based Image Analysis (OBIA) have also further complicated 

this picture by presenting two parallel streams of techniques (G. Chen et al., 2012; 
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Hussain et al., 2013) with significant conceptual overlaps. For instance, direct image 

comparison and direct object comparison (Hussain et al. 2013) could relate to identical 

operations applied to different analysis units. This chapter provides a clearer 

nomenclature with less conceptual overlap by providing a clear separation between 

the unit of analysis, be it the pixel or image object, and the comparison method used 

to highlight change. 

Previous reviews (Lu et al. 2004; Hussain et al. 2013) have identified three broad 

stages in a remote sensing change detection project, namely pre-processing, change 

detection technique selection and accuracy assessment. This chapter focuses on the 

second stage, aiming to bring an improved clarity to a change detection technique 

selection. A change detection technique can be described in four components (Figure 

2): the pre-processed input imagery, the unit of analysis, a comparison method and 

finally the derived change map ready for interpretation and accuracy assessment. To 

identify change(s), the input images are compared, and a decision is made as to the 

presence or degree of change. Prior to this, the geographical ‘support ‘ (Atkinson 

2006) must be defined so that it is understood exactly which spatial analysis units are 

to be compared over time. At a fundamental level, this might be individual image 

pixels, but could also include: systematic groups of pixels, image-objects, vector 

polygons or a combination of these. With a comparison framework established, 

analysis units are then compared to highlight change. There are many different 

methods of achieving this, from simple arithmetic differencing, sequential 

classifications or statistical analysis. This comparison results in a ‘change’ map which 

may depict the apparent magnitude of change, the type of change or a combination of 

both. 
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Figure 2. The four components of a change detection technique. 

2.2 Unit of Analysis 

Modern remote sensing and image processing facilitate the comparison of images 

under several different frameworks.  In the broadest sense, image pixels and image-

objects are the two main categories of analysis unit presented in the change detection 

literature (Hussain et al. 2013; G. Chen et al. 2012). When further exploring the 

possible interactions, there are in fact many more permutations by which a change 

comparison can be made. For instance, image pixels may be considered individual 

autonomous units or part of a systematic group such as a kernel filter or moving 

window. Listner and Niemeyer (2011a) outlined three different scenarios of image-

object comparison; those generated independently, those generated from a multi-

temporal data stack, and lastly a simple overlay operation. In addition to these, one 

could also consider mapping objects, typically vector polygons derived from field 

survey, or stereo or mono photogrammetry (Comber et al., 2004b; Sofina et al., 2012; 

Walter, 2004). Furthermore, a mixture of analysis units may be utilised, with this 

strategy sometimes referred to as a hybrid approach (G. Chen et al. 2012; Hussain et 

al. 2013). These elements are discussed in seven categories, namely pixel, kernel, 
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image-object overlay, image-object comparison, multi-temporal image-object, vector 

polygon and hybrid. These categories are summarised in Table 1 to include a brief 

description of each, advantages and disadvantages and some examples from the 

literature. To further clarify these definitions, illustrations are given in Figure 3, where 

the absolute change magnitude under each unit of analysis is depicted for a bi-

temporal pair of images. The chapter then continues with a more detailed discussion 

of each unit of analysis.  
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Table 1: Analysis units commonly used in remote sensing change detection studies. The comparable features are 
based on Avery & Colwell’s fundamental features of image interpretation; as cited by Campbell 1983, p43. 

 Description 
Comparable 

features 
Advantages Limitations Example studies 

P
ix

el
 

Single image pixels 

are compared. 

Tone 

Shadow (limited) 

Fast and suitable for larger 

pixels sizes. The unit does 

not generalise the data. 

May be unsuitable for 

higher resolution 

imagery. Tone is the 

only comparable 

reference point. 

Abd El-Kawy et al. 

(2011); Deng et al. 

(2008);  Green et al., 

(1994); Hame et al., 

(1998); Jensen & Toll, 

(1982); Ochoa-Gaona & 

Gonzalez-Espinosa 

(2000);  Peiman (2011); 

Rahman et al. (2011); 

Shalaby & Tateishi 

(2007); Torres-Vera et 

al. (2009) 

K
er

n
el

 

Groups of pixels are 

compared within a 

kernel filter or 

moving window. 

Tone 

Texture 

Pattern (limited) 

Association (limited) 

Shadow (limited) 

Enables measures of 

statistical correlation and 

texture. Facilitates basic 

contextual measures. 

Generalises the data. 

The scale of the 

comparison is typically 

limited by a fixed kernel 

size. Adaptive kernels 

have been developed 

but multi-scale analysis 

remains a challenge. 

Contextual information 

is limited. 

Bruzzone & Prieto 

(2000); He et al. (2011); 

Im & Jensen (2005); 

Klaric et al. (2013); 

Volpi et al. (2013) 

Im
ag

e
-o

b
je

ct
 o

ve
rl

ay
 

Image-objects are 

generated by 

segmenting one of 

the images in the 

time series. A 

comparison against 

other images is then 

made by simple 

overlay. 

Tone 

Texture 

Pattern (limited) 

Association (limited) 

Shadow (limited) 

Segmentation may provide a 

more meaningful framework 

for texture measures and 

generalisation. Provides a 

suitable framework for 

modelling contextual 

features. 

Generalises the data. 

Object size and shape 

cannot be compared. 

Sub-object change may 

remain undetectable. 

Comber et al. (2004a); 

Listner & Niemeyer 

(2011a); Tewkesbury & 

Allitt (2010); 

Tewkesbury (2011) 

Im
ag

e
-o

b
je

ct
 

co
m

p
ar

is
o

n
 

Image-objects are 

generated by 

segmenting each 

image in the time 

series 

independently. 

Tone 

Texture 

Size 

Shape 

Pattern 

Association 

Shadow 

Shares the advantages of 

image-object overlay plus an 

independent spatial 

framework facilitates 

rigorous comparisons. 

Generalises the data. 

Linking image-objects 

over time is a challenge. 

Inconsistent 

segmentation leads to 

object ‘slivers’. 

Boldt et al. (2012); 

Dingle Robertson & 

King (2011); Ehlers et al. 

(2006); Gamanya et al. 

(2009); Listner & 

Niemeyer (2011a); 

Lizarazo (2012) 

M
u

lt
i-

te
m

p
o

ra
l i

m
ag

e
-

o
b

je
ct

 

Image-objects are 

generated by 

segmenting the 

entire time series 

together. 

Tone 

Texture 

Pattern 

Association 

Shadow 

Shares the advantages of 

image-object overlay plus 

the segmentation can 

honour both static and 

dynamic boundaries while 

maintaining a consistent 

topology. 

Generalises the data. 

Object size and shape 

cannot be compared. 

Bontemps et al. (2012); 

Chehata et al. (2011); 

Desclée et al. (2006); 

Doxani et al. (2011); 

Teo & Shih (2013) 

V
ec

to
r 

p
o

ly
go

n
 

Vector polygons 

extracted from 

digital mapping or 

cadastral datasets. 

Tone 

Texture 

Association 

Shadow (limited) 

Digital mapping databases 

often provide a 

cartographically ‘clean’ basis 

for analysis with the 

potential to focus the 

analysis using attributed 

thematic information. 

Generalises the data. 

Object size and shape 

cannot be compared. 

Comber et al. (2004b); 

Duro et al. (2013); 

Gerard et al. (2010); 

Sofina et al. (2012); 

Walter (2004) 

H
yb

ri
d

 

Segmented image-

objects generated 

from a pixel or 

kernel level 

comparison. 

Tone 

Texture 

Pattern 

Association 

Shadow 

The level of generalisation 

may be chosen with 

reference to the identified 

radiometric change. 

Although size and shape 

cannot be used in the 

comparison, it may be used 

in the interpretation of the 

radiometric change. 

Object size and shape 

cannot be compared. 

Aguirre-Gutiérrez et al. 

(2012); Bazi et al. 

(2010); Bruzzone & 

Bovolo (2013) 
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Figure 3. Commonly used remote sensing change detection analysis units. Image 1 is 25cm resolution aerial imagery 
over Norwich, UK from 2006. Image 2 is aerial imagery captured over the same area in 2010, also at 25cm 
resolution. The change magnitude is the absolute difference between Image 1 and Image 2 calculated over the 
respective unit of analysis. All imagery ©Airbus Defence and Space Ltd. 2017.  



Chapter 2 – Change detection techniques 

16 
 

2.2.1 Pixel 

The pixel is the most fundamental element of an image (Fisher 1997) and forms a 

convenient and well-used means of comparison. Since the launch of the first Landsat 

satellite in 1972 remotely sensed images have been analysed digitally, by comparing 

pixel intensities for changes in a range of applications. These include: urban 

development (Deng et al., 2008; Jensen & Toll, 1982; Torres-Vera et al., 2009), land 

cover and land use changes (Green et al., 1994; Ochoa-Gaona & Gonzalez-Espinosa, 

2000; Peiman, 2011; Shalaby & Tateishi, 2007) and forestry  (Coops et al., 2010; Hame 

et al., 1998; Wulder et al., 2008). The concept of comparing images is very simple, 

with arithmetic operations such as subtraction or division applied to continuous band 

radiance or reflectance (Jensen & Toll 1982; Green et al. 1994), or integer class labels 

(Abd El-Kawy et al., 2011; Rahman et al., 2011). These examples show that when the 

pixel spatially represents the anticipated change relatively well it can be a simple and 

effective focus by which to make change decisions, especially when there is a strong 

relationship between pixel intensity and the land cover transitions under 

investigation. 

The pixel as a unit for change comparison does have many critics and is not seen as a 

suitable approach when considering modern Very High Resolution (VHR) imagery. For 

instance, G. Chen et al. (2012) argue that pixels have limited comparable classification 

features, typically just tone or radiance and so do not provide an adequate framework 

to model contextual information. Whereas Hussain et al. (2013) highlight that the 

pixel may be a source of geometric error, especially when integrating different data 

types. The overriding criticism of the pixel as an analysis unit for change detection is 

the susceptibility of producing spurious, noisy change pixels as a result of within class 

spectral variability and image registration issues. This issue, commonly referred to as 

classification ‘salt and pepper’ is widely discussed in the change detection (G. Chen et 

al. 2012; Hussain et al. 2013; Radke et al. 2005) and general remote sensing literature 

(Blaschke 2010; Baraldi & Boschetti 2012) as a prominent feature of pixel-based 

classifications, especially when dealing with VHR imagery. In light of these limitations, 

other means of comparison have been developed and implemented with a focus on 

groups of pixels. 
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2.2.2 Kernel 

The use of a pixel kernel filter or moving window is a systematic way of generalising 

change results and introducing contextual information. By considering a local 

neighbourhood of image pixels, change can be interpreted statistically, aiming to filter 

noise and identify ‘true’ change. A neighbourhood of pixels is also a means of 

modelling local texture and contextual relationships by statistical and knowledge-

based means. For instance, Im & Jensen (2005) used a neighbourhood correlation 

analysis to improve the identification of change information in VHR imagery by 

considering linear regression parameters instead of pixel radiance alone. The use of 

kernel-based texture measures have also proved to be a complementary addition to 

the change detection problem in several studies, including those by He et al. (2011) & 

Klaric et al. (2013). Furthermore, the use of contextual information is an effective 

method of filtering spurious change pixels (Bruzzone & Prieto, 2000; Volpi et al., 

2013). These examples highlight the benefit of kernel filters; as a means of reducing 

spurious change and as a mechanism for allowing change decisions to be made 

beyond basic tonal differences. Unfortunately, kernel filters are often operated at a 

fixed scale, and the determination of optimum window sizes is not clearly defined 

(Warner 2011). Consequently, their use can lead to blurred boundaries and the 

removal of smaller features. 

2.2.3 Image-object overlay 

Objects segmented from one image may simply be overlaid on another to form the 

spatial framework for comparison (Listner & Niemeyer 2011a). Figure 3 illustrates this 

concept. These objects then form the basis of an arithmetic or statistical comparison 

of the underlying image pixels. Image-objects have been found to make the modelling 

of contextual information more accessible. For example, Tewkesbury & Allitt (2010) 

segmented aerial imagery and used mean image ratio differences to assist in the 

identification of impermeable surface change. In further work, a spatial knowledge 

base was applied to separate the identified change into those associated with existing 

properties and those that are part of a new development (Tewkesbury 2011). 

Research by Listner & Niemeyer (2011a; 2011b) segmented one image and then used 

a measure of object heterogeneity calculated on bi-temporal imagery to highlight 
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change. Comber et al. (2004a) overlaid classified image-objects on a pixel-based 

classification and then used expert knowledge to assist in the identification of true 

change from classification error. Overlaying existing objects onto new images can form 

a simple basis for change detection while benefiting from object-based contextual 

measures. The main disadvantage of this approach is that the geometry of the image-

objects reflects only one of the images; with change in the opposing image not 

necessarily conforming to the imposed spatial framework. 

2.2.4 Image-object comparison 

The premise of image-object comparison is that two images are segmented 

independently so that the image-objects and their respective properties may be 

compared. The theoretical construct being that corresponding image-objects are 

‘linked’ across space and time allowing a comparison to be made without the 

constraint of a geometric union. The distinct advantage being that all object properties 

can be compared including size and shape (Listner & Niemeyer 2011a) or class label 

(G. Chen et al. 2012). However, due to variations in factors such as illumination, 

viewing angle, phenology and atmospheric conditions, segmentations may be highly 

variable even under stable land cover and perfect co-registration. 

The process of comparing one object with another is, therefore, complicated and non-

trivial. Listner & Niemeyer (2011a) propose two approaches to comparison namely, 

directed object correspondence whereby an object is given a weighted sum of all 

overlapping objects and correspondence via intersection where object attributes are 

compared directly, but only over the spatial intersection created between the two 

time periods. The majority of the literature in this area uses the latter method, 

especially when applied to post-classification change (Boldt et al., 2012; Dingle 

Robertson & King, 2011; Gamanya et al., 2009). Image-object comparison by 

intersection is also illustrated in Figure 3. The main limitation of a spatial intersection 

of segmentations, also referred to as correspondence via intersection, is that it 

introduces a widely reported problem of ‘sliver’ objects under inconsistent 

segmentations (McDermid et al. 2008; G. Chen et al. 2012). Sliver objects can result in 

false change being detected and impacts the utility of updated land cover maps (Linke 

et al., 2009a). One method of minimising sliver objects is to simply remove smaller 
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change objects, as demonstrated by Boldt et al. (2012).  However, this approach 

equates to a systematic reduction in the cartographic scale of the change analysis and 

information loss. Linke et al. (2009b) tackled this problem by using object width to 

highlight slivers before elimination. However, this approach remains insensitive to 

narrow change objects below the specified width threshold. While the work of Linke 

et al. (2009b) provides a robust strategy to suppress sliver objects more work is 

required on the rigorous matching of image objects so that their full properties may 

be used in a change comparison (Listner & Niemeyer 2011a; Hussain et al. 2013). 

2.2.5 Multi-temporal image-object 

Multi-temporal objects may be created by simply segmenting all available images 

together in a single data stack.  Multi-temporal image-objects are illustrated in Figure 

3. This approach has the distinct advantage of considering all images during object 

formation, therefore, minimising sliver errors and potentially honouring key multi-

temporal boundaries. For example, Doxani et al. (2011) used this approach to detect 

urban change, an application that would be prone to widespread sliver errors due to 

differences in viewing geometry and shading. Teo & Shih (2013) also used multi-

temporal image-objects as the basis for urban change detection, this time utilising 

LiDAR data, where it was found to perform well even in the presence of high 

magnitude spatial registration noise found at the edge of buildings. This approach has 

also proved successful in forest change applications at large (Chehata et al., 2011), 

moderate (Desclée et al., 2006) and small (Bontemps et al., 2012) cartographic scales. 

These examples show how multi-temporal image-objects are an elegant way of 

representing an image time-series, especially in applications involving elevated 

features where extensive viewing geometry differences are expected. However, this 

analysis unit is limited because object size and shape cannot be easily compared and 

smaller or indistinct changes may be generalised out during the segmentation process. 

2.2.6 Vector polygon 

Vector polygons originating from existing mapping databases can be overlaid over 

imagery and used as a basis to group image pixels in a change analysis. Groups of 

pixels across a temporal sequence may then be analysed statistically, the result of 

which may indicate changes within the corresponding polygons. This approach is often 
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linked to map updating, where remotely sensed images are used to automatically 

identify broad-scale change in polygons and regions, thereby reducing the manual 

review process. For instance, Walter (2004) calculated spectral means, variances and 

corresponding pixel class area for a set of land parcel polygons. These features were 

then used within a supervised classification to identify changed parcels. In a simpler 

workflow Gerard et al. (2010) overlaid recent CORINE land cover parcels against aerial 

images to visually assess historical changes over 50 years. These demonstrate how 

vector polygons can be used to spatially guide a change assessment. However, since 

the polygons often form part of a land informational database, this information may 

also be used to help inform the change detection process. For example, Comber et al. 

(2004b) used soil properties, rainfall and terrain to supplement the satellite spectral 

information when updating land cover mapping in Scotland. 

Existing class labels can provide useful information in change detection workflows, 

allowing efforts to be focused and acting as a thematic guide for classification 

algorithms. For instance, Bouziani et al. (2010) & Sofina et al. (2012) used a ‘map 

guided’ approach to train a supervised classification algorithm to identify new 

buildings. While Duro et al. (2013) used cross-correlation analysis to statistically 

identify change candidates based on existing land cover map class labels. The use of 

vector polygons as a framework for change detection has great potential especially in 

cases where existing, high-quality attribution is used to inform the classification 

process. However, an assumption of this approach is that the scale of the vector 

polygons matches the scale of the change of interest. If this is not the case then a 

strategy will need to be considered to represent the change adequately; for instance, 

pixels may be used to delineate smaller change features within a vector polygon. 

2.2.7 Hybrid 

A hybrid approach refers to a combination of analysis units to highlight change in a 

stepwise way. In its most basic form, this relates to a change comparison of pixels 

which are then filtered or segmented as a mechanism to interpret what the change 

image is showing. For example, Bazi et al. (2010) first derived a pixel-based change 

image and then used multi-resolution segmentation (MRS) to group the results 

logically. Their approach proved successful when experimentally applied to Landsat 
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and Ikonos imagery. Figure 3 replicates the method employed by Bazi et al. (2010), 

first calculating the absolute difference between image pixels, then applying MRS to 

the difference image before finally calculating the mean absolute difference of the 

original images by image-object. Research by Linke et al. (2009b) found that MRS 

applied to pixel-based Landsat wetness difference images proved an effective method 

of identifying montane land cover change in Alberta, Canada. Aguirre-Gutiérrez et al. 

(2012) combined pixel and object-based classifications in a post-classification 

workflow that sought to retain the most accurate elements of each. Bruzzone & 

Bovolo (2013) modelled different elements of change at the pixel level to include 

shadows, registration noise and change magnitude. These pixel-based change 

indicators were then used to inform a change classification based on overriding multi-

temporal image-objects. These examples show that using a hybrid of analysis units 

may be an intuitive approach whereby change in pixel intensity is logically grouped 

towards identifying features of interest. 

2.3 Comparison methods 

Previous reviews (Coppin et al. 2004; Hussain et al. 2013; Lu et al. 2004) have 

presented exhaustive lists of change detection techniques containing many 

comparison methods. Here six broad comparison methods are identified capturing the 

key features of previous research in a concise and accessible manner. These categories 

are summarised in Table 2 to include a brief description of each, advantages and 

disadvantages and some examples from the literature. This is followed by a more 

detailed discussion of each comparison method.  
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Table 2: An overview of commonly used comparison methods. 

 Description Advantages Limitations Example studies 

La
ye

r 
ar

it
h

m
et

ic
 

Image radiance or derivative 

features are numerically 

compared to identify change. 

Can be simple to implement. 

Usually gives little 

insight into the type of 

change. 

Coulter et al. (2011); Dams et al. 

(2013); Desclée et al. (2006); Falco et 

al. (2013); Green et al. (1994); Homer 

& Xian (2011); Im et al. (2008); Im & 

Jensen (2005); Jensen & Toll (1982); 

Klaric et al. (2013); Lu et al. (2010); 

Tewkesbury & Allitt (2010) 

P
o

st
-c

la
ss

if
ic

at
io

n
 

ch
an

ge
 The comparison of multiple 

maps to identify class 

transitions. 

Produces a labelled change 

map. Prior radiometric 

calibration may not be 

required. 

Errors in any of the 

input maps are 

directly translated to 

the change map. 

Abd El-Kawy et al. (2011); Boldt et al. 

(2012); Chou et al. (2005); Comber et 

al. (2004a); Dingle Robertson & King 

(2011); Gamanya et al. (2009); Hester 

et al. (2010); Li et al. (2012); Teo & 

Shih (2013); Torres-Vera et al. (2009); 

X. Chen et al. (2012) 

D
ir

ec
t 

cl
as

si
fi

ca
ti

o
n

 

A multi-temporal data stack is 

classified directly identifying 

both static and dynamic land 

cover. 

Only one classification stage 

is required. Provides an 

effective framework to mine 

a complicated time series. 

Produces a labelled change 

map. 

Classification training 

datasets can be 

difficult to construct, 

especially for a time 

series of images. 

Chehata et al. (2011); Gao et al. 

(2012); Ghosh et al. (2014); Hame et 

al. (1998); Hayes & Sader (2001); 

Schneider (2012) 

Tr
an

sf
o

rm
at

io
n

 

A mathematical transformation 

to highlight variance between 

images. 

Provides an elegant way to 

handle high dimensional 

data. 

There is no defined 

thematic meaning to 

the results. Change 

may be difficult to 

locate and interpret. 

Deng et al. (2008); Doxani et al. 

(2011); Listner & Niemeyer (2011a) 

C
V

A
 

The computation of difference 

vectors between analysis units 

giving both the magnitude and 

direction of change. 

Gives insight into the type of 

change occurring. 

In its raw form, the 

change direction and 

magnitude may be 

ambiguous. 

Bovolo et al. (2012); Bovolo & 

Bruzzone (2007); Bruzzone & Prieto 

(2000); Carvalho Júnior et al. (2011); 

Cohen & Fiorella (1998); Johnson & 

Kasischke (1998) 

H
yb

ri
d

 c
h

an
ge

 

d
et

e
ct

io
n

 

The use of multiple comparison 

methods within a workflow. 

The most commonly used 

strategy is a combination of 

layer arithmetic to identify 

change and direct classification 

to label it. 

Training data does not have 

to be collected over 

radiometrically stable areas. 

No specific limitations. 

Bruzzone & Bovolo (2013); Doxani et 

al. (2011); Seto et al. (2002); Xian & 

Homer (2010) 

 

2.3.1 Layer arithmetic 

Arithmetic operations such as subtraction or division applied to bi-temporal imagery 

are simple methods of change detection. These operations give an image depicting 

radiance differences, which is hoped reflect the magnitude of change on the ground 

(Singh 1989). This technique has long been used to highlight areas of image change 

quickly with minimal supervision (Jensen & Toll 1982; Green et al. 1994) and is still in 

use today, typically applied to image-objects (Desclée et al. 2006; Tewkesbury & Allitt 

2010). To add thematic meaning to a difference image, image radiance may be 

transformed into a vegetation index or fractional cover image prior to the layer 

arithmetic. For example, Coulter et al. (2011) differenced regionally normalised 

measures of NDVI to identify vegetative land cover change while Tewkesbury & Allitt 
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(2010) used image ratios to identify vegetation removal in aerial imagery. It is also 

common to monitor urban expansion by subtracting multi-temporal impermeable 

surface fractional cover images obtained by sub-pixel analysis (Dams et al., 2013; 

Gangkofner et al., 2010; Lu et al.,2010). A highly evolved system of layer differencing is 

presented by Jin et al. (2013), whereby change is assessed by combining difference 

images of image spectral indices and biophysical transformations. These examples 

demonstrate how simple arithmetic operations of image radiance, or derivative 

features can be used to highlight changed areas, target specific features based upon 

an expected spectral response or quantify fractional, sub-pixel changes. 

Layer arithmetic comparisons may go beyond simple radiometric differencing by 

leveraging different units of analysis. This empowers the comparison by considering 

texture, context and morphology; therefore reducing the dependency on a target’s 

spectral characteristics as an indicator of change. For instance, Im & Jensen (2005) 

found that measures of kernel similarity –namely correlation coefficient, slope and 

offset- proved to be more effective indicators of change than simple pixel differencing. 

Further work showed that this same comparison method may also be applied to multi-

temporal image-objects (Im et al., 2008); although no significant improvement was 

found when compared to the kernel based approach. When working with VHR 

imagery, several researchers have incorporated measures of texture and morphology 

into the arithmetic comparison as a means of reducing the dependence on image 

tone. For instance, Klaric et al. (2013) present a change detection system based on a 

weighted combination of neighbourhood spectral, textural and morphological 

features. The authors argue that this approach is not entirely dependent on spectral 

change and applies to multi-spectral and panchromatic imagery. The idea of reducing 

the dependence on spectral information is further developed by Falco et al. (2013) in 

research using Quickbird panchromatic imagery alone, as a basis for change detection, 

by comparing measures of morphology and spatial autocorrelation. Image change is 

not necessarily associated with a strong spectral difference, and these examples have 

shown how researchers have tackled this problem by using contextual information. 

However, there is still much research to be done in this area to improve classification 

accuracies over complex targets. 
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2.3.2 Post-classification change 

Post-classification change (or map-to-map change detection) is the process of 

overlaying coincident thematic maps from different time periods to identify changes 

between them. The distinct advantage of this technique is that the baseline 

classification and the change transitions are explicitly known. Furthermore, since the 

maps may be produced independently, a radiometric normalisation is not necessary 

(Coppin et al. 2004; Warner et al. 2009). The direct comparison of satellite-derived 

land cover maps is one of the most established and widely used change detection 

methods. It is commonly applied to Landsat class imagery (Abd El-Kawy et al. 2011; 

Dingle Robertson & King 2011; Gamanya et al. 2009; Torres-Vera et al. 2009) and VHR 

imagery (Boldt et al., 2012; Demir et al., 2013; Hester et al., 2010).  The approach may 

also be used to locate changes in a specific thematic target. For instance, Boldt et al. 

(2012) and Teo & Shih (2013) both used post-classification change to identify building 

changes uniquely. These examples show that post-classification change is a 

thematically rich technique able to answer specific change questions, making it 

suitable for a range of different applications. 

Post-classification change is limited by map production issues and compounded 

errors, making it a costly and difficult method to adopt. The comparison method 

requires the production of two entire maps which may be an expensive (Lu et al. 2004) 

and an operationally complex task. Furthermore, input maps may be produced using 

differing data and algorithms. In this case, a distinction must be made between 

classification inconsistencies and real change, as explored by Comber et al. (2004a). 

The biggest issue with post-classification change is that it is entirely dependent on the 

quality of the input maps (Coppin et al. 2004; Lu et al. 2004). Specifically, individual 

map errors compound in the change map (Serra et al., 2003). Therefore, it is difficult 

and expensive to produce a time series of maps with sufficient quality to obtain 

meaningful change results. 

There have been significant efforts to improve post-classification change results by 

accounting for classification uncertainty and by modelling anticipated change 

scenarios. Classification uncertainty may be spatial, thematic or a combination of both 

and accounted for by assigning confidences to these criteria. For instance, X. Chen et 



Chapter 2 – Change detection techniques 

25 
 

al. (2012) compared fuzzy class probability, rather than crisp labels, to highlight 

uncertain land cover transitions. Hester et al. (2010) used spatial and thematic 

fuzziness in the classification of urban change using Quickbird imagery accounting for 

increased pixel level misregistration in VHR imagery. Specific change scenarios can 

also be modelled in an attempt to identify and remove unlikely land cover transitions. 

For instance, Chou et al. (2005) developed a spatial knowledge base, implemented as 

pixel kernel filters to remove change pixels that do not conform to predetermined 

change scenarios. This approach has also been extended to include full urban 

simulations as a means of identifying unlikely transitions (Li et al., 2012). These 

examples demonstrate that post-classification change has been extended from a 

simple map label arithmetic operation to one that considers the confidence of a 

particular label and the likelihood of its indicated change. 

2.3.3 Direct classification 

A multi-temporal stack of images can be directly classified to give a land cover 

inventory over stable areas and land cover transitions where change has occurred. The 

data stack consists of multiple sets of n-band images which may be treated by a 

classifier as one set of classification features. This is then classified with a supervised 

or unsupervised technique, aiming to give a set of stable land cover classes and 

changed land cover transitions. The technique is advantageous since only one 

classification stage is required, and identified changes are thematically labelled. 

Several researchers investigating forest change have used this approach as a means of 

directly identifying their target of interest. For instance, Hayes & Sader (2001), Hame 

et al. (1998) and Chehata et al. (2011) all implemented forest change detection 

systems based an unsupervised classification of multi-temporal imagery, facilitated by 

a good understanding of the nature of the change. These examples from forestry 

applications show how the direct classification technique can be used to solve a 

relatively well-constrained problem. However, direct classification is a powerful tool in 

the context of a data mining problem such as the interpretation of a dense time series 

of images. Such a scenario is very difficult to conceptualise or model with expert 

knowledge, and is an ideal scenario for machine learning algorithms. For example, 

Schneider (2012) was able to successfully mine a time series of 50 Landsat images 
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from 1988 to 2010 for changes in urban extent using supervised support vector 

machine (SVM) and decision tree classifiers. The dense time series and machine 

learning approach allowed the extraction of meaningful change under complicated 

phenological patterns without explicitly modelling them. Gao et al. (2012) also used 

this strategy, applying a supervised decision tree classifier to extract impermeable 

surface change over 33 years using nine Landsat images. These examples demonstrate 

that direct classification of a time series of images can be an effective way of 

deciphering change that may be buried within complex patterns. However, deriving 

training datasets for such a classification can be very challenging  (Lu et al. 2004) and 

unsupervised approaches can prove unresponsive to small magnitude change patterns 

(Warner et al. 2009). In light of these limitations, recent work by Ghosh et al. (2014) 

into semi-supervised change classification is extremely interesting with more research 

needed in this area. 

2.3.4 Transformation 

Data transformations such as principle component analysis (PCA) and multivariate 

alteration detection (MAD) are methods of data reduction by suppressing correlated 

information and highlighting variance. When applied to a multi-temporal stack of 

remotely sensed images there is the potential to highlight image change, since it 

should be uncorrelated between the respective datasets. For instance, Deng et al. 

(2008) applied PCA to a multi-temporal data stack of Landsat and SPOT 5 imagery to 

identify changed areas for a subsequent supervised change classification. The PCA 

image was classified into ‘change’ and ‘no change’ domains by labelling unsupervised 

clusters. In this case, 60 clusters were required to identify the change, indicating that 

the change signal was relatively well ‘hidden’ within the principle components. Doxani 

et al. (2011) found that applying the MAD transformation to image-objects was an 

effective method of highlighting change objects in VHR imagery. Listner & Niemeyer 

(2011a) also applied a MAD transformation to image-objects to highlight change. 

However, they highlighted that the MAD transformation might become 

mathematically unstable when applied to highly correlated features. This is 

particularly relevant when considering the large number of classification features 

available under OBIA. To ensure a robust change detection strategy, they proposed a 
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prior PCA, with the first three principle components acting as the inputs to the MAD 

transformation. Although this strategy worked in their application, it does highlight an 

issue with transformations, namely that the first 2 or 3 components may not 

necessarily contain the desired change information (Bovolo et al., 2012). Therefore, 

change features may either be missed or buried within a high number of 

transformation components. Furthermore, PCA and MAD transformations are scene 

dependent and may prove difficult to interpret (Lu et al. 2004; Warner et al. 2009; 

Carvalho Júnior et al. 2013). Transformations can be a useful way of assessing change 

within a complex time series of images. However, they usually only serve to highlight 

change and therefore should form part of a hybrid change detection workflow to 

provide change labels. Lastly, due to scene dependence, it may prove a difficult task to 

locate change within the multiple components, if the change is represented at all. 

2.3.5 Change Vector Analysis (CVA) 

Change vector analysis is a method of interpreting change based on its magnitude and 

direction. To facilitate this, bi-temporal datasets are described in three components; 

namely the feature vector at time 1, the feature vector at time 2 and an 

interconnecting vector. The interconnecting vector is called the change vector (CV), 

and its magnitude and direction can give us an insight into the type of change 

occurring. The geometry of a CVA is given in Figure 4a (in 2D for simplicity). Calculating 

the magnitude is very simple (see Cohen & Fiorella, 1998, p 91), easily extended to 

high dimensional feature space. For instance, the change magnitude of all six Landsat 

spectral bands (excluding the thermal) is often calculated to assess the apparent 

extent of change (Bruzzone & Prieto 2000; Xian & Homer 2010). In theory, the 

magnitude gives the degree to which the image radiance has changed, containing 

limited thematic content, while the direction indicates the type of change. Therefore, 

the combination of magnitude and direction can be a means of labelling change and 

minimising false positives (Bovolo & Bruzzone 2007). In the standard formulation of 

CVA (Figure 4a), the direction is described by a directional cosine for each axis of the 

feature space. Therefore, n-1 directional cosines are required to describe the change 

direction in n-dimensional feature space, leading to a complicated output data array 

which may be difficult to interpret (Carvalho Júnior et al., 2011). In light of this, many 
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researchers simplify the input feature space to two bands only. For example, Bovolo et 

al. (2007) defined a 2D  feature space based on Landsat bands 3 and 4, allowing burnt 

area change to be uniquely identified from magnitude, and a single angular direction.  

Transformations can also be used to reduce multi-dimensional data down to two 

components, ready for CVA. Cohen & Fiorella (1998) and Johnson & Kasischke (1998) 

used this approach, transforming the six available Landsat bands into tasselled cap 

components as input into a 2D CVA. These examples highlight how CVA has the 

potential to be used as both a change identification and labelling tool. However, a 

complicated description of n-dimensional change limits its application. This point is 

discussed in detail by Bovolo et al. (2012), who note that limiting CVA to 2-

dimensional features space requires prior knowledge of the nature of the change 

occurring and may lead to a poor analysis through an ill-informed band selection. This 

highlights a clear need to more elegantly describe change direction in n-dimensional 

feature space. 

More recently, there has been some interesting research describing how n-

dimensional change directional information can be conveyed in a CVA. These have 

sought to use several image channels while retaining a simple description of the 

change direction. For instance, Carvalho Júnior et al. (2011) proposed the use of the 

spectral angle mapper (SAM) and its statistically normalised derivative, spectral 

correlation mapper (SCM), both well-established techniques, common in 

hyperspectral remote sensing. Such techniques are used to describe how similar any 

two n-dimensional vectors are to each other, and so has clear applicability to change 

detection. SAM, mathematically based on the inner product of two vectors (Yuan et 

al., 1998) is the single angle between two n-dimensional vectors (Figure 4b). It is worth 

re-iterating that SAM and SCM are both measures of similarity and do not give change 

direction or type per-se. However, they can be highly informative and complementary 

to a change vector analysis (Carvalho Júnior et al. 2011). 

The principle behind SAM was further explored by Bovolo et al. (2012) to relate the 

single angle back to change direction. This work used the same theoretical basis as 

Carvalho Júnior et al. (2011) but instead evaluated the angle between the change 

vector and an arbitrary reference vector (Figure 4c), and Bovolo et al. (2012) 
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normalised the reference vector by setting all elements equal to 
√𝑛

⁄ . The rationale 

for this approach is that the use of an arbitrary reference vector gives a consistent 

baseline for the change direction, allowing thematic changes to be consistently 

grouped throughout a scene. Bovolo et al. (2012) argue with reference to 

experimental examples, that this new formulation, Compressed CVA (C2VA) does not 

require any prior knowledge of the anticipated change or its remote sensing response. 

Moreover, the technique can identify more types of change since all of the available 

information is considered. These developments could go some way towards 

establishing CVA as a universal framework for change detection, as suggested by 

Johnson & Kasischke (1998). Considering future super spectral satellite missions and 

the wide variety of object-based features available, C2VA has great potential. At the 

time of writing, there is no published research applying and evaluating the theoretical 

work of Bovolo et al. (2012), therefore it is recommended that the application of n-

dimensional CVA be explored further. 

A little-reported limitation of CVA is that both the magnitude and direction can be 

ambiguous (Johnson & Kasischke 1998). Consider the three identified formulations of 

CVA shown in Figure 4a, b & c. It is evident that the change vector itself can be 

translated within the feature space, while retaining the same measures of magnitude 

and direction. There is the possibility that multiple thematic changes may be described 

by identical measures of magnitude and direction, limiting the power of CVA as a 

change labelling tool. In appraising this limitation, Cohen & Fiorella (1998) concluded 

that a baseline reference vector, typically from the first time period, should be used 

when attempting to further classify CVA results. This limitation of CVA is easily 

surmountable but clearly increases the burden of the interpretation task, especially in 

the case of high dimensional datasets. 
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Figure 4: Two dimensional geometry of three formulations of CVA. For each, the x and y-axis represent the input 
features under analysis, typically spectral bands. Vector A and Vector B represent the value of a given analysis unit 
for a bi-temporal pair of images. (a) The ‘standard’ formulation of CVA describing the change vector by magnitude 
and a series of angular directions relative to each axis. (b) Spectral Angle Mapper (SAM) for CVA, after Carvalho 
Júnior et al. (2011). (c) n-dimensional, C2VA, after Bovolo et al. (2012). 

2.3.6 Hybrid Change Detection 

A hybrid approach uses more than one comparison method to increase the 

understanding of identified change. At an elementary level it could be thought of in 

two stages: Locating change and identifying change. This approach identifies change 

candidates, minimising reference data collection (Lu et al. 2004). Hybrid change 

detection is often expressed as a layer arithmetic operation to identify changed 

elements, followed by a supervised or unsupervised direct classification of the 

changed features giving them meaning (Lu et al. 2004). For example, Seto et al. (2002) 

first established a CVA depicting the radiometric change magnitude and direction, and 

then used a supervised classification to label change into specific land cover 

transitions. Whereas Doxani et al. (2011) tackled urban change detection in VHR 

imagery by first applying a MAD transform to highlight changed areas, and then 

applied a knowledge-based classification to filter and classify the results. An 

interesting formulation of hybrid change detection was presented by Bruzzone & 

Bovolo (2013). They argued that functional change detection must distinguish 

semantic change, relating to specific features from radiometric, or image change. This 

theory was experimentally implemented by combining pixel-based measures of 

shadow, radiometric change and noise within an object-based classification. These 

examples highlight a trend amongst research that seeks to use multiple stages of 



Chapter 2 – Change detection techniques 

31 
 

change comparison to solve particular problems, a trend which is likely to continue as 

workflows become ever more complex. 

2.4 Summary 

This chapter has presented the current state-of-the-art in optical image change 

detection techniques to a clear, succinct nomenclature based on the unit of analysis 

and the comparison methodology. This presentation of change detection techniques is 

a welcome addition to the literature because it significantly reduces the conceptual 

overlap introduced by opposing pixel and object-based methods, promotes a more 

scientific foundation for experimentation and encourages more informed method 

selection (Tewkesbury et al. 2015). 

The summary of analysis units shows that while the pixel remains the most common 

approach, object-based units are becoming more common. While image-object 

comparison is theoretically the most powerful unit, in light of inconsistent 

segmentations, matching image-objects over space and time requires far more 

sophisticated map conflation technology. Therefore, multi-temporal image-objects or 

a hybrid approach are likely the most robust analysis units, while the pixel is still 

suitable for many applications. 

Post-classification change is the most popular comparison method due to the 

descriptive nature of the results allowing specific thematic questions to be answered. 

A direct classification of a complicated data stack is also an effective method of 

identifying semantic changes. However, the required training data is extremely 

difficult to obtain since the location of change is usually not known before an analysis. 

As highlighted by Lu et al. (2004) a hybrid approach may inherit the benefits of a direct 

classification while simplifying training data collection. Recent developments in CVA 

provide a powerful framework to compare multi-dimensional data but remain largely 

untested in the literature. Therefore, more research is required exploring recent 

formulations of CVA, in particularly the effect of integrating object-based features and 

other contextual measures. 

As high level summary, change detection is rooted in a fundamental, and long 

standing tenet that radiometric changes relate to real land cover changes (Singh 
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1989). Specifically, the comparison methods: layer arithmetic, transformation, CVA, 

and hybrid change detection, are all variations of this theme. Furthermore, post-

classification can also fall within this theme, if for example, a rule-based classification 

is applied. However, where VHR imagery is concerned, it is recognised that this is not 

always the case because of shading and mis-registration effects (Bruzzone & Bovolo 

2013). Although these kind of VHR image effects are recognised and regularly cited 

(Hussain et al. 2013; Listner & Niemeyer 2011b), they are rarely discussed in detail. In 

light of this, the next chapter reviews the specific challenges faced by modern change 

detection and outlines a future research agenda. 
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3 Change detection challenges 

3.1 Introduction 

This chapter continues on from the review of change detection techniques presented 

in Chapter 2 and reviews the specific challenges of modern change detection. The 

content discussed builds upon, and goes beyond existing reviews (G. Chen et al. 2012; 

Hussain et al. 2013) by explicitly describing the underlying causes and mechanisms and 

establishes a research agenda towards solving these challenges. In particular, it 

describes: 

 The large knowledge gap in the effect of 3D modelling of scene illumination 

and viewing geometry in change detection. 

 The observation VHR change detection at large cartographic scales is under 

explored, and not well supported by current methods. 

 The link between inconsistent segmentations and map conflation. Specifically, 

GIScience research could help to guide research in object-based change 

detection. 

 The need to continually explore a variety of object-based features in change 

detection to bolster our knowledge of scene understanding. 

This chapter contributes to the thesis by highlighting the specific challenges that 

prohibit the identification of complex urban change patterns such as urban creep. This 

thesis seeks to categorically illustrate that classical differencing methods cannot 

adequately describe complex urban change features, and that a more holistic 

approach is required.  In particular, the highlighted change detection challenges must 

be addressed, to minimise their impact.  

Remote sensing change detection is a vast subject that has evolved significantly in the 

last 30 years, but more research is required to tackle persistent problems.  These 

include: scene illumination effects (Hussain et al. 2013; Singh 1989), changes in 

viewing geometry (Listner & Niemeyer 2011a; Lu et al. 2004), scale and the 

identification of small, ‘sub-area’ change (G. Chen et al. 2012), object-based feature 

utilisation (G. Chen et al. 2012; Hussain et al. 2013) and segmentation inconsistency 
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and comparison (Hussain et al. 2013; Listner & Niemeyer 2011a). This chapter expands 

these issues in more detail than previous discussions and crucially highlights potential 

solutions, establishing a research agenda.  

3.2 Scene illumination 

Scene illumination is a significant problem to change detection but it is rarely 

addressed in sufficient detail. Varying solar illumination angles over time give changes 

in shading patterns which can lead to false readings of change. Furthermore, deep 

shadows may mask the underlying land cover entirely leading to coverage gaps. The 

problem is exaggerated in very high-resolution (VHR) imagery because of varying local 

imaging times, and the scale of the shaded features relative to the image resolution. 

Moreover, urban change and forestry applications are particularly prone to errors of 

illumination because both landscapes have an inherently heterogeneous canopy with 

complicated shading and shadow patterns. Although the overall problem is widely 

reported in the literature (Lu et al. 2004; G. Chen et al. 2012; Listner & Niemeyer 

2011a) the issue is rarely treated in enough detail to focus future research. 

Scene illumination is expressed in two different ways, namely bi-directional 

reflectance and shadows. Bi-directional reflectance is the result of variations in image 

brightness from direct solar radiation, while shadows are regions occluded from direct 

solar radiation. Bi-directional reflectance is due to solar and sensor angles, 

atmospheric scattering and surface characteristics (Schaepman-Strub et al. 2006) and 

is a result of both direct (beam) and diffuse radiation (Chen 2011, p112). In practical 

terms, bi-directional reflectance equates to a decrease in image brightness as the solar 

incidence angle increases, i.e. more light is reflected away from the sensor. On the 

other hand, shadows are regions where the direct radiation is blocked. Therefore, the 

signal received at the sensor is a result of diffuse solar radiation only. Correcting for bi-

directional effects is a well-established feature of satellite image pre-processing, and 

can be achieved by physical modelling (Richter 1998) or semi-empirical methods 

(Reese & Olsson 2011). More importantly, bi-directional reflectance correction 

methods have specifically been shown to improve change detection results (Tan et al. 

2013). On the basis that bi-directional reflectance differences are an established and 

addressable part of the literature, they shall not be discussed further in this chapter. 
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However, the effect of shadows on the analysis of remotely sensed images is still an 

open research question and will be addressed in more detail. The remainder of the 

discussion focuses on suppression at source, illumination invariant metrics and 

shadow classification and masking techniques. 

Suppressing illumination effects at source can be achieved by capturing all images 

with a similar sun position, ideally, as close to solar noon as possible. This concept has 

been a long-standing recommendation of the change detection literature (Singh 1989; 

Lu et al. 2004; G. Chen et al. 2012; Hussain et al. 2013). The strategy is feasible with 

sun-synchronous, fixed imaging geometry sensors such as Sentinel-2 and those in the 

Landsat program. However, this is extremely difficult with modern high and VHR 

satellite sensors because of variations in local time and viewing geometry. The 

situation is even more challenging for airborne sensors. In light of these challenges, 

and the rapid increase in the availability and use of VHR images, suppressing at source 

is a very limited and impractical approach. Therefore more emphasis must be placed 

on other strategies. 

Illumination invariant methods and change metrics can be used to suppress the effect 

of scene illumination by minimising intensity changes in the reported change maps. 

Post-classification change is the most common method of achieving illumination 

invariance (Hester et al. 2010; Wen et al. 2016). However, the production of high 

quality multi-temporal maps can be a non-trivial task, especially for large-scale land 

cover applications. Therefore, image-to-image change detection methods invariant to 

illumination would be very valuable. In particular, Carvalho Júnior et al. (2011) 

propose the use of spectral similarity measures, such as Spectral Angle Mapper (SAM) 

and Spectral Correlation Mapper (SCM) which in theory remain insensitive to image 

intensity. Research testing these illumination invariant metrics is starting to emerge 

with encouraging results (Moughal & Yu 2014; Zhuang et al. 2016). However, while 

these methods should be effective in suppressing bi-directional reflectance effects and 

brighter shadows, in theory, they would not be insensitive to deep shadow changes. 

Furthermore, these methods would not provide effective illumination invariance to 

measures of texture or context. On this basis, illumination invariant metrics could be a 
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useful component of a change detection workflow but would not solve shading 

problems in isolation. 

Image shadows can be masked to either constrain image analysis or attempt to 

reconstruct the underlying signature. Constraining delineates the shadow extent, 

excluding them from further analysis (Carleer & Wolff 2006; Van de Voorde et al. 

2004; Hamedianfar & Shafri 2013). For change detection this would remove shadow 

induced false alarms. On the other hand, reconstruction will attempt to recover the 

data under the shadow. Shadow reconstruction can be applied via contrast 

enhancement (Guo et al. 2010; Kasetkasem & Varshney 2011; Liu & Yamazaki 2012), 

contextual classification (Salehi et al. 2012) or substituting with pixels from other, 

unshaded images (Zhou et al. 2009).  Shadow correction for change detection is less 

common. However, demonstrations of shadow constraining are beginning to emerge 

(Bruzzone & Bovolo 2013; Volpi et al. 2013; Wang et al. 2015). These examples 

demonstrate that shadow masking is becoming increasingly important in change 

detection research due to the increased uptake of VHR imagery. 

There are currently two main methods of shadow classification present in the 

literature, namely spectral and contextual classification. Spectral methods use image 

intensity, ratios and transformations to delineate dark areas. Contextual methods use 

neighbouring relationships to determine shadow position. Bruzzone & Bovolo (2013) 

propose the use of spectral methods of shadow masking in change detection studies. 

However, spectral methods can be prone to confusion with other dark areas 

(Shahtahmassebi et al. 2013). Therefore context is crucial in effective shadow 

classification. G. Chen et al. (2012) comments that OBIA is a suitable framework to 

model shaded features utilising contextual elements. For instance, Comber et al. 

(2012) used the sun’s position and image object orientation to more effectively 

identify shadows, while Shao et al. (2011) used a model of expected land cover 

adjacency to highlight building shadows. Lastly, even when using a contextual analysis 

Huang & Bu (2015) report confusion with other dark objects, highlighting that 

effective shadow detection is a non-trivial task, especially in complex urban scenes. 

Modelling is a third and underexplored method of shadow masking, which should be 

investigated in change detection research. Modelling uses the 3D geometry of the 
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scene and the Sun’s position to simulate illumination. Only two conference papers 

(Nakajima et al. 2002; Zhan et al. 2005) were identified following this methodology. 

Shahtahmassebi et al. (2013) highlight that modelling is limited by the availability of 

3D information, a point which is likely to explain the lack of research. The question of 

data availability is even more important for change detection because a rigorous 

analysis would require multi-temporal 3D data. However, modern digital 

photogrammetry and the latest sensors make the production of suitable Digital 

Surface Models (DSMs) technically achievable from both aerial (Dazhao, 2007; Gehrke, 

Uebbing, Downey, & Morin, 2011) and satellite sensors (Gehrke et al. 2011). 

Furthermore, high-resolution DSMs have long been available from commercial 

companies for both aerial (Bluesky 2016; Remote Aerial Surveys 2016) and satellite 

sensors (Airbus Defence & Space 2016; DigitalGlobe 2016). Crucially, multi-temporal 

DSM change detection is beginning to emerge (Tian et al. 2014; Qin et al. 2015). 

Therefore as the availability of 3D information increases, shadow modelling becomes 

more feasible and research is required to demonstrate this within change detection 

workflows. 

3.3 Viewing geometry 

Scene viewing geometry is a problem in remote sensing change detection sharing 

many of the key issues linked with scene illumination.  Elevated features will show 

differing degrees of lean (or parallax) depending on the position of the sensor. 

Therefore even stable, unchanged buildings and trees can be imaged very differently 

leading to false readings of change. In a similar manner to illumination, viewing 

geometry becomes increasingly important when considering VHR data sources and 

urban and forestry applications. This is due to VHR sensor pointing agility, the scale of 

the analysis relative to parallax features, and the inherent canopy heterogeneity of 

forested and urban surfaces. The issue of viewing geometry has been highlighted by 

some authors as a challenge in change detection studies (Lu et al. 2004; G. Chen et al. 

2012; Listner & Niemeyer 2011a) but is rarely discussed in detail. 

There are several strategies available to deal with viewing geometry; namely: 

suppressing at source, removal by generalisation, comparing structural similarity, 

modelling or true ortho-rectification. In a similar vein to scene illumination, it has 
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been a long-standing recommendation of the literature to use images with similar or 

identical viewing geometry (Lu et al. 2004; G. Chen et al. 2012; Hussain et al. 2013). 

This strategy is feasible when applied to satellite systems with a fixed nadir view such 

as the Landsat program. However, it is very difficult to obtain geometrically consistent 

VHR satellites images, and near impossible from unsystematic aerial surveys. 

Therefore, other strategies are required to account for this problem. 

Generalisation is often used to suppress viewing geometry and other misregistration 

effects present in VHR imagery by simply analysing change at a reduced scale. The 

rationale of this approach is that false alarms introduced by misregistration will be 

relatively small in extent, compared to the features of interest. Therefore, targeting 

larger change features will suppress the apparent noise. For example, when 

identifying urban change with Quickbird imagery, Boldt et al. (2012) excluded all 

change with an extent of less than 300 pixels. While Pacifici & Frate (2010) reported 

Quickbird image change in 100x100 pixel units. Marchesi et al. (2010) presented 

experimental work identifying registration errors with CVA. The results showed that at 

full resolution, the noise was interspersed with the change and no change domain, 

whereas when the CVA analysis was performed at a lower spatial scale the noise was 

heavily suppressed, leaving a more pronounced changed domain. Recent work by 

Wen et al. (2016) showed that under large viewing angle differences, urban change 

detection quality was related to the size of the unit of analysis, where larger units 

generalised opposing image content changes. These examples show that current 

methods of dealing with differences in viewing geometry and other misregistration 

effects are very limited, with simple scale filtering the primary strategy. This is a point 

of concern if the change features or interest are small and would themselves be liable 

to removal. 

The use of structural similarity measures is a new and exciting development in change 

detection research. In theory, measures of structural similarity will highlight 

differences in the nature of structures present in the image independent of their 

position. In particular, methods of change detection employing the bag-of-visual-

words classifiers are beginning to emerge. For example, Wu et al. (2016) and Wen et 

al. (2016) used counts of different land cover types aggregated at the patch level as a 
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means of comparison. More interestingly Gueguen & Hamid (2016) used feature 

shapes as the image ‘words’ and demonstrated that the approach performed well 

with VHR imagery across a range of different viewing geometries and illumination 

conditions. This research direction shows great promise. However, Wen et al.'s (2016) 

results highlight that the bag-of-visual-words technique is prone to spatial 

generalisation. Specifically, larger units of analysis can compensate for differences in 

viewing geometry at the expense of detail. Therefore there is a challenge to evolve 

this technique further to remain sensitive to fine detailed changes. 

Modelling the 3D properties of a scene is another method of viewing geometry 

compensation, but is largely absent from the remote sensing literature. Contrary to 

some descriptions in the literature (Marchesi et al. 2010; Bovolo & Bruzzone 2007; 

Bruzzone & Bovolo 2013), viewing geometry changes are not ‘noise’. They are in fact 

systematic and can be modelled accordingly. For instance, if the geometry of a 

building’s roof is known then its projection can be modelled at different viewing 

angles and compensated for in a change analysis. No examples in the remote sensing 

literature were found replicating this hypothesis, but some related research was 

found. For instance, Liu et al. (2010) projected 3D building models onto newly 

acquired imagery as a means of identifying changes. While in the computer vision 

literature, van de Wouw et al. (2016) demonstrated a novel method of projecting 

recent imagery onto baseline imagery using its 3D properties. No such research exists 

in the remote sensing literature. Therefore, modelling scene viewing geometry for 

change detection is a huge gap in the literature, with a clear avenue for future 

research. This is especially true considering multi-temporal DSMs are now being used 

for change detection (Tian et al. 2014; Qin et al. 2015). 

Lastly, the production of true ortho-rectified images prior to change detection is a 

method that would effectively eliminate viewing geometry problems. A true ortho-

rectified image is processed to reconstruct orthogonality at feature level rather than 

ground level as in standard ortho-rectification. Practically this results in images with 

building and tree ‘lean’ removed. This level of pre-processing is ideally suited to urban 

and forestry change detection using VHR imagery because the data stack will remain 

co-registered over complex canopies. The technique can apply to aerial (Sheng 2007) 
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and to a lesser extent satellite images (Bang et al. 2007). However, no research was 

identified using true ortho-rectified images for change detection. This omission is 

likely because of the data volumes involved. Specifically, true ortho-rectified images 

can only be produced where significant stereo overlap exists, and the scene elevation 

is modelled precisely at the image pixel level. While this would be an interesting area 

for future research at present, the volume of stereo data required would prohibit the 

use of this approach in most applications. 

3.4 Analysis scale 

The majority of the change detection literature is focused on the identification of 

spatially broad features, either a result of limited image resolution or an imposed 

analysis scale. A non-systematic survey of change detection articles reviewed for this 

thesis (see Table 3) found a significant majority (64%) utilised imagery with a 

resolution of 20m or more. Incidentally, this figure is likely to be much higher, given 

that this thesis and the Author's interest is focused on VHR image analysis. 

Nonetheless, this gives a clear indication that VHR imagery is still under-utilised. While 

image resolution influences analysis scale, it is not a diagnostic indicator due to multi-

scale object-based analysis, and conversely, sub-pixel analysis. In other words, when 

whole pixels are chosen as the unit of analysis, scale is proportional to image 

resolution. When pixels are aggregated to image objects of varying sizes, in the case of 

OBIA, or when fractional spectral mixtures are considered in the case of sub-pixel 

analysis (Dams et al. 2013; Lu et al. 2010) the scale of the analysis is not clear. 

Therefore a meaningful breakdown of analysis scale is only possible if the change 

detection scale is explicitly reported. Unfortunately scale is rarely reported; only six of 

the articles identified here that did so. However, examples indicating the application 

of relatively large units of analysis, and aggregated change metrics, are common when 

analysing VHR imagery (Wu et al. 2016; Wen et al. 2016). This high-level summary 

highlights that change detection is normally conducted at relatively coarse scales, 

even when the source imagery contains more detail.  
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Table 3: Image resolution in change detection research. Based on a non-systematic survey of 83 articles. 

Image 

resolution 
Frequency Percentage 

<=1m 23 28% 

1-20m 7 8% 

20m+ 53 64% 

 

VHR image change detection is commonly reported at a reduced scale, when 

compared to the image resolution. Noisy, ‘salt n pepper' elements in high-resolution 

change maps (and classified maps in general) are often targeted for removal by spatial 

filtering. Moreover, using a large unit of analysis will generalise the complex signal of 

VHR imagery. Both of these strategies relate to a reduction in the scale of the analysis. 

For example, Klaric et al. (2013) effectively demonstrate ‘salt n pepper’ removal using 

pixel-based filtering. Moreover, object-based methods are routinely used to suppress 

the high-frequency content in change detection (Cao et al. 2014; Hao, Shi, Deng, 

Zhang, et al. 2016; Tang et al. 2015; Boldt et al. 2012). In fact, the suppression of ‘salt 

n pepper’ effects is often cited as a key motivation for using object-based methods of 

change detection (G. Chen et al. 2012; Parmentier & Eastman 2014). Furthermore, it is 

common to use large units of analysis to report aggregated change over relatively 

large areas. For instance, Wen et al. (2016) reported change results aggregated over 

large (the size was unreported) square cells. Wu et al. (2016) tested a similar 

technique over 150 x 150 pixel blocks, while Pacifici & Frate (2010) applied a neural 

network analysis of 100 x 100 pixels blocks. These examples illustrate that even 

though VHR imagery has the potential to detect very fine changes, this is very rarely 

done with the tendency to report on a much-reduced scale.  

The suppression of false change detection due to illumination and viewing geometry 

effects is the primary reason for reducing the scale of change analysis. Rigorously 

modelling and removing illumination and viewing geometry issues is a non-trivial task. 

Therefore, spatial filtering and generalisation are one strategy employed to suppress 

them. Furthermore, the thematic accuracy of VHR change detection increases at 

coarser scales (Wen et al. 2016; Mishra & Crews 2014). While it is clear that not all 
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applications require large-scale, sub-parcel analysis, for those that do this is a rather 

unsatisfactory state. While it is the assumption of many change detection methods, 

that change is more likely if adjacent to other change (Bovolo & Bruzzone 2015), we 

should challenge this assumption if the change is not associated with random noise 

processes. In other words, smaller change objects imaged with VHR sensors can be 

made up of many pixels, and their formation is not a random process. Therefore, in 

VHR imagery smaller, multi-pixel objects contain valid data and should not be 

removed by size and isolation alone. Furthermore, some applications such as urban 

creep analysis (Tewkesbury & Allitt 2010; Tewkesbury 2011) require the identification 

of small change features. In light of this, it is inevitable that applications requiring 

detailed change analysis must consider illumination and viewing conditions and 

therefore there is a clear case to specifically model and remove these effects to 

facilitate larger scale analysis. 

3.5 Segmentation inconsistency and object comparison 

Independent segmentations over time are highly likely to be inconsistent, primarily 

due to issues of illumination and viewing geometry. Image-object comparison is 

theoretically the most powerful framework for change detection (Tewkesbury et al. 

2015) but is a non-trivial task due to inconsistent segmentations over stable land cover 

conditions. Tewkesbury et al. (2015) and chapter 2.2 of this thesis discuss current 

methods of tackling this issue, in particular, the identification and removal of sliver 

objects using spatial and morphological filtering and removal. While it is highlighted 

that linking of image objects over time is an issue (Listner & Niemeyer 2011a) and one 

that requires more research (Hussain et al. 2013), little has been discussed as to the 

nature of this work. 

There are clear parallels between inconsistent segmentations in remote sensing 

change detection and map conflation in GIScience which should be further explored. 

G. Chen et al. (2012) highlights that the problem of linking image objects is most likely 

to be solved under a ‘GIS framework’. This is, of course, indicating map conflation in 

GIScience. Ruiz et al. (2011) identify three domains of map conflation matching 

techniques, namely geometric (to include spatial), semantic and topological. For 

instance, recent research by Barazzetti (2016) demonstrated a geometric conflation 
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(affine transformation) for object-based post-classification change before sliver object 

removal. However, a rigorous conflation between segmentations would need to move 

beyond this and utilise two, or all three (geometric, semantic and topological) 

matching techniques. For example, Jones et al. (1999) demonstrated conflation using 

combined geometric and semantic matching criteria to identify change between multi-

temporal vector polygons. While graph theory can help to explain object-based 

classification structure (Comber, Brunsdon, et al. 2012), it could be an interesting 

avenue of research for topological matching. These examples show that there are 

unexplored avenues in GIScience conflation that could be utilised to provide an 

improved framework for image-object matching over time. 

3.6 Object-based feature utilisation 

Object-based Image Analysis (OBIA) is still a relatively immature resource when 

compared to its conceptual potential. The conceptual framework of OBIA states that 

image objects are analysed based on their tone, texture, morphology and spatial 

context in a manner approximating image interpretation. For instance, Hölbling et al. 

(2015) used scene morphology, context and texture to improve the identification of 

landslides in Taiwan. While Toure et al. (2016) used multiple analysis scales to improve 

urban land use change analysis. However, OBIA is still far from delivering the level of 

image understanding or ‘geographic-based intelligence’ (Blaschke 2010) that was 

conceptualised and in fact, has gathered some criticism (Baraldi & Boschetti 2012). For 

instance, it is common for object-based change classifications to be dominated by the 

influence of spectral features (Yu et al. 2016; Hao, Shi, Deng, Zhang, et al. 2016) or 

exclusively use spectral features (Walter 2004; Bontemps et al. 2012; Hamada et al. 

2013) to depict change. Recent commentary (Bovolo & Bruzzone 2015; Jian et al. 

2016; Lu et al. 2014) highlights that simple image differencing is still the most widely 

used indicator of change from remote sensing. This is despite the consensus that 

object-based methods are the more advanced and preferred solution (G. Chen et al. 

2012; Hussain et al. 2013). The cautious use of object features for change analysis is 

likely due to difficulties modelling complex features, as reported by Barazzetti et al. 

(2015). While effective for certain change targets, focusing on spectral features does 

little to bolster our knowledge of scene understanding. For object-based change 
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detection to develop towards its potential more research is required utilising a range 

of object-based features. 

Future difference images and CVA should consider a range of object-based features to 

visualise a range of changes, both spectral and non-spectral. Visualising a selection of 

informative object-based features using CVA could be an interesting avenue for 

research, simplifying change detection workflows. Recent research by Bovolo et al. 

(2012) and Carvalho Júnior et al. (2011) both explore n-dimensional CVA and 

hypothesise that their use should be extended to include contextual and spatial 

information. Research by He et al. (2011) showed that image texture is a useful 

addition to a CVA analysis, while work by Tian et al. (2013) cleverly include feature 

height. A logical direction for future research would be to apply multiple object-based 

classification features to recent formulations of CVA as defined by Bovolo et al. (2012) 

and Carvalho Júnior et al. (2011). This type of research would effectively create 

pseudo difference images which may help to visualise and identify changes outside of 

the spectral domain. 

3.7 Summary 

There is a clear case to investigate and evaluate 3D change detection methods 

explicitly modelling scene illumination and view angles. As discussed in section 3.2 and 

3.3 scene illumination and viewing geometry are critical issues in VHR change 

detection especially in urban and forestry applications. Furthermore, these two issues 

are intrinsically linked because they can both be physically modelled and corrected 

with suitable 3D information. Given that DSMs are feasibly generated from both aerial 

and satellite imagery and change detection studies have begun to emerge using multi-

temporal DSMs there is a clear case to investigate complex 3D change detection. 

Specifically, scene illumination and viewing geometry should be modelled as part of 

the change detection process.  

Automated change detection is more often conducted at small cartographic scales, 

with little research demonstrating the identification of small features at large 

cartographic scales. There is an increasing amount of good research utilising VHR 

imagery for change detection, many of which are tackling complex illumination and 
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viewing geometry challenges. However, many of these are achieved at moderate 

scales, heavily aggregating the image content. Applications identifying high-resolution 

urban changes such as urban creep analysis are not well served by these techniques. 

Therefore further research is required investigating larger-scale change analysis. 

Inconsistent segmentation is a hugely challenging problem and should be investigated 

with reference to map conflation research in GIScience. In particular, the three 

matching criteria of geometry, semantics and topology should form the framework for 

future work. Recent research is already utilising geometric matching to some degree, 

and graph theory could be an interesting method of topological matching. 

Compared to its conceptual potential object-based change detection and OBIA, in 

general, remains an immature technology. As highlighted in previous reviews (G. Chen 

et al. 2012; Hussain et al. 2013; Blaschke 2010), the identification and utilisation of 

pertinent object-based features towards a high level of image understanding is a huge 

challenge; one which is not likely to be solved in the short to medium term.  Therefore 

a concerted effort must be made towards utilising the contextual power of OBIA, 

exploring a range of different object-based features for change detection to bolster 

our knowledge of scene understanding. In particular, the use of object-based features 

in CVA provides an opportunity to readily combine features and generate pseudo 

difference images illustrating non-spectral changes. 

Urban creep identification provides an ideal, benchmark application with which to test 

modern change detection techniques. Firstly, urban creep features are typically small 

which challenges the default analysis scale for change detection. Secondly, observing 

small urban features is prone to confusion with illumination and viewing geometry 

changes. Lastly, urban creep features are often subtle with minimal spectral 

differences and effective identification will likely require textural and contextual 

support. These points along with the wider need for urban creep identification are 

discussed in Chapter 4.
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4 Urban creep: a social concern and change detection 

challenge 

4.1 Introduction 

This chapter continues on from Chapter 3 by describing how the application of urban 

creep detection is an ideal platform with which to advance remote sensing change 

detection techniques. Furthermore, the context of urban creep is described, and it is 

explained why small, apparently insignificant changes are actually of great importance 

to society. Key highlights include: 

 Despite the apparent insignificance of small changes, the cumulative effect is 

hugely important and has proven links to significant increases in urban 

flooding. 

 As an example target for remote sensing change detection, urban creep 

provides an excellent ‘fit’ to the challenges identified in Chapter 3. 

 Urban creep influences government policy, has resulted in new legislation and 

is an established fixture of urban planning in the UK. On this basis, continued 

monitoring to verify and update existing understanding is advised. 

This chapter contributes to the thesis by introducing a real world case study that may 

expose change detection technique weaknesses and push strongly towards solving key 

challenges in the discipline. Specifically, preserving an analysis scale appropriate to 

VHR imagery, tackling the effect of scene illumination and viewing geometry and 

discovering object-based features that facilitate increased scene understanding. 

4.2 Urban creep as a challenge to change detection research 

Urban creep is an ideal application with which to challenge the state-of-the-art of 

change detection techniques because it is sensitive to the primary issues faced by the 

discipline. Chapter 3 emphasised that scene illumination, viewing geometry, analysis 

scale, object-based feature utilisation and inconsistent segmentation all pose 

significant challenges to change detection. The identification of urban creep features, 

will in most cases, be directly affected by these challenges. For example, a new 
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extension or driveway adjacent to an existing building will be prone to masking and 

confusion with scene shading and viewing angle effects. Features such as a 

conservatory or garden hard standing are far smaller than the vast majority of 

remotely sensed change detection targets. The detailed textual, contextual and multi-

scale interpretation required to interpret urban creep features is an ideal test of the 

ability of object-based features to model high-level image interpretation processes.  

Lastly, since urban creep features usually reside in highly heterogeneous landscapes, 

segmentations will be highly inconsistent and prone to sliver objects that would be 

very challenging to separate from real change at this scale. These examples 

demonstrate that it is impossible to tackle this application without considering the key 

challenges in change detection. Therefore, research in this area is likely to push the 

state-of-the-art towards new breakthroughs and progress in the discipline. 

The identification of urban creep features in remotely sensed imagery is directly 

affected by illumination conditions and viewing geometry. Typical examples of urban 

creep are small in extent and reside in close proximity to elevated features. 

Consequently, real changes are readily confused with feature lean or masked by 

shadows. For example, when interpreting multi-temporal aerial images to identify 

garden changes across London, the London Wildlife Trust et al. (2011) found that 

occlusions by feature lean and deep shadows were common and needed to be 

removed from the analysis. Perry & Nawaz (2008) also identified difficulty interpreting 

the state of change in the presence of shadows and feature lean. It was reported that 

a high level of contextual evidence, -such as a pathway running into and then out of a 

shadow- was utilised to assign change in these circumstances. Furthermore, 

Duckworth (2005) and Newcastle City Council (2008) both reported interpretation 

difficulties as a result of shadow and feature lean. These examples show that urban 

creep identification is a change detection application heavily influenced by 

illumination conditions and sensor viewing geometry. 

Effective remotely sensed urban creep monitoring requires VHR change detection at 

large cartographic scales. Changes to existing properties are usually small, and their 

depiction requires a large-scale analysis of VHR imagery. Aerial imagery is the principal 

data source for this type of research. For example, Verbeeck et al. (2011) utilised 
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25cm imagery, Perry & Nawaz (2008) 60cm imagery, while several others have used 

aerial imagery at undisclosed resolutions (London Wildlife Trust et al. 2011; Newcastle 

City Council 2008; Duckworth 2005; Richard Allitt Associates Ltd. 2008; Cutting 2003). 

While it is clear VHR imagery is the primary choice of data, the imagery itself is also 

interpreted and classified at large-scales to facilitate the demands of the application. 

For instance, Verbeeck et al. (2011) identified sub-parcel changes in baseline mapping 

at scales ranging from 1:200 to 1:1250. Richard Allitt Associates Ltd. (2008) 

augmented 1:1250 scale mapping with small changes identified from field survey and 

aerial imagery. While Duckworth (2005) sampled multi-temporal aerial imagery 2-5 

times per square metre, giving a very detailed analysis. Clearly then, this application 

demands spatially detailed results at the limit of most VHR imagery. From a remote 

sensing perspective, urban creep monitoring presents a scale of analysis far beyond 

most change detection applications, and in some circumstances urban creep features 

may be characterised as classification ‘salt n pepper’ or ‘noise’. Therefore, change 

detection research focusing on urban creep or sub-parcel change would push the 

state-of-the-art. 

Urban creep interpretation is a complicated task relying on a range of criteria and 

OBIA is a prime candidate to model these criteria towards automated classification. 

Effective identification of urban creep requires a complicated assessment of 

permeability indicators –such as colour or texture-, and context to include the 

association to surrounding developments. For example, Perry & Nawaz (2008) 

describe how they used fine-scale patterns and texture, and contrast between 

neighbours in their interpretation. Modelling by UKWIR (2010) found that the rate of 

creep was correlated to both building density and type, while Verbeeck et al. (2011) 

found that change probability increased near to buildings and roads. Furthermore, 

several studies have used historical panchromatic aerial images (Duckworth 2005; 

Perry & Nawaz 2008) meaning that the interpretation was entirely reliant on albedo, 

texture and contextual indicators. Verbeeck et al. (2011) comment that OBIA is an 

ideal framework with which to identify urban creep, with object-based features the 

mechanism to model contextual relationships. In fact, the modelling work of UKWIR 

(2010) was based on semi-automated change detection utilising OBIA (Allitt & 
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Tewkesbury 2009), while further work conducted over Exeter demonstrated the use of 

object-based features to separate urban creep from other impermeable surface 

change (Tewkesbury 2011). These examples demonstrate that urban creep 

identification is a truly multi-criteria problem requiring a range of image features and 

one that certainly challenges modern change detection techniques. 

Urban creep identification would be further complicated by inconsistent 

segmentations where true change could be easily confused with sliver objects. A new 

building extension or garden pathway adjacent the established house will be prone to 

viewing angle and shading effects, which in turn would lead to inconsistent 

segmentations and sliver objects. Since sliver objects are typically removed using size 

and morphological filtering (Linke, McDermid, Pape, et al. 2009; Barazzetti 2016) small 

changes are at risk of removal. No research was found directly investigating the 

consequence of inconsistent segmentations on urban creep or sub-parcel change. 

However, Verbeeck & Van Orshoven (2012) found that large-scale garden 

classifications were improved when segmentations were simplified using auxiliary 

mapping. The impact of inconsistent segmentations and sliver objects on large scale 

change analysis is largely unknown, but urban creep would form an ideal case study 

with which to benchmark opposing methods. 

4.3 Why is urban creep important? 

4.3.1 Flooding 

There is a proven link between urban creep and increases in pluvial flooding through 

the sewer network. Pluvial flooding occurs when the rate of runoff exceeds the 

capacity of the local drainage system, resulting in surface pooling of water (Han 2011). 

In the wake of the widespread UK floods in 2007 and recommendations made in the 

'Pit Review' (London Cabinet Office 2008, p71), there has been a raft of work proving 

the link between urban creep and flooding, and assessing its impact. For example, 

results of an extensive modelling program across 97 catchments UK wide, indicated 

that urban creep could contribute a 12% increase in sewer flooding by 2040 (Ofwat 

2011). While UKWIR (2010) found increases in flood locations of up to 23% within 20 

years. Research by Trioulet (2012) found that urban creep in Cranbrook, East London 
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had the potential to increase the number of flood locations in excess of 20cm depth 

from 28 in 2010 to 45 by 2040. A pilot study in Bradford concluded that the 

combination of climate change and urban creep could increase surface water volumes 

by 77% by 2085 (Gill 2008). Hydraulic modelling in Birmingham indicated that adding 

25% more paved area to existing properties would have the effect of increasing the 

volume of sewer flooding by 18% (DEFRA et al. 2008). These examples have proven 

the hypothesis in the 'Pit Review' that urban creep was likely a significant contributing 

factor to the UK wide floods in 2007. Furthermore, they describe significant problems 

with flooding in the future if the issue is not addressed. 

The observed flooding impact of urban creep far exceeds the anticipated impact, 

considering the relatively small changes observed. One could easily conclude that 

urban creep would equate to relatively small, proportional contributions to pluvial 

flooding. However, research has shown that the impact is disproportionally large. For 

example, UKWIR (2010) estimated an increase of flood volume of up to 20% within 20 

years. While Trioulet (2012) estimated between 9% and 22% increases in flood volume 

by 2030 for Cranbrook, East London. Moreover, Ofwat (2011) calculate that by 2040 

urban creep is likely to contribute more to sewer flooding volumes than new housing 

and UKWIR (2010) state that it will often overshadow the effects of climate change. 

The disproportionate response is because of inappropriate drainage to waste and 

combined sewer networks. Urban creep and other uncontrolled development is often 

drained to the dedicated wastewater sewer or combined systems. As much as 50% of 

urban creep may drain into the waste water system (Ofwat 2011). This type of 

inappropriate connection overwhelms the system well beyond its initial design leading 

to sewer overflow (Butler & Davies 2011). This body of work shows that despite its 

relatively small extent, urban creep can disproportionately contribute to significant 

flooding. 

4.3.2 Legislation and policy 

UK government policy is influenced by urban creep, and legislation has been passed in 

an attempt to control it. Historically, many changes to existing properties -especially 

within gardens- were not reported in national mapping or land use statistics and 

therefore fall outside of planning laws (Perry & Nawaz 2008). However, on 1st October 
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2008, new legislation came into force requiring planning permission for any additional 

impermeable area greater than 5m2 within the front or sides of a dwelling 

(Department for Communities and Local Government 2008b). This legislation comes as 

a result of a public enquiry into the widespread UK floods in 2007, the ‘Pitt Review’ 

(after Sir Michael Pitt the inquiry chair), specifically recommendation 9: 

'Householders should no longer be able to lay impermeable surfaces 

as of right on front gardens and the Government should consult on 

extending this policy to back gardens and business premises.' 

(London Cabinet Office 2008, p15) 

However, even with this legislation established urban creep is still a consideration for 

the UK government because of its irregular occurrences and difficulties of control and 

monitoring as discussed in the ‘Foresight Land Use Futures Project’: 

'even where there is control over urbanisation, ‘urban creep’ adds 

hard surfaces in an uncontrolled and unpredictable manner.' (The 

Government Office for Science 2010, p163) 

Therefore, while the UK government has taken action and legislated to mitigate the 

effects of urban creep, it remains on the agenda. Specifically, urban creep monitoring 

will remain important as a mechanism to gauge the effectiveness of legislation and the 

ongoing risk that it poses. 

Sub-parcel change also influences the legislation and policy of other governments 

beyond the UK. While the term ‘urban creep’ is rarely used outside of the UK, sub-

parcel change -the underlying process of urban creep- is of interest universally. For 

example, urbanisation control legislation similar to the UK exists in Belgium (Verbeeck 

et al. 2011). While properties in the City of Austin, Texas are allowed a maximum 

extent of impermeable surface depending on a defined zoning scheme (Wu et al. 

2007). Although sub-parcel change control laws exist in other nations, the nature of 

the legislation is highly variable (Wright et al. 2011). 
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4.3.3 Stream condition and biodiversity 

Urban creep increases sewer discharge to local water courses, which in turn will 

elevate pollution levels and threaten biodiversity. The increased surface runoff caused 

by urban creep makes the prevalence of sewer overflows into local water courses 

more frequent, degrading stream condition. Instances, where the sewer overflows 

into the local watercourse, are called Combined Sewer Overflow (CSO) spills and are a 

deliberate design feature of the sewer system to alleviate surface water flood risk in 

storm conditions (Ofwat 2011). CSO spills are significant because the overflow 

contains a mixture of storm and waste water. The resulting cross contamination can 

diminish fish stocks through oxygen depletion as well as raise concerns over public 

health and water course aesthetics (Butler & Davies 2011). Urban creep has been 

shown to increase the frequency of these spills. For example, hydraulic modelling by 

UKWIR (2010) yielded a 15% increase in the frequency of CSO spills and a 29% 

increase in CSO spill volume over a 14-year timeframe. Modelling by Bradford 

Metropolitan District Council et al. (2008) also indicated a link between urban creep 

and increased CSO spills, while Anglian Water (2010) have recognised the potential 

environmental risk of creep induced CSO spills. This interesting set of results coming 

out of the UK water industry show a clear link between urban creep and increased 

sewer discharge into local water courses. 

Urban creep may further contribute to reduced stream condition and biodiversity 

through increased runoff to local waterways. Most modern sewer designs have a 

separate storm water system which diverts surface water to local water courses with 

no treatment and little filtration (Butler & Davies 2011). This is a different type and 

mechanism of discharge to CSO spills discussed earlier. While not contaminated with 

waste water, storm water runoff can be contaminated by surface pollution. The types 

of pollutants expected include hydrocarbons, fertilisers and heavy metals (Wright et 

al. 2011). Impermeable surface runoff has been shown to damage stream condition 

and biodiversity by increasing pollution and water temperature and altering stream 

profiles (Slonecker et al. 2001; Stone 2004). Furthermore, surface pollutants are 

deemed the most significant threat to water resources by the U.S. Environment 

Protection Agency (Stone 2004). There is no empirical research specifically linking 
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urban creep to a degradation in stream condition and biodiversity. However, it is a 

reasonable assumption that urban creep in part, contributes to the widely recognised 

effect of urbanisation on stream condition and biodiversity.  

4.3.4 Urban environmental quality 

Urban creep may contribute to degrading urban environmental quality by impacting 

biodiversity, regional climate and public health and well-being. While urban creep 

always results in an increase in impermeable surface, it also results in a loss of 

vegetation and a reduction in urban green space. The removal of vegetation will 

always result in a loss of biodiversity (Scalenghe & Marsan 2009). For example, there is 

a proven link between urban intensification and reduced bird species diversity and 

abundance (Carbó-Ramírez & Zuria 2011; Blair 1996). Incremental impermeable creep 

is also likely to exasperate the urban heat island effect, where urban areas are linked 

to raised surface temperature (Pan et al. 2011; Weng et al. 2011; Huang et al. 2011). 

Lastly, the threat to public health may be elevated. Primarily because sewer overflow 

poses a significant pathogen and bacterial contamination risk (Butler & Davies 2011), 

but also due to the holistic link between urban green space and public health and well-

being (James et al. 2009; Schipperijn et al. 2010). Even though there is no research 

explicitly linking urban creep to the degradation of urban environmental quality, there 

are strong indications that it would contribute to the proven traits of urbanisation. 

4.3.5 Planning 

In the UK, urban creep is an established consideration in urban planning. Impermeable 

creep is considered in new development sewer design and the continued maintenance 

and upgrade of existing infrastructure. For example, a set impermeable addition of 

between 5m2 and 10m2 per property might be considered (Wessex Water 2009) or a 

10% increase as used by Scottish Water (Wright et al. 2010). More recently empirical 

evidence has resulted in the development of models, evolving creep over time. For 

instance UKWIR (2010) propose a mean rate of urban creep of between 0.4 to 1.1 m2 

per property, per year. Interestingly, Verbeeck et al. (2011) observed an impermeable 

creep rate of 1.3m2 per property, per year in Leuven, Belgium. More sophisticated 

models proposed by UKWIR (2010) integrate building density and property type to 

refine estimates of creep rate and have been applied to samples nationwide in 
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research by Ofwat (2011). These examples show that estimates of the rate of urban 

creep are an important fixture of urban planning in the UK. Further monitoring will be 

required to verify and improve these models for future planning purposes. 

4.3.6 Existing monitoring 

Urban creep has been deemed worthy of monitoring by several researchers, with 

work dating back nearly two decades. Adopting urban creep as the thesis case study 

may seem like an obscure choice. However, many researchers have deemed it worthy 

of investigation with work conducted using a range of different methodologies. The 

body of work in this area is succinctly catalogued in Table 4. Attempts have been made 

to gain insight from existing use land use statistics (Whitehand & Carr 1999), but it is 

widely acknowledged that these statistics and large-scale mapping layers do not 

comprehensively quantify parcel permeability (Perry & Nawaz 2008; Richard Allitt 

Associates Ltd. 2008; UKWIR 2010). Therefore field survey and resident questionnaires 

(Wright et al. 2011) have been adopted, but with limited extent. Several studies 

(Cutting 2003; Richard Allitt Associates Ltd. 2008; Verbeeck et al. 2011) have 

recognised that aerial imagery may assist with field survey by extending visibility into 

back gardens. However, the use of a single image does not present any direct 

evidence of land cover change. Therefore, multi-temporal aerial imagery with a 

defined monitoring period is the common and most adopted approach (Duckworth 

2005; Perry & Nawaz 2008; Newcastle City Council 2008; London Wildlife Trust et al. 

2011; Allitt & Tewkesbury 2009; Tewkesbury 2011). Several authors (Perry & Nawaz 

2008; Verbeeck et al. 2011) have noted the time-consuming nature of urban creep 

interpretation and the limited extent that can be covered. With this in mind, 

pioneering work by Tewkesbury & Allitt (2010) facilitated the analysis of over 533 000 

properties using semi-automated OBIA for a UK wide investigation of urban creep 

(UKWIR 2010). These examples show that there is considerable interest in urban creep 

and researchers have gone to great lengths to monitor and begin to understand its 

behaviour. 
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Table 4: A summary of urban creep monitoring research. 

Methodology Study Description 

Land use statistics and 

large-scale mapping 

The Changing Fabrics of Ordinary Residential Areas (Whitehand & Carr 

1999) 

Analysed planning applications between 1948 and 1992 in pursuit of small scale development trends. The 

authors noted the limitation to permitted house extensions only. 

Field survey and 

questionnaire 

Urban creep in Scotland: stakeholder perceptions, quantification and 

cost implications of permeable solutions (Wright et al. 2011) 

Involved the visual inspection of property curtilage from the street to estimate the type and extent of 

apparently impermeable additions. This was supplemented by a resident’s questionnaire regarding property 

evolution. The study yielded deep insight but over a very limited extent. 

Image-assisted field 

survey 

Property Creep: A Case Study (Cutting 2003) Field surveyed ten sample sites in Oakwood; Derby supported by aerial imagery. 

Wessex Water final business plan 2010 - 2015: Appendix C6.ii Urban 

Creep Study (Richard Allitt Associates Ltd. 2008) 

Used recent aerial imagery and mapping, historical mapping and field survey to identify the extent of urban 

creep over 30 samples throughout Bournemouth, Bristol and Weston-Super-Mare. 

Measuring extent, location and change of imperviousness in urban 

domestic gardens in collective housing projects (Verbeeck et al. 2011) 

Field surveyed regions of Leuven; Belgium supported by the original building plans and recent 25cm aerial 

imagery. 

Multi-temporal image 

interpretation 

Assessment of urban creep rates for house types in Keighley and the 

capacity for future urban creep (Duckworth 2005) 

Prepared detailed multi-temporal land cover maps from aerial images at 1972, 1989, 1997 and 2002 to track 

urban creep in Keighley, Bradford. 

An investigation into the extent and impacts of hard surfacing of 

domestic gardens in an area of Leeds, United Kingdom (Perry & Nawaz 

2008) 

Prepared detailed land cover maps from 1971 and 2004 using multi-temporal aerial imagery. 

Urban flood risk and integrated drainage - Ouseburn and North 

Gosforth Pilot Project (Newcastle City Council 2008) 

Mapped impermeable surface in 1996 and 2005 for 100x100m sample sites across Newcastle using multi-

temporal aerial imagery. 

London: Garden City? (London Wildlife Trust et al. 2011) Used multi-temporal aerial imagery to estimate land cover change within 1292 garden plots across London. 

Semi-automated 

multi-temporal image 

analysis 

Impact of Urban Creep on Sewerage Systems (UKWIR 2010), further 

methodology in ‘Investigations into Urban Creep at 5 Cities’ (Allitt & 

Tewkesbury 2009) and Urban creep mapping from Remote Sensing data 

(Tewkesbury & Allitt 2010) 

Semi-automatic land cover maps were prepared from recent imagery using OBIA. The image objects were 

then backdated against historical aerial imagery to identify changes. Changes were identified using a 

combination of object-based image ratio differences, recent land cover class and manual re-classification. 

Impermeable changes were then manually assigned as either 'creep' or 'growth'. 

Mapping the extent of urban creep in Exeter using OBIA (Tewkesbury 

2011) 

Semi-automatic object-based urban creep classification of multi-temporal imagery covering the whole of 

Exeter. Utilised and extended the UKWIR (2010) methodology to include automatic sub-division of creep and 

growth components. 
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4.4 Summary 

This chapter has described why urban creep is an important application for change 

detection research. This is because the key challenges in change detection are deep-

rooted in the effective identification of urban creep from remotely sensed images. 

Specifically, urban creep was argued to be an ideal application with which to explore 

scene illumination, viewing geometry, analysis scale, object-based features and 

inconsistent segmentations. 

The importance of urban creep was summarised, demonstrating why it is a 

worthwhile monitoring activity. Primarily, urban creep has influenced government 

policy and resulted in legislation change, chiefly because of the proven link to urban 

flooding. Also, the wider impacts on stream condition and biodiversity and urban 

environmental quality were discussed. The body of research monitoring urban creep 

was summarised showing that there is interest in the subject and that significant work 

has been undertaken. Given that urban creep is now an established consideration in 

UK urban planning, interest in the subject will continue and further monitoring is 

recommended.
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5 Study area and reference data collection 

5.1 Introduction 

The literature reviews in Chapters 2, 3 and 4 have described the current status of 

remote sensing change detection, the key challenges with which to focus future 

research and described how urban creep identification is a meaningful case study with 

which to challenge change detection techniques and contribute to effective land use 

policy. This chapter establishes the city of Norwich as the research study area, and 

describes the methods used to capture a reference data set quantifying urban creep 

within it. The reference dataset, derived in this chapter, will act as a benchmark to 

objectively measure the success of subsequent change detection results derived in 

Chapter 7. This chapter contributes to the thesis by introducing a meaningful case 

study area and demonstrating rigorous and accurate reference data collection 

methods. The reference data will also act to answer the third research question, 

concerning the current status of urban creep in Norwich. 

Due to data currency constraints, it was not possible to apply stratified random 

sampling based on the change detection maps derived later in this thesis (Chapter 7). 

This presented a challenge because stratified random sampling is well supported in 

the literature (Congalton & Green 2009; Olofsson et al. 2014) and is universally 

recommended (Stehman 2009).  Consequently, a novel cluster sampling method was 

designed to capture rare change classes in the absence of a stratification framework. 

An exhaustive and rigorous mapping procedure was employed, combining multiple 

sources of remotely sensed imagery and field observations, all contributing to a high-

quality reference data set. 

The chapter is structured in ten sections describing the study area, reference data 

collection, and analysis methods. Sections 5.2, 5.3, and 5.4 establish the study area 

and monitoring timeframe and describe the thematic information captured. Sections 

5.5, 5.6, 5.7 and 5.8 detail the sampling design and mapping procedure. Sections 5.9 

and 5.10 outline the methods employed to obtain aggregated, population level 

statistics from the samples. Lastly, Section 5.11 summarises the chapter. 
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5.2 The study area and monitoring timeframe 

The city of Norwich in the UK was chosen as the case study area to monitor urban 

creep. Norwich is the primary settlement in the county of Norfolk in the East of 

England. Initially a Saxon town, Norwich is a historical city containing medieval, 

Georgian and modern architecture (Natural England 2010, p14). Norwich is relatively 

flat, with a maximum elevation difference of approximately  50m (Ogilvie et al. 2011, 

Figure A2). The surrounding countryside is also low-lying, consisting mainly of arable 

agriculture (Natural England 2010c; Natural England 2010a) bordered by the pasture 

rich Norfolk Broads (Natural England 2010b) to the South East, and woodland to the 

North. The district of Norwich has a population of 132 500 and a density of 34 people 

per hectare (Office for National Statistics 2013). Norwich is a moderately dense city 

when compared to 4.1 people per hectare for England as a whole, and 52 for Greater 

London. 

Urban creep in Norwich is important because of the risk of local surface water 

flooding. Regional hydraulic modelling has identified eleven key areas across the city 

at risk of surface water flooding (Wilson 2010, p1). In fact, Norwich is ranked as having 

one of the highest numbers of properties at risk of surface water flooding in the UK 

(Pelling & Kelly 2010, p46), and the highest flood risk in Norfolk (Norfolk County 

Council 2011, p16). Between 2000 and 2010, Anglian Water records report that 65 

properties have been affected by sewer flooding (Ogilvie et al. 2011, p39), while 

hydraulic modelling indicated rain events as low as 1 in 5 could cause sewer overflow 

(Ogilvie et al. 2011, p47 & 54). For extreme forecasts, such as a 1 in 200 rainfall event, 

6500 properties may be at risk (Ogilvie et al. 2011, p19). The risk is such that there 

have been warnings against any further surface water runoff to combined and foul 

sewer systems (Pelling & Kelly 2010, p97). This warning could be interpreted as an 

indirect reference to urban creep because it often drains to foul or combined sewer 

systems (Ofwat 2011). Going further, the Norwich Strategic Flood Risk Assessment 

recommends that urban creep should be managed in gardens and curtilages, and be 

part of development control planning policy (Wilson 2010, p50-51). There is then a 

clear case to monitor urban creep over Norwich, for local drainage planning purposes, 

and to provide evidence for future planning policy formulation. 
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The Norwich study area was carefully considered to include areas important to local 

surface water flooding. In the UK, it is the responsibility of local authorities to draft a 

Surface Water Management Plan (SWMP) and coordinate with relevant stakeholders 

to action its outcomes. Therefore, the Surface Water Project Officer at Norfolk County 

Council, and a representative from Anglian Water were consulted to discuss the 

research. These joint discussions highlighted the three Critical Drainage Areas (CDAs) 

Drayton, Catton Grove and Sewell, and Nelson and Town close for inclusion in the 

study. In addition to the CDAs, the suburb of Sprowston, and Broadland Business Park 

were also included as extensions because Sprowston is an important hydraulic 

catchment, and Broadland is a hotspot of new development. 

 

Figure 5: The Norwich study area. The area of interest is shaded in red. Backing imagery ©Airbus Defence and Space 
Ltd. (2017). Overview base mapping courtesy of ESRI and its data contributors 2013. 

The study area focused on urban land to maximise population inference precision. For 

the purpose of this research, urban land was defined as having more than 1% artificial 

surfaces. Limiting to urban land excluded large areas of parkland, surrounding 

agricultural and wooded areas, all of which would not benefit from urban creep 

monitoring. Restricting the size of the population would also increase the precision of 
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sample with a fixed size (Stehman 2001). Artificial surface was determined by querying 

the ‘MAKE’ attribute of Ordnance Survey MasterMapTM (accessed May 2012). Unit 

percentages were evaluated against a 50x50m tessellation grid. Only urban grid 

squares intersecting Norwich district, a CDA, or one of the extended areas were 

retained. This resulted in a 63.14 km2 study area, as illustrated in Figure 5. 

The period 2006 to 2010 was chosen as the monitoring time frame because of data 

availability. High quality 25cm aerial imagery from July 2006 and May to July 2010 was 

made available by Airbus Defence and Space Ltd. This bi-temporal imagery is the 

primary source for reference data collection and the subsequent change detection 

described in Chapter 7. Previous urban creep research (UKWIR 2010), including 

evaluations of Norwich (Allitt & Tewkesbury 2009) indicate that it is highly likely that 

the change observed within this timeframe will be sufficient to undertake meaningful 

research. 

A large, city-wide study area was deliberately chosen to replicate the scope of VHR 

image analysis often demanded by end users and to provide a sample pool large 

enough for meaningful change analysis. Modern VHR imagery can give us detailed 

information on ground conditions and their change. This type of imagery is now 

available globally from sensors such as Pleiades and Worldview-3, while VHR image 

availability is driving demand for increasing levels of information extraction. The 

demand for detailed spatial information, over wide areas, exists now and will likely 

rise rapidly in line with the huge increase in VHR imagery availability over the next 5-

10 years. Observing a large study area, even with VHR imagery, is indicative of current 

monitoring requirements. Furthermore, a larger study area will increase the 

probability that relatively rare change classes can be sampled frequently enough to 

provide meaningful statistics. 

5.3 Nomenclature 

The reference data will honour a three class nomenclature: urban creep, other 

change, and no change. The use of three classes, as opposed to a binary urban 

creep/no urban creep scheme, will give a more informative description of errors 
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present in remotely sensed urban creep maps. The three classes are now briefly 

described. 

5.3.1 Urban creep 

Urban creep is the addition of impermeable surface to a development after the initial 

construction (Wright et al. 2011). Examples include the paving over of a front garden 

to create additional parking; a housing extension; or a paved, low maintenance 

garden. Urban creep is a change in land cover and context. Therefore, a particular land 

cover transition can be considered urban creep or other change depending on context. 

For example, a land cover change of herbaceous vegetation to tarmac would be 

labelled as urban creep if part of a driveway extension, but would not be labelled 

urban creep if part of a new road. 

5.3.2 Other change 

Other change encompasses all other land cover changes that are not determined to be 

urban creep. Other change includes the development of new properties (urban 

growth), construction and site clearance, tree removal and tillage and ground 

disturbance. 

5.3.3 No change 

This class is reserved for areas where no land cover change is evident. No change 

includes ‘radiometric change’ (Bruzzone & Bovolo 2013) such as shadow and building 

lean where no change on the ground has occurred. 

5.4 Reference data objectives 

The reference data sample design and data collection was specified according to the 

following objectives: 

5.4.1 Objective 1 

Provide an accurate estimate of urban creep and other changes to the urban area of 

Norwich between 2006 and 2010. Therefore a probabilistic sample of the city is 

required with enough change samples to accurately estimate population proportions. 

Given that previous research (Allitt & Tewkesbury 2009; UKWIR 2010) estimated 
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urban creep in Norwich between 1999 and 2006 at approximately 1% of the city, the 

maximum acceptable standard error is set at 0.25%. 

5.4.2 Objective 2 

The reference data must be collected before the test data creation to minimise the 

time difference between the image acquisition and field observation. In this thesis, as 

in most change detection studies (Khorram et al. 1999, p11), simultaneous field work 

and remote sensing image capture were not possible. Given that this thesis was 

prepared part-time between 2010 and 2017, it was crucial to obtain field validation as 

soon as possible, to minimise currency issues. Minimising currency issues equates to 

capturing the reference data, as soon as possible, and before preparing change 

detection maps. 

5.5 Sample design 

The sampling design was limited by Objective 2, requiring data collection before map 

production. The majority of the change detection literature apply stratified random 

sampling after map production (Im et al. 2008; Frohn 2006; Weng et al. 2011). This is 

with good reason. Stratified random sampling is well supported in the literature 

(Congalton & Green 2009; Olofsson et al. 2014) and universally recommended 

(Stehman 2009). Crucially, it facilitates accurate population inference from rare class 

samples (Padilla et al. 2015) by increasing their sampling rate. Consequently, precisely 

quantifying urban creep in the absence of a stratification framework presents a 

significant challenge.  

One-stage cluster sampling was the starting point of the design. Cluster sampling 

selects samples from constrained sub-regions of the population, named Primary 

Sampling Units (PSU). Secondary Sampling Units (SSU) are the assessment units nested 

within each PSU. A one-stage cluster sampling design was chosen, sampling all SSUs. 

Figure 6 illustrates the cluster sampling implemented. While cluster sampling is usually 

employed to reduce costs (Stehman 2009), the primary motivation here is that each 

PSU acts as a container for undefined assessment units. In other words, at the time of 

the sample design, the assessment units did not exist, and the PSU acts as a container 

for mapped units when available. 



Chapter 5 – Study area and reference data collection 

63 
 

 

Figure 6: One-stage cluster sampling schematic. Sampled PSUs are depicted as red grid squares, while SSUs are 
shown a blue outlined polygons. 

A qualitative assessment of different PSU sizes was undertaken, and a 50x50m grid 

square was chosen. 50x50m being large enough to encapsulate most instances of 

urban change while being sufficiently repeatable to sample the population 

meaningfully.  The PSU size was chosen as a balance between meaningful feature 

representation, and estimation accuracy. A higher number of small PSUs will increase 

the accuracy of population inference (Stehman 2009), but prove more costly, and will 

more likely partially capture instances of change. Conversely, larger PSUs would be 

more cost effective to map and more likely encapsulate instances of change, while 

reducing inference accuracy. Intersecting the study area with a 50x50m tessellation 

grid gives a population of 25256 PSUs.   

Polygon areas were selected as the SSU and mapped at a scale of 1:500 to minimise 

abstraction. The large cartographic scale ensures small urban creep features are 

represented in sufficient detail, with minimal abstraction from the reality on the 

ground. Furthermore, the reference data will likely reside at a level of detail superior 

to the classification maps; a feature recommended by Olofsson et al. (2014). 

Continuous mapping of each PSU will form irregular polygons of different sizes. Since 
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the number of SSUs is not known at the sample design stage, it is estimated here to 

aid sample size and precision calculations. At a scale of 1:500, a Minimum Mapping 

Unit (MMU) of 4m2 is adopted. We can then assume that each mapped polygon is an 

aggregation of one or more MMU sized polygons. On this basis, there are 625 SSUs 

per PSU. 

The PSUs were stratified to increase population inference accuracy. While a simple 

random sample is statistically strong and unbiased (Czaplewski 2000), change is 

usually a rare occurrence (Foody 2002; Congalton & Green 2009), and simple random 

sampling may struggle to sample such classes with adequate accuracy unless very 

large sample sizes are employed (Stehman et al. 2005). Therefore, the population was 

broadly stratified to increase the representation of the rare change classes (Biging et 

al. 1998), in this case, urban creep and other change. Since the reference data was 

collected before map creation, no stratification framework existed. Therefore a 

method was formulated to estimate three PSU strata No change candidate, Urban 

creep candidate and Other change candidate. The purpose of each stratum being to 

increase the probability that a selected PSU will contain instances of its candidate 

class.  

The strata were approximated using records of topographic mapping change and rapid 

visual interpretation. Firstly, The Ordnance Survey MasterMapTM change record was 

used to approximate the Other change candidate stratum by including all PSU’s with 

>10% new buildings since 2006. It is assumed that urban creep would, by and large, 

occur outside of the Other change candidate stratum because it is not formally 

recorded as a change in MasterMapTM. Urban creep candidate PSUs were identified by 

reviewing the remaining ‘No change’ area at a scale of approximately 1:2000. Urban 

creep candidates were highlighted with a simple Red-Green difference composite 

image prepared from the 2006 and 2010 imagery. Candidate identification was very 

time-consuming, and some of these candidates would be disproved under more 

rigorous inspection. Conversely, a detailed review of PSUs outside of the Urban creep 

candidate stratum may also display urban creep. PSUs not selected as Other change or 

urban creep candidates were labelled as the class No change candidate. 
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A random sample selection protocol was strictly employed to provide a scalable and 

unbiased estimate of the population. As stressed by Stehman (2009), a true 

probability sample is crucial for unbiased population inference. Therefore each sample 

within each stratum was selected entirely randomly. Random selection was chosen 

over a systematic scheme because of a more flexible sample size determination. 

5.6 Sample size 

Sample size estimation for single stage clustered sampling is a non-trivial task because 

of the difficulty in estimating class proportions and intra-cluster correlation. Here, 

sample sizes are calculated using reasonable approximations, but it was observed that 

small variations in these estimates could dramatically change sample size estimates. 

Therefore the final sample size allocation was determined by consulting the 

calculations and guideline sample sizes published in the literature. 

Bennett et al. (1991) outline a cluster sample size estimation method based on a 

weighted variant of simple random sample size estimation. The number of PSU 

clusters required c, is estimated by the target standard error S, class proportion ρ, 

number of SSUs per PSU, M, and the design effect D.  D takes the anticipated 

reduction in precision inherent in a cluster sampling design into account by inflating 

the sample size estimation.  

𝑐 =  
𝜌(1 −  𝜌)𝐷

𝑆2𝑀
 Equation 1 

 

The design effect D is related to M and the rate of homogeneity of the clusters, r: 

𝐷 = 1 + (𝑀 − 1)𝑟 Equation 2 

 

Bennett et al. (1991) highlights the fact that r estimates ‘the variability between 

clusters as compared to the variation within clusters’. Its derivation and calculation 

are detailed by Cochran (1977, p242), Where 𝑆𝑏
2 is the variance between clusters and 

𝑆2 is the population variance: 
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𝑟 =  
𝑆𝑏

2 − 𝑆2

(𝑀 − 1)𝑆2
 Equation 3 

 

For a stratified cluster sample design, c must be estimated separately for each class of 

each stratum. The maximum estimate for each stratum is used as the strata sample 

size allocation (Khorram et al. 1999, p43). Table 5 presents class and stratum level 

cluster sample size estimates. The class level estimates range from 10 to 92 clusters, 

based on a target standard error of 0.25%. The most clusters are required to estimate 

No change and Other change within the Other change candidate stratum. However, 

since the stratum proportions of these classes are likely to be much greater than 

urban creep, the defined target standard error may be over-specified for these 

classes. For example, relaxing the target standard error to 0.5% reduces the ‘Other 

change candidate’ stratum cluster requirements from 92 to 23. 

Sample sizes are dependent on estimates of class proportion, PSU variance and strata 

variance. While class proportions are readily approximated from experience and 

qualitative observations, class variance is far more difficult to estimate and are the 

primary source of uncertainty in these estimations. Here, variances are approximated 

based on a constant PSU standard deviation of 5% and a constant stratum standard 

deviation of 2.5%. Due to this uncertainty, further guidance on sample size is required.  
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Table 5: PSU sample size estimation table 

 

There are several guidelines for sample size and stratum allocation in the literature. 

For example Congalton & Green (2009, p75) propose a ‘rule of thumb’ guideline of a 

minimum of 50 samples for each class while Stehman (2001) suggests a sample size of 

100 will ensure a standard error no greater than 0.05. Olofsson et al. (2014) 

recommend that stratified class samples should be allocated approximately 

proportional to population proportions while increasing sampling of rare classes. In 

consideration of the results obtained in Table 5 and the guidelines in the literature a 

total sample size of a 150 PSU’s, with 50 PSU’s in each stratum is initially chosen as the 

sample size. Under this allocation, the target precision is maintained for the rare 

classes, while the relative proportions are approximately maintained by the variety of 

SSU samples within each PSU. During the data collection phase, it was possible to 

collect four more PSUs. Given the results obtained in Table 5, these additional samples 

were allocated to the ‘Other change candidate’ strata to increase its count to 54 and 

the total PSU’s to 154. Figure 7 shows the distribution of the final sample selection. 

Stratum

Class No change Urban creep
Other 

change
No change Urban creep

Other 

change
No change

Urban 

creep

Other 

change

Number of SSU per 

PSU, M

Target standard error, 

S

Target precision           ± 

(95% confidence)

PSU variance estimate 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

Strata variance 

estimate
0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006

Rate of Homogeneity, r 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048

Design effect, D 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000

Estimated proportion, 

p
0.9800 0.0100 0.0100 0.9700 0.0200 0.0100 0.9000 0.0100 0.0900

Estimated number of 

clusters, c
20.0704 10.1376 10.1376 29.7984 20.0704 10.1376 92.1600 10.1376 83.8656

Estimated number of 

SSU samples per 

stratum

12293 63 63 18065 251 63 51840 63 4717

Maximum required 

clusters per stratum

Maximum required 

clusters over the 

population

142

No change candidate strata Urban creep candidate strata Other change candidate strata

625

0.0025

0.0049

20 30 92
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Figure 7: The distribution of the reference samples. The grey shaded area is the study area, and the black shaded 
squares are the 154 reference PSU samples. 

5.7 PSU mapping 

Each PSU sample was mapped at a scale of 1:500 using multi-temporal, multi-source 

and multi-scale remotely sensed imagery. The reference data was collected with as 

high spatial and thematic accuracy as possible, exceeding the anticipated quality of 

the classification with which it will be compared against (Stehman 2009; Olofsson et 

al. 2014).  In this case, maximising spatial and thematic accuracy was the result of 

careful, methodical mapping, based on multiple sources of imagery and field 

observations. Features were mapped as polygons in ArcGIS 10.0 at a set scale of 1:500 

and a defined MMU of 4m2. The large cartographic scale minimised mapping 

abstraction. To reduce mapping effort, Ordnance Survey MasterMapTM was used as 

the initial spatial framework and was modified as necessary to capture the change 

features. 
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The multi-temporal imagery was inspected to assess the presence of changes between 

2006 and 2010. The primary, baseline reference dataset was the 25cm Airbus Defence 

and Space Ltd. imagery. There are two main problems involved in large-scale image 

mapping of this kind. Firstly, the presence of occlusions from shadows and feature 

parallax and secondly, interpretation ambiguity; in particular difficulties associated 

with impermeable surface identification. Perry & Nawaz (2008) provide a good 

account of impermeable surface interpretation ambiguities at this scale. These issues 

are addressed by supplementing the Airbus imagery with remotely sensed data from 

Bing and Google maps. All of the sources used in the reference data collection are 

detailed in Table 6. The additional nadir and oblique aerial imagery significantly 

reduced occlusions and land cover ambiguity. Google street view proved extremely 

useful in reducing interpretation ambiguity, in particular by resolving gravel surfaces 

which may otherwise be interpreted as impermeable. 

Table 6: Remotely sensed reference data. 

Data type Source Capture year Image resolution 

Nadir aerial 

imagery 

Airbus Defence 

and Space Ltd. 
2010 25cm 

Nadir aerial 

imagery 

Airbus Defence 

and Space Ltd. 
2006 25cm 

Nadir aerial 

imagery 
Bing maps 2011 10cm 

Oblique aerial 

imagery 
Bing maps Various 

Variable, 

estimated 15cm at 

frame centre 

Nadir aerial 

imagery 
Google maps 2006 10cm 

Street view Google maps May-June 2012 Variable 

 

An image interpretation key was defined to maintain mapping consistency and 

introduce a degree of confidence to the interpretation. Core to this was a four-point 

classification scheme describing: apparent permeability change and confidence, and 
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apparent contextual change and confidence. The interpretation key is shown in Table 

7, and an example of its application can be seen in Figure 8. The key was designed to 

collect a wealth of thematic information, beyond the simple three-class nomenclature 

described in section 5.3. This added thematic redundancy, which was important for a 

long and evolving research project. The interpretation key was applied in four steps. 

Firstly, the apparent permeability was recorded, as either No change, Change to 

impermeable or Change to permeable. Next, the confidence of this change was graded 

from 1 (Very low) to 5 (Very high). The confidence classes were based on a range of 

land cover and transitions and validation scenarios. For example, field verified 

permeability changes are labelled with very high confidence. Thirdly, the context of 

the change is assigned one of seven contextual classes. The seven classes were 

defined to describe a range of common changes observed over the study area. Lastly, 

the confidence of the contextual class was also graded from 1 (Very low) to 5 (Very 

high). The resulting four-point class description gave a comprehensive, flexible 

account of the change. For the simple three-class nomenclature, the results were 

aggregated by the apparent permeability and context. For example, urban creep has a 

permeability change class of 1 and contextual class of 1. Ultimately, the interpretation 

key aided consistent classification across multiple sites and data collection sessions, a 

point corroborated by Khorram et al. (1999, p38).  
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Table 7: The reference data interpretation key. The top table gives the permeability change classes. The middle 
table outlines the context of change while the bottom table is a confidence scoring system for the two preceding 
criteria. Please note, specific data and context scenarios have been defined for permeability class confidence. On the 
other hand, contextual class confidence is more ambiguous. Using this criterion a score of 1 5 1 5 would relate to 
new tarmac, which has been field verified and is clearly a post construction addition to an existing residential 
property (urban creep with high confidence). 

 Apparent 

permeability 

change class 
Description   

0 No change   

1 
Change to 

impermeable 
  

2 
Change to 

permeable 
  

    

Apparent 

contextual 

class 
Description Example  

0 No change 
No relevant land cover change 

identified. 
 

1 Urban creep Change to an established property.  

2 Urban growth 

Change associated with a new property. 

Construction of a property may be 

considered growth when the foundations 

are established. 

 

3 
Construction and 

site clearance 

Site clearance, demolition and 

construction work without the 

establishment of a new building on the 

specific site. 

 

4 
Tillage and other 

ground 

disturbance 

The exposure of bare earth through 

agriculture, horticulture or other 

unspecified activities. 

 

5 
Change to 

permeable 
Either through re-development or 

specific conversions back to permeable. 
 

6 Felled tree Complete removal of a tree canopy.  

    

Confidence 

class 
Description Permeability example Contextual example 

1 Very low 
Obscured in aerial imagery. Changes 

associated with construction. 

Complex re-build or 

on-going 

construction. 

2 Low Apparent new gravel in aerial imagery   

3 Moderate 
Apparent new hard standing in aerial 

imagery. 

4 High 
Clearly still vegetated or new building in 

aerial imagery. New hard standing in 

street level imagery. 

5 Very high Field verified 
New parking to front 

garden or a new build 

on green field site. 
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Figure 8: A mapped PSU sample. The example shows a new building extension highlighted, which was identified in 
both the aerial imagery and Google Street View. The map panel on the left contains the 2006 imagery overlaid with 
MasterMapTM. The map panel on the right contains the 2010 imagery overlaid with the MasterMapTM derived 
reference mapping. Backing imagery ©Airbus Defence and Space Ltd. (2017). 

5.8 Field checking and final review 

Due to the resources involved, it was not possible to field validate all 154 PSUs. 

Therefore a random subsample of 34 (22%) PSU samples were field validated. The 

fieldwork was carried out between 15th and 22nd September 2012. Supporting image 

interpretation with partial field validation is a method recommended by Czaplewski 

(2000) and is employed by Aguirre-Gutiérrez et al. (2012). The field check samples 

were sequentially drawn at random from each PSU strata to maintain a strict 

probability sampling design. 

Hardcopy maps were annotated in the field to record thematic labels, modified 

boundaries, access, photograph references and comments. Comments included any 

supplementary supporting evidence for the change interpretation, to include verbal 

verification from residents. An example annotated field map is included in the 

Appendix, Figure A-1 and Figure A-2. A considerable 27.5% of the polygons selected 

for field validation were not accessible and labelled as inaccessible. Inaccessible 

polygons were labelled from the remotely sensed data (Table 6) only. 
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All PSUs outside of the field validation were then reviewed to ensure consistency. The 

familiarity with the study area can have a significant impact on the quality of image 

interpretation (Lu et al. 2004) and the experience here was that the partial field 

validation did increase the quality and confidence of the whole sample. In particular, 

there were many examples where the aerial imagery indicated an impermeable 

surface increase, but field validation and Google street view review confirmed a 

permeable gravel surface. Therefore, combining multiple sources of aerial imagery, 

terrestrial imagery and field survey, increased the overall thematic accuracy of the 

reference data. 

5.9 Population inference 

Population class proportions and confidence intervals were inferred from PSU class 

proportion mean and variance. Class proportions were calculated for each PSU, by 

aggregating class areas of the underlying SSUs. This aggregation effectively collapses 

the stratified random cluster sample to a stratified random sample. Stratum level 

estimates of class proportion mean and variance were weighted and combined to give 

population-level estimates. Population level mean class proportions and standard 

errors facilitate the calculation of change areas with confidence limits. 

Starting with the cluster sample, if we consider the ith PSU, is composed of M SSUs, 

with 𝑎𝑖 SSUs classified to particular class, the PSU class proportion is calculated by 

(Cochran 1977, p246): 

𝑝𝑖 =
𝑎𝑖

𝑀
 Equation 4 

In other words, the SSUs are aggregated to a single property of the PSU, 𝑝𝑖. In this 

case, a random cluster sample collapses to a random sample. Therefore, the 

population proportion P is estimated by calculating the mean, �̅�, of the PSU 

proportions, 𝑝𝑖  (Cochran 1977, p246). For a stratified random sample, stratum class 

proportion is equivalent to the stratum property 𝑦ℎ. Therefore, the stratum class 

proportion mean is given by (Cochran 1977, p90): 
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�̅�ℎ =
1

𝑛ℎ
∑𝑦ℎ𝑖

𝑛ℎ

𝑖=1

 Equation 5 

Where 𝑛ℎare the number of PSU samples in the stratum ℎ, and 𝑦ℎ𝑖 is the class 

proportion of the ith PSU. Note, that when inferring class proportion, 𝑦ℎ𝑖 is equivalent 

to Equation 4. 

To move from a set of stratum class proportion estimates to a single population class 

proportion estimate, we must consider each stratum’s influence or weight. Stratum 

weight is the simple ratio of stratum units, 𝑁ℎ, to population units, 𝑁 (Cochran 1977, 

p90): 

𝑊ℎ =
𝑁ℎ

𝑁
 Equation 6 

The population proportion is estimated by calculating the stratum weighted mean, 

�̅�𝑠𝑡, for L strata (Cochran 1977, p91): 

�̅�𝑠𝑡 = ∑ 𝑊ℎ�̅�ℎ

𝐿

ℎ=1

 Equation 7 

To add confidence limits to the proportion estimates, we must calculate the standard 

error of the class proportion mean. If we repeated the same sampling procedure 

several times, and calculated class proportion means, the standard error is the 

standard deviation of these means. In other words, the standard error estimates the 

stability and precision of the sample.  Although we do not measure the standard error 

from multiple samples, it can be estimated from the variance of the class proportions. 

The class proportion variance of the hth stratum and ith PSU is given by (Cochran 

1977, p95): 

𝑠ℎ
2 =

1

𝑛ℎ − 1
∑(𝑦ℎ𝑖 − �̅�ℎ)2

𝑛ℎ

𝑖=1

 Equation 8 

We can then estimate the variance of the stratum class proportion mean, �̅�𝑠𝑡 (Cochran 

1977, p95): 
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𝑠2(�̅�𝑠𝑡) = ∑
𝑊ℎ

2𝑠ℎ
2

𝑛ℎ

𝐿

ℎ=1

− ∑
𝑊ℎ𝑠ℎ

2

𝑁

𝐿

ℎ=𝑖

 Equation 9 

The standard error of the stratum class proportion mean, 𝑠(�̅�𝑠𝑡) is simply the square 

root of the variance, 𝑠2(�̅�𝑠𝑡). Assuming a normal distribution, the confidence interval 

is then given by multiplying the standard error by a z-score, t, (Cochran 1977, p95). 

Therefore, class proportion (�̅�𝑠𝑡) confidence limits are described by: 

�̅�𝑠𝑡 ± 𝑡𝑠(�̅�𝑠𝑡) Equation 10 

 
 

Given the Norwich study area covers 6314 Ha, class extents and 95% (a z score of 1.96) 

confidence limits, are estimated by: 

𝐶𝑙𝑎𝑠𝑠 𝑒𝑥𝑡𝑒𝑛𝑡(𝐻𝑎) = (6314 × �̅�𝑠𝑡) ± (1.96 × 𝑠(�̅�𝑠𝑡) × 6314) Equation 11 

  

5.10 Urban creep rate 

Urban creep is often reported in the units percent per year (Cutting 2003; Newcastle 

City Council 2008) to normalise results across different time periods and extents. 

Therefore the area of urban creep, 𝐴𝑐𝑟𝑒𝑒𝑝, is divided by the extent of the study area, 

𝐴𝑎𝑙𝑙, and the monitoring time period in years, 𝑇𝑦𝑒𝑎𝑟𝑠, specifically: 

𝑈𝑟𝑏𝑎𝑛 𝑐𝑟𝑒𝑒𝑝 𝑟𝑎𝑡𝑒,% 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 =
𝐴𝑐𝑟𝑒𝑒𝑝

𝐴𝑎𝑙𝑙𝑇𝑦𝑒𝑎𝑟𝑠
 Equation 12 

  

5.11 Summary 

This chapter has established the case study, identifying urban creep in Norwich 

between 2006 and 2010. Environmental and water industry evidence show that 

Norwich has a significant problem with surface water flooding. Therefore interest may 

extend beyond the remote sensing and GIS scientific community, to environmental 

scientists and urban planners. A data search yielded remotely sensed imagery suitable 

for reference data collection and image change detection. 
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A stratified random cluster sampling scheme was designed to overcome the lack of a 

sample level stratification framework. PSU level strata were approximated using a 

combination of topographic mapping and rapid image interpretation. The 

approximate stratum facilitated oversampling of rare change classes to increase 

estimation accuracy. 154 PSU samples were mapped at a scale of 1:500 giving an 

equivalent of 96 250 SSU samples. The samples were exhaustively mapped, referring 

to multiple sources of remotely sensed data and field observations. 

The class proportions of each of the 154 PSUs were aggregated to give population 

level change statistics. This was achieved by calculating the stratum weighed mean, 

while confidence limits were derived from the class proportion variance amongst 

PSUs. Lastly, the change statistics were converted to an urban creep rate, by 

considering the change proportions and the monitoring time frame. 
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6 Reference data collection results 

6.1 Introduction 

This chapter presents the results obtained from the reference data collection and 

analysis described in Chapter 5. Primarily, the results describe urban change statistics 

in Norwich between 2006 and 2010, extrapolated from 154 cluster samples. Each 

sample recorded change as two separate classes, urban creep and other change, to 

facilitate urban creep rate calculations. Furthermore, observations captured during 

the data collection are presented to add insight into the classification confusion and 

ambiguities encountered. In all, eight noteworthy results were recorded, including: 

 Urban creep accounts for 0.95% of the study area, equivalent to a rate of 

0.24% per year 

 Accurate determination of small, sub-parcel impermeable features was 

achieved by consulting multiple sources, and could not be achieved with a 

single set of VHR images alone. 

The results described in this chapter contribute to the thesis by establishing a 

reference data baseline, quantifying urban creep in Norwich, and gaining insight into 

the nature of likely classification errors and confusion. The primary objective of the 

reference data was to act as a precise, unbiased baseline with which to benchmark the 

change detection results presented in Chapter 8. The derived change statistics will 

specifically address the third research question concerning the changing rate of urban 

creep in Norwich. Lastly, presenting the difficulties, confusion and ambiguities 

observed are highly valuable in understanding the change detection results, and 

provide important insight for VHR image monitoring in general. 

The results are organised in six sections detailing the change distribution and statistics, 

urban creep rate, image interpretation confusion, and ongoing urban creep. Lastly, the 

results are collated and summarised. 

6.2 Change distribution 

Figure 9 shows the distribution of urban creep and other change observed across the 

urban extent of Norwich, between 2006 and 2010. As expected, other change (Figure 
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9a) exhibits greater levels of change than urban creep (Figure 9b). The mean PSU 

percentage of other change is 19.27% compared to 1.86% for urban creep. This is 

because other change is normally expressed as new building developments of 

considerable extent. Furthermore, although other change occurs throughout the city, 

there are clear clusters of change. For instance, there are clusters of other change 

occurring near Bowthorpe industrial estate, to the West; Taverham, to the Northwest; 

the Southeast of the city centre; and near Broadlands business park, to the East. In 

contrast, urban creep is more evenly distributed across the PSU samples. However, 

there are clusters of urban creep visible. In particular, to the south of New Costessey, 

to the West; and to a lesser extent, Sprowston, to the Northeast. While urban creep is 

usually limited in extent, there are examples where an appreciable creep is observed. 

For example, there is a large occurrence to the South of New Costessey; another near 

Eaton, to the South; one near Broadlands business park, to the East; and one to the 

Northwest in the outskirts of Taverham. These examples, where urban creep covers a 

relatively large extent, are in most cases, due to the extension of an industrial or 

commercial building. 



Chapter 6 – Reference data collection results 

79 
 

 

Figure 9: Norwich urban creep and other change distribution. (a) Other change distribution. (b) Urban creep 
distribution. Note, the scale varies between plots (a) and (b), with urban creep exhibiting less fractional change than 
other change. 
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6.3 Change statistics 

Table 8 shows the summary change statistics calculated using the methods described 

in Chapter 5.9. The results of the intermediate calculations are recorded in the thesis 

Appendix. Specifically, Table A-1 shows intermediate calculations of the stratum class 

proportion mean, and variance, while Table A-2 shows the population class proportion 

mean, standard error and confidence limits. 

Table 8: Norwich change estimates, 2006 to 2010. 

 Standard 
error % 

Class proportion 
estimate, 95% confidence 

limits 

Class area (Ha) 
estimate, 95% 

confidence limits 

No change 1.48% 94.11% 
 
 

2.90% 5942.07 
 

183.14 

Urban 
creep 

0.13% 0.95% 
 
 

0.26% 59.71 
 

16.36 

Other 
change 

1.48% 4.94% 
 
 

2.90% 312.22 
 
 

183.32 

 

The results show that urban creep accounts for 0.95% of the urban area in Norwich, 

which equates to an area of nearly 60 hectares. Two examples of urban creep, 

identified in the reference data, are shown in Figure 10 and Figure 11. Other change is 

estimated at 4.94% of the urban area, equating to 312 hectares. The combination of 

urban creep and other change combines, giving an equivalent rate of change 

approaching 1.5% per year. 

Estimation precision is high relative to the population, but relatively low when 

compared to the change proportions. For example, urban creep has a standard error 

of 0.13%, which equates to a confidence limit (95%) of 0.26% (Table 8). At first glance, 

this appears to be an extremely precise estimate. However, since urban creep 

accounts for a relatively small fraction of Norwich, the error is high relative to the 

fraction of urban creep. Specifically, these confidence limits equate to 27% of the 

urban creep class proportion. The relative precision of other change is even less, with 

the confidence limits accounting for nearly 59% of the class proportion. 

± 

± 

± ± 

± 

± 
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Figure 10: An example of urban creep, identified in the reference data. Much of the grass and bare earth 
surrounding the property has been paved over with tarmac. Panel A & B show the 2006 and 2010 aerial imagery 
respectively. Panel C shows the reference data overlaid over the 2010 imagery. Panel D shows the corresponding 
field survey photograph taken on 18th September 2012. 
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Figure 11: An example of urban creep, identified in the reference data. A house has been extended and the driveway 
re-modelled. Part of the front driveway has changed from grass to permeable, small block paving, and so is 
designated as urban creep. The house extension appears to have been built over previously impermeable paving. 
Consequently, the house extension, in this case, is not labelled as urban creep. Panel A & B show the 2006 and 2010 
aerial imagery respectively. Panel C shows the reference data overlaid over the 2010 imagery. Panel D shows the 
corresponding field survey photograph taken on 17th September 2012. 

6.4 Urban creep rate 

The rate of urban creep was calculated to normalise the observed change by time and 

area for a more meaningful cross comparison against other research. Table 9 

summarises the observed rate of urban creep between 2006 and 2010. Rate 

enumeration was made per hectare and as a fraction of the study area. Of particular 
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note, urban creep rate was estimated at 24.11 m2/Ha/year, equivalent to 0.24% per 

year. 

Table 9: Norwich urban creep rate, 2006 to 2010. 

Study Area (Ha) 6314 

Time elapsed (years) 3.92 

Urban creep rate, m² per 
hectare, 2006 to 2010, with 

95% confidence limits 
94.56 

 

25.91 

Urban creep rate, m² per 
hectare, per year, with 95% 

confidence limits 
24.11 

 

6.61 

Urban creep rate, %, 2006 to 
2010, with 95% confidence 

limits 
0.95  0.26 

Urban creep rate, % per year, 
with 95% confidence limits 

0.24 
 

0.065 

 

6.5 Resolving image interpretation confusion 

Urban creep interpretation is a complex task with scope for considerable ambiguity 

and uncertainty. The reference data collection was carefully undertaken, consulting 

multiple data sources, and where possible, clarifying ambiguities in the field. In some 

circumstances, accurate urban creep classification was reliant on multiple sources of 

evidence and was not resolvable from the aerial imagery alone. Specifically, 

classification confusion may occur due to tonal and textural ambiguity, occlusion, or 

context. 

In some circumstances, contrasting surface types have indistinguishable image tone 

and texture. In other words, an impermeable surface change may appear identical to a 

permeable surface change, making an urban creep assignment impossible. For 

example, Figure 12 shows two new driveways observed during the fieldwork. The 

driveway depicted on the left of the figure is paved with impermeable block paving 

and is labelled as urban creep. The driveway depicted on the right of the figure is 

paved with permeable gravel and is not labelled as urban creep. However, both 

± 

± 

± 

± 
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driveways have nearly identical image tone and texture. This alarming similarity is an 

extreme case. Thankfully, field and image analysis experience facilitated accurate 

labelling in most cases. Tarmac (see Figure 10) and concrete is usually distinct, 

displaying very dark and bright albedo respectively. Although, some bright gravels may 

be confused with concrete. As illustrated in Figure 12, the majority of confusion occurs 

between small block paving and gravel because both materials are available in a 

variety of different materials, colours and granularity. 

The rigorous methodology employed highlights that urban creep could be readily 

overestimated with VHR image interpretation alone. Chapter 5 discusses the rigorous 

reference data collection methodology applied. Specifically, the final labelling was a 

result of several stages of multi-source image interpretation and field survey. In most 

cases, the corrections applied during these iterations downgraded urban creep to 

other change because it was constructed with permeable gravel. Importantly, the use 

of permeable gravel as a construction material for driveways, pathways and garden 

features was widespread. Of the area initially labelled as urban creep, 78.62% was 

retained after detailed analysis. In this case, VHR image interpretation alone gave 

urban creep commission errors of 21.38% compared to a rigorous, multi-source 

approach. This result is important as it has significant implications for large-scale 

impermeable surface maps ‘validated’ with VHR image interpretation alone. 

Chapter 4 discussed how urban creep features are susceptible to occlusion by shadow 

and feature lean. The reference data collection confirmed that this was indeed the 

case. The use of multi-angular VHR imagery, Google Street View and field survey was 

necessary to resolve many features. Surface clutter, such as vehicles also proved a 

challenge. For example, Figure 13 shows that building lean and a car masks much of 

the extent of a new paved parking space. 

The contextual assignment of urban creep is complicated and somewhat subjective. In 

some circumstances, there is uncertainty assigning impermeable additions to either an 

existing property, for urban creep, or a new development, for other change. For 

example, Figure 14 illustrates an example where a new development has resulted in 

impermeable surface additions to an existing property. Urban creep was assigned in 

this case because the change belongs to an existing property. However, one could 
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argue that the change occurs outside of the initial property extent, and should be 

labelled as other change, assigned to the new development. 

 

Figure 12: The visual similarity between some gravels and small block paving. Panel A & B are subsets of the aerial 
imagery from 2010. The two locations were field surveyed on 21st, and 18th September 2012 respectively. Panel C & 
D shows the corresponding Google Street view images (©Google 2016) taken in June 2012. 

Impermeable 

small block paving 
Permeable gravel 
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Figure 13: Urban creep obscured by a car. The lawn is paved over to create a new parking space (circled in red). The 
urban creep is almost entirely obscured by a car, shading and building lean. Panel A & B show the 2006 and 2010 
aerial imagery respectively. Panel C shows the reference data overlaid over the 2010 imagery. Panel D shows the 
corresponding field survey photograph taken on 18th September 2012. 
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Figure 14: An example of urban creep subjectivity. A repositioned shed and additional paving create urban creep 
adjacent to a new development. Panel A & B show the 2006 and 2010 aerial imagery respectively. Panel C shows 
the reference data overlaid over the 2010 imagery. 

6.6 Ongoing urban creep 

Ongoing urban creep was observed during the reference data collection. This thesis is 

concerned with quantifying urban creep in Norwich between 2006 and 2010. 

However, the 2012 field survey identified several examples where urban creep had 

occurred between 2010 and 2012. For instance, Figure 15 shows how urban creep 

observed between 2006 and 2010 is continuing, with the driveway extended between 

the latest 2010 image and the field survey in 2012. This circumstantial byproduct of 

Paving extended to new shed position, 

giving no permeability change 

Shed moved with the boundary change, 

creating urban creep over previously 

permeable land. 

Property boundary moved South 
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the field survey does indicate that, at least in parts, urban creep in Norwich is 

continuing, as expected. 

 

Figure 15: An illustration of evolving urban creep. The lawn is paved over to create a new parking space (circled in 
red). The parking space is extended (circled in orange), between 2010 and 2012. Panel A & B show the 2006 and 
2010 aerial imagery respectively. Panel C shows the reference data overlaid over the 2010 imagery. Panel D shows 
the corresponding field survey photograph taken on 19th September 2012. 

6.7 Summary 

This chapter has presented the results of the reference data collection, to include land 

change distribution and statistics, and urban creep identification considerations. The 

results quantified urban creep in Norwich between 2006 and 2010 to establish a 

baseline to compare against subsequent remotely sensed change detection maps and 
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assess the changing nature of urban creep in Norwich. Also, urban creep identification 

difficulties were reported to include permeability confusion and contextual ambiguity.  

The reference data results are summarised in Table 10. Result 1 highlights that in 

general urban creep is well distributed, while other change is more localised. Although 

some urban creep clustering was observed (Result 2). Results 3 & 4 indicate that 

Norwich is a highly dynamic city, but other change, dominated by large, new 

developments is highly variable, giving relatively low estimation precision. The rate of 

urban creep reported in Result 5 is the most important result from this chapter. Urban 

creep in Norwich has covered a considerable extent, and the reported metric forms a 

point of reference against other research. Results 6, 7 & 8, summarise additional 

points of interest identified during the data collection. In particular, permeability was 

easily confused in the VHR imagery and contextual assignment of urban creep was 

ambiguous in some cases. The importance and consequence of these results are 

discussed in Chapter 9. 

Table 10: The reference data results summary table. 

ID Description 

Result 1 
In general, other change is localised, whereas urban creep is distributed 

more evenly throughout the city. 

Result 2 
Urban creep clustering is visible in New Costessey, close to Dereham 

Road and to a lesser extent, Sprowston. 

Result 3 
Urban creep accounts for 0.95%, or 59.71 Ha of the study area, while 

Other change accounts for 4.94%, or 312.22 Ha. 

Result 4 
Reference data class standard errors were calculated as 1.48%, 0.13% 

and 1.48% for No change, Urban creep and Other change, respectively. 

Result 5 
An urban creep rate of 24.11 m2/Ha/year was observed, equivalent to 

0.24% per year. 

Result 6 

The addition of new permeable gravel surfaces was widespread and 

easily confused in VHR imagery as impermeable surface creep. A more 

rigorous, multi-source interpretation yielded urban creep commission 

error rates of 21%. 
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ID Description 

Result 7 
The contextual assignment of urban creep was complicated and 

subjective to a certain degree. 

Result 8 
Circumstantial field evidence indicates that as expected, urban creep in 

Norwich is continuing beyond 2010. 
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7 Remotely sensed change detection 

7.1 Introduction 

This chapter describes the change detection methods tested in respect of urban creep 

identification in Norwich. The methods presented include data preparation and 

preprocessing, scene modelling, change detection unit of analysis definition and 

classification and accuracy assessment. This work follows on from Chapter 6 and 7, by 

using the reference data in the change detection accuracy assessment. 

This chapter contributes to the thesis by defining methods and experimentation which 

may reveal answers to the first two research questions posed in Chapter 1. These two 

questions concern the identification of urban creep with a direct classification and 

CVA classification. Therefore, the experimentation is organised into two broad groups 

generating direct classification results and CVA classification results. Each broad group 

is exhaustively explored to include many different classification permutations adding 

rigour to the method. Furthermore, this chapter contributes to the thesis by 

introducing several novel methods which give more comprehensive results and add to 

the change detection literature. 

This chapter is presented as sixteen further sections. Firstly, the remotely sensed data 

and pre-processing methods are described. Then a novel scene modelling approach is 

presented to include viewing geometry and scene illumination simulation. Next, the 

change detection unit of analysis is introduced, to include image object formation and 

feature attribute extraction ready for change detection. An unsupervised feature 

selection routine is described to aid classification and result interpretation. Then, the 

CVA methods are presented, followed by the supervised classification approach and 

accuracy assessment. Lastly, the chapter is summarised to highlight the key stages and 

methods. 

7.2 Remotely sensed data and study area review 

Change detection was conducted over Norwich using multi-temporal VHR aerial 

imagery and DSMs from 2006 and 2010. Chapter 5 introduced the Norwich study area 

and monitoring timeframe. In review, the 63.14 km2 study area depicts the built-up 
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regions of the city of Norwich in the United Kingdom, to include catchments deemed 

important by Norfolk County Council. The 2006 to 2010 monitoring timeframe is 

linked to the VHR imagery available to support this thesis.  Two image datasets from 

2006 and 2010, captured by the Leica ADS40 sensor at a ground resolution of 25cm, 

came courtesy of Airbus Defence and Space Ltd. Figure 16 displays overviews of the 

imagery and DSM layers with respect to the Norwich study area. 
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Figure 16: Remote sensing data overview. Panels A & B show the 2006 and 2010 image flight lines respectively. 
Panels C & D show the 2006 and 2010 DSMs respectively. Panel E shows the Norwich study area, defined by the 
built-up extent. 
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Figure 17: Push broom tri-stereo sensor image capture. In the case of the ADS40 sensor, four-band multispectral 
imagery is captured with a nadir view, while the panchromatic imagery is captured with forward, nadir, and 
backwards views. This figure is reproduced courtesy of Leica Geosystems, Geospatial Solutions Division. 

The provision of simultaneous image and DSM layers was a result of the sensor 

configuration and data processing. The Leica ADS40 is a push broom sensor which 

simultaneously captures nadir and tri-stereo imagery suitable for wide-area image 

acquisition, and photogrammetric DSM generation (Figure 17). Push broom sensors 

capture 1D lines of data perpendicular to the direction of travel, and the 2D image is 

constructed by the forward procession of the platform. The term flight line is used in 

this chapter to describe a line of image data captured by the sensor. The ADS40 

houses a nadir viewing multispectral scanner and a tri-stereo panchromatic scanner. 

The multi-spectral scanner acquires red, green, blue and near infra-red (NIR) images. 

The panchromatic scanner simultaneously acquires along-track tri-stereo 

panchromatic imagery, in a similar manner to imaging satellites such as ALOS PRISM or 

SPOT 5 (Poli & Toutin 2012). The nadir viewing multispectral scanner was the source 

of the 25cm ortho-rectified imagery used in this research. The tri-stereo panchromatic 

scanner imagery was used to produce a photogrammetric DSM with a resolution of 

2m. Airbus Defence and Space Ltd. conducted all of the aerial data pre-processing, 

achieving planar and vertical RMSE accuracies of ≤1.5m. Table 11 summarises the 

aerial image data layers produced for each flight line.  
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Table 11: Aerial image data layer summary. 

Data layer Resolution Planar accuracy Vertical accuracy 

Ortho-rectified multispectral 
imagery 

0.25m ≤1.5m RMSE N/A 

DSM 2m ≤1.5m RMSE ≤1.5m RMSE 

 

The imagery was acquired using thirteen flight lines to achieve two cloud-free 

coverages of the city. The 2006 imagery is made up of seven flight lines captured on 

2nd and 3rd July 2006, at an altitude of approximately 2400m. All of the 2006 imagery is 

usable because there was no cloud cover. Figure 18A and Table 12 respectively show 

the extent and characteristics of the 2006 flight lines. The 2010 imagery is made up of 

six flight lines captured on 19th & 21st May and 3rd July 2010, at an altitude of 

approximately 4800m. Figure 18B, C, and Table 13 show the extent and characteristics 

of the 2010 flight lines. The 2010 imagery was acquired in two batches because of 

cloud cover. In 2010 the ADS40 super-resolution imaging mode was engaged to 

reduce image acquisition costs. The super-resolution imaging mode reconstructs high-

resolution images from a pair of images at half resolution, staggered by half a pixel. 

This facilitates higher flying heights and wider swath widths. The super-resolution 

methodology employed by Airbus Defence and Space Ltd. is described in detail by 

Reulke et al. (2006). 
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Figure 18: The aerial image flight lines. In total, thirteen aerial image flight lines were required to achieve complete 
multi-temporal image coverage. Panel A shows the extent of the seven flight lines from July 2006. Panel B shows the 
four initial flight lines from May 2010, noting some cloud cover is present. Panel C shows an additional two flight 
lines from July 2010 captured to infill cloudy regions from May 2010. The July 2010 flight lines also contain cloud. 
Therefore cloud free coverage was achieved with a mixture of May and June. In all panels, the flight line boundary 
extents are shown as a black outline, where we can see that significant lateral overlap exists. 

 

Table 12: 2006 image flight lines. 
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RGBI-07021033 
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Tri-stereo 

panchromatic, 

four band at nadir 

0.25 

02/07/2006 10:33:00 5.73 92 0.68 

RGBI-07030805 

03/07/2006 

08:05:00 19.62 314 2.34 

RGBI-07030832 08:32:00 28.63 458 3.41 

RGBI-07030859 08:59:00 37.35 598 4.45 

RGBI-07030927 09:27:00 33.92 543 4.04 

RGBI-07030954 09:54:00 19.80 317 2.36 

RGBI-07031021 10:21:00 7.67 123 0.91 
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Table 13: 2010 image flight lines. 
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RGBI-05191006 

4800 

Super-resolution 

mode, tri-stereo 

panchromatic, 

four band at nadir 

0.25 

19/05/2010 
10:06:00 14.02 224 1.67 

RGBI-05191031 10:31:00 50.09 801 5.97 

RGBI-05210711 
21/05/2010 

07:11:00 49.47 791 5.90 

RGBI-05210738 07:38:00 12.09 193 1.44 

RGBI-07030926 
03/07/2010 

09:26:00 52.22 836 6.23 

RGBI-07031010 10:10:00 16.51 264 1.97 

 

7.3 Data quality 

The remotely sensed data quality was evaluated prior to the change detection to 

assess its suitability. A qualitative assessment of the data was conducted to ascertain 

its suitability to the application and to support the interpretation of the change 

detection results. Overall, it was concluded that the data is suitable for this research 

and urban creep features are meaningfully resolved. Figure 19 shows an example of 

urban creep in the multi-temporal data stack. However, the data is far from perfect, 

and the following observations must be considered when interpreting the change 

detection results: 

2010 image contrast. While both datasets are imaged and processed to a ground 

resolution of 25cm, the 2010 imagery is not as sharp as the 2006 imagery. This is 

interpreted to be largely due to the effect of the super-resolution imaging mode 

processing. However, the atmospheric conditions may also be a contributing factor 

because of the cloud present in all 2010 imaging campaigns. 

Overall DSM quality. It is important that the resolution and accuracy of the 

available 2m photogrammetric DSM is not confused with the resolution and 

accuracy of a Lidar DSM. Airbus Defence and Space Ltd. designed the processing 

and editing with the objective of producing a DSM with an RMSE ≤ 1.5m, suitable 

for viewing and analysis at cartographic scales no larger than 1:5000. Generally, 

the DSM quality is good and within the defined accuracy tolerance. However it is 

clearly not as accurate or detailed as a typical airborne lidar DSM. 
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2010 DSM quality. Both the 2006 and 2010 DSM are within the defined accuracy 

tolerance of ≤ 1.5m RMSE. However, a qualitative evaluation of both datasets 

indicates that the 2010 DSM is less accurate than the 2006 DSM. The lower two 

panels of Figure 19 show that when compared to the 2006 DSM, the 2010 DSM 

appears less accurate, heavily generalising some smaller buildings. It is assumed 

that the difference is because of the super-resolution imaging mode and, to a 

lesser extent, increased atmospheric haze. 

Sensor and sun geometry. Sensor and illumination geometry varies between all 

flight line image pairs. This is to be expected with VHR image change detection. 

While, extreme differences are not observed, the data contains a mixture of 

differences and serves as a good testbed for illumination and viewing geometry 

invariance methods testing. 



Chapter 7 – Remotely sensed change detection 

99 
 

 

Figure 19: An illustration of the data resolution and quality. Panel A & B show the 25cm imagery for 2006 and 2010 
respectively. We can see that although the image quality in both is fair to good, 2010 is not as sharp as 2006. Panel 
C & D show the 2m DSM. We can see that that at this scale, elevation accuracy is variable, especially in the 2010 
data, with some of the buildings and other details heavily generalised. 

 

7.4 Data organisation 

The data was organised into fourteen work blocks to maintain temporal consistency 

and facilitate image processing. The available images were organised into work blocks 

containing bi-temporal image pairs with no cloud cover. Therefore, each work block 

observes a sub-set of the Norwich study area over a specific monitoring period, with 

consistent acquisition conditions and image radiometry. Furthermore, because of the 

2006 2010 
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size of the images, image and GIS processing was only possible by work block, not the 

entire, mosaiced dataset. Figure 20 shows the extent of the fourteen work blocks, 

while Table 14 summarises the monitoring timeframe for each. The time difference 

between work blocks ranges from 3.8795 to 4.0055 years. For simplicity, the area 

weighted mean time difference is calculated as 3.92 years. 

 

Figure 20: The extent of the fourteen work blocks. 
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Table 14: Work block monitoring timeframe. Note, the fractional time differences in years respect the difference in 
image acquisition down to the minute. 

Work block 
number 

2006 2010 
Time difference, 

years Flight line Date Flight line Date 

1 
RGBI-

07021033 
02/07/2006 

RGBI-
05191006 

19/05/2010 3.8822 

2 
RGBI-

07031010 
03/07/2010 4.0055 

3 

RGBI-
07030805 

03/07/2006 

RGBI-
05191006 

19/05/2010 3.8795 

4 
RGBI-

07030926 
03/07/2010 4.0027 

5 
RGBI-

07031010 

6 
RGBI-

07030832 

RGBI-
05191031 

19/05/2010 3.8795 

7 
RGBI-

07030926 
03/07/2010 4.0027 

8 

RGBI-
07030859 

RGBI-
05191031 

19/05/2010 3.8795 

9 
RGBI-

05210711 
21/05/2010 3.8849 

10 
RGBI-

07030926 
03/07/2010 4.0027 

11 
RGBI-

07030927 RGBI-
05210711 

21/05/2010 3.8849 
12 RGBI-

07030954 13 
RGBI-

05210738 14 
RGBI-

07031021 

 

7.5 Spatial co-registration 

The 2006 imagery was spatially co-registered to the 2010 imagery to facilitate 

meaningful change detection. While all of the available images were already ortho-

rectified, a qualitative evaluation indicated that a further stage of spatial registration 

was required. Klaric et al. (2013) employed a similar two-stage methodology in their 
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research, specifically, ortho-rectification followed by spatial co-registration. A further 

stage of image registrations was almost inevitable, given that literature 

recommendations of co-registration accuracy range from sub-pixel (Kuntz et al. 2011) 

to as little as 0.2 pixels (Dai & Khorram 1998).  Table 15 summarises the errors 

observed between the images sets and sixteen ground control points provided by 

Airbus Defence and Space Ltd. These results indicate, the positional accuracy of both 

image sets is within the defined ortho-rectification tolerance (Table 11), and that the 

2010 imagery was the most accurate. However, it confirms the spatial registration is 

not suitable for change detection. Therefore, the 2006 imagery was registered to the 

2010 imagery using a 1st order polynomial transformation. Table 16 summarises the 

co-registration of the 2006 flight lines. Between eight and twelve tie points were used 

for the co-registration, yielding errors ranging from 0.519 to 0.855 pixels. 

Table 15: Data positional error summary. Reports the error observed between the multi-temporal aerial data and 
sixteen ground control points. 

Image set RMSE X RMSE Y RMSE 

2006 0.35m 0.91m 0.93m 

2010 0.32m 0.26m 0.62m 

 

Table 16: Summary of the spatial calibration. 

Flight line 
Number of tie 

points 
RMSE 

(pixels) 
RMSE 

(metres) 
Registration 

type 
Resample 

type 

RGBI-07021033 9 0.79 0.1975 

1st order 
polynomial 

Bilinear 

RGBI-07030805 10 0.855 0.21375 

RGBI-07030832 10 0.546 0.1365 

RGBI-07030859 12 0.519 0.12975 

RGBI-07030927 11 0.736 0.184 

RGBI-07030954 9 0.835 0.20875 

RGBI-07031021 8 0.726 0.1815 
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7.6 Radiometric co-registration 

A relative radiometric calibration was undertaken using pseudo-invariant features 

(PIFs) to ‘match’ the 2010 imagery to the 2006 imagery. PIFs are stable areas of the 

image that have not changed, and are commonly a means of achieving relative 

radiometric calibrations (Davis 2011; Schroeder et al. 2006; Canty et al. 2004). 

Unchanged pixels are used to calculate a radiometric transformation between images, 

which is applied to invoke a relative calibration. Therefore, after a PIF calibration, 

unchanged pixels should have near-identical pixel intensities, and meaningful 

differences can be observed. 

A subset of the PIF identification method employed by Carvalho Júnior et al. (2013) is 

used for the calibration. Carvalho Júnior et al.'s (2013) method identifies PIFs based on 

the sequential application of three spectral similarity metrics and two statistical 

filtering techniques. In summary, their method selects PIFs for those pixels that satisfy 

all five approaches. For simplicity, the method employed here selects only two 

spectral similarity metrics, SAM and SCM as the means of PIF identification. Spectral 

Angle Mapper (SAM) and Spectral Correlation Mapper (SCM) are remote sensing 

terms for cosine similarity, and Pearson’s r respectively. They are both gain invariant 

similarity metrics useful for matching spectral signatures under varying illumination 

conditions. 

To simplify the notation, 2006 is referred to as T0 and 2010 as T1. This notation relates 

to T0 as the ‘baseline’ image and T1 as the next image in a given time series up to Tn. 

For the 𝑖𝑡ℎ band in the image at T0 and T1, SAM and SCM are given by: 

𝑆𝐴𝑀 = 𝑐𝑜𝑠−1

[
 
 
 

∑ 𝑇0𝑖𝑇1𝑖
𝑛
𝑖−1

√∑ 𝑇0𝑖
2𝑛

𝑖−1 ∑ 𝑇12𝑛
𝑖−1 ]

 
 
 

, 𝑆𝐴𝑀 ∈ [0, 180] Equation 13 

𝑆𝐶𝑀 =
∑ (𝑇0𝑖 − 𝑇0̅̅̅̅ )𝑛

𝑖−1 (𝑇1𝑖 − 𝑇1̅̅̅̅ )

√∑ (𝑇0𝑖 − 𝑇0̅̅̅̅ )2𝑛
𝑖−1 ∑ (𝑇1𝑖 − 𝑇1̅̅̅̅ )2𝑛

𝑖−1

, 𝑆𝐶𝑀 ∈ [−1,1] Equation 14 
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Therefore, PIF pixels are designated as those with SAM values close to 0, where there 

is little or no angle between the vectors; and SCM values close to 1, where the vectors 

have a strong positive correlation. 

The PIF calibration method employed in this thesis goes beyond the literature by 

enforcing spatial, and radiometric distribution. This modification ensures that PIFs are 

well distributed across the image extent and radiometric scale, which will, in turn, 

facilitate the computation of a robust radiometric transformation. The enforcement 

was deemed necessary after practical experience yielded PIFs that tended to cluster in 

bright and dark saturated regions only, such as deep water and bright roofs, yielding 

an unsatisfactory regression model. Radiometric enforcement was applied by binning 

image albedo and searching for at least 50 PIFs in each bin. Spatial enforcement was 

achieved by splitting the input images into tiles, applying the radiometric enforcement 

PIF identification to each tile and then aggregating the results. To minimise 

radiometric noise, only PIFs of more than two pixels in size were retained. The PIF 

identification algorithm was implemented in eCognition 9.0. Figure 21 depicts a 

summary flow diagram of the algorithm, while more detailed pseudo code of the 

algorithm is provided in the Appendix, Figure A-3. Figure 22 shows an illustration of 

the PIF distribution for a subset of work block 1. Note that the PIFs primarily 

congregate over stable urban surfaces but also exist over other stable land covers. 
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Figure 21: The implemented PIF identification algorithm. 

 

Figure 22: Example output from the PIF identification algorithm. PIFs are highlighted in red. The left-hand panel 
contains the 2006 imagery, while the 2010 imagery is on the right.  
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The PIFs were used to radiometrically co-register the imagery, by work block and by 

image band. Specifically, a linear regression model was calculated between T0 and T1, 

for each of the four image bands, and for each of the fourteen work blocks. In each 

case the linear regression model is defined by: 

𝑇1 = 𝑚𝑇0 + 𝑐 Equation 15 

𝑇0 =
𝑇1 − 𝑐

𝑚
 Equation 16 

Where m is the regression slope gradient, and c is the intercept. Therefore, applying 

Equation 16 removes the radiometric offset for the particular image band pair. Figure 

23 shows example scatter plots before and after the PIF calibration. Before the 

calibration, there is an intercept offset and slope difference between T0 and T1. After 

these offsets are removed a perfect 1:1 radiometric relationship is achieved. In other 

words, pixel intensity remains near identical over PIF features.  

Before correction After correction 

  

Figure 23: PIF radiometry before and after the radiometric transformation. Both plots show the results of the blue 
band in work block 11. The PIFs are plotted as black dots, and the linear regression line is plotted in red. The left-
hand panel shows the 2010 blue band plotted against the 2006 blue band before the correction is applied. The right-
hand panel shows the 2010 blue band plotted against the 2006 blue band after the correction has been applied. 
Note, that after the correction a 1:1 radiometric relationship is maintained.  

Intercept offset 

Slope difference 
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7.7 Modelling viewing geometry 

This research models hidden (occluded) surfaces in the available imagery, as a means 

of suppressing change detection false alarms induced by differences in viewing 

geometry. Hidden surfaces are areas on the ground not visible to the sensor due to 

occlusions. In the remotely sensed imagery, they are visible as elevated features 

leaning over and hiding the ground surface. In practical terms, this modelling aims to 

highlight the parts of building roofs and tree canopies that hide the ground surface; 

and may otherwise be confused with real land cover change. When treated rigorously, 

the identification of hidden surfaces is a photogrammetric problem, solved by precise 

sensor modelling and stereo image measurement. However, this photogrammetric 

approach can be approximated with simple desktop GIS tools. 

A novel GIS-based method of hidden surface identification method is implemented by 

approximately simulating a push broom sensor. A GIS viewshed analysis and a 

concurrent DSM is used to simulate the optics of a push broom sensor and depict its 

ground visibility along a flight line. The ADS40, like other push broom sensors, works 

by imaging a procession of pixel strips perpendicular to the flight direction. Therefore, 

each row of the acquired image strip inherits different imaging geometry. If we 

consider each row a field of view (FOV) from an observation point, we can simulate 

each with a GIS viewshed analysis. The viewshed created for each observation will 

depict the visibility of the sensor in that position, which conversely, can map the 

hidden surfaces. If we then mosaic the viewsheds for each observation together, we 

obtain a map of hidden surfaces for the entire flight line. The algorithm was 

implemented in Python 2.7.8 using the ArcGIS 10.1 viewshed tool. Figure 24 outlines 

the hidden surface detection algorithm as a flow diagram, while more detailed pseudo 

code is provided in the thesis Appendix, Figure A-4. The 3D flight paths of the sensor 

were estimated from the extent of each flight line, and the approximate flying heights 

described in Table 12 and Table 13. Figure 25 shows example hidden surface maps 

from 2006 and 2010 over Norwich city centre. In this example, we can see that the 

hidden surface map does correlate with the feature lean present in the source 

imagery. However, the scale of hidden surface maps is strictly limited by the scale of 

the source DSM. Consequently, only large, prominent hidden surfaces are depicted. 
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The hidden surface maps were used directly in the change detection classifications as 

a means of reducing false alarms. The method described here represents a novel and 

simplified simulation of viewing geometry for change detection. 

 

Figure 24: Hidden surface detection algorithm outline.  



Chapter 7 – Remotely sensed change detection 

109 
 

 

 

Figure 25: Hidden surface identification results. The top row shows the multi-temporal imagery over Norwich city 
centre. The bottom row shows the same imagery with the hidden surfaces highlighted in red.  
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7.8 Modelling scene illumination 

The lighting conditions at the time of image acquisition were modelled as a novel 

addition to the change detection process. Scene illumination was simulated to create 

shading maps depicting the extent of shadows and bi-directional reflectance induced 

shading. The shading maps were used as a direct input to the change detection 

process. Specifically, the supervised classifier would have a clear opportunity to learn 

the relationship between shading patterns and false alarms. 

Scene illumination change was simulated using a multi-temporal GIS hill shading 

procedure. Since each image is accompanied by a DSM and the sun position can be 

reasonably estimated, shading patterns are readily simulated with common GIS hill-

shading tools. Solar azimuth and elevation were estimated for each image based on 

the acquisition time, date and location.  The NOAA online solar calculator (National 

Oceanic & Atmospheric Administration 2016) was used to calculate the sun position. 

Table 17 catalogues the sun position for each of the fourteen flight lines. The hill-

shading tool in ArcGIS 10.1 was used to create shading maps for all of the flight lines. 

Crucially, the hill shading tool considers bi-directional reflectance shading and cast 

shadows. The output 8-bit raster images depict shadows with a digital number of 0, 

while shaded areas range from 1 to 255 as the solar incidence angle decreases. Figure 

26 illustrates the results of the hill-shading over Norwich city centre. The main shading 

patterns are honoured. However, the scale of the shadow detection is limited by the 

resolution and accuracy of the source DSM. Although, hill-shading is a well-established 

and readily available technique, the application to change detection workflows is a 

novel application.  
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Table 17: Flight line sun positioning. 
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Figure 26: The hill-shading illumination modelling. The top row shows the multi-temporal imagery over Norwich city 
centre. The bottom row shows the hill-shaded DSM with shadows applied for the solar geometry at the time of 
acquisition. 
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7.9 Unit of analysis 

Multi-temporal image objects were selected as the unit of analysis for change 

detection. Therefore, image objects were formed by segmenting the entire multi-

temporal image stack. Chapter 2.2.5 explored multi-temporal segmentation in detail, 

and it was found that under this framework, image tone, texture, pattern, association 

and shadow can be monitored over time. On the other hand, because the spatial 

framework is fixed, size and shape cannot be monitored over time. However, size and 

shape of the shared geometry can be calculated and used as a static, non-comparable 

input to classifications. 

A hierarchical, multi-scale segmentation was employed to add context to the change 

detection. A hierarchical, multi-scale segmentation is a nested set of image objects at 

different scales. At the bottom of the hierarchy reside the smallest objects, 

representing a large cartographic scale. The bottom of the hierarchy, in this thesis, is 

labelled L1. The next level in the hierarchy is labelled L2  and contains larger, parent 

objects. As more levels are added, the child objects are aggregated further. Crucially, 

image objects at one level inherit the properties of their parent objects. Therefore, L1 

objects inherit the properties of L2, L3, through to Ln. Inheriting parent object 

information adds context to L1 by quantitating the surrounding area. Figure 27 

illustrates the structure and inheritance of a multi-scale segmentation with three 

levels. 
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Figure 27: An illustration of a hierarchical, multi-scale segmentation. The illustration shows a nested segmentation 
at three different scales. The highlighted object at L1 is a child object and grandchild object to highlighted objects in 
levels 2 and 3 respectively. An example is given, where the highlighted L1 object inherits the mean image blue value 
of L2 and L3. 

L1 objects are formed using the multi-resolution segmentation (MRS) algorithm found 

in eCognition 9.0 (Trimble 2015). The algorithm parameters were calibrated 

qualitatively to form small objects with little, or no land cover mixing, and where 

marginal over-segmentation is preferred over under-segmentation. The results of this 

type of segmentation are often referred to as image object primitives (Baatz et al. 

2008; Tabib Mahmoudi et al. 2013; Diesing et al. 2016; Martha et al. 2016). The L1 

objects were created with the MRS parameters: scale, shape and compactness set to 

250, 0.1 and 0.5 respectively. To control over-segmentation and stabilise the scale, 

objects of less than 10 pixels were merged to the adjacent object with the best colour 

match. 
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Figure 28: The results of the L1 multi-temporal MRS segmentation. Panels A and B show the 2006 and 2010 imagery 
respectively. Panels C and D show the 2006 and 2010 imagery respectively, overlaid with the L1 image objects. 

The MRS algorithm was improved to give more meaningful image objects at smaller 

scales. Deriving image objects that tend towards meaningful geographic objects is a 

fundamental part of OBIA (Castilla & Hay 2008; Blaschke 2010; Hussain et al. 2013). 

Meaningful image object primitives, L1 in this thesis, are easily achievable with MRS. 

However, deriving meaningful small-scale objects over urban areas, with increasing 

levels of abstraction, is a non-trivial task. This is because the spectral and textural 

patterns in the image do not necessarily relate to urban structures. Qualitative 

experimentation identified that even when the MRS shape and compactness 

parameters are set to maximum, the resultant image objects favour image colour over 
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form. This results in overly complex objects, that often aggregate roof structures and 

shading patterns, but to not adequately depict urban structures. To improve urban 

structure representation, a modification of MRS was derived, Compactness 

Enforcement Multi-resolution Segmentation (CEMRS). CEMRS gives segmentations 

that tend towards compact objects; that better describe urban structures. It works by 

targeting complex objects, unlikely to outline urban forms, for re-segmentation with a 

more abstract approach. Figure 29 gives an overview of the CEMRS algorithm, while a 

more detailed description is given in pseudo code in the thesis Appendix, Figure A-5. 

To summarise the algorithm; a seed image object level (IOL), Ln-1, is aggregated using 

the standard MRS to give a parent IOL, Ln. Then Ln complex objects are identified and 

split back to their child, sub-objects (Ln-1). The child objects are then dissolved into 

the surrounding, compact objects with the greatest shared border. Then, surrounded 

objects, ring objects, and partial ring objects are removed. The algorithm iterates until 

no more complex objects remain. Figure 30 shows a side by side comparison of MRS 

and CEMRS when applied to the Norwich imagery. It highlights that MRS image 

objects at relatively small scales do not adequately describe urban form. The CEMRS 

algorithm shows clear improvement. 

 

Figure 29: A summary of the CEMRS algorithm. 
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Figure 30: A cross comparison of MRS and CEMRS. Panels A and B show the 2006 and 2010 imagery respectively. 
Panels C and D show the 2006 and 2010 imagery respectively, overlaid with the MRS image objects. Panels E and F 
show the 2006 and 2010 imagery respectively, overlaid with the CEMRS image objects. The MRS shape and 
compactness parameters are set to maximum. The Scale parameters of both algorithms are calibrated to deliver the 
same number of image objects within the image chip. MRS creates objects that tend towards image colour, and do 
not adequately depict urban structures. CEMRS delivers compact abstracted objects that more closely match urban 
forms. 
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The CEMRS algorithm was calibrated qualitatively to derive L2 and L3 image object 

levels that approximate residential property and residential block respectively. Since 

this research targets urban creep, property extent and urban block are meaningful, 

complimentary analysis scales to the image object primitives described in L1. Table 18 

shows the CEMRS parameters used to achieve these abstractions. Figure 31 and Figure 

32 show the results of the L2 and L3 segmentations applied to the Norwich imagery. In 

total 5499378 objects were formed for L1, 193014 for L2, and 47696 for L3. 

Table 18: The CEMRS parameters used to create IOL L2, and L3. 

Ln L2 L3 

Ln-1 L1 L2 

Scale 400 800 

Shape 0.9 0.9 

Compactness 0.9 0.9 

Compactness threshold 3 3 
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Figure 31: The results of the L2 multi-temporal CEMRS. Panels A and B show the 2006 and 2010 imagery 
respectively. Panels C and D show the 2006 and 2010 imagery respectively, overlaid with the L1 image objects. 
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Figure 32: The results of the L3 multi-temporal CEMRS. Panels A and B show the 2006 and 2010 imagery 
respectively. Panels C and D show the 2006 and 2010 imagery respectively, overlaid with the L1 image objects. 

7.10 Feature extraction 

In total, 117 features were calculated for each L1 image object, resulting in over 640 

million data items across the study area. The features were chosen to represent a 

range of image interpretation principles and analysis scales, across two different time 

periods. All features were calculated using eCognition 9.0. 

The complete 117 feature set is based on twenty-five feature themes, duplicated by 

scale and time. Table 19 catalogues the twenty-five feature themes, along with their 

brief description, image interpretation principle and comparability. Nine image 

interpretation principles were defined, namely, tone, texture, height, shadow, view 
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angle, pattern, association, shape and size. The nine principles are based on the set 

identified by Bianchetti & Maceachren (2015), with the specific addition of view angle 

to describe the hidden surfaces. Each principle is represented by one or more feature 

themes. For example, tone refers to all of the available spectral bands, in this case, 

red, green, blue and NIR. The feature themes belonging to tone, height, shadow and 

view angle all report the mean value of the pixels intersecting the image object. The 

texture metrics are calculated from an albedo image, specifically, the mean of the red, 

green and blue bands. Texture measures range from a simple standard deviation, 

through to GLCM measures. The choice of GLCM texture metrics was informed by 

recommendations identified by Warner (2011). Specifically, one contrast measure 

(homogeneity), one orderliness measure (entropy), and two descriptive statistics 

(mean and standard deviation). The pattern features refer to crude measures of 

spatial autocorrelation. The mean difference to neighbours is the mean albedo 

difference between an image object and its neighbours. In other words, how locally 

bright the object is. The standard deviation to neighbouring objects is the standard 

deviation of the albedo differences between an image object and its neighbours. In 

other words, how variable the local pattern is. Association, shape and size features all 

describe image object geometry. 
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Table 19: The twenty-five feature themes. 

Feature theme Description 
Image 

interpretation 
principle 

Analysis unit 
comparability 

Blue Object mean blue 

Tone 

Comparable 

Green Object mean green 

Red Object mean red 

NIR Object mean near infra-red 

Standard deviation Object albedo standard deviation 

Texture 

GLCM Entropy Object albedo GLCM entropy 

GLCM Homogeneity Object albedo GLCM homogeneity 

GLCM Mean Object albedo GLCM mean 

GLCM Standard deviation Object albedo GLCM standard deviation 

DSM Object mean DSM Height 

Hill shaded DSM Object mean hill shaded relief and shadows Shadow 

Hidden surfaces Object mean visibility and feature parallax View angle 

Mean difference to 
neighbours 

Object albedo, mean difference to 
neighbouring objects 

Pattern 
Standard deviation to 

neighbours 
Object albedo, standard deviation to 

neighbouring objects 

Direction Object direction, or azimuth Association 

Non-comparable 

Asymmetry Object asymmetry, a measure of elongation 

Shape 

Compactness 
Object compactness, the similarity to the 

most compact shape a circle 

Density 
Object density, the ratio of area divided by 

radius 

Elliptical fit 
Object elliptical fit, similarity to an 

equivalent ellipse 

Length/Width Object length/Width 

Rectangular fit Object rectangular fit 

Roundness 
Object roundness, radius difference between 

the enclosing and enclosed ellipse 

Area Object area 

Size Length Object length 

Width Object width 
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All of the feature themes described are calculated at three different scales. The three 

different scales are the image object levels, L1, L2 and L3, which relate to relatively 

large, moderate and small cartographic scales respectively. The only exception to this 

rule are the pattern features, which are defined by a neighbourhood of image objects. 

All of the pattern feature scale variants are calculated at L1, with increasingly large 

neighbourhood sizes. Specifically, large-scale neighbourhoods are all objects adjacent 

to the target. Moderate scale neighbourhoods are all objects within 100 pixels (25m) 

of the target, while small-scale neighbourhoods are within 200 pixels (50m) of the 

target. 

It is important to make the distinction between comparable and non-comparable 

features. Not all the properties of multi-temporal image objects can be described over 

time because of the fixed spatial framework.  Specifically, the association, shape and 

size feature themes can only be calculated once for both time periods, and so are 

deemed non-comparable. Comparable feature themes are calculated twice, one for 

each period, whereas non-comparable feature themes are calculated once and shared 

between the time periods. For the features to remain readily compatible with CVA, 

comparable features are stored as T0, for the 2006 data and Δ as the difference 

between 2006 and 2010. Non-comparable features are labelled as T0 & T1 to denote 

shared properties. In summary, the source data state of the feature themes was 

calculated and recorded as either T0, Δ, or T0 & T1. 

The complete set of 117 features is constructed by a multiplication of the feature 

themes at different scales and time periods. There are fourteen comparable feature 

themes. Each of these is calculated at three different scales and two different source 

data states. Therefore, each feature theme multiplies to six features. For example, the 

feature theme Blue multiples to the features: T0 L1 Blue, T0 L2 Blue, T0 L3 Blue, Δ L1 

Blue, Δ L2 Blue and Δ L3 Blue. Conversely, each of the eleven non-comparable feature 

themes is calculated at three different scales, but only one source data state. For 

example, feature theme Area multiplies to the features: L1 Area, L2 Area and L3 Area. 

The final feature set is a result of the multiplication: 

117 = (14 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑡ℎ𝑒𝑚𝑒𝑠 × 3 𝑆𝑐𝑎𝑙𝑒𝑠 × 2 𝑆𝑜𝑢𝑟𝑐𝑒 𝑑𝑎𝑡𝑎 𝑠𝑡𝑎𝑡𝑒𝑠)

+ (11 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑡ℎ𝑒𝑚𝑒𝑠 × 3 𝑆𝑐𝑎𝑙𝑒𝑠 × 1 𝑆𝑜𝑢𝑟𝑐𝑒 𝑑𝑎𝑡𝑎 𝑠𝑡𝑎𝑡𝑒) 
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For reference, the full feature listing can be found in Table A-3 of the Appendix. 

7.11 Unsupervised feature selection 

The unsupervised feature selection technique agglomerative hierarchical clustering 

was applied to identify meaningful feature sets, with minimal data redundancy. 

Agglomerative hierarchical clustering is a bottom-up algorithm that recursively 

aggregates data points or features into a nested structure using a dissimilarity matrix 

(Murphy 2012, p893). In other words, each feature is initialised as a cluster, and a 

dissimilarity score is computed for all cluster pairs. The cluster pair with the lowest 

dissimilarity are merged, and the dissimilarity matrix is re-computed. The cluster 

merging and dissimilarity computation continue until all features are aggregated to 

one cluster. The agglomerative hierarchical clustering was implemented using the 

function FeatureAgglomeration, from the Python module, Scikit Learn (Scikit Learn 

2016b). The dissimilarity criterion specified was Ward's error sum of squares (Ward 

1963), in Euclidean feature space. Ward's method minimises cluster variance by 

considering the 'loss' (Ward 1963, p237) of information incurred by each cluster pair. 

The cluster representation method proposed by Park (2013) was used to select 

individual features. Agglomerative hierarchical clustering is an intermediate stage in 

the feature selection process because it does not indicate which feature from each 

cluster should be chosen. Park (2013) demonstrated a method utilising feature-to-

feature correlation. Specifically, a correlation matrix is computed for the features 

within a cluster, and the correlation scores are summed by feature. The feature with 

the highest correlation sum is the one selected. In other words, from each cluster, the 

feature selected is the most representative of the entire cluster. 

The cluster representation method was iterated 117 times to reveal all feature 

selection scenarios. Starting at the root of the hierarchy tree, all features are 

contained in one cluster. The single most representative feature is then identified. We 

then move one position up the hierarchy, giving two clusters, where the two most 

representative features are revealed. This process continues until the hierarchy tree 

leaves are reached, and each cluster contains only one feature. Classifying all of the 

feature selection scenarios will reveal the optimum feature set. 
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All data was standardised before feature selection to allow meaningful clustering 

among features with different data ranges and distributions. Many of the 117 features 

reside on different scales, which would invalidate clustering operating in Euclidean 

space. For example, image spectral features, such as T0 L1 Blue, have a range of 0 to 

65535, while the GLCM texture measures, such as T0 L3 GLCM Homogeneity, have a 

range of 0 to 90. Furthermore, differing data distributions may adversely affect the 

clustering. Dy & Brodley (2004) show how standardisation improves feature selection 

performance because clustering tends towards low variance distributions. Therefore 

all of the data was standardised, to have a mean of 0 and a standard deviation of 1. 

7.12 Change vector analysis 

7.12.1 Established formulation (C2VA) 

Firstly, the established state-of-the-art formulation of CVA is described graphically and 

mathematically. The state-of-the-art formulation, compressed CVA (C2VA), is 

presented in detail by Bovolo et al. (2012) and describes CVA in n-dimensions, where 

the CV direction is evaluated against an arbitrary reference vector. Figure 33 illustrates 

the geometry of a C2VA system, where Vector A represents T0, Vector B represents T1, 

and the reference vector is a unit vector in the centre of the feature space. As a unit 

vector, the magnitude of the reference vector in each of the 𝑛 dimensions is 1
√𝑛

⁄ . 

The illustration depicts the system in two dimensions, x and y, while C2VA is scalable 

up to 𝑛 dimensions, i.e. 𝑥, 𝑦, 𝑧 ………𝑛. 
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Figure 33: C2VA geometry. Vector A represents T0 and Vector B T0. 

Given a feature vector at T0, A and a feature vector at T1, B the difference from T0 to 

T1, Δ, is clearly: 

∆= 𝐵 − 𝐴 

If we consider n features, the Euclidean norm, or CV magnitude is: 

𝐶𝑉 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √∑∆𝑖
2

𝑛

𝑖=1

 Equation 17 

While the angle between the change vector and the reference vector, namely the CV 

direction is given by (Bovolo et al. 2012): 

𝜃𝐶𝑉𝑅𝑒𝑓 = cos−1

[
 
 
 

1

√𝑛
(

 
∑ ∆𝑖

𝑛
𝑖=1

√∑ ∆𝑖
2𝑛

𝑖=1 )

 

]
 
 
 

 Equation 18 
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7.12.2 Weighted C2VA 

This thesis presents Weighted C2VA (WC2VA) as a novel extension to the established 

state-of-the-art. WC2VA is advantageous because it normalises CV magnitude under 

variations in the number of input features, and facilitates the application of feature 

weightings to determine importance. Without weightings, CV magnitude is 

proportional to √𝑛. In other words, as more features are added the magnitude 

increases, making cross comparisons difficult. We can normalise CV magnitude by 

applying weights to each feature: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 CV m𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √∑𝑤𝑖(𝐴𝑖 − 𝐵𝑖)2

𝑛

𝑖=1

 Equation 19 

  

Where, 0 ≤ 𝑤𝑖 ≤ 1 and ∑ 𝑤𝑖 = 1𝑛
𝑖=1  

Next, we apply weights to the direction, 𝜃𝐶𝑉𝑅𝑒𝑓. The unweighted angle between 

vectors is related to the dot product of the two vectors and their magnitudes (Olver & 

Shakiban 2006, p139): 

cos 𝜃𝐴𝐵 =
𝐴 ∙ 𝐵

|𝐴||𝐵|
 Equation 20 

Where |𝐴| and |𝐵| are the vector magnitudes, and the dot product 𝐴 ∙ 𝐵 is calculated 

by multiplying the row vector of A by the column vector of B (Olver & Shakiban 2006, 

p131): 

𝐴 ∙ 𝐵 = ∑𝐴𝑖𝐵𝑖

𝑛

𝑖=1

 Equation 21 

Multiplying each axis by a weight, 𝑤, we derive expressions of the weighted dot 

product, and weighted magnitude (Olver & Shakiban 2006, p133):  

𝐴 ∙ 𝐵 = ∑𝜔𝑖𝐴𝑖𝐵𝑖

𝑛

𝑖=1

 Equation 22 
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|𝐴| = √∑𝜔𝑖𝐴𝑖
2

𝑛

𝑖=1

 Equation 23 

 

Substituting Equation 22 and Equation 23 into Equation 20, we have the weighted 

angle, 𝜃𝐴𝐵𝜔: 

cos 𝜃𝐴𝐵𝜔 =
∑ 𝜔𝑖𝐴𝑖𝐵𝑖

𝑛
𝑖−1

√∑ 𝜔𝑖𝐴𝑖
2𝑛

𝑖=1 ∑ 𝜔𝑖𝐵𝑖
2𝑛

𝑖=1

 
Equation 24 

Considering the change vector and reference vector, 𝑅𝑖, Equation 24 becomes: 

cos 𝜃𝐶𝑉𝑅𝑒𝑓𝜔 =
∑ 𝜔𝑖∆𝑖𝑅𝑖

𝑛
𝑖−1

√∑ 𝜔𝑖∆𝑖
2𝑛

𝑖=1 ∑ 𝜔𝑖𝑅𝑖
2𝑛

𝑖=1

 

 

Finally, we invert the cosine and simplify the reference vector to the per dimension 

magnitude, 1
√𝑛

⁄ , to give the weighted direction, 𝜃𝐶𝑉𝑅𝑒𝑓𝜔: 

𝜃𝐶𝑉𝑅𝑒𝑓𝜔 = cos−1

[
 
 
 
 
 

∑ 𝜔𝑖∆𝑖 (
1

√𝑛
)𝑛

𝑖−1

√∑ 𝜔𝑖∆𝑖
2𝑛

𝑖=1 ∑ 𝜔𝑖 (
1

√𝑛
)
2

𝑛
𝑖=1

]
 
 
 
 
 

 Equation 25 

Comparing C2VA direction (Equation 18) to WC2VA direction (Equation 25), it is noted 

that in the weighted variant, the denominator no longer collapses down to a single 

vector magnitude. This is because under unequal weightings, or if the weightings do 

not sum to 1, the weighted magnitude of the reference vector is no longer 1, so it 

cannot be ignored. 

In summary, WC2VA has the following properties: 

 Weighted CV magnitude remains on a comparable scale (the magnitude does 

not escalate proportionally to √𝑛) to the input features where the weights sum 

to 1, specifically: 0 ≤ 𝑤𝑖 ≤ 1 and ∑ 𝑤𝑖 = 1𝑛
𝑖=1  



Chapter 7 – Remotely sensed change detection 

129 
 

 Under equal weights, reported direction is identical to unweighted, C2VA, i.e. 

the outcomes of Equation 18 and Equation 25 are identical if 𝜔𝑖 = 𝜔𝑛 for all 

axes. 

 Unequal weights increase or decrease the relative importance of the particular 

axes. 

7.12.3 Change trajectory analysis 

This thesis presents a further novel extension of CVA, namely Change Trajectory 

Analysis (CTA). CTA summarises the magnitude and direction of the change vector, 

and the baseline vector T0. Considering the CV and T0 reflect the complete trajectory, 

from origin to T1. Furthermore, adding the baseline position, T0, removes CV 

ambiguity. CV ambiguity is established in the literature (Johnson & Kasischke 1998), as 

is its removal by adding a baseline vector (Cohen & Fiorella 1998). However, this 

research goes further by formalising these concepts under the WC2VA framework. 

 

Figure 34: CTA illustration. (a) Illustrates the two reference vector angles. (b) Highlights the change trajectory, 
running from the origin, to T0, to T1. 

Figure 34 illustrates CTA, to include the direction, 𝜃𝑇0𝑅𝑒𝑓 and the trajectory geometry. 

CTA extends WC2VA, by including the magnitude and direction of T0. Specifically: 
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𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 T0 m𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √∑𝑤𝑖𝑇0𝑖
2

𝑛

𝑖=1

 Equation 26 

  

𝜃𝑇0𝑅𝑒𝑓𝜔 = cos−1

[
 
 
 
 
 

∑ 𝜔𝑖𝑇0𝑖 (
1

√𝑛
)𝑛

𝑖−1

√∑ 𝜔𝑖𝑇0𝑖
2𝑛

𝑖=1 ∑ 𝜔𝑖 (
1

√𝑛
)
2

𝑛
𝑖=1

]
 
 
 
 
 

 Equation 27 

 

Therefore, CTA transforms any number of inputs into the four components: 

1. Weighted CV magnitude (Equation 19) 

2. Weighted CV direction, 𝜃𝐶𝑉𝑅𝑒𝑓𝜔 (Equation 25) 

3. Weighted T0 magnitude (Equation 26) 

4. Weighted T0 direction (Equation 27) 

7.13 Training data 

The training data were collected in a similar manner to the reference data collection 

method described in Chapter 5. Chiefly, candidate reference samples were reviewed 

against multiple data sources to minimise labelling error. The training data selection 

started with the approximately stratified PSUs. In review, the 50x50m PSUs were 

assigned approximate strata: urban creep, other change and no change candidates. 

Recalling from Chapter 5, a total of 154 random stratified samples were selected for 

the reference dataset. The training samples were drawn from the remainder of the 

pool. Therefore the reference and training datasets were fully independent. 

Training data samples were assigned by linking image objects to thematic classes 

identified in the multi-source data stack. Firstly, a PSU is drawn at random from one of 

the three strata, urban creep candidate, other change candidate or no change 

candidate. The PSU was then reviewed against the remotely sensed reference data, 

detailed in Table 6 of Chapter 5. If, after a rigorous review, there is confidence in the 

change class, the pattern on the ground is linked to a representative L1 image object. 

The image object attributes and the assigned training data label are the source data 
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for the supervised classification. This process is repeated until a suitable training data 

sample pool is achieved. A total of 300 training samples were collected, evenly split 

between the three thematic classes: urban creep, other change and no change. 

7.14 Supervised classification 

This section details the supervised classification method applied to the feature 

extracted image objects. This stage trains a classifier to apply thematic labels to the 

unlabeled image objects. Overall, two workflows are followed: direct classification, 

and CVA classification. The direct classification utilises the features directly. The CVA 

classification utilises CVA features, derived from the ‘raw’ features. For example, in 

the CVA classification image objects are trained and labelled by CV magnitude and 

direction, instead of the features directly. These two broad workflows relate to the 

thesis research questions, concerning the urban creep classification performance of 

direct, and CVA classifications. 

All supervised classifications were based on a random forest classifier, with identical 

configurations. Therefore, the supervised classifier is fixed, and not confused with the 

experiments independent variables (the input features and classification type). 

Random forest is an ensemble classifier based on a ‘forest’ of classification and 

regression trees, where each tree is a discrete classifier in their own right. Each tree is 

created from a random subset of the training data and feature space. The final 

classification is aggregated from the individual trees. The random forest classifier was 

chosen for three reasons: 

1. Random forest is the ‘Classifier of choice’ for many applications (Kuncheva 

2014, p191). 

2. Tree aggregation produces a more generalised classification model that 

suppresses overfitting (Cichosz 2014, p443). 

3. Random forest can handle a large number of features (Rokach 2009, p55). 

The Python Scikit Learn implementation of random forest (Scikit Learn 2016a) was 

used in all experimentation. The classifier was configured to construct forests with 128 

trees. The forest size was based upon Oshiro et al.'s (2012) recommendation of 

between 64 and 128 trees, where fewer trees often result in a compromised model, 
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and, more trees yields little tangible benefit. Each tree was generated using the 

standard subset of √𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (Cichosz 2014, p443), with no pruning applied 

(Kuncheva 2014, p191). 

7.14.1 Direct classification 

The supervised classification workflow applied to each direct classification is outlined 

in Figure 35. The workflow starts with the unlabelled, feature extracted, image objects 

containing N features. The image objects then participate in the unsupervised feature 

selection, described in section 7.11, to derive a subset of n features. A subset of n 

features is then also created from the training data, which is passed to train the 

classifier. The derived classifier is then applied to the image objects, to add thematic 

labels. The process is repeated for all feature selection scenarios. 

 

Figure 35: Direct classification workflow. The flow chart describes the main stages of the direct classification. 
Rectangles represent data or parameters. Rounded rectangles represent operations, numbered by their sequence. 

7.14.2 CVA Classification 

Figure 36 outlines the supervised classification workflow applied for each CVA 

classification. The workflow mirrors the direct classification workflow, with the 

addition of two CVA stages. Prior to classifier training or classifier application, the set 

of n-features was transformed to a CVA feature set.  Firstly, the features are 

standardised so that the data has a consistent range and distribution. Then, the 

standardised data undergoes either W2CVA, or CTA to derive a set of CVA features. 
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The CVA features are either: CV magnitude, CV Magnitude and direction, or T0 and CV 

Magnitude and direction (For CTA). 

 

Figure 36: CVA classification workflow. The flow chart details the main stages of the CVA classification. Rectangles 
represent data or parameters. Rounded rectangles represent operations, numbered by their sequence. 

7.15 Accuracy assessment 

The performance of the supervised classifications was assessed with a site specific 

area weighted error matrix. The error matrix is a widely accepted and demonstrated 

representation of thematic accuracy (Congalton & Green 2009, p55). The method has 

the advantage of revealing individual class confusion and deriving properties that 

summarise thematic accuracy. The accuracy assessment was site specific. Therefore 

the location and extent of classified features are as important as the thematic label. In 

GIScience terms, a site-specific accuracy assessment is an overlay procedure, and 

thematic agreement is only achieved where the classified and reference data labels 

correspond at a particular location. By considering the agreement at all locations, the 

assessment is area weighted, since classified image objects may be partially correct, or 

indeed, partially incorrect. Therefore, the agreement is not binary. For example, an 

image object classified as urban creep could overlap a reference data geo-object by 
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80%, with the remaining 20% overlapping no change. The weighted error matrix 

directly reflects the degree of correspondence. Recalling the reference data in Chapter 

5, reference polygons are mapped at a scale of 1:500. Therefore, the site specific area 

weighted error matrix essentially describes the level of cartographic similarity. By 

cartographic similarity, the Author means that both the thematic label and spatial 

configuration are tested. While other research (Adelabu et al. 2015) has shown that it 

is possible to implement an accuracy assessment without an independent dataset, 

using random forest out-of-bag samples only, this approach was not chosen here. This 

is because of the reference data objectives described in Chapter 5.4. Specifically, due 

to the duration of the research the reference data needed to be collected prior to the 

remote sensing change detection work. 

 

Figure 37: The error matrix preparation workflow. Rectangles represent data or results. Rounded rectangles 
represent operations, numbered by their sequence. 

A geometric union of the labelled image objects and reference data mapping is 

executed to facilitate the area weighted accuracy assessment. Figure 37 shows the 

error matrix preparation workflow. Firstly, a geometric union of the labelled image 

objects and the reference data mapping is created. The union combines boundaries, 

disaggregating objects while retaining classified and reference class labels. The area 

and proportional area, relative to the study area, is calculated for each disaggregated 

object. Upon thematic agreement or disagreement, the proportional area is reported 

in the error matrix. Therefore, the error matrix directly reflects partial agreement and 

in turn, cartographic similarity. 
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Urban creep average accuracy was chosen as the primary measure of supervised 

classification success. The error matrix properties: overall accuracy, producer 

accuracy, and user accuracy, are commonly recommended summaries  (Liu et al. 

2007). While overall accuracy is the most commonly reported measure of success 

(Congalton & Green 2009, p59), urban creep average accuracy is a more suitable 

measure in this thesis. Average thematic accuracy is simply the mean of the user 

accuracy, 𝑢𝑎, and producer accuracy, 𝑝𝑎, for the 𝑖𝑡ℎ thematic class (Liu et al. 2007), as 

formalised in Equation 28. Judging supervised classifications by average urban creep 

accuracy will explicitly reveal the success of the classification in determining complex 

urban change. On the other hand, overall accuracy my mask poor urban creep 

classification performance, in favour of other classes. The Kappa statistic was not 

reported, because of its reported problems (Olofsson et al. 2014). 

𝑎𝑢𝑝𝑖 =
𝑢𝑎𝑖 + 𝑝𝑎𝑖

2
 Equation 28 

7.16 Experiment structure 

The experiment consists of 375 classifications, split across two groups, and twelve 

scenarios. Table 20 summarises the classification groups and scenarios. The two 

classification groups, direct classification and CVA classification relate to the first two 

thesis research questions. The first research question questions the ability of a direct 

classification to identify urban creep, where the direct classification represents the 

state-of-the-art in change detection. The second question questions the ability of CVA 

to identify urban creep, where CVA represents change detection differencing 

methods. The classification scenarios further explore the parent classification group to 

cover a range of different input scenarios and facilitate more meaningful comparison 

between the two classification groups.  
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Table 20: Classification group and classification scenario summary. 

Classification 

group 
Classification scenario 

Individual 

classifications 

Direct 

classification 

Direct classification, all features 117 

Direct classification, Δ features 42 

Direct classification, T0 & Δ features 84 

CVA 

classification 

WC2VA magnitude 42 

WC2VA magnitude & direction 42 

CTA 42 

Red & NIR WC2VA magnitude 1 

Red & NIR WC2VA magnitude & direction 1 

Red & NIR CTA 1 

4 Band WC2VA magnitude 1 

4 Band WC2VA magnitude & direction 1 

4 Band CTA 1 

 

 
Total 375 

 

The three direct classification scenarios explore the impact of considering all features, 

or two subsets of the features mirroring the CVA inputs. The first, ‘direct classification, 

all features’, considers all 117 features, over 117 classifications. The high number of 

classifications equate to an exhaustive exploration of all feature selection scenarios, 

from 1 to 117 features. Starting with all features is interesting to assess the most 

comprehensive classification approach, but it does not enable a fair comparison 

against CVA. This is because WC2VA is limited to the 42 difference features, while CTA 

also considers the T0 vector, effectively doubling the features to 84. In light of this the 

scenarios ‘Direct classification, Δ features’ and ‘Direct classification, T0 & Δ features’ 

operate on subsets of the full feature set, facilitating meaningful comparisons against 

the WC2VA and CTA classifications respectively. 

The nine CVA classification scenarios exhaustively explore a range of experimental 

permutations, while also testing some common input variations. The scenarios 
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‘WC2VA magnitude’ and ‘WC2VA magnitude & direction’ both classify all of the 42 

feature selections using WC2VA magnitude, and WC2VA magnitude and direction 

respectively. In doing so, the experiment exhaustively investigates the utility of a 

diverse range of object-based features in CVA. For example, in contrast to typically 

spectral CVA, the experiment yields quantitative results describing the merit of CVA 

using features such as multi-scale texture or pattern. The scenario ‘CTA’ extends 

‘WC2VA magnitude & direction’ to include the T0 vector of each feature set. Note that 

CTA reports 42 classifications, i.e. the classifications do not double to 84. This is 

because the feature selection is decoupled from the T0 vectors; the selections are 

made on the 42 difference features, and the T0 vectors are added by default. 

Four scenarios were added to represent simple, spectral CVA commonly applied in the 

literature (Bruzzone & Prieto 2000; Xian & Homer 2010; Bovolo & Bruzzone 2007), 

where image ‘colour’ change is the key discriminator. These four scenarios are: 

1. Red & NIR WC2VA magnitude 

2. Red & NIR WC2VA magnitude & direction 

3. 4 Band WC2VA magnitude 

4. 4 Band WC2VA magnitude & direction 

These are referred to collectively as ‘Spectral CVA’ and serve as a crucial point of 

reference against the experimental CVA in this research.  Furthermore, a comparison 

between the two and four band spectral CVA scenarios further test Bovolo et al.'s 

(2012) hypothesis that utilising all available spectral bands improves CVA class 

discrimination. WC2VA has been applied in these cases, not C2VA, to remain consistent 

with the other experiments. In other words, the input features are the independent 

variables under test and changing the CVA method for these scenarios would add a 

confusing variable to the experiment. Recalling the properties of WC2VA (section 

7.12.2), under equal features weights (as applied here), CV direction is identical under 

C2VA and WC2VA. Conversely, CV magnitude range inflates proportionally to √𝑛 for 

C2VA but remains static for WC2VA. Under the random forest classification used in 

these experiments, the magnitude differences are unlikely to affect the results. 
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However, in the interest of good science, it is deemed prudent to keep the CV 

magnitude ranges static. 

Lastly, the scenarios: Red & NIR CTA and 4 Band CTA, were added to explore the effect 

of adding T0 to the spectral CVA scenarios. 

To summarise the form of the experiments, the dependent variable is the 

classification accuracy determined by the error matrix. Urban creep average accuracy 

will be the key measure of success. However, overall accuracy, the average accuracy of 

the other classes, and specific user and producer accuracies will all be assessed. The 

classification accuracy will be modulated against the independent variables: input 

features, direct classification, WC2VA classification and CTA classification. 

7.17 Summary 

This chapter documented the methods applied to the Norwich study area to quantify 

urban creep classification performance of two approaches: direct classification and 

CVA classification. Firstly, the remotely sensed data was outlined describing a multi-

temporal 25cm, four-band imagery with accompanying 2m DSM. It was noted that, 

although the data is of good quality, the 2010 imagery has poorer contrast and DSM 

accuracy when compared to 2006. The data was spatially and radiometrically co-

registered to facilitate meaningful change detection. The radiometric co-registration 

involved a novel PIF identification method, ensuring spatial and radiometric 

distribution of the PIF targets. 

The methods presented contribute to the literature by presenting novel approaches to 

tackle key challenges such as scene illumination, viewing geometry, and object-based 

features. In particular, simplified GIS methods were described to identify hidden 

surfaces and simulate scene illumination from DSM layers. While, the chosen unit of 

analysis describes the theoretical merit of simultaneously reporting features at 

multiple viewing scales. When evolving this approach, the most commonly used 

segmentation algorithm MRS, proved inadequate at smaller scales. Therefore, CEMRS 

was developed to improve the delineation of urban form in VHR imagery. 
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The feature extraction yielded 117 features representing two time periods, three 

cartographic scales, and twenty-five feature themes. The feature themes covered a 

range of image interpretation principles such as tone, texture, pattern and association. 

The features were then subject to an unsupervised feature selection process to reduce 

feature redundancy and facilitate semantic interpretations of the feature sets. 

The urban creep application is used to explore CVA exhaustively. A huge variety of 

inputs were tested to include object-based features describing tone, texture and 

pattern, at three different scales. This complicated CVA application required method 

extensions be developed. In particular, this work follows on from Bovolo et al. (2012) 

to include WC2VA, and the baseline vector aware variant, CTA. 

The experimentation was organised into two groups, Direct classification and CVA 

classification to address the two research questions. Each group was subdivided into 

several classification scenarios exploring different inputs, such as the difference 

features alone, or all available features. Each classification scenario was classified for 

all feature selections, exhaustively identifing the optimum configurations. Lastly, the 

accuracy of each classification was assessed against a site specific, area weighted error 

matrix.
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8 Change detection results 

8.1 Introduction 

This chapter presents the remote sensing change detection experimental results. In 

total, 375 remote sensing change detection classifications were executed to explore 

the relative performance of a direct classification and CVA, when applied to urban 

creep identification. In all, fifteen notable results were recorded. The highlights of 

these results include: 

 The most successful classification mapped urban creep to an accuracy of 

52.15%. 

 In most cases, more than half of urban creep is not identified, and increasing 

classification complexity does not improve identification rates. 

 Urban creep is a special case of change, with properties closer to unchanged 

areas.  

 The identification of other changes is far more accurate. 

 Direct classifications of urban creep significantly outperform equivalent CVA 

classifications. 

 The novel CVA methods defined in this thesis improve overall change detection 

performance when compared to established CVA methods. 

This chapter contributes to the thesis by providing the evidence by which the first two 

research questions will be answered and contextualised within the wider discipline. 

The first question refers to a direct classification as the benchmark, state-of-the-art, 

method, and whether or not it can satisfy the demands of this challenging application. 

Therefore, this chapter presents results to show the most successful direct 

classifications, the contributing factors to that success, the nature of errors and the 

sources of those errors. The second question asks if classical differencing methods, 

specifically CVA, are applicable in complex urban change detection? Thus, this chapter 

will present comparative results to the direct classifications and highlight the extent of 

their differences. 
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This chapter presents the results in five sections detailing the unsupervised feature 

selection, classification results, best case classification and the relationship between 

urban creep and CVA. Lastly, the results are collated and summarised. 

8.2 Unsupervised feature selection 

This section presents the results of the unsupervised feature selection. Specifically, 

the results highlight the classification features which are most representative of the 

entire dataset. Selecting the most representative features will reduce the redundancy 

in the classification models and simplify feature set interpretation. 

In total, 117 classification features were considered, aiming to reduce these to their 

fundamental components. The full 117 features contain 42 baseline (T0) features, 42 

difference (ΔT0 to T1) features, and 33 shared (T0 and T1) features. All features are 

available to participate in the direct classifications, whereas shared features are not 

available to CVA change detection. In light of this, two separate feature selections are 

presented, one including all features and one containing the differences only. 

The raw, tabular feature selection results are cumbersome and difficult to interpret. 

They take the form of n x n tables. For example, for the single, most representative 

feature, one feature is returned. For the two most representative features, two 

features are returned, and so on. Clearly, directly displaying and interpreting the 

selection from 117 features is not an informative approach. For reference, the first 

fifteen feature selections from all 117 features, and the 42 difference features are 

retained in Table A-4 and Table A-5 of the Appendix. Incidentally, the baseline, 

moderate scale object mean blue value, T0 L2 Blue, is the single most representative 

feature of all features. The moderate scale texture difference, Δ L2 GLCM Mean, best 

represents all of the available difference features. 

The results are organised into semantic groups and plotted as relative gains with 

which to compare against other semantic groups. All features were assigned semantic 

labels describing the analysis scale, image interpretation principle, and source state. 

For each feature selection, the proportional gain of a particular semantic group is 

plotted to show its contribution to the selected feature set. Positive gains mean that 

more features are selected from a semantic group than a proportional allocation. In 
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other words, the semantic group is over-represented in the selection. Negative gains 

mean that fewer features are selected from a semantic group than a proportional 

allocation. In other words, negative gains mean that a semantic group is under-

represented in the selection. When all features are selected, all semantic groups have 

a neutral gain because the selection is forced into proportionality. 

8.2.1 All features 

The relative importance of analysis scale varies as increasing numbers of features are 

drawn. Figure 38 shows the analysis scale selection gain for all of the feature selection 

scenarios. Initially, with one feature selected, as expected a moderate-scale feature is 

most representative. Then from 2 to 4 features, large-scale features are over-

represented in the selection, indicating that a combination of large-scale features best 

describes the fundamental elements of the data. From 4 to 14 features, large-scale 

suddenly becomes under-represented, replaced by small-scale features, while 

moderate-scale feature allocation remains approximately neutral. From 14 to 88 

features moderate-scale features become over-represented in the selection, with 

large-scale remaining roughly neutral, while small-scale features are under-

represented. This pattern indicates that there could be redundancy between small 

and moderate scales, with small-scale ‘context’ being selected when moderate and 

large-scale features are exhausted. Finally, from 88 to 117 features, the selections 

tend towards neutrality. This last selection pattern indicates new features are added 

by default, not because they contain unique information. 

Figure 39 shows the proportional gain, of the nine image interpretation principles, for 

all feature selection scenarios. Generally, from 1 to 20 features, tonal features are the 

most over-represented, indicating that initially, tonal features hold the most 

information. However, from 25 to 94 features, image tone is under-represented. 

Below 20 features, texture, has a noisy, under-represented response before settling at 

marginal under-representation. This trend for under-representation indicates 

redundancy within the texture measures. Size features are largely over-represented in 

the selections. Aside from a positive anomaly from 4 to 9 features, pattern features 

are, in general, under-represented until neutrality is achieved from 47 features. From 

8 to 40 features, shadow is over-represented before reaching neutrality. 
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Figure 40 shows the proportional gain, of the three source states, for all feature 

selection scenarios. The source state displays only subtle anomalies. In general, up to 

20 features, the response is noisy and difficult to interpret. From approximately 20 

features, the shared T0 and T1 features are marginally over-represented, largely at the 

expense of the T0 features. 

 

Figure 38: Feature selection by analysis scale. The selection is made on all available features. 
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Figure 39: Feature selection by image interpretation principle. The selection is made on all available features. 

 

Figure 40: Feature selection by comparable state. The selection is made on all available features. 
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with large and small-scale under-represented. From 5 to 30 features, moderate-scale 

remains significantly over-represented, while small-scale features are significantly 

under-represented. On the other hand, the proportion of large-scale features 

increases in the 5 to 30 range. After 30 features, the selection is approximately 

proportional indicating reduced data uniqueness. 

Figure 42 shows proportional gains, of the six interpretation principles, for all 

difference feature selection scenarios. Initially, texture dominates the difference 

feature selection, before oscillating between positive and negative gains, and tending 

towards under-representation from 20 features. Interestingly, height features are 

strongly over-represented from 2 to 6 features, before tending towards 

proportionality. Strikingly, tone remains strongly under-represented up until 5 

features, before showing broad swings between positive and negative gain. 

 

Figure 41: Difference feature selection by analysis scale. 
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Figure 42: Difference feature selection by image interpretation principle.  
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8.3 Classification results 

This section presents the change detection results, benchmarked against the 

reference data. The results are presented in three broad categories, overall map 

accuracy, urban creep accuracy, and a comparison between urban creep and the 

thematic classes: other change and no change. The overall map and urban creep 

accuracy sections highlight the most successful approaches and how CVA performs 

against a direct classification. The thematic comparison highlights the key differences 

in classification behaviour among the thematic classes. 

8.3.1 Overall map accuracy 

The overall map accuracy of all 375 classifications is plotted in Figure 43. Plotted lines 

depict the accuracy achieved by varying numbers of features, seeded by the 

unsupervised feature selection. Each line represents the results from of a particular 

classification, applied to a specific pool of data. Note, that the direct classification of 

all features has a feature pool of 117, compared to 41 difference features. The plotted 

points show the performance of selected CVA scenarios, such as a simple Red & NIR 

WC2VA. We can see that there is a general trend of increasing classification accuracy 

with the number of features. This 0bservation is particularly pertinent with the 

classification scenario direct classification, all features, which increases rapidly from 

one to eight features before plateauing. Most of the classification scenarios plateau at 

approximately eight input features, but gradual improvement is seen beyond eight 

features. For example, the highest overall map accuracy is seen with 99 features 

(direct classification, all features). We can also see that the spectral CVA scenarios, 

plotted as points, achieve some of the lowest accuracies. 
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Figure 43: Overall map accuracy.
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The maximum overall map accuracy achieved in each of the twelve classification 

scenarios is summarised in Table 21. The twelve classification scenarios give maximum 

overall map accuracies ranging from 88.26% (Direct classification, all features), shown 

in Figure 44, down to 51.78% (Red & NIR WC2VA magnitude), shown in Figure 45. The 

two classification groups: Direct classification and CVA classification also show two 

distinct groups in the results. All of the direct classifications outperform the CVA 

classifications, while there is only a small difference between the different direct 

classification scenarios. Conversely, the CVA classifications are the lowest performers 

and exhibit a large range of different accuracies within the group. Of the CVA results 

there are three notable features: 

1. The simple, spectral approaches gave the four lowest accuracies, with spectral 

magnitude performing very poorly, giving results as low as 51.78% 

2. The use of feature selected object-based features improves CVA performance 

compared to spectral approaches. 

3. CTA (shown in Figure 46) shows a marked improvement over WC2VA in all 

cases. For example, there is a gain of nearly 8% between the 4 band WC2VA 

and the 4 band CTA. Furthermore, CTA seeded with object-based features 

shows a maximum accuracy of 82.29%, which is a very marked improvement 

over the simple spectral approaches.
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Table 21: Overall map accuracy. 

Classification 
group 

Classification scenario 

Maximum overall map 
accuracy 

Accuracy 
Number of 

features 

D
ir

ec
t 

cl
as

si
fi

ca
ti

o
n

 

Direct classification, all 
features 

88.26% 99 

Direct classification, T0 & 
Δ features 

88.03% 33 

Direct classification, Δ 
features 

86.27% 35 

C
V

A
 c

la
ss

if
ic

at
io

n
 

CTA 82.29% 39 

WC2VA magnitude & 
direction 

78.55% 35 

4 Band CTA 73.56% 4 

WC2VA magnitude 71.08% 35 

Red & NIR CTA 70.46% 2 

4 Band WC2VA magnitude 
& direction 

65.75% 4 

Red & NIR WC2VA 
magnitude & direction 

63.09% 2 

4 Band WC2VA magnitude 56.11% 4 

Red & NIR WC2VA 
magnitude 

51.78% 2 
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Figure 44: Norwich change map. Based on the direct classification of 99 features. 
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Figure 45: Norwich change map. Based on the CVA classification of Red & NIR WC2VA. 
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Figure 46: Norwich change map. Based on the CTA classification of 39 features 

 

8.3.2 Urban creep accuracy 

When all results are considered, 52.15% is the highest urban creep average accuracy 

achieved. Figure 47 plots urban creep average accuracies for all classifications 

conducted. Table 22 ranks and summarises the maximum accuracy, for each 

classification scenario. We can see that the most successful classification, at 52.15%, is 

achieved with a direct classification of 62 features, selected from all available features. 

The least successful classification, at 18.46%, was achieved using the WC2VA 

magnitude of the red and NIR and bands.  
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Table 22: Urban creep classification results summary. 

Classification 
group 

Classification scenario 
Maximum urban 

creep average 
accuracy 

Number 
of 

features 

Direct 
classification 

Direct classification, all features 52.15% 62 

Direct classification, T0 & Δ features 49.12% 11 

Direct classification, Δ features 39.92% 41 

CVA 
classification 

CTA 34.07% 2 

WC2VA magnitude & direction 29.47% 1 

WC2VA magnitude 29.28% 1 

Red & NIR WC2VA magnitude & 
direction 

28.09% 2 

4 Band WC2VA magnitude & direction 26.47% 4 

4 Band CTA 25.89% 4 

Red & NIR CTA 24.91% 2 

4 Band WC2VA magnitude 20.49% 4 

Red & NIR WC2VA magnitude 18.46% 2 
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Figure 47: Urban creep average accuracy comparison. 
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There is a clear divide between the performance of the direct classifications and the 

performance of the CVA classifications. The direct classifications account for the top 

three most accurate results (Table 22), outperforming all of the CVA classifications. 

Similarly, if we consider the two scenario pairs, ‘Direct classification Δ features’ and 

‘CVA magnitude & direction’, and ‘Direct classification T0 & Δ features’ and ‘CTA, we 

can see that the direct classification always outperforms the CVA variant, for all 

feature inputs. Beyond four input features, this difference is typically 10% to 15%. 

Furthermore, there is almost 34% standing between the most successful direct 

classification and the Red & NIR WC2VA classification. Furthermore, Figure 47 shows 

that in general, direct classification accuracy increases with the number of features. 

Although, the direct classification of all features, displays a pronounced plateau at 13 

features. On the other hand, the CVA classifications display a general decline in 

accuracy as the number of features increases. 

The results show that the baseline state, T0, improves urban creep classification 

accuracy. In other words combining T0 and the Δ features significantly improves urban 

creep classification accuracy, when compared to the Δ features alone. For instance, 

Figure 47 shows that including T0 in a direct classification boosts accuracy by as much 

as 15%. While adding T0  to the best direct difference classification boosts accuracy by 

nearly 10% (Table 22). We can also see that CTA, integrating T0, consistently 

outperforms a WC2VA magnitude and direction, albeit with a more moderate gain. 

The best case CTA classification accuracy is 4.6% higher than the best case WC2VA 

magnitude and direction classification. There are two notable exceptions. The Red & 

NIR, and 4 Band CTA classifications are marginally less accurate than the comparable 

WC2VA classifications. These results show that feature differences do not 

comprehensively characterise urban creep while the initial conditions are clearly an 

important part of the description. 

The novel CVA methods conceived and implemented in this thesis generally achieve 

higher urban creep classification accuracy when compared to spectral CVA. Table 22 

shows WC2VA and CTA seeded with the unsupervised selection of object-based 

features outperform the spectral WC2VA variants. Furthermore, Figure 47 shows that 

the CTA, largely outperforms WC2VA, except in the case of the simple spectral inputs 
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were WC2VA shows a marginal gain. This selection of results shows that a variety of 

object-based features generally improves urban creep characterisation over spectral 

measures. 

The results show that in general, gains in urban creep accuracy are made by false 

positive reduction only. In other words, for a given selection of urban creep 

candidates, there is the capacity to reduce classification false alarms, but there is 

limited scope to identify new, previously omitted candidates. Observing Figure 48, we 

can see that for all cases, the producer accuracy response under varying numbers of 

features and classification scenarios remains generally flat; fixed close to 40%. With 

the exception of the Red & NIR WC2VA at 50.91%, producer accuracy peaks at 

approximately 46%. These producer accuracy results tell us two things: 1) Over half of 

urban creep is missed from the classification, 2) The missed instances of urban creep 

remain elusive, no matter how sophisticated the classification. Interestingly, the 

simple, spectral CVA classifications tend to produce a more inclusive classification, 

with higher producer accuracy, but more false positives. 

User accuracy results show that in general, direct classifications have the capacity to 

reduce urban creep false positives, while CVA classifications do not. Figure 49 shows 

that in general, direct classification urban creep user accuracy increases as more 

features participate in the classification. Therefore, urban creep false positives are 

reduced as the classification becomes more complex. This effect is particularly strong 

for the direct classification of all features, which improves rapidly up to thirteen 

features, before plateauing (Figure 49). On the other hand, the CVA classifications 

behave differently; with a general decline in user accuracy as more features are 

considered. Furthermore, we can also observe extremely low user accuracies for the 

CVA classifications, especially for the simple spectral scenarios. The end user of these 

CVA classifications would, of course, be overwhelmed by false positives, making them 

all but unusable. Notably, this situation is improved by applying CTA, which in some 

cases outperforms a direct classification. 
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Figure 48: Urban creep producer accuracy comparison. 
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Figure 49: Urban creep user accuracy comparison.
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8.3.3 Other change and no change comparison 

Overall map accuracy and other change identification performance far exceeds that 

observed with urban creep. The accuracies of other change and no change are 

considerably higher than the low to moderate urban creep classification accuracies 

observed. Figure 50 illustrates, that with a direct classification and 99 input features, 

the general pattern of other change and no change is well represented. Figure 51 plots 

other change and no change average accuracy for all classification scenarios, while 

Table 23 summarises the maximum accuracies for each scenario. The maximum 

average accuracies obtained for no change, and other change, were 92.89%, and 

73.17% respectively, both achieved with a direct classification. Clearly, these are far 

higher than the most successful urban creep classification average accuracy of 52.15% 

(Table 22). Comparing urban creep average accuracy response under varying input 

features (Figure 47), with the response from the other map classes (Figure 51), we see 

that other change accuracy is approximately 25% higher than urban creep. We can 

also see that the Δ feature direct classification performance is much improved when 

compared to the urban creep performance. In other words, other change is better 

represented by feature differences than urban creep. CTA performance is also much 

improved. CTA other change average accuracy is typically ~30% higher than equivalent 

urban creep accuracies. Furthermore, other change average accuracies obtained with 

CTA are typically within 5% to 10% of the comparable direct classifications.   
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Table 23: Other change and no change summary. 

Classification 
group 

Classification scenario 

Maximum no change 
average accuracy 

Maximum other 
change average 

accuracy 

Accuracy 
Number of 

features 
Accuracy 

Number of 
features 

D
ir

ec
t 

cl
as

si
fi

ca
ti

o
n

 

Direct classification, all 
features 

92.89% 99 73.17% 90 

Direct classification, T0 & 
Δ features 

92.64% 33 73.45% 33 

Direct classification, Δ 
features 

91.96% 36 70.07% 32 

C
V

A
 c

la
ss

if
ic

at
io

n
 

CTA 89.50% 36 67.57% 36 

WC2VA magnitude & 
direction 

88.96% 35 56.36% 35 

4 Band CTA 84.73% 4 48.90% 4 

WC2VA magnitude 84.48% 32 48.89% 33 

Red & NIR CTA 82.68% 2 46.29% 2 

4 Band WC2VA magnitude 
& direction 

80.54% 4 39.26% 4 

Red & NIR WC2VA 
magnitude & direction 

79.29% 2 34.99% 2 

4 Band WC2VA magnitude 74.51% 4 30.51% 4 

Red & NIR WC2VA 
magnitude 

71.99% 2 28.13% 2 

 



Chapter 8 – Change detection results 

162 
 

 

Figure 50: Change classification example. Based on the direct classification of 99 features. Panel A shows the 2006 
imagery. Panel B shows the 2010 imagery. Panel C shows the reference data overlaid over the 2006 imagery. Panel 
D shows the remote sensing classification overlaid over the 2010 imagery. 

The results show that the classes other change and no change show a stronger CVA 

response to additional classification features than urban creep. For instance, urban 

creep direct classification user accuracy tends to increase as the number of input 

features increase; while CVA classification accuracy marginally decreases (Figure 47). 

Conversely, Figure 51 shows a trend where other change, classification accuracy 

increases with more classification features in all cases. CTA, in particular, shows a 

marked improvement in performance when compared to urban creep. 
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A marked difference in the producer accuracy response between the two change 

classes was observed. Recalling the results from section 8.3.2, urban creep producer 

accuracy remains relatively stable (Figure 48). Conversely, Figure 52 shows that in 

general, other change producer accuracy increases when more features are added. 

WC2VA magnitude, and magnitude and direction are the exception to this trend. This 

broad trend in producer accuracy increase indicates that other change omission can 

be reduced with increasingly complex feature sets. 

The novel CVA methods defined in this thesis considerably improve other change 

classification performance compared to simple spectral CVA methods. For instance, 

considering the four simple spectral CVA classifications in Figure 51, namely the Red & 

NIR, and 4 band, WC2VA classifications, located in the lower left of the plot. We can 

see that they are the poorest performing CVA classifications. In other words, the 

simple spectral CVA variants are all outperformed by CTA, and object-based feature 

seeded WC2VA and CTA. 
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Figure 51: Other change and no change average accuracy comparison. 
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Figure 52: Other change and no change producer accuracy comparison. 
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Figure 53: Other change and no change user accuracy comparison.

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128

A
cc

u
ra

cy

Number of features

Other change and No change, user accuracy

Other change, Direct classification, all features

Other change, Direct classification, Δ features

Other change, Direct classification, T0 & Δ features

Other change, WC²VA magnitude

Other change, WC²VA magnitude & direction

Other change, CTA

Other change, Red & NIR WC²VA magnitude

Other change, Red & NIR WC²VA magnitude & direction

Other change, Red & NIR CTA

Other change, 4 Band WC²VA magnitude

Other change, 4 Band WC²VA magnitude & direction

Other change, 4 Band CTA

No change, Direct classification, all features

No change, Direct classification, Δ features

No change, Direct classification, T0 & Δ features

No change, WC²VA magnitude

No change, WC²VA magnitude & direction

No change, CTA

No change, Red & NIR WC²VA magnitude

No change, Red & NIR WC²VA magnitude & direction

No change, Red & NIR CTA

No change, 4 Band WC²VA magnitude

No change, 4 Band WC²VA magnitude & direction

No change, 4 Band CTA



Chapter 8 – Change detection results 

167 
 

8.4 Best case classification 

This section explores the results of the most successful urban creep classification and 

identifies the main sources of confusion, and the most important aspects of the 

classification. The most successful classification was the direct classification of 62 

features, from all available features, achieving an urban creep average accuracy of 

52.15%. Table 24 contains the error matrix for this classification.Overall, we can see a 

hierarchy of accuracy. No change obtains a high accuracy of 92.33%, other change is 

moderate at 71.66%, while urban creep accuracy is low at 52.15%. There is also a 

marked difference in urban creep producer and user accuracies, signifying more errors 

of omission, than errors of commission. There is widespread confusion between urban 

creep and no change. Approximately 40% of the urban creep reference data is 

incorrectly classified as no change, while around 15% is incorrectly classified as other 

change. On the other hand, approximately 34% of the classified urban creep, is, in 

fact, no change, while approximately 6% is other change. There is also significant 

confusion between other change and no change. Approximately 26% of the other 

change reference data is incorrectly classified as no change, while around 0.4% is 

incorrectly classified as urban creep. On the other hand, approximately 29% of the 

classified other change, is, in fact, no change, while approximately 1% is urban creep. 

Figure 54 shows an example where the urban creep classifications has performed well. 

Figure 55 shows an example where the instance of urban creep is well classified, but 

there are other change false positives. Figure 56 illustrates an example where urban 

creep and other change are confused with no change.  
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Table 24: The error matrix of the most successful classification. The most successful classification is a direct 
classification of 62 features, from all available features. Matrix quantities are recorded as study area proportions. 

  Reference 

  No 
Change 

Other 
change 

Urban 
creep 

Total 

C
la

ss
if

ic
at

io
n

 

No Change 0.7260 0.0507 0.0075 0.7841 

Other 
change 

0.0577 0.1414 0.0028 0.2020 

Urban 
creep 

0.0048 0.0008 0.0083 0.0139 

Total 0.7885 0.1929 0.0186 1.0000 

      

 Producers 
accuracy 

92.07% 73.31% 44.66%  

 Users 
accuracy 

92.59% 70.01% 59.64%  

 Average 
accuracy 

92.33% 71.66% 52.15%  

      

 Overall 
accuracy 

87.57%    

 

Figure 58 shows the random forest classification importance for all features 

individually and aggregated semantically into image interpretation principle, analysis 

scale, and source state. The random forest classification importance describes the 

proportion of decisions in the tree that are made using a particular feature. In other 

words, it shows how often a feature is used as a discriminator in the decision tree, and 

therefore how important it is to the overall classification. The moderate scale, green 

image difference, Δ L2 Green, is deemed the most important feature. Interestingly, 

object-based measures of spatial pattern are the second and fifth most important 

features. Small and moderate-scale texture measures are third and fourth most 

important respectively. Interestingly, of the texture measures selected, the simple, 

and computationally lightweight standard deviation measures, are generally more 

important than the complex, and computationally intensive GLCM measures. 

Tone, texture, shape and pattern are by far the most important image interpretation 

principles. Tone and texture are deemed the most important, with almost identical 
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values of 0.257 and 0.255 respectively (Figure 19). Multi-temporal segmentation 

shape was shown to be the third most important, while interestingly, the object-based 

measures of spatial pattern are the fourth most discriminate features. The remainder 

of the interpretation principles, height, size, view angle, association, and shadow all 

have relatively low importance of 0.019 to 0.041. Disappointingly, the 3D modelled 

measures of view angle and shadow are not shown to be hugely important, but do 

contribute to the overall classification result. 

Moderate-scale features such as Δ L2 Green and Δ L2 GLCM Entropy, are 

overwhelmingly the most important to the classification. Moderate-scale features sum 

to an importance of 0.605, compared to 0.247 and 0.148 for small and large-scale 

features respectively. For the source state, feature differences are the most 

important, at 0.423. However, T0 and the shared features, T0 & T1, still maintain 

relatively high importance at 0.312 and 0.265 respectively. This last result indicates 

that, in this instance, feature difference alone does not comprehensively discriminate 

change.  
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Figure 54: Urban creep classification example. Based on the direct classification of 62 features. Panel A shows the 
2006 imagery. Panel B shows the 2010 imagery. Panel C shows the reference data overlaid over the 2006 imagery. 
Panel D shows the remote sensing classification overlaid over the 2010 imagery. 
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Figure 55: Urban creep classification example. Based on the direct classification of 62 features. Panel A shows the 
2006 imagery. Panel B shows the 2010 imagery. Panel C shows the reference data overlaid over the 2006 imagery. 
Panel D shows the remote sensing classification overlaid over the 2010 imagery. 
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Figure 56: Urban creep classification example. Based on the direct classification of 62 features. Panel A shows the 
2006 imagery. Panel B shows the 2010 imagery. Panel C shows the reference data overlaid over the 2006 imagery. 
Panel D shows the remote sensing classification overlaid over the 2010 imagery. 
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Figure 57: Urban creep classification example discovered from the classification. Based on the direct classification of 
62 features. Panel A shows the 2006 imagery. Panel B shows the 2010 imagery. Panel C and D show the remote 
sensing classification overlaid over the 2006 and 2010 imagery respectively. 
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Figure 58: Classification feature importance and semantic summary. The left-hand panel displays the ranked 
random forest classification importance, by feature. The panels on the right-hand side show summaries of the 
features semantic content to include, image interpretation principle, scale and source data state. Semantic 
summaries plots display the feature importance sum of all the features within a particular semantic group.  
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8.5 Urban creep and CVA 

This section presents results illustrating the relationship between urban creep and 

image differences, or change vectors. Firstly, the magnitude response of a range of 

different CVA scenarios is compared against the reference data to establish if high 

change magnitude is a defining characteristic. Secondly, change vector direction and 

magnitude are assessed qualitatively to evaluate urban creep discrimination. Six CVA 

scenarios were chosen for this evaluation. Namely: the two most successful CVA 

feature selections concerning urban creep accuracy (1 and 2 features), the two most 

successful CVA feature selections concerning overall accuracy map accuracy (39 and 

35 features), and the two spectral CVA inputs (Red & NIR, and 4 band). 

8.5.1 CVA magnitude 

The results indicate that the CVA magnitude response of urban creep has more in 

common with unchanged areas than different types of change. Figure 59 plots CVA 

magnitude histograms for six different input combinations. The histograms are 

prepared by class, and supplemented by a correlation matrix, reporting the Pearson’s 

r score between each histogram pair. Therefore, values of 1 indicate identical 

histograms and 0, uncorrelated histograms. Visually, we can see that the other change 

histograms appear distinct from urban creep and no change. The distinction is 

especially present in the 35 and 39 feature histograms. For the Red & NIR, and 4 band 

magnitudes, urban creep and other change are very similar to one another, with 

Pearson’s r scores of 0.93 and 0.92 respectively. However, urban creep remains very 

similar to no change, with a Pearson’s r score of 0.92 in both cases. Crucially, the 

remainder of the correlation matrixes show urban creep has a higher correlation to no 

change than other change. Urban creep to no change correlation is 0.92 or above in all 

cases, whereas other change to no change correlation ranges from 0.48 to 0.79. 

Interestingly, the 35 & 39 feature cases, and to a less extent, 1 & 2 feature magnitudes 

display bimodal distributions, with the second mode appearing at approximately 4 to 

5 standard deviations.  
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Figure 59: WC2VA magnitude histogram comparison by class. No change, other change and urban creep histograms 
are plotted in green, blue and red respectively. A correlation matrix accompanies each set of histograms, showing 
Pearson’s r correlation scores for all histogram pairs. The upper left panel displays the Red & NIR CVA magnitude 
histograms; the upper right, 4 band; middle left, 35 feature; middle right, 39 feature; lower left, 1 feature; and 
lower right, 2 features.  
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8.5.2 CTA magnitude and direction 

This sub-section briefly explores vector magnitude and direction as a unique indicator 

of urban creep. A full CTA analysis considers baseline and change vector magnitude 

and direction. Plotting these vectors on polar plots reveals any underlying trends and 

anomalies. Specifically, we are looking for anomalies unique to urban creep which, 

may not be confused with other change or no change. Here, three representative CTA 

configurations are described, namely Red & NIR, Four bands, and 39 features.  

A qualitative assessment of the Red & NIR and Four band configurations yields limited 

unique anomalies describing urban creep. Figure 60 and Figure 61 show the T0 and CV 

polar plots for the Red & NIR, and Four band configurations. All of the CV plots show 

the background, stable image transitions as heavy clustering at low magnitudes, with 

image changes occurring at greater magnitudes, further out from the centre of the 

polar plot. For both Red & NIR and Four band configurations, there is a broad cluster 

in the urban creep change vector plots around 30°, extending from a magnitude of 1.5 

to 4.5. This cluster intensifies in the four band case. Figure 62 shows an example or 

urban creep from this cluster. However, Figure 60 and Figure 61 show that this cluster 

is not unique to urban creep. Specifically, the CV plots for no change and other change 

exhibit similar clusters. Therefore, in this case, there are limited unique anomalies. 

A qualitative assessment of the 39 feature configuration yields a unique anomaly 

linked to a specific type of urban creep. Figure 63 displays the polar plots for the 39 

feature CTA. We can see that there is a strong cluster in the urban creep change 

vector polar plot, centred on approximately 55° and a magnitude of 4.5. Note, that 

this cluster is the second mode of the histogram described in section 8.5.1 (Figure 59, 

middle right). There is partial overlap with a cluster in the other change plot. Figure 64 

shows an example of this cluster. In this case, a large building has been extended using 

very bright roof materials, which in turn results in a very large magnitude. There are 

several similar building extensions present in the reference data, which contribute to 

form this cluster. This particular example of urban creep is a large, strong image 

expression. Therefore, it can exhibit a considerable change magnitude in many of the 

39 features, which in turn compound together effectively. However, this example is 

not typical of the majority of urban creep features, which do not exhibit strong 
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compounded magnitudes. For example, even the very distinct example illustrated in 

Figure 65 does not exhibit extraordinary magnitude and does not fall in unique CTA 

feature space, when compared to the other change plots in Figure 63.  In light of this, 

it can be concluded that the apparently unique CVA clustering observed is a result of a 

very specific change exhibiting extraordinary magnitude. 

The high dimensional CTA analysis more effectively represents multi-scale change. 

Observing the change magnitude and direction patterns in Figure 62, we see a very 

detailed, but noisy result. The level of detail is because the four band CTA utilises 

large-scale spectral features only. Figure 65 shows 39 feature CTA over the same 

location. Consequently, the magnitude and direction are now a combination of 

features from three different scales. In this example, we achieve a robust multi-scale 

visualisation. Detailed change features, such as cars, are clearly expressed, while noise 

and artefacts are significantly reduced. From a user perspective, these CVA results 

appear far clearer than the established spectral techniques.  
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Red and NIR bands 

Change vector, Δ Baseline, T0 

  

 

Figure 60: CTA polar visualisation of the Red and NIR bands. The left hand panel shows polar plots of the change 
vector, separated by reference data class. The right hand panel shows polar plots of the baseline, T0 vector, 
separated by reference data class. The polar plots depict vector angle (degrees) rotated around the Y axis and 
vector magnitude (standard deviations) along the X axis.  
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Four bands (Red, green, blue & NIR) 

Change vector, Δ Baseline, T0 

  

 

Figure 61: CTA polar visualisation of the four spectral bands. The left hand panel shows polar plots of the change 
vector, separated by reference data class. The right hand panel shows polar plots of the baseline, T0 vector, 
separated by reference data class. The polar plots depict vector angle (degrees) rotated around the Y axis and 
vector magnitude (standard deviations) along the X axis.  
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Figure 62: CTA visualisation. The figure shows an example of the CVA anomaly for four bands. Panel A & B show the 
2006 and 2010 imagery respectively. Panel C shows the reference data mapping. Panel D shows the Δ and T0 urban 
creep polar plots. Panel E & F show the T0 and Δ vector magnitude. Panel G & H show the T0 and Δ vector direction  

Δ 

T0 
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39 features 

Change vector, Δ Baseline, T0 

  

 

Figure 63: CTA polar visualisation of 39 features. The left hand panel shows polar plots of the change vector, 
separated by reference data class. The right hand panel shows polar plots of the baseline, T0 vector, separated by 
reference data class. The polar plots depict vector angle (degrees) rotated around the Y axis and vector magnitude 
(standard deviations) along the X axis.  
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Figure 64: CTA visualisation. The figure shows an example of the CVA anomaly observed with 39 features. Panel A & 
B show the 2006 and 2010 imagery respectively. Panel C shows the reference data mapping. Panel D shows the Δ 
and T0 urban creep polar plots. Panel E & F show the T0 and Δ vector magnitude. Panel G & H show the T0 and Δ 
vector direction.   

Δ 

T0 
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Figure 65: CTA visualisation. The figure shows an example of urban creep observed with 39 features. Panel A & B 
show the 2006 and 2010 imagery respectively. Panel C shows the reference data mapping. Panel D shows the Δ and 
T0 urban creep polar plots. Panel E & F show the T0 and Δ vector magnitude. Panel G & H show the T0 and Δ vector 
direction  

Δ 

T0 
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8.6 Summary 

This chapter has presented the results obtained from the remotely sensed change 

detection. The change detection work tested the capability of many different 

classification approaches applied to urban creep identification. 

The change detection results are summarised in Table 25. In all, fifteen specific results 

were obtained although they may be aggregated into broader themes. In particular, 

Results 10 and 11, are important as they state the difficulty involved in urban creep 

classification and the considerable performance difference observed between the 

direct and CVA classifications. Also, Results 22 and 23 provide interesting evidence, 

highlighting that urban creep is not well described by feature differences, showing 

considerable confusion with unchanged areas. In light of this; we can make an 

assessment as to the overall success of remotely sensed urban creep classifications 

and the relative utility of CVA in this application.  These results will be used be used to 

support a discussion presented in Chapter 9. The discussion explores the differences 

between the two main approaches, the types of errors identified and the underlying 

reasons for those errors. 

Table 25: The change detection results summary table. 

ID Description 

Result 9 
In the majority of the unsupervised selections, moderate-scale features 

are over-represented at the expense of small-scale features. 

Result 10 
The most successful direct classification, achieved an average urban 

creep accuracy of 52.15%, utilising 62 features from all available. 

Result 11 
Direct classifications of urban creep considerably outperform 

equivalent CVA classifications. 

Result 12 
The addition of T0 to an urban creep classification significantly boosts 

classification accuracy. 

Result 13 
The CVA methods novel to this thesis, indicate an improvement in 

classification accuracy when compared to spectral CVA techniques. 
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ID Description 

Result 14 

In general, more than half of urban creep is not identified, and 

increasing classification complexity does not improve identification 

rates. 

Result 15 

In general, when increasing the number of input features, direct 

classifications respond by reducing urban creep false positives, while 

CVA classifications increase false positives. 

Result 16 
Observed urban creep accuracies are considerably lower than those of 

other change features. 

Result 17 
In general, other change omission rates do improve as more features 

are considered. 

Result 18 
The majority of the classification errors relate to confusion between 

the change classes and no change, rather than inter-change confusion. 

Result 19 
Tone, texture, shape and pattern are by far the most important 

interpretation principles. 

Result 20 
Height, size, view angle, association, and shadow all have relatively low 

importance, but do contribute to the overall classification result. 

Result 21 
Moderate-scale features are by far the most important to the 

classification followed by small, and large-scale features. 

Result 22 
The CV magnitude response of urban creep is, in most cases, more 

correlated with no change than other change. 

Result 23 

In general, urban creep does not form unique CTA clusters. A separable 

cluster was only achieved for large, distinct features with extraordinary 

magnitude. 
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9 Discussion 

9.1 Introduction 

This chapter discusses the main results obtained in chapters 6 and 8 to assess their 

significance in a wider context. The results are discussed in two broad themes: Urban 

creep estimation and remotely sensed change detection. The first theme discusses the 

level and extent of urban creep identified during the reference data collection. This 

theme continues with an explanations of the results, their implications and the 

success and utility of remote sensing change detection applied to urban creep 

identification. The second theme discusses the result in a remote sensing context, 

generalising the very specific application presented to the wider discipline. This 

chapter contributes to the thesis by comparing the results with other published 

research, offering explanations for their occurrence, and highlighting their 

importance. By doing so, the contribution to knowledge is discussed to include 

implications and recommendations for further research. 

9.2 Purpose 

The purpose of this thesis was to explore urban creep detection using remote sensing 

techniques. This both tests the state-of-the-art and revisits the relevance of traditional 

differencing methods. It was hypothesised that urban creep could not be adequately 

modelled with classical remote sensing techniques such as CVA. By conducting the 

research, it is hoped that the capability of remote sensing to detect and classify large-

scale urban change features will be clarified. Specifically, the thesis sought to find out 

if effective urban creep classification is possible using state-of-the-art techniques, 

represented by a direct classification. As a counterpoint it also seeks to assess the 

relevance of traditional differencing methods, here represented by CVA. A case study 

of detecting urban creep in Norwich between 2006 and 2010 from VHR imagery was 

chosen. To assess the success of the case study, reference data was collected to 

describe the occurrence and rate or urban creep throughout Norwich. The rate of 

urban creep calculated from the reference data is in itself a valuable finding. Therefore 

the secondary purpose of the thesis is to assign social importance to the observed rate 

of urban creep. 
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9.3 Results summary 

To focus the discussion, a subset of the most important results identified in Chapters 6 

and 8 will be carried forward for discussion. Table 26 lists the results selected for 

further discussion. 

Table 26: The subset of the results for discussion. 

ID Description 

Result 2 
Urban creep clustering is visible in New Costessey, close to Dereham 

Road and to a lesser extent, Sprowston. 

Result 5 
An urban creep rate of 24.11 m2/Ha/year was observed, equivalent to 

0.24 % per year. 

Result 6 

The addition of new permeable gravel surfaces was widespread and 

easily confused in VHR imagery as impermeable surface creep. A more 

rigorous, multi-source interpretation yielded urban creep commission 

error rates of 21%. 

Result 7 
The contextual assignment of urban creep was complicated and 

subjective to a certain degree. 

Result 10 
The most successful direct classification, achieved an average urban 

creep accuracy of 52.15%, utilising 62 features from all available. 

Result 13 
The CVA methods novel to this thesis, indicate an improvement in 

classification accuracy when compared to spectral CVA techniques. 

Result 14 

In general, more than half of urban creep is not identified, and 

increasing classification complexity does not improve identification 

rates. 

Result 15 

In general, when increasing the number of input features, direct 

classifications respond by reducing urban creep false positives, while 

CVA classifications increase false positives. 

Result 16 
Observed urban creep accuracies are considerably lower than those of 

other change features. 

Result 18 
The majority of the classification errors relate to confusion between 

the change classes and no change, rather than inter-change confusion. 
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ID Description 

Result 19 
Tone, texture, shape and pattern are by far the most important 

interpretation principles. 

Result 20 
Height, size, view angle, association, and shadow all have relatively low 

importance, but do contribute to the overall classification result. 

Result 21 
Moderate scale features are by far the most important to the 

classification followed by small and large scale features. 

Result 22 
The CVA magnitude response of Urban creep is, in most cases, more 

correlated with No change than Other change. 

Result 23 

In general, urban creep does not form unique CTA clusters. A separable 

cluster was only achieved for large, distinct features with extraordinary 

magnitude. 

 

9.4 Urban creep estimation 

9.4.1 Relation to existing research 

The urban creep rate estimated in this thesis by sampling is broadly consistent with 

those observed in other studies. Table 27 catalogues all known published urban creep 

rates alongside the thesis findings. The published results range from 0.12% per year 

for Newcastle 2002 to 2007 (UKWIR 2010), through to 1.31% per year for suburban 

Newcastle 1996 to 2005 (Newcastle City Council 2008). Mean and median rates, 

inclusive of the thesis result, are 0.46% and 0.29% respectively.  Firstly, it is clear the 

thesis result is in the same order of magnitude as the other estimates. Moreover, it is 

the most recent. The new result from Norwich is considerably lower than the mean 

but very close to the median rate. The two highest rates (from Newcastle and London) 

are outstanding and could be interpreted as outliers. Therefore, the median value may 

be a more appropriate point of comparison. On this basis, we could conclude that the 

thesis rate of urban creep is very similar to the median of the other published results 

and does not show any marked change. In fact, the thesis result is identical to the 

UKWIR average. However, when compared to the previous estimate for Norwich, 
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there is a marked increase from 0.14% to 0.24%. In light of this we can conclude that it 

appears that for Norwich at least, the rate of urban creep has increased considerably. 

Table 27: Urban creep rate comparison. The thesis result is highlighted in red, while, the previous estimate for 
Norwich is highlighted in blue. 

 

9.4.2 Explanation of the results and their importance 

The apparent increase in the rate of urban creep from 1999 - 2006 to 2006 - 2010 

could be broadly explained by overriding economic factors. The concept of linking 

urban creep to social and economic factors is not new. For example, Duckworth (2005) 

suggested possible correlations with paving material sales figures, while UKWIR (2010) 

explored demographic links. Considering the global economic crisis in 2008, overriding 

economic conditions would not appear conducive to increased rates of urban creep at 

Reference Location Time period

Newcastle City 

Council (2008)

Samples from sub-

urban Newcastle, UK
1996 to 2005 1.31%

London Wildlife 

Trust et al. (2011)

Greater London, UK 

(Garden areas only)

1998-99 to 

2006-08
1.12%

Cutting (2003) Oakwood, Derby, UK Build to 2003 0.67%

Leicester, UK 1999 to 2006 0.39%

Maidstone, UK 2003 to 2006 0.34%

Perry & Nawaz 

(2008)
Sub-urban Leeds, UK 1971 to 2004 0.29%

This study Norwich, UK 2006 to 2010 0.24%

UKWIR average
circa 1999 to 

circa 2007
0.24%

Chester, UK 2003 to 2007 0.23%

UKWIR (2010) Norwich, UK 1999 to 2006 0.14%

UKWIR (2010) Newcastle, UK 2002 to 2007 0.12%

Mean 0.46%

Median 0.29%

Urban creep rate 

%/year

UKWIR (2010)

UKWIR (2010)
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this time. In the UK there was a significant drop in GDP growth, from approximately 

1.25% in the third quarter of 2007, to -2.2% in the fourth quarter of 2008, with no 

recovery until the fourth quarter of 2009 (Office for National Statistics 2012). 

Intuitively, we would expect these conditions to equate to a drop in development, and 

consequently a reduction in urban creep. This hypothesis could be compounded by 

the fact that in England, house building fell from approximately 165 000 completions 

in 2006-7 to approximately 115 000 completions in 2010-11 (Department for 

Communities and Local Government 2016). However, reduced housebuilding offers a 

possible explanation for the apparent acceleration of urban creep rate. With house 

building reduced, house moves are also reduced. In this case, householders may be 

more likely to undertake home improvement projects, some of which will add 

impermeable surface. Interestingly, between 2006 and 2010 household expenditure 

remained static (Office for National Statistics 2016), providing some evidence 

supporting this hypothesis. In light of these conflicting pieces of evidence, it can be 

concluded that a possible explanation for the increase in the rate of urban creep was a 

focus on home improvement rather than house moves, prompted by a depressed 

economic outlook. 

Another explanation for the apparent increase in urban creep rate is that there is, in 

fact, no increase, and we are observing the cumulative effect of inaccuracy in the 

estimates. This thesis estimated the rate at 0.24% ±0.065% (95% confidence limits) 

between 2006 and 2010. Assuming the previous estimate from 1999 to 2006 of 0.14% 

(UKWIR 2010) is completely accurate, it is highly unlikely that the apparent increase is 

false. Of course, there will be some element of imprecision and bias in the UKWIR 

result, but accuracy was not published. Assuming both estimates have the same 

accuracy as the thesis result, the 95% confidence limits do overlap. Therefore, it is 

possible that there is, in fact, no difference between the rates. In summary, although it 

is more probable that an increase in urban creep rate was observed, more research is 

recommended to corroborate this finding. 

The newly derived urban creep rate is important as it provides a much-needed 

addition to the literature in support of urban drainage planning and policy. In 2010 

UKWIR (2010) recommended that urban creep be regularly monitored, with rates 
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revised at approximately five yearly intervals. Since then, only one further estimate 

has been published (London Wildlife Trust et al. 2011), although the monitoring period 

concerned (1998-9 and 2006-8) does not advance the chronology of the UKWIR 

research (circa 1999 to circa 2007). Therefore a revision is overdue. The thesis result is 

an important addition to the literature because of existence, timeliness and data 

continuity. Firstly, there is limited urban creep research published, and this work 

expands the quantitative evidence base available by approximately 10% (based on the 

research catalogued in Table 27). Secondly, with a monitoring period of 2006 to 2010, 

the thesis result is the most recent urban creep research published. Lastly, this thesis 

provides continuity with previous urban creep research in Norwich. Hence important 

insight is gained into the changing nature of urban creep. 

The findings will be of importance locally to stakeholders of urban drainage in 

Norwich. Chapter 5 discussed the threat of surface water flooding in Norwich and 

described six areas of concern identified by Norwich County Council and Anglian 

Water. The results of the urban creep sampling presented in Chapter 6 identified 

elevated urban creep activity in one of these areas, Sprowston, to the Northeast of the 

city. However, increased activity was also identified in New Costessey, to the West of 

the city which was not highlighted as an area of concern. Therefore, this finding could 

be used to inform future surface water management planning. The Norfolk strategic 

flood risk assessment (Wilson 2010, p50, 51) voices the desire to limit urban creep to 

mitigate any further flood risk. Similarly, the Norwich surface water management plan 

(Ogilvie et al. 2011, p5) highlights the importance of raising community awareness of 

surface water flood risk and the importance of Sustainable Urban Drainage Systems 

(SUDS). Therefore, the thesis findings could be used to illustrate the scale of the 

problem and harbour public support for more sustainable development and home 

improvement. While it is beyond the scope of this thesis to speculate on the 

implications of accelerated urban creep on local flooding, it is clear the results will 

help to inform decision makers and could raise public awareness towards more 

sustainable development. 

The urban creep sampling methodology developed in this thesis is a valuable 

contribution to the literature, building upon previous works. Ground-breaking studies 
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by Cutting (2003), Duckworth (2005), and Richard Allitt Associates Ltd. (2008) focussed 

on relatively small extents aiming to establish urban creep as a real, measurable 

phenomenon. These works laid the foundations with which other research has 

followed. In particular, Cutting (2003) demonstrated that a field survey referencing 

historical mapping and aerial imagery could identify urban creep. Richard Allitt 

Associates Ltd. (2008) applied sampling to indicate the rate of urban creep across 

wider areas, while Duckworth (2005) showed how aerial imagery alone could be used 

as an effective indicator or urban creep. Subsequently, further work focused on city-

wide estimates. London Wildlife Trust et al. (2011) showed how a large random 

sample of 1292 garden plots was representative of the whole of London. On the other 

hand, UKWIR (2010) used a semi-automatic object-based remote sensing classification 

to quantify urban creep across five entire cities. This thesis builds upon these studies 

by demonstrating an efficient, city-wide approach with quantitative accuracy 

estimates. Specifically, a novel pre-stratification using Ordnance Survey MasterMapTM 

and multi-temporal imagery facilitated the application of a random stratified sample, 

reducing sample sizes while retaining urban creep estimation accuracy. This resulted 

in an accurate estimate of the rate of urban creep for Norwich with only 154 samples. 

Lastly, statistical inference was applied to derive quantitative estimates of urban creep 

accuracy, a first in the literature. In summary, the sampling methodology derived in 

this thesis could be an important asset for researchers seeking updated, city-wide 

urban creep estimates. 

To the Author’s knowledge, this is the first study that rigorously investigates the 

capability of remote sensing change detection to identify urban creep. In previous 

research Allitt & Tewkesbury (2009) demonstrated how a rule-based semi-automatic 

OBIA workflow could be used to assist urban creep identification. This thesis goes 

beyond existing work in three specific areas: 

 Demonstrated a fully automatic, albeit supervised, classification workflow 

 Compared the performance of two broad methodological categories: Direct 

classification and CVA 

 Provide a rigorous accuracy assessment with quantitative results 
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The change detection classification results provided by this thesis will likely prove 

interesting reading to those concerned with urban drainage planning keen to 

understand the changing nature of urban creep. While Chapter 4 discusses the 

importance of urban creep in urban drainage planning and flood prevention, existing 

estimates of creep extent and rate are limited, with new estimates difficult to obtain. 

Given that in the UK at least, rates of urban creep are overdue a revision (UKWIR 

2010), the findings and methods described in this thesis are a timely contribution to 

the literature. Firstly, the results inform relevant stakeholders that fully automatic, 

remotely sensed estimates of urban creep rate and extent with an accuracy exceeding 

the common ‘standard’ of 85% (Foody 2008) is still beyond the current state-of-the-

art. However, with a user accuracy of up to 61%, end users can find valid instances of 

urban creep far more quickly and derive quantitative information regarding the nature 

and extent of the change. To derive meaningful quantitative statistics and effectively 

map urban creep, the automatic classification results would still require considerable 

manual correction. In light of these findings, urban drainage stakeholders would be 

able to make an informed decision when considering remote sensing technology for 

urban creep research. 

9.4.3 Limitations 

The accuracy of the sampled result reported is a combination of bias and precision 

(Atkinson & Foody 2002). Imprecision was observed and quantified as a confidence 

limit by analysing the variance in the sample. The data collection method described in 

Chapter 5 was strictly implemented to minimise bias. However, without multi-

temporal field observations, it is not possible to eliminate bias. Specifically, bias could 

remain in three ways: permeability confusion, data gaps, or contextual confusion. 

Firstly, in a few extreme cases, it could be possible that the interpretation of 

permeability change was incorrect. For instance, permeable gravel could be 

incorrectly labelled as an impermeable hard surface, leading to an overestimate of 

urban creep. Secondly, it is possible that small occluded portions of the image, or 

inaccessible field check sites were misinterpreted. Lastly, since the classification of 

urban creep is subjective to some degree (Evans & Eadon 2007), there may be a 

contextual bias between estimates. In other words, marginal cases could be 
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interpreted as either urban creep or other change depending on the interpreter. As 

with any research, it is all but impossible to eliminate bias, and while it is clear that 

some bias may exist, there is no direct evidence to suggest that significant bias 

remains. 

9.4.4 Implications 

The newly defined urban creep rate for Norwich could be the impetus for further work 

and a review of planning policy. The ‘first wave’ of research estimating urban creep 

(Cutting 2003; Duckworth 2005; Richard Allitt Associates Ltd. 2008; UKWIR 2010) 

shaped current government planning policy (Department for Communities and Local 

Government 2008b) and guided urban drainage system stakeholders to minimise 

flood risk (Ofwat 2011). Chapter 4 of this thesis established the significant urban flood 

risk posed by circa 1999 to circa 2007 rates of urban creep. This thesis provides 

evidence that the rate of urban creep, for Norwich at least, could be accelerating. This 

finding poses two questions: 

1. Is accelerated urban creep evident anywhere else in the UK? 

2. What are the urban flooding implications of accelerated creep? 

To answer the first question would, of course, require further revised estimates across 

the UK. A direct implication of this work is that it provides evidence that a revision of 

urban creep rates called for in previous work (UKWIR 2010) is both overdue and 

urgent. In answer to the second question, an assessment of the significance and flood 

risk implications of an increase are beyond the scope of this thesis. However, existing 

research (Ofwat 2011, p30) does outline measures that could be deployed to mitigate 

urban creep. Specifically, these include: sewer system modification and upgrade, 

stricter enforcement of existing building regulations, and removal of inappropriate 

sewer connections, thereby reversing urban creep. The findings of this thesis alone are 

unlikely to directly influence planning policy, but, they serve to highlight the need for a 

policy review. Specifically, the findings indicate that planning legislation passed in 

2008 (Department for Communities and Local Government 2008b) in order to curb 

urban creep could be ineffectual. 
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9.4.5 Recommendations for further research 

The rate of urban creep estimated in this thesis puts into question the relevance of 

existing rates used to manage urban sewer systems across the UK. Furthermore, the 

findings question the effectiveness of legislation and planning policy in this area. In 

light of these points further work is recommended in three areas: 

1. A wider revision of urban creep rates across the UK should be undertaken to 

corroborate the increase identified in Norwich. The sampling methodology 

presented in this thesis would be an ideal approach to provide quantitative 

statistics with defined error bounds. 

2. These revised rates should then inform research investigating their impact. 

Specifically, this would include hydraulic modelling assessing flood risk and an 

assessment of the level of investment required to mitigate these risks. 

3. Pending a revised, national urban creep impact assessment, government 

planning policy should be revisited. Specifically, the effectiveness of urban 

creep control legislation introduced in 2008 (Department for Communities and 

Local Government 2008b) should be reviewed. 

9.5 Remotely sensed change detection 

9.5.1 Relation to existing research 

Overall change map accuracy obtained in this thesis is broadly consistent with other 

VHR image change detection research published in the literature. The most successful 

classification in this thesis, a direct classification, obtained an overall map accuracy of 

88.26%. Table 28 lists a selection of VHR image change detection overall accuracy 

results reported in the literature. The list is not an exhaustive catalogue and does not 

describe a definitive accuracy ranking. The point being that the literature reports a 

range of accuracies above and below the thesis result, not in contrast to it. For 

example, Bovolo (2009) presented a hugely successful multi-level CVA technique that 

detected a variety of changes in a VHR image pair with an overall accuracy of 98.05%. 

The literature also presents a range of different accuracies as low as approximately 

50% (Tang et al. 2013). By no means are these works less important contributions to 

the literature, in fact, they serve to illustrate the high variability in VHR imagery and 
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the challenge of different applications. For example, Tang et al. (2013) present novel, 

useful and rigorous building change detection research with comprehensive accuracy 

reporting. The lower reported accuracies appear to be the result of false positives 

induced by the challenging imagery and application. There is no evidence that their 

proposed method is deficient. In fact, there is contrary evidence, as the method 

proposed by Tang et al. (2013) was compared against, and outperformed Bovolo's 

(2009) multi-level CVA method topping the list in Table 28. This particular example 

highlights the limitation of benchmarking VHR image change detection against one 

another because of the differing challenges posed by image quality and the nature of 

the application. While the results obtained in this thesis do not push classification 

accuracy boundaries, they do make a contribution by application and method. 

Specifically, presenting a novel and extremely challenging application gives other 

researchers an insight into the methodological design and the expected performance 

of very granular urban change detection systems. 

Table 28: A brief literature survey of VHR change detection overall accuracy. 

Study Overall accuracy 

Bovolo (2009) 98.05% 

Marchesi et al. (2010) 96.69% 

Hao, Shi, Deng, Zhang, et al. (2016) 94.29% 

Bruzzone & Bovolo (2013) 93.91% 

Falco et al. (2013) 89.10% 

Jian et al. (2016) 88.21% to 93.88% 

This study 88.26% 

Tang et al. (2015) 80.80% 

Wu et al. (2016) 76.43% 

Vakalopoulou et al. (2016) 74.40% 

Tang et al. (2013) 49.51% to 52.40% 

 

In contrast to some other published research, this thesis showed a larger difference 

between basic, spectral CVA and a particular state-of-the-art technique under 
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investigation. Given the complexity of many satellite scenes, -it is an intuitive and 

expected result that CVA can be outperformed by more sophisticated methods. For 

example, Tan et al.'s (2016) spectral-spatial method captured urban change with 

accuracies 95.87% and 97.76% compared to CVA at 91.30% and 91.71%. Similarly, Hao 

et al.'s (2016) Super Pixel Active Contour Model outperformed CVA at 93.5% 

compared to 87.2% and Shi et al. (2014) improved forest clearance identification from 

93.38% with CVA to 95.5% with a chi-squared transformation. Moreover, Shah-

Hosseini et al. (2015) improved VHR image change detection to as high as 97.73% 

from a baseline of 86.57%. This selection of studies showed differences between CVA 

and proposed state-of-the-art methods in the range of 2.12% to 11.16%. In contrast, 

this thesis reports a large gulf between the most successful method and standard 

formulations of CVA. For example, a direct classification achieved overall map 

accuracy of up to 88.26% and urban creep average accuracy of up to 52.15%. In stark 

contrast, Red & NIR CV Magnitude yielded equivalent accuracies of 51.78% and 

18.46%, in this case, differences of 36.51% and 33.69%. Considering up to four spectra 

bands and CV magnitude and direction, the gap closes to 22.51% for overall accuracy 

and 24.06% for urban creep. Nonetheless, a large difference remains. An initial 

explanation for this disparity with the literature is that urban creep is not well 

described by spectral differences when compared to many of the change targets 

presented in the literature. For example, VHR image changes identified by Ma et al. 

(2016) were well described by spectral features, and they found no improvement to 

detection rates by adding additional object-based features. However, the class other 

change also shows a high disparity between the direct classification and simple 

spectral CVA of between 45.04% and 33.91%. This is unexpected because, within this 

thesis, other change is more typical of changes reported in the majority of the change 

detection literature such as construction activities and broad land cover changes. This 

slightly confusing result could be explained by scale. Specifically, because the 

reference data and training data reside at a very large cartographic scale, only the 

more sophisticated classifications can reconstruct the change in a similar form as the 

reference data. The disparity with the literature could then be explained by the 

challenge of change detection at the very large-scale undertaken within this thesis 

(1:500, with 25cm imagery). At this scale, these findings indicate that simple spectral 
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CVA accuracy is considerably less than smaller scale results from the literature. 

Furthermore, the very large ‘boost’ in accuracy provided by the direct classification 

indicates the effectiveness of this method in overcoming the challenges of large-scale 

urban change detection. 

9.5.2 Explanation of the results and their importance 

Part of the difficulties of urban creep identification can be explained by analysis scale. 

The results showed a profound difference in accuracy between generally small, urban 

creep features at up to 52.15%, and generally larger other change features at up to 

73.45%. Furthermore, Result 23 highlights that only larger, distinct urban creep 

features exhibit strong, distinguishable change signals. This result corroborates work 

by Weber & Chen (2010) who found a strong correlation between VHR image target 

size and classification accuracy, with larger targets achieving higher accuracies. Also, 

Ma et al. (2016) reported better VHR image urban change detection performance 

when analysing the images with moderate scale segmentations compared to fine scale 

segmentations. While work by Padilla et al. (2015) showed that burnt area was very 

challenging to classify due to its size and rarity. In fact, the respective commission and 

omission errors observed by Padilla et al. (2015) at >40% and >65% respectively, are 

broadly in line with the rates for urban creep presented in this thesis. Difficulties 

identifying small, rare classes were also reported by Dingle Robertson & King (2011). 

The thesis results add further evidence to the literature highlighting the difficulty of 

capturing small, rare change classes. More importantly, it adds evidence against any 

relationship between image resolution and classification accuracy. Atkinson & Foody 

(2002) tentatively suggest, with appropriate caveats, classification accuracy may 

improve as image resolution increases. The result of this thesis rejects any such 

relationship, instead, corroborating with Huiping et al. (2003) that accuracy is class 

dependent. 

Part of the difficulty in urban creep identification will also be down to the difficulty in 

identifying impermeable surfaces from remotely sensed images. As urban creep is an 

addition of impermeable surface, correct identification is highly sensitive to surface 

type. It is commonly reported in the literature that impermeable surface is difficult to 

detect from remotely sensed images, and is prone to confusion with automated image 
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analysis (Weng 2012; Lu et al. 2011; Lu & Weng 2006; Ridd 1995), and manual image 

interpretation (Perry & Nawaz 2008; Duckworth 2005; London Wildlife Trust et al. 

2011). The results of the reference data collection, in particular, the field work confirm 

that this is the case, and in some cases, it was impossible to differentiate surface 

permeability by image colour and texture alone. It is highly likely that urban creep 

identification is more likely to suffer from surface type confusion than larger 

developments because of context. Urban roads and roofs form continuous networks 

which add contextual confidence to individual elements. On the other hand, urban 

creep is often isolated and lacks contextual support. Clearly, surface type confusion 

has contributed to the limited classification accuracy, in accordance with trends 

observed in the literature. However, the effect of scale compounds the confusion by 

removing contextual support in the classification. 

The limitations of the contextual modelling are also a factor in contributing to poor 

urban creep classification accuracy. Urban creep is differentiated from other 

impermeable surface additions such as new housing development by complex 

contextual relationships. The experimentation in this thesis modelled the contextual 

relationships by defining a large variety of object-based features describing image 

colour, texture and structure at three different scales. For direct classifications, in 

general, urban creep classification accuracy improved with the addition of more 

features, with maximum accuracy achieved at 62 features. This shows that the most 

successful classifications were dependent on a large number of criteria. The CVA 

urban creep classifications, by comparison, did not perform as well. Crucially, in 

general, the CVA classifications performed worse with more features. The important 

point is that the simple, compounded feature differences represent urban creep very 

poorly, typically below 30% in accuracy. In other words, feature differences positively 

correlated with urban creep will to some extent be cancelled by uncorrelated or 

negatively correlated features. On the other hand, a direct classification can model 

some of the complicated multi-criteria relationships that better describe the class, 

boosting accuracy by 20-30%. However, no matter how many features are added the 

level of omission errors remain relatively static at approximately 40-45%. In summary, 

the data shows that correct urban creep identification is a complicated combination of 
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a large number of object-based features showing a range of different responses. It is 

not simply a response to unanimous feature difference. 

The classification results showed that the majority of the errors were due to confusion 

between the change classes and no change, rather than inter-change confusion. In 

other words, in most cases, if urban creep was incorrectly classified, it was more likely 

to be labelled as no change, rather than other change, and vice-versa for other 

change. This result is important and interesting because it indicates that the classifier, 

informed by the object-based features, is making meaningful contextual assignments. 

Essentially, we would expect urban creep and other change to be readily confused, 

since both exhibit land cover change. However, the results indicate that in most cases 

the classifier is prohibiting this and so is ‘recognising’ the contextual separation. In a 

further result, it was found that the CV magnitude response of urban creep has more 

in common with no change than other change. In other words, urban creep often 

exhibits low CV values, more akin to no change while other change shows stronger CV 

magnitude. Therefore urban creep often exhibits little or no CV magnitude. Clearly, 

correct classification, as demonstrated by the improved direct classification results, is 

a result of finding patterns in a combination of subtle differences, and the baseline 

state T0. This finding is quite profound because observing changes as discernible 

radiometric differences is a fundamental principle of remote sensing change detection 

(Singh 1989). Furthermore, a large amount of change detection research investigates 

threshold selection (Adar et al. 2014; Wang 2014a; Patra et al. 2011; Sinha & Kumar 

2013) with the specific aim of identifying changes with a large image difference, or CV 

magnitude. This is an important finding as it demonstrates that, in this application, the 

fundamental concept of identifying strong image change is of little use, and instead a 

complicated combination of subtle feature differences and baseline position is 

important. 

Moderate-scale object-based features were an important component of the thesis 

results. Moderate-scale features were over-represented in the unsupervised feature 

selection and highly important in the most successful random forest classification. This 

means that the moderate-scale features were most representative of the scene and 

provided the most discriminatory information. These findings align with the results 
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obtained by Ma et al. (2016), where moderate-scale objects outperformed fine-scale 

objects.  In the scope of this research, this outcome is surprising. Given the focus on 

large-scale change detection and the highly heterogeneous imagery, it is intuitive to 

assume that large-scale features would be best placed to geometrically define the 

change features and adequately describe the scene content. An explanation of these 

outcomes are two-fold. Firstly, the large-scale, L1 image-objects are over-segmented, 

and there is redundancy in the objects. This is expected to some degree as over-

segmentation is a feature of multi-temporal image objects (Ma et al. 2016). Secondly, 

context is important to the classification process. This explanation is interesting 

because the urban creep targets are inherently contextual and would not be identified 

in a simpler classification scheme. 

This thesis contributes to the literature by building upon and extending CVA research. 

Bovolo et al. (2012) introduced a framework for n-dimensional CVA, termed ‘C2VA’ 

designed to extend detection capability by considering multiple spectral bands. This 

thesis builds upon this work in four areas: 

1) C2VA is extended to include weights, denoted as WC2VA. Tian et al. (2013) 

applied weights to CVA to balance out the contributions of image and DSM 

difference. This thesis extends this concept, applying to n-dimensions (WC2VA) 

using the weightings as a mechanism to normalise the outputs under varying 

numbers of features. Although not demonstrated in this thesis, WC2VA can 

also be used to assign varying levels of importance to specific features. 

2) WC2VA is tested against a complex urban change detection application. 

Previous research has hypothesised that CVA (Bovolo & Bruzzone 2007) and 

later C2VA (Bovolo et al. 2012) are methods to identify specific thematic 

changes. This research further tests this hypothesis against urban creep 

identification, concluding that such a specific thematic subdivision was not 

possible. 

3) The thesis application of CVA goes beyond image spectral bands to include a 

range of object-based features. He et al. (2011) demonstrate the use of 

spectral and textural features within CVA, while Bovolo (2009) showed the 

significant benefit of a multi-scale, object-based CVA. This thesis has extended 
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this to combine both of these concepts along with features describing spatial 

pattern, scene illumination and sensor view angle. Furthermore, unsupervised 

feature selection was employed to identify the most representative features, 

while WC2VA was used to normalise CV magnitude under varying numbers of 

input features.  

4) The framework is extended further to include the baseline vector, T0, giving 

CTA. This thesis defines a definitive framework with which to remove CV 

ambiguity previously reported by Johnson & Kasischke (1998) and Tewkesbury 

et al. (2015). 

The novel CVA methods developed in this thesis show small improvements in urban 

creep classification accuracy when compared to simple spectral methods. With one to 

three input features CTA displayed improvements in urban creep accuracy of between 

5.985 and 4.39% when compared to Red & NIR WC2VA, and 4 band WC2VA 

respectively. The main differences in methodology are that CTA is considering T0 

values and a variety of object-based features, as opposed to spectral differences 

alone. In theory, the object-based features should improve classification accuracy 

when compared to the spectral features. This is because the object-based features 

were feature selected, and offer optimum representations of the scene information 

content. However, the urban creep classification results do not support this 

hypothesis. Specifically, the feature selected WC2VA –equivalent to CTA without T0- 

shows no significant accuracy loss or gain when compared to the spectral WC2VA. 

Therefore, these limited results imply that the improvement in accuracy between 

spectral WC2VA and CTA is accounted for by the inclusion of T0 describing the 

‘baseline’ state of the change detection. However, urban creep classification accuracy 

was very limited in all cases, achieving between 18.34% and 34.07%. Therefore, 

although improvements were seen in different formulations of CVA, these results 

demonstrate that the technique is not suitable to detect small, complex urban 

changes from VHR imagery. 

The novel CVA methods developed in this thesis show strong improvements in other 

change classification accuracy when compared to simple spectral CVA methods. When 

comparing Red & NIR WC2VA, and 4 band WC2VA to the feature selected WC2VA 
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respective gains of 7.42% and 10% are observed. This comparison is summarised in 

Table 29. This result shows that the feature selected object-based features are a 

marked improvement when compared to the simple spectral features. This result also 

corroborates Myint et al.'s (2011) view that spectral information has limited use in the 

classification of VHR images. In interpreting the difference between the two, there is a 

shift in scale, with the majority of the selected features at a moderate-scale compared 

to the large-scale spectral features. Furthermore, we can see that DSM and texture 

proved to be more effective discriminators of change compared to the spectral 

features. CTA improved accuracies further, with gains of up to 17.39% when compared 

to spectral WC2VA. This indicates that the addition of T0 produces a similar boost to 

accuracy than substituting spectral inputs for selected object-based features. The 

largest gain was seen when considering high dimensional CTA. When classifying other 

change CTA responded well to increases in the number of features, achieving a 

maximum of 67.57% at 36 features. This result far exceeds any of the other methods, 

with a gain of 32.58% compared to Red and NIR WC2VA. These results, in particular, 

CTA, show promise for future change detection research with marked other change 

accuracy gains compared to spectral WC2VA. This is because the class other change 

encompasses elements typical to change detection research such as new buildings, 

roads and construction sites. Therefore, it is expected that WC2VA and CTA, when 

combined with object-based features, could be beneficial to the wider discipline and 

other change detection applications.  
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Table 29: A comparison between spectral and feature selected C2VA. 

Number of features 2 4 

Spectral features Δ L1 Red, Δ L1 NIR 
Δ L1 Blue, Δ L1 Green, Δ 

L1 Red, Δ L1 NIR 

Feature selected features 
Δ L2 DSM, Δ L2 GLCM 

Mean 

Δ L1 Blue, Δ L2 DSM, Δ L2 

GLCM Mean, Δ L3 

Standard Deviation 

Accuracy shift from 

Spectral to Feature 

selected WC2VA 

+7.42% +10% 

Accuracy shift from 

Spectral WC2VA to 

Spectral CTA 

+11.30% +9.64 

Accuracy shift from 

Spectral WC2VA to 

Feature selected CTA 

+16.50% +17.39% 

 

9.5.3 Limitations 

The accuracy of the results will be limited by the DSM resolution and variable data 

quality. Chapter 4 discussed the importance of an effective isolation between scene 

illumination and view angle effects and granular changes such as urban creep. 

Therefore, in theory, shadow modelling and hidden surface detection are of high 

importance. However, the classification feature importance analysis does not support 

this. Specifically, shadow and view angle features did contribute to the classification 

but were considerably less important than features such as tone, texture and shape. It 

could be that these features are genuinely less important. Though the most likely 

explanation lies in the DSM quality limitations and concerns raised in Chapter 7. 

Firstly, the limited resolution of the DSMs results in modelled layers far coarser than 

the image resolution, limiting the shadow and hidden surface identification to larger 

features only. Secondly, although both DSMs are within an RMSE tolerance of 1.5m, 

the 2010 DSM is of poorer quality than the 2006 DSM. This second point will limit the 
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effectiveness of the modelling. This thesis established innovative methods to mitigate 

the effects of scene illumination and view angle differences in change detection. The 

innovative illumination and view angle modelling methods derived in this thesis have 

contributed towards the most successful classification result. However, the 

improvement is muted by data quality issues. Therefore, there is an opportunity to 

revisit these methods in future research with more accurate DSM data. 

The reference data presented in Chapter 6 highlighted that urban creep is very 

diverse. The diversity is expressed as a range of different land cover transitions and 

contextual settings. For instance, added impermeable surfaces could include concrete, 

tarmac and a variety of different types of block paving. This diversity is further 

compounded by a range of initial land covers including vegetation, bare earth and 

gravel. Furthermore, contexts can range from a commercial unit extension to ‘leafy’ 

residential garden. The reference and training data sampling methodology were 

treated as rigorously as was possible, within the practical limitations of the research, 

and satisfying guidelines presented in the literature (Congalton & Green 2009; 

Stehman 2001). However, the variability experienced during the data collection mean 

that the diversity may not be adequately sampled. The implications are that the 100 

urban creep training samples may not provide sufficient data for the random forest 

classifier. Given the rarity and difficulty of identification, there is no simple solution to 

this problem, but further research could investigate active learning to more efficiently 

capture rare class diversity (Hospedales et al. 2013; Crawford et al. 2013). 

9.5.4 Implications of the research 

The main implication of this research is that it provides further clarification concerning 

the limitations of change detection techniques when applied to urban VHR images. It 

is a long-standing tenet of remote sensing change detection that changes on the 

ground relate to radiometric differences in the imagery, and that important changes 

can be isolated because they exhibit large radiometric differences (Singh 1989; 

Bruzzone & Prieto 2000; Adar et al. 2014; Wang 2014b; Patra et al. 2011; Sinha & 

Kumar 2013). With the increasing uptake of VHR images in change detection research, 

there is what could only be described as a sense of ‘unease’ in relation to this tenet, 

but no clear position. For example, the challenges of VHR image change detection are 
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often discussed (Bruzzone & Bovolo 2013; G. Chen et al. 2012; Listner & Niemeyer 

2011b), there are calls for new methods (Lu et al. 2014) and there is strong support for 

the use of OBIA, instead of pixels for VHR change detection (G. Chen et al. 2012; 

Hussain et al. 2013; Boldt et al. 2012). Bruzzone & Bovolo (2013) stress the importance 

of separating radiometric change into meaningful and noisy components, while Myint 

et al. (2011) voice concern that spectral information has limited use in VHR image 

classification. This research acts to bolster and clarify this theme. The experimental 

results are in direct conflict with the long-standing radiometric differencing tenet. 

Specifically, in the case or urban creep at least, spectral differences alone have almost 

no utility to identify meaningful change. Instead, meaningful change was only 

identified using the complete radiometric change trajectory and a large set of 

contextual measures. Of course, urban creep detection is a highly specialised 

application, and this conclusion is far from universal. In fact, spectral differences do 

represent many VHR changes well (Ma et al. 2016). However, this thesis provides 

strong evidence that for large-scale VHR urban change detection, the correlation 

between real land cover change and spectral differences is very limited. 

The results also serve to clarify the discussion surrounding object-based change 

detection. The object vs. pixel debate centres on the fact that differencing image pixel 

spectral values is unsuitable for VHR imagery because of within class spectral 

variability, while OBIA is a framework to solve this with spatial and contextual 

modelling (G. Chen et al. 2012; Hussain et al. 2013). However, Chapter 3 discussed the 

shortfall between the theoretical potential of OBIA and the reality. Specifically, that 

object spectral differences are still the most prevalent change discriminator. The 

change detection results obtained in this thesis conclude that object spectral 

differences are not an appropriate discriminator for the application of urban creep 

detection. Recalling the review by Tewkesbury et al. (2015), and Chapter 2 of this 

thesis argue, it is argued that the unit of analysis and comparison method should not 

be conflated. Based on the results of this thesis, we could conclude a profound 

contribution. Specifically, that the pixel is not the problem, it is the differencing of 

spectral values under any unit of analysis that is problematic. 
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There is an opportunity for the methods developed in this thesis to be carried forward 

in further research to ratify their effectiveness and ultimately improve the state-of-

the-art. Chiefly among these are the illumination and view angle modelling described 

in Chapter 7. The contribution and improvement of these novel methods were muted 

in this research because of DSM resolution and quality. However, the modelling 

methods have great potential to improve urban change detection result given Lidar 

data or other suitably accurate 3D data. The novel additions to CVA, WC2VA and CTA, 

show much potential and further work is recommended. While the urban creep 

application proved too challenging for this group of techniques, WC2VA and CTA 

showed considerable accuracy gains when compared to simple spectral CVA. These 

new techniques could have good utility in lower-scale land cover change detection 

applications using sensors such as Landsat. Lastly, the thesis proposed an 

advancement to Multi-Resolution Segmentation, namely, Compactness Enforcement 

Multi-Resolution Segmentation (CEMRS) which qualitatively improved the formulation 

of meaningful moderate and small scale objects in urban VHR imagery. There is scope 

to qualitatively evaluate CEMRS in terms of feature representation and classification 

accuracy when compared to established segmentation algorithms. 

9.5.5 Recommendations for future work 

The findings of this thesis highlight the difficulties posed in large-scale VHR image 

change detection. Specifically, that with fine targets, generalisation, scale filtering or 

broad structural similarity measures cannot be applied and that the targets of interest 

bare little relation to observed image spectral differences. While this thesis has gained 

new insight here, questions remain, and support or rejection of the somewhat 

controversial findings is needed. Therefore, the following three research areas are 

recommended to follow on from this thesis: 

 Follow up this research with more large scale VHR change detection. This 

would help to bridge the gap between the resolution of images currently 

available and the scale of change information reported from them. Especially 

brave researchers could even undertake further urban creep research. 

 More research investigating the applicability of spectral differencing in large 

scale urban change detection. As well as clarifying detection capacities this 
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could also help to move the debate in the literature away from ‘pixel vs. 

object’ towards ‘spectral vs. contextual’ to focus future research. 

 Further explore the novel thesis methods. Follow-up research is recommended 

ratifying the effectiveness in other applications of the shadow and view angle 

modelling, WC2VA and CTA and CEMRS. 

9.6 Summary 

This chapter has discussed the main results of the thesis in two broad themes: Urban 

creep estimation and remotely sensed change detection. The first theme discussed 

the level and extent of urban creep identified during the reference data collection, 

explanations of the results and their implications and finally, the success and utility of 

remote sensing change detection applied to urban creep identification. The main 

findings of the urban creep discussion are: 

 There is a likely increase in the rate of urban creep in Norwich from 0.14% per 

year (UKWIR 2010) between 1999 and 2006, to 0.24% per year between 2006 

and 2010 as derived in this thesis. 

 Evidence of a potential increase in the rate of urban creep is very valuable to 

urban drainage stakeholders both locally in Norwich and nationally. This thesis 

could be the impetus for further work and a review of UK planning policy. 

 The apparent increase could be explained by broad economic factors at the 

time of the observation. Specifically, there was a reduction in housebuilding 

paired with static household expenditure which could lead to elevated home 

improvement. 

 The automatically classified urban creep results were not accurate enough to 

derive meaningful quantitative statistics. However, the automatically classified 

results could form the basis of a semi-automatic workflow or the derivation of 

qualitative results. 

Secondly, the results were discussed in a remote sensing context, generalising the very 

specific application presented to the wider discipline. The main findings of the remote 

sensing change detection discussion include: 



Chapter 9 – Discussion 

210 
 

 Overall the change detection was successful with overall accuracies consistent 

with the literature. However, urban creep accuracy was comparably low and 

remains an extremely challenging application beyond the state-of-the-art. 

 There was a very large difference in accuracy between the direct classification 

and the CVA techniques. In fact, in this application, simple spectral CVA 

techniques had almost no utility, returning overall accuracy as low as 51.78% 

and urban creep accuracy as low as 18.46%. 

 This thesis provides strong evidence that for large-scale VHR urban change 

detection, the relationship between real land cover change and spectral 

differences are very limited. This helps to clarify the position of current change 

detection techniques when applied to VHR imagery. It also helps to clarify the 

debate regarding object-based change detection, moving on from ‘pixel vs. 

object’ towards ‘spectral vs. contextual’. 

 The novel methods proposed in this thesis are promising additions to the 

literature and would warrant further research. These include CVA formulations 

WC2VA and CTA, the illumination and view angle modelling and the urban 

segmentation improvement CEMRS.
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10 Conclusion 

10.1 Introduction 

The thesis has explored urban creep detection using remote sensing to test the state-

of-the-art, and review the relevance of CVA for large-scale urban change detection. 

The research has focused exclusively on bi-temporal optical VHR change detection. 

Therefore, concepts such as multi-temporal data analysis, sub-pixel mapping or active 

sensors to include synthetic aperture radar, or Lidar have not been investigated. The 

literature review was split into three chapters, describing remote sensing change 

detection techniques, the challenges to change detection and the importance of urban 

creep in terms of social impacts and as a challenge to change detection techniques. 

The methods and their results were addressed in two phases. Firstly, the Norwich case 

study was introduced, and a baseline reference data set was established using 

statistical sampling techniques to quantify the extent of urban creep. Secondly, the 

remote sensing data was classified using an exhaustive set of experiments exploring 

the capability of a direct classification, and a classification of CVA features. The 

purpose of these classifications was two-fold. Firstly, the direct classification 

represented the state-of-the-art and sought to identify if meaningful urban creep 

classification was possible. Secondly, the CVA classification represented differencing 

methods and sought to investigate the relevance of such techniques in this 

application, and large-scale urban VHR change detection in general. 

The experimentation yielded many interesting results, and of these five main findings 

emerged from the discussion in Chapter 9: 

 While the change detection was successful, and broadly comparable with 

results published in the literature urban creep accuracy was comparatively low, 

and the application remains a challenge to the state-of-the-art. 

 There was a large drop in accuracy observed between the direct, and CVA 

classifications. In fact, simple spectral CVA techniques had almost no utility 

returning urban creep accuracy as low as 18.46%. 
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 The results do not conform to the principle tenet of remote sensing change 

detection that changes on the ground relate to strong spectral or feature 

differences. 

 The methods WC2VA and CTA, developed in Chapter 7, appreciably increased 

classification accuracy when compared to simple spectral CVA. 

 The reference data indicates a probable increase in the rate or urban creep in 

Norwich from 0.14% per year (UKWIR 2010) between 1999 and 2006, to 0.24% 

per year between 2006 and 2010. 

10.2 Research questions 

Can a direct classification of multi-temporal VHR imagery adequately identify urban 

creep in Norwich? 

No. After exhaustive experimentation, the resulting urban creep classifications were 

not deemed adequate. Specifically, the most successful classification achieved an 

urban creep accuracy of 52.15%, and would not provide meaningful quantitative 

results. This finding states that automatic urban creep classification is beyond the 

state-of-the-art. However, despite the application being extremely challenging urban 

creep was still identified, with a moderate user accuracy. Therefore, the methods 

demonstrated in this research could support qualitative evaluation and act as the 

foundation for semi-automated workflows. 

Can a Change Vector Analysis of multi-temporal VHR imagery adequately identify 

urban creep in Norwich? 

No. The experimentation exhaustively investigated common CVA approaches in the 

literature as well as the new methods developed for this thesis, WC2VA and CTA. None 

of these approaches delivered satisfactory results. However, it was found that, in this 

application, simple spectral CVA performed extremely poorly, having almost no utility, 

and the CVA results lagged far behind the direct classification results with a difference 

greater than other published comparisons. Furthermore, it was found that the new 

methods WC2VA and CTA significantly outperformed spectral CVA. 

Has the rate of urban creep in Norwich changed since the last published estimate? 
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Yes, a probable increase has been observed. The latest estimate for Norwich was 

calculated as 0.24% per year between 2006 and 2010 compared to the previous 

estimate of 0.14% per year between 1999 and 2006. Because the previous estimate 

was not published with error bounds, we cannot say for certain that an increase has 

occurred. However, assuming both estimates possess similar accuracies, it is highly 

probably that the rate has increased. 

10.3 Contribution to knowledge 

Clarifies the capabilities of change detection techniques in detailed urban 

applications 

It is a long-standing tenet of remote sensing change detection that changes on the 

ground relate to radiometric differences (Singh 1989), and that important changes can 

be isolated because they exhibit large radiometric differences (Bruzzone & Prieto 

2000; Adar et al. 2014; Wang 2014b; Patra et al. 2011; Sinha & Kumar 2013). The 

findings are in direct conflict with this tenet. Spectral differences and compounded 

object-based feature differences describe urban creep very poorly, with 

improvements a result of mining complicated patterns in a large number of 

classification features. Of course, this finding originates from a very specific case, but 

it may be generalised to other large-scale urban VHR change detection research. 

Specifically, future researchers have direct evidence that small instances of land cover 

change, on a comparable spatial scale to scene illumination and view angle effects, 

may not be described by compounding spectral, or object-based feature differences. 

This contribution is important because it contributes to clarify the status and 

limitations of VHR image urban change detection. Critics could argue that the outcome 

of this research is expected and it is entirely predictable that urban creep would be 

heavily confused with static land cover and multi-temporal VHR image artefacts. In 

fact, this hypothesis is discussed in Chapter 4. However, the discrepancy between the 

established tenet of remote sensing change detection and its application to VHR 

images is not clear. Chapter 9 has discussed a sense of ‘unease’ in the literature but no 

clear position. It is the position of this thesis that a strong relationship between image 

difference and real land cover change is scale and class dependent, and that the 
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relationship breaks down in large-scale urban VHR applications. This position 

strengthens and extends the views expressed by Bruzzone & Bovolo (2013) and Myint 

et al. (2011), in relation to the limitation of radiometric differencing. In light of this 

future research can be focused towards mining complicated patterns concerning 

context, texture and spatial pattern. Furthermore, the concept of avoiding UOA 

conflation introduced by Tewkesbury et al. (2015) and Chapter 2 is extended to help 

to clarify the ‘pixel vs object’ debate as discussed in the literature (G. Chen et al. 2012; 

Hussain et al. 2013; Boldt et al. 2012). Specifically, a further position of this thesis is 

that differencing pixel spectral values are not the problem, differencing spectral values 

alone under any UOA is the problem. Solving complex urban change detection 

problems is only achievable by identifying complex patterns in a range of object-based 

features. 

Builds upon and extends existing CVA research 

The CVA methods defined in this thesis build upon existing works in four steps: 

1. They further test the hypothesis that CVA is an ideal tool to identify specific 

thematic changes (Bovolo & Bruzzone 2007; Bovolo et al. 2012). While, in most 

cases, urban creep could not be uniquely identified; some specific examples 

did form unique WC2VA clusters. 

2. This research builds upon the work of He et al. (2011) by not only considering 

spectral and textural features, but considering a range of object-based 

features. 

3. Defines WC2VA as a mechanism to normalise output magnitude and direction 

under varying numbers of features. This concept builds upon the work of 

Bovolo et al. (2012) and Tian et al. (2014), applying weights to n-dimensional 

CVA. 

4. CTA extends WC2VA further to include the baseline vector. This formulation 

solves CV ambiguity as reported by Johnson & Kasischke (1998) and 

Tewkesbury et al. (2015). 

Contributes to urban creep knowledge 
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This thesis provides a much-needed update on the status or urban creep in the UK. 

Specifically, nationwide estimates of urban creep are overdue a revision (UKWIR 

2010), and the findings of this research not only contribute to this revision but also  

provide more evidence of the need for a revision. Specifically, the findings indicate an 

acceleration in urban creep rates for Norwich, which could be wider reaching. This 

information would be of great interest to environmental engineers and urban 

planners tasked with minimising urban flooding. 

Furthermore, the remote sensing results demonstrate and quantify the practical 

limitations of urban creep identification. Specifically, as a result of this work, urban 

drainage stakeholders would be able to make an informed decision when considering 

remote sensing technology for future urban creep research. 

10.4 Implications 

This research has an academic impact, clarifying the status and limitations of VHR 

urban change detection. This work helps to clarify the position and utility of change 

detection when applied to complex urban change problems by providing clear 

evidence that radiometric differences cannot be relied upon to derive large-scale 

change information. Moreover, neither can the compounded differences of object-

based features. Instead, research should focus on mining complex patterns in a range 

of object-based features, at multiple scales, many of which will not contain 

appreciable differences. In turn, this position helps to clarify the ‘pixel vs. object’ 

debate by not conflating the UOA. Specifically, pixels are not the problem. Relying on 

spectral differences alone under any UOA is the problem. 

This research has an academic impact extending the definition of CVA. It was found 

that the new extensions to CVA, WC2VA and CTA considerably improved classification 

performance. While it was shown that even these techniques are not suited to large-

scale urban VHR image change detection, the techniques would be of interest to 

researchers investigating other monitoring applications. Specifically, those monitoring 

broad land cover and land use change with moderate resolution, fixed frame sensors 

such as Landsat and Sentinel-2. These new techniques would facilitate more 

exploration with CVA, investigating the effect of mixing spectral inputs with a range of 
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different textural and contextual features. Furthermore, in CTA, a clear framework is 

established to bypass CV ambiguity. 

Lastly, this research has a societal and economic impact. Specifically, urban drainage 

system stakeholders would view a potential acceleration of the rate of urban creep 

with great interest because an increase could elevate urban flood risk. Therefore, this 

research could be the impetus of a nationwide review of urban creep rates to 

establish any national trends. If an increase is identified, then this would result in 

updated flood risk impact assessments and possible a policy review. Furthermore, 

there is an opportunity to help reduce the causes of urban creep via public 

engagement. The publication of statistics reporting increased urban creep, and the 

potential implications this may have to local flooding and environmental quality could 

help to engage the public towards more sustainable development. 

10.5 Recommendations for future work 

The findings of this research have opened up avenues for future work to both 

corroborate these findings and further advance their principles. In light of this, future 

work could follow in four areas: 

More research investigating large scale VHR image change detection 

The broad aim of such research is to bridge the gap between the resolution of images 

currently available and the scale of change information reported from them. Such 

research would act to corroborate the thesis findings regarding the limitation of 

spectral differencing and the importance of a variety of different object-based 

features. 

Further explore the novel methods derived in this research 

WC2VA and CTA should be tested against other applications and datasets to see if the 

accuracy boosts observed in this research can be replicated. The specific effectiveness 

of the shadow and viewing angle modelling and the segmentation method CEMRS 

should also be ratified by further research.
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Appendix 

 

Figure A-1: Example field map, sample ID 7388, panel 1. Panel 1 of the field map design contains the 2006 reference 
image, overlaid with MasterMapTM (top) and smaller scale overview map (bottom) to aid with location. Backing 
imagery ©Airbus Defence and Space (2016). Overview base mapping courtesy of ESRI and its data contributors 
2016. 
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Figure A-2: Example field map, sample ID 7388, panel 2. Panel 2 of the field map design contains the 2010 reference 
image, overlaid with MasterMapTM (top) and the reference mapping (bottom) marked up in the field. This panel also 
contains sample information such as its stratification class, nearest postcode and distance and a nomenclature key. 
Backing imagery © Airbus Defence and Space (2016).
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Table A-1: Change proportions by stratum. 

Property Notation 

Stratum 

No change candidate 
strata 

Urban creep candidate 
strata 

Other change candidate 
strata 

Number of PSU 
units 

 

17377 6977 902 

Area 

 

43442500 17442500 2255000 

Stratum weight 

 

0.6880 0.2763 0.0357 

PSU samples 

 

50 50 54 

Sampling fraction 

 

0.0029 0.0072 0.0599 

Class n/a 
No 

change 
Urban 
creep 

Other 
change 

No 
change 

Urban 
creep 

Other 
change 

No 
change 

Urban 
creep 

Other 
change 

PSU class 
proportion mean 

 

0.9569 0.0023 0.0408 0.9625 0.0250 0.0125 0.4708 0.0278 0.5014 

PSU class 
proportion 

variance 

 

0.0229 0.0000 0.0229 0.0008 0.0009 0.0003 0.0939 0.0086 0.1105 
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Table A-2: Change proportions by population. 

 

  

Property Notation Population 

Number of PSU 
units 

 

25256 

Area 
 

63140000 

PSU samples  154 

Sampling fraction 

 

0.0061 

Class n/a No change Urban creep 
Other 

change 

Class proportion 
mean 

 

0.9411 0.0095 0.0494 

Class area 

 

59420739 597082 3122225 

Variance of the 
class proportion 

mean 

 

0.0002190 0.0000017 0.0002194 

Standard error of 
the class proportion 

mean 

 

0.01480 0.00132 0.01481 

95% Confidence 
limit 

 

0.029001 0.00259 0.029003 

�̅�𝑠𝑡  = ∑ 𝑊ℎ�̅�ℎ

𝐿

ℎ=1
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pif_count_threshold = 50 #The target number of PIFs per radiometric bin 

tile_dim = 5000 #The target tile row and column dimension 

radiometric_bins = 20 #The number of bins with which to split the radiometric range by  

SAM_threshold_start = 0.01 #The initial SAM threshold 

SCM_threshold_start = 0.99 #The initial SCM threshold 

threshold_increment = 0.01 #The amount to increment the threshold by 

pif_size = 2 #The minimum number of pixels for a PIF 

tiles = tile_images(T0,T1, tile_dim) #Create spatial tiles from the input images 

pif_array = [ ] #Create empty array to store PIFs 

 

for tile in tiles: #Iterate through each of the spatial tiles 

SAM = calc_SAM(T0tile, T1tile) #Calculate the SAM image 

SCM = calc_SCM(T0tile, T1tile) #Calculate the SCM image 

bins = bin_radiometry(T0tile, T1tile, radiometric_bins) #Split the radiometric range into bins 

 

 for bin in bins: #iterate through each of the radiometric bins 

  pif_count = 0 #Initiate with no PIFs 

  SAM_threshold = SAM_threshold_start #Initiate the threshold 

  SCM_threshold = SCM_threshold_start #Initiate the threshold 

  pif_array_temp = [ ] #Create temp empty array to store PIFs for bin 

 

  while pif_count <= pif_count_threshold: #Iterate until enough PIFs are identified 

   SAM_mask = threshold_by_percentile(SAM, SAM_threshold) #SAM PIFs by percentile 

  SCM_mask = threshold_by_percentile(SCM, SCM_threshold) #SCM PIFs by percentile 

   if SAM_mask == 1 and SCM_mask == 1: #Where the two intersect 

    pif_array_temp.append() #Create a PIF 

   pif_count = count(pif_array_temp) #Update the number of PIFs per bin 

   SAM_threshold += threshold_increment #Increase the spectral angle 

   SCM_threshold -= threshold_increment #Decrease the correlation 

  pif_array.append(pif_array_temp) #Retain the PIFs 

 

Figure A-3: PIF identification algorithm pseudo code.  
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flight_path #The approximate 3D flight path of the aircraft 

FOV_extent_par = 2 metres #The sensor field of view parallel to the flight path. This is set to mirror the DSM resolution 

FOV_extent_lat = 5000 metres #The lateral extent of the field of view either side of the sensor. 

observations = get_obs(flight_path, FOV_extent_par) #Break the continuous flight line into observation coordinates 

            every 2m 

FOV_hidden_surface_list = [ ] #Create an empty list for the individual FOV visibility raster images 

 

for observation in observations: #Iterate along the flight path, one observation at a time 

 flight_az = get_az(flight_path, observation) #Get the flight line azimuth for the observation 

 FOV_line = get_ FOV_line(observation, flight_az, FOV_extent_lat) #Draw a line either side of the observation  

                  perpendicular to the flight line 

 FOV = buffer(FOV_line, FOV_extent_par/2) #Buffer FOV line by one DSM pixel to simulate the sensor FOV 

 DSM_FOV = clip(DSM, FOV) #Clip the DSM to the FOV 

 FOV_hidden_surface = viewshed(DSM_FOV, observation) #Create a binary raster depicting the surfaces 

                     hidden from the observation FOV 

 FOV_hidden_surface_list.append(FOV_hidden_surface) #Gather the hidden surface raster images together 

 

hidden_surfaces = mosaic(FOV_hidden_surface_list) #Mosaic the observations into a single raster image 

Figure A-4: Pseudo code outlining the hidden surface detection algorithm. 

Scale #The MRS scale parameter for the new parent IOL 

Shape #The MRS shape parameter for the new parent IOL 

Compactness #The MRS compactness parameter for the new parent IOL 

CompactnessThr #The compactness threshold for the segmentation. Objects with lower compactness will be re-

shaped.  

Ln-1 #The child IOL to be aggregated to larger, compact objects 

 

Ln = MRS(Ln-1, Scale, Shape, Compactness) #Establish the parent IOL using the MRS algorithm 

 

continue_loop = 1 #Initiate the loop control variable 

while continue_loop == 1: 

 complex_objects = [ ] #Create an empty list to store complex objects 

 compact_objects = [ ] #Create an empty list to store the compact objects 

 for object in Ln: #Iterate through each object 

  If compactness > CompactnessThr: #Identify complex objects 

   complex_objects.append(object) #Store complex objects 

  else: 

   compact_objects.append(object) #Store compact objects 

 if count(complex_objects) > 0: #Test the number of complex objects 

  Convert_to_sub-objects(complex_objects, Ln-1) #Split the complex objects into the smaller, child 

                 objects 

  for object in complex_objects: #Iterate through each complex object 

   eliminate_by_border(object, compact_objects) #Merge object with the compact object 

                   with the greatest shared border 

  for object in Ln: #Iterate through each object 

   If object shared_border  > 0.5: #Identify objects largely surrounded by another object  

    eliminate_by_border(object, Ln) #Merge object with its surroundings 

 else: 

  continue_loop = 0 #End the loop 

Figure A-5: Pseudo code describing the CEMRS algorithm.  
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Table A-3: Full feature listing. 
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T0 L1 DSM Level 1 object mean, 2006 DSM Height 

La
rg

e 

T0
 

C
o

m
p

ar
ab

le
 

T0 L1 Mean diff. to. 0pix 
Level 1 object spatial auto-correlation, 2006 mean 

albedo difference to adjacent neighbours 

P
at

te
rn

 

T0 L1 Standard dev. 0pix 

Level 1 object spatial auto-correlation, 2006 

standard deviation of albedo differences to 

adjacent neighbours 

T0 L1 Hill shaded DSM 
Level 1 object mean, 2006 hill shaded relief and 

shadows 
Shadow 

T0 L1 Standard Deviation Level 1 object texture, 2006 standard deviation 

Te
xt

u
re

 

T0 L1 GLCM Entropy Level 1 object texture, 2006 GLCM entropy 

T0 L1 GLCM Homogeneity Level 1 object texture, 2006 GLCM homogeneity 

T0 L1 GLCM Mean Level 1 object texture, 2006 GLCM mean 

T0 L1 GLCM Std Dev 
Level 1 object texture, 2006 GLCM standard 

deviation 

T0 L1 Blue Level 1 object mean, 2006 blue 

To
n

e T0 L1 Green Level 1 object mean, 2006 green 

T0 L1 Red Level 1 object mean, 2006 red 

T0 L1 NIR Level 1 object mean, 2006 near infra-red 

T0 L1 Hidden surfaces 
Level 1 object mean, 2006 visibility and feature 

parallax 
View angle 

T0 L2 DSM Level 2 object mean, 2006 DSM Height 

M
o

d
er

at
e

 

T0 L1 Mean diff. to. 100pix 

Level 1 object spatial auto-correlation, 2006 mean 

albedo difference to adjacent neighbours within 

100 pixels 

P
at

te
rn

 

T0 L1 Standard dev. 

100pix 

Level 1 object spatial auto-correlation, 2006 

standard deviation of albedo differences to 

adjacent neighbours within 100 pixels 

T0 L2 Hill shaded DSM 
Level 2 object mean, 2006 hill shaded relief and 

shadows 
Shadow 

T0 L2 Standard Deviation Level 2 object texture, 2006 standard deviation 

Te
xt

u
re

 

T0 L2 GLCM Entropy Level 2 object texture, 2006 GLCM entropy 

T0 L2 GLCM Homogeneity Level 2 object texture, 2006 GLCM homogeneity 

T0 L2 GLCM Mean Level 2 object texture, 2006 GLCM mean 

T0 L2 GLCM Std Dev 
Level 2 object texture, 2006 GLCM standard 

deviation 

T0 L2 Blue Level 2 object mean, 2006 blue 

To
n e 
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T0 L2 Green Level 2 object mean, 2006 green 

T0 L2 Red Level 2 object mean, 2006 red 

T0 L2 NIR Level 2 object mean, 2006 near infra-red 

T0 L2 Hidden surfaces 
Level 2 object mean, 2006 visibility and feature 

parallax 
View angle 

T0 L3 DSM Level 3 object mean, 2006 DSM Height 

Sm
al

l 

T0 L1 Mean diff. to. 200pix 

Level 1 object spatial auto-correlation, 2006 mean 

albedo difference to adjacent neighbours within 

200 pixels 

P
at

te
rn

 

T0 L1 Standard dev. 

200pix 

Level 1 object spatial auto-correlation, 2006 

standard deviation of albedo differences to 

adjacent neighbours within 200 pixels 

T0 L3 Hill shaded DSM 
Level 3 object mean, 2006 hill shaded relief and 

shadows 
Shadow 

T0 L3 Standard Deviation Level 3 object texture, 2006 standard deviation 

Te
xt

u
re

 
T0 L3 GLCM Entropy Level 3 object texture, 2006 GLCM entropy 

T0 L3 GLCM Homogeneity Level 3 object texture, 2006 GLCM homogeneity 

T0 L3 GLCM Mean Level 3 object texture, 2006 GLCM mean 

T0 L3 GLCM Std Dev 
Level 3 object texture, 2006 GLCM standard 

deviation 

T0 L3 Blue Level 3 object mean, 2006 blue 

To
n

e T0 L3 Green Level 3 object mean, 2006 green 

T0 L3 Red Level 3 object mean, 2006 red 

T0 L3 NIR Level 3 object mean, 2006 near infra-red 

T0 L3 Hidden surfaces 
Level 3 object mean, 2006 visibility and feature 

parallax 
View angle 

Δ L1 DSM 
Level 1 object mean,  DSM, 2006 to 2010 

difference 
Height 

La
rg

e 

Δ
 

Δ L1 Mean diff. to. 0pix 

Level 1 object spatial auto-correlation,  mean 

albedo difference to adjacent neighbours, 2006 to 

2010 difference 

P
at

te
rn

 

Δ L1 Standard dev. 0pix 

Level 1 object spatial auto-correlation,  standard 

deviation of albedo differences to adjacent 

neighbours, 2006 to 2010 difference 

Δ L1 Hill shaded DSM 
Level 1 object mean,  hill shaded relief and 

shadows, 2006 to 2010 difference 
Shadow 

Δ L1 Standard Deviation 
Level 1 object texture,  standard deviation, 2006 to 

2010 difference 

Te
xt

u
re
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Δ L1 GLCM Entropy 
Level 1 object texture,  GLCM entropy, 2006 to 

2010 difference 

Δ L1 GLCM Homogeneity 
Level 1 object texture,  GLCM homogeneity, 2006 

to 2010 difference 

Δ L1 GLCM Mean 
Level 1 object texture,  GLCM mean, 2006 to 2010 

difference 

Δ L1 GLCM Std Dev 
Level 1 object texture,  GLCM standard deviation, 

2006 to 2010 difference 

Δ L1 Blue Level 1 object mean,  blue, 2006 to 2010 difference 

To
n

e 

Δ L1 Green 
Level 1 object mean,  green, 2006 to 2010 

difference 

Δ L1 Red Level 1 object mean,  red, 2006 to 2010 difference 

Δ L1 NIR 
Level 1 object mean,  near infra-red, 2006 to 2010 

difference 

Δ L1 Hidden surfaces 
Level 1 object mean,  visibility and feature parallax, 

2006 to 2010 difference 
View angle 

Δ L2 DSM 
Level 2 object mean,  DSM, 2006 to 2010 

difference 
Height 

M
o

d
er

at
e

 

Δ L1 Mean diff. to. 100pix 

Level 1 object spatial auto-correlation,  mean 

albedo difference to adjacent neighbours within 

100 pixels, 2006 to 2010 difference 

P
at

te
rn

 

Δ L1 Standard dev. 100pix 

Level 1 object spatial auto-correlation,  standard 

deviation of albedo differences to adjacent 

neighbours within 100 pixels, 2006 to 2010 

difference 

Δ L2 Hill shaded DSM 
Level 2 object mean,  hill shaded relief and 

shadows, 2006 to 2010 difference 
Shadow 

Δ L2 Standard Deviation 
Level 2 object texture,  standard deviation, 2006 to 

2010 difference 

Te
xt

u
re

 

Δ L2 GLCM Entropy 
Level 2 object texture,  GLCM entropy, 2006 to 

2010 difference 

Δ L2 GLCM Homogeneity 
Level 2 object texture,  GLCM homogeneity, 2006 

to 2010 difference 

Δ L2 GLCM Mean 
Level 2 object texture,  GLCM mean, 2006 to 2010 

difference 

Δ L2 GLCM Std Dev 
Level 2 object texture,  GLCM standard deviation, 

2006 to 2010 difference 

Δ L2 Blue Level 2 object mean,  blue, 2006 to 2010 difference 

To
n

e 
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Δ L2 Green 
Level 2 object mean,  green, 2006 to 2010 

difference 

Δ L2 Red Level 2 object mean,  red, 2006 to 2010 difference 

Δ L2 NIR 
Level 2 object mean,  near infra-red, 2006 to 2010 

difference 

Δ L2 Hidden surfaces 
Level 2 object mean,  visibility and feature parallax, 

2006 to 2010 difference 
View angle 

Δ L3 DSM 
Level 3 object mean,  DSM, 2006 to 2010 

difference 
Height 

Sm
al

l 

Δ L1 Mean diff. to. 200pix 

Level 1 object spatial auto-correlation,  mean 

albedo difference to adjacent neighbours within 

200 pixels, 2006 to 2010 difference 

P
at

te
rn

 

Δ L1 Standard dev. 200pix 

Level 1 object spatial auto-correlation,  standard 

deviation of albedo differences to adjacent 

neighbours within 200 pixels, 2006 to 2010 

difference 

Δ L3 Hill shaded DSM 
Level 3 object mean,  hill shaded relief and 

shadows, 2006 to 2010 difference 

Sh
ad

o
w

 

Δ L3 Standard Deviation 
Level 3 object texture,  standard deviation, 2006 to 

2010 difference 

Te
xt

u
re

 

Δ L3 GLCM Entropy 
Level 3 object texture,  GLCM entropy, 2006 to 

2010 difference 

Δ L3 GLCM Homogeneity 
Level 3 object texture,  GLCM homogeneity, 2006 

to 2010 difference 

Δ L3 GLCM Mean 
Level 3 object texture,  GLCM mean, 2006 to 2010 

difference 

Δ L3 GLCM Std Dev 
Level 3 object texture,  GLCM standard deviation, 

2006 to 2010 difference 

Δ L3 Blue Level 3 object mean,  blue, 2006 to 2010 difference 

To
n

e 

Δ L3 Green 
Level 3 object mean,  green, 2006 to 2010 

difference 

Δ L3 Red Level 3 object mean,  red, 2006 to 2010 difference 

Δ L3 NIR 
Level 3 object mean,  near infra-red, 2006 to 2010 

difference 

Δ L3 Hidden surfaces 
Level 3 object mean,  visibility and feature parallax, 

2006 to 2010 difference 
View angle 

L1 Direction Level 1 object orientation, direction/azimuth Association 

La
rg

e 

T0
 &

 T
1 

N
o

n
-

co
m

p
ar

ab
l

e 

L1 Asymmetry Level 1 object shape, asymmetry 

Sh
a

p
e 
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L1 Compactness Level 1 object shape, compactness 

L1 Density Level 1 object shape, density 

L1 Elliptical fit Level 1 object shape, elliptical fit 

L1 Length/Width Level 1 object shape, length/Width 

L1 Rectangular fit Level 1 object shape, rectangular fit 

L1 Roundness Level 1 object shape, roundness 

L1 Area Level 1 object size, area 

Size L1 Length Level 1 object size, length 

L1 Width Level 1 object size, width 

L2 Direction Level 2 object orientation, direction/azimuth Association 

M
o

d
er

at
e

 

L2 Asymmetry Level 2 object shape, asymmetry 

Sh
ap

e 

L2 Compactness Level 2 object shape, compactness 

L2 Density Level 2 object shape, density 

L2 Elliptical fit Level 2 object shape, elliptical fit 

L2 Length/Width Level 2 object shape, length/Width 

L2 Rectangular fit Level 2 object shape, rectangular fit 

L2 Roundness Level 2 object shape, roundness 

L2 Area Level 2 object size, area 

Size L2 Length Level 2 object size, length 

L2 Width Level 2 object size, width 

L3 Direction Level 3 object orientation, direction/azimuth Association 

Sm
al

l 

L3 Asymmetry Level 3 object shape, asymmetry 

Sh
ap

e 

L3 Compactness Level 3 object shape, compactness 

L3 Density Level 3 object shape, density 

L3 Elliptical fit Level 3 object shape, elliptical fit 

L3 Length/Width Level 3 object shape, length/Width 

L3 Rectangular fit Level 3 object shape, rectangular fit 

L3 Roundness Level 3 object shape, roundness 

L3 Area Level 3 object size, area 

Si
ze

 

L3 Length Level 3 object size, length 

L3 Width Level 3 object size, width 



Appendix 

228 
 

Table A-4: The top 15 representative features from all available features. 
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1 
T0 L2 
Blue 

               

2 
Δ L1 

GLCM 
Mean 

T0 L1 Blue              

3 
Δ L2 

GLCM 
Mean 

L1 Length 
T0 L1 
Blue 

            

4 
Δ L2 

GLCM 
Mean 

L3 Length 
T0 L1 
Blue 

T0 L3 NIR            

5 
Δ L3 

Green 

Δ L1 
Mean diff. 
to. 100pix 

L3 
Length 

T0 L1 
Blue 

T0 L3 
NIR 

          

6 
Δ L3 

Green 

Δ L1 
Mean diff. 
to. 100pix 

L3 
Length 

T0 L2 
Green 

T0 L3 
NIR 

T0 L1 Mean 
diff. to. 
100pix 

         

7 
Δ L1 
Blue 

Δ L3 
Green 

Δ L3 
Standard 
Deviation 

L3 
Length 

T0 L2 
Green 

T0 L3 NIR 
T0 L1 Mean 

diff. to. 
100pix 

        

8 
Δ L1 
Blue 

Δ L2 
Hillshaded 

DSM 

Δ L3 
Green 

Δ L3 
Standard 
Deviation 

L3 
Length 

T0 L2 Green T0 L3 NIR 
T0 L1 Mean 

diff. to. 
100pix 

       

9 
Δ L1 
Blue 

Δ L2 
Hillshaded 

DSM 

Δ L3 
Green 

Δ L3 
Standard 
Deviation 

L3 
Length 

T0 L1 Blue T0 L2 Green 
T0 L2 GLCM 

Std Dev 
T0 L3 
NIR 

      

10 
Δ L1 
Blue 

Δ L2 
Hillshaded 

DSM 

Δ L3 
Green 

Δ L3 
Standard 
Deviation 

L3 
Length 

L1 
Length/Width 

T0 L1 Blue 
T0 L2 
Green 

T0 L2 
GLCM 

Std 
Dev 

T0 L3 
Hillshaded 

DSM 

     

11 
Δ L1 
Blue 

Δ L2 
Hillshaded 

DSM 

Δ L3 
Green 

Δ L3 
Standard 
Deviation 

L3 
Length 

L1 
Length/Width 

T0 L1 Blue 
T0 L2 
Green 

T0 L2 
DSM 

T0 L2 
GLCM Std 

Dev 

T0 L3 
Hillshaded 

DSM 

    

12 
Δ L1 
Blue 

Δ L2 
Hillshaded 

DSM 

Δ L3 
Green 

Δ L3 
Standard 
Deviation 

L3 
Elliptical 

fit 
L3 Length 

L1 
Length/Width 

T0 L1 Blue 
T0 L2 
Green 

T0 L2 
DSM 

T0 L2 
GLCM Std 

Dev 

T0 L3 
Hillshaded 

DSM 

   

13 
Δ L1 
Blue 

Δ L2 
Hillshaded 

DSM 

Δ L3 
Green 

Δ L3 
Standard 
Deviation 

L3 
Elliptical 

fit 
L3 Length 

L1 
Length/Width 

L1 
Rectangular 

fit 

T0 L1 
Blue 

T0 L2 
Green 

T0 L2 
DSM 

T0 L2 
GLCM Std 

Dev 

T0 L3 
Hillshaded 

DSM 

  

14 
Δ L1 
Blue 

Δ L2 
Hillshaded 

DSM 

Δ L3 
Green 

Δ L3 
Standard 
Deviation 

L3 
Elliptical 

fit 
L3 Length 

L1 
Length/Width 

L1 
Rectangular 

fit 

T0 L1 
Blue 

T0 L2 
Green 

T0 L2 NIR 
T0 L2 
DSM 

T0 L2 GLCM 
Std Dev 

T0 L3 
Hillshaded 

DSM 

 

15 
Δ L1 
Blue 

Δ L2 
Hillshaded 

DSM 

Δ L3 
Green 

Δ L3 
Standard 
Deviation 

L3 
Elliptical 

fit 
L3 Length 

L1 
Length/Width 

L1 
Rectangular 

fit 

T0 L1 
Blue 

T0 L2 
Green 

T0 L2 NIR 
T0 L2 
DSM 

T0 L2 GLCM 
Homogeneity 

T0 L2 
GLCM Std 

Dev 

T0 L3 
Hillshaded 

DSM 



Appendix 

229 
 

Table A-5: The top 15 representative features from all difference features. 

 

N
u

m
b

er
 o

f 
se

le
ct

ed
 f

ea
tu

re
s 

1 
Δ L2 

GLCM 
Mean 

               

2 
Δ L2 
DSM 

Δ L2 GLCM 
Mean 

             

3 
Δ L2 
DSM 

Δ L2 GLCM 
Mean 

Δ L1 Mean 
diff. to. 
100pix 

            

4 
Δ L1 
Blue 

Δ L2 DSM 
Δ L2 GLCM 

Mean 

Δ L3 
Standard 
Deviation 

           

5 
Δ L1 
Blue 

Δ L2 DSM 
Δ L2 

Hillshaded 
DSM 

Δ L3 Green 
Δ L3 

Standard 
Deviation 

          

6 
Δ L1 
Blue 

Δ L2 DSM 
Δ L2 

Hillshaded 
DSM 

Δ L2 GLCM 
Homogeneity 

Δ L3 Green 
Δ L3 

Standard 
Deviation 

         

7 
Δ L1 

Green 
Δ L1 GLCM 

Std Dev 
Δ L2 DSM 

Δ L2 
Hillshaded 

DSM 

Δ L2 GLCM 
Homogeneity 

Δ L3 Green 
Δ L3 

Standard 
Deviation 

        

8 
Δ L1 

Green 
Δ L1 GLCM 

Std Dev 
Δ L2 DSM 

Δ L2 
Hillshaded 

DSM 

Δ L2 Hidden 
surfaces 

Δ L2 GLCM 
Homogeneity 

Δ L3 Green 
Δ L3 

Standard 
Deviation 

       

9 
Δ L1 

Green 
Δ L1 GLCM 

Std Dev 
Δ L2 NIR Δ L2 DSM 

Δ L2 
Hillshaded 

DSM 

Δ L2 Hidden 
surfaces 

Δ L2 GLCM 
Homogeneity 

Δ L3 Green 
Δ L3 

Standard 
Deviation 

      

10 
Δ L1 

Green 
Δ L1 GLCM 

Std Dev 
Δ L2 NIR Δ L2 DSM 

Δ L2 
Hillshaded 

DSM 

Δ L2 Hidden 
surfaces 

Δ L2 GLCM 
Homogeneity 

Δ L3 Green 
Δ L3 

Standard 
Deviation 

Δ L1 
Standard 

dev. 100pix 

     

11 
Δ L1 

Green 
Δ L1 GLCM 

Std Dev 
Δ L2 Green Δ L2 NIR Δ L2 DSM 

Δ L2 
Hillshaded 

DSM 

Δ L2 Hidden 
surfaces 

Δ L2 GLCM 
Homogeneity 

Δ L3 Green 
Δ L3 

Standard 
Deviation 

Δ L1 
Standard 

dev. 100pix 

    

12 
Δ L1 

Green 
Δ L1 GLCM 

Std Dev 
Δ L2 Green Δ L2 NIR Δ L2 DSM 

Δ L2 
Hillshaded 

DSM 

Δ L2 Hidden 
surfaces 

Δ L2 GLCM 
Homogeneity 

Δ L3 Green 
Δ L3 

Standard 
Deviation 

Δ L1 
Standard 

dev. 100pix 

Δ L1 GLCM 
Homogeneity 

   

13 
Δ L1 

Green 
Δ L1 GLCM 

Std Dev 
Δ L2 Green Δ L2 NIR Δ L2 DSM 

Δ L2 
Hillshaded 

DSM 

Δ L2 Hidden 
surfaces 

Δ L2 
Standard 
Deviation 

Δ L2 GLCM 
Homogeneity 

Δ L3 Green 
Δ L3 

Standard 
Deviation 

Δ L1 
Standard 

dev. 100pix 

Δ L1 GLCM 
Homogeneity 

  

14 
Δ L1 

Green 
Δ L1 GLCM 

Std Dev 
Δ L2 Green Δ L2 NIR Δ L2 DSM 

Δ L2 
Hillshaded 

DSM 

Δ L2 Hidden 
surfaces 

Δ L2 
Standard 
Deviation 

Δ L2 GLCM 
Homogeneity 

Δ L3 Green 
Δ L3 

Standard 
Deviation 

Δ L1 
Standard 

dev. 100pix 

Δ L1 Hidden 
surfaces 

Δ L1 GLCM 
Homogeneity 

 

15 
Δ L1 

Green 
Δ L1 GLCM 

Std Dev 
Δ L2 Green Δ L2 NIR Δ L2 DSM 

Δ L2 
Hillshaded 

DSM 

Δ L2 Hidden 
surfaces 

Δ L2 
Standard 
Deviation 

Δ L2 GLCM 
Homogeneity 

Δ L3 Green Δ L1 NIR 
Δ L3 

Standard 
Deviation 

Δ L1 
Standard 

dev. 100pix 

Δ L1 Hidden 
surfaces 

Δ L1 GLCM 
Homogeneity 
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