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Abstract

This thesis presents a variety of probabilistic and stochastic calculations related to the

Ornstein-Uhlenbeck process, the weighted self-normalized sum of exchangeable variables,

various operators defined on the Wiener space and Greeks in mathematical finance.

First, we discuss some properties of the weighted self-normalized sum of exchangeable

variables. Then we show two methods to compute the different order moments of the

Brownian motion via the definition of expactation and the so-called Malliavin calculus,

repectively. We also show how to compute the different order moments of the Ornstein-

Uhlenbeck process by using Itô calculus and generlize it to the Itô processes of the Ornstein-

Uhlenbeck type.

Finally we show how to apply the Malliavin calculus to compute different operators

defined on the Wiener space such as the derivative opertor, the divergence opertor, the in-

finitesimal generator of the Ornstein-Uhlenbeck semigroup and the associated characteristics.

We also apply Malliavin calculus to compute Greeks for European options as well as ex-

otic options, where the integration by parts formula provides a powerful tool. In addition,

we demonstrate the computation of Greeks for the models where we treat share price Itô

martingale models such as Wt and W 2
t − t.
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Chapter 1

Introduction

The purposes of this dissertation are to state a variety of probability calculations and stochastic

calculus related to the Ornstein-Uhlenbeck process, the weighted self-normalized sum of

exchangeable variables, various operators defined on the Wiener space and Greeks in finance.

The Ornstein-Uhlenbeck process (OUP) has been used in numerous fields, including

biology [3, 13], finance [2], and energy market [5], since it was firstly introduced by Uhlen-

beck, G. and Ornstein, L. in 1930 [40]. See [14, 9, 39] for a good account on the stochastic

calculus for the Ornstein-Uhlenbeck process.

The reason why the weighted self-normalized sum of exchangeable variables is discussed

in this thesis, is that first it is motivated by the paper of S. Y. Novak and the supervisor S.

Utev [28]. And the second reason is that the ratio of sums of random variables is natural in

Greeks, which implies that the techniques used to compute the ratio will be useful. See [7, 12]

for more details about the ratio of sums of random variables and weighted sums of random

variables.

The Malliavin calculus is an infinite-dimensional differential calculus on the Wiener space,

also known as the stochastic calculus of variations. This theory was initiated by Malliavin [25]

in 1976, and further developed by Stroock [21–23], Bismut [24], Watanabe [41], Bells [4] and

others. The original motivation is based on how to give a probabilistic proof of Hormander’s

’sum of squares’ theorem. The proof of Hormander’s theorem is considered as the most

important application of Malliavin calculus.
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The discussion about the Malliavin calculus in this thesis can be divided into two parts.

The first part is the theory of various differential operators defined on the Wiener space. The

second part is some applications of the Malliavin calculus in mathematical finance, that is

the computation of Greeks via the Integration by parts formula.

1.1 Structure of the Thesis

The first Chapter of this thesis reviews some basic concepts and preliminary knowledge of

probability theory, mainly based on [6, 35, 29, 42, 17].

By presenting several definitions, examples, and selected proofs in Chapter 2, it covers

the probability spaces, the random variables and its the distribution function, the expectation

of a random variable in terms of the integration and the convergence for a sequence of random

variables in Section 2.1. It covers the stochastic processes and the filtrations, the Brownian

motion also known as Wiener process, the stochastic integral and its properties, including

mean-zero property, isometry and linearity, Itô process, Itô formula and Itô isometry in

Section 2.2.

In Chapter 2, we also review the analysis on the Wiener space, it covers isonormal

Gaussian process and its properties, the Hermite polynomial and Wiener chaos in Section

2.3.1, the iterated Itô integrals in Section 2.3.2, the derivative operator D, its associated

characteristics and the operator Dh in Section 2.3.3. In addition, an integration-by-parts

formula which plays a fundamental role throughtout whole computations in the thesis is

presented in Section 2.3.3. In Section 2.3.4, we review the divergence operator δ , which

is the adjoint of the derivative operator D and several relative lemmas and propositions.

It covers constucting the Ornstein-Uhlenbeck semigroup and Mehler’s formula in Section

2.3.5, the generator of the Ornstein-Uhlenbeck semigroup, operator L and the associated

characteristics in Section 2.3.6.

Finally, in Chapter 2, we review the financial modelling, especially the Black-Scholes

model in Section 2.4.1 and 2.4.2. The Integration by parts formula with its application

in computation of price sensitivities (Greeks) is presented in Section 2.4.3. Generally,
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computation of Greeks is considered as an important application of Malliavin calculus in

mathematical finance.

The Chapter 3 discuss the expectation of a randomly weighted self-normalized sum,

the value of up to forth moment of an exchangeable random variable and the proof of

the convergence in distribution of the the weighted self-normalized sum of exchangeable

variables.

In Chapter 4, we present the computations of moments via the definition of expectation

in Section 4.1, via the properties of divergence operator and Skorohod integral in Section 4.2,

and via the Itô formula in Section 4.3.1. An open question about computing the moments of

an Ornstein-Uhlenbeck type process is demonstrated in Section 4.3.2.

In Chapter 5, we present the computations of operator D and Dh in Section 5.1, operator

L in Section 5.2, and the norms ∥·∥L as well as ∥·∥2,2 in Section 5.3. These operators will

play essential roles in computing the Greeks in Chapter 6.

In Chapter 6, we present the computations of Greeks for European options in Section 6.1,

Greeks for exotic options in Section 6.2, and Greeks for the models where we treat share

price Itô martingale models such as Wt and W 2
t − t in Section 6.3.

1.2 Results Stated in the Thesis

Some calculations and proofs of the convergence in distribution ralated to the weighted

self-normalized sum of exchangeable variables are stated in Chapter 3.

Several examples of calculations of various moments of the Brownian motion are stated

in Section 4.1 and 4.2.

The properties of the Ornstein-Uhlenbeck process are stated in Section 4.3.1, including

its variance, covariance, and the values of up to the forth moment.

Some additional calculations for the Ornstein-Uhlenbeck type process are stated in

Section 4.3.2.

Several examples of calculations of the derivative operator D and the operator Dh are

stated in Section 5.1.
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Several examples of calculations of the operator L, which coincides with the infinitesimal

generator of the Ornstein-Uhlenbeck semigroupthe, are stated in Section 5.2.

Several examples of calculations of the the norms ∥·∥L and ∥·∥2,2 are stated in Section

5.3.

Several examples of calculations of Greeks for European options and exotic options (i.e.

Delta, Gamma and Vega) are stated in Section 6.1 and 6.2.

Some additional calculations of Greeks for the models where we treat share price Itô

martingale models such as Wt and W 2
t − t are stated in Section 6.3.



Chapter 2

Background and Terminology

2.1 Basic concepts of probability theory

In this section we will recall some basic concepts of the probability theory, based on [6, 35,

29, 42, 17].

Definition 2.1.1. (Probability space) A probability space associated with a random experi-

ment is a triple (Ω ,F ,P) which satisfies:

1. The sample space Ω is the set of all possible outcomes of the random experiment.

2. The σ−algebra F is a set of subsets of Ω which satisfies:

(a) /0 ∈ F , Ω ∈ F ;

(b) If A ∈ F , then its complement Ac belongs to F ;

(c) A1,A2, ... ∈ F ⇒∪∞
i=1Ai ∈ F .

3. The probability measure P on the space (Ω ,F ) is a function which associates a

number P(A) to each set A ∈ F with the following properties:

(a) 0 ≤ P(A)≤ 1;

(b) P(Ω) = 1;
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(c) For any sequence A1,A2, ... of disjoints sets in F (i.e. Ai ∩A j = /0 if i ̸= j),

P(∪∞
i=1Ai) =

∞

∑
i=1

P(Ai).

Definition 2.1.2. Each A ∈ F will be called an event and P(A) implies the probability that

the even A occurs. The set /0 is called the empty event with a probability of zero. The set Ω is

also called the certain set and its probability is 1.

Definition 2.1.3. The probability space (Ω ,F ,P) is called a complete probability space if

for each set A ∈ F with zero probability P(A) = 0, any subset of A is in F .

Example 2.1.4. (Incomplete space) Consider a sample space Ω = {1,2,3,4,5}, and the

σ−algebra F is generated as follows:

Consider three events Bi, i = 1,2,3, where B1 = {1,2,3}, B2 = {4} and B3 = {5}. And

the corresponding probability of each event Bi, i = 1,2,3 is given as P(B1) = 0, P(B2) =
1
2

and P(B3) =
1
2 .

And therefore, the σ−algebra generated by Bi, i = 1,2,3 is

F = { /0,Ω ,{1,2,3},{1,2,3,4},{1,2,3,5},{4},{5},{4,5}}.

As any subsets of B1 /∈ F , then by the definition of complete probability space, we can

obtain that the probability space (Ω ,F ,P) is not complete.

Definition 2.1.5. (Random variable) Consider a function X from the space Ω to the real

line R

Ω
X−→ R,

where the point ω is mapped to X(ω)

ω −→ X(ω).
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If the function X is F -measurable from (Ω ,F ) into (R,BR), where BR is the Borel

σ−field, then X is called a random variable on (Ω ,F ) with values in R, that is, X−1(B)∈F ,

for any Borel set B in R.

Note that each value X(ω) is assigned to the outcome ω in Ω by the random variable X .

For any set A ∈ BR, (X ∈ A) or {X ∈ A} will denote the event X−1(A) = {ω ∈ Ω | X(ω) ∈

A}.

Definition 2.1.6. Under the measurability condition of the random variables, given two real

numbers a ≤ b, the set of all outcomes ω for which a ≤ X(ω)≤ b is an event. Similarly, the

event {ω ∈ Ω | a ≤ X(ω)≤ b} will be denoted by (a ≤ X ≤ b) or {a ≤ X ≤ b}.

Definition 2.1.7. A random variable X defines a σ−field {X−1(B),B ∈ BR} ⊂ F called

the σ -field generated by X, denoted by σ(X), which is the smallest σ−field which makes X

measurable. Moreover the assertion that X is a random variable is equivalent to saying that

σ(X)⊂ F .

Definition 2.1.8. (Distribution function) A random variable X with values in R defines a

probability measure on the Borel σ−field BR by PX = P◦X−1, that is

PX(B) = P(X−1(B)) = P({ω : X(ω) ∈ B}).

And the probability measure PX is called the law or the distribution of X. The function

F : R−→ [0,1] defined by

F(x) = P(X ≤ x) = PX((−∞,x)),

is called the distribution function of the random variable X.

Definition 2.1.9. (Density function) We will say that a random variable X has a probability

density function f : R−→ R, if the function f (x) is non-negative on R, measurable with

respect to the Borel σ−field BR and with the property

∫
R

f (x)dx = 1,



2.1 Basic concepts of probability theory 8

and

P(a < X < b) =
∫ b

a
f (x)dx.

The distribution function F is non-decreasing, right continuous and with

lim
x−→−∞

F(x) = 0 and lim
x−→+∞

F(x) = 1.

If the random variable X is absolutely continuous with density f , the distribution function

F has the property that

F(x) =
∫ x

−∞

f (s)ds,

and F ′(x) = f (x) if the density is continuous.

Definition 2.1.10. (Expactation) The expected value or mean of a random variable X on

(Ω ,F ,P) is defined as the Lebesgue integral of X with respect to the probability measure P:

E(X) =
∫

Ω

X(ω)P(dω) =
∫

Ω

X(ω)dP(ω),

or simply

E(X) =
∫

Ω

XdP.

Example 2.1.11. (Indicator function) Suppose that A is an event in a probability space Ω ,

the random variable

1A(ω) =

 1, if ω ∈ A,

0, if ω /∈ A.

is called the indicator function of A. The probability law of this indicator function is called

the Bernoulli distribution with parameter p = P(A). And the expected value of this random

variable is E(1A(ω)) = P(A).

Theorem 2.1.12. (Fubini’s Theorem) Suppose that (X ,F1,µ) and (Y,F2,ν) are σ–finite

measure spaces, π = µ ⊗ ν is the product measure on F1 ⊗F2 and f : X ×Y → R is a

F1 ⊗F2–measurable function. Then the following three conditions are equivalent:

∫
X×Y

| f |dπ < ∞, i.e. f ∈ L1(π),
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∫
X

(∫
Y
| f (x,y)|dν(y)

)
dµ(x)< ∞ and

∫
Y

(∫
X
| f (x,y)|dµ(x)

)
dν(y)< ∞,

where L1(π) denotes the Lebesgue space [1] of functions for which the absolute value is

Lebesgue integrable with respect to mearure π .

See in [1].

Example 2.1.13. Consider a random variable X ≥ 0, by definition we know that

X =
∫ +∞

0
1{X>t}dt.

The indicator function 1{X>t} is in L1, then by applying Fubini’s theorem, we have

E(X) =
∫

Ω

XdP =
∫

Ω

(∫ +∞

0
1{X>t}dt

)
dP =

∫ +∞

0

(∫
Ω

1{X>t}dP
)

dt.

By using the fact

P(X > t) =
∫

Ω

1{X>t}dP,

we obtain

E(X) =
∫ +∞

0
P(X > t)dt.

Lemma 2.1.14. Given random variable X : Ω −→R with law P , let g : R−→R be a Borel

measurable function and E(|g(X)|)< ∞, then it holds

E(g(X)) =
∫

Ω

g(X(ω))dP(ω) =
∫

∞

−∞

g(x)dPX(x).

Moreover if X has the probability density function f , it holds

E(g(X)) =
∫

∞

−∞

g(x) f (x)dx.
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Definition 2.1.15. A random variable X is said to have a finite moment of order p ≥ 1, if

E(|X |p)< ∞. The pth moment of X is defined by

E(X p) =
∫

∞

−∞

xpdPX(x), p ∈ N.

The set of random variables with finite pth moment is denoted by Lp(Ω ,F ,P).

Definition 2.1.16. The variance of a random variable X is defined by

var(X) = E((X −E(X))2) = E(X2)− (E(X))2,

if the first two moments of X exist and are finite.

The variance of X measures the deviation of X from its expected value.

Definition 2.1.17. If X and Y are two random variables, the covariance of X and Y is defined

by

cov(X ,Y ) = E[(X −E(X))(Y −E(Y ))]

= E(XY )−E(X)E(Y ),

provided E(|X |2)< ∞ and E(|Y |2)< ∞.

By the linearity of the expactation, we obtain

var(X +Y ) = E[(X +Y )2]− (E(X +Y ))2

= E(X2)− (E(X))2 +E(Y 2)− (E(Y ))2 +2E(XY )−2E(X)E(Y ))

= var(X)+var(Y )+2cov(X ,Y ).

Example 2.1.18. Suppose that X is a real valued random variable with X ≥ 0 almost surely

and p ∈ N, assume that X has the probability density function f ∈ L1 , then by using the

definition of expactation and applying the simple fact

xp =
∫ x

0
pt p−1dt,
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we derive

E(X p) =
∫

∞

0
xp f (x)dx

=
∫

∞

0

(∫ x

0
pt p−1dt

)
f (x)dx

=
∫

∞

0

(∫
∞

0
pt p−11{t≤x}dt

)
f (x)dx.

Then, as the function f ∈ L1, applying Fubini’s theorem, we have

E(X p) =
∫

∞

0
pt p−1

(∫
∞

0
1{t≤x} f (x)dx

)
dt

=
∫

∞

0
pt p−1

(∫
∞

t
f (x)dx

)
dt

=
∫

∞

0
pt p−1P(X ≥ t)dt.

Definition 2.1.19. The vector X = {X1, · · · ,Xn} is an n−dimensional random vector if its

components X1, · · · ,Xn are random variables. That is, X is a random variable with values in

Rn. Then the mathematical expectation of an n−dimensional random vector X is the vector

E(X) = (E(X1), · · · ,E(Xn)).

And the covariance matrix of an n−dimensional random vector X is the matrix

ΓX = (cov(Xi,X j))1≤i, j≤n.

Note that the matrix ΓX is symmetric. Moreover, we know that by the definition of

variance and the linearity of expactations

var
( n

∑
i=1

aiXi

)
= E

(( n

∑
i=1

aiXi

)2)
−
(

E
( n

∑
i=1

aiXi

))2

= E
( n

∑
i, j=1

aia jXiX j

)
−

n

∑
i, j=1

E(aiXi)E(a jX j).



2.1 Basic concepts of probability theory 12

Then by separating cases i = j and i ̸= j, we have

var
( n

∑
i=1

aiXi

)
=

n

∑
i=1

(E(a2
i X2

i )− (E(aiXi))
2)+∑

i ̸= j
(E(aia jXiX j)−E(aiXi)E(a jX j))

=
n

∑
i=1

var(aiXi)+∑
i ̸= j

aia jcov(Xi,X j).

Finally, by rearranging

var
( n

∑
i=1

aiXi

)
=

n

∑
i, j=1

aia jcov(Xi,X j)

=
n

∑
i, j=1

ΓX(i, j)aia j ≥ 0,

for all real numbers ai, · · · ,an. That is, the matrix ΓX is non-negative definite.

The following definitions are some different types of convergence for a sequence of

random variables Xn,n = 1,2,3, · · ·.

Definition 2.1.20. (Almost sure convergence) Xn
a.s.−→ X, if

lim
n→∞

Xn(ω) = X(ω),

for all ω /∈ N, where P(N) = 0.

Definition 2.1.21. (Convergence in probability) Xn
P−→ X, if

lim
n→∞

P(|Xn −X |> ε) = 0,

for all ε > 0.

Definition 2.1.22. (Convergence in mean of order p ≥ 1) Xn
Lp
−→ X, if

lim
n→∞

E(|Xn −X |p) = 0.
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Definition 2.1.23. (Convergence in law) Xn
L−→ X, if

lim
n→∞

FXn(x) = FX(x),

for any point x where the distribution function FX is continuous.

2.2 Stochastic Processes, Brownian Motion, Stochastic in-

tegral and Itô calculus

This section will continue with the preliminary knowledge on stochastic processes, based

on [6, 35, 29, 42, 17].

Definition 2.2.1. (Stochastic process) Let (Ω ,F ,P) be the reference probability space, a

stochastic process X = {Xt , t ∈ T} with values in the space E = R is a collection of random

variables Xt : Ω −→ E, t ∈ T on the same probability space (Ω ,F ,P). The parameter set

T is a subset of the real line, and the index t ∈ T is meant to represent time. The space E is

called the state space.

The stochastic process can also be considered as a measurable mapping:

X = X(t,ω) : T ×Ω −→ R.

Definition 2.2.2. Let {Xt , t ∈ T} be a real-valued stochastic process and {t1, t2, · · · , tn} ⊂ T

satisfying t1 < t2 < · · ·< tn, then the probability distribution Pt1,···,tn = P◦ (Xt1, · · · ,Xtn)
−1 of

the random vector

(Xt1, · · · ,Xtn) : Ω −→ Rn

is called a finite-dimensional marginal distribution of the process {Xt , t ∈ T}.

Definition 2.2.3. A real-valued process {Xt , t ∈ T} is called a second order process if

E(X2
t )< ∞ for all t ∈ T .
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Definition 2.2.4. Let {Ft , t ∈ T} be a filtration, i.e., a family of sub-σ -fields of F increasing

in time. That is, if s < t then Fs ⊂ Ft .

In this way, the following interpretation holds true:

“Ft contains all the information which are available up to time t”,

i.e., all the events whose occurrence can be established up to time t.

Definition 2.2.5. Given a filtration {Ft , t ∈ T}, the σ -algebra

F∞ =
∨
t∈T

Ft = σ

( ⋃
t∈T

Ft

)
stands for the limit at infinity, which is determined by the minimal σ -field which contains all

Ft . Here, σ(·) denotes the σ -algebra generated by a collection of sets.

Definition 2.2.6. (Adapted process) Given a stochastic process X = Xt , t ∈ T and a filtra-

tion {Ft , t ∈ T} on (Ω ,F ,P), the process X is said to be adapted to the filtration {Ft , t ∈ T}

if, for any t ∈ T fixed, the random variable Xt is Ft-measurable on Ω , that is, X−1(B) ∈ Ft ,

for any Borel set B in R. Equivalently, we say that X is adapted to (Ω ,F ,{Ft},P).

Notice that it is always possible to construct a filtration with respect to which the process

is adapted, by setting F X
t = σ(Fs,s ≤ t). F X

t is called the natural filtration of X .

Example 2.2.7. (Unadapted case) Consider a sample space Ω = {1,2,3,4,5}, and two

σ−algebras F1 and F2 on Ω , such that

F1 = { /0,Ω ,{1,2,3},{4,5}}

and

F2 = { /0,Ω ,{1,2,3},{1,2,3,4},{1,2,3,5},{4},{5},{4,5}}.

Then we have F1 ⊂ F2.
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Consider two random variables X and Z, provided that X(4) = 11, X(5) = 22 and

Z({4,5}) = 33 .

Consider a stochastic process {Yi, i = 1,2} which satisfies Y1 = X and Y2 = Z, then we

can see that Y−1(11) = {4} ̸⊂F1 and Y−1(22) = {5} ̸⊂F1. This implies that the stochastic

process {Yi, i = 1,2} is not adapted to the filtration {Fi, i = 1,2}.

Definition 2.2.8. (Brownian motion or Wiener process) An adapted stochastic process

W = {W (t), t ≥ 0} on a filtered probability space (Ω ,F ,{Ft , t ≥ 0},P) is called a (stan-

dard) Brownian motion or a Wiener process if it satisfies:

1. W (0) = 0;

2. For every 0 ≤ s ≤ t the random variable W (t)−W (s) is independent of Fs;

3. For every 0 ≤ s ≤ t the random variable W (t)−W (s) has Gaussian distribution

N(0, t − s) with mean zero and variance t − s.

Notice that the time dependence is usually denoted as a subscript, so that Wt ≡W (t).

Remark 2.2.9.

1. By property 2 we can say that for all 0 ≤ t1 ≤ t2 ≤ ·· · ≤ tn the increments Wtn −Wtn−1, · ·

··,Wt2 −Wt1 are independent random variables.

2. The Brownian motion or Wiener process {Wt , t ≥ 0} is a Gaussian process. Its mean is

E(Wt) = 0 and the variance is

var(Wt) = E(W 2
t )− (E(Wt))

2 = E(W 2
t ) = t.

Using the split Wt = Wt −Ws +Ws in to the sum of two independent variables, with

the linearity of the expactation, we have the autocovariance functions of the Brownian

motion:

E(WtWs) = E[(Wt −Ws +Ws)Ws]

= E[(Wt −Ws)Ws]+E(W 2
s ).
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Using the independence and properties of Brownian motion, we obtain

E(WtWs) = E(Wt −Ws)E(Ws)+E(W 2
s ) = s,

if s ≤ t. That is, E(WtWs) = min(s, t).

Definition 2.2.10. (L2
a,T space) Suppose that the process u = ut , t ∈ [0,T ] is a stochastic

process on a filtered probability space (Ω ,F ,{Ft , t ≥ 0},P). Denote by L2
a,T the space of

stochastic processes u = ut , t ∈ [0,T ], such that:

1. u is adapted to Ft and the mapping (s,ω) −→ us(ω) is measurable on the product

space [0,T ]×Ω with respect to the product σ -field B[0,T ]×F ;

2. E
(∫ T

0 u2
t dt

)
< ∞.

Note that, the condition 1 requires that random variables of the form
∫ t

0 usds are Ft-

measurable. The condition 2 means that the moment of second order of the process is

integrable on the time interval [0,T ]. In fact, by Fubini’s theorem we have

E
(∫ T

0
u2

t dt
)
=

∫ T

0
E(u2

t )dt.

Also, the condition 2 means that the stochastic process u is a function of two variables

(t,ω), which belongs to the Hilbert space L2([0,T ]×Ω).

Definition 2.2.11. (Stochastic integral) A simple process u in L2
a,T is a stochastic process

of the form:

ut =
n

∑
k=1

φk1(tk−1,tk](t),

where 0 = t0 < t1 < · · ·< tn = T is a partition of [0,T ] and φk are square integrable Ftk−1-

measurable random variables. The stochastic integral of u with respect to the Brownian

motion Wt is defined as ∫ T

0
utdWt =

n

∑
j=1

φ j(Wt j −Wt j−1).
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Note that by Fubini’s theorem, for a stochastic process u = ut , t ∈ [0,T ], if any one of

E
(∫ T

0 utdt
)

and
∫ T

0 E(ut)dt is finite then

E
(∫ T

0
utdt

)
=

∫ T

0
E(ut)dt.

Lemma 2.2.12. The stochastic integral
∫ T

0 utdWt defined on the space L2
a,T of simple pro-

cesses u has the following properties:

1. Mean-zero:

E
(∫ T

0
utdWt

)
= 0;

2. Isometry:

E
[(∫ T

0
utdWt

)2]
= E

(∫ T

0
u2

t dt
)

;

3. Linearity: ∫ T

0
(aut + vt)dWt = a

∫ T

0
utdWt +b

∫ T

0
vtdWt ,

if a,b are constant.

See the lemma in [29] p97 and the proof is modified.

Proof. By the definition, the stochastic integral of u with respect to the Brownian motion Wt

is ∫ T

0
utdWt =

n

∑
j=1

φ j(Wt j −Wt j−1).

Set random variables ∆Wj =Wt j −Wt j−1 , which has the Gaussian distribution N(0, t j −

t j−1). From the properties of Brownian motion, we know that the random variables φiφ j,

∆Wi and ∆Wj are independent if i ̸= j, and the random variable φi and ∆Wi, φ 2
i and (∆Wi)

2

are independent if i = j, and E((∆Wi)
2) = var(∆Wi) = t j − t j−1. That is,

E(φiφ j∆Wi∆Wj) =

 0, i ̸= j,

E(φ 2
j (t j − t j−1)), i = j.
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Then, we obtain

E
(∫ T

0
utdWt

)
= E

( n

∑
j=1

φ j∆Wj

)
=

n

∑
j=1

E(φ j) ·E(∆Wj) = 0,

and

E
[(∫ T

0
utdWt

)2]
= E

( n

∑
j=1

φ j∆Wj

)2

=
n

∑
i, j=1

E(φiφ j∆Wi∆Wj).

By independence and rearranging

E
[(∫ T

0
utdWt

)2]
=

n

∑
i, j=1

E(φiφ j) ·E(∆Wi∆Wj)

= E[
n

∑
j=1

φ
2
j (t j − t j−1)]

= E
(∫ T

0
u2

t dt
)
.

Therefore, the mean-zero and isometry properties for simple processes are proved. The

linearity can be obtained by simple algebra.

Moreover, by applying similar technique for simple processes

ut =
n

∑
k=1

φk1(tk−1,tk](t)

and

vt =
n

∑
k=1

ψk1(tk−1,tk](t),
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we have:

E
(∫ T

0
utdWt

∫ T

0
vtdWt

)
=

n

∑
i, j=1

E(φiψ j∆Wi∆Wj)

= E
[ n

∑
j=1

φ jψ j(t j − t j−1)
]
.

Finally, by definition we deduce

E
(∫ T

0
utdWt

∫ T

0
vtdWt

)
= E

(∫ T

0
utvtdt

)
.

Lemma 2.2.13. If u is a process in the space L2
a,T , then there exists a sequence of simple

processes u(n) such that

lim
n→∞

E(
∫ T

0
|ut −u(n)t |2dt) = 0.

See the lemma in [29] p95 - 96.

Definition 2.2.14. (La,T space) Suppose that the process u = ut , t ∈ [0,T ] is a stochastic

process on a filtered probability space (Ω ,F ,{Ft , t ≥ 0},P). Denote by La,T the space of

stochastic processes u = ut , t ∈ [0,T ], such that:

1. u is adapted to Ft and the mapping (s,ω) −→ us(ω) is measurable on the product

space [0,T ]×Ω with respect to the product σ -field B[0,T ]×F ;

2. P(
∫ T

0 u2
t dt < ∞) = 1.

Definition 2.2.15. (L1
a,T space) Suppose that the process u = ut , t ∈ [0,T ] is a stochastic

process on a filtered probability space (Ω ,F ,{Ft , t ≥ 0},P). Denote by L1
a,T the space of

stochastic processes u = ut , t ∈ [0,T ], such that:

1. u is adapted to Ft and the mapping (s,ω) −→ us(ω) is measurable on the product

space [0,T ]×Ω with respect to the product σ -field B[0,T ]×F ;

2. P(
∫ T

0 |ut |dt < ∞) = 1.
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Definition 2.2.16. (Itô process) A continuous and adapted stochastic process {Xt ,0≤ t ≤ T}

is called an Itô process if it can be represented in the form

Xt = X0 +
∫ t

0
usdWs +

∫ t

0
vsds,

where u belongs to the space La,T and v belongs to the space L1
a,T . The differential form can

be written as

dXt = utdWt + vtdt.

See in [29].

Note that the term
∫ t

0 usdWs is called Itô integral, and it satisfies

E
(∫ t

0
usdWs

)
= 0.

Lemma 2.2.17. (Itô formula) Suppose that X is an Itô process. Let f (t,x) be a function

twice defferentiable with respect to the variable x and once differentiable with respect to t,

with continuous partial derivatives ∂ f
∂x , ∂ 2 f

∂x2 and ∂ f
∂ t (we say that f is of class C1,2). Then, the

process Yt = f (t,Xt) is again an Itô process with the representation

Yt = f (0,X0)+
∫ t

0

∂ f
∂ t

(s,Xs)ds+
∫ t

0

∂ f
∂x

(s,Xs)usdWs

+
∫ t

0

∂ f
∂x

(s,Xs)vsds+
1
2

∫ t

0

∂ 2 f
∂x2 (s,Xs)u2

s ds.

And in differential notation, the process Yt can be written as

d f (t,Xt) =
∂ f
∂ t

(t,Xt)dt +
∂ f
∂x

(t,Xt)dXt +
1
2

∂ 2 f
∂x2 (t,Xt)(dXt)

2,

where (dXt)
2 can be computed by using (dt)2 = 0, dtdWt = dWtdt = 0 and (dWt)

2 = dt.

See the lemma in [29] p106.
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Notice that if the process Xt is the Brownian motion Wt , the Itô formula can be represented

in the following simple version

f (t,Wt) = f (0,0)+
∫ t

0

∂ f
∂ t

(s,Ws)ds+
∫ t

0

∂ f
∂x

(s,Ws)dWs +
1
2

∫ t

0

∂ 2 f
∂x2 (s,Ws)ds.

And the corresponding differential version is

d f (t,Wt) =
∂ f
∂ t

(t,Wt)dt +
∂ f
∂x

(t,Wt)dWt +
1
2

∂ 2 f
∂x2 (t,Wt)dt.

Lemma 2.2.18 (Itô isometry). The Itô integral satisfies

E
[(∫ t

0
usdWs

)2]
= E

(∫ t

0
u2

s ds
)
,

where u belongs to the space La,T .

See in [29].

Lemma 2.2.19 (Itô formula for two variables[20]). The Itô formula for functions in two

variables applied in the computation is the following:

Suppose that the stochastic process {St ,0 ≤ t ≤ T} is an Itô process of the form

St = S0 +
∫ t

0
usdWs +

∫ t

0
vsds,

where u belongs to the space La,T and v belongs to the space L1
a,T .

Let f (t,x) be a function twice differentiable with respect to the variable x and once

differentiable with respect to t, with continuous partial derivatives ∂ f
∂x , ∂ 2 f

∂x2 and ∂ f
∂ t .

Then, the process Yt = f (t,St) is again an Itô process with the differential representation

d f (t,St) =
∂ f
∂ t

(t,St)dt +
∂ f
∂S

(t,St)dSt +
1
2

∂ 2 f
∂S2 (t,St)(dSt)

2.
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2.3 Analysis on the Wiener Space

This section describes the basic framework for the Malliavin Calculus on the Wiener space.

The general context consists of a complete probability space (Ω ,F ,P) and a Gaussian

subspace H1 of L2(Ω ,F ,P). That is,H1 is a closed subspace whose elements are zero-

mean Gaussian random variables. Often it will be convenient to assume that H1 is isometric

to an L2 space of the form L2(T,B,µ),where B is the σ -algebra and µ is a σ -finite measure

without atoms. In this way the elements of H1 can be interpreted as stochastic integrals of

functions in L2(T,B,µ) with respect to a random Gaussian measure on the parametor space

T (Gaussian white noise).

The section presents several definitions, propositions, lemmas and detailed proofs mo-

tivated by Nualart [30, 31], Giulia Di Nunno, Bernt Oksendal, Frank Proske [8] and oth-

ers [33, 32, 26, 11, 18, 19], and furture explanations and numerous examples are demon-

strated in chapter 5. Moreover, they will be illustrated by numerous calculations of Greeks in

financial applications in chapter 6.

2.3.1 Wiener Chaos

Suppose that H is a real separable Hilbert space with scalar product denoted by ⟨·, ·⟩H . The

norm of an element h ∈ H will be denoted by ∥h∥H . The Hilbert space H which is associated

to the Gaussian process W is a general Hilbert space.

Definition 2.3.1. We say that a stochastic process W = {W (h),h ∈ H} defined in a complete

probability space (Ω ,F ,P) is isonormal Gaussian process (or a Gaussian process on H) if

W is a centered Gaussian family of random variables such that

E[W (h)W (g)] = ⟨h,g⟩H

for all h,g ∈ H.

From the definition, we have the following properties, see in [30] p4, the proof of these

properties is modified.
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1. W (h) can be written as the form of W (h) =
∫ T

0 h(t)dWt , where dWt is Wiener process.

And therefore by Itô isometry we have:

E[W (h)W (g)] = E[
∫ T

0
h(t)dWt

∫ T

0
g(t)dWt ]

= E[
∫ T

0
h(t)g(t)dt]

= ⟨h,g⟩H .

2. The mapping h −→ W (h) is linear. In fact, for any λ ,µ ∈ R and h,g ∈ H, we can

obtain that

E[(W (λh+µg)−λW (h)−µW (g))2]

= ∥λh+µg∥2
H+λ

2∥h∥2
H+µ

2∥g∥2
H

−2λ ⟨λh+µg,h⟩H −2µ⟨λh+µg,g⟩H +2µλ ⟨h,g⟩H

= 0.

The mapping h −→W (h) provides a linear isometry of H onto a closed subspace of

L2(Ω ,F ,P) that we will denote by H1. The elements of H1 are zero-mean Gaussian

random variables.

3. From definition, we can say that each random variables W (h) is Gaussian and centered.

4. By Kolmogorov’s theorem [34], given the Hilbert space H we can always construct a

probability space and a Gaussian process {W (h)} verifying the above conditions.

Given a function F(x, t) = exp
(

tx− t2

2

)
, by Taylor’s theorem, the expansion in powers of t

at t = 0 is:

F(x, t) = exp
(x2

2
− 1

2
(x− t)2

)
= 1+ e

x2
2

∞

∑
n=1

tn

n!

( dn

dtn e−
(x−t)2

2

)∣∣∣
t=0

.

And therefore we have the definition of the Hermite polynomial.
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Definition 2.3.2. (Hermite polynomial) The nth Hermite polynomial, denoted by Hn(x), is

defined in the following way:

Hn(x) =
(−1)n

n!
e

x2
2

dn

dxn e−
x2
2 ,n ≥ 1,

and H0(x) = 1.

See in [30] p4.

Proposition 2.3.3. For n ≥ 1, the following properties hold:

1. H ′
n(x) = Hn−1(x);

2. (n+1)Hn+1(x) = xHn(x)−Hn−1(x);

3. Hn(−x) = (−1)nHn(x).

The proof is modified from [30] p5.

Proof. In fact, for the function

F(x, t) = exp
(

tx− t2

2

)
= 1+ e

x2
2

∞

∑
n=1

tn

n!

( dn

dtn e−
(x−t)2

2

)∣∣∣
t=0

,

by the definition of the Hermite polynomial, we have

F(x, t) =
∞

∑
n=0

tnHn(x).

Also we have H1(x) = x and H2(x) = 1
2(x

2 −1).

For n ≥ 1, from the equation of partial derivative

∂F
∂x

= t · exp
(

tx− t2

2

)
= tF,
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by plugging in F(x, t) = ∑
∞
n=0 tnHn(x) and rearranging the summation, we can obtain

( ∞

∑
n=0

tnHn(x)
)′

x
=

∞

∑
n=1

tnH ′
n(x)

=
∞

∑
n=0

tn+1Hn(x)

=
∞

∑
n=1

tnHn−1(x),

which yields

H ′
n(x) = Hn−1(x).

Also, we can obtain the equation of partial derivative

∂F
∂ t

= (x− t) · exp
(

tx− t2

2

)
= (x− t)F,

that is, by plugging in F(x, t) = ∑
∞
n=0 tnHn(x) and rearranging the summation

( ∞

∑
n=0

tnHn(x)
)′

t
= (n+1)

∞

∑
n=1

tnHn+1(x)

= x
∞

∑
n=1

tnHn(x)−
∞

∑
n=1

tnHn−1(x),

which yields

(n+1)Hn+1(x) = xHn(x)−Hn−1(x).

Finally, we can obtain the equation

F(−x, t) = F(x,−t),

that is

∞

∑
n=0

tnHn(−x) =
∞

∑
n=0

(−t)nHn(x)

=
∞

∑
n=0

(−1)ntnHn(x),
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which yields

Hn(−x) = (−1)nHn(x) .

Moreover, if n is odd we have Hn(0) = 0 and H2k(0) =
(−1)k

2kk!
for all k ≥ 1.

Lemma 2.3.4. Let X ,Y be two random variables with joint Gaussian distribution such that

E(X) = E(Y ) = 0 and E(X2) = E(Y 2) = 1. Then for all n,m ≥ 0, we have

E(Hn(X)Hm(Y )) =


0, n ̸= m,

1
n!
(E(XY ))n, n = m.

The proof is modified from [30] p5.

Proof. For fixed s, t ∈ R, let Z denote the random variable defined by

Z = sX − s2

2
+ tY − t2

2

By using E(X) = E(Y ) = 0 and E(X2) = E(Y 2) = 1, we have

E(Z) = E
(

sX − s2

2
+ tY − t2

2

)
=−s2

2
− t2

2
,

and

var(Z) = var(sX + tY )

= s2var(X)+ t2var(Y )+2cov(sX , tY )

= s2 + t2 +2stE[(X −E(X))(Y −E(Y ))]

= s2 + t2 +2stE(XY ).

Then we know that Z ∼ N
(
− s2

2 − t2

2 ,s
2 + t2 +2stE(XY )

)
.
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Also by the definition of expectation and the property of density function we know that

E(eR) =
∫ +∞

−∞

1√
2πσ2

er · e
−
(r−µ)2

2σ2 dr

= eµ+σ2
2 ·

∫ +∞

−∞

1√
2πσ2

e
−
(r− (µ +σ2))2

2σ2 dr

= eµ+σ2
2 ,

if the random variable R ∼ N(µ,σ2).

Then we have

E
[
exp

(
sX − s2

2

)
exp

(
tY − t2

2

)]
= E(eZ)

= exp
(
− s2

2
− t2

2
+

1
2
(s2 + t2 +2stE(XY ))

)
= exp(stE(XY )).

Taking the (n+m)th partial derivative
∂ n+m

∂ sn∂ tm at s = t = 0 on both sides of the above

equation, we can obtain

E(n!Hn(X)m!Hm(Y )) =
∂ m

∂ tm

(
tn(E(XY ))nexp(stE(XY )

)
.

That is

E(n!m!Hn(X)Hm(Y )) =

 0, n ̸= m,

n!(E(XY ))n, n = m.

From the orthogonality of Hermite polynomial Hn(x), for each n≥ 1, the random variables

{Hn(W (h)),h ∈ H,∥h∥H= 1} can generate a closed linear subspaces of L2(Ω ,F ,P), denote

by Hn. The space H0 will be the set of constants. For n = 1, the space H1 coincides with

the set of random variables {W (h),h ∈ H}. Again from Lemma 2.3.4 we know that the
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subspaces Hn and Hm are orthogonal if n ̸= m. The space Hn is called the Wiener chaos of

order n.

2.3.2 Iterated Itô Integrals

Definition 2.3.5. A real function g : [0,T ]n → R is called symmetric if

g(tσ1, ..., tσn) = g(t1, ..., tn)

for all permutations σ = (σ1, ...,σn) of (1,2, ...,n).

See in [8] p8.

Let L2([0,T ]n) be the standard space of square integrable Borel real functions on [0,T ]n

such that

∥g∥2
L2([0,T ]n) :=

∫
[0,T ]n

g2(t1, ..., tn)dt1, ...,dtn < ∞.

Let L̃2([0,T ]n) ⊂ L2([0,T ]n) be the space of symmetric square integrable Borel real

functions on [0,T ]n. Consider the set

Sn = {(t1, ..., tn) ∈ [0,T ]n : 0 ≤ t1 ≤ ...≤ tn ≤ T}.

Notice that this set Sn occupies the fraction
1
n!

of the whole n−dimensional box [0,T ]n.

Therefore, if g ∈ L̃2([0,T ]n) then g|Sn ∈ L̃2(Sn) and

∥g∥2
L2([0,T ]n) = n!

∫
Sn

g2(t1, ..., tn)dt1, ...,dtn

= n!∥g∥2
L2(Sn)

where ∥·∥L2(Sn)
denotes the norm induced by L2([0,T ]n) on L2(Sn), the space of the square

integrable functions on Sn.

Definition 2.3.6. If f is a real function on [0,T ]n, then its symmetrization f̃ is defined by

f̃ (t1, ..., tn) =
1
n! ∑

σ

f (tσ1, ..., tσn)
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where the sum is taken over all permutations σ = (σ1, ...,σn) of (1,2, ...,n).

Then we know f̃ = f if and only if f is symmetric.

Example 2.3.7. The symmetrization of the function

f (t1, t2) = t3
1 + t1t2, (t1, t2) ∈ [0,T ]2

is

f̃ (t1, t2) =
1
2
( f (t1, t2)+ f (t2, t1))

=
1
2
(t3

1 + t3
2 +2t1t2), (t1, t2) ∈ [0,T ]2.

The symmetrization of the funtion

f (t1, t2, t3) = t2
1 + t2sint3, (t1, t2, t3) ∈ [0,T ]3

is

f̃ (t1, t2) =
1
6
(t2

1 + t2
2 + t2

3 + t1sint2 + t2sint1 + t1sint3 + t3sint1 + t2sint3 + t3sint2)

where (t1, t2, t3) ∈ [0,T ]3.

Definition 2.3.8. (Iterated Itô integral) Let f be a deterministic function defined on Sn

(n ≥ 1) such that

∥ f∥2
L2(Sn)

=
∫

Sn

f 2(t1, ..., tn)dt1, ...,dtn < ∞.

Then we can define the n-fold iterated Itô integral as

Jn( f ) :=
∫ T

0

∫ tn

0
· · ·

∫ t3

0

∫ t2

0
f (t1, ..., tn)dW (t1)dW (t2) · · ·dW (tn−1)dW (tn).

See in [8] p8.
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Notice that at each iteration i = 1,2, ...,n, the integrand

∫ ti

0
· · ·

∫ t2

0
f (t1, ..., tn)dW (t1) · · ·dW (ti−1), ti ∈ [0, ti+1]

is a stochastic process which is F−adapted (F is the σ -algebra) and square integrable with

respect to dP×dti, then the corresponding Itô integral with respect to dW (ti) is well-defined.

And therefore Jn( f ) is well-defined.

By the construction of the Itô integral we know that Jn( f ) belong to L2(P), which is the

space of square integrable random variables. The norm of X ∈ L2(P) is denoted by

∥X∥L2(P):= [E(X2)]
1
2 = (

∫
Ω

X2(ω)P(dω))
1
2 .

By appying the Itô isometry iteratively, we can obtain the following result.

Lemma 2.3.9. The following relations hold true:

E(Jn(g)Jm( f )) =

 0, n ̸= m,

(g, f )L2(Sn)
, n = m.

where

(g, f )L2(Sn)
=

∫
Sn

g(t1, ..., tn) f (t1, ..., tn)dt1, ...,dtn

is the inner product of L2(Sn). In particular, we have

∥Jn( f )∥L2(P)= ∥ f∥L2(Sn)
.

See proof in [8] p9.

Note that it is straightforward to see that the n-fold iterated Itô integral is a linear operator.

That is,

Jn(a f +bg) = aJn( f )+bJn(g)

for f ,g ∈ L2(Sn) and a,b ∈ R.
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Definition 2.3.10. If f ∈ L̃2([0,T ]n), we define

In( f ) :=
∫
[0,T ]n

f (t1, ..., tn)dW (t1) · · ·dW (tn) = n!Jn( f ).

The In( f ) is also called the n-fold iterated Itô integral.

See in [8] p10.

Then by definition, we have

∥Jn( f )∥L2(P) = E(I2
n ( f ))

= E((n!)2J2
n( f ))

= (n!)2∥ f∥2
L2(Sn)

= n!∥ f∥2
L2([0,T ]n).

By the relationship between Jn( f ) and In( f ), from Lemma 2.3.9 , we have the following

result.

Lemma 2.3.11. If g ∈ L̃2([0,T ]n) and f ∈ L̃2([0,T ]m) the following relations hold true:

E(In(g)Im( f )) =

 0, n ̸= m,

n!(g, f )L2([0,T ]n), n = m.

where

(g, f )L2([0,T ]n =
∫
[0,T ]n

g(t1, ..., tn) f (t1, ..., tn)dt1, ...,dtn

2.3.3 The Derivative Operator

This section will review the definition and several properties of the derivative operator, based

on [30].

Denote W = {W (h),h ∈ H} as an isonormal Gaussian process associated with the Hilbert

space H, which defined in a complete probability space (Ω ,F ,P), and F is generated by

W .
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Denote C∞
p (Rn) as the set of all infinitely continuously differentiable function f : Rn −→

R such that f and all of its partial derivatives have polynomial growth.

Definition 2.3.12. (Derivative Operator) Let S denote the class of smooth random vari-

ables such that a random variable F ∈ S has the form

F = f (W (h1), · · ·,W (hn))

= f
(∫ T

0
h1(t)dWt , ...,

∫ T

0
hn(t)dWt

)
,

where W (h1) =
∫ T

0 h1(t)dWt and f belongs to C∞
p (Rn), h1, · · ·,hn are in H, and n ≥ 1.

Then, the derivative of a smooth random variable F is the H-valued random variables

given by

DF =
n

∑
i=1

∂i f (W (h1), ...,W (hn))hi,

or

DtF =
n

∑
i=1

∂ f
∂xi

(W (h1(t)), ...,W (hn(t)))hi(t),

where the notation represents ∂i f =
∂ f
∂xi

, whenever f ∈C1(Rn).

Notice that The derivative operator DF can be considered as the derivative of a square

integrable random variable F : Ω −→ R with respect to the chance parameter ω ∈ Ω . And

the derivative DF is defined as the process {DtF, t ≥ 0}.

The product rule for the derivative operator D is given as follows.

Lemma 2.3.13. If F,G are smooth random variables, then we can obtain the derivative

operator of the product FG

D(FG) = FDG+GDF.

By using the integration by parts technique, we can obtain the following result.

Lemma 2.3.14. Suppose that F is a smooth random variable and h ∈ H, then

E(⟨DF,h⟩H) = E(FW (h)).
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The proof is modified from [30] p26.

Proof. First we can normalize the equation and assume that there exist orthonomal elements

of H, e1, · · ·,en such that h = e1 and F is a smooth random variable of the form

F = f (W (e1), · · ·,W (en)),

where f belongs to C∞
p (Rn). Set W = (W (e1), ...,W (en)), and by definition we have

⟨W (ei),W (e j)⟩H = E[W (ei)W (e j)]

= ⟨ei,e j⟩H

=

1, i = j,

0, i ̸= j.

And

E(W (ei)) = 0, var(W (ei)) = 1, cov(W (ei),W (e j)) = 0, i ̸= j.

Therefore, W = (W (e1), ...,W (en)) are independent and identically distributed standard

Gaussian random variables.

Set W = x = (x1, ...,xn) and let φ(x) denote the density of the standard Gaussian distri-

bution on Rn, that is

φ(x) = (2π)−
n
2 exp

(
− 1

2

n

∑
i=1

x2
i

)
.

By definition

⟨DF,e1⟩H =
〈 n

∑
i=1

∂i f (W (e1), ...,W (en))ei,e1

〉
H

=
n

∑
i=1

∂i f (W (e1), ...,W (en))⟨ei,e1⟩H

= ∂1 f (W (e1), ...,W (en)).
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On the other hand, notice that

E[ f ′(x1)] =
∫ +∞

−∞

f ′(x1)φ(x1)dx1

=
∫ +∞

−∞

φ(x1)d f (x1)

= 0−
∫ +∞

−∞

f (x1)φ
′(x1)dx1

=
∫ +∞

−∞

f (x1)x1φ(x1)dx1

= E[ f (x1)x1].

So, we have first by using the definition and h = e1, then by the integration by parts

technique,

E(⟨DF,h⟩H) = E(⟨DF,e1⟩H)

= E(∂1 f (W (e1), ...,W (en)))

= E(∂1 f (x))

=
∫
Rn

∂1 f (x)φ(x)dx

=
∫ +∞

−∞

...
∫ +∞

−∞

(∫ +∞

−∞

∂1 f (x)φ(x1)dx1

)
φ(x2, ..,xn)dx2...dxn.

By rearranging

E(⟨DF,h⟩H) =
∫ +∞

−∞

...
∫ +∞

−∞

(∫ +∞

−∞

f (x)x1φ(x1)dx1

)
φ(x2, ..,xn)dx2...dxn

=
∫
Rn

f (x)x1φ(x)dx

= E(FW (e1)) = E(FW (h)).

The proof of the lemma is complete.

By combining the product rule with Lemma 2.3.14, we have the following result.
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Lemma 2.3.15. Suppose that F and G are smooth random variables, and let h ∈ H. Then

we have

E(G⟨DF,h⟩H) = E(−F⟨DG,h⟩H +FGW (h)).

The proof is modified from [30] p26.

Proof. By using Lemma 2.3.14, we have

E(FGW (h)) = E(⟨D(FG),h⟩H)

= E(⟨FDG+GDF,h⟩H)

= E(⟨GDF,h⟩H)+E(⟨FDG,h⟩H),

which implies

E(G⟨DF,h⟩H) = E(−F⟨DG,h⟩H +FGW (h)).

The proof is complete .

The following part is the constructure of norm space. See more in [30] p27.

Definition 2.3.16 (Norm space). For any p ≥ 1 we will denote the domain of D in Lp(Ω)

by D1,p, meaning that D1,p is the closure of the class of smooth random variables S with

respect to the norm

∥F∥1,p= [E(|F |p)+E(∥DF∥p
H)]

1
p .

For p = 2, the space D1,2 is a Hilbert space with the scalar product

⟨F,G⟩1,2 = E(FG)+E(⟨DF,DG⟩H).

We can define the iteration of the operator D in such a way that for a smooth random

variable F , the iterated derivative DkF is a random variable with values in H⊗k.

Definition 2.3.17. (Seminorm) For every p≥ 1 and any natural number k ≥ 1, the seminorm

on S is defined by

∥F∥k,p=
[
E(|F |p)+

k

∑
j=1

E(∥D jF∥p
H⊗ j)

] 1
p
.
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Lemma 2.3.18. The family of seminorms verifies the followng properties:

1. Monotonicity: ∥F∥k,p≤ ∥F∥ j,q for any F ∈ S, if p ≤ q and k ≤ j.

2. Closability: The operator Dk is closable from S into Lp(Ω ;H⊗k) for all p ≥ 1.

3. Compatibility: Let p,q ≥ 1 be real numbers and k, j be natural numbers. Suppose that

Fn is a sequence of smooth random variables such that ∥Fn j∥k,p converges to zero as

n tends to infinity, and ∥Fn −Fm∥ j,q converges to zero as n,m tend to infinity. Then

∥Fn∥ j,q tends to zero as n tends to infinity.

See the lemma and proof in [30] p27.

We will denote by Dk,p the completion of the family of smooth random variables S with

respect to the norm ∥·∥k,p. From the property 1’ it follows that Dk+1,p ⊂ Dk,q if k ≥ 0 and

p > q. For k = 0 we put ∥·∥0,p= ∥·∥p and D0,p = Lp(Ω).

Definition 2.3.19. (Dh operator) For a fixed element h in the Hilbert space H, the operator

Dh on the set S of smooth random variables is defined as

DhF = ⟨DF,h⟩H .

This operator is closable from Lp(Ω) into Lp(Ω), for any p ≥ 1, and it has a domain that

we will denote by Dh,p.

The chain rule for the derivative operator [30] p28 is presented below.

Proposition 2.3.20. Let φ : Rm → R be a continuously differentiable function with bounded

derivatives, and fixed p ≥ 1. Suppose that F = (F1, ....,Fm) is a random vector whose

components belong to the space D1,p. Then φ(F) ∈ D1,p, and

D(φ(F)) =
m

∑
i=1

∂iφ(F)DF i.

See proof in [30] p28.
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2.3.4 The Divergence Operator

We will first review the divergence operator in the framework of a Gaussian isonormal process

W =W (h),h ∈ H associated with the Hilbert space H. We assume that W is defined on a

complete probability space (Ω ,F ,P), and that F is generated by W .

Definition 2.3.21. (Divergence Operator) We denote by δ the adjoint of the operator

D.That is, δ is an unbounded operator on L2(Ω ;H) with values in L2(Ω) such that:

1. The domain of δ , denoted by Domδ , is the set of H−valued square integrable random

variables u ∈ L2(Ω ;H) such that

|E(⟨DF,u⟩H)|≤ c∥F∥2,

for all F ∈ D1,2, where c is some constant depending on u.

2. If u belongs to Domdelta, then δ (u) is the element of L2(Ω) characterized by

E(Fδ (u)) = E(⟨DF,u⟩H)

for any F ∈ D1,2.

The operator δ is called the divergence operator and is closed as the adjoint of an

unbounded and densely defined operator.

See in [30] p36 - 37.

Notice that δ is a linear operator, that is

δ (au+bv) = aδ (u)+bδ (v),

if a,b ∈ R and u,v ∈ Domδ .

For the equation E(Fδ (u)) = E(⟨DF,u⟩H), the following property holds true

E(δ (u)) = E(⟨0,u⟩H) = 0,
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if u ∈ Domδ , by taking F = 1.

Denote by SH the class of smooth elementary elements of the form

u =
n

∑
j=1

Fjh j,

where the Fj are smooth random variables, and the h j are elements of H.

Lemma 2.3.22. Let Fj be smooth random variables, h j be elements of H. Then the element

u = ∑
n
j=1 Fjh j belongs to Domδ . Moreover,

δ (u) =
n

∑
j=1

FjW (h j)−
n

∑
j=1

⟨DFj,h j⟩H .

See in [30] p37 - 38, and the proof is modified.

Proof. We will apply the method of integration-by-parts stated in Lemma 2.3.15. Given any

smooth random variables G ∈ S0. First by linearity of ⟨·, ·⟩H , we have

E(⟨DG,u⟩H) = E
( n

∑
j=1

⟨DG,Fjh j⟩H

)
.

= E
( n

∑
j=1

Fj⟨DG,h j⟩H

)
.

By using the Lemma 2.3.15,

E(K⟨DF,h⟩H) = E(FKW (h))−E(F⟨DK,h⟩H).

we obtain

E(⟨DG,u⟩H) = E
( n

∑
j=1

GFjW (h j)
)
−E

( n

∑
j=1

G⟨DFj,h j⟩H)
)
,

Overall, we have

E(⟨DG,u⟩H) = E
[
G
( n

∑
j=1

FjW (h j)−
n

∑
j=1

⟨DFj,h j⟩H

)]
,
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for any smooth random variables G ∈ S0, which implies that u = ∑
n
j=1 Fjh j belong to Domδ .

Then by definition of the adjoint operator δ , we have

E(Gδ (u)) = E(⟨DG,u⟩H)

That is

E(Gδ (u)) = E
[
G
( n

∑
j=1

FjW (h j)−
n

∑
j=1

⟨DFj,h j⟩H

)]
,

for any smooth random variables G ∈ S0.

The proof is complete.

By Lemma 2.3.22, we can represent the δ -operator in another possible way, which will

be applied in the following proofs. Note that if u ∈D1,2(H) then the derivative Du is a square

integrable random variable with values in the Hilbert space H ⊗H, which can be identified

with the space of Hilbert-Schmidt operators from H to H.

Lemma 2.3.23. Let u ∈ SH , F ∈ S and h ∈ H, then

δ (Dhu) =
n

∑
j=1

DhFjW (h j)−
n

∑
j=1

⟨D(DhFj),h j⟩H .

See in [30] p38, and the proof is modified.

Proof. Let u ∈ SH , F ∈ S and h ∈ H, suppose u = ∑
n
j=1 Fjh j, then the derivative operator is

given as

Du =
n

∑
j=1

DFjh j,

and then by definition of Dh operator and linearity of ⟨·, ·⟩H , we have

Dhu =
〈 n

∑
j=1

DFjh j,h
〉

H

=
n

∑
j=1

h j⟨DFj,h⟩H

=
n

∑
j=1

(DhFj)h j.
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Hence, by straightforward application of Lemma 2.3.22, the target is achieved.

Lemma 2.3.24. Let u ∈ SH , F ∈ S and h ∈ H, then

Dh(δ (u)) = ⟨u,h⟩H +δ (Dhu).

See in [30] p38 and the proof is modified from [30] p37 - 38.

Proof. By using

δ (u) =
n

∑
j=1

FjW (h j)−
n

∑
j=1

⟨DFj,h j⟩H ,

we obtain

Dh(δ (u)) = ⟨D(δ (u)),h⟩H

=
〈

D(
n

∑
j=1

FjW (h j)−
n

∑
j=1

⟨DFj,h j⟩H),h
〉

H
.

By the linearity of ⟨·, ·⟩H and rearranging, we have

Dh(δ (u)) =
n

∑
j=1

⟨Fjh j +DFjW (h j)−D(⟨DFj,h j⟩H),h⟩H

=
n

∑
j=1

(Fj⟨h j,h⟩H + ⟨DFj,h⟩HW (h j)−⟨D(DhFj),h j⟩H)

=
〈 n

∑
j=1

Fjh j,h
〉

H
+
( n

∑
j=1

DhFjW (h j)−
n

∑
j=1

⟨D(DhFj),h j⟩H

)
.

Apply Lemma 2.3.23, we obtain

Dh(δ (u)) = ⟨u,h⟩H +δ (Dhu).

The proof is complete.
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Proposition 2.3.25. The space D1,2(H) is included in the domain of δ . If u,v ∈ D1,2(H).

then

E(δ (u)δ (v)) = E(⟨u,v⟩H)+E(Tr(Du◦Dv)).

The proof is modified from [30] p38.

Proof. First suppose that u,v ∈ SH . Let ei, i ≥ 1 be a complete orthonormal systerm on H.

We have

⟨ei,ei⟩H = 1,

and therefore

D(δ (u)) = D(δ (u))⟨ei,ei⟩H

= ei⟨D(δ (u)),ei⟩H

= eiDei(δ (u)).

Then, by definition of the divergence operator, we have

E(δ (u)δ (v)) = E(⟨v,D(δ (u))⟩H)

= E
[ ∞

∑
i=1

⟨v,ei⟩HDei(δ (u))
]
.

By using Lemma 2.3.24, we deduce

= E
[ ∞

∑
i=1

⟨v,ei⟩H(⟨u,ei⟩H +δ (Deiu))
]

= E(⟨u,v⟩H)+E
( ∞

∑
i, j=1

Dei⟨u,e j⟩HDe j⟨u,ei⟩H

)
= E(⟨u,v⟩H)+E(Tr(Du◦Dv)).

Then, we obtain

E(δ (u)2)≤ E(∥u∥2
h)+E(∥Du∥2

H⊗H).



2.3 Analysis on the Wiener Space 42

As the definition of seminorm on SV [30] p31 is given as

∥F∥k,p,V=
[
E(∥F∥p

V )+
k

∑
j=1

E(∥D jF∥p
H⊗ j⊗V )

] 1
p
.

Overall we have

E(δ (u)2)≤ ∥u∥2
1,2,H .

The space D1,2(H) is defined as the completion of SV with repect to the norm ∥·∥k,p,V .

The above condition implies that the space D1,2(H) is included in the domain of δ . In fact,

if u ∈ D1,2(H), there exists a sequence un ∈ SH such that un converges to u in L2(Ω) and

Dun converges to Du in L2(Ω ;H ⊗H). Therefore, δ (un) converges in L2(Ω) and its limit is

δ (u).

Moreover,

E(δ (u)δ (v)) = E(⟨u,v⟩H)+E(Tr(Du◦Dv))

holds for any u,v ∈ D1,2(H).

Lemma 2.3.26. Let G be a square integrable random variable. Suppose there exists Y ∈

L2(Ω) such that

E(Gδ (hF)) = E(Y F),

for all F ∈ D1,2. Then G ∈ Dh,2 and DhG = Y .

The proof is modified from [30] p39.

Proof. Recall the definition of Wiener chaos Hn: for each n ≥ 1, Hn is the closed linear

subspaces of L2(Ω ,F ,P) generated by the random variables {Hn(W (h)),h ∈ H,∥h∥H= 1}.

We denote by Jn the projection on the nth Wiener chaos Hn. Then the random variable

F ∈ D1,2 has the Wiener chaos expansion

F =
∞

∑
n=0

JnF.
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We have

E(Y F) = E(Gδ (hF))

=
∞

∑
n=1

E((JnG)δ (hF).

By the definition of the divergence operator and rearranging, we obtain

E(Y F) =
∞

∑
n=1

E(⟨DJnG,Fh⟩H)

=
∞

∑
n=1

E(F⟨DJnG,h⟩H)

=
∞

∑
n=1

E(FDh(JnG)).

Hence, Jn−1Y = Dh(JnG) for each n ≥ 1.

And this implies that G ∈ Dh,2(H) and DhG = Y .

Proposition 2.3.27. Suppose that u ∈ Dh,2(H), and Dhu belongs to the domain of the diver-

gence. Then δ (u) ∈ Dh,2(H) and the commutation relation holds as

Dh(δ (u)) = ⟨u,h⟩H +δ (Dhu).

See the proposition in [30] p38 and the proof is modified.

Proof. For all F ∈ D1,2, by using the definition of the divergence operator and Proposition

2.3.25, we have

E(δ (u)δ (hF)) = E(⟨u,hF))⟩H + ⟨Tr(Du◦hDF)⟩H)

= E(F⟨u,h⟩H + ⟨Dhu,DF⟩H)

= E[F(⟨u,h⟩H +δ (Dhu)].
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Set G = δ (u) and Y = ⟨u,h⟩H + δ (Dhu), that is E(Gδ (hF)) = E(Y F). Then from

Lemma 2.3.22, we can deduce that δ (u) ∈ Dh,2(H) and

Dh(δ (u)) = DhG = Y = ⟨u,h⟩H +δ (Dhu).

Proposition 2.3.28. Let F ∈ D1,2 and u be in the domain of δ such that Fu ∈ L2(Ω ;H).

Then Fu belongs to the domain of δ and the following equation holds

δ (Fu) = Fδ (u)−⟨DF,u⟩H ,

provided that Fδ (u)−⟨DF,u⟩H is square integrable.

The proof is modified from [30] p39.

Proof. For any smooth random variable G ∈ S0, by using

D(FG) = FDG+GDF,

we have

E(⟨DG,Fu⟩H) = E(⟨FDG,u⟩H)

= E(⟨D(FG)−GDF,u⟩H).

By using the definition of the divergence operator and rearranging, we have

E(⟨DG,Fu⟩H) = E(FGδ (u)−G⟨DF,u⟩H)

= E[G(Fδ (u)−⟨DF,u⟩H)],

which implies that Fu ∈ Domδ . Hence for any smooth random variable G ∈ S0 we have

E(Gδ (Fu)) = E(⟨DG,Fu⟩H)

= E[G(Fδ (u)−⟨DF,u⟩H)].
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That is

δ (Fu) = Fδ (u)−⟨DF,u⟩H .

If we replace u by a deterministic element h ∈ H, then the Proposition 2.3.28 can be

represented by the following version.

Proposition 2.3.29. Let h ∈ H and F ∈ Dh,2. Then Fh belongs to the domain of δ and the

following equation holds

δ (Fh) = FW (h)−DhF.

See proof in [30] p39.

The following is the definition of the Skorohod stochastic integral of the process u, see

in [30] p40.

Definition 2.3.30. ( Skorohod integral) Suppose that the separable Hilbert space H is an

L2 space of the form H = L2(T,B,µ),where T is the parametor space, B is the σ -algebra

and µ is a σ -finite measure without atoms. Then the elements of Domδ ⊂ L2(T ×Ω) are

square integrable processes, and we will call the divergence δ (u) as the Skorohod stochastic

integral of the process u. And the notation is as follows:

δ (u) =
∫ T

0
utdWt .

The Skorohod stochastic integral will play an important role in the computation of

operators in Chapter 5 and 6.

2.3.5 The Semigroup of Ornstein-Uhlenbeck

In this section, we will review the main property of the Ornstein-Uhlenbeck semigroup, based

on [30].

We assume that W = {W (h),h ∈ H} is an isonormal Gaussian process associated to the

Hilbert space H defined in a complete probability space (Ω ,F ,P), and F is generated by

W . We recall that Jn denotes the orthogonal projection on the nth Wiener chaos.
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Definition 2.3.31. (Ornstein-Uhlenbeck semigroup) The Ornstein-Uhlenbeck semigroup

is the one-parameter semigroup Tt , t ≥ 0 of contraction operators on L2(Ω) defined by

Tt(F) =
∞

∑
n=0

e−ntJnF,

for any F ∈ L2(Ω).

See in [30] p54.

Suppose that the process W ′ = {W ′(h),h ∈ H} is an independent copy of W . We will

assume that W and W ′ are defined on the product probability space (Ω ×Ω ′,F ⊗F ′,P×P′).

For any t > 0 we consider the process Z = {Z(h),h ∈ H} defined by

Z(h) = e−tW (h)+
√

1− e−2tW ′(h), h ∈ H.

From the definition we have that

E(Z(h)) = E(e−tW (h)+
√

1− e−2tW ′(h)) = 0,

and

cov(Z(h1),Z(h2)) = E(Z(h1)Z(h2))

= E[(e−tW (h1)+
√

1− e−2tW ′(h1))(e−tW (h2)+
√

1− e−2tW ′(h2))].

By rearranging, that is

cov(Z(h1),Z(h2)) = e−2t⟨h1,h2⟩H +(1− e−2t)⟨h1,h2⟩H

= ⟨h1,h2⟩H

= E(W (h1)W (h2),

which implies that Z = {Z(h),h ∈ H} is Gaussian process, and it has the same covariance

function as W .
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Definition 2.3.32. (Mehler’s formula) Let W : Ω →RH and W ′ : Ω ′→RH be the canonical

mappings associated with the processes {W (h),h ∈ H} and {W ′(h),h ∈ H}, respectively.

Given a random variables F ∈ L2(Ω), we can write F = ψF ◦W, where ψF is a measurable

mapping from RH to R, determined P◦W−1 a.s. Hence, the random variable ψF(Z(ω,ω ′))=

ψF(e−tW (ω)+
√

1− e−2tW ′(ω ′) is well defined P×P′ a.s. Then, for any t ≥ 0, we have

the equation called Mehler’s formula in the form of

Tt(F) = E ′(ψF(e−tW +
√

1− e−2tW )),

where E ′ denotes mathematical expected value with respect to the probability P′.

See in [30] p54-55.

In following part, the equivalence between the Definition 2.3.31 and Mehler’s formula is

illustrated, which is modified from [30] p55.

First of all, we know that both definitions give rise to a linear contraction operator on

L2(Ω).

This is clear in the Definition 2.3.31, and on the other hand, in Mehler’s formula it defines

a linear contraction operator on L2(Ω) for and p ≥ 1 because the following inequation holds:

E(|Tt(F)|p) = E(|E ′(ψF(e−tW +
√

1− e−2tW ))|p)

≤ E(E ′(|ψF(e−tW +
√

1− e−2tW )|p))

= E(|F |p).

The second step suffices that to check that both the Definition 2.3.31 and Mehler’s

formula coincide when F = exp
(

W (h)− 1
2∥h∥2

H

)
, h ∈ H.

By the definition of E ′, we have

E ′
(

exp
(

e−tW (h)+
√

1− e−2tW ′(h)− 1
2
∥h∥2

H

))
= exp

(
e−tW (h)− 1

2
∥h∥2

H

)
E ′(exp(

√
1− e−2tW ′(h))).
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Notice that for a random variable x with a standard Gaussian distribution N(0,1), if C is

a constant and the second derivative of function f is continuous, the following equation can

be proved:

E(exp(Cx)) = exp(C2/2).

By definition we have

E(exp(Cx)) =
∫ +∞

−∞

1√
2π

eCxe−x2/2dx

= eC2/2
∫ +∞

−∞

1√
2π

e−(x−C)2/2dx

= eC2/2.

And then by using W ′(h)∼ ∥h∥N(0,1) and rearranging, we obtain

E ′
(

exp
(

e−tW (h)+
√

1− e−2tW (h)− 1
2
∥h∥2

H

))
= exp

(
e−tW (h)− 1

2
∥h∥2

H

)
exp

(1− e−2t

2
∥h∥2

H

)
= exp

(
e−tW (h)− e−2t

2
∥h∥2

H

)
= exp

(
(e−t∥h∥H)

W (h)
∥h∥H

− (e−t∥h∥H)
2

2

)
.

Recall the Hermite polynomial

Hn(x) =
(−1)n

n!
e

x2
2

dn

dxn e−
x2
2 ,n ≥ 1,

if the function is F(x,s) = exp(sx− s2

2 ), we have

F(x,s) =
∞

∑
n=0

snHn(x).
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Let x =
W (h)
∥h∥H

and s = e−t∥h∥H , we deduce

E ′
(

exp
(

e−tW (h)+
√

1− e−2tW (h)− 1
2
∥h∥2

H

))
=

∞

∑
n=0

e−nt∥h∥n
HHn

(W (h)
∥h∥H

)
.

By the definition of Hermite polynomial, we have

∥h∥n
HHn

(W (h)
∥h∥H

)
=

1
n!

In(h⊗n).

And therefore, we deduce

E ′
(

exp
(

e−tW (h)+
√

1− e−2tW (h)− 1
2
∥h∥2

H

))
=

∞

∑
n=0

e−nt

n!
In(h⊗n).

On the other hand, by using the fact [30] p28

In(h⊗n) = n!Jn(h⊗n),

we have

Tt(F) =
∞

∑
n=0

e−ntJn(h⊗n)

=
∞

∑
n=0

e−nt

n!
In(h⊗n),

which yields the desired equality.

Proposition 2.3.33. The operators TtF have the following porperties:

1. TtF is non-negative (i.e. F ≥ 0 implies TtF ≥ 0).

2. TtF is symmetric:

E(GTtF) = E(FTtG) =
∞

∑
n=0

e−ntE(Jn(F)Jn(G)).
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See in [30] p55 and the proof is modified.

Proof. By using the fact G = ∑
∞
n=0 Jn(G) and the orthogonality of Jn, we deduce

E(GTtF) = E
[ ∞

∑
n=0

Jn(G)
∞

∑
m=0

e−mtJm(F)
]

=
∞

∑
n=0

e−ntE(E(Jn(F)Jn(G)),

which yields the symmetry of the operators TtF .

2.3.6 The Generator of the Ornstein-Uhlenbeck Semigroup

In this section, we will review the properties of the infinitesimal generator of the Ornstein-

Uhlenbeck semigroup, based on [30].

Definition 2.3.34. (L operator) Let F ∈ L2(Ω) be a square integrable random variable. The

operator L is defined in the following way:

LF =
∞

∑
n=0

−nJnF,

provided this series converges in L2(Ω). Jn denotes the orthogonal projection on the nth

Wiener chaos.

Definition 2.3.35. The domain of L operator is the set

DomL =
{

F ∈ L2(Ω),F =
∞

∑
n=0

In( fn) :
∞

∑
n=0

n2∥JnF∥2
2< ∞

}
.

In particular, DomL ⊂ R1,2.

Proposition 2.3.36. For all F,G ∈ DomL, we have

E(FLG) = E(GLF),

which implies that L is an unbounded symmectric operator on L2(Ω).
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Proposition 2.3.37. The operator L coincides with the infinitesimal generator of the Ornstein-

Uhlenbeck semigroup {Tt , t ≥ 0}.

See proof in [30].

The following proposition will be usefull, as it gives a explanation of the relationship

between the operator D, δ and L, and provides a possible way for computing the operator L

by computing δ (DF).

Proposition 2.3.38. The equation δ (DF) = −LF holds true, that is, for F ∈ L2(Ω) the

statement F ∈ DomL is equivalent to F ∈ DomδL (i.e., F ∈ D1,2 and DF ∈ Domδ ), and in

this case δ (DF) =−LF.

The proof is modified from [30] p59.

Proof. First suppose that F ∈ D1,2 and that DF ∈ Domδ . Let G be a random variable in the

nth Wiener chaos Hn, by using the definitions of the derivative operator and the divergence

operator, we have

E(Gδ (DF)) = E(⟨DG,DF⟩H)

= n2(n−1)!⟨g, fn⟩H⊗n

= nE(GJnF).

By using the fact F = ∑
∞
n=0 JnF and the orthogonality of the Wiener chaos, we have

E(Gδ (DF)) = E
(

G
∞

∑
n=1

Jnδ (DF)
)

= E(GJnδ (DF)).

That is,

Jnδ (DF) = nJnF.

which implies F ∈ DomL and by summing up from n = 0 to n = ∞ and the definition of the

operator L, we have

LF =−δ (DF).



2.3 Analysis on the Wiener Space 52

Conversely, if F ∈ DomL, thenF ∈ D1,2 and for any G ∈ D1,2, G = ∑
∞
n=0 In(gn), we have

E(Gδ (DF)) =
∞

∑
n=0

nE(JnGJnF)

=−E(GLF).

Therefore, DF ∈ Domδ , and LF =−δ (DF).

The proof is complete.

Proposition 2.3.39. It holds that S⊂ DomL, and for any F ∈S of the form F = f (W (h1), ...,W (hn),

f ∈C∞
p (Rn), we have

LF =
n

∑
i, j=1

∂i∂ j f (W (h1), ...,W (hn))⟨hi,h j⟩H

−
n

∑
i=1

∂i f (W (h1), ...,W (hn))W (hi).

The proof is modified from [30].

Proof. As F ∈ S, that is F ∈ D1,2. And by the definition

DF =
n

∑
i=1

∂i f (W (h1), ...,W (hn))hi,

we know that DF ∈ SH ⊂ Domδ .

Set Fi = ∂i f (W (h1), ...,W (hn)) and by

δ (u) =
n

∑
i=1

FiW (hi)−
n

∑
i=1

⟨DFi,hi⟩H ,
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we have

δ (DF) =
n

∑
i=1

∂i f (W (h1), ...,W (hn))W (hi)−
n

∑
i=1

⟨D(∂i f (W (h1), ...,W (hn))),hi⟩H

=
n

∑
i=1

∂i f (W (h1), ...,W (hn))W (hi)−
n

∑
i=1

〈 n

∑
j=1

∂ j∂i f (W (h1), ...,W (hn))h j,hi

〉
H

=
n

∑
i=1

∂i f (W (h1), ...,W (hn))W (hi)−
n

∑
i, j=1

∂ j∂i f (W (h1), ...,W (hn))⟨h j,hi⟩H .

Consequently, we obtain

LF =−δ (DF)

=
n

∑
i, j=1

∂i∂ j f (W (h1), ...,W (hn))⟨hi,h j⟩H

−
n

∑
i=1

∂i f (W (h1), ...,W (hn))W (hi).

This proof is complete.

Proposition 2.3.40. Suppose that F = (F1, ...,Fm) is a random vector whose components

belong to D2,4. Let ϕ be a function in C2(Rm) with bounded first and second partial

derivatives. Then ϕ ∈ DomL, and

L(ϕ(F)) =
m

∑
i, j=1

∂i∂ jϕ(F)⟨DF i,DF j⟩H +
m

∑
i=1

∂iϕ(F)LF i.

See proof in [30] p60.

The following is the definition of the norm ∥·∥L, see in [30] p60.

Definition 2.3.41. (∥·∥L norm) The norms ∥·∥L on S is defined as

∥F∥L= [E(F2)+E(|LF |2)]
1
2 .

From Definition 2.3.41, we know that DomL = D2,2.
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By the definition of operator LF = ∑
∞
n−0−nJnF , and the property of JnF

E(JnF · JmF) = 0, if n ̸= m,

we deduce

E(|LF |2) =
∞

∑
n−0

n2∥JnF∥2.

By using the fact

E
(
∥DF∥2

H

)
=

∞

∑
n=1

n∥JnF∥2
2,

and

E
(
∥D2F∥2

H⊗H

)
=

∞

∑
n=1

n(n−1)∥JnF∥2
2,

we have

E(F2)+E(|LF |2) = E(F2)+
∞

∑
n=1

n2∥JnF∥2
2

= E(F2)+
∞

∑
n=1

n∥JnF∥2
2+

∞

∑
n=1

(n2 −n)∥JnF∥2
2

= E(F2)+E
(
∥DF∥2

H

)
+E

(
∥D2F∥2

H⊗H

)
.

Recall the definition of the seminorms on S:

∥F∥k,p=
[
E(|F |p)+

k

∑
j=1

E
(
∥D jF∥p

H⊗ j

)] 1
p
.

We can obtain that the norms ∥·∥L and ∥·∥2,2 coincide. Furture explanations and detailed

examples will be demonstrated in Section 5.3.

2.4 Malliavin Calculus in finance

In this section, in order to demonstrate the applications of Malliavin Calculus to mathematical

finance in Chapter 6, first we review the financial modelling especially the Black-Scholes
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model. Then, we review a probability method for numerical calculations of price sensitivities

(Greeks) by using the Integration by parts formula.

2.4.1 Financial Modelling

Continuous Time Markets There are many types of financial modelling [37, 10, 38, 8].

Here we work with continuous time martingale type construction.

We use the following two constructions :

1’ Black-Scholes model.

St = S0eHt , t ∈ [0,T ]

where

Ht =
∫ t

0
(µs −

σ2
s

2
)ds+

∫ t

0
σsdWs,

and Wt is a Wiener process.

In calculation of Greeks, we work with a classical Black-Scholes model, where

St = S0exp
[(

a− σ2

2

)
t +σWt ], t ∈ [0,T ]

2’ Itô martingale modelling.

Mt =
∫ t

0
YsdWs

where Ys is a adapted process.

Two particular examples we will treat in calculation of Greeks:

Mt = Y0 +σWt (Bachelier model(1900))

and

Mt = Y0 +σ(W 2
t − t)
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Discrete time markets Discrete time martingale type construction is based on a random

walk.

Mn =
n

∑
j=1

Yj

The classical Binomial model is constructed as a Geometric random walk.

Sn = S0eMn

When Y ’s has two values, the market is complete in general, which implies that it can be

hedged.

S1 = S0u ; share is going up

↗

S0

↘

S1 = S0d ; share is going down

When Y ’s has three or more values, the market is incomplete in general, which implies

that it can not be hedged.

S1 = S0u ; share is going up

↗

S0 → S1 = S0c

↘

S1 = S0d ; share is going down

Overall, the issue of completeness and incompleteness comes in for the valuation of

payoffs.

In the case of complete markets, there exists a uniquely defined risk-neutral probability

measure, also known as a martingale measure, so the value of future payoffs are simply

discounted mathematical expectations with respect to this unique martingale measure.
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In the case of incomplete markets, the corresponding unique martingale measure is

undefined, so the risk-neutral pricing is no longer appropriate.

See [16] for more details about complete and incomplete market cases.

2.4.2 Black-Scholes Model

This section gives a brief review of the Black-Scholes model, based on [30].

Definition 2.4.1. (Black-Scholes model) Consider a market consisting of one risky asset

(stock) and one risk-free asset (bond):

The price process of the risky asset is assumed to be a geometric Brownian motion (GBM),

which has the form St = S0eHt , t ∈ [0,T ], with

Ht =
∫ t

0

(
µs −

σ2
s

2

)
ds+

∫ t

0
σsdWs,

where W = {Wt , t ∈ [0,T ]} is a Brownian motion defined in a complete probability space

(Ω ,F ,P). The filtration generated by the Brownian motion and completed by the P−null

sets is denoted as {Ft , t ∈ [0,T ]}. S0 is the initial stock price, µt is the rate of growth of the

price (E(St) = S0eµt), and σt is called the volatility process. The mean rate of return µt and

the volatility process σt are supposed to be measurable and adapted processes satisfying the

following integrability conditions

∫ T

0
|µt |dt < ∞ and

∫ T

0
σ

2
t dt < ∞,

almost surely.

The price of the bond is denote by Gt ∈ [0,T ] , and the following differential equation

holds

dGt = rtGtdt, G0 = 1,
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where the interest rate process is a nonnegative measurable and adapted process satisfying

the integrability condition
∫ T

0 rtdt < ∞, almost surely. That is,

Gt = exp
(∫ t

0
rsds

)
.

Fix a time interval [0,T ], imagine an investor invests in the assets by owning a certain

amount of non-risky assets and stocks respectively. Let αt be the number of non-risky assets

and βt be the number of stocks at time t.

Definition 2.4.2. (Portfolio) A portfolio or trading strategy is a couple

φt = {(αt ,βt), t ∈ [0,T ]}

such that the components αt and βt are measurable and adapted process such that

∫ T

0
|αt |rtdt < ∞,

∫ T

0
|βt µt |dt < ∞,

∫ T

0
β

2
t σ

2
t dt < ∞,

almost surely.

See in [30] p322.

The portfolio φ is said to be self-financing if there is no fresh investment and there is no

consumption. And all the following portfolios are considered to be self-financing from now

on.

Definition 2.4.3. (Value of portfolio) The investor’s initial wealth is given as

x = α0 +β0S0.

And investor’s wealth at time t, which is also considered as the value of the portfolio, is

Vt(φ) = αtGt +βtSt ,
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or

Vt(φ) = x+
∫ t

0
αsdGs +

∫ t

0
βsdSs.

Moreover, the value process Vt(φ) of any self-financing portfolio can be proved as a local

martingale. See proof in [30] p323.

Definition 2.4.4. (Derivative) A derivative is a contract on the risky asset that produces a

payoff H at maturity time T . Generally, the payoff H is an FT -measurable non-negative

random variable.A non-negative FT -measurable payoff H is said to be replicated if there

exists a self-financing portfolio φ such that VT (φ) = H.

The following proposition shows that any derivative E(W−2
T Z2

T H2) < ∞ is replicable,

where the process Zt is defined by

Zt = exp
(
−

∫ t

0
θsdWs −

1
2

∫ t

0
θ

2
s ds

)
.

Proposition 2.4.5. Let H be a non-negative FT -measurable random variable such that

E(W−2
T Z2

T H2)< ∞. Then, there exists a self-financing portfolio φ such that VT (φ) = H.

See the proposition and proof in [30] p326.

Under the assumptions of Proposition 2.4.5, the price of a derivative can be obtained by

the following proposition.

Proposition 2.4.6. The price of a derivative with payoff H at time t < T is given by the value

at time t of a portfolio wich replicates H. And the value of a portfolio at time t is given as

Vt(φ) = Z−1
t E

(
ZT e−

∫ T
t rsdsH|Ft

)
.

Moreover, the value of a portfolio can be obtained by the following proposition.

Proposition 2.4.7. (Value of a portfolio) The value of the arbitrage free portfolio at time t

is given as

Vt(φ) = EQ

(
e−

∫ T
t rsdsH|Ft

)
,
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where the measure Q is given by dQ
dP = ZT .In particular, the value of the portfolio at time

t = 0 is given as

V0(φ) = EQ

(
e−

∫ T
0 rsdsH

)
.

See the proposition and proof in [30] p327.

And this equation will play a very important role in the computation of Greeks in Chapter

6.

2.4.3 Integration by Parts Formula and Computation of Greeks

Recall that W = {W (h),h ∈ H} denotes an isonormal Gaussian process associated with the

Hilbert space H. We assume that W is defined on a complete probability space (Ω ,F ,P),

and that F is generated by W .

In the following part, we will review a general integration by parts formula, which plays

a fundamental role in the computaion of Greeks. See in [30] p330.

Proposition 2.4.8. (Integraltion by parts formula) Let F,G be two random variables such

that F ∈ D1,2. Consider an H-valued random variable u such that DuF = ⟨DF,u⟩H ̸= 0 a.s.

and Gu(DuF)−1 ∈ Domδ . Then, for any continuously differentiable function f with bounded

derivative we have

E( f ′(F)G) = E( f (F)H(F,G)),

where H(F,G) = δ (Gu(DuF)−1).

The proof is modified from [30] p331.

Proof. Recall the fact that

Du( f (F)) = ⟨D f (F),u⟩H

= f ′(F)⟨DF,u⟩H

= f ′(F)DuF.
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By DuF ̸= 0 a.s. we have

f ′(F) = Du( f (F))(DuF)−1.

= ⟨D f (F),u⟩H(DuF)−1.

Hence by rearranging

E( f ′(F)G) = E(⟨D f (F),u⟩H(DuF)−1G)

= E(⟨D f (F),Gu(DuF)−1⟩H).

Recall the duality relationship for any F ∈ D1,2

E(Fδ (u)) = E(⟨DF,u⟩H),

if u ∈ Domδ .

Finally, we can deduce that

E( f ′(F)G) = E( f (F)δ (Gu(DuF)−1)).

Suppose that the parameters appeared in the Black-Scholes model from section 2.4.2 are

constants, that is σt = σ , µt = µ and rt = r. Then the stock price can be denoted by

St = S0exp
((

µ − σ2

2

)
t +σWt

)
,

which is a geometric Brownian motion (GBM).

Consider an option with payoff H such that EQ(H2)< ∞. Recall its price at time t = 0 is

determined by

V0 = EQ(e−rT H).
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Suppose that we can write the payoff function as H = f (Fα), where α is one of the

parameters of the model, that is, S0, σ or r. Then, computing the derivative of the expected

value EQ(e−rT H) with respect to the parameter α , we have

∂V0

∂α
= e−rT EQ

(
f ′(Fα)

dFα

dα

)
.

Using Proposition 2.4.8 we can deduce

∂V0

∂α
= e−rT EQ

(
f (Fα)H

(
Fα ,

dFα

dα

))
.

A Greek is a derivative of a financial quantity, usually an option price, with respect to any

of the parameters of the model. The derivative of the option price at time t = 0 with respect

to the initial price of the stock S0 is called Delta, which is considered as the most important

Greek. Denote Delte by ∆ . The Gamma, denoted by Γ , is the second derivative of the option

price V0 with respect to the initial stock price S0. That is, Γ =
∂ 2V0

∂S2
0

. The derivative of V0

with respect to the volatility σ is called Vega, denoted by ϑ . That is, ϑ =
∂V0

∂σ
.

These Greeks are useful to measure the stability of this quantity under variations of the

parameter.



Chapter 3

Weighted Self-normalized Sum of

Exchangeable Variables

Assume that Y = {Yi, i ≥ 1} is a sequence of independent, identically distributed random

variables, where Y is non-negative, and let X = {Xi, i ≥ 1} be a sequence of i.i.d. random

variables independent of Y = {Yi, i ≥ 1} , where X satisfies

E(X2)< ∞ and E(X) = 0.

Let Rn denote the randomly weighted self-normalized sum

Rn =
∑

n
i=1 XiYi

∑
n
i=1Yi

.

and Sn denote ∑
n
i=1Yi.

This chapter is motivated by the following theorem [27].

Theorem 3.0.1. The ratio Rn converges in distribution to a non-degenerate variable if and

only if Y belongs to a domain of attraction of the positive stable law with characteristics

0 ≤ α < 1.
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The result has been proved in the mason and Zinn paper [27] under the condition

E(|X |p)< ∞, for p > 2.

We only have a discussion on the truncation argument.

If we do a truncation for Xi such that

X (m)
i =

Xi, |Xi|≤ m

0, else
for 1 ≤ i ≤ n

where m is a constant, m > 0.

Then we have the truncated weighted self-normalized sum

R(m)
n =

n

∑
i=1

X (m)
i Yi

Sn
,

and the weighted self-normalized sum Rn is

Rn = R(m)
n +(Rn −R(m)

n )

=
n

∑
i=1

X (m)
i Yi

Sn
+

n

∑
i=1

(Xi −X (m)
i )Yi

Sn
,

where Sn denotes ∑
n
i=1Yi.

Thus, by triangular inequality and since |X (m)
i |≤ m

|R(m)
n | ≤

n

∑
i=1

|X (m)
i |Yi

Sn

≤ m ·
n

∑
i=1

Yi

Sn

= m,

which implies that R(m)
n is bounded by m.
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Denote that ∆
(m)
n = Rn −R(m)

n . Observe that

(Xi −X (m)
i ) = Xi1(|Xi|> m).

Then and by independence

E
(

∆
(m)
n )2 = E(

n

∑
i=1

(Xi −X (m)
i )Yi

Sn

)2

= E
( n

∑
i=1

Xi1(|Xi|> m)Yi

Sn

)2
.

Recall the following fact. See in Appendix for the proof.

For an exchangeable variable δi =
XiYi

∑
n
i=1Yi

, where Xi and Yi are i.i.d., we have

E
( n

∑
i=1

δi

)2
= E

(
∑

1≤i, j≤n
δiδ j

)
=

n

∑
i=1

E(δ 2
i )+

n

∑
i ̸= j

E(δiδ j),

moreover we have

E
( n

∑
i=1

δi

)2
= nE(δ 2)+n(n−1)E(δ1δ2).

Therefore, we obtain

E(∆ (m)
n )2 = nE(X21(|X |> m)) ·EY 2

S2
n
+n(n−1)[E(X1(|X |> m))]2 ·EY1Y2

S2
n
.

Notice that since Y,Yi are iid, we have

nE
(Y 2

S2
n

)
=

n

∑
i=1

E
(Y 2

i
S2

n

)
= E

( n

∑
i=1

Y 2
i

S2
n

)
≤ 1.
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The last line follows because Yi are non-negative.

Similarly, we have

n(n−1)E
(Y1Y2

S2
n

)
=

n

∑
i ̸= j

E
(YiYj

S2
n

)
.

Then by non-negativity of Yi

n

∑
i ̸= j

E
(YiYj

S2
n

)
≤ ∑

i, j=1
E
(YiYj

S2
n

)
= E

(S2
n

S2
n

)
= 1.

Finally, we deduce that

E(∆ (m)
n )2 ≤ E(X21(|X |> m))+ [E(X1(|X |> m))]2.

From the definition of variance of X I(|X|>m), we have

var(X1(|X |> m)) = E(X21(|X |> m))− [E(X1(|X |> m))]2 ≥ 0,

and therefore

E(∆ (m)
n )2 ≤ 2E(X21(|X |> m)),

which implies that E(∆ (m)
n )2 tends to 0, as m goes to infinity, uniformly in n.

For fixed m, as R(m)
n is bounded by m, denote the sequence R(m)

n by Wm, then by Lemma

2.2.13 there exists Wm′ such that ∥Wm′ −W∥−→ 0 in L2, as m′ −→ ∞.

Thus by triangular inequality and

Rn −W = Rn −R(m′)
n +R(m′)

n −Wm′ +Wm′ −W,
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we have

∥Rn −W∥≤ ∥Rn −R(m′)
n ∥+∥R(m′)

n −Wm′∥+∥Wm′ −W∥.

As the L2 norm ∥Rn −R(m′)
n ∥−→ 0 uniformly in n, as m′ −→ ∞, by taking a limsup as

n −→ ∞ first, then as m′ −→ ∞, we have

limsup
m′→∞

limsup
n→∞

∥Rn −W∥≤ limsup
m′→∞

[
limsup

n→∞

∥Rn −R(m′)
n ∥+∥Wm′ −W∥

]
.

Hence we have

∥Rn −W∥−→ 0 as n −→ ∞,

which implies ER2
N ≤ K < ∞, where K is constant, K > 0.

The proof of the truncation case is complete.



Chapter 4

Computing Moments of Stochastic

Processes

In this chapter, we will illustrate some calculations of moments of stochastic processes via

different methods.

4.1 By Using the Definition of Expectation

First of all, we will apply the traditional way to compute the expectations, by using the

definition of the expectation.

Recall that if a random variable X has the probability density function f , then the

corresponding expectation of g(X) is given as

E(g(X)) =
∫

∞

−∞

g(x) f (x)dx.

In the following example, we will apply this method to compute the even moments of the

Brownian motion.
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Example 4.1.1. For fixed time t , since the Brownian motion Wt has a Gaussian distribution

N(0, t), for any natural number n ∈ N we have

E(W 2n
t ) =

1√
2πt

∫ +∞

−∞

x2ne−x2/2tdx

= tn 1√
2π

∫ +∞

−∞

y2ne−y2/2dy (using x =
√

ty).

By using integration by parts, we have

E(W 2n
t ) = tn 1√

2π

∫ +∞

−∞

(−1)y2n−1d(e−y2/2)

= tn 1√
2π

(∫ +∞

−∞

(2n−1)y2n−2e−y2/2dy− y2n−1e−y2/2
∣∣∣y=+∞

y=−∞

)
.

As the fact that

y2n−1e−y2/2
∣∣∣y=+∞

y=−∞

= 0,

by straightforward algebra, we obtain

E(W 2n
t ) = tn(2n−1)

1√
2π

∫ +∞

−∞

y2n−2e−y2/2dy

· · ·

= tn(2n−1)(2n−3) · · ·1 ·
∫ +∞

−∞

1√
2π

e−y2/2dy.

By plugging in ∫ +∞

−∞

1√
2π

e−y2/2dy = 1,

and

(2n−1)(2n−3) · · ·1 =
2n(2n−1)(2n−2) · · ·1
2n(2n−2)(2n−4) · · ·2

=
(2n)!
2nn!

,

we have

E(W 2n
t ) =

(2n)!
2nn!

tn.
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Similarly, the increment Wt −Ws has the Gaussian distribution N(0, t − s), for any natural

number n ∈ N we have

E[(Wt −Ws)
2n] =

(2n)!
2nn!

(t − s)n.

In particular, for n = 1 and n = 2, we have

E(W 2
t ) = t, E(W 4

t ) = 3t2

and

E[(Wt −Ws)
2] = t − s, E[(Wt −Ws)

4] = 3(t − s)2.

Similarly, we can compute the odd moments of the Brownian motion.

Example 4.1.2. We will show that E(W 2n+1
t ) = 0, for fixed t and n ∈ N.

Let Z be a random variable with a Gaussian distribution N(0, t) and function f : R−→

R be a Borel measurable function and E(| f (X)|) < ∞ . We can prove that E( f ′(Z)) =
1
t E(Z f (Z)):

By using integration by parts, we have

E( f ′(Z)) =
1√
2πt

∫ +∞

−∞

f ′(x)e−x2/2tdx

=
1√
2πt

∫ +∞

−∞

e−x2/2td( f (x))

=
1√
2πt

e−x2/2t f (x)
∣∣∣x=+∞

x=−∞

+
1
t

∫ +∞

−∞

x f (x)
1√
2πt

e−x2/2tdx.

As
1√
2πt

e−x2/2t f (x)
∣∣∣x=+∞

x=−∞

= 0,

we obtain

E( f ′(Z)) =
1
t

E(Z f (Z)).

Let f (Z) = Z2n, by using the previous equation, we have

2nE(Z2n−1) =
1
t

E(Z2n+1).
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That is,

E(Z2n+1) = 2ntE(Z2n−1)

= 22n(n−1)t2E(Z2n−3)

...

= 2nn! tnE(Wt).

And therefore, by the fact E(Wt) = 0, we have

E(W 2n+1
t ) = 0,

for fixed t and n ∈ N.

4.2 By Using Properties of Divergence Operator and Sko-

rohod Integral

In this section, we will still try to compute the moments of stochastic processes, while we

will apply some properties in Malliavin calculus.

Recall that W = {W (h),h ∈ H} is an isonormal Gaussian process associated with the

hilbert space H, which defined in a complete probability space (Ω ,F ,P), and F is generated

by W .

From Definition 2.3.21, we know that the domain of the divergence operator δ , denoted

by Domδ , is the set of H−valued square integrable random variables u ∈ L2(Ω ;H) such that

|E(⟨DF,u⟩H)|≤ c∥F∥2,

for all F ∈ D1,2, where c is some constant depending on u.

And the divergence operator δ has the following properties:
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1. If u belongs to Domδ , then δ (u) is the element of L2(Ω) characterized by

E(Fδ (u)) = E(⟨DF,u⟩H)

for any F ∈ D1,2.

2. In the case that the elements of Domδ ∈ L2(T ×Ω) are square integrable processes, the

divergence operator δ (u) is named as the Skorohod stochastic integral of the process

u, and it hols:

δ (u) =
∫

T
utdWt .

In the following example, we will apply the above properties to compute E(W 3
T ).

Example 4.2.1. By the definition of the skorohod integral

δ (u) =
∫

T
utdWt ,

we can obtain that δ (1) =WT .

Then we can write E(W 3
T ) as E(W 2

T δ (1)).

By using the properties of the divergence operator δ :

E(Fδ (u)) = E(⟨DF,u⟩H),

and

⟨ht ,gt⟩H =
∫

T
htgtdt,

we have

E(W 3
T ) = E(W 2

T δ (1))

= E(⟨DtW 2
T ,1⟩H)

= E
(∫ T

0
DtW 2

T dt
)
.
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Recall the definition of the derivative operator: suppose that a smooth random variables

F has the form

F = f (W (h1), · · ·,W (hn))

= f
(∫ T

0
h1(t)dWt , ...,

∫ T

0
hn(t)dWt

)
,

where W (h1) =
∫ T

0 h1(t)dWt is an isonormal Gaussian process associated with the Hilbert

space H and f belongs to C∞
p (Rn), h1, · · ·,hn are in the Hilbert space H, and n ≥ 1.

Then, the derivative of a smooth random variable F is the H-valued random variables

given by

DF =
n

∑
i=1

∂i f
∂W (hi)

(W (h1), ...,W (hn))hi

or

DtF =
n

∑
i=1

∂i f
∂W (hi(t))

(W (h1(t)), ...,W (hn(t)))hi(t).

Then by definition and the fact WT =
∫ T

0 h(t)dWt ,where h(t) = 1, t ≤ T , we have

DtW 2
T =

∂W 2
T

∂WT
·1

= 2WT .

Plugging in DtW 2
T = 2WT and E(WT ) = 0, we have

E(W 3
T ) = E

(∫ T

0
2WT dt

)
.

= E(2TWT )

= 0.
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Example 4.2.2. By using similar algebra, we obtain

E(W 4
T ) = E(W 3

T δ (1))

= E(⟨DtW 3
T ,1⟩H)

= E(
∫ T

0
DtW 3

T dt).

By plugging in DtW 3
T = 3W 2

T , we have

E(W 4
T ) = E

(∫ T

0
3W 2

T dt
)

= 3T E(W 2
T ).

By using the fact E(W 2
T ) = T , we have

E(W 4
T ) = 3T 2.

Example 4.2.3. In the case of E(W k
T ), k = 2,3, · · ·, we have

E(W k
T ) = E(W k−1

T δ (1))

= E
(∫ T

0
DtW k−1

T dt
)

= (k−1)T E(W k−2
T ).

By using the fact E(WT ) = 0 and E(W 2
T ) = T , for n ∈ N, we obtain

E(W 2n+1
T ) = 2nn!T nE(WT ) = 0,
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and

E(W 2n
T ) = (2n−1)T E(W 2n−2

T )

...

=
(2n)!
2nn!

T n−1E(W 2
T )

=
(2n)!
2nn!

T n.

which implies the same result we deduced in section 4.1.

4.3 By Using Itô Formula

In this section, we will show how to compute the expectations by applying Itô formula.

Espectially, we will calculate up to 4th moment of the Ornstein-Uhlenbeck process as well

as the expectation of exponential Ornstein-Uhlenbeck process.

Assume the stochastic process xt can be modelled as an Ornstein-Uhlenbeck process,

then it follows :

dxt = θ(m− xt)dt +σdWt ,

with t ≥ 0 and the initial value x being denoted by x0. The parameter θ is the rate of this

reversion, the parameter m is the average level, also known as the long-run average value

and the parameter σ , (σ ≥ 0), represents the volatility. dWt is the increment of a standard

Brownian Motion, Wt ∼ N(0, t).

Thus, this one-factor Ornstein-Uhlenbeck process is formed as a drift term θ(m− xt)dt ,

plus a stochastic term σdWt . When the current value of xt is greater than the average level m,

the drift term is negative, leading to the result of pulling the value down towards the average

level , also known as its place of equilibrium; otherwise, the drift is positive, pulling the

value up towards its average level.
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4.3.1 Properties of Ornstein-Uhlenbeck Process

By applying Itô calculus, the following properties of Ornstein-Uhlenbeck process can be

obtained.

Lemma 4.3.1. An Ornstein-Uhlenbeck process xt of the form

dxt = θ(m− xt)dt +σdWt ,

is a Gasussian process, and the following properties hold true:

1. E(xt) = m+(x0 −m)e−θ t;

2. E(x2
t ) = [m+(x0 −m)e−θ t ]2 + σ2

2θ
(1− e−2θ t);

3. var(xt) =
σ2

2θ
(1− e−2θ t) and cov(xt ,xs) =

σ2

2θ
(e−θ |t−s|− e−θ(t+s));

4. E(x3
t ) = [m+(x0 −m)e−θ t ]3 + 3σ2

2θ
(1− e−2θ t)[m+(x0 −m)e−θ t ];

5. E(x4
t ) = [m+(x0 −m)e−θ t ]4 + 3σ2

θ
(1− e−2θ t)[m+(x0 −m)e−θ t ]2 + 3σ4

4θ 2 (1− e−2θ t)2;

6. E[exp(Zxt)] = exp
[
Zm+Z(x0 −m)e−θ t + σ2Z2

4θ
(1− e−2θ t)

]
for a constant Z > 0.

See in [36] p84-85 for the Gaussianity and the moments of Ornstein-Uhlenbeck process,

the following proof is modified.

Proof. 1.

Define a new process f (t,xt)= xteθ t . As f
′
t = θxteθ t , f

′
x = eθ t , f

′′
xx = 0 and (dxt)

2 =σ2dt,

by applying Itô formula, we have the following differential representation

d(xteθ t) = f
′
t dt + f

′
xdx+

1
2

f
′′
xx(dxt)

2

= θxteθ tdt + eθ t(θ(m− xt)dt +σxtdWt)

= θmeθ tdt +σeθ tdWt .
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Thus, the process f (t,xt) = xteθ t in integral notation is

xteθ t = x0 +
∫ t

0
θmeθsds+

∫ t

0
σeθsdWs

= x0 +m(eθ t −1)+
∫ t

0
σeθsdWs,

which implies

xt = m+(x0 −m)e−θ t +
∫ t

0
σeθ(s−t)dWs.

As the integral
∫ t

0 σeθ(s−t)dWs is an Itô integral, we know that

E
(∫ t

0
σeθ(s−t)dWs

)
= 0,

and therefore by taking expactations on both sides, we obtain

E(xt) = m+(x0 −m)e−θ t .

2. Similarly, define the process g(t,xt) = x2
t e2θ t , and therefore

g
′
t = 2θx2

t e2θ t , g
′
x = 2xte2θ t , g

′′
xx = 2e2θ t .

Hence, apply the Itô formula we obtain

d(x2
t e2θ t) = g

′
tdt +g

′
xdxt +

1
2

g
′′
xx(dxt)

2

= e2θ t(2θmxt +σ
2)dt +2σe2θ txtdWt .

Thus, by integrate both sides from 0 to t, we have

x2
t e2θ t = x2

0 +
∫ t

0
e2θs(2θmxs +σ

2)ds+2σ

∫ t

0
e2θsxsdWs,

and times the exponential e−2θ t yields

x2
t = x2

0e−2θ t + e−2θ t
∫ t

0
e2θs(2θmxs +σ

2)ds+2σe−2θ t
∫ t

0
e2θsxsdWs.
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Note that the last term 2σe−2θ t ∫ t
0 e2θsxsdWs is an Itô integral, we know its expactation is

zero.

Then by taking expactations on both sides and Fubini’s theorem, we have

E(x2
t ) = x2

0e−2θ t + e−2θ t
∫ t

0
e2θs(2θmE(xs)+σ

2)ds.

To compute the integral, plug in E(xs) = m+(x0 −m)e−θs and rearrange, we obtain:

E(x2
t ) = x2

0e−2θ t + e−2θ t
∫ t

0
e2θs

{
2θm[m+(x0 −m)e−θs]+σ

2
}

ds

= e−2θ t
[
x2

0 +m2(e2θ t −1)+2m(x0 −m)(eθ t −1)+
σ2

2θ
(e2θ t −1)

]
= (m+(x0 −m)e−θ t)2 +

σ2

2θ
(1− e−2θ t).

3. From var(xt) = E(x2
t )− (E(xt))

2 and the results of 1 and 2, we have

var(xt) =
σ2

2θ
(1− e−2θ t).

This together with the form of xt

xt = m+(x0 −m)e−θ t +
∫ t

0
σeθ(s−t)dWs

and

E(xt) = m+(x0 −m)e−θ t ,

means that the law of the Gaussian stochastic process xt is the normal distribution

N
(

m+(x0 −m)e−θ t ,
σ2

2θ
(1− e−2θ t)

)
,
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Moreover, we can compute the covariances of the process xt in the following way

cov(xt ,xs) = E[(xt −E(xt))(xs −E(xs))]

= E
[
σ

2e−θ(t+s)
(∫ t

0
eθhdWh

)(∫ s

0
eθhdWh

)]
.

By applying the Itô isometry

cov(xt ,xs) = σ
2e−θ(t+s)E

[(∫ t

0
eθhdWh

)(∫ s

0
eθhdWh

)]
= σ

2e−θ(t+s)
∫ t∧s

0
e2θhdh

=
σ2

2θ
(e−θ |t−s|− e−θ(t+s)).

4. Let ϕ(t,xt) = x3
t e3θ t , then ϕ

′
t = 3θx3

t e3θ t , ϕ
′
x = 3x2

t e3θ t and ϕ
′′
xx = 6xte3θ t .

Thus by using Itô formula, we have

d(x3
t e3θ t) = ϕ

′
t dt +ϕ

′
xdxt +

1
2

ϕ
′′
xx(dxt)

2

= e3θ t(3θmx2
t +3σ

2xt)dt +3σx2
t e3θ tdWt .

Integrate on both sides we obtain

x3
t e3θ t = x3

0 +
∫ t

0
e3θs(3θmx2

s +3σ
2xs)ds+

∫ t

0
3σx2

s e3θsdWs,

again times the exponential e−3θ t yields

x3
t = x3

0e−3θ t + e−3θ t
∫ t

0
e3θs(3θmx2

s +3σ
2xs)ds+ e−3θ t

∫ t

0
3σx2

s e3θsdWs.
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By taking the expectation and Fubini’s theorem, then by plugging the values of the second

moment, we have

E(x3
t ) = x3

0e−3θ t + e−3θ t
∫ t

0
e3θs(3θmE(x2

s )+3σ
2E(xs))ds

= x3
0e−3θ t + e−3θ t

∫ t

0
e3θs3θm{[m+(x0 −m)e−θs]2

+
σ2

2θ
(1− e−2θs))+3σ

2[m+(x0 −m)e−θs]}ds,

and therefore by rearranging

E(x3
t ) = [m+(x0 −m)e−θ t ]3 +

3σ2

2θ
(1− e−2θ t)[m+(x0 −m)e−θ t ].

5. Define a new process ψ(t,xt) = x4
t e4θ t , as ψ

′
t = 4θx4

t e4θ t , ψ
′
x = 4x3

t e4θ t and ψ
′′
xx =

12x2
t e4θ t , by Itô formula we have

d(x4
t e4θ t) = ψ

′
t dt +ψ

′
xdxt +

1
2

ψ
′′
xx(dxt)

2

= e4θ t(4θmx3
t +6σ

2x2
t )dt +4σx3

t e4θ tdWt .

Thus, Integrate on both sides and again times the exponential e−4θ t yields

x4
t e4θ t = x4

0 +
∫ t

0
e4θs(4θmx3

s +6σ
2x2

s )ds+
∫ t

0
4σx3

s e4θsdWs,

and then

x4
t = x4

0e−4θ t + e−4θ t
∫ t

0
e4θs(4θmx3

s +6σ
2x2

s )ds+
∫ t

0
4σx3

s e4θsdWs.
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By taking expectation on both sides and Fubini’s theorem, then by plugging the values of

the third moment, we have

E(x4
t ) = x4

0e−4θ t + e−4θ t
∫ t

0
e4θs[4θmE(x3

s )+6σ
2E(x2

s )]ds

= x4
0e−4θ t +

∫ t

0
4θme4θ(s−t)

{
[m+(x0 −m)e−θ t ]3 +

3σ2

2θ
(1− e−2θ t)[m+(x0 −m)e−θ t ]

}
ds

+
∫ t

0
6σ

2e4θ(s−t)
{
[m+(x0 −m)e−θ t ]2 +

σ2

2θ
(1− e−2θ t)

}
ds.

Finally, by computing integrals and rearranging

E(x4
t ) = [m+(x0 −m)e−θ t ]4 +

3σ2

θ
(1− e−2θ t)[m+(x0 −m)e−θ t ]2 +

3σ4

4θ 2 (1− e−2θ t)2.

6. Set ω(t,xt) = exp(Zxt) and therefore we have

ω
′
t = 0, ω

′
x = Zexp(Zxt). ω

′′
xx = Z2exp(Zxt),

Then by Itô formula we have

dω(t,xt) = ω
′
t dt +ω

′
xdxt +

1
2

ω
′′
xx(dxt)

2

=
[
θZ(m− xt)exp(Zxt)+

1
2

σ
2Z2exp(Zxt)

]
dt +σZexp(Zxt)dWt ,

which implies

exp(Zxt)= exp(Zx0)+
∫ t

0

[
θZ(m−xs)exp(Zxs)+

1
2

σ
2Z2exp(Zxs)

]
ds+

∫ t

o
σZexp(Zxs)dWs.

By taking expectations on both sides and Fubini’s theorem, we have

E[exp(Zxt)] = exp(Zx0)+
∫ t

0

{
Z
(

θm+
1
2

σ
2Z

)
E[exp(Zxs)]−θZE[xsexp(Zxs)]

}
ds.
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If we set u(t,Z) = E[exp(Zxt)], the partial derivative of u with respect to Z is given as

u′Z = E[xtexp(Zxt)].

Rewriting the equation on E[exp(Zxt)] we have

u(t,Z) = exp(Zx0)+
∫ t

0

[
Z
(

θm+
1
2

σ
2Z

)
u(s,Z)−θZu′Z(s,Z)

]
ds

By using Leibniz’s integral rule [15] for differentiating an integral

(∫ b(t)

a(t)
k(t,x)dx

)′

t
=

∫ b(t)

a(t)
k′t(t,x)dx+b′(t)k(t,b(t))−a′(t)k(t,a(t)),

where k(t,x) is a function such that both k(t,x) and its partial derivative k′t(t,x) are continuous

in x and t in some region of the (t,x)-plane, the function a(t) and b(t) are both continuous and

both have continuous derivatives for t ∈ [0,T ], and a(t)≤ x ≤ b(t), we can partial derivative

u(t,Z) with respect to t, and obtain a PDE

u′t +θZu′Z −Z
(

θm+
1
2

σ
2Z

)
u = 0.

To find the characteristics curves of this PDE, we solve the ordinary equation
dZ
dt

= θZ

and get

lnZ −θ t = const, for Z ̸= 0.

Using separation of variables, we set

ξ (t,Z) = t , η(t,Z) = lnZ −θ t,
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and the corresponding Jacobian is found by straightforward calculations

∂ (ξ ,η)

∂ (t,Z)
= det

 ξt ξZ

ηt ηZ


= ξtηZ −ξZηt

=
1
Z
̸= 0.

Hence, the transformation of the coordinates (t,Z)↔ (ξ ,η) is both non-singular and

smooth. The inverse transformation is given by

t(ξ ,η) = ξ and Z(ξ ,η) = e(θξ+η).

And therefore, the transformed PDE is

vξ −Z
(

θm+
1
2

σ
2Z

)
v = 0.

where u(t,Z) = v(ξ ,η).

By rearranging and plugging in Z(ξ ,η) = e(θξ+η), we have

(lnv)ξ = θme(θξ+η)+
1
2

σ
2e2(θξ+η).

Integrating both sides with respect to ξ , we have

lnv = me(θξ+η)+
1

4θ
σ

2e2(θξ+η)+K1(η),

where the function K1(η) is a function that only depends on variable η .

That is,

v(ξ ,η) = exp
[
me(θξ+η)+

1
4θ

σ
2e2(θξ+η)

]
·K2(η),

where the function K2(η) is a function that only depends on variable η .
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By using the condition v(0,η) = u(0,Z) = exp(eηx0), we have

exp(eηx0) = exp
(

meη +
1

4θ
σ

2e2η

)
·K2(η).

By rearranging, we obtain

K2(η) = exp
[
(x0 −m)eη − 1

4θ
σ

2e2η

]
.

And therefore, the function v(ξ ,η) can be represented as follows

v(ξ ,η) = exp
[
(x0 −m+meθξ )eη +

1
4θ

σ
2e2η(e2θξ −1)

]
.

Hence, by the relation between functions u(t,Z) and v(ξ ,η), and plugging in ξ = t and

η = lnZ −θ t, we deduce

u(t,Z) = v(ξ ,η)

= exp
[
(x0 −m+meθξ )eη +

1
4θ

σ
2e2η(e2θξ −1)

]
= exp

[
(x0 −m+meθ t)Ze−θ t +

1
4θ

σ
2Z2e−2θ t(e2θ t −1)

]
.

By rearranging, we have

E[exp(Zxt)] = u(t,Z)

= exp
[
Zm+Z(x0 −m)e−θ t +

σ2Z2

4θ
(1− e−2θ t)

]
.

Observing from property 1 and 3, the Ornstein-Uhlenbeck process xt has the Gaussian

distribution of N
(

m+(x0 −m)e−θ t , σ2

2θ
(1− e−2θ t)

)
. Then as time t increases, the variance

increases. When the time t goes to infinity, the expectation and the variance of xt tend to

converge to m and
σ2

2θ
, respectively, which implies that when t tends to infinity, the law of xt

converges to the normal law N
(

m,
σ2

2θ

)
.
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As for each t > 0 the law of xt will always be N
(

m,
σ2

2θ

)
, if the initial condition x0 has

distribution N
(

m,
σ2

2θ

)
, this distribution is called stationary.

Also, as θ tends to zero, the process becomes dxt = σdWt , which is a Brownian motion

with the standard deviation of σ
√

t.

If θ goes to infinity, then the variance tends to be zero, showing that the process xt cannot

escape from its place of equilibrium, which is the average level m, even for a moment.

4.3.2 Additional Calculations for Ornstein-Ulenbeck Type Process

This part is motivated by the open question to calculate the expectation of E(xk
t ) of an Itô

process which has a similar representation as an Ornstein-Ulenbeck process.

More exactly, we assume the stochastic processxt follows the Ornstein-Uhlenbeck type

stochastic differential equation as below:

dxt = θ(m− x2
t )dt +σdWt ,

with xt = 0 and Wt is a Brownian motion.

In order to calculate the expectation of xt , we define another process f (t,xt) = xk
t , and let

function g(t,k) denote E(xk
t ).

When k = 0, f (t,xt) = x0
t = 1, that is g(t,0) = 1.

When k = 1, by integrating on both sides, we have

xt =
∫ t

0
θ(m− x2

s )ds+
∫ t

0
σdWs,

Taking expectations on both sides, we have

E(xt) =
∫ t

0
θ(m−E(x2

s ))ds,

which is

g(t,1) =
∫ t

0
θ(m−g(s,2))ds.
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When k ≥ 2, we get that f
′
t = 0, f

′
x = kxk−1

t , f
′′
xx = k(k−1)xk−2

t and (dxt)
2 = σ2dt.

Then, by Itô lemma

dxk
t = kxk−1

t θ(m− x2
t )dt + kxk−1

t σdWt +
1
2

k(k−1)xk−2
t σ

2dt.

Integrating on both sided, we deduce

xk
t =

∫ t

0

[
θmkxk−1

s −θkxk+1
s +

1
2

σ
2k(k−1)xk−2

s

]
ds+

∫ t

0
σkxk−1

s dWs,

Then by using

E
(∫ t

0
σkxk−1

s dWs

)
= 0,

and by taking expectations and Fubini’s theorem, we have

E(xk
t ) =

∫ t

0

[
θmkE(xk−1

s )−θkE(xk+1
s )+

1
2

σ
2k(k−1)E(xk−2

s )
]
ds.

That is,

g(t,k) =
∫ t

0

[
θmkg(s,k−1)−θkg(s,k+1)+

1
2

σ
2k(k−1)g(s,k−2)

]
ds.

Partial differentiating both sides with respect to t, we get that

g′t(t,k) = θmkg(t,k−1)−θkg(t,k+1)+
1
2

σ
2k(k−1)g(t,k−2).

Let constants C1, C2 and C3 represent θm, −θ and 1
2σ2, respectively, then the equation

becomes

g′t(t,k) =C1kg(t,k−1)+C2kg(t,k+1)+C3k(k−1)g(t,k−2).
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Suppose that z is a complex number frequency parameter z = a+ ib, a and b are real

numbers, by taking Laplace transform on both sides, we get that

∫ +∞

0
g′t(t,k)e

−ztdt =C1k
∫ +∞

0
g(t,k−1)e−ztdt

+C2k
∫ +∞

0
g(t,k+1)e−ztdt

+C3k(k−1)
∫ +∞

0
g(t,k−2)e−ztdt.

As the fact

∫ +∞

0
g′t(t,k)e

−ztdt =
∫ +∞

0
e−ztdg(t,k)

= e−ztg(t,k)
∣∣∣t=+∞

t=0
+ z

∫ +∞

0
g(t,k)e−ztdt

= z
∫ +∞

0
g(t,k)e−ztdt,

(g(t,0) = 1, g(0,k) = 0, g(0,0) = 0 as we define 0/0 = 0.) we have that

z
∫ +∞

0
g(t,k)e−ztdt =C1k

∫ +∞

0
g(t,k−1)e−ztdt

+C2k
∫ +∞

0
g(t,k+1)e−ztdt

+C3k(k−1)
∫ +∞

0
g(t,k−2)e−ztdt,

Set Lg(k) =
∫+∞

0 g(t,k)e−ztdt, we have

zLg(k) =C1kLg(k−1)+C2kLg(k+1)+C3k(k−1)Lg(k−2),

with

Lg(0) =
∫ +∞

0
e−ztdt

=−1
z

e−zt
∣∣∣t=+∞

t=0

=
1
z
.
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Let sequences ak denote Lg(k), and set R1 =
C1

z
, R2 =

C2

z
and R3 =

C3

z
, we have

ak = R1kak−1 +R2kak+1 +R3k(k−1)ak−2, a0 =
1
z
.

Let u be a variable, and by multiplying uk and taking the sums of both sides, we get

∞

∑
k=2

akuk = R1

∞

∑
k=2

kak−1uk +R2

∞

∑
k=2

kak+1uk +R3

∞

∑
k=2

k(k−1)ak−2uk.

Now, we apply several simple properties of the power series.

Given 0 < p < 1, the following properties can be obtained:

1. ∑
∞
n=0 pn = lim

n−→∞

1− pn

1− p
=

1
1− p

=C, where C is constant.

2. ∑
∞
n=N pn = pN

∑
∞
n=0 pn =

pN

1− p
= pN ·C.

3. ∑
∞
n=0 npn = p∑

∞
n=0 npn−1 = p

(
∑

∞
n=0 pn

)′
= p

( 1
1− p

)′
=

p
(1− p)2 .

4. ∑
∞
n=N npn = pN

∑
∞
n=0(n+N)pn = pN

(
∑

∞
n=0 npn +N ∑

∞
n=0 pn

)
= pN

[ p
(1− p)2 +N · 1

1− p

]
= N · pN

1− p
+

pN+1

(1− p)2 .

The techniques used here will be applied in the following part.

Let A (u), which is a function of u, denote ∑
∞
k=0 akuk.

Then we will rewrite the equation

∞

∑
k=2

akuk = R1

∞

∑
k=2

kak−1uk +R2

∞

∑
k=2

kak+1uk +R3

∞

∑
k=2

k(k−1)ak−2uk.

as an equation with respect to A (u).
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For the first term on the right side, by algebra we have

∞

∑
k=2

kak−1uk =
∞

∑
i=1

(i+1)aiui+1

= u
∞

∑
i=1

(i+1)aiui

= u
( ∞

∑
i=1

aiui+1
)′

u
.

By plugging in ∑
∞
k=1 akuk = A (u)−a0, we have

∞

∑
k=2

kak−1uk = u[u(A (u)−a0)]
′
u.

For the second term on the right side, by algebra we have

∞

∑
k=2

kak+1uk =
∞

∑
j=3

( j−1)a ju j−1

= u
∞

∑
j=3

( j−1)a ju j−2

= u
( ∞

∑
j=3

a ju j−1
)′

u

= u
(1

u

∞

∑
j=3

a ju j
)′

u

By plugging in ∑
∞
k=3 akuk = A (u)−a0 −a1u−a2u2, we have

∞

∑
k=2

kak+1uk = u
[1

u
(A (u)−a0 −a1u−a2u2)

]′
u
.
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For the last term on the right side, by algebra we have

∞

∑
k=2

k(k−1)ak−2uk =
∞

∑
l=0

(l +1)(l +2)alul+2

= u2
∞

∑
l=0

(l +1)(l +2)alul

= u2
( ∞

∑
l=0

alul+2
)′′

uu

= u2
(

u2
∞

∑
l=0

alul
)′′

uu
.

That is
∞

∑
k=2

k(k−1)ak−2uk = u2[u2A (u)]
′′
uu.

Hence the equation

∞

∑
k=2

akuk = R1

∞

∑
k=2

kak−1uk +R2

∞

∑
k=2

kak+1uk +R3

∞

∑
k=2

k(k−1)ak−2uk

becomes a second order ODE

A (u)−a0 −a1u = R1u[u(A (u)−a0)]
′
u

+R2u
[1

u
(A (u)−a0 −a1u−a2u2)

]′
u
+R3u2[u2A (u)]

′′
uu,

with initial condition A (0) = 0.

The future work is to solve the second order ODE to obtain Exk
t .



Chapter 5

Computing operators D, δ , L and

associated characteristics

In this chapter, we will illustrate the computation of the operators D, δ , L and associated

characteristics in Malliavin calculus. Not only it will help us to gain the understanding about

the analysis on Wiener space, which can be considered as the fundamental part of Malliavin

calculus, but also will make a contribution in the computation of Greeks in Chapter 6. As

these operators will play essential roles in computing the Greeks.

5.1 The Derivative Operator D

First of all, we start by computing the derivative operator D, which is defined as follows:

Recall that W = {W (h),h ∈ H} is an isonormal Gaussian process associated with the

Hilbert space H, which defined in a complete probability space (Ω ,F ,P), and F is generated

by W .

If a smooth random variable F has the form

F = f (W (h1), · · ·,W (hn))

= f
(∫ T

0
h1(t)dWt , ...,

∫ T

0
hn(t)dWt

)
,
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where W (h1) =
∫ T

0 h1(t)dWt and f belongs to C∞
p (Rn), h1, · · ·,hn are in the Hilbert space H,

and n ≥ 1.

Then, the derivative of a smooth random variable F is the H-valued random variables

given by

DF =
n

∑
i=1

∂i f
∂W (hi)

(W (h1), ...,W (hn))hi

or

DtF =
n

∑
i=1

∂i f
∂W (hi(t))

(W (h1(t)), ...,W (hn(t)))hi(t).

Recall that the notations are equivalent

Wt =Wt = B(t).

Example 5.1.1. In order to compute the derivative of the isonormal Gaussian process W (h),

where h belongs to the associated Hilbert space H.

First we know that for the smooth random variable W (h) = f (W (h)), the function f is

given as f (x) = x.

Then by using f ′ = 1 and the Definition 2.3.12, we have

D(W (h)) = f ′ ·h = h.

As for the smooth random variable W 2(h)= f (W (h)), the function f is given as f (x)= x2

and f ′ = 2x. By applying the same definition, we have

D(W 2(h)) = f ′ ·h = 2W (h)h.

Example 5.1.2. Consider the Brownian motion WT , as the fact WT =
∫ T

0 h(t)dWt , where

h(t) = 1, t ≤ T , the stochastic process W 2
T can be considered as

W 2
T = f

(∫ T

0
h(t)dWt

)
,

where f (x) = x2.
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Then we can obtain the derivative is given as

Dt(W 2
T ) = f ′ ·h(t) = 2WT .

Similarly, we can obtain Dt(W k
T ) = kW k−1

T .

Example 5.1.3. (Related to stock price). Given ST = S0exp
(∫ T

0

(
r− 1

2
σ

)
dt+

∫ T
0 σdWt

)
,we

have

ST = S0exp
(∫ T

0
(r+

1
2

σ)dt +
∫ T

0
σdWt

)
= f

(∫ T

0
h(t)dWt

)
,

where h(t) = σ , t ≤ T .

Then the derivative is

DtST =
∂ f
∂x

(∫ T

0
σdWt

)
h(t)

= S0exp(
∫ T

0

(
r+

1
2

σ)dt +
∫ T

0
σdWt

)
·σ

= σST .

Moreover, we have compute the Dh operator for ST by using the definition DhF =

⟨DF,h⟩H , that is

DhST = ⟨DtST ,h⟩H

=
∫ T

0
DtST dt.

By plugging in the previous result DtST = σST , we obtain

DhST =
∫ T

0
σST dt

= σT ST .
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Example 5.1.4. Given F = f (W (h1),W (h2) =W (h1)×W (h2), then

DtF =
∂ f
∂x1

h1(t)+
∂ f
∂x2

h2(t)

=W (h2(t))h1(t)+W (h1(t))h2(t).

The following part is motivated by calculations about the derivative operator of a stochas-

tic integral
∫ T

0 usdWs.

Recall the method we use in Section 2.3.3 to define a stochastic process:

If a stochastic process u in L2
a,T is a simple process, we will define it as the form of:

us =
n

∑
k=1

φk1(sk−1,sk](s),

where 0 = s0 < s1 < · · · < sn = T is a sequence of partitions of an time interval [0,T ], φk

are square integrable Fs−1- measurable random variables and 1(sk−1,sk](s) is the indicator

function.

Then the stochastic integral of u with respect to the Brownian motion B is defined by

∫ T

0
usdWs =

n

∑
j=1

φ j(Ws j −Ws j−1).

Then for t ≤ s ≤ T , by the definition of the derivative operator and differential by parts

method, we obtain

Dt

(∫ T

0
usdWs

)
= Dt

( n

∑
j=1

φ j(Ws j −Ws j−1)
)

=
n

∑
j=1

Dtφ j(Ws j −Ws j−1)+
n

∑
j=1

φ jDt(Ws j −Ws j−1).

By using the fact

Dt(Ws j −Ws j−1) = Dt

(∫ T

0
1(s j−1,s j](t)dWt

)
= 1(s j−1,s j](t),
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and therefore

n

∑
j=1

Dtφ j(Ws j −Ws j−1)+
n

∑
j=1

φ jDt(Ws j −Ws j−1)

=
n

∑
j=1

Dtφ j(Ws j −Ws j−1)+
n

∑
j=1

φ j1(s j−1,s j](t)

=
∫ T

0
DtusdWs +ut .

This implies the following lemma.

Lemma 5.1.5. If u is a stochastic process in L2
a,T , for t ≤ s ≤ T the derivative of the

stochastic integral of u satisfies:

Dt

(∫ T

0
usdWs

)
= ut +

∫ T

0
DtusdWs.

Example 5.1.6. Consider the stochastic integral
∫ T

0 WsdWs, we have

Dt

(∫ T

0
WsdWs

)
=Wt +

∫ T

0
DtWsdWs

=Wt +
∫ T

t
dWs

=Wt +WT −Wt

=WT .

By using WsdWs = d
(W 2

s − s
2

)
, we know

∫ T

0
WsdWs =

W 2
T −T

2
.

Then by definition of the derivative operator, we have

Dt

(∫ T

0
WsdWs

)
= Dt

(W 2
T −T

2

)
=WT ,
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which yields the same result.

More generally, if f is a continuously differentiable function, we have

Dt(
∫ T

0
f (Ws)dWs) = f (Wt)+

∫ T

0
Dt f (Ws)dWs

= f (Wt)+
∫ T

0
f ′(Ws)DtWsdWs

= f (Wt)+
∫ T

t
f ′(Ws)dWs.

Moreover, for a stochastic process YT defined by

YT =
∫ s=T

s=0

∫ u=s

u=0
σudWudWs,

the derivative of YT is given as

DtYT =
∫ t

0
σudWu +

∫ s=T

s=0
Dt

(∫ u=s

u=0
σudWu

)
dWs

=
∫ t

0
σudWu +

∫ s=T

s=0

(
σt +

∫ u=s

u=0
DtσudWu

)
dWs

=
∫ t

0
σudWu +

∫ T

0
σtdWs +

∫ s=T

s=0

∫ u=s

u=0
DtσudWudWs.

5.2 The Operator L

In this section, furture explainations and several examples about the infinitesimal generator

of the Ornstein-Uhlenbeck semigroup are demonstrated.

By Proposition 2.3.37, we know that the operator L coincided with the infinitesimal

generator of the Ornstein-Uhlenbeck semigroup {Tt , t ≥ 0}.

Let F ∈ L2(Ω) be a square integrable random variable. Recall that the operator L is

defined as:

LF =
∞

∑
n=0

−nJnF,

provided this series converges in L2(Ω). Jn denotes the orthogonal projection on the nth

Wiener chaos.
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And the domain of this operator will be the set

DomL =
{

F ∈ L2(Ω),F =
∞

∑
n=0

In( fn) :
∞

∑
n=0

n2∥JnF∥2
2< ∞

}
Recall the Proposition 2.3.38, which explains the relationship between the operator D, δ

and L:

For F ∈ L2(Ω) the statement F ∈ DomL is equivalent to F ∈ DomδL (i.e., F ∈ D1,2 and

DF ∈ Domδ ), and in this case δ (DF) =−LF .

Combining with the Proposition 2.3.28:

Let F ∈ D1,2 and u be in the domain of δ such that Fu ∈ L2(Ω ;H). Then Fu belongs to

the domain of δ and the following equation holds

δ (Fu) = Fδ (u)−⟨DF,u⟩H ,

provided that Fδ (u)−⟨DF,u⟩H is square integrable.

We will have an achievable way for computing the operator L by computing δ (DF),

which will be demonstrated in these following examples.

Example 5.2.1. Consider the case that F = W (h), h ∈ H. We can compute the derivative

operator

DF = h,

and by using the Skorohod integral we have

δ (DF) =W (h).

Then by using the Proposition 2.3.38, the operator L is given as

LF =−δ (DF) =W (h).
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Example 5.2.2. Consider the case that F =W (h1)W (h2), h1,h2 ∈ H. We can deduce

DF =W (h1)h2 +W (h2)h1

and by using Proposition 2.3.28 we have

δ (DF) =W (h1)
∫

T
h2dW −⟨DW (h1),h2⟩H +W (h2)

∫
T

h1dW −⟨DW (h2),h1⟩H

= 2W (h1)W (h2)−2⟨h1,h2⟩H .

Then by using the Proposition 2.3.38, the operator L is given as

LF =−δ (DF)

= 2⟨h1,h2⟩H −2W (h1)W (h2).

Example 5.2.3. Consider the case that F = W (h1)W (h2)W (h3), h1,h2,h3 ∈ H. We can

deduce

DF =W (h2)W (h3)h1 +W (h1)W (h3)h2 +W (h1)W (h2)h3.

By applying Proposition 2.3.38 and the linearity of the divergence operator, we have

LF =−δ (DF)

=−[δ (W (h2)W (h3)h1)+δ (W (h1)W (h3)h2)+δ (W (h1)W (h2)h3)].

By using Proposition 2.3.28 we have

δ (W (h2)W (h3)h1) =W (h1)W (h2)W (h3)−⟨D(W (h2)W (h3)),h1⟩H

=W (h1)W (h2)W (h3)−⟨W (h2)h3 +W (h3)h2,h1⟩H

=W (h1)W (h2)W (h3)−W (h3)⟨h1,h2⟩H −W (h2)⟨h1,h3⟩H .

By applying similar technique, we deduce

δ (W (h1)W (h3)h2) =W (h1)W (h2)W (h3)−W (h3)⟨h1,h2⟩H −W (h1)⟨h2,h3⟩H ,
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and

δ (W (h1)W (h2)h3) =W (h1)W (h2)W (h3)−W (h2)⟨h1,h3⟩H −W (h1)⟨h2,h3⟩H .

Then the operator L is given as

LF = 2W (h1)⟨h2,h3⟩H +2W (h2)⟨h1,h3⟩H +2W (h3)⟨h1,h2⟩H

−3W (h1)W (h2)W (h3).

5.3 Characteristics of Operator L

This section gives a discussion about the associated characteristics of operator L. In particular,

we illustrate the fact that the norms ∥·∥L and ∥·∥2,2 coincide by computing ∥·∥L and ∥·∥2,2

respectively.

Recall that the norms ∥·∥L on S is defined as

∥F∥L= [E(F2)+E(|LF |2)]
1
2 ,

and DomL = D2,2.

The technique to compute the operator L is same as that in section 5.2.

We alse recall the definition of the seminorms on S:

∥F∥k,p=
[
E(|F |p)+

k

∑
j=1

E(∥D jF∥p
H⊗ j)

] 1
p
.

5.3.1 Example: Case: F = (W (h))2

Consider the case F = (W (h))2, h ∈ H by the definition of derivative operator, we have

DF = 2W (h)h,
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and by using Proposition 2.3.38 we have

LF =−δ (DF)

=−2δ (W (h)h).

By using the Proposition 2.3.29

δ (Fh) = FW (h)−DhF,

we obtain

LF =−2[(W (h))2 −⟨DW (h),h⟩H ]

=−2[(W (h))2 −∥h∥2
H ]

= 2[∥h∥2
H−(W (h))2].

Then the ∥·∥L norm is given as

∥F∥L = [E(F2)+E(|LF |2)]
1
2

= [E((W (h))4)+4E((∥h∥2
H−(W (h))2)2)]

1
2 .

By the definition of Wiener space, we have E((W (h))2) = ∥h∥2
H , and therefore by

rearranging we have

∥F∥L = [4∥h∥4
H−8∥h∥2

HE((W (h))2)+5E((W (h))4)]
1
2

= [−4∥h∥4
H+5E((W (h))4)]

1
2 .

Finally, by using the properties of SBM E(W 4
t ) = 3t2, that is E((W (h))4) = 3∥h∥4

H and

by plugging in we have

∥F∥L =
√

11∥h∥2
H .
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In order to compute the norm ∥·∥2,2, we first compute the second order derivative. By

definition, we have

D2F = 2h(u)h(t).

Then the ∥·∥2,2 norm can be computed as

∥F∥2,2 = [E(F2)+E(∥DF∥2
H)+E(∥D2F∥2

H⊗H)]
1
2

= [E((W (h))4)+4E(∥h∥2
H(W (h))2)+4E(∥h(u)h(t)∥2

H⊗H)]
1
2

= [7∥h∥4
H+4E(∥h(u)h(t)∥2

H⊗H)]
1
2 .

By Fubini we have

∥h(u)h(t)∥2
H⊗H =

∫
T

∫
T
(h(u)h(t))2dtdu

=
∫

T
(h(t))2dt

∫
T
(h(u))2du

= ∥h∥4
H .

Then by plugging in, we obtain

∥F∥2,2 =
√

11∥h∥2
H ,

which implies that the norms ∥·∥L and ∥·∥2,2 coincide.

5.3.2 Example: Case: F = S0exp(m+σW (h))

Consider the case F = S0exp(m+σW (h)), h ∈ H, by the definition of derivative operator,

we have

DF = σFh,
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and by using proposition 2.3.38 we have

LF =−δ (DF)

=−σδ (Fh).

By using the Proposition

δ (Fh) = FW (h)−DhF,

we obtain

LF =−σ(FW (h)−⟨DF,h⟩H)

=−σ(FW (h)−σF∥h∥2
H)

= σF(σ∥h∥2
H−W (h)).

Then the ∥·∥L norm is given as

∥F∥L = [E(F2)+E(|LF |2)]
1
2

= [E(F2)+σ
2E(F2(σ∥h∥2

H−W (h))2)]
1
2

= [(1+σ
4∥h∥4

H)E(F
2)−2σ

3∥h∥2
HE(F2W (h))+σ

2E(F2(W (h))2)]
1
2 .

Notice that for a random variable x with a standard Gaussian distribution N(0,1), if C is

a constant we have

E(exp(Cx)) = exp(C2/2), eq(1)

and if the second derivative of function f is continuous, the following property can be proved:

E(x f (x)) = E( f ′(x)). eq(2)
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By using integration by parts, we have

E( f ′(x)) =
∫ +∞

−∞

1√
2π

f ′(x)e−x2/2dx

=
∫ +∞

−∞

1√
2π

e−x2/2d f (x)

=
1√
2π

e−x2/2 f (x)|x=+∞
x=−∞+

∫ +∞

−∞

1√
2π

e−x2/2x f (x)dx.

By using the fact
1√
2π

e−x2/2 f (x)|x=+∞
x=−∞= 0,

we can deduce eq(2). By applying eq(2) twice, we obtain

E(x2 f (x)) = E( f (x))+E( f ′′(x)) eq(3)

Notice that W (h)∼ ∥h∥HN(0,1), that is W (h) = ∥h∥Hx.

By applying eq(1), we have

E(F2) = S2
0e2mE[exp(2σ∥h∥Hx)]

= S2
0e2mexp(2σ

2∥h∥2
H)

= S2
0exp(2m+2σ

2∥h∥2
H).

Set A = S2
0exp(2m+2σ2∥h∥2

H).

By applying eq(2) and eq(1), we have

E(F2W (h)) = S2
0e2m∥h∥HE[exp(2σ∥h∥Hx)x]

= 2σS2
0e2m∥h∥2

HE[exp(2σ∥h∥Hx)]

= 2σS2
0e2m∥h∥2

Hexp(2σ
2∥h∥2

H)

= 2σ∥h∥2
HA.



5.3 Characteristics of Operator L 104

By applying eq(3), eq(2) and eq(1), we have

E(F2(W (h))2) = S2
0e2m∥h∥2

HE[exp(2σ∥h∥Hx)x2]

= S2
0e2m∥h∥2

H [E(exp(2σ∥h∥Hx))+4σ
2∥h∥2

HE(exp(2σ∥h∥Hx))]

= S2
0e2m∥h∥2

H(1+4σ
2∥h∥2

H)exp(2σ
2∥h∥2

H)

= ∥h∥2
H(1+4σ

2∥h∥2
H)A.

Then the ∥·∥L norm can be computed as

∥F∥L = [(1+σ
4∥h∥4

H)A−4σ
4∥h∥4

HA+σ
2∥h∥2

H(1+4σ
2∥h∥2

H)A]
1
2

= [1+σ
2∥h∥2

H+σ
4∥h∥4

H ]
1
2 A

1
2

= [1+σ
2∥h∥2

H+σ
4∥h∥4

H ]
1
2 S0exp(m+σ

2∥h∥2
H).

In order to compute the norm∥F∥2,2, we will first compute D2F by using the first

derivative DF = σFh:

D2F = σ
2Fh(s)h(u),

then we have

∥F∥2,2 = [E(F2)+E(∥DF∥2
H)+E(∥D2F∥2

H⊗H)]
1
2

= [E(F2)+σ
2∥h∥2

HE(F2)+σ
4∥h∥4

HE(F2)]
1
2 .

Finally, by plugging in E(F2) = A and rearranging, we obtain the ∥·∥2,2 norm

∥F∥2,2 = [1+σ
2∥h∥2

H+σ
4∥h∥4

H ]
1
2 A

1
2

= [1+σ
2∥h∥2

H+σ
4∥h∥4

H ]
1
2 S0exp(m+σ

2∥h∥2
H),

which implies that the norms ∥·∥L and ∥·∥2,2 coincide.
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5.3.3 Example: Case: F =W (h1)W (h2)

Consider the case that F =W (h1)W (h2), h1,h2 ∈ H. We have

DF =W (h1)h2 +W (h2)h1,

and

LF = 2⟨h1,h2⟩H −2W (h1)W (h2).

Then the ∥·∥L norm is given as

∥F∥L = [E(F2)+E(|LF |2)]
1
2

= [E((W (h1)W (h2))
2)+4(⟨h1,h2⟩2

H −2⟨h1,h2⟩HE(W (h1)W (h2))

+E((W (h1)W (h2))
2))]

1
2 .

By plugging in E(W (h1)W (h2)) = ⟨h1,h2⟩H and rearranging we obtain

∥F∥L= [5E((W (h1)W (h2))
2)−4⟨h1,h2⟩2

H ]
1
2 .

In order to compute E((W (h1)W (h2))
2), we recall the Itô formula for functions in two

variables [20]:

Let f (x,y) be a function with continuous partial derivatives up to order two. Let X and Y

be Itô process with

dXt = µ
X
t dt +σ

X
t dWt ,

dYt = µ
Y
t dt +σ

Y
t dWt .
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Then

d f (Xt ,Yt) =
∂ f
∂x

(Xt ,Yt)dXt +
∂ f
∂y

(Xt ,Yt)dYt

+
1
2

∂ 2 f
∂x2 (Xt ,Yt)(σ

X
t )2dt +

1
2

∂ 2 f
∂y2 (Xt ,Yt)(σ

Y
t )

2dt

+
∂ 2 f

∂x∂y
(Xt ,Yt)σ

X
t σ

Y
t dt.

By using W (h1) =
∫ T

0 h1(t)dWt and W (h2) =
∫ T

0 h2(t)dWt , we have

dW (h1) = h1(t)dWt ,

and

dW (h2) = h2(t)dWt .

By applying the Itô formula for functions in two variables, we obtain

d(W (h1)W (h2))
2 = 2W (h1)(W (h2))

2dW (h1)+2W (h2)(W (h1))
2dW (h2)

+(W (h2))
2(h1(t))2dt +(W (h1))

2(h2(t))2dt

+4W (h1)W (h2)h1(t)h2(t)dt.

Then by integrating we have

(W (h1)W (h2))
2 =

∫ T

0
2W (h1)(W (h2))

2dW (h1)+
∫ T

0
2W (h2)(W (h1))

2dW (h2)

+
∫ T

0
(W (h2))

2(h1(t))2dt +
∫ T

0
(W (h1))

2(h2(t))2dt

+
∫ T

0
4W (h1)W (h2)h1(t)h2(t)dt.

Taking the expectations, we have

E[(W (h1)W (h2))
2] =

∫ T

0
E[(W (h2))

2](h1(t))2dt +
∫ T

0
E[(W (h1))

2](h2(t))2dt

+
∫ T

0
4E[W (h1)W (h2)]h1(t)h2(t)dt.
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By plugging in E[(W (h1))
2] =

∫ t
0(h1(s))2ds, E[(W (h2))

2] =
∫ t

0(h2(s))2ds and E[W (h1)W (h2)]=∫ t
0 h1(s)h2(s)ds, we have

E[(W (h1)W (h2))
2] =

∫ T

0

∫ t

0
(h2(s))2ds(h1(t))2dt +

∫ T

0

∫ t

0
(h1(s))2ds(h2(t))2dt

+4
∫ T

0

(∫ t

0
h1(s)h2(s)ds

)
h1(t)h2(t)dt.

By using the fact

∫ T

0

(∫ t

0
H(s)ds

)
H(t)dt =

1
2

(∫ T

0
H(t)dt

)2
,

we deduce

E[(W (h1)W (h2))
2] =

∫ T

0
(h1(t))2dt

∫ T

0
(h2(s))2ds+2

(∫ T

0
h1(s)h2(s)ds

)2

= ∥h1∥2
H∥h2∥2

H+2⟨h1,h2⟩2
H .

And therefore the ∥·∥L norm is given as

∥F∥L = [5E((W (h1)W (h2))
2)−4⟨h1,h2⟩2

H ]
1
2

= [5∥h1∥2
H∥h2∥2

H+6⟨h1,h2⟩2
H ]

1
2 .

In order to compute the norm∥F∥2,2, we will first compute D2F by using DF =W (h1)h2+

W (h2)h1:

D2F = h1(t)h2(u)+h1(u)h2(t),

then we have

E(∥DF∥2
H) = ∥h2∥2

HE[(W (h1))
2]+∥h1∥2

HE[(W (h2))
2]+2⟨h1,h2⟩HE[W (h1)W (h2)]

= 2∥h1∥2
H∥h2∥2

H+2⟨h1,h2⟩2
H ,
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and

E(∥D2F∥2
H⊗H) = E(∥h1(t)h2(u)+h1(u)h2(t)∥2

H⊗H)

= 2∥h1∥2
H∥h2∥2

H+2⟨h1,h2⟩2
H .

By plugging in and rearranging, we know that the norm∥F∥2,2 is

∥F∥2,2 = [E(F2)+E(∥DF∥2
H)+E(∥D2F∥2

H⊗H)]
1
2

= [5∥h1∥2
H∥h2∥2

H+6⟨h1,h2⟩2
H ]

1
2 ,

which implies that the norms ∥·∥L and ∥·∥2,2 coincide.



Chapter 6

Computing Greeks

In this chapter, we apply Malliavin calculus to compute Greeks for variety financial models.

In most cases, the Integration by parts formula will play a very important role.

Recall that the Integration by parts formula (Proposition 2.4.8):

Let F,G be two random variables such that F ∈ D1,2. Consider an H-valued random

variable u such that DuF = ⟨DF,u⟩H ̸= 0 a.s. and Gu(DuF)−1 ∈ Domδ . Then, for any

continuously differentiable function f with bounded derivative we have

E( f ′(F)G) = E( f (F)H(F,G)),

where H(F,G) = δ (Gu(DuF)−1).

Then for an option with payoff H such that EQ(H2)< ∞. Recall its price at time t = 0 is

determined by

V0 = EQ(e−rT H).

Greeks is defined as the derivative of the expected value EQ(e−rT H) with respect to one

of the parameters of the model, such as S0, σ or r.
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Moreover if we can write the payoff function as H = f (Fα), where α is one of S0, σ or r.

By applying Proposition 2.4.8, Greeks can be computed as

∂V0

∂α
= e−rT EQ( f ′(Fα)

dFα

dα
)

= e−rT EQ( f (Fα)H(Fα ,
dFα

dα
)).

6.1 Computation of Greeks for European Options

Consider the price process of the stock is a GBM St = S0eHt , t ∈ [0,T ], with

Ht =
∫ t

0
(r− σ2

2
)ds+

∫ t

0
σdWs,

where W = {Wt , t ∈ [0,T ]} is a Brownian motion defined in a complete probability space

(Ω ,F ,P).

Suppose the payoff H only depends on the price of the stock at the maturity time T . That

is, H = Φ(ST ). We call these financial derivative products satisfying H = Φ(ST ) European

options.

Recall the the option price at time t = 0 is V0 = EQ(e−rT Φ(ST )). And the Greeks can be

computed as follows.

Lemma 6.1.1. Suppose that Φ is a Lipschitz function and the stock price is ST = S0exp
((

r−
1
2σ2

)
T +σWT

)
. Given V0 = EQ(e−rT Φ(ST )), then the first derivative of V0 with respect to

S0 is

∆ =
e−rT

S0σT
EQ(Φ(ST )WT ).

This Lemma was stated in [30] p332 and the following proof is modified from [30] p332.

Proof. By Φ is a Lipschitz function we can derive

∆ =
∂V0

∂S0

= EQ

(
e−rT

Φ
′(ST )

∂ST

∂S0

)
.
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By using the fact
∂ST

∂S0
=

ST

S0
and rearranging we have

∆ =
e−rT

S0
EQ(Φ

′(ST )ST ).

Consider the case that u = 1, F = ST , and G = ST . Remind DtST = σST . We have

DuST =
∫ T

0
DtST dt = σT ST .

Hence, all the conditions appearing in Integration by parts formula are satisfied in this

case, and therefore applying Proposition 2.4.8 we can obtain

∆ =
e−rT

S0
EQ(Φ(F)H(F,G)),

and

H(F,G) = δ (Gu(DuF)−1)

=
δ (1)
σT

.

By using

δ (1) =
∫ T

0
dWt =WT ,

we obtain

H(F,G) =
WT

σT
.

Finally, we have

∆ =
e−rT

S0σT
EQ(Φ(ST )WT ).

The proof is complete.

Lemma 6.1.2. Suppose that Φ is a Lipschitz function and the stock price is ST = S0exp((r−
1
2σ2)T +σWT ). Given V0 = EQ(e−rT Φ(ST )), then the second derivative of V0 with respect
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to S0 is

Γ =
e−rT

S2
0σT

EQ

(
Φ(ST )

(W 2
T

σT
− 1

σ
−WT

))
.

The lemma was stated in [30] p333, while the following proof is different from [30]

p333.

Proof. By definition we have

Γ =
∂ 2V0

∂S2
0

=
∂∆

∂S0

=− e−rT

S2
0σT

EQ(Φ(ST )WT )+
e−rT

S2
0σT

EQ(Φ
′(ST )STWT ).

Applying Proposition 2.4.8 with u = 1, F = ST and G = STWT , we have

EQ(Φ
′(ST )STWT ) = EQ

(
Φ(ST )δ

(WT

σT

))
= EQ

(
Φ(ST )

1
σT

δ (WT )
)
.

Recall the proposition

δ (Lu) = Lδ (u)−⟨DL,u⟩H ,

if L ∈ D1,2 and u ∈ Domδ .

That is

δ (Lu) = L
∫ T

0
u(t)dWt −

∫ T

0
DtLu(t)dt,

by using the fact

δ (u) =
∫ T

0
u(t)dWt .

Therefore, we have

δ (WT ) =WT

∫ T

0
dWt −

∫ T

0
dt

=W 2
T −T.
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That is

EQ(Φ
′(ST )STWT ) = EQ

(
Φ(ST )

(W 2
T

σT
− 1

σ

))
.

Finally by rearranging we obtain

Γ =− e−rT

S2
0σT

EQ(Φ(ST )WT )+
e−rT

S2
0σT

EQ

(
Φ(ST )

(W 2
T

σT
− 1

σ

))
=

e−rT

S2
0σT

EQ

(
Φ(ST )

(W 2
T

σT
− 1

σ
−WT

))
.

The proof is complete.

Lemma 6.1.3. Suppose that Φ is a Lipschitz function and the stock price is ST = S0exp((r−
1
2σ2)T +σWT ). Given V0 = EQ(e−rT Φ(ST )), then the derivative of V0 with respect to σ is

ϑ = e−rT EQ

(
Φ(ST )

(W 2
T

σT
−WT − 1

σ

))
.

This Lemma was stated in [30] p333 and the following proof is modified from [30] p333.

Proof. By definition we know that

ϑ =
∂V0

∂σ

= EQ

(
e−rT

Φ
′(ST )

∂ST

∂σ

)
.

By using
∂ST

∂σ
= ST (WT −σT ),

we have

ϑ = e−rT EQ(Φ
′(ST )ST (WT −σT )).

Applying Proposition 2.4.8 with u = 1, F = ST and G = ST (WT −σT ) we have

ϑ = e−rT EQ(Φ(F)H(F,G)),
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and

H(F,G) = δ (ST (WT −σT )(σT ST )
−1)

= δ

(WT

σT
−1

)
.

By using

δ

(WT

σT
−1

)
=
(WT

σT
−1

)
WT −

∫ T

0

1
σT

dt

=
W 2

T
σT

−WT − 1
σ
,

we have

H(F,G) =
(W 2

T
σT

−WT − 1
σ

)
.

And therefore

EQ(Φ
′(ST )ST (WT −σT )) = EQ

(
Φ(ST )

(W 2
T

σT
−WT − 1

σ

))
.

Finally we obtain

ϑ = e−rT EQ

(
Φ(ST )

(W 2
T

σT
−WT − 1

σ

))
.

The proof is complete.

6.2 Computation of Greeks for Exotic Options

Consider the price process of the stock is St = S0eHt , t ∈ [0,T ], with

Ht =
∫ t

0
(r− σ2

2
)ds+

∫ t

0
σdWs,

where W = {Wt , t ∈ [0,T ]} is a Brownian motion defined in a complete probability space

(Ω ,F ,P).
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Suppose a option whose payoff function is a function of the average of the stock price
1
T
∫ T

0 Stdt, that is

H = Φ

( 1
T

∫ T

0
Stdt

)
.

For instance, the payoff function of an Asiatic call-option with exercise price K is

H =
( 1

T

∫ T

0
Stdt −K

)+
,

which implies that it is a derivative of this type. In this case, there is no closed formula for

the density of the random variable 1
T
∫ T

0 Stdt.

Recall the price of this option at time t = 0 is given by

V0 = e−rT EQ

(
Φ

( 1
T

∫ T

0
Stdt

))
.

In order to compute the Delta ∆ for this type of options, we set S̄T = 1
T
∫ T

0 Stdt.

Lemma 6.2.1. Suppose that Φ is a Lipschitz function, the stock price is ST = S0exp
((

r−
1
2σ2

)
T +σWT

)
and S̄T = 1

T
∫ T

0 Stdt. Given V0 = e−rT EQ

(
Φ

(
1
T
∫ T

0 Stdt
))

, then the first

derivative of V0 with respect to S0 is

∆ =
2e−rT

S0σ2 EQ

(
Φ(S̄T )

(ST −S0

T S̄T
−m

))
,

where m = r− σ2

2 .

This Lemma was stated in [30] p334 and the following proof is modified from [30] p334.

Proof. By definition we have

∆ =
∂V0

∂S0

= EQ

(
e−rT

Φ
′(S̄T )

∂ S̄T

∂S0

)
.

By using the fact
∂ S̄T

∂S0
=

S̄T

S0
,
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we have

∆ =
e−rT

S0
EQ(Φ

′(S̄T )S̄T ).

Set u = St , F = S̄T , G = S̄T , we have

DtF = Dt
1
T

∫ T

0
Srdr

=
1
T

∫ T

0
DtSrdr.

By using the fact

DtSr = σSr1{r≥t},

we have

DtF =
1
T

∫ T

0
σSr1{r≥t}dr

=
σ

T

∫ T

t
Srdr.

And therefore

DuF =
∫ T

0
StDtFdt

=
∫ T

0
St

(
σ

T

∫ T

t
Srdr

)
dt

=
σ

T

∫ T

0
St

(∫ T

t
Srdr

)
dt.

Set v(t) =
∫ T

t Srdr =
∫ T

0 Srdr−
∫ t

0 Srdr, differential v with respect to t, we have

v′t = St ,

that is,

dv(t) = Stdt.
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Hence, the integral
∫ T

0 St

(∫ T
t Srdr

)
dt can be written as

∫ T

0
St

(∫ T

t
Srdr

)
dt =

∫ T

0
v(t)dv(t)

=
1
2
(v(t))2|t=T

t=0

=
1
2
((v(T ))2 − (v(0))2).

As v(T ) = 0 and v(0) =
∫ T

0 Srdr, we obtain

∫ T

0
St

(∫ T

t
Srdr

)
dt =

1
2

(∫ T

0
Srdr

)2
.

That is

DuF =
σ

2T

(∫ T

0
Srdr

)2
.

Applying Proposition 2.4.8 we have

∆ =
e−rT

S0
EQ(Φ(F)H(F,G)),

and

H(F,G) = δ (Gu(DuF)−1)

= δ

( St
1
T
∫ T

0 Srdr

σ

2T

(∫ T
0 Srdr

)2

)

=
2
σ

δ

( St∫ T
0 Stdt

)
.

Recall the proposition

δ (Lu) = L
∫ T

0
u(t)dWt −

∫ T

0
DtLu(t)dt,

if L ∈ D1,2 and u ∈ Domδ .
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We have

δ

( St∫ T
0 Stdt

)
=

1∫ T
0 Stdt

∫ T

0
StdWt −

∫ T

0
Dt

( 1∫ T
0 Srdr

)
Stdt

=

∫ T
0 StdWt∫ T
0 Stdt

+
∫ T

0

Dt
∫ T

0 Srdr(∫ T
0 Srdr

)2 Stdt.

By using

Dt

∫ T

0
Srdr =

∫ T

t
σSrdr,

we deduce

δ

( St∫ T
0 Stdt

)
=

∫ T
0 StdWt∫ T
0 Stdt

+

∫ T
0

(∫ T
t σSrdr

)
Stdt(∫ T

0 Srdr
)2 .

Plugging in ∫ T

0

(∫ T

t
Srdr

)
Stdt =

1
2

(∫ T

0
Srdr

)2
,

we deduce

δ

( St∫ T
0 Stdt

)
=

∫ T
0 StdWt∫ T
0 Stdt

+
σ

2
.

And therefore

H(F,G) =
2
σ

δ

( St∫ T
0 Stdt

)
=

2
σ

∫ T
0 StdWt∫ T
0 Stdt

+1.

By definition we have

ST = S0 + r
∫ T

0
Stdt +σ

∫ T

0
StdWt ,

that is, ∫ T

0
StdWt =

1
σ

(
ST −S0 − r

∫ T

0
Stdt

)
.
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Hence

H(F,G) =
2

σ2
ST −S0∫ T

0 Stdt
+1− 2r

σ2

=
2

σ2

(ST −S0∫ T
0 Stdt

−
(

r− σ2

2

))
=

2
σ2

(ST −S0

T S̄T
−m

)
,

where m = r− σ2

2 .

Finally, we obtain the following expression for the Delta

∆ =
e−rT

S0
EQ(Φ(F)H(F,G))

=
2e−rT

S0σ2 EQ

(
Φ(S̄T )

(ST −S0

T S̄T
−m

))
,

where m = r− σ2

2 .

The proof is complete.

Lemma 6.2.2. Suppose that Φ is a Lipschitz function, the stock price is ST = S0exp
((

r−
1
2σ2

)
T +σWT

)
and S̄T = 1

T
∫ T

0 Stdt. Given V0 = e−rT EQ

(
Φ

(
1
T
∫ T

0 Stdt
))

, then the second

derivative of V0 with respect to S0 is

Γ =
4e−rT

S0σ4 EQ

[
Φ(S̄T )

((ST −S0

T S̄T
− r

)2
− σ2S0

T S̄T
− rσ2

2

)]
.

Proof. By definition we know

Γ =
∂ 2V0

∂S2
0

=
∂∆

∂S0
.

Pluggung in

∆ =
2e−rT

S0σ2 EQ

(
Φ(S̄T )

(ST −S0

T S̄T
−m

))
,
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where m = r− σ2

2 , we deduce

Γ =−2e−rT

S2
0σ2 EQ

[
Φ(S̄T )

(ST −S0

T S̄T
−m

)]
+

2e−rT

S0σ2

∂EQ

[
Φ(S̄T )

(ST −S0

T S̄T
−m

)]
∂S0

=−2e−rT

S2
0σ2 EQ

[
Φ(S̄T )

(ST −S0

T S̄T
−m

)]

+
2e−rT

S0σ2 EQ

[
Φ

′(S̄T )
∂ S̄T

∂S0

(ST −S0

T S̄T
−m

)
+Φ(S̄T )

∂

(ST −S0

T S̄T
−m

)
∂S0

]
.

As we know that

∂

(ST −S0

T S̄T
−m

)
∂S0

=

(
∂ST

∂S0
−1

)
T S̄T − (ST −S0)T

∂ S̄T

∂S0

T 2S̄2
T

.

= 0

By using
∂ST

∂S0
=

ST

S0
and

∂ S̄T

∂S0
=

S̄T

S0
, we can obtain

Γ =−2e−rT

S2
0σ2 EQ

[
Φ(S̄T )

(ST −S0

T S̄T
−m

)]
+

2e−rT

S0σ2 EQ

[
Φ

′(S̄T )
S̄T

S0

(ST −S0

T S̄T
−m

)]
=−2e−rT

S2
0σ2 EQ

[
Φ(S̄T )

(ST −S0

T S̄T
−m

)]
+

2e−rT

S2
0σ2 EQ

[
Φ

′(S̄T )
(ST −S0

T
−mS̄T

)]
.

Set F = S̄T , G =
ST −S0

T
−mS̄T and ut = St , we have

DuF =
σ

2T

(∫ T

0
Srdr

)2
.

Applying Proposition 2.4.8 we have

EQ

[
Φ

′(S̄T )
(ST −S0

T
−mS̄T

)]
= EQ(Φ(F)H(F,G)),
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and

H(F,G) = δ (Gu(DuF)−1)

= δ

(St

(ST −S0

T
−mS̄T

)
σ

2T

(∫ T
0 Srdr

)2

)

=
2
σ

δ

(( ST −S0(∫ T
0 Stdt

)2 −
m∫ T

0 Stdt

)
St

)
.

Recall the proposition

δ (Lu) = L
∫ T

0
u(t)dWt −

∫ T

0
DtLu(t)dt,

if L ∈ D1,2 and u ∈ Domδ .

Set L =
ST −S0(∫ T
0 Stdt

)2 −
m∫ T

0 Stdt
.

By using DtST = σST , Dt(
∫ T

0 Srdr) = σ
∫ T

t Srdr and rearranging we have

DtL =
σST

(∫ T
0 Stdt

)2
− (ST −S0)2

∫ T
0 Stdtσ

∫ T
t Srdr(∫ T

0 Stdt
)4 +

mσ
∫ T

t Srdr(∫ T
0 Stdt

)2

= σ

( ST(∫ T
0 Stdt

)2 −2(ST −S0)

∫ T
t Srdr(∫ T
0 Stdt

)3 +m
∫ T

t Srdr(∫ T
0 Stdt

)2

)
.

And therefore

∫ T

0
DtLu(t)dt = σ

∫ T

0

( ST(∫ T
0 Stdt

)2 −2(ST −S0)

∫ T
t Srdr(∫ T
0 Stdt

)3 +m
∫ T

t Srdr(∫ T
0 Stdt

)2

)
Stdt

= σ

( ST∫ T
0 Stdt

−2(ST −S0)

∫ T
0 St

(∫ T
t Srdr

)
dt(∫ T

0 Stdt
)3 +m

∫ T
0 St

(∫ T
t Srdr

)
dt(∫ T

0 Stdt
)2

)
.

By using the fact ∫ T

0
St

(∫ T

t
Srdr

)
dt =

1
2

(∫ T

0
Srdr

)2
,
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and rearranging we can obtain

∫ T

0
DtLu(t)dt = σ

( S0∫ T
0 Stdt

+
m
2

)
.

That is,

δ (Lu) =
( ST −S0(∫ T

0 Stdt
)2 −

m∫ T
0 Stdt

)∫ T

0
StdWt −σ

( S0∫ T
0 Stdt

+
m
2

)
.

By plugging in ∫ T

0
StdWt =

1
σ

(
ST −S0 − r

∫ T

0
Stdt

)
,

and rearranging we deduce

δ (Lu) =
( ST −S0(∫ T

0 Stdt
)2 −

m∫ T
0 Stdt

) 1
σ

(
ST −S0 − r

∫ T

0
Stdt

)
−σ

( S0∫ T
0 Stdt

+
m
2

)

=
1
σ

[ (ST −S0)
2(∫ T

0 Stdt
)2 − (m+ r)

(ST −S0)∫ T
0 Stdt

− σ2S0∫ T
0 Stdt

+m2
]
.

Then, we have

H(F,G) =
2

σ2

[ (ST −S0)
2(∫ T

0 Stdt
)2 − (m+ r)

(ST −S0)∫ T
0 Stdt

− σ2S0∫ T
0 Stdt

+m2
]
.

And therefore

EQ[Φ
′(S̄T )(

ST −S0

T
−mS̄T )] = EQ(Φ(F)H(F,G))

=
2

σ2 EQ[Φ(S̄T )(
(ST −S0)

2

(
∫ T

0 Stdt)2
− (m+ r)

(ST −S0)∫ T
0 Stdt

− σ2S0∫ T
0 Stdt

+m2)].
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Finally, by plugging in we deduce

Γ =−2e−rT

S2
0σ2 EQ

[
Φ(S̄T )

(ST −S0

T S̄T
−m

)]
+

4e−rT

S2
0σ4 EQ

[
Φ(S̄T )

( (ST −S0)
2(∫ T

0 Stdt
)2 − (m+ r)

(ST −S0)∫ T
0 Stdt

− σ2S0∫ T
0 Stdt

+m2
)]

=
4e−rT

S2
0σ4 EQ

[
Φ(S̄T )

(
− σ2

2
ST −S0(∫ T
0 Stdt

)2 +
σ2m

2
+

(ST −S0)
2(∫ T

0 Stdt
)2 − (m+ r)

(ST −S0)∫ T
0 Stdt

− σ2S0∫ T
0 Stdt

+m2
)]

.

By rearranging, we obtain

Γ =
4e−rT

S2
0σ4 EQ

[
Φ(S̄T )

((ST −S0

T S̄T
− r

)2
− σ2S0

T S̄T
− rσ2

2

)]
.

Another way to compute the Gamma is

Γ =
∂ 2V0

∂S2
0

= e−rT EQ

(
Φ

′′(S̄T )
(

∂ S̄T

∂S0

)2)
.

By using
∂ S̄T

∂S0
=

S̄T

S0
, we have

Γ =
e−rT

S2
0

EQ(Φ
′′(S̄T )S̄2

T ).

Assuming that Φ ′ is Lipschitz, set u = St , F = S̄T and G = S̄2
T , we know that

DuF =
σ

2T

(∫ T

0
Srdr

)2
.

Then, by applying Proposition 2.4.8 we have

Γ =
e−rT

S0
EQ(Φ

′(F)H(F,G)),
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and

H(F,G) = δ (Gu(DuF)−1)

=
2
σ

δ

(St

T

)
.

By using

δ

(St

T

)
=

1
T

∫ T

0
StdWt

=
1

σT

(
ST −S0 − r

∫ T

0
Stdt

)
=

1
σ

(ST −S0

T
− rS̄T

)
,

we obtain

H(F,G) =
2

σ2

(ST −S0

T
− rS̄T

)
.

Therefore we have

Γ =
2e−rT

S2
0σ2 EQ

(
Φ

′(S̄T )
(ST −S0

T
− rS̄T

))
.

Again applying Proposition 2.4.8 with u = St , F = S̄T and G =
ST −S0

T
− rS̄T we have

Γ =
2e−rT

S2
0σ2 EQ(Φ(F)H(F,G)),

and

H(F,G) = δ (Gu(DuF)−1)

= δ

( 2
σ

St

(ST −S0

T 2S̄2
T

− r
T S̄T

))
=

2
σ

δ

(
St

( ST −S0(∫ T
0 Stdt

)2 −
r∫ T

0 Stdt

))
.



6.2 Computation of Greeks for Exotic Options 125

Then,

Γ =
2e−rT

S2
0σ2 EQ(Φ(S̄T )H(F,G))

=
4e−rT

S2
0σ3 EQ

[
Φ(S̄T )δ

(
St

( ST −S0(∫ T
0 Stdt

)2 −
r∫ T

0 Stdt

))]
.

Set L =
ST −S0(∫ T
0 Stdt

)2 −
r∫ T

0 Stdt
.Then Γ can be written as

Γ =
4e−rT

S2
0σ3 EQ[Φ(S̄T )δ (LSt)].

Recall the proposition

δ (Lu) = L
∫ T

0
u(t)dWt −

∫ T

0
DtLu(t)dt,

if L ∈ D1,2 and u ∈ Domδ .

Remind the fact

∫ T

0
Dt

( ST −S0(∫ T
0 Stdt

)2 −
m∫ T

0 Stdt

)
Stdt = σ

( S0∫ T
0 Stdt

+
m
2

)
,

we can obtain

∫ T

0
DtLStdt =

∫ T

0
Dt

( ST −S0(∫ T
0 Stdt

)2 −
r∫ T

0 Stdt

)
Stdt

= σ

( S0∫ T
0 Stdt

+
r
2

)
.

That is,

δ (LSt) =
( ST −S0(∫ T

0 Stdt
)2 −

r∫ T
0 Stdt

)∫ T

0
StdWt −σ

( S0∫ T
0 Stdt

+
r
2

)
.
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By plugging in ∫ T

0
StdWt =

1
σ

(
ST −S0 − r

∫ T

0
Stdt

)
,

and rearranging we deduce

δ (LSt) =
1
σ

[(ST −S0 − r
∫ T

0 Stdt∫ T
0 Stdt

)2
−σ

2
( S0∫ T

0 Stdt
+

r
2

)]
.

Finally we can deduce

Γ =
4e−rT

S2
0σ3 EQ[Φ(S̄T )δ (LSt)]

=
4e−rT

S2
0σ4 EQ

[
Φ(S̄T )

((ST −S0 − r
∫ T

0 Stdt∫ T
0 Stdt

)2
−σ

2
( S0∫ T

0 Stdt
+

r
2

)]
=

4e−rT

S2
0σ4 EQ

[
Φ(S̄T )

((ST −S0

T S̄T
− r

)2
− S0σ2

T S̄T
− rσ2

2

)]
.

which implies the same result.

The proof is complete.

Lemma 6.2.3. Suppose that Φ is a Lipschitz function, the stock price is ST = S0exp((r−
1
2σ2)T +σWT ) and S̄T = 1

T
∫ T

0 Stdt. Given V0 = e−rT EQ(Φ( 1
T
∫ T

0 Stdt)), then the derivative

of V0 with respect to σ is

ϑ =
2e−rT

σ2 EQ

[
Φ(S̄T )

(
(WT −σT )

(ST −S0

T S̄T
−m

)
−σ

)]
,

where m = r− σ2

2
.

Proof. By definition we know that

ϑ =
∂V0

∂σ

= EQ

(
e−rT

Φ
′(S̄T )

∂ S̄T

∂σ

)
.

By using
∂ST

∂σ
= (WT −σT )S̄T ,
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we have

ϑ = e−rT EQ(Φ
′(S̄T )(WT −σT )S̄T ).

Applying Proposition 2.4.8 with u = St , F = S̄T and G = (WT −σT )S̄T we have

ϑ = e−rT EQ(Φ(F)H(F,G)),

and

H(F,G) = δ (Gu(DuF)−1).

Remind that DuF = σ

2T

(∫ T
0 Srdr

)2
, we deduce

H(F,G) = δ (Gu(DuF)−1)

= δ

(2T (WT −σT )S̄T St

σ

(∫ T
0 Srdr

)2

)

=
2
σ

δ

((WT −σT )St∫ T
0 Srdr

)
.

Then,

ϑ = e−rT EQ(Φ(S̄T )H(F,G))

=
2e−rT

σ
EQ

(
Φ(S̄T )δ

((WT −σT )St∫ T
0 Srdr

))
.

Recall the proposition

δ (Lu) = L
∫ T

0
u(t)dWt −

∫ T

0
DtLu(t)dt,

if L ∈ D1,2 and u ∈ Domδ .

Set L =
WT −σT∫ T

0 Srdr
.
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By using DtWT = 1, Dt

(∫ T
0 Srdr

)
= σ

∫ T
t Srdr and rearranging we have

DtL =

∫ T
0 Stdt − (WT −σT )σ

∫ T
t Srdr(∫ T

0 Stdt
)2

=
1∫ T

0 Stdt
−σ(WT −σT )

∫ T
t Srdr(∫ T
0 Stdt

)2 .

And therefore

∫ T

0
DtLStdt =

∫ T

0

( 1∫ T
0 Stdt

−σ(WT −σT )
∫ T

t Srdr(∫ T
0 Stdt

)2

)
Stdt

= 1−σ(WT −σT )

∫ T
0 St

(∫ T
t Srdr

)
dt(∫ T

0 Stdt
)2 .

By using the fact ∫ T

0
St

(∫ T

t
Srdr

)
dt =

1
2

(∫ T

0
Srdr

)2
,

and rearranging we can obtain

∫ T

0
DtLStdt = 1− σ(WT −σT )

2
.

That implies

δ (LSt) =
(WT −σT∫ T

0 Srdr

)∫ T

0
StdWt −

(
1− σ(WT −σT )

2

)
.

By plugging in ∫ T

0
StdWt =

1
σ

(
ST −S0 − r

∫ T

0
Stdt

)
,
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and rearranging we deduce

δ

((WT −σT∫ T
0 Srdr

)
St

)
=
(WT −σT∫ T

0 Srdr

) 1
σ

(
ST −S0 − r

∫ T

0
Stdt

)
−
(

1− σ(WT −σT )
2

)
=

1
σ

[
(WT −σT )

(ST −S0

T S̄T
−
(

r− σ2

2

))
−σ

]
.

Finally we obtain

ϑ =
2e−rT

σ2 EQ

[
Φ(S̄T )

(
(WT −σT )

(ST −S0

T S̄T
−m

)
−σ

]
where m = r− σ2

2 .

The proof is complete.

6.3 Greeks for Other Itô Martingales Modelling

In this part, we will discuss some calculations of Greeks for these models formed of Itô

martingale. Especially, in some cases the Integration by parts formula can not be applied

because of some ’bad points’ (i.e. W0).

6.3.1 Example on Brownian Motion Market

Let the stock price at maturity time T be

ST = S0 +σWT ,

and the payoff H only depends on ST . That is, H = Φ(ST ).

Suppose that the option price at time t = 0 is

V0 = e−rT EQ(φ(ST )).
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The derivative of V0 with respect to the parameter σ can be computed as follows:

∂V0

∂σ
= e−rT EQ

(
φ
′(ST )

∂ST

∂σ

)
= e−rT EQ(φ

′(ST )WT )

by using
∂ST

∂σ
=WT .

Set F = ST , G =WT and u = 1, we deduce

DtF = σ ,

and therefore

DuF =
∫ T

0
σdt

= σT.

By applying Proposition 2.4.8 we can obtain

∂V0

∂σ
= e−rT EQ(φ(ST )H(F,G)),

and

H(F,G) = δ (Gu(DuF)−1)

=
δ (WT )

σT
.

By plugging in

δ (WT ) =W 2
T −T,

we obtain

H(F,G) =
W 2

T −T
σT

.

Finally, we have
∂V0

∂σ
= e−rT EQ

(
φ(ST )

(W 2
T

σT
− 1

σ

))
.
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6.3.2 Example on W 2
t − t Martingale Market

Let the stock price at maturity time T be

ST = S0 +σ(W 2
T −T ),

and the paroff H only depends on ST . That is, H = Φ(ST ).

Suppose that the option price at time t = 0 is

V0 = e−rT EQ(φ(ST )).

The derivative of V0 with respect to the parameter σ can be computed as follows.

∂V0

∂σ
= e−rT EQ

(
φ
′(ST )

∂ST

∂σ

)
= e−rT EQ(φ

′(ST )(W 2
T −T )),

by using
∂ST

∂σ
=W 2

T −T .

Set F = ST , G =W 2
T −T and u = 1, we deduce

DtF = 2σWT ,

and therefore

DuF =
∫ T

0
2σWT dt

= 2σTWT .

Then we have

Gu(DuF)−1 =
WT

2σT
− 1

2σWT
.

Recall the proof of Proposition 2.4.8 we know that the equation

E(⟨D f (F),Gu(DuF)−1⟩H) = E( f (F)δ (Gu(DuF)−1))
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holds if Gu(DuF)−1 belongs to Domδ .

As the expectation E
( 1

WT

)
is not defined and

WT

2σT
− 1

2σWT
does not belong to the

domain of δ , we can not apply Proposition 2.4.8 to compute this Greek.

Set H(x) = φ(S0 +σ(x−T )), we have

H ′(x) = σφ
′(S0 +σ(x−T )).

Define function Q(x) by

Q(x) = H(x)−H(0)−H ′(0)x,

we deduce

Q′(x) = H ′(x)−H ′(0)

= σφ
′(S0 +σ(x−T ))−H ′(0).

Then the derivative of V0 with respect to the parameter σ is

∂V0

∂σ
= e−rT EQ(φ

′(ST )(W 2
T −T ))

=
e−rT

σ
[EQ(Q′(W 2

T )(W
2
T −T ))+H ′(0)E(W 2

T −T ).

By using

E(W 2
T −T ) = 0

we obtain

∂V0

∂σ
=

e−rT

σ
EQ(Q′(W 2

T )(W
2
T −T ))

=
e−rT

σ

∫ +∞

−∞

Q′(x2)(x2 −T )
1√
2πT

e
−

x2

2T dx.
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Set x2 = y, we have dx =
dy

2
√

y
, then

∂V0

∂σ
=

e−rT

σ
√

2πT

∫ +∞

0
Q′(y)(y−T )e

−
y

2T dy
2
√

y

=
e−rT

2σ
√

2πT

∫ +∞

0

(y−T )
√

y
e
−

y
2T dQ(y).

By using integration by parts, we obtain

∂V0

∂σ
=

e−rT

2σ
√

2πT

[(y−T )
√

y
e
−

y
2T Q(y)

∣∣∣y=+∞

y=0
−

∫ +∞

0

((y−T )
√

y
e
−

y
2T

)′
Q(y)dy

]
.

By using Q(0) = 0, we have
(y−T )
√

y
e
−

y
2T Q(y)

∣∣∣y=+∞

y=0
= 0, then

∂V0

∂σ
=

e−rT

2σ
√

2πT

∫ +∞

0

(√y
2T

− 1
√

y
− T

2y3/2

)
Q(y)e

−
y

2T dy

=
e−rT

2σ
√

2πT

∫ +∞

−∞

(x2

T
−2− T

x2

)
Q(x2)e

−
x2

2T dx

=
e−rT

2σ
EQ

(
Q(W 2

T )
(W 2

T
T

−2− T
W 2

T

))
.

As we know that
∣∣∣Q(W 2

T )

W 2
T

∣∣∣< constant, the expectation above is well defined.

Another way to compute this Greek is stated as follows.

First by applying the perturbation

∂V0

∂σ
= e−rT EQ

(
φ
′(ST )

∂ST

∂σ

)
= lim

ε→0
e−rT EQ(φ

′(ST )(W 2
T −T )1(|WT |> ε)).

Then, by applying the Du operator

∂V0

∂σ
= lim

ε→0
e−rT EQ

(Duφ(ST )

DuST
(W 2

T −T )1(|WT |> ε)
)
.
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Then, by integration by parts formula

∂V0

∂σ
= lim

ε→0

e−rT

2σT
EQ

[
φ(ST )δ

((
WT − T

WT

)
1(|WT |> ε)

)]
.

Then, by Proposition 2.3.28 and similar technique

∂V0

∂σ
= lim

ε→0

e−rT

2σT
EQ

[
φ(ST )((W 2

T −T )1(|WT |> ε)−
∫ T

0
Dt

((
WT − T

WT

)
1(|WT |> ε)dt

)]
= lim

ε→0

e−rT

2σT
EQ

[
φ(ST )

(
(W 2

T −T )1(|WT |> ε)−T
(

1+
T

W 2
T

)
1(|WT |> ε)dt

)]
.

Finally, by straightforward arguments

∂V0

∂σ
= lim

ε→0

e−rT

2σT
EQ

[
φ(ST )

(
W 2

T −2T − T 2

W 2
T

)
1(|WT |> ε)

]
=

e−rT

2σT
EQ

[
(φ(ST )−φ(S0 −σT ))

(
W 2

T −2T − T 2

W 2
T

)]
.



Chapter 7

Conclusion

Brief summary of the thesis

In this dissertation we presented variety of probabilistic and stochastic calculations related

to the weighted self-normalized sum of exchangeable variables, the Ornstein-Uhlenbeck

process, various operators defined on the Wiener space and Greeks in mathematical finance.

In particular, several properties of the weighted self-normalized sum of exchangeable

variables are discussed.

Different order moments of the Ornstein-Uhlenbeck process are computed by using Itô

calculus.

Various operators defined on the Wiener space, such as the derivative operator, the

divergence operator, the infinitesimal generator of the Ornstein-Uhlenbeck semigroup and its

characteristics are computed via the Malliavin calculus.

We also apply Malliavin calculus to compute Greeks where in addition to the classical

Black-Scholes model we also treat share price Itô martingale models such as Bt and B2
t − t.

Main results

We generalize examples of calculations of various moments of the Brownian motion and

Ornstein-Uhlenbeck process to the Itô processes of the Ornstein-Uhlenbeck type.

We presented the variety of examples

(i) on calculations of the derivative operator D and the operator Dh;
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(ii) on calculations of the operator L ;

(iii) on calculations of the the norms ∥·∥L and ∥·∥2,2

In addition, the integration by parts formula is modified to calculate Greeks for the Itô

martingale stock markets.

Future works

It would be interesting to solve the second order ODE stated in section 4.3.2 to obtain

Exk
t for Ornstein-Uhlenbeck type process.

It would be interesting to compute higher order derivatives of option prices for Black-

Scholes model.

It would be interesting to consider the relative financial markets and compute Greeks for

the cases:

(i) Itô martingales with Yt being an Orntein-Uhlenbeck process.

(ii) Discrete time martingales with Yi being exchangeable.
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Appendix A

Exchangeable variable

Assume {Yi}i≥1 is a sequence of independent, identically distributed random variables, where

Y is non-negative, and let {Xi}i≥1 be a sequence of i.i.d. X random variables independent of

{Yi}i≥1, where X satisfies

E(X2)< ∞ and E(X) = 0.

Let Rn denote the randomly weighted self-normalized sum

Rn =
∑

n
i=1 XiYi

∑
n
i=1Yi

.

By definition and swapping expectation and summation

E(Rn) = E
(

∑
n
i=1 XiYi

∑
n
i=1Yi

)
=

n

∑
i=1

E
( XiYi

∑
n
i=1Yi

)
.

Then, by independence

E(Rn) =
n

∑
i=1

E
(

Xi ·E
Yi

∑
n
i=1Yi

)
.
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As Yi are i.i.d., we deduce

1 = E
(

∑
n
i=1Yi

∑
n
i=1Yi

)
=

n

∑
i=1

E
( Yi

∑
n
i=1Yi

)
= n ·E

( Yi

∑
n
i=1Yi

)
,

which is equal to

E
( Yi

∑
n
i=1Yi

)
=

1
n
.

And therefore we have

E(Rn) =
n

∑
i=1

E(Xi) ·
1
n
= E(X) = 0.

Set δi =
XiYi

∑
n
i=1Yi

, notice that δ is an exchangeable variable.

Then we have

E
( n

∑
i=1

δi

)2
= E

(
∑

1≤i, j≤n
δiδ j

)
=

n

∑
i=1

E(δ 2
i )+

n

∑
i̸= j

E(δiδ j),

again as Xi and Yi are i.i.d., we get

E
( n

∑
i=1

δi

)2
= nE(δ 2)+n(n−1)E(δ1δ2).

Furthermore, we can use this method similarly on the situation of E
(

∑
n
i=1 δi

)3
and

E
(

∑
n
i=1 δi

)4
:
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Case n = 3 (third moment). By a straightforward arguments and then splitting the sum

into equal and not equal indices we derive

E
( n

∑
i=1

δi

)3
= E

(
∑

1≤i, j,k≤n
δiδ jδk

)
=

n

∑
i=1

E
(

δ
3
i )+ ∑

i= j ̸=k;
i=k ̸= j;
j=k ̸=i

E(δiδ jδk)+ ∑
i ̸= j, j ̸=k,i ̸=k

E(δiδ jδk

)
.

Then, by independence

E
( n

∑
i=1

δi

)3
= nE(δ 3)+

 3

2

n(n−1)E(δ 2
1 δ2)+n(n−1)(n−2)E(δ1δ2δ3)

= nE(δ 3)+3n(n−1)E(δ 2
1 δ2)+n(n−1)(n−2)E(δ1δ2δ3).

Case n = 4 (forth moment). Similarly, we split the sum into equal and not equal indices.

To do it, we first fix the number of different indices in the vector (i, j,k, t) = (i1, i2, i3, i4), say

z = 1,2,3,4. Then, roughly, consider all combinations of subsets of size z out of (1,2,3,4).

For example, for z = 2, by choosing a pair, say (1,2) we also fix the remaining pair (3,4).

So we take all vectors

(1,2),(3,4) corresponding to the case that i1 = i2 or i = j (for (1,2)) and i3 = i4 or k = t

(for (3,4)) and i = j ̸= k = t;

(1,3),(2,4) corresponding to the case that i1 = i3 or i = k and i2 = i4 or j = t and

i = k ̸= j = t;

(1,4),(2,3) corresponding to the case that i1 = i4 or i = t and i2 = i3 or j = k and

i = t ̸= j = k.

For z = 3,

(1,2,3),4 corresponding to the case that i1 = i2 = i3 or i = j = k and i = j = k ̸= t;

(1,3,4),2 corresponding to the case that i1 = i3 = i4 or i = k = t and i = k = t ̸= j;

(1,2,4),3 corresponding to the case that i1 = i2 = i4 or i = j = t and i = j = t ̸= k;

(2,3,4),1 corresponding to the case that i2 = i3 = i4 or k = j = t and k = j = t ̸= i.



143

Overall the sum will be

E
( n

∑
i=1

δi

)4
= E( ∑

1≤i, j,k,t≤n
δiδ jδkδt)

=
n

∑
i=1

E(δ 4
i )+ ∑

r ̸=m
∑

r=i= j=k,m=t;
r=i=k=t,m= j;
r=i= j=t,m=k
r= j=k=t,m=i

E(δ 3
r δm)+ ∑

r ̸=m
∑

r=i= j,m=k=t;
r=i=k,m= j=t;
r=i=t,m= j=k

E(δ 2
r δ

2
m)

+ ∑
r ̸=m ̸=q

∑
r=i= j,m=k,q=t;
r=i=k,m= j,q=t
r=i=t,m= j,q=k
r= j=k,m=i,q=t
r= j=t,m=i,q=k
r=k=t,m=i,q= j

E(δ 2
r )E(δm)E(δq)+ ∑

i̸= j ̸=k ̸=t
E(δi)E(δ j)E(δk)E(δt).

Therefore, the sum can be computed as

E
( n

∑
i=1

δi

)4
= nE(δ 4)+4n(n−1)E(δ 3

1 )δ2 +3n(n−1)E(δ 2
1 δ

2
2 )+6n(n−1)(n−2)E(δ 2

1 δ2δ3)

+n(n−1)(n−2)(n−3)E(δ1δ2δ3δ4).
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