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Abstract

This thesis presents a variety of probabilistic and stochastic calculations related to the
Ornstein-Uhlenbeck process, the weighted self-normalized sum of exchangeable variables,
various operators defined on the Wiener space and Greeks in mathematical finance.

First, we discuss some properties of the weighted self-normalized sum of exchangeable
variables. Then we show two methods to compute the different order moments of the
Brownian motion via the definition of expactation and the so-called Malliavin calculus,
repectively. We also show how to compute the different order moments of the Ornstein-
Uhlenbeck process by using 1t6 calculus and generlize it to the 1t processes of the Ornstein-
Uhlenbeck type.

Finally we show how to apply the Malliavin calculus to compute different operators
defined on the Wiener space such as the derivative opertor, the divergence opertor, the in-
finitesimal generator of the Ornstein-Uhlenbeck semigroup and the associated characteristics.
We also apply Malliavin calculus to compute Greeks for European options as well as ex-
otic options, where the integration by parts formula provides a powerful tool. In addition,
we demonstrate the computation of Greeks for the models where we treat share price 1td

martingale models such as W; and W? — 1.
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Chapter 1

Introduction

The purposes of this dissertation are to state a variety of probability calculations and stochastic
calculus related to the Ornstein-Uhlenbeck process, the weighted self-normalized sum of
exchangeable variables, various operators defined on the Wiener space and Greeks in finance.

The Ornstein-Uhlenbeck process (OUP) has been used in numerous fields, including
biology [3, 13], finance [2], and energy market [5], since it was firstly introduced by Uhlen-
beck, G. and Ornstein, L. in 1930 [40]. See [14, 9, 39] for a good account on the stochastic
calculus for the Ornstein-Uhlenbeck process.

The reason why the weighted self-normalized sum of exchangeable variables is discussed
in this thesis, is that first it is motivated by the paper of S. Y. Novak and the supervisor S.
Utev [28]. And the second reason is that the ratio of sums of random variables is natural in
Greeks, which implies that the techniques used to compute the ratio will be useful. See [7, 12]
for more details about the ratio of sums of random variables and weighted sums of random
variables.

The Malliavin calculus is an infinite-dimensional differential calculus on the Wiener space,
also known as the stochastic calculus of variations. This theory was initiated by Malliavin [25]
in 1976, and further developed by Stroock [21-23], Bismut [24], Watanabe [41], Bells [4] and
others. The original motivation is based on how to give a probabilistic proof of Hormander’s
sum of squares’ theorem. The proof of Hormander’s theorem is considered as the most

important application of Malliavin calculus.
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The discussion about the Malliavin calculus in this thesis can be divided into two parts.
The first part is the theory of various differential operators defined on the Wiener space. The
second part is some applications of the Malliavin calculus in mathematical finance, that is

the computation of Greeks via the Integration by parts formula.

1.1 Structure of the Thesis

The first Chapter of this thesis reviews some basic concepts and preliminary knowledge of
probability theory, mainly based on [6, 35, 29, 42, 17].

By presenting several definitions, examples, and selected proofs in Chapter 2, it covers
the probability spaces, the random variables and its the distribution function, the expectation
of a random variable in terms of the integration and the convergence for a sequence of random
variables in Section 2.1. It covers the stochastic processes and the filtrations, the Brownian
motion also known as Wiener process, the stochastic integral and its properties, including
mean-zero property, isometry and linearity, 1td process, 1td formula and Itd isometry in
Section 2.2.

In Chapter 2, we also review the analysis on the Wiener space, it covers isonormal
Gaussian process and its properties, the Hermite polynomial and Wiener chaos in Section
2.3.1, the iterated It integrals in Section 2.3.2, the derivative operator D, its associated
characteristics and the operator D" in Section 2.3.3. In addition, an integration-by-parts
formula which plays a fundamental role throughtout whole computations in the thesis is
presented in Section 2.3.3. In Section 2.3.4, we review the divergence operator 8, which
is the adjoint of the derivative operator D and several relative lemmas and propositions.
It covers constucting the Ornstein-Uhlenbeck semigroup and Mehler’s formula in Section
2.3.5, the generator of the Ornstein-Uhlenbeck semigroup, operator L and the associated
characteristics in Section 2.3.6.

Finally, in Chapter 2, we review the financial modelling, especially the Black-Scholes
model in Section 2.4.1 and 2.4.2. The Integration by parts formula with its application

in computation of price sensitivities (Greeks) is presented in Section 2.4.3. Generally,
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computation of Greeks is considered as an important application of Malliavin calculus in
mathematical finance.

The Chapter 3 discuss the expectation of a randomly weighted self-normalized sum,
the value of up to forth moment of an exchangeable random variable and the proof of
the convergence in distribution of the the weighted self-normalized sum of exchangeable
variables.

In Chapter 4, we present the computations of moments via the definition of expectation
in Section 4.1, via the properties of divergence operator and Skorohod integral in Section 4.2,
and via the It6 formula in Section 4.3.1. An open question about computing the moments of
an Ornstein-Uhlenbeck type process is demonstrated in Section 4.3.2.

In Chapter 5, we present the computations of operator D and D" in Section 5.1, operator
L in Section 5.2, and the norms ||-||z as well as ||-||22 in Section 5.3. These operators will
play essential roles in computing the Greeks in Chapter 6.

In Chapter 6, we present the computations of Greeks for European options in Section 6.1,
Greeks for exotic options in Section 6.2, and Greeks for the models where we treat share

price Itd martingale models such as W, and W,? —¢ in Section 6.3.

1.2 Results Stated in the Thesis

Some calculations and proofs of the convergence in distribution ralated to the weighted
self-normalized sum of exchangeable variables are stated in Chapter 3.

Several examples of calculations of various moments of the Brownian motion are stated
in Section 4.1 and 4.2.

The properties of the Ornstein-Uhlenbeck process are stated in Section 4.3.1, including
its variance, covariance, and the values of up to the forth moment.

Some additional calculations for the Ornstein-Uhlenbeck type process are stated in
Section 4.3.2.

Several examples of calculations of the derivative operator D and the operator D" are

stated in Section 5.1.
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Several examples of calculations of the operator L, which coincides with the infinitesimal
generator of the Ornstein-Uhlenbeck semigroupthe, are stated in Section 5.2.

Several examples of calculations of the the norms ||-||z and ||-||22 are stated in Section
5.3.

Several examples of calculations of Greeks for European options and exotic options (i.e.
Delta, Gamma and Vega) are stated in Section 6.1 and 6.2.

Some additional calculations of Greeks for the models where we treat share price Itd

martingale models such as W; and W? —t are stated in Section 6.3.



Chapter 2

Background and Terminology

2.1 Basic concepts of probability theory

In this section we will recall some basic concepts of the probability theory, based on [6, 35,

29,42, 17].

Definition 2.1.1. (Probability space) A probability space associated with a random experi-

ment is a triple (Q,. %, P) which satisfies:
1. The sample space 2 is the set of all possible outcomes of the random experiment.
2. The oc—algebra ¥ is a set of subsets of 2 which satisfies:

(@ 0c.7,Qc 7,
(b) IfA € .Z, then its complement A€ belongs to .F;
(c) A1,Az,...€ F = U A € F.
3. The probability measure P on the space (,.7) is a function which associates a
number P(A) to each set A € F with the following properties:
() 0<PA)<T;

(b) P(2) =1
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(c) For any sequence Ay,A, ... of disjoints sets in .F (i.e. AiNA; =0 if i # j),

P(Ulo-ozlAi) = Z P(Al').
i=1
Definition 2.1.2. Each A € .7 will be called an event and P(A) implies the probability that
the even A occurs. The set O is called the empty event with a probability of zero. The set £2 is

also called the certain set and its probability is 1.

Definition 2.1.3. The probability space (2,.% ,P) is called a complete probability space if
for each set A € F with zero probability P(A) = 0, any subset of A is in F.

Example 2.1.4. (Incomplete space) Consider a sample space Q = {1,2,3,4,5}, and the
o—algebra .7 is generated as follows:

Consider three events B;,i = 1,2,3, where B; = {1,2,3}, B, = {4} and B3 = {5}. And
the corresponding probability of each event B;,i = 1,2,3 is given as P(B1) =0, P(B;) = %
and P(B3) = %

And therefore, the c—algebra generated by B;,i = 1,2,3 is
F ={0,Q,{1,2,3},{1,2,3,4},{1,2,3,5},{4},{5},{4,5}}.

As any subsets of B ¢ .%, then by the definition of complete probability space, we can

obtain that the probability space (£2,.7, P) is not complete.

Definition 2.1.5. (Random variable) Consider a function X from the space 2 to the real
line R
Q = R,

where the point ® is mapped to X (o)

0 — X(o).
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If the function X is . -measurable from (,.F) into (R, Br), where By is the Borel
o—field, then X is called a random variable on (Q,.F ) with values in R, that is, X' (B) € .7,

for any Borel set B in R.

Note that each value X () is assigned to the outcome @ in Q by the random variable X .
For any set A € %g, (X € A) or {X € A} will denote the event X 1 (A) = {w € Q | X(w) €
A}.

Definition 2.1.6. Under the measurability condition of the random variables, given two real

numbers a < b, the set of all outcomes ® for which a < X (@) < b is an event. Similarly, the

event {®w € Q | a < X(w) < b} will be denoted by (a <X <b) or {a <X <b}.

Definition 2.1.7. A random variable X defines a 6—field {X~'(B),B € &g} C .F called
the c-field generated by X, denoted by 6(X), which is the smallest 6 —field which makes X
measurable. Moreover the assertion that X is a random variable is equivalent to saying that

oc(X)cZ.

Definition 2.1.8. (Distribution function) A random variable X with values in R defines a

probability measure on the Borel 6—field Br by Py = PoX ™!, that is
Pc(B) = P(X"\(B)) = P({o : X(0) € BY}).

And the probability measure Px is called the law or the distribution of X. The function
F : R — [0, 1] defined by

F(x) = P(X <x) = Py((—e,x)),

is called the distribution function of the random variable X.

Definition 2.1.9. (Density function) We will say that a random variable X has a probability
density function f : R — R, if the function f(x) is non-negative on R, measurable with

respect to the Borel 6—field %Br and with the property

[ =1,
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and
b
Pla<X <b)= / f(x)dx.
a
The distribution function F is non-decreasing, right continuous and with

lim F(x)=0 and lim F(x)=1.

X—>—o0 X—>r+o0

If the random variable X is absolutely continuous with density f, the distribution function

F has the property that
F = [ fls)ds,

and F'(x) = f(x) if the density is continuous.

Definition 2.1.10. (Expactation) The expected value or mean of a random variable X on

(Q,.7,P) is defined as the Lebesgue integral of X with respect to the probability measure P:

E(X) = /Q X(0)P(dw) = /Q X(0)dP(o),

or simply
E(X) = / XdP.
Q
Example 2.1.11. (Indicator function) Suppose that A is an event in a probability space €2,

the random variable
I, if weA,
14(w) =

0, if od¢A.
is called the indicator function of A. The probability law of this indicator function is called
the Bernoulli distribution with parameter p = P(A). And the expected value of this random
variable is E(14(w)) = P(A).
Theorem 2.1.12. (Fubini’s Theorem) Suppose that (X,.#1,1) and (Y,.%,,V) are c—finite
measure spaces, T = L ® V is the product measure on %1 R Fy and f : X xY — R is a

F1 ® Fr—measurable function. Then the following three conditions are equivalent:

/ fldr <o, ie. feLl(n),
XxY
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[ ([1ry)ave)aneo <o and

/y (/X‘f(x’y)ldu(x))dv(y) < oo,

where L' (1t) denotes the Lebesgue space [1] of functions for which the absolute value is

Lebesgue integrable with respect to mearure T.
Seein [1].

Example 2.1.13. Consider a random variable X > 0, by definition we know that

~+oo

The indicator function 17x) is in L', then by applying Fubini’s theorem, we have

+oo 400
By using the fact
P(X>t)=/ Lix~pdP,
Q

we obtain

E(X) :/OJFMP(X > t)dt.

Lemma 2.1.14. Given random variable X : 2 — R with law P, let g : R — R be a Borel

measurable function and E(|g(X)|) < oo, then it holds

%}

E(s() = [ s(X(0))dP(@) = | _g(x)dPx(v).

Moreover if X has the probability density function f, it holds
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Definition 2.1.15. A random variable X is said to have a finite moment of order p > 1, if

E(|X|P) < oo. The pth moment of X is defined by

[e]

E(Xp):/_ xPdPy(x), peN.

The set of random variables with finite pth moment is denoted by LP(Q, ., P).

Definition 2.1.16. The variance of a random variable X is defined by
var(X) = E((X —E(X))*) = E(X?) — (E(X))?,

if the first two moments of X exist and are finite.
The variance of X measures the deviation of X from its expected value.
Definition 2.1.17. If X and Y are two random variables, the covariance of X and Y is defined

by

cov(X,Y) = E[(X —E(X))(Y - E(Y))]
=EXY)—-EX)E(Y),
provided E(|X|?) < o0 and E(|Y|?) < oo.
By the linearity of the expactation, we obtain
var(X +Y) = E[(X +Y)*] - (E(X +Y))?

= E(X?) — (E(X))? + E(Y?) — (E(Y)) + 2E(XY) ~ 2E(X)E(Y))

= var(X) + var(Y) +2cov(X,Y).

Example 2.1.18. Suppose that X is a real valued random variable with X > 0 almost surely
and p € N, assume that X has the probability density function f € L! , then by using the

definition of expactation and applying the simple fact

X
xp:/ ptP~ds,
0
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we derive

oo

= pr

0

:/Om /plp ldt)f( )dx

:/Ow / ptP~ 1{;<x}dl‘>f( )dx.

Then, as the function f € L', applying Fubini’s theorem, we have

E(XP) = /0 ] ( /0 T f(x)dx)dt

= /Omptp1 (/if(x)dx)dt

:/ ptPIP(X > 1)dr.
0

Definition 2.1.19. The vector X = {X1,---,X,} is an n—dimensional random vector if its
components X1, --,X, are random variables. That is, X is a random variable with values in

R". Then the mathematical expectation of an n—dimensional random vector X is the vector
E(X) = (E(X,), E(X»).
And the covariance matrix of an n—dimensional random vector X is the matrix
Ix = (cov(Xi, X)) 1<i,j<n-

Note that the matrix Iy is symmetric. Moreover, we know that by the definition of
variance and the linearity of expactations

o) (o) ) - ()

i=1

n n
_ E( Y aa ,x,-xj) — Y E(aiX))E(a;X;).
i,j=1 =

i,j=1
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Then by separating cases i = j and i # j, we have

I
D=

Var< i a,~X,~>

i=1

(E(a?X?) — +); (aia;XiX;) — E(a;:X:)E (a;X;))
i#]

N
Il
—

I
.[\j:

~
[y

ar(a,-Xi) + Z a,-ajcov(X,-,Xj).
i#j

Finally, by rearranging

n n
Var<Z ,'X,') = Z a,'ajCOV(X,',Xj)

i=1 ij=1

n
- Z &(i,j)diaj 207
J

ij=1

for all real numbers a;, - - - ,a,. That is, the matrix Iy is non-negative definite.
The following definitions are some different types of convergence for a sequence of

random variables X,,,n =1,2,3,---

Definition 2.1.20. (Almost sure convergence) X, LN X, if

lim X,,(®) = X (o),

n—oo

forall ® ¢ N, where P(N) = 0.

Definition 2.1.21. (Convergence in probability) X, £, X, if

lim P(|X, —X|>¢€) =0,

n—oo
forall € > 0.

Definition 2.1.22. (Convergence in mean of order p > 1) X, L—p> X, if

lim E(|X, — X|?) =

n—oo
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Definition 2.1.23. (Convergence in law) X, —2» X, if

lim Fx, (x) = Fx(x),

n—yoo

for any point x where the distribution function Fx is continuous.

2.2 Stochastic Processes, Brownian Motion, Stochastic in-
tegral and Ito6 calculus

This section will continue with the preliminary knowledge on stochastic processes, based

on [6, 35, 29, 42, 17].

Definition 2.2.1. (Stochastic process) Let (Q2,.7, P) be the reference probability space, a
stochastic process X = {X;,t € T} with values in the space E =R is a collection of random
variables X; : Q — E, t € T on the same probability space (2,.% ,P). The parameter set
T is a subset of the real line, and the indext € T is meant to represent time. The space E is

called the state space.

The stochastic process can also be considered as a measurable mapping:
X=X(t,0): TxQ —R.

Definition 2.2.2. Let {X;,t € T} be a real-valued stochastic process and {t1,tp,-+-,t,} CT
satisfying t| <ty < --- < ty, then the probability distribution B, ...;, = Po (X, ,X,n)_1 of
the random vector

(th,"‘,th) : 0 HRn
is called a finite-dimensional marginal distribution of the process {X;,t € T }.

Definition 2.2.3. A real-valued process {X;,t € T} is called a second order process if
E(X?) <ooforallt €T.
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Definition 2.2.4. Let {.%;,t € T'} be a filtration, i.e., a family of sub-c-fields of F increasing

in time. That is, if s <t then ¥y C F;.

In this way, the following interpretation holds true:
“%; contains all the information which are available up to time ¢”,

1.e., all the events whose occurrence can be established up to time 7.

Definition 2.2.5. Given a filtration {.%;,t € T}, the G-algebra
T =\ Fi = 6( U %)
teT teT

stands for the limit at infinity, which is determined by the minimal o-field which contains all

F;. Here, o(-) denotes the c-algebra generated by a collection of sets.

Definition 2.2.6. (Adapted process) Given a stochastic process X = X;,t € T and a filtra-
tion {%,t €T} on (Q2,.%,P), the process X is said to be adapted to the filtration { %t € T}
if, for any t € T fixed, the random variable X; is .F;-measurable on Q, that is, X' (B) € .%,,

for any Borel set B in R. Equivalently, we say that X is adapted to (Q,.% ,{.%;},P).

Notice that it is always possible to construct a filtration with respect to which the process

is adapted, by setting #X = o(F;,s <t). X is called the natural filtration of X.

Example 2.2.7. (Unadapted case) Consider a sample space 2 = {1,2,3,4,5}, and two

o—algebras .7 and .%; on (2, such that
ﬁl = {®797{1’273}7{475}}

and

Fr=1{0,92,{1,2,3},{1,2,3,4},{1,2,3,5},{4},{5},{4,5}}.

Then we have %, C .%>.
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Consider two random variables X and Z, provided that X(4) = 11, X(5) = 22 and
Z({4,5})=33.

Consider a stochastic process {Y;,i = 1,2} which satisfies ¥} = X and ¥, = Z, then we
cansee that Y"1 (11) = {4} ¢ %1 and Y ~1(22) = {5} ¢ .%]. This implies that the stochastic
process {Y;,i = 1,2} is not adapted to the filtration {.%;,i = 1,2}.

Definition 2.2.8. (Brownian motion or Wiener process) An adapted stochastic process
W ={W(t),t > 0} on a filtered probability space (Q2,.% ,{.%;,t > 0},P) is called a (stan-

dard) Brownian motion or a Wiener process if it satisfies:

2. Forevery 0 <s <t the random variable W (t) — W (s) is independent of F;

3. For every 0 < s <t the random variable W (t) — W (s) has Gaussian distribution

N(0,7 — s) with mean zero and variance t — s.
Notice that the time dependence is usually denoted as a subscript, so that W; = W (¢).
Remark 2.2.9.

1. By property 2 we can say that forall 0 <7, <, <--- <t, the increments W, — W, .-

-, W;, —W,, are independent random variables.
2. The Brownian motion or Wiener process {W;,# > 0} is a Gaussian process. Its mean is

E(W;) = 0 and the variance is

var(W,) = E(W?) — (E(W,))* = E(W?) =1.

Using the split W; = W, — W 4 W; in to the sum of two independent variables, with
the linearity of the expactation, we have the autocovariance functions of the Brownian

motion:

E(VVIWS) = E[(W_W5+Ws>ws]

= E[(W, — Wy)W,] + E(W2).
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Using the independence and properties of Brownian motion, we obtain
EWW;) = E(W,—W)EW,)+EW])=s,

if s <t. That is, E(W,W;) = min(s, 7).

Definition 2.2.10. (LiT space) Suppose that the process u = uy,t € [0,T] is a stochastic
process on a filtered probability space (Q,% ,{%;,t > 0},P). Denote by LgvT the space of

stochastic processes u = u;,t € [0,T], such that:

1. u is adapted to F; and the mapping (s,®) — us(®) is measurable on the product

space [0,T] x £ with respect to the product ¢ -field B 1) X F;
T 2
2. E(fo utdt> < oo

Note that, the condition 1 requires that random variables of the form fé ugds are ;-
measurable. The condition 2 means that the moment of second order of the process is

integrable on the time interval [0, T]. In fact, by Fubini’s theorem we have

E(/OT u,zdt) = /OTE(u,Z)dt.

Also, the condition 2 means that the stochastic process u is a function of two variables

(t,®), which belongs to the Hilbert space L*([0,7] x Q).

Definition 2.2.11. (Stochastic integral) A simple process u in LiT is a stochastic process

of the form:
U = Z ¢k1(lk,1,l‘k} (t)7
k=1

where 0 =ty <t < --- < t, =T is a partition of [0,T] and ¢y are square integrable Fi -
measurable random variables. The stochastic integral of u with respect to the Brownian

motion W; is defined as

T n
= Y 05, =, ).
j=1
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Note that by Fubini’s theorem, for a stochastic process u = u;,t € [0,T], if any one of

E(fOT utdt> and fOTE(u,)dt is finite then

E(/OTu,dt> = /OTE(u,)dt.

Lemma 2.2.12. The stochastic integral fOT u;dW; defined on the space LZ,T of simple pro-

cesses u has the following properties:

1. Mean-zero:

E(ATme>:o;
([ ) - ([ )

2. Isometry:

3. Linearity:
T T T
/ (aut—l—v,)th:a/ u;th—Fb/ vidW;,
0 0 0

if a,b are constant.
See the lemma in [29] p97 and the proof is modified.

Proof. By the definition, the stochastic integral of u with respect to the Brownian motion W;
is

T n
| wawi = Y 00, =W, ).
=1

Set random variables AW; = Wi, = Wi\, which has the Gaussian distribution N(0,#; —
tj—1). From the properties of Brownian motion, we know that the random variables ¢;¢;,
AW; and AW; are independent if i # j, and the random variable ¢; and AW;, ¢i2 and (AW;)?
are independent if i = j, and E((AW;)?) = var(AW;) =t; —t;_;. That is,

0. i#)
E(9:9;AW:AW)) = |

E(97(tj—tj-1)), i=].
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Then, we obtain
T n
E(/ utth> :E<Z (PjAWj)
0 -
j=1

i}E( i) E(AW))

0,

and
n

e[ waw)') = (£ )

Jj=

—

= Y E(¢:i9;AWAW)).
i,j=1

By independence and rearranging

E[( [ waw)’] = ¥ £(0i0y) E(awiaw)

i,j=1

=E[il¢f(fj—fj—1)]
=

Therefore, the mean-zero and isometry properties for simple processes are proved. The

linearity can be obtained by simple algebra.

Moreover, by applying similar technique for simple processes
n
U = Z ¢k1(tk,17lk} (t)
k=1

and

Vi = Z Wkl(l‘k_l,lk] (t)7
k=1
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we have:
T T n
E( [ waw [ vaw)= Y. E(waWaw)
0 0 i,j=1

ZE[i ¢j‘lfj(fj—fjfl)]
j=1

Finally, by definition we deduce

E(/()Tutth/OTv,dW,> :E(/()Tu,v,dt>.

Lemma 2.2.13. If u is a process in the space LiT, then there exists a sequence of simple
processes u™ such that

! (n)
lim E(/ lu; —u,™"|?dr) = 0.
0

H—>oo

See the lemma in [29] p95 - 96.

Definition 2.2.14. (L, space) Suppose that the process u = u;,t € [0,T] is a stochastic
process on a filtered probability space (2,.% ,{%,t > 0},P). Denote by L, 1 the space of

stochastic processes u = u;,t € [0,T], such that:

1. u is adapted to %, and the mapping (s,®) — us(®) is measurable on the product

space [0, T| x Q with respect to the product G -field Bior) X F;
2. P(Jy uddt < o0)=1.

Definition 2.2.15. (LKIQT space) Suppose that the process u = uy,t € [0,T] is a stochastic
process on a filtered probability space (Q, % ,{%;,t > 0},P). Denote by L}LT the space of

stochastic processes u = u;,t € [0,T], such that:

1. u is adapted to .#; and the mapping (s,®) — us(®) is measurable on the product

space [0,T] x £ with respect to the product ¢ -field B 1) X F;

2. P(f) ju|dt < 00) =1.
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Definition 2.2.16. (Itd process) A continuous and adapted stochastic process {X;,0 <t <T'}

is called an Ito process if it can be represented in the form

t t
X; :XO+/ udes-i-/ vsds,
0 0

where u belongs to the space L, T and v belongs to the space L;T. The differential form can
be written as

dX[ = Mtdm + tht.

See in [29].

Note that the term fé usdW; is called Ito integral, and it satisfies

t
E(/ udeS) —0.
0

Lemma 2.2.17. (It formula) Suppose that X is an It6 process. Let f(t,x) be a function
twice defferentiable with respect to the variable x and once differentiable with respect to t,
with continuous partial derivatives (y , g J; and ( we say that f is of class C'"2). Then, the

process Y, = f(t,X;) is again an Ito process with the representation

Vi = £(0.X) + / t %(s,xs)dw % 5. usam,

—1—/ vds—I— 2f(sX) 2ds
dx 20 0x? e

And in differential notation, the process Y; can be written as

192%f
2 9x2

of
dx

af

df(t,X;) = = =L (1, X,)dt + =—(t,X,)dX; + === (1,X,)(dX;)?,

where (dX;)? can be computed by using (dt)> = 0, dtdW; = dW,dt = 0 and (dW,)? = dt.

See the lemma in [29] p106.
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Notice that if the process X; is the Brownian motion W;, the Itd6 formula can be represented

in the following simple version

t aZf
Fl6W,) = oo+/8 +/a sW)dW+2 L (5, Wy)ds.
And the corresponding differential version is
d d 102
ar(e ) = 2w+ 5L wiaw,+ 3 S L wiyan.

Lemma 2.2.18 (It6 isometry). The It6 integral satisfies

E[(/()ludes>2] :E(/(:ufds>,

where u belongs to the space L, 1.
See in [29].

Lemma 2.2.19 (It6 formula for two variables[20]). The Ito formula for functions in two
variables applied in the computation is the following:

Suppose that the stochastic process {S;,0 <t < T} is an Ito process of the form

t t
S[ - SO _I_/ udes _I_/ Vst,
0 0

where u belongs to the space L, T and v belongs to the space L;’T

Let f(t,x) be a function twice differentiable with respect to the variable x and once
differentiable with respect to t, with continuous partial derivatives gf , 32]; and f

Then, the process Y; = f(t,S;) is again an Itd process with the differential representation

10°f
2082

of
as

of

df(,S) = = (6,8)dt + 5(1,5,)dS; + (t,8,)(dS;)>.
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2.3 Analysis on the Wiener Space

This section describes the basic framework for the Malliavin Calculus on the Wiener space.
The general context consists of a complete probability space (£2,.%#,P) and a Gaussian
subspace .7 of L?>(Q,.%,P). That is, 4 is a closed subspace whose elements are zero-
mean Gaussian random variables. Often it will be convenient to assume that 7] is isometric
to an L? space of the form L?(T, %, u),where 4 is the o-algebra and u is a G-finite measure
without atoms. In this way the elements of 7] can be interpreted as stochastic integrals of
functions in L2(T, %, 1) with respect to a random Gaussian measure on the parametor space
T (Gaussian white noise).

The section presents several definitions, propositions, lemmas and detailed proofs mo-
tivated by Nualart [30, 31], Giulia Di Nunno, Bernt Oksendal, Frank Proske [8] and oth-
ers [33, 32, 26, 11, 18, 19], and furture explanations and numerous examples are demon-
strated in chapter 5. Moreover, they will be illustrated by numerous calculations of Greeks in

financial applications in chapter 6.

2.3.1 Wiener Chaos

Suppose that H is a real separable Hilbert space with scalar product denoted by (-,-)g. The
norm of an element 4 € H will be denoted by ||A|| . The Hilbert space H which is associated

to the Gaussian process W is a general Hilbert space.

Definition 2.3.1. We say that a stochastic process W = {W (h),h € H} defined in a complete
probability space (Q2,.% ,P) is isonormal Gaussian process (or a Gaussian process on H) if

W is a centered Gaussian family of random variables such that

EW(h)W(g)] = (h,&)u

forall h,g € H.

From the definition, we have the following properties, see in [30] p4, the proof of these

properties is modified.
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1. W (h) can be written as the form of W (k) = [; h(t)dW;, where dW; is Wiener process.

And therefore by It6 isometry we have:
T T
EW (W) = L[ ho)aw: [ s(0)aw)
T
=E[| h(t)g(r)di]

0
- <h7g>H'

2. The mapping i — W (h) is linear. In fact, for any A,u € R and h,g € H, we can

obtain that

E[(W(Ah+pug) — AW (h) — uw(g))’]
= || A+ pglF+A Rl g1 glE

—2A(Ah+pug,hyg —2u(Ah+ g, g)u +2uA(h,g)n
—0.

The mapping h — W (h) provides a linear isometry of H onto a closed subspace of
L*(Q,.7,P) that we will denote by .7#{. The elements of .7 are zero-mean Gaussian

random variables.
3. From definition, we can say that each random variables W (%) is Gaussian and centered.

4. By Kolmogorov’s theorem [34], given the Hilbert space H we can always construct a

probability space and a Gaussian process {W (h)} verifying the above conditions.

: : 2 L
Given a function F(x,t) = exp (tx — %), by Taylor’s theorem, the expansion in powers of ¢

att =01is:

And therefore we have the definition of the Hermite polynomial.
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Definition 2.3.2. (Hermite polynomial) The nth Hermite polynomial, denoted by H,(x), is
defined in the following way:

oS}

_X

77”2 17

—1)" 2 d"
H"(x):(n') e’ I

and Hy(x) = 1.
See in [30] p4.
Proposition 2.3.3. For n > 1, the following properties hold:
1. H(x) = H,_1(x);
2. (n+1)Hyq1(x) = xH,(x) — H,—1(x);
3. Hp(—x) = (—1)"Ha(x).
The proof is modified from [30] p5.

Proof. In fact, for the function

)
F(x,t) =exp (tx— §>

2t rdt _e?
=t G )

|
=1

?

t=0

by the definition of the Hermite polynomial, we have
F(x,1) =) 1"H,(x).
n=0

Also we have Hy (x) = x and H(x) = 3 (x> — 1).

For n > 1, from the equation of partial derivative

oF 12
) —IF,

a :t-exp(tx—z
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by plugging in F(x,t) =Y.~ ,t"H,(x) and rearranging the summation, we can obtain
(o] / o0
( Y "H, (x)) = Y "H(x)

n=0 X n=1

= Y " H,(x)
n=0

= Y "H,_i(x),
n=1

which yields

H)(x) = H,_(x).
Also, we can obtain the equation of partial derivative
oF 12
5 = (x—1) -exp(tx— E) = (x—1)F,

that is, by plugging in F(x,7) = Y~ ,#"H,(x) and rearranging the summation

<it”Hn(x)); = 4 )Y Hy ()
n=0 n=1

= X Z t"H,(x) — Z t"Hy,—1(x),
n=1 n=1

which yields
(n+1)H,41(x) = xH, (x) — Hy—1(x).

Finally, we can obtain the equation
F(—x,t) = F(x,—t),

that 1s

ioz"Hn(—x) — Y (—t)"Hy(x)
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which yields
Hy(—x) = (=1)"Ha(x)

—1)k
Moreover, if n is odd we have H,(0) = 0 and Hy(0) = (2 k)' forall k > 1.

Lemma 2.3.4. Let X,Y be two random variables with joint Gaussian distribution such that

E(X)=E(Y)=0and E(X?) = E(Y?) = 1. Then for all n,m > 0, we have

0, n+#m,
E(Hn<X)Hm(Y)) = 1

E(E(XY))", n=m.

The proof is modified from [30] pS.

Proof. For fixed s,t € R, let Z denote the random variable defined by

2 2

S
Z=sX——+tY ——
S 2+ 5

By using E(X) = E(Y) =0 and E(X?) = E(Y?) = 1, we have

52 1?
E(Z) _E<sX— 5 Y- 5)
s> 1
=373

and
var(Z) = var(sX +tY)
= s?var(X) + 1>var(Y) + 2cov(sX, 1Y)
=+ 12 +25tE[(X —E(X))(Y —E(Y))]

=52+ 12+ 25tE(XY).

Then we know thatZ~N<— % - %,s2+t2+2stE(XY)).
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Also by the definition of expectation and the property of density function we know that

—+oo 1 _M
E(f) = 3 W6r~e 202 dr
R (e i)
:eI'H'Gz./ e 202 dr
— \/210?

if the random variable R ~ N(u, 62).

Then we have

2 2
s t P
E[exp(sX - E)exp(tY - E)} =E(e”)
e ( L Lo tE(XY)))
= X _—— — —
Plirz2 7272 ’
= exp(stE(XY)).
n+m
Taking the (n + m)th partial derivative FREIT at s =t = 0 on both sides of the above
s

equation, we can obtain

E(n! Hy(X)m! Hyp(Y)) = ;Tn; (t”(E(XY))”exp(stE(XY)).

That is

]

From the orthogonality of Hermite polynomial H, (x), for each n > 1, the random variables
{H,(W(h)),h € H,||h||z= 1} can generate a closed linear subspaces of L*>(Q,.%, P), denote
by 7. The space ) will be the set of constants. For n = 1, the space .7/{ coincides with

the set of random variables {W(h),h € H}. Again from Lemma 2.3.4 we know that the
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subspaces .77, and .77, are orthogonal if n # m. The space .77, is called the Wiener chaos of

order n.

2.3.2 Iterated It6 Integrals

Definition 2.3.5. A real function g : [0,T|" — R is called symmetric if

g(tGw tffn) g(tla oIn )

for all permutations 6 = (01, ...,0,) of (1,2,...,n).

See in [8] p8.
Let L%(]0,T]") be the standard space of square integrable Borel real functions on [0, T']"

such that

lel22or = /[0 00ty < o

Let 2([0,T]") C L*([0,T]") be the space of symmetric square integrable Borel real

functions on [0, T]". Consider the set
Sp=A{(t1,...,t,) €[0,T]" : 0<1n<..<t,<T}.

. . . .1 . .
Notice that this set S, occupies the fraction = of the whole n—dimensional box [0, T]".
n!

Therefore, if g € L?([0,T]") then g|S, € L*(S,) and

181172 0.7m = n!/S & (11, o ta)diy, ..ty

n

2
:n!HgHLZ(Sn)

where ||-||;2(s,) denotes the norm induced by L?([0,T]") on L?(S,,), the space of the square

integrable functions on §,,.

Definition 2.3.6. If f is a real function on [0,T]", then its symmetrization f is defined by

f ll) 7 Zf tGl? tcn
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where the sum is taken over all permutations ¢ = (01, ...,0y) of (1,2,...,n).
Then we know f = f if and only if f is symmetric.

Example 2.3.7. The symmetrization of the function

f(ti,n) =16 +nt2, (11,6) €[0,T]?

is
~ 1
fnn) =2 (fl,n) + flo,n)
1
= E(tl3 +15542n10), (t1,0) € [0,T]>
The symmetrization of the funtion
f(tlat27t3) :t12+t25int37 (t17t27t3) S [07T]3
is

~ 1 . . . . . .
flt,1) = 3 (t12 + t% + t% -+ t1sinty + trsing| + 18inf3 + t3sint| + tsint3 + £38insy)

where (tl,tz,l‘3) S [O,T]?’.

Definition 2.3.8. (Iterated It6 integral) Ler f be a deterministic function defined on S,

(n > 1) such that

Hf”iz(sn):/sfz(ll,...,l‘n)dtl,...,dl‘n<oo.

Then we can define the n-fold iterated Ito integral as

In(f) = /OT/;”-../O’S /Otzf(tl,...,tn)dW(tl)dW(tz)~~dW(t,l_1)dW(tn).

See in [8] p8.
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Notice that at each iteration i = 1,2, ..., n, the integrand

t; 15
/0 A f(tr, e tn)dW(ty)---dW (ti-1), 1 €[0,ti41]

is a stochastic process which is .# —adapted (.# is the o-algebra) and square integrable with
respect to dP X dt;, then the corresponding Itd integral with respect to dW (¢;) is well-defined.
And therefore J,(f) is well-defined.

By the construction of the Itd integral we know that J,,( f) belong to L?(P), which is the

space of square integrable random variables. The norm of X € L*(P) is denoted by

X liy= EGE = ([ X*(@)P(do))?.

By appying the It0 isometry iteratively, we can obtain the following result.

Lemma 2.3.9. The following relations hold true:

where

(& Py = [ 801t (01, st

n

is the inner product of L*(S,,). In particular, we have

(Al VAVEIRRE

See proof in [8] p9.
Note that it is straightforward to see that the n-fold iterated It6 integral is a linear operator.

That is,
Jn(af+bg) = a-]n(f) +an(g)

for f,g € L*(S,) and a,b € R.
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Definition 2.3.10. If f € L*([0,T]"), we define

W= [ fltet)dW(0)-dW(6) =00, (F).
[0,7]"

The I,(f) is also called the n-fold iterated Ité integral.

See in [8] p10.

Then by definition, we have

1a ()l 2(p) = E(I3(f))
=E((n!)*1;(f))
= (n!)ZHf”iZ(sn)

=n! ||f‘|%2([07T]n)~

By the relationship between J,,(f) and I,,(f), from Lemma 2.3.9 , we have the following

result.

Lemma 2.3.11. If g € L*([0,T]") and f € L*([0,T]™) the following relations hold true:

0, n#m,
E(Li(8)In(f)) =
n! (g,f)Lz([07T],1), n=m.

where

(& 2o = / g(t1y sty f(t1, .. ty)dty, ..., dty

0,7

2.3.3 The Derivative Operator

This section will review the definition and several properties of the derivative operator, based
on [30].

Denote W = {W (h),h € H} as an isonormal Gaussian process associated with the Hilbert
space H, which defined in a complete probability space (2,.%,P), and .% is generated by
W.
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Denote C;;(R") as the set of all infinitely continuously differentiable function f : R" —

R such that f and all of its partial derivatives have polynomial growth.

Definition 2.3.12. (Derivative Operator) Let .7 denote the class of smooth random vari-

ables such that a random variable F € . has the form

F=fW(h), -, W(h))

:f</()Thl(t)dW,,...,/OThn(t)th>,

where W (hy) = fOThl(t)dW, and f belongs to C;(R"), hy,- -+, hy are in H, and n > 1.
Then, the derivative of a smooth random variable F is the H-valued random variables
given by
DF = Y0 W ) W )
i—

or
DiF = Y S W (1) W (1)) 1)
i=1 9t
. af 1
where the notation represents 0, f = B whenever f € C'(R").
Xi

Notice that The derivative operator DF can be considered as the derivative of a square
integrable random variable F : Q2 — R with respect to the chance parameter @ € 2. And
the derivative DF is defined as the process {D;F,t > 0}.

The product rule for the derivative operator D is given as follows.

Lemma 2.3.13. If F,G are smooth random variables, then we can obtain the derivative
operator of the product FG
D(FG) = FDG + GDF.

By using the integration by parts technique, we can obtain the following result.

Lemma 2.3.14. Suppose that F is a smooth random variable and h € H, then

E((DF, ) = E(FW (h)).
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The proof is modified from [30] p26.

Proof. First we can normalize the equation and assume that there exist orthonomal elements

of H, eq,---,e, such that h = e; and F' is a smooth random variable of the form

F= f(W(€1), e '7W<en))7
where f belongs to C;y(R"). Set W = (W (ey),...,W(e,)), and by definition we have

(W(ei),W(ej))u =E[W(ei)W (e;)]
= (eiej)n

1, i=j,

0, i#j.

And
E(W(e;)) =0, var(W(e;)) =1, cov(W(e;),W(ej)) =0, i#j.

Therefore, W = (W (e} ), ..., W(ey)) are independent and identically distributed standard
Gaussian random variables.
Set W =x = (xq,...,x,) and let ¢(x) denote the density of the standard Gaussian distri-

bution on R”, that is
n

o(x) = (2m) Sexp(— 5 L),

i=1

By definition
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On the other hand, notice that

Bl )l = [ )oCa)dn
oo

= [ otaartx)

=0 [ pa)e' ()i
— [ rtmota
~ Elfan)x]

So, we have first by using the definition and /& = ej, then by the integration by parts

technique,
E((DF,h)y) = E({(DF,e;)n)
=E(@d1f(W(er),....W(en)))
=E(d1f(x))
= [ o9 (x)ax
Heo oo oo
:/w /oo (/w 81f(x)¢(x1)dx1>¢(x2,..,xn)dxz...dxn.

By rearranging

400
((DF,h)y / / 3 f( )x1¢(x1)dx1)¢(x2,..7x,,)dx2...dxn
E(FW( 1)) =EFW(h)).
The proof of the lemma is complete. [

By combining the product rule with Lemma 2.3.14, we have the following result.
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Lemma 2.3.15. Suppose that F and G are smooth random variables, and let h € H. Then
we have

E(G(DF,h)y) = E(—F(DG,h)g +FGW (h)).
The proof is modified from [30] p26.

Proof. By using Lemma 2.3.14, we have

E(FGW (h))

E((D(FG),h)n)

((FDG+ GDF,h)y)

E
E({(GDF,h)y)+E((FDG,h)n),

which implies

E(G(DF,h)y) = E(—F(DG,h)g + FGW (h)).
The proof is complete . 0
The following part is the constructure of norm space. See more in [30] p27.

Definition 2.3.16 (Norm space). For any p > 1 we will denote the domain of D in LP (L)
by DYP, meaning that DVP is the closure of the class of smooth random variables S with

respect to the norm

IF|l1p= [E(FI?) + E(|DF||},)]7.

For p =2, the space D2 is a Hilbert space with the scalar product
(F,G)12=E(FG)+E((DF,DG)p).

We can define the iteration of the operator D in such a way that for a smooth random

variable F, the iterated derivative DXF is a random variable with values in H®*.

Definition 2.3.17. (Seminorm) For every p > 1 and any natural number k > 1, the seminorm

on S is defined by
k

IFlkp= [EUFP)+ L E(DFIG. )]
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Lemma 2.3.18. The family of seminorms verifies the followng properties:
1. Monotonicity: ||F|[x,< ||F|jqforany F €8S, if p<qandk < j.
2. Closability: The operator D¥ is closable from S into LP(Q;H®X) for all p > 1.

3. Compatibility: Let p,q > 1 be real numbers and k, j be natural numbers. Suppose that
Fy, is a sequence of smooth random variables such that ||F, j||x, converges to zero as
n tends to infinity, and |F, — F,||j 4 converges to zero as n,m tend to infinity. Then

| Full .4 tends to zero as n tends to infinity.

See the lemma and proof in [30] p27.

We will denote by D*? the completion of the family of smooth random variables S with
respect to the norm ||-|x . From the property 1’ it follows that D1 D4 if k > 0 and
p > q. For k=0 we put |-||o,= |||, and D% = LP(Q).

Definition 2.3.19. (D" operator) For a fixed element h in the Hilbert space H, the operator

D" on the set S of smooth random variables is defined as
D"F = (DF,h)y.
This operator is closable from LP(Q) into L” (), for any p > 1, and it has a domain that
we will denote by D7,

The chain rule for the derivative operator [30] p28 is presented below.

Proposition 2.3.20. Let ¢ : R™ — R be a continuously differentiable function with bounded
derivatives, and fixed p > 1. Suppose that F = (F',....,F™) is a random vector whose

components belong to the space DV, Then O(F) € DY, and

D(¢(F))=Y 0:¢(F)DF'.

™=

i=1

See proof in [30] p28.
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2.3.4 The Divergence Operator

We will first review the divergence operator in the framework of a Gaussian isonormal process
W =W (h),h € H associated with the Hilbert space H. We assume that W is defined on a
complete probability space (£2,.%,P), and that .% is generated by W.

Definition 2.3.21. (Divergence Operator) We denote by 6 the adjoint of the operator

D.That is, § is an unbounded operator on L*(Q; H) with values in L*(Q) such that:

1. The domain of 6, denoted by DomJ, is the set of H—valued square integrable random
variables u € L*(Q;H) such that

[E((DF,u))| < c[|F 2,

for all F € D'2, where c is some constant depending on u.

2. If u belongs to Domdelta, then 8(u) is the element of L*(Q) characterized by
E(F6(u)) =E((DF,u)g)

for any F € D2,

The operator § is called the divergence operator and is closed as the adjoint of an

unbounded and densely defined operator.

See in [30] p36 - 37.

Notice that § is a linear operator, that is
O(au+bv) =ad(u)+bd(v),

ifa,b € R and u,v € Domd.
For the equation E(Fd(u)) = E((DF,u)n ), the following property holds true

E(8(u)) = E((0,u)n) =0,
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if u € Domé, by taking F = 1.

Denote by Sy the class of smooth elementary elements of the form
n
u= Z F jh j
j=1

where the F; are smooth random variables, and the /; are elements of H.

Lemma 2.3.22. Let Fj be smooth random variables, h; be elements of H. Then the element

u= Z?zl Fh; belongs to Domd. Moreover,

= Y EW ()~ Y. (DFy
j=1

j=1
See in [30] p37 - 38, and the proof is modified.

Proof. We will apply the method of integration-by-parts stated in Lemma 2.3.15. Given any

smooth random variables G € Sy. First by linearity of (-, )y, we have
n
E((DG,u)y (Z (DG, Fih;) )
j:
n
( Y. F{DG.h) )

By using the Lemma 2.3.15,
E(K(DF,h)y) =E(FKW(h)) —E(F(DK,h)g).

we obtain

E((DG,u)n) (ZGFW (h; )) E(iG(DFj,hj>H)),

J=1 J=1

Overall, we have

E((DG,u)n) :E[G( i FW (h;) — i(DFJ,h " )}

J=1 J=1
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for any smooth random variables G € Sg, which implies that u = ;?:1 F;h; belong to Dom$.

Then by definition of the adjoint operator d, we have
E(G6(u)) =E((DG,u)n)

That is

E(G3(u)) = E|G (ZFW )~ Y (DF;. ) )|,

j=1
for any smooth random variables G € Sy.

The proof is complete. 0

By Lemma 2.3.22, we can represent the d-operator in another possible way, which will
be applied in the following proofs. Note that if u € D' (H) then the derivative Du is a square
integrable random variable with values in the Hilbert space H ® H, which can be identified

with the space of Hilbert-Schmidt operators from H to H.
Lemma 2.3.23. Letuc Sy, F € Sand h € H, then
n
s(D" Z D'"Fw(h;)— Y (D(D"F)),
j= J=1
See in [30] p38, and the proof is modified.
Proof. Letu €Sy, F €S and h € H, suppose u = Z;f: 1 Fjhj, then the derivative operator is

given as

n
Du =Y DFjh;,
j=1

and then by definition of D" operator and linearity of (-,-)m, we have

D'u

| |
/\

ZDFh,,h>

J=1

fh, (DFj,h)
=1

Z (D"Fj)h

~.

~.
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Hence, by straightforward application of Lemma 2.3.22, the target is achieved.

Lemma 2.3.24. Letuc Sy, F € Sand h € H, then
D"(8(u)) = (u,h)u + 8(D"u).

See in [30] p38 and the proof is modified from [30] p37 - 38.

Proof. By using

= 2”: FiW (h;) — i(DFjvhj>Ha
=

J=1

we obtain

D"(8(u))

(D(S(u), I)n

n
D(Y. FW(hj) = Y (DF;.hj)u).h)

j=1 j=1

By the linearity of (-,-)y and rearranging, we have

DM(8() = Y. (Fihj + DEW (hy) — D((DF}, hy)m), By
j=1
- Z (Fy{hs. iy + (DFy, W (hy) — (D(D'Fy) s
L
:<ithj,h>H (ZDhFW )~ Y (D(D'F), hin).

Jj=1

~
I
_

Apply Lemma 2.3.23, we obtain
Dh(8(u)) = (u,h)g + 5(D"u).

The proof is complete.
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Proposition 2.3.25. The space D' (H) is included in the domain of §. If u,v € D" (H).
then

E(8(u)d(v)) =E((u,v)u)+ E(Tr(DuoDv)).
The proof is modified from [30] p38.

Proof. First suppose that u,v € Sy. Let e;,i > 1 be a complete orthonormal systerm on H.

We have
(ei,eiyy =1,

and therefore
D(6(u)) =D(8(u))(eirei)n

=e;(D(0(u)),ei)n
— eD(8(u).

Then, by definition of the divergence operator, we have

E(6(u)d(v)) = E((v,D(8(u)))n)

= [Z v,ejygD® (8 ))]

By using Lemma 2.3.24, we deduce

[i (u,eij) +0(Du ))}

i=1

= E((u.v)n) +E( Y. D% e D e )

i,j=1

= E((u,v) )+ E(Tr(DuoDv)).

Then, we obtain

E(8(w)*) < E([lulli) + E(I1Dullzen)-
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As the definition of seminorm on Sy [30] p31 is given as

k

1
!WW@w=FWFW%+ZEWWF%mW)¢
j=1

Overall we have

E(8(u)*) < |lullf 2.4-

The space D!?(H) is defined as the completion of Sy with repect to the norm ||| v
The above condition implies that the space D'"?(H) is included in the domain of §. In fact,
if u € DV2(H), there exists a sequence u”" € Sy such that u”* converges to u in L?(£) and

Du" converges to Du in L*>(Q;H ® H). Therefore, 5(u") converges in L?(£) and its limit is

O (u).
Moreover,
E(8()8(v)) = E((u,v)r) + E(Tr(Duo Dv)
holds for any u,v € D'2(H). O

Lemma 2.3.26. Let G be a square integrable random variable. Suppose there exists Y €
L?*(R) such that
E(G6(hF))=E(YF),

forall F € D'2. Then G € D"? and D"G =Y.
The proof is modified from [30] p39.

Proof. Recall the definition of Wiener chaos .77;: for each n > 1, .7, is the closed linear
subspaces of L*(R2,.%, P) generated by the random variables {H,(W (h)),h € H, ||h||z=1}.
We denote by J, the projection on the nth Wiener chaos .7,. Then the random variable

F € D'? has the Wiener chaos expansion

F:th
n=0
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We have

E(YF) = E(GS(hF))

— Y E((,G)3(hF).
=1

n

By the definition of the divergence operator and rearranging, we obtain

I
s

E(YF) E((DJ,G,Fh)y)

3
I
—_

I
s

E(F(DJ,G,h)y)

3
I
—_

E(FD"(J,G)).

Il
s

3
Il
—_

Hence, J,_Y = D" (J,G) foreachn > 1.
And this implies that G € D"?(H) and D"G =Y. O

Proposition 2.3.27. Suppose that u € D?(H), and D"u belongs to the domain of the diver-

gence. Then §(u) € D"2(H) and the commutation relation holds as
D"(8(u)) = (u,h) + &(D"u).

See the proposition in [30] p38 and the proof is modified.

Proof. For all F € D2, by using the definition of the divergence operator and Proposition
2.3.25, we have

E(8(u)d(hF)) = E((u,hF))) 1 + (Tr(DuohDF)) )

(F(u,h) g + (D"u,DF ) )

E
E[F((u,h)g + 8(D"u)].
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Set G = 8(u) and Y = (u,h)y + 8(D"u), that is E(GS(hF)) = E(YF). Then from
Lemma 2.3.22, we can deduce that §(u) € D*?(H) and

D"(8(u)) =D"G=Y = (u,h)yz + 8(D"u).

O

Proposition 2.3.28. Let F € D'? and u be in the domain of 8 such that Fu € L*(Q;H).

Then Fu belongs to the domain of 0 and the following equation holds
O0(Fu)=Fo6(u)— (DF,u)y,

provided that F 6(u) — (DF,u)y is square integrable.

The proof is modified from [30] p39.

Proof. For any smooth random variable G € Sy, by using
D(FG) = FDG + GDF,

we have

E((DG,Fu)y) = E((FDG,u)y)

= E((D(FG) —GDF,u)py).
By using the definition of the divergence operator and rearranging, we have

E((DG,Fu)y) = E(FGS(u) — G(DF, u)p)

=E[G(Fo(u) — (DF,u)g)],
which implies that Fu € Domd. Hence for any smooth random variable G € Sy we have

E(GS(Fu)) = E((DG, Fu)y)

— E[G(F&(u) — (DF,u)p)].
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That is
O0(Fu)=F6(u)— (DF,u)y.

]

If we replace u by a deterministic element & € H, then the Proposition 2.3.28 can be

represented by the following version.

Proposition 2.3.29. Let h € H and F € D"2. Then Fh belongs to the domain of § and the
following equation holds
8(Fh) = FW (h) — D"F.

See proof in [30] p39.
The following is the definition of the Skorohod stochastic integral of the process u, see

in [30] p40.

Definition 2.3.30. ( Skorohod integral) Suppose that the separable Hilbert space H is an
L? space of the form H = L*(T, %, 11),where T is the parametor space, % is the G-algebra
and W is a o-finite measure without atoms. Then the elements of Dom8 C L*(T x Q) are
square integrable processes, and we will call the divergence §(u) as the Skorohod stochastic

integral of the process u. And the notation is as follows:

T
5(u):/ u dW;.
0

The Skorohod stochastic integral will play an important role in the computation of

operators in Chapter 5 and 6.

2.3.5 The Semigroup of Ornstein-Uhlenbeck

In this section, we will review the main property of the Ornstein-Uhlenbeck semigroup, based
on [30].

We assume that W = {W(h),h € H} is an isonormal Gaussian process associated to the
Hilbert space H defined in a complete probability space (2,.%,P), and .7 is generated by

W. We recall that J,, denotes the orthogonal projection on the nth Wiener chaos.
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Definition 2.3.31. (Ornstein-Uhlenbeck semigroup) 7The Ornstein-Uhlenbeck semigroup

is the one-parameter semigroup T;,t > 0 of contraction operators on L*(Q) defined by

o)

T,(F)=) e ™I.F,
n=0

forany F € L*(Q).

See in [30] p54.

Suppose that the process W' = {W’(h),h € H} is an independent copy of W. We will
assume that W and W' are defined on the product probability space (2 x Q',.% @ F' P x P').
For any ¢ > 0 we consider the process Z = {Z(h),h € H} defined by

Z(h)=e "W(h)+V1—e2W'(h), heH.
From the definition we have that
E(Z(h)=E(e"W(h)+V1—e2W'(h)) =0,

and

cov(Z(h),Z(h2)) = E(Z(h1)Z(h2))

= E[(e”"W(h1)+ V1 — e 2W' () (e "W (h) + V1 — e 2W'(ha))].

By rearranging, that is

COV(Z(hl),Z(hz)) =¥ <h1,h2>[-] + (1 — 6_2[)<h17h2>[_1
= (h1,h2)n

= EW(h)W (h2),

which implies that Z = {Z(h),h € H} is Gaussian process, and it has the same covariance

function as W.
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Definition 2.3.32. (Mehler’s formula) Let W : Q — R” and W' : Q' — RH be the canonical
mappings associated with the processes {W(h),h € H} and {W'(h),h € H}, respectively.
Given a random variables F € L*(Q), we can write F = yp oW, where W is a measurable
mapping from R¥ to R, determined PoW ~! a.s. Hence, the random variable yr(Z(®, ®')) =
Vi (e W (@) + V1 —e 2W/ (@) is well defined P x P' a.s. Then, for any t > 0, we have

the equation called Mehler’s formula in the form of
T,(F)=E'(yp(e "W+ 1—e2W)),

where E' denotes mathematical expected value with respect to the probability P'.

See in [30] p54-55.

In following part, the equivalence between the Definition 2.3.31 and Mehler’s formula is
illustrated, which is modified from [30] p55.

First of all, we know that both definitions give rise to a linear contraction operator on
L*(Q).

This is clear in the Definition 2.3.31, and on the other hand, in Mehler’s formula it defines

a linear contraction operator on L?(Q) for and p > 1 because the following inequation holds:

E(|IT(F)I”) = E([E"(yr(e”'W + V1 —e2W))[")
<SEE'(lyr(e”W+V1—e2W)[))

= E(|FJP).

The second step suffices that to check that both the Definition 2.3.31 and Mehler’s
formula coincide when F' = exp (W(h) — %Hh”%{) heH.

By the definition of E’, we have

£ (exp e W)+ /T =e 2w )= Sl )

= exp (e W () — 3 IhI ) (exp(v/1 — e 2W'(A))).
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Notice that for a random variable x with a standard Gaussian distribution N(0, 1), if C is
a constant and the second derivative of function f is continuous, the following equation can
be proved:

E(exp(Cx)) = exp(C?/2).

By definition we have

And then by using W’/ (h) ~ ||h||N(0, 1) and rearranging, we obtain

E(exp(e W)+ V=W~ 51l

= exp (e W) — 5]l Yexp(* SR

2
B 2
= exp (e W () — )
- W(h) _ (e”"llAlln)>
—exp((e ) 5 ).
Recall the Hermite polynomial
—1)" 24t 2
H,(x) = ( n') €7d7€_7,n >1,

if the function is F(x,s) = exp(sx — %) we have

(o)

F(x,s) = Z s"Hy (x).

n=0
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W (h
Letx = ( )ands:e*t||h||H, we deduce
1Al

' (exp e Wi+ VT () — 5 1)

SRR A0
n=0 H

By the definition of Hermite polynomial, we have

W (h) 1
Az (—) — 1k,
And therefore, we deduce
E’(ex (e*fw(h)+ 1—e—2rW(h)—1||hH2)) - i < )
P W) ) = g Tt

On the other hand, by using the fact [30] p28

L(h®") = n\ Jy (h°™),

we have

which yields the desired equality.

Proposition 2.3.33. The operators T, F have the following porperties:
1. T;F is non-negative (i.e. F > 0 implies T,F > 0).

2. T;F is symmetric:

E(GTF) = E(FT,G) = ¥, e E(u(F)Ju(G))
n=0
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See in [30] pS5 and the proof is modified.

Proof. By using the fact G =Y ,J,(G) and the orthogonality of J,, we deduce

[e5) (o]

E(GT,F)=E [ Y J.(G) Y e*"”Jm(F)}

n=0 m=0

_ io e " E(E(Jo(F)Ju(G)),

which yields the symmetry of the operators T;F . [

2.3.6 The Generator of the Ornstein-Uhlenbeck Semigroup

In this section, we will review the properties of the infinitesimal generator of the Ornstein-

Uhlenbeck semigroup, based on [30].

Definition 2.3.34. (L operator) Let F € L*(Q) be a square integrable random variable. The

operator L is defined in the following way:

LF =Y —nJ,F,

n=0

provided this series converges in L*(Q). J, denotes the orthogonal projection on the nth

Wiener chaos.

Definition 2.3.35. The domain of L operator is the set

DomL = {F € 12(Q),F = i L(fy) : i n2||J,F || 3< oo}.
n=0

n=0
In particular, DomL C R!2,

Proposition 2.3.36. For all F,G € DomL, we have
E(FLG)=E(GLF),

which implies that L is an unbounded symmectric operator on LZ(Q).
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Proposition 2.3.37. The operator L coincides with the infinitesimal generator of the Ornstein-

Uhlenbeck semigroup {T;,t > 0}.

See proof in [30].
The following proposition will be usefull, as it gives a explanation of the relationship
between the operator D, é and L, and provides a possible way for computing the operator L

by computing §(DF).

Proposition 2.3.38. The equation §(DF) = —LF holds true, that is, for F € L*(Q) the
statement F € DomL is equivalent to F € DomdL (i.e., F € D2 and DF € Dom$), and in
this case §(DF) = —LF.

The proof is modified from [30] p59.

Proof. First suppose that F € D2 and that DF € Dom§. Let G be a random variable in the
nth Wiener chaos .77, by using the definitions of the derivative operator and the divergence

operator, we have

E(GO(DF))=E((DG,DF)p)

=n*(n—1)! (g, fu) yon

— nE(GJ,F).

By using the fact F =Y~ J,F and the orthogonality of the Wiener chaos, we have

E(GS8(DF)) = E(G i JnS(DF))
n=1

— E(GJ,8(DF)).

That is,
J,8(DF) = nJ,F.

which implies F € DomL and by summing up from n = 0 to n = oo and the definition of the
operator L, we have

LF = —8(DF).
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Conversely, if ' € DomL, thenF € D2 and for any G € D12, G = Yoo I,(gn), we have

E(GS8(DF)) = i nE (J,GJ,F)
n=0

— —E(GLF).

Therefore, DF € Domd, and LF = —§(DF).

The proof is complete. 0

Proposition 2.3.39. It holds that S C DomL, and for any F € S of the form F = f(W (hy),...,W (hy),
[ €Cy(R"), we have

LF = i aiajf<W(/’l1),...,W(hn))<hi,hj>H

i,j=1

—i%ﬂW%%wmeng
i=1

The proof is modified from [30].

Proof. As F €S, thatis F € D2, And by the definition

n

DF =Y 0if(W(hy),...; W (hu))hi,
i=1

we know that DF € Sy C Dom$.
Set F; = d;f(W(hy),...,W(h,)) and by
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we have
SDF) = YW )W U)W (1) = Y (DUFOV ) W ). i
_ ;a,f(W(hl), W ()W (i) _; <;13jo'?,-f(W(h1),...,W(hn))hj,h,->H
= Y OOV () W)W () — Y 06 W (). W () . i

N
I
—_
<
I
—_

Consequently, we obtain

LF = —8(DF)

= Y A0V )W () ()i

i,j=1

- Z Oif (W (hy),.... W (hy))W ().
i=1

This proof is complete.
]

Proposition 2.3.40. Suppose that F = (F',...,F™) is a random vector whose components

belong to D**. Let ¢ be a function in Cz(Rm) with bounded first and second partial
derivatives. Then ¢ € DomL, and

L(o(F)) = i 9:0;0(F)(DF',DF /)y + i d;¢0(F)LF".

ij=1 i=1

See proof in [30] p60.
The following is the definition of the norm |||z, see in [30] p60.

Definition 2.3.41. (||| norm) The norms ||-||1, on S is defined as
1
IF = [E(F?) +E(ILF )],

From Definition 2.3.41, we know that DomL = D22
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By the definition of operator LF =) "  —nJ,F, and the property of J,F

E(J,F-JuF)=0, if n#m,

we deduce
E(ILF[) ZnZIIJ F|P?.
By using the fact
E(IDFII%) = ZnHJFHz,
and .
E(ID*Flfren) = X ntn=DIF |
n—1
we have

E(F?) + E(LF]?) = E(F?) + ¥ w?[JF |2

n=1
2 oo
=E(F})+ Z n||J,F |3+ Y ( n® —n)||J.F |3
n=1 n=1

= E(F?) +E(IDFII%) +E (1D*Fllfon ).

Recall the definition of the seminorms on S:

1]

o= [E<1F|P>+jfl E(IDF 1)

We can obtain that the norms ||-||z and ||-||2» coincide. Furture explanations and detailed

examples will be demonstrated in Section 5.3.

2.4 Malliavin Calculus in finance

In this section, in order to demonstrate the applications of Malliavin Calculus to mathematical

finance in Chapter 6, first we review the financial modelling especially the Black-Scholes
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model. Then, we review a probability method for numerical calculations of price sensitivities

(Greeks) by using the Integration by parts formula.

24.1 Financial Modelling

Continuous Time Markets There are many types of financial modelling [37, 10, 38, 8].
Here we work with continuous time martingale type construction.
We use the following two constructions :
1’ Black-Scholes model.
S, = Spel 1 € [0,T]

where
2

t GS t
H,; :/ ('us—j)dS‘i‘/ Gdeg,
0 0

and W, is a Wiener process.
In calculation of Greeks, we work with a classical Black-Scholes model, where
2

5, = Soexp| (a- %>I+GW,], t € [0,T]

2’ Itd martingale modelling.

t
M[ :/ YSdWS
0

where Y is a adapted process.

Two particular examples we will treat in calculation of Greeks:
M; =Yy + oW, (Bachelier model(1900))

and

M, =Yy+0c(W?—1)
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Discrete time markets Discrete time martingale type construction is based on a random

walk.
n
M, =YY,
j=1

The classical Binomial model is constructed as a Geometric random walk.
S, = SpeM

When Y’s has two values, the market is complete in general, which implies that it can be

hedged.

S1 =Sou; shareis going up
/!
So
N\

S1 =Sod ; shareis going down

When Y’s has three or more values, the market is incomplete in general, which implies

that it can not be hedged.

S1 =Sou; shareis going up
/!
So — S1 = Soc

p

S1 =3S8od; shareis going down

Overall, the issue of completeness and incompleteness comes in for the valuation of
payoffs.

In the case of complete markets, there exists a uniquely defined risk-neutral probability
measure, also known as a martingale measure, so the value of future payoffs are simply

discounted mathematical expectations with respect to this unique martingale measure.
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In the case of incomplete markets, the corresponding unique martingale measure is
undefined, so the risk-neutral pricing is no longer appropriate.

See [16] for more details about complete and incomplete market cases.

2.4.2 Black-Scholes Model

This section gives a brief review of the Black-Scholes model, based on [30].

Definition 2.4.1. (Black-Scholes model) Consider a market consisting of one risky asset
(stock) and one risk-free asset (bond):
The price process of the risky asset is assumed to be a geometric Brownian motion (GBM),

which has the form S; = Spe'™ .t € [0, T, with

2

1 Gs t
H,:/ (us——)ds—i—/ o, dW;,
0 2 0

where W = {W;,t € [0,T|} is a Brownian motion defined in a complete probability space
(Q,.F,P). The filtration generated by the Brownian motion and completed by the P—null
sets is denoted as {.F;,t € [0,T|}. So is the initial stock price, L is the rate of growth of the
price (E(S;) = Soet'), and oy is called the volatility process. The mean rate of return [, and
the volatility process o; are supposed to be measurable and adapted processes satisfying the

following integrability conditions

T T
/0 |di <o and /0 G2dt < oo,

almost surely.
The price of the bond is denote by G, € [0,T], and the following differential equation
holds
dG; =rGdt, Go=1,
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where the interest rate process is a nonnegative measurable and adapted process satisfying

the integrability condition fOT rydt < oo, almost surely. That is,

G, = exp(/ot rsds>.

Fix a time interval [0, 7], imagine an investor invests in the assets by owning a certain
amount of non-risky assets and stocks respectively. Let o; be the number of non-risky assets

and f3; be the number of stocks at time 7.

Definition 2.4.2. (Portfolio) A portfolio or trading strategy is a couple

¢ = {(o4,B:),t €[0,T]}

such that the components o and B; are measurable and adapted process such that

T T T
/0 |0 |redt < oo, /0 Bty |dr < oo, /0 Bojdr < eo,

almost surely.

See in [30] p322.
The portfolio ¢ is said to be self-financing if there is no fresh investment and there is no
consumption. And all the following portfolios are considered to be self-financing from now

on.

Definition 2.4.3. (Value of portfolio) The investor’s initial wealth is given as

x = 0o+ BoSo.
And investor’s wealth at time t, which is also considered as the value of the portfolio, is

Vi(¢) = 4G, + ;S
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or

t t
V,(¢):x+/ ocsdGS-l—/ BodS,.
0 0

Moreover, the value process V;(¢) of any self-financing portfolio can be proved as a local

martingale. See proof in [30] p323.

Definition 2.4.4. (Derivative) A derivative is a contract on the risky asset that produces a
payoff H at maturity time T. Generally, the payoff H is an #-measurable non-negative
random variable.A non-negative % r-measurable payoff H is said to be replicated if there

exists a self-financing portfolio ¢ such that Vp(¢) = H.

The following proposition shows that any derivative E (W, 2Z%H 2) < oo is replicable,

where the process Z; is defined by

t 1 t
z,=exp(—/0 edeS_E/o efds).

Proposition 2.4.5. Let H be a non-negative %p-measurable random variable such that

EW; 2Z%H %) < oo, Then, there exists a self-financing portfolio ¢ such that Vr(¢) = H.

See the proposition and proof in [30] p326.
Under the assumptions of Proposition 2.4.5, the price of a derivative can be obtained by

the following proposition.

Proposition 2.4.6. The price of a derivative with payoff H at time t < T is given by the value

at time t of a portfolio wich replicates H. And the value of a portfolio at time t is given as
T
Vi(9) =2 'E(zre I | 7).

Moreover, the value of a portfolio can be obtained by the following proposition.

Proposition 2.4.7. (Value of a portfolio) The value of the arbitrage free portfolio at time t
is given as

V(6= Eole 715,
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where the measure Q is given by ?J_P = Zr.In particular, the value of the portfolio at time
t =0 is given as

Vo(9) = Eg (e*foT ’stH) .

See the proposition and proof in [30] p327.

And this equation will play a very important role in the computation of Greeks in Chapter

2.4.3 Integration by Parts Formula and Computation of Greeks

Recall that W = {W (h),h € H} denotes an isonormal Gaussian process associated with the
Hilbert space H. We assume that W is defined on a complete probability space (2,.%#,P),
and that .% is generated by W.

In the following part, we will review a general integration by parts formula, which plays

a fundamental role in the computaion of Greeks. See in [30] p330.

Proposition 2.4.8. (Integraltion by parts formula) Let F, G be two random variables such
that F € D2, Consider an H-valued random variable u such that D'F = (DF,u)y # 0 a.s.
and Gu(D"F)~' € Dom§. Then, for any continuously differentiable function f with bounded
derivative we have

E(f/(F)G)=E(f(F)H(F,G)),
where H(F,G) = 8(Gu(D"F)™").
The proof is modified from [30] p331.
Proof. Recall the fact that
D*(f(F)) = (Df(F),u)n

= f'(F)(DF,u)y

= f'(F)D"F.
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By D“F # 0 a.s. we have
f'(F)=D"(f(F))(D"F)~".
= (Df(F),u)y(D"F)~".
Hence by rearranging

E(f'(F)G)=E((Df(F),u)n(D"F)"'G)
=E((Df(F),Gu(D"F)™")n).

Recall the duality relationship for any F € D!
E(F&(u)) = E((DF,u)),

if u € Dom$.

Finally, we can deduce that

O

Suppose that the parameters appeared in the Black-Scholes model from section 2.4.2 are

constants, that is 6; = o, W; = i and r; = r. Then the stock price can be denoted by

o2
S, = Soexp<<u - 7>t+6Wz>,

which is a geometric Brownian motion (GBM).
Consider an option with payoff H such that Eg(H 2) < oo, Recall its price at time t = 0 is
determined by
Vo=Eg(e ""H).
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Suppose that we can write the payoff function as H = f(Fy), where « is one of the
parameters of the model, that is, So, o or r. Then, computing the derivative of the expected
value Eg(e~"T H) with respect to the parameter o, we have

aV() T / dFa
—=e¢ ""E Fo)— ).
ga ~ ¢ Ee\/Fyy

Using Proposition 2.4.8 we can deduce

aVO T dFa
9% _ g ( F, H(F —))
do o(f(F)H (Fa. 0

A Greek is a derivative of a financial quantity, usually an option price, with respect to any
of the parameters of the model. The derivative of the option price at time t = 0 with respect
to the initial price of the stock Sy is called Delta, which is considered as the most important

Greek. Denote Delte by A. The Gamma, denoted by I, is the second derivative of the option

I*V,
price Vy with respect to the initial stock price So. Thatis, I' = Xzo' The derivative of Vj
0
. . ) ) A%
with respect to the volatility ¢ is called Vega, denoted by ¥. That is, ¥ = 36

These Greeks are useful to measure the stability of this quantity under variations of the

parameter.



Chapter 3

Weighted Self-normalized Sum of

Exchangeable Variables

Assume that Y = {Y;,i > 1} is a sequence of independent, identically distributed random
variables, where Y is non-negative, and let X = {X;,i > 1} be a sequence of i.i.d. random

variables independent of Y = {Y;,i > 1} , where X satisfies
E(X?’)< o and E(X)=0.

Let R,, denote the randomly weighted self-normalized sum

Yo XY

R, = .
XL

and S, denote } ' | V.

This chapter is motivated by the following theorem [27].

Theorem 3.0.1. The ratio R, converges in distribution to a non-degenerate variable if and
only if Y belongs to a domain of attraction of the positive stable law with characteristics

0<a<l.
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The result has been proved in the mason and Zinn paper [27] under the condition
E(|X|P) <o, for p>2.

We only have a discussion on the truncation argument.

If we do a truncation for X; such that

X" = for1 <i<n

l
0, else

where m is a constant, m > 0.

Then we have the truncated weighted self-normalized sum

where S, denotes )" ;.

Thus, by triangular inequality and since |Xi(m) I<m

IN

Juy

RS

HNix A

A
3
-

Il
E
T

which implies that R,S’") is bounded by m.
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Denote that A,(,m) =R, — R,({"). Observe that

(X — X™) = X;1(|Xi|> m).

Then and by independence

F(a

—r(y

~E(y

~.

i=1

X >>Y)2

|X|> m)Y; >2‘

Recall the following fact. See in Appendix for the proof.

For an exchangeable variable §; =

Y

i=11i

I

1

moreover we have

Therefore, we obtain

S~
3
N
~—
[\

E(A

Notice that since Y, Y; are iid, we have

Y2

, Where X; and Y; are 1.1.d., we have

£( L %)

1<i,j<n

1

2

= nE(X*1(]X|> m)) E% +n(n—1)[EX1(X|>m))]*-E

n

E(87)+ Y E(55)).

7]

= nE(8%) +n(n—1)E(8,;5).

ny

n

~

o]
— =

1
S

Al B

Y
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The last line follows because Y; are non-negative.

Similarly, we have

Then by non-negativity of ¥;

Y E( 52 )

i#J

IN
™
oy

~

B =
—_

Finally, we deduce that
E(A") < EQCL(X|> m)) + [E(X1(X]> m)]
From the definition of variance of X I(IX|>m), we have
var(X1(|X|> m)) = E(X*1(|X|> m)) — [E(X1(|X|> m))]* > 0,

and therefore

E(AM™M)? <2E(XP1(X|> m)),

which implies that £ (A,Em))2 tends to 0, as m goes to infinity, uniformly in 7.
For fixed m, as R,(lm) is bounded by m, denote the sequence R,(lm) by W,,, then by Lemma
2.2.13 there exists W,y such that |W,, —W||— 0in L,, as m’ — oo,

Thus by triangular inequality and

Ro—W =Ry —R"™ +R™) _w , 4w, —W,
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we have

|Rn = W< (1R — RY™ [ IR = W |+ Wiy — W

As the L, norm ||R, — R || — 0 uniformly in n, as m’ — o, by taking a limsup as

n — oo first, then as m’ — oo, we have

hmsuphmsupHR W||<11msup limsup||R, —R" ||+||Wr—W||]

m! —soo n—oo m/ —o0 n—oo

Hence we have

|R,—W|—0 as n—> oo,

which implies ER% < K < oo, where K is constant, K > 0.

The proof of the truncation case is complete.



Chapter 4

Computing Moments of Stochastic

Processes

In this chapter, we will illustrate some calculations of moments of stochastic processes via

different methods.

4.1 By Using the Definition of Expectation

First of all, we will apply the traditional way to compute the expectations, by using the
definition of the expectation.
Recall that if a random variable X has the probability density function f, then the

corresponding expectation of g(X) is given as

In the following example, we will apply this method to compute the even moments of the

Brownian motion.
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Example 4.1.1. For fixed time ¢ , since the Brownian motion W; has a Gaussian distribution

N(0,¢), for any natural number n € N we have

1+
EW) = —= [ ey
1 oo 2
zt”—/ o= 24y (using  x = V1y).
Nor3 R y (using y)

By using integration by parts, we have

1 oo n—1 2
LI AN P
o= [ e

1 oo 2 2 | Y=
o (/ o — 1 W2e V2 gy — 21— gy /2‘ >
T\ @y Y=y e

E(W?")

As the fact that
2 1n | Y=F2
Y2l /2’ —0,
y:700

by straightforward algebra, we obtain

| e
E(W,Z”) _ tn(zn . 1)_ 2n—26—y2/2dy

V2T J—eo g
oo
:t"(Zn—l)(Zn—3)---l-/ e 24y
By plugging in
oo ] 2
L gy,
/—oo V2 g
and

2n(2n—1)2n—2)---1

Gn =) =) 1= o= 2) (an—4)--2

we have
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Similarly, the increment W; — W; has the Gaussian distribution N (0,7 — s), for any natural

number n € N we have
(2n)!

E[(W; —W,)*"] = Sl

(t—s)".

In particular, for n = 1 and n = 2, we have
EW?}) =1, EW!) =37

and

E[(W, =Wy’ | =t—s, E[(W,—W,)"]=3(t—s)
Similarly, we can compute the odd moments of the Brownian motion.

Example 4.1.2. We will show that E(W>*"!) = 0, for fixed 7 and n € N.

Let Z be a random variable with a Gaussian distribution N(0,7) and function f : R —
R be a Borel measurable function and E(|f(X)|) < e . We can prove that E(f'(Z)) =
LE(Zf(2))

By using integration by parts, we have

E(f'(2)) = \/;7/+wf’(X)e"2/2tdx

e /24 (f ()

\/ﬁ
— e —xz/”ﬂ [ s
As
o L
we obtain

E(f(2)) = EZf(2))

Let f(Z) = Z*", by using the previous equation, we have

1
ZnE(ZZn—1> — ;E(ZZn-H)‘
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That is,

=2%n(n—1)r*E(Z*"3)

= 2"nl"E(W,).

And therefore, by the fact E(W;) = 0, we have
E(VVZZnJrl) — O,

for fixed t and n € N.

4.2 By Using Properties of Divergence Operator and Sko-
rohod Integral

In this section, we will still try to compute the moments of stochastic processes, while we
will apply some properties in Malliavin calculus.

Recall that W = {W(h),h € H} is an isonormal Gaussian process associated with the
hilbert space H, which defined in a complete probability space (2,.%,P), and . is generated
by W.

From Definition 2.3.21, we know that the domain of the divergence operator &, denoted

by Domd, is the set of H—valued square integrable random variables u € L>(Q; H) such that
[E(DF,u)m)|< c[|F |2,

for all F € D', where ¢ is some constant depending on .

And the divergence operator  has the following properties:
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1. If u belongs to Domd, then §(u) is the element of L?(£2) characterized by
E(FS(u)) = E((DF,u)m)

for any F € D',

2. In the case that the elements of Domé € L2(T x ) are square integrable processes, the
divergence operator 0 (u) is named as the Skorohod stochastic integral of the process

u, and it hols:

§(u) = /T e d W

In the following example, we will apply the above properties to compute E (W%)

Example 4.2.1. By the definition of the skorohod integral

5(u):/utth,
T

we can obtain that 6(1) = Wr.
Then we can write E(W;) as E(W75(1)).

By using the properties of the divergence operator 6:
E(Fo(u)) = E((DF,u)p),

and

<htagt>H:/Thtgtdt7

we have

E(W})=E(W;5(1))

E((DWi,1)n)

E( /0 TDtWTZdt).
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Recall the definition of the derivative operator: suppose that a smooth random variables

F has the form

F=fW(h), - W(h))

:f(/OThl(t)dW,,...,/OThn(t)th>,

where W (hy) = [{ hi(t)dW; is an isonormal Gaussian process associated with the Hilbert
space H and f belongs to C;’(R"), Ay, - - -, h, are in the Hilbert space H, and n > 1.
Then, the derivative of a smooth random variable F is the H-valued random variables

given by

DF = Z av%,-) (W (1), W ()

or

D/F = ; %(W(m(z)), W () i(t).

Then by definition and the fact Wy = [i h(t)dW;,where h(t) = 1, < T, we have
oW3 .

OWr

=2Wr.

Dl‘VVT2 -

Plugging in D,W7? = 2Wy and E(Wr) = 0, we have
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Example 4.2.2. By using similar algebra, we obtain

E(Wr) =E(W;8(1))

= E({(D:W7, 1))

T
=E( / D,W3dr).
0

By plugging in D,WT3 = 3W%, we have

W) =& ( /O ! Wdi )

= 3TE(W?).
By using the fact E(W2) = T, we have
E(W3) =372
Example 4.2.3. In the case of E(W}), k =2,3,---, we have

E(Wr) =E(Wr~'8(1))

T
:E(/ DIWY’S*Idt>
0

= (k— ) TE(Wf2).
By using the fact E(Wr) = 0 and E(W2) = T, for n € N, we obtain

E(WF™) = 2"nI T"E(Wr) = 0,
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and

E(W#") = (2n— 1)TE(W#"2)

= %T””E(W%)
_ (2

- 2np!

n

which implies the same result we deduced in section 4.1.

4.3 By Using Ito Formula

In this section, we will show how to compute the expectations by applying 1td6 formula.
Espectially, we will calculate up to 4th moment of the Ornstein-Uhlenbeck process as well
as the expectation of exponential Ornstein-Uhlenbeck process.

Assume the stochastic process x; can be modelled as an Ornstein-Uhlenbeck process,
then it follows :

dx; = 0(m—x;)dt + cdW;,

with # > 0 and the initial value x being denoted by xo. The parameter 0 is the rate of this
reversion, the parameter m is the average level, also known as the long-run average value
and the parameter o, (¢ > 0), represents the volatility. dW; is the increment of a standard
Brownian Motion, W; ~ N(0,7).

Thus, this one-factor Ornstein-Uhlenbeck process is formed as a drift term 6 (m — x;)dt ,
plus a stochastic term cdW; . When the current value of x; is greater than the average level m,
the drift term is negative, leading to the result of pulling the value down towards the average
level , also known as its place of equilibrium; otherwise, the drift is positive, pulling the

value up towards its average level.
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4.3.1 Properties of Ornstein-Uhlenbeck Process

By applying It6 calculus, the following properties of Ornstein-Uhlenbeck process can be

obtained.

Lemma 4.3.1. An Ornstein-Uhlenbeck process x; of the form

dx; = 0(m—x;)dt + cdW,,

is a Gasussian process, and the following properties hold true:

6.

E(x) =m+ (xo—m)e ¥,

E(2) = [m+ (xo—m)e 02+ o (1 —e201);

var(x;) = g—;(l — 729 and cov(x;,x) = g_;@,g\t,s‘ — e OlH)),

E(x}) = [m+ (xo —m)e ¥ + %(1 — e 2 [m+ (xg —m)e%;

E(x) = [m+ (xo—m)e 4 438 (1 — ¢ 201 [;m 4 (xg — m)e ]2 + 393 (1 — 72012,

462

Elexp(Zx;)] = exp |Zm 4 Z(xo — m)e™ %" + %(1 — e‘zet)] for a constant Z > 0.

See in [36] p84-85 for the Gaussianity and the moments of Ornstein-Uhlenbeck process,

the following proof is modified.

Proof. 1.

Define a new process f(1,x;) = x;e%". As f, = Ox,e%, f. =%, f. =0and (dx;)? = o2dt,

by applying Itd formula, we have the following differential representation

/ / 1 U
d(xe®) = fdi + fodx+ Efxx(dxl)z
= 0x;%dr + €% (0 (m — x;)dt + ox,dW,)

= Ome® dt + oe® aw,.
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0

Thus, the process f(¢,x;) = x,¢”" in integral notation is

t t
x,e? :xo+/ Omeesds+/ ce?aw,
0 0
t
=xo+m(e? —1) —|—/ cePaw,
0

which implies

t
X :m—l—(xo—m)e9’+/ o aw;.
0

As the integral fé oefls—t )dWS is an Itd integral, we know that

E< /O [ oe9<s—f>dws> —0,

and therefore by taking expactations on both sides, we obtain

E(x;) =m+ (xo—m)e ¥,

e26t

2. Similarly, define the process g(t,x;) = x?>¢*%", and therefore

! 2 20t ! 20t " 20t
g =20x;e”” , g, =2xe”7 | g =2,

Hence, apply the It6 formula we obtain

i i 1 "
d(xtzezet) =g, dit +g.dx; + ngx(dx,)z

= ezet(ZGmx[ + Gz)dt +20e*% x,dW,.

Thus, by integrate both sides from O to ¢, we have

t t
x2e?0 = x2 —|—/ ¢?% (20mxs + 0%)ds + 26/ % x,dW;,
0 0

and times the exponential e =29 yields

t i
x> =xge 20 4729 / 2% (20mx,+ 0%)ds+20e7 2% / % x,dW;.
0 0
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Note that the last term 2ce ™29 fé e295x,dW; is an Itd integral, we know its expactation is
Zero.

Then by taking expactations on both sides and Fubini’s theorem, we have
t
E(x?) =x3e 2% + ezet/ ¢*%5(20mE (x;) + 62)ds.
0
To compute the integral, plug in E (x;) = m + (xo — m)e~ % and rearrange, we obtain:

t
E(x?) = x3e 2% +e—261/ ¢?9s {26m[m+ (xo—m)e %) + Gz}ds
0
200 (.2 2026 6 Y,
—e f[x0+m(e 1)+ 2m(xo —m)(® 1)+ T (e f—1)}
2
o
= (m+ (xo—m)e )2 + %(1 — e 200,

3. From var(x;) = E(x*) — (E(x;))? and the results of 1 and 2, we have

2

var(x;) = g—e(l — e 200,

This together with the form of x;
t
Xy =m+ (xo— m)efet +/ 0?6 aw,
0

and

E(x)) =m+ (xo—m)e ¥,

means that the law of the Gaussian stochastic process x; is the normal distribution

Nm+(x— fGtG_ZI_ —201
0 m>€ 729( e ) )
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Moreover, we can compute the covariances of the process x; in the following way

cov(xs,x5) = E[(x —E(x¢)) (x5 — E(x5))]

E [Gzefe(ws) (/Oteedeh> (/()Seedeh>]

By applying the Itd isometry

t S
cntn) = [ ) [ <)
0 0
tAS
:Gze—e(z+s)/ 200,
0

2
_ 6_(676|th\ N efO(t+s)).

20

4. Let @(t,x;) = x2¢%%  then @, = 303639, @, = 3x2¢39" and @, = 6x,679".

Thus by using 1t6 formula, we have

' / 1 »
d(x?e?yﬂt) = (ptdt + q)xdxl + E(pxx(dxl)z

= 3% (30mx? +36%x,)dt +30x2%% dw,.
Integrate on both sides we obtain
t t
e =3 +/O 95 (30mx? + 362xs)ds—|—/0 3ox2e30dw,
again times the exponential e 3% yields

2=l Jre39z/

t t
395 (30mx? +30%x)ds+e 3% / 3ox2e30 dw;.
0 0
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By taking the expectation and Fubini’s theorem, then by plugging the values of the second

moment, we have

t
E(x)) =x3e 3% ~|—e_39’/ 95 (30mE (x2) +362E (x,))ds
0

t
— xgef.’)ﬂt +e30t/ 639‘9391’”{[1’}1—% (xO _ m)efGS]Z
0

2
+_§é(1__e—23v)4_362hn+-00“”0€_9ﬂ}d&

and therefore by rearranging

2
B() = I (s0 = mpe” T+ 7 (1 =2 -+ (g —m)e ]

?e4et 461

/ / U
5. Define a new process y(t,x;) = x ,as Y, = 40xte? y = 4x3e*% and v, =

12x7¢*%", by 1t6 formula we have

! i 1 "
d(x?e49’) =y, dt + y,dx; + El[/xx(dx,)z

= "% (40mx] + 66°x%)dt + 4oxe*¥ aw,.
Thus, Integrate on both sides and again times the exponential e 9’ yields
xte0 =3 4 /Ot ' (40mx} + 60°x%)ds + /()t46x§e495dWx,
and then

t t
X =xde 0 1 e_49t/0 95 (40mx? + 60°x%)ds + /0 4ox3e*95aw;.
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By taking expectation on both sides and Fubini’s theorem, then by plugging the values of

the third moment, we have

t
E(x}) = xge 49 +e_49t/ 95 [40mE (x3) + 662E (x?)]ds
0

302

26 (1—e 2 m+ (xo—m)eet]}ds

Finally, by computing integrals and rearranging

302

20t . —0172 E _,—201\2
5 (1—e =" [m+ (xo—m)e """+ e .

E(ef) = -+ (v —m)e®)*+ ie!

6. Set w(z,x;) = exp(Zx;) and therefore we have
o =0, @, = Zexp(Zx;). a),:x = Z%exp(Zx,),
Then by It6 formula we have
/ / 1 1 2
do(t,x,) = w,dt + o.dx, + wax(dxt)

1
= [GZ(m —x7)exp(Zx;) + EGZZzexp(th)] dt + o Zexp(Zx;)dW;,

which implies
t 1 2.2 t
exp(Zx;) =exp(Zxo) +/ [GZ(m—xS)exp(sz) + o Z exp(sz)] ds+/ oZexp(Zxs)dWs.
0 0
By taking expectations on both sides and Fubini’s theorem, we have

Elexp(Zx;)] = exp(Zxp) + /Ol {Z(6m+ %62Z>E[exp(2xs)] — 0ZE[xsexp(Zx;)] }ds.
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If we set u(t,Z) = E[exp(Zx;)], the partial derivative of u with respect to Z is given as
uy = Exexp(Zx;)].
Rewriting the equation on E[exp(Zx;)] we have
! 1 2 /
u(t,Z) = exp(Zxp) +/ [Z(Gm—{— 0 Z)u(s,Z) - GZMZ(S,Z)] ds
0
By using Leibniz’s integral rule [15] for differentiating an integral

(/ b(t)k(z,x)d))/ N / " ke, 00 OK(,60)) — d (0K(r,al0),
alt) t a(r) !

where k(z,x) is a function such that both k(z,x) and its partial derivative k,(z,x) are continuous
in x and 7 in some region of the (z,x)-plane, the function a(r) and b(t) are both continuous and
both have continuous derivatives for z € [0, T], and a(f) < x < b(t), we can partial derivative

u(t,Z) with respect to ¢, and obtain a PDE
/ / 1 2
ut+GZuZ—Z<9m+§G Z)u =0.

dzZ
To find the characteristics curves of this PDE, we solve the ordinary equation i 0z

and get
InZ — 0t =const, for ZF#O0.

Using separation of variables, we set

é(l‘,Z):t > n(t7Z):an_6ta
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and the corresponding Jacobian is found by straightforward calculations

aE,m) & &

002~ o
=§mz—§zn;
Lz

Hence, the transformation of the coordinates (z,Z) <> (£,1n) is both non-singular and

smooth. The inverse transformation is given by

t(En)=E& and Z(E,n) =0T
And therefore, the transformed PDE is
z(6m+ lozz) 0
Vg — m-+ — v=0.
- 2

where u(t,Z) =v(§,n).
By rearranging and plugging in Z(&, 1) = ¢(®51) we have

1
Integrating both sides with respect to &, we have

1
Inv = me®5+M) @GZeZ(GEH) +Ki(n),

where the function K (n) is a function that only depends on variable 7.
That is,

V€)= exp|me®E 1 202?08 ] ko),

where the function K> (7) is a function that only depends on variable 1.
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By using the condition v(0,1) = u(0,Z) = exp(e'lxp), we have
n n, L 2 on
exp(e'xp) :exp<me +@G e > -K>(Mm).

By rearranging, we obtain

1
_ . n_ 2 21
K>(n) =exp [(xo m)e 19° ¢ ]

And therefore, the function v(&,n) can be represented as follows
1
v(§,m) = exp [(xo —m+me%)e" + 259" (€25 — 1)} .

Hence, by the relation between functions u(z,Z) and v(&,n), and plugging in & =7 and

N =InZ — 0¢, we deduce

u(t,Z) =v(&,n)
1
_ _ 0&\ 1 2 2m (208
exp[(xo m+me°*)e +490'e (e 1)]

1
= exp [(xo —m+me®)zZe % + EczZze_zet(ewt - 1)] .

By rearranging, we have

Elexp(Zx;)] = u(t,Z)

ﬁ(l _6—291)]‘

= exp |Zm+Z(xo—m)e ¥ + 10

]

Observing from property 1 and 3, the Ornstein-Uhlenbeck process x; has the Gaussian
T 2 . . .
distribution of N <m + (xo—m)e % T (1 — 28 )) . Then as time ¢ increases, the variance
increases. When the time ¢ goes to infinity, the expectation and the variance of x; tend to
2

9 . L . . .
converge to m and 29’ respectively, which implies that when ¢ tends to infinity, the law of x;

2
(0
converges to the normal law N (m, %) .
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2
(o2
As for each t > 0 the law of x; will always be N (m —) , if the initial condition x( has

20
o2
distribution N (m, %) , this distribution is called stationary.
Also, as 6 tends to zero, the process becomes dx; = cdW;, which is a Brownian motion
with the standard deviation of c/7.

If 6 goes to infinity, then the variance tends to be zero, showing that the process x; cannot

escape from its place of equilibrium, which is the average level m, even for a moment.

4.3.2 Additional Calculations for Ornstein-Ulenbeck Type Process

This part is motivated by the open question to calculate the expectation of E (xf) of an Ito6
process which has a similar representation as an Ornstein-Ulenbeck process.
More exactly, we assume the stochastic processx; follows the Ornstein-Uhlenbeck type

stochastic differential equation as below:
dx; = 6(m—x?)dt + cdW;,

with x; = 0 and W; is a Brownian motion.

In order to calculate the expectation of x;, we define another process f(z,x;) = x¥, and let
function g(¢,k) denote E (x).

When k =0, f(t,x;) =x" = 1, that is g(¢,0) = 1.

When k = 1, by integrating on both sides, we have
t t
X = / G(m—xf)ds—f—/ ocdW;,
0 0
Taking expectations on both sides, we have
t
E(x;) = / 6(m—E(x?))ds,
0

which is

o, 1) :/Ole(m—g(s,Z))ds.
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When k > 2, we get that f, =0, f, = kx*"1, fi = k(k—1)x*"2 and (dx,)? = o2dt.

Then, by Itd6 lemma
dxk = k=10 (m — x)dt + kx* "' oaw, + %k(k — X262
Integrating on both sided, we deduce
= /0 l [emkx’;—1 — Ok 4 %sz(k - 1)x’;—2} ds + /0 otk law,,

Then by using

t
E( / okt~ law, ) =0,
0

and by taking expectations and Fubini’s theorem, we have
E(X) = /0 l [emkE(x’;—l) — OKE (Xt + %sz(k — 1)E(x§—2>} ds.
That is,
g(t,k) = /Ot [kag(s,k 1) — Bkg(s,k+1) + %sz(k a5,k — 2)] ds.
Partial differentiating both sides with respect to ¢z, we get that

1
g (t,k) = Omkg(t,k— 1) — Okg(t,k+1) + Eozk(k— Dg(t,k—2).

Let constants Cy, C; and C3 represent Om, —0 and %62, respectively, then the equation

becomes

g (t,k) = Cikg(t,k— 1)+ Cakg(t,k+ 1) +Csk(k—1)g(t,k—2).
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Suppose that z is a complex number frequency parameter z = a + ib, a and b are real

numbers, by taking Laplace transform on both sides, we get that

oo oo
/ g1, k)e 2 di = C1k / 2t k— e @di
0 0
~+oo
+ Ok / 2t k+ Ve @di
0

~+oo
+Ck(k—1) / 2t k—2)e ?dt.
0
As the fact

oo +oo
/O g (t,k)e " dr = /O e “dg(t,k)

— k f=rte
=e “g(t,k)

t=0

~+o0
=Z/ g(t,k)e dt,
0

(g(r,0) =1, g(0,k) =0, g(0,0) = 0 as we define 0/0 = 0.) we have that

oo oo
Z/ g(t,k)e ¥dt = Clk/ g(t,k—1)e ¥dt
0 0
o0
+C2k/ g(t,k+1)e ¥dt
0

o0
4 Ck(k—1) / gtk —2)e %,
0

Set Z,(k) = [ g(t,k)e“dt, we have

2Ly (k) = CLkLy(k— 1)+ Cok Ly (k+ 1) + Csk(k — 1) L (k—2),

with

—+oo
+z/ g(t,k)e ¥dt
0
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C C C
Let sequences a; denote .Z(k), and set R| = —1, Ry = =2 and Ry = —3, we have
Z Z Z

1
ar = Rikag_1 + Rokay 1 + R3k(k — 1)ag_n, ap= E
Let u be a variable, and by multiplying #* and taking the sums of both sides, we get

Z akuk =R, Z kak,luk +R; Z kak+1uk +R3 Z k(k— l)ak,zuk.
k=2 k=2 k=2 k=2

Now, we apply several simple properties of the power series.

Given 0 < p < 1, the following properties can be obtained:

1-p" 1
1. Y op" = lim P _ = C, where C is constant.

n—ee l—p 1—p

2. Y vt =pNyr o pt=—=p"-C.

/ 1 !/ p

s vz sz () <o) = L

Yo—oP" = pYa=onp P Xa=oP r\T=,) U=
4. Yoynp" =pV L o(n+N)p" = p" (Z,’f:o np" +NY p”)
_ p ol P

(1-p)?

TN —N + .
(1-p)?

- p} - p
The techniques used here will be applied in the following part.

Let o7 (u), which is a function of u, denote Y7, au*.

Then we will rewrite the equation
Z akuk =R Z kak_luk + Ry Z kak+1uk + Rj3 Z k(k— l)ak_zuk.
k=2 k=2 k=2 k=2

as an equation with respect to .o (u).
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For the first term on the right side, by algebra we have

i kay_ 1k = i(i+ Daju' ™!
k=2

=1
= i i+ 1)au U’
i=1

(E ).

~

By plugging in Y57 ayu* = <7 (u) — ap, we have
Y kay_ " = ulu(</ (u) — ag)].,.
k=2

For the second term on the right side, by algebra we have

2

By plugging in Y5 axuf = o (u) — ap — ayu — aru?, we have

S k 1 2]’
ZkakHM :u[—(ﬂ(u)—ao—alu—agu )} .
) u u
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For the last term on the right side, by algebra we have

oo (o)

Y k(k—Dag_ou* =Y (14 1)(1+2)au' >

k=2 =0

uzz )(1+2) alu
=0

(L ’”)
(

u2

[eo)

u? Za;u )

=0

u2

That is

[ee]
n

Z k(k_ l)ak72uk = uz[uzﬂ(u)]uu
k=2

Hence the equation
Z il = Ry Z kay_u* + Ry Z kakﬂuk +R;3 Z k(k— l)ak,zuk
k=2 k=2 k=2 k=2

becomes a second order ODE

o (u) — ag — aju = Ryulu( (u) — ap)]),

1 /
+R2u[;(%’(u)—ao—a1u—azuz) u+R3M [ 527( )]uw

with initial condition .27 (0) = 0.

The future work is to solve the second order ODE to obtain Ex.



Chapter 5

Computing operators D, o, L and

associated characteristics

In this chapter, we will illustrate the computation of the operators D, &, L and associated
characteristics in Malliavin calculus. Not only it will help us to gain the understanding about
the analysis on Wiener space, which can be considered as the fundamental part of Malliavin
calculus, but also will make a contribution in the computation of Greeks in Chapter 6. As

these operators will play essential roles in computing the Greeks.

5.1 The Derivative Operator D

First of all, we start by computing the derivative operator D, which is defined as follows:

Recall that W = {W(h),h € H} is an isonormal Gaussian process associated with the
Hilbert space H, which defined in a complete probability space (£2,.%, P), and .7 is generated
by W

If a smooth random variable F has the form

F=f(W(hy), - ,W(hy))

/hldW,,/h th
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where W (hy) = fOT hy(t)dW; and f belongs to C;(R"), hy, - -, hy are in the Hilbert space H,
andn > 1.
Then, the derivative of a smooth random variable F is the H-valued random variables

given by

! oif
DF = X W ()

i=1

(W(h1(2)), -, W (ha(1)) )i (2)-

Recall that the notations are equivalent
W, =W, = B(t).

Example 5.1.1. In order to compute the derivative of the isonormal Gaussian process W (h),
where & belongs to the associated Hilbert space H.

First we know that for the smooth random variable W (k) = f(W(h)), the function f is
given as f(x) = x.

Then by using f/ = 1 and the Definition 2.3.12, we have
DW(h))=f"-h=h.

As for the smooth random variable W2 (h) = f(W (h)), the function f is given as f(x) = x*

and f’ = 2x. By applying the same definition, we have
D(W?(h)) = f'-h=2W (h)h.

Example 5.1.2. Consider the Brownian motion Wr, as the fact Wy = fOTh(t)th, where

h(t) = 1,t < T, the stochastic process WT2 can be considered as

wi=r( [ nwam).

where f(x) = x°.
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Then we can obtain the derivative is given as
D,(W7) = f'-h(t) = 2Wr.

Similarly, we can obtain D, (W£) = kW 1.

1
Example 5.1.3. (Related to stock price). Given ST = Spexp < fOT (r — EG) dt+ fOT Gth> ,we

have
T 1 T
ST:Soexp</ (F—FEG)dt—l—/ GdVVl>
0 0

= ([ nwyam).

where h(t) =o,t <T.

Then the derivative is

DiSy = g—f(/oT GaW, ) h(r)

T 1 T
= Soexp(/ <r+ Ec)dt —I—/ GdWI) ¥eJ
0 0

=o0ST.

Moreover, we have compute the D" operator for S7 by using the definition D"F =

(DF,h)y, that is

DSy = (D;St,h)y

T
:/ DtSTdt
0
By plugging in the previous result D;St = 6 ST, we obtain

T
D'S; = / oSrdt
0

= GTST.
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Example 5.1.4. Given F = f(W (hy),W (hy) = W(h;) x W(hy), then

_of af
D/F = a—xlhl(f) + 8_x2h2(t)

= W(ho(2)) 11 (£) + W (R (1)) o (1)

The following part is motivated by calculations about the derivative operator of a stochas-
tic integral fOT usdWs.
Recall the method we use in Section 2.3.3 to define a stochastic process:

If a stochastic process u in LZJ is a simple process, we will define it as the form of:

Usg = Z (Pkl(sk,l,sk] (S)7
k=1

where 0 = 59 < 51 < --- <s, =T is a sequence of partitions of an time interval [0, T], ¢

are square integrable .7;_ - measurable random variables and 1(;, | (,1(s) is the indicator

function.

Then the stochastic integral of u with respect to the Brownian motion B is defined by
T n
/0 ugdWs = Z ¢j(W¥j - Wsj,l)-
j=1

Then for t < s < T, by the definition of the derivative operator and differential by parts

method, we obtain
T n
Dl(/o MSdWS> :DZ(Z¢](W91_WYJ*1)>
j=1
n n
- Z Dz¢j(Wsj _Wsj—1)+ Z ‘PJ'DI(WSJ B Wsj—l)'
j=1 j=1
By using the fact

T
DW= Wiy ) = Di( [ 1y, (0)d)

= 1(.&‘1;1 ,Sj] (t)7
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and therefore

n n
Y Dioj(Ws, =W, )+ Y ¢;D;(Wy, — W, )
j=1 j=1

Nt

Dy ¢j(WSj B WSH) + Z (pl' l(S_;—qu] (t )
J 7=l

2 T

= / DiugdWs + uy.
0

This implies the following lemma.

Lemma 5.1.5. If u is a stochastic process in Lg 7 for t <s < T the derivative of the

stochastic integral of u satisfies:

T T
D,( / uSdWS> — o+ / DyuydW,.
0 0

Example 5.1.6. Consider the stochastic integral fOT W,dW,, we have

T T
Dt( / Wdes> W+ / D,W.dW,
0 0

T
Wi+ [ aw,
t
=W +Wr -W,
= Wr.
W2 —
By using Wi dW; = d< 52 S) , we know
T WE—T
/WdeS: r—.
0 2

Then by definition of the derivative operator, we have

Dt</OTWdeS) :D,<WT22_ T)

:WT7
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which yields the same result.

More generally, if f is a continuously differentiable function, we have

T T
Dy( /0 FW)dW,) = £(W;) + /0 Dy f (Wy)aW,
T
— f(W) + /0 F(Wo) DiW,dW,

= s+ [ omaw,

Moreover, for a stochastic process Y7 defined by
s=T ru=s
Yy = / G dW,dW,,
s=0 Ju=0
the derivative of Y7 is given as

t s=T u=s

DYy = / G dW, + D,( / O'Mqu>dWs
0 s=0 u=0

s=T

t u=s
— / G, dW, + (o,+ / D,cudwu)dws
0 u=0

s=0

t T s=T ru=s
_ / GudW, + / G, dW, + / D;GudW,dW;.
0 0 s=0 Ju=0

5.2 The Operator L

In this section, furture explainations and several examples about the infinitesimal generator
of the Ornstein-Uhlenbeck semigroup are demonstrated.
By Proposition 2.3.37, we know that the operator L coincided with the infinitesimal
generator of the Ornstein-Uhlenbeck semigroup {7;,7 > 0}.
Let F € L?(Q) be a square integrable random variable. Recall that the operator L is
defined as:
LF =

n

—nJ,F,
=0
provided this series converges in L?(£). J, denotes the orthogonal projection on the nth

Wiener chaos.
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And the domain of this operator will be the set
DomlL = {F eLX(Q),F =Y L(fa): Y n*|UF|3< oo}
n=0 n=0

Recall the Proposition 2.3.38, which explains the relationship between the operator D, &
and L:

For F € L?(Q) the statement F € DomL is equivalent to F € Dom$L (i.e., F € D' and
DF € Domd), and in this case §(DF) = —LF.

Combining with the Proposition 2.3.28:

Let F € D'2 and u be in the domain of & such that Fu € LZ(Q;H). Then Fu belongs to

the domain of § and the following equation holds
O(Fu)=F&(u)— (DF,u)y,

provided that F 0 (u) — (DF,u)y is square integrable.
We will have an achievable way for computing the operator L by computing 6 (DF),

which will be demonstrated in these following examples.

Example 5.2.1. Consider the case that F = W (h), h € H. We can compute the derivative

operator

DF =h,

and by using the Skorohod integral we have
O0(DF) =W (h).
Then by using the Proposition 2.3.38, the operator L is given as

LF = —8(DF) = W(h).
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Example 5.2.2. Consider the case that F = W (h;)W (hy), hy,hy € H. We can deduce
DF = W(hl)hz + W(hz)hl

and by using Proposition 2.3.28 we have
§(DF) = W () /T hodW — (DW (1), ho) 11 -+ W (o) /T hidW — (DW (h), b1V
=2W (h))W (hy) —2{h1,h) .

Then by using the Proposition 2.3.38, the operator L is given as

LF = —§(DF)

= 2(h1, o) — 2W ()W (hy).

Example 5.2.3. Consider the case that F = W (h)W (hy)W (h3), hi,ha,hs € H. We can
deduce

DF =W (h2)W (h3)hy +W (h1)W (h3)ha +W (h1)W (ha)hs.

By applying Proposition 2.3.38 and the linearity of the divergence operator, we have

F — —5(DF)
= —[6(W(ho)W (h3)h1) 4+ 8(W (h1 )W (h3)hy) + 6 (W (h1)W (ha)h3)].

By using Proposition 2.3.28 we have

6 (W (h2)W (h3)hy)

W (h1)W (ho)W (h3) — (D(W (h2)W (h3)),h1) 1
W (h1)W (h2)W (h3) — (W (h2)h3 + W (h3)ha, hi) 1
W

(h )W (hy)W (h3) — W (h3){h1,ha) g — W (h2) {h1,h3) 5.

By applying similar technique, we deduce

(W (h1)W (h3)ha) = W (h1)W (h2)W (h3) — W (h3){h1,h2) i — W (h1){h2, ha)
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and
O(W(hy )W (hy)h3) = W (h))W (hp)W (h3) — W (hy){(h1,h3)g — W (hy)(ho,h3) g
Then the operator L is given as

LF =2W (h1){ha,h3) g +2W (ho) (h1, h3) g +2W (h3) (b, ho) 1

—3W (h)W (hy)W (h3).

5.3 Characteristics of Operator L

This section gives a discussion about the associated characteristics of operator L. In particular,
we illustrate the fact that the norms ||-||z and ||-||2,2 coincide by computing |||z and ||-||22
respectively.

Recall that the norms |||z, on S is defined as
1
IF = [E(F?) +E(ILF*)]2,

and DomL = D*?.
The technique to compute the operator L is same as that in section 5.2.

We alse recall the definition of the seminorms on S:

k

IFlp= |EQFIP)+ ZIE(||DJF||g®j)] ’
-

5.3.1 Example: Case: F = (W(h))?

Consider the case F = (W (h))?, h € H by the definition of derivative operator, we have

DF =2W (h)h,
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and by using Proposition 2.3.38 we have

LF = —§(DF)
= —28(W (h)h).

By using the Proposition 2.3.29
8(Fh) = FW(h) — D"F,

we obtain

LF = —2[(W(h))>— (DW (h),h)x]
= —2[(W(R))*— ||all7]

=2(||h7— (W (n))?].
Then the ||-||z norm is given as

IF |l = [E(F?)+E(LF[?)]2

= [E((W (n)*) +4E(([IRl7— (W (1))*)*)]2.

D=

By the definition of Wiener space, we have E((W(h))?) = ||h||%, and therefore by

rearranging we have

1Pl = [4l1all—8lIAIEE(W (1)) + SE((W (h))*)]2

D=

= [~ 4][lE+SE(W (h)*)]

Finally, by using the properties of SBM E(W;*) = 3¢, that is E((W (h))*) = 3||||%, and

by plugging in we have

IF )l = V11|l
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In order to compute the norm ||-||2 2, we first compute the second order derivative. By

definition, we have

D?F = 2h(u)h(t).
Then the ||-||2,» norm can be computed as

1
IFll22 = [E(F?) +E(IIDF |) + E(ID*F |frm))?

= [E(W (1)) +4E (|3 (W (1)?) +4E (|l () () [Fror))

1

= 7|l +4E(|hh(0) | From)]?-
By Fubini we have

) e = | [ (hh(e)Pdrc
_ /T (h(1))2dt /T (h(u))2du

= ||hllk.
Then by plugging in, we obtain
I1F[l22 = V11|27,

which implies that the norms ||-||z and ||-||2,» coincide.

5.3.2 Example: Case: F = Spexp(m+ oW (h))

Consider the case F = Spexp(m+ oW (h)), h € H, by the definition of derivative operator,

we have

DF = oFh,
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and by using proposition 2.3.38 we have

LF = —8(DF)
= —06(Fh).

By using the Proposition

8(Fh) = FW(h) — D"F,

we obtain

LF = —o(FW(h)— (DF,h)g)
= —G(FW(h)— oF|hl|)

— oF (o [k —W (h)).

Then the ||-||z norm is given as

1

IF|l.=[E(F?)+E(ILF[*)]?
= [E(F?) + G2 E(F? (o |hl[~W ())*)]?

= [(1+ &*[hll}) E(F2) 207 |[R[ZE(F*W (1)) + 6>E(FA(W ())2)]2.

Notice that for a random variable x with a standard Gaussian distribution N(0, 1), if C is

a constant we have

E(exp(Cx)) = exp(C?/2),

eq(1)

and if the second derivative of function f is continuous, the following property can be proved:

E(xf(x)) = E(f'(x)).

eq(2)
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By using integration by parts, we have
e 1 2
E(f(x) = —— f(x)e ™ Pdx
P = | et
Foo 1 —X2/2
= df(x)
\/_
1 7x2/2 x=-4o0 /+°° _ 2/2
= ——e e+ Yexf(x)dx
\/ﬁ X= f( )
By using the fact
1 —X2/2 X=1o0
—e X) |- o=0,
\/ﬂ f( ) X=
we can deduce eq(2). By applying eq(2) twice, we obtain
E(x’f(x)) = E(f(x)) +E(f"(x)) eq(3)

Notice that W (h) ~ ||h||gN(0, 1), that is W (k) = || k|| gx.
By applying eq(1), we have

E(F?) = S5e”"Elexp(20 ||| )]
= Sge™"exp(20°|hl|7;)

= Spexp(2m+262n[[}).

Set A = S3exp(2m +202||h||7).
By applying eq(2) and eq(1), we have

E(F?W (h)) = S5¢*" | hl|nEexp(20 || 1x)q]
=2085¢”"|| 1|3 E [exp(20 |1 11)]
=2085e”"||h|Fexp(207 1] )

=20 ||h||5A.
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By applying eq(3), eq(2) and eq(1), we have

E(F*(W (h))?) = S5e*" |17 E [exp(20 ||| 1x)x°]
= S5e>"||l[ % [E (exp(20 || 1)) + 40 ||h][3E (exp(20 || 1x))]
= Sge™" ||| (1+ 40 ||| )exp(20 A7)

= ||All7 (1 +40>||Al|7)A.

Then the ||-||; norm can be computed as

1

[N

IF |l = [(1+0*||n][)A — 40* | ][5A + o2 |llF (1 +402(|A]|)A]
= (140750 ] A%
1
= [1+ 0|l +0% (|42 Soexp(m+ o ||Al|7,).
In order to compute the norm||F||,,, we will first compute D°F by using the first

derivative DF = oFh:
D’F = 6*Fh(s)h(u),

then we have

IF

1
22 = [E(F?) +E(|DF||;) + E(||D*F|[F1001)]2
= [E(F?)+ 02 |[hl[}E(F?) + o*||n]| 4 E(F)).
Finally, by plugging in E(F?) = A and rearranging, we obtain the ||-||2.» norm
1ol
IF |22 = [1+0?||AllF+0|[A]l]2A2

= [1+ &?||All3+0|A][ )2 Soexp(m + o2 |A]%),

which implies that the norms ||-||z and ||-||2,2 coincide.
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5.3.3 Example: Case: F =W (h)W(hy)

Consider the case that F = W (hy )W (hy), hy,hy € H. We have
DF = W(hl)hz —|—W(h2)h1,

and

LF =2(hy,ho)pg —2W (h1)W (hy).
Then the ||-||, norm is given as

1

|F||. = [E(F?) +E(|LF|*)]2
= [E((W ()W (h2))?) +4((h1, ha)yy — 2(h1, i) HE (W (h1)W (h2))

+E((W(h)W (h2))))?.

By plugging in E(W (h;)W (hy)) = (h1,hy)n and rearranging we obtain
1
1 l2= [SE((W ()W (h2))?) —4(h1, h2) ]2,

In order to compute E((W (k)W (h3))?), we recall the Itd formula for functions in two
variables [20]:

Let f(x,y) be a function with continuous partial derivatives up to order two. Let X and ¥
be Itd process with

dX; = wXdt + X aw,,

dY, = ) dt + o} aw,.
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Then

af
a_(
19%f
2 0x Frel
82

+ axaf (X;,Y;)oX ol dr.

d
;f(Xl7YIf>le‘

dy
2 9°f
X;,:)(a}") d“riﬁ

df(X:,Y:) = X:,Y)dX; +

+5 (X,Y) (0] ) dr

By using W (h;) = fOT hi(t)dW, and W (hy) = fOT hy(t)dW;, we have
dW(l’ll) = ]’ll(l‘)dVVt,

and

dW(hz) = hz(l‘)dVVt.

By applying the Itd formula for functions in two variables, we obtain

d(W (h))W (h2))? = 2W (hy) (W (h2))*dW (hy) +2W (ho) (W (hy))*dW (h2)

+ (W () (i (1)) ?dt + (W (1)) (ha (1))t
+ 4W(h1)W(/’l2)/’l1 (l)hz(l)dl.

Then by integrating we have
T
(W ()W (h2))? = / W (hy) (W (o)) 2dW (hy) + / W () (W (1)) 2dW ()

+/ W (ha) 2 (s (¢ Zdt-l—/ B )2 (ha (1)) 2dt

+/ AW (bYW (ha) o (1) ha (1) d.
0

Taking the expectations, we have

T T
EL(W ()W (12)%) = [ EIW ) Pl 1)t + [ E(W (1))

T
+ / AEIW ()W ()] (1) ho (1)dt
0
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By plugging in E[(W (h1))*] = [ (h1(s))*ds, E[(W (h2))?] = [g(ha(s))ds and E[W (h1)W (h2)] =
Jo h1(s)ha(s)ds, we have
ElW W) = [ [ a(s)Pastm @) s [ [ ns)astiate)
T t
14 /0 ( /O (Yo (5)ds ) oy ()1

By using the fact

/oT (/OIH(S)dS>H(;)dt — %(/OTH(t)d;Y’

we deduce
T T T 2
E[(W(h)W ()] = /O (1 (1)) 2dt /0 (h(s)ds +2( /0 hi(s)ha(s)ds )
= ||3 2| Fr+-2¢R1, By
And therefore the ||-||; norm is given as
IFlle = [SE((W ()W (h2))?) 4, o) )

1
= 5|7 ||| +6 (1, ha) 7).

In order to compute the norm||F |22, we will first compute D>F by using DF =W (hy )ha +
W(hz)hl .
D’F = h (Z‘)hz(u) +hy (u)hz(l‘),

then we have

E(IDF|7) = |hollZE[W (1)) + B |ZE[(W (h2))?] + 2{ht , ha) HE[W ()W ()]

= 2|\ || |2 24P, )y
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and

E(|D*F || en) = E(|[hi (t)ha(u) +hy ()ha (1) | o)
= 2|1 |7y |12 | +2 R )y
By plugging in and rearranging, we know that the norm||F ||, > is

1

IFll22 = [E(F?) +E(IDF |3) +E(ID*F | )2

1
= [5|m||F |h2 || 5+6(h, h2) 72,

which implies that the norms ||-||z and ||-||2,» coincide.



Chapter 6

Computing Greeks

In this chapter, we apply Malliavin calculus to compute Greeks for variety financial models.
In most cases, the Integration by parts formula will play a very important role.

Recall that the Integration by parts formula (Proposition 2.4.8):

Let F,G be two random variables such that F € D'2. Consider an H-valued random
variable u such that D'F = (DF,u)y # 0 a.s. and Gu(D"F)~' € Domd. Then, for any

continuously differentiable function f with bounded derivative we have
E(f'(F)G) =E(f(F)H(F.G)),

where H(F,G) = §(Gu(D"F)™1).
Then for an option with payoff H such that Eo(H 2) < co. Recall its price at time ¢ = 0 is
determined by
Vo=Eg(e'TH).

Greeks is defined as the derivative of the expected value EQ(e_’TH ) with respect to one

of the parameters of the model, such as Sy, o or r.
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Moreover if we can write the payoff function as H = f(F), where « is one of Sy, ¢ or r.

By applying Proposition 2.4.8, Greeks can be computed as

oV, . dFy
5g =¢ "Eolf (Fa) ")
dFy
= e "TEg(f(Fa)H (Fa, w))-

6.1 Computation of Greeks for European Options

Consider the price process of the stock is a GBM S, = Spe’’ ¢t € [0,T], with

t o2 t
Hl = / (r— —)dS‘I‘/ GdWS,
0 2 0

where W = {W,,r € [0,T]} is a Brownian motion defined in a complete probability space
(2,.7,P).

Suppose the payoff H only depends on the price of the stock at the maturity time 7". That
is, H = @(S7). We call these financial derivative products satisfying H = @(S7) European
options.

Recall the the option price at time t = 0 is Vo = Eg(e™"T @(St)). And the Greeks can be

computed as follows.

Lemma 6.1.1. Suppose that ® is a Lipschitz function and the stock price is St = Spexp ( (r —
%62> T+ O'WT>. Given Vo = Eg(e T ®(St)), then the first derivative of Vo with respect to

S() is
efrT

A=
SooT

Eo(D(ST)Wr).
This Lemma was stated in [30] p332 and the following proof is modified from [30] p332.

Proof. By @ is a Lipschitz function we can derive

_
XY

— E, (e*rT @' (S7)

A

d
75,)
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as S
By using the fact 22T = 2T and rearranging we have
S0 So

e—rT

So

A=

EQ(QD’(ST)ST).
Consider the case that u = 1, F = S7, and G = Sy. Remind D;S7 = 6S7. We have
T
DMST :/ D,Stdt = oTSr.
0

Hence, all the conditions appearing in Integration by parts formula are satisfied in this

case, and therefore applying Proposition 2.4.8 we can obtain

efrT
A = £ Eg(®(F)H(F,G).
0
and
H(F,G) = 8(Gu(D"F)™")
_6(1)
ol
By using
T
5(1) :/ aw, = Wy,
0
we obtain
W,
H(F,G) = —.
oT
Finally, we have
e—rT
= Eo(@(ST)Wr).
SooT o(P(S7)Wr)
The proof is complete. 0

Lemma 6.1.2. Suppose that ® is a Lipschitz function and the stock price is St = Soexp((r—

%GZ)T +0Wr). Given Vo = Eg(e "I ®(St)), then the second derivative of Vy with respect
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to Sy is

e T wZ o1
r= E (qbs <————W ))
S2oT o\ (S7) ol o© T

The lemma was stated in [30] p333, while the following proof is different from [30]
p333.

Proof. By definition we have

2
r_9v
983
A
~ 9So
——e_rTE(cD(S )W)+e_rTE(CP’(S )SrWr)
= ~52or e\ PETIWr) g o Eo (P (ST)S1Wr ).

Applying Proposition 2.4.8 with u = 1, F = S7 and G = StWr, we have

Eo(@/(57)5Wy) = Eg((sr)5 ()
=Eg ((P(ST)Eé(WT)) .

Recall the proposition

5(Lu) = L8 (u) — (DL, ub,
if Le DY and u € Domd.
That is

by using the fact

Therefore, we have
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That is
w2 o1

Eo(®'(S7)SrWr) = Eq ((P(ST) (ﬁ - E>>

Finally by rearranging we obtain

r— <" g (®(Sp)Wr) + g (<1>(s )(WT2 1))
— Sor O T e\ 6T 6
e T w2 1
= E (cbs <—T———W)).
S3oT o( (1) oT o
The proof is complete. ]

Lemma 6.1.3. Suppose that ® is a Lipschitz function and the stock price is St = Soexp((r —

16T + oWr). Given Vo = Eg(e”"T ®(Sr)), then the derivative of Vi with respect to © is

This Lemma was stated in [30] p333 and the following proof is modified from [30] p333.

Proof. By definition we know that

IV
V==
Jdo
_, dSr
:EQ<€ T@%ST)x)
By using
dSr
— =S (Wr—oT
P r(Wr —oT),
we have

V= e_rTEQ((IJ'(ST)ST(WT —oT)).

Applying Proposition 2.4.8 with u = 1, F = St and G = S7(Wr — oT) we have

® = e "TEy(®(F)H(F,G)),
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and
H(F,G) = 8(Sy(Wr —oT)(cTS) ™)
- 6<& - 1).
ol
By using
T
o3 1) = (e [
ol ol o oT
1Z; 1
“or T ’
we have

And therefore

Eo(®'(S7)S7(Wr —0T)) = Eg(#(s7) (‘:—i Wy é))

Finally we obtain

0 =e"'TE, (CD(ST) (2/—;2 Wy — é))

The proof is complete. 0

6.2 Computation of Greeks for Exotic Options

Consider the price process of the stock is S; = Spe™,t € [0, T], with

t o2 t
Ht:/(r——)ds-i-/ odWs,
0 2 0

where W = {W;,t € [0,T]} is a Brownian motion defined in a complete probability space

(Q,.7,P).
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Suppose a option whose payoff function is a function of the average of the stock price

L J Sdt, that is
1 T
T Jo

For instance, the payoff function of an Asiatic call-option with exercise price K is

H= (%/()TS,dt—K>+,

which implies that it is a derivative of this type. In this case, there is no closed formula for
the density of the random variable % fOT Sqdt.

Recall the price of this option at time # = 0 is given by

Vo= (9 ([ sar))

In order to compute the Delta A for this type of options, we set S7 = % fOT S;dt.
Lemma 6.2.1. Suppose that @ is a Lipschitz function, the stock price is ST = Spexp ( (r —
%02>T + GWT> and St = %fOT S;dt. Given Vy = e_rTEQ (GD(% fOT Stdt>), then the first
derivative of Vo with respect to Sy is

=2 ko (@ (% m)).

- S()CF2 Q

where m =r — %2.
This Lemma was stated in [30] p334 and the following proof is modified from [30] p334.

Proof. By definition we have

B Vp
A_a_SO
P TS
:EQ(e qu'(sT)a—Sg).

By using the fact ) .
ISt St
S So’
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we have

e—rT

So

A=

Eo(@'(S7)S7).

Setu=3S;, F=Sr,G=Sr, we have

1 T
DtF:D[—/ Srdr
T Jo

1 T

= T/O DtSrdr.

By using the fact
DtSr = GSrl{th}7
we have
1 T
D/F = T/ 0S5 dr
= —/ S,dr.

And therefore

T
D'F = / S,D,Fdt
0

T T
:/ S, g/ S,dr)dt
:—/ S, / Sdrd.

Setv(t) = ftT S, dr = fOT S, dr— fé S,dr, differential v with respect to ¢, we have
V; = St,

that is,
dv(t) = S;dt.
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Hence, the integral fOT S; < ftT S,d r) dt can be written as

/O 'S, ( /t ! Sydr ) di = /O ()

Asv(T)=0and v(0) = fOT S,dr, we obtain

T T 1, /T 2
|si( [ sryar=5( [ siar).
0 t 2\Jo
That is
o/ (T 2
pF = ( / )
27 Uy Sydr
Applying Proposition 2.4.8 we have

e—rT

So

A=

Eo(®(F)H(F,G)),

and

H(F,G) = 8(Gu(D"F)™1)

Recall the proposition

0 0

if Le D2 and u € Domé.
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We have
S 1 T T 1
6( T[ ): r / Sdef_/ Dt(T—>S,dt
Jo Sidt’ [y Sidt Jo o '\ Tsdr
o Sl 7 Duly Sl
fT S[dt 0 T 2
0 fo Srdr
By using
T T
D; / Sydr = / oS,dr,
0 t
we deduce
T( (T
( S ST saw, o (ft GSrdr>S,dt
T = T 3
Jo Sedt Jo Sidt ( ITs, dr>
Plugging in
T T 1 T 5
/ ( / Srdr)S,dt = —( / Srdr) ,
0 t 2 0
we deduce )
5( Si )Zfo Sth"t+g
fOT Sl‘dt fOTStdl 2
And therefore

H(F,G) = %6 (fOT‘Zdt)

T
C [y Sidt

By definition we have
T T
St :So+r/ S,dt—i—o/ S;dW;,
0 0

that 1s,

T 1 T
/ S,dW,z—(ST—So—r/ S,dt).
0 (o} 0
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Hence

2 Sr—So 2r
H(F.G) = — Tsat o
2

-2 (52 (-9))

2 (ST—SO )
[ — — —m],
o? TSt

2
where m =r — 5.

Finally, we obtain the following expression for the Delta

—rT
A= eS Eo(®(F)H(F,G))
0
_2eT ( S )<ST_SO ))
SoGz 0 g TST ’
where m =r— .
The proof is complete. ]

Lemma 6.2.2. Suppose that P is a Lipschitz function, the stock price is St = Soexp ( (r —
%0'2> T+ GWT> and Sy = L [ S;dt. Given Vo =e "TEg (cp (% I3 S,dt>>, then the second

derivative of Viy with respect to Sy is

47T . St —So 2 628y ro?
r= k|20 75— 3 ))
Soot 2 (S7) 50 ) T TS, 2

Proof. By definition we know

9%Vy
- osp
d0A

A

Pluggung in

E
Soo? Q TSt
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2
where m = r — &, we deduce

s r 950050 5]

27T v /Sr—S) TS
r—-— E,|®(S <—_— )} T
262 Cl o5 ™ T S 950
27T ot /Sr—S
o5
5302 Fe P (g, o
5 St — S0
2T 8ST St — S() = ( TS _m>
E,| &' (Sr ( ) (S T ]
* 502 2| ( )aso TS; +®(S7) 350

As we know that

a(ST__SO —m> <&—1>TST—(ST—SO)T@

TSr _ \dSp 980
dSo 7282
=0
By using —— St _ 51 and 8ﬁ = ST, we can obtain
Sy So Sy  So

2¢ T St —So 2¢ T St /St —So
I =~y Eo|®(r)( )] + ool ® 6  ( )]
T $202 @ (S7) 5. " 502 (St )So 5,
2T _ /St —So 2¢~ T _ /St —So _
e r[ot8n (Y )] a0 ()]

] Sr—S
Set F =8, G="21L"20

—mS7 and u; = S;, we have

T 2
D“F:i(/ Srdr> .
2T \ Jo

Applying Proposition 2.4.8 we have

St —3S80

Eo|®'(5r) (222 —mSr ) | = Eo(@(F)H(F,G)),
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and

Recall the proposition

§(Lu) =L /O " u(t)aw, - /0 " DoLu(t)dr,

if Le D2 and u € Domé.
St — S
Set L = T 0 m

( s, dt)"‘ (Tsar

By using D;St = 687, Dt(fOT Sydr) = O'ftT S,dr and rearranging we have

2
o7 (Jy Sudt) ~ (St~ S0)2 7 St [T S:dr s (T 5,7

DL = . >
( I Stdt> ( I S,dt)
_ St e [TS.dr [TS.dr |
asay " Csay " (gsa)
And therefore

T T S fTS,d fTS,d
/0 D,Lu(t)dt = & /0 (m —2(Sr — o) (f;TStd:>3 +m(f;TSld:> 5 ) Sidr

o STy, _So)foTSz(ftTSrdr)dt +mf0TSt<ftTSrdr>dt>.
(7 Stdr>3 (7 S,dt)2

By using the fact

/OTSt</[TS,dr>dt - %(/OTS,dr)z,
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and rearranging we can obtain

r So m
DLutdt:0< +—>.
/0 rLult) Jo Sdr 2

That is,

Sr—S$ r s
el <f0; Stdto) o foTn;tdt) /0 St me <f0T Sotdt )

By plugging in
T 1 T
/ S, dW, = —(ST—So—r/ Stdt),
0 o 0

and rearranging we deduce

St — 8 1 T Ry
0= (s g alor sl 390 -o ()

1 [ (St —Sp)?

o

St —S, 25,
2—(m+r)( ]; 0) _ (; 0 +m2}.

Then, we have

2 [(ST—SO)Z (St —So)  ©28y )

H(F,G)=— m—+r — +m
( ) c? (fOTStdt>2 fOTSzdt fOTStdt

And therefore
yoa 93T —So -
Eo[®'(S7)( —mSr)] = Eg(P(F)H(F,G))
_ 2 s (ST =802 (57— S0)
= GzEQ[(p(ST)( (fOT Stdt)z ( ) fOT S,dt
6250

2
et ).
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Finally, by plugging in we deduce

o o ()

2 g [@(sn) (TS0 ST 00

0 - tm
Sto ( I7 s,d t) JoSde [ Sudr
4T - c? St —3S80 o’m (ST —50)2 (ST _SO)
T8 4EQ[‘D(ST)<_7 1t 7~ (mEn e
60 (7 suar) (S5 sar) Jo Sidt

2
oS
T y ”Zzﬂ'
fo Stdt

By rearranging, we obtain

4T . St —So 2 o628, ro?
et afotsn (S )T
2ot 2| P\ ) s 2

Another way to compute the Gamma is

2%V,
r-
_ 70S7\2
—rT " r
—e'TE (qb S ( ))
¢ (87) 25,
. T Sr
B T " weh
y using 95 SO,we ave
e T N \a2
I = =5 Eo(®"(57)5}).
0

Assuming that @' is Lipschitz, set u = S;, F = S7 and G = 7., we know that

piF=2 (/TSd>2
=— Hdr) .
2T \ Jo

Then, by applying Proposition 2.4.8 we have

e—rT

So

=

Eo(®'(F)H(F,G)),
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and
H(F,G) = §(Gu(D"F)™ 1)
:33<&>
o T
By using
S, 1 /T
5(7) =7 Saw
1 T
— (S —So— Sdz)
GT< T 0 V/O t
1 /St —3So _
1 —r57).
c T T
we obtain
2 /St—3So _
H(F,G):g( - —rST>

Therefore we have

St —3So

Again applying Proposition 2.4.8 with u = S,, F = S7 and G = —rSt we have
2efrT

=
S302

Eo(®(F)H(F,G)),

and
H(F,G) = 8(Gu(D"F)™!)
B 2 St —350 r
=555 s 75))

2 St —S r
B 55<S’( (I(;Stdto)Z - fOTS,dt>>'
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Then,

2efrT _

I' = 5 Eo(P(S7)H(F,G))
SOG
4e'T _ Sr—S
=S Fo 2608 (s (o5 o))
St — S

Set L = T 0 .Then I can be written as

(JTsdr) 1o S

4e—rT

=
S303

Eo[®(Sr)3(LS))].
Recall the proposition
T T
§(Lu) =L / u(t)dW, — / DiLu(t)dr,
0 0

if L e D2 and u € Dom$.

Remind the fact

T St —8 S
/ D,( 0 Tm )Stdt:(7< — +§>,
0 <f()T Szdt> fO Sydt f() S;dt

we can obtain

T T Sp-S
| oiasiar= [0 (ST s
0 0 ( s, dt) Jo Sidt

< S() r)
fo Sidt 2/
['hat is,

S(LS,) = S0

< ST — S()
( Jo S,dt)

r T
. S,dW, — c( 4
2 Stdt>/0 S TN T st
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By plugging in

T 1 T
/ S,dW,:—(ST—SO—r/ S,dt),
0 (o} 0

and rearranging we deduce

S(LS,) = é [(ST—SO—rfoTSrdf>2_Gz< So +9)].

I Sdt I Sdt 2
Finally we can deduce
4efrT B
I'=——Ep[®P(S7)0(LS
5707 Lol ®(ST3(LS.)
4e'T (ST —So—rf] Sidt\2 S r
= ool o6 () o (3]
47T - St —350 2 S()CF2 ro?
S (G S))
2ot 2| P\ ) 75 T
which implies the same result.
The proof is complete. O

Lemma 6.2.3. Suppose that ® is a Lipschitz function, the stock price is St = Spexp((r —
36T +0oWr) and Sy = %fOT Sidt. Given Vo= e "TEp(P(+ fOT Stdt)), then the derivative

of Vo with respect to © is

9= 2;‘ "k (5 (W —oT)(STTgTSO ~m)~o)).

0-2
wherem = r — >

Proof. By definition we know that

_ .98
=Ep <€7rT(D/(ST)a—C:> .
By using
951 (Wr —oT)S
- T — T,

Jo
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we have

O = €_rTEQ(<I),(.§T)(WT — O'T)ST).

Applying Proposition 2.4.8 with u = S;, F = §7 and G = (Wy — o T)St we have
0 =e " Eg(®(F)H(F,G)),

and

H(F,G) = 8§(Gu(D"F)™").

2
Remind that D"F = 3% ( fOT S,d r) , we deduce

H(F,G) = 8(Gu(D"F)™ 1)
_ s(2T(Wr —oT)SrS,;
ol
_ 35<—(W§0T_ Sder)Sf).

Then,

Recall the proposition
T
§(Lu) =L / u(t)dWi — [ DiLu(t)ds,
0 0

if Le D2 and u € Domé.
Wr—oT

SetL=— .
Jo Sidr
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By using D;Wr =1, Dy ( fOT Srdr> =0 ftT S,dr and rearranging we have

I Sdt —(Wy —oT)o [T S.dr

DtL — 3
( Jo S,dt)
1 T'S.d
= — —G(WT—GT)ft—er.
fO Sldt (f()T Stdl>

And therefore

T T, 1 T'S,d
/ D,LS,dt = / (T— oWy — GT)f‘—rrz)S,dt
0 0 T

Jo Sdt (fo S,dt)
=1-oc(Wr—oT lo Si <ftT S’d’;)dt.
( Jo Stdt>

By using the fact

/OTSt</ZTS,dr)dt - %(/OTsrdr)z,

and rearranging we can obtain

T Wr —oT
/D,ngdtzl_M,
0 2
That implies
W —GT o(Wr—oT
5(18) = (S / saw, — (1- 9 T O 9 )>.

fo S,dr

By plugging in
T
/ S,dW, = ST _Se—r / Sdr)),
0
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and rearranging we deduce

T — T — r T —
5(("555T)5) = (") s [/ ) - (- T
Lo -en (P2 (- ) o]

Finally we obtain

2e—rT

U= s

Eg [qs(ST) <(WT —oT) (STTETSO - m) - c}

2
where m = r—%.

The proof is complete. 0

6.3 Greeks for Other Ito Martingales Modelling

In this part, we will discuss some calculations of Greeks for these models formed of Itd
martingale. Especially, in some cases the Integration by parts formula can not be applied

because of some ’bad points’ (i.e. Wp).

6.3.1 Example on Brownian Motion Market

Let the stock price at maturity time 7 be
St = So+oWr,

and the payoff H only depends on S7. That is, H = ®@(St).

Suppose that the option price at time t = 0 is

Vo=e"TEg(¢(S1)).
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The derivative of Vy with respect to the parameter ¢ can be computed as follows:
aVO —rT aST
—= E ( ‘(S —)
do  © o(9'(57) do

= e Eg(¢'(ST)Wr)

as
by using 8_; = Wr.

Set F =S, G =Wy and u = 1, we deduce

D[F — G,
and therefore
T
D'F = / odt
0
=oT.

By applying Proposition 2.4.8 we can obtain

Vo  _,
96 ¢ "Eo(¢(S1)H(F,G)),
and
H(F,G)=8(Gu(D"F)™)
_ 6(Wr)
~ oT
By plugging in
8(WT) = W% - Ta
we obtain
2 _
H(F,G) = Wr-T
ol

Finally, we have
Ny _p w2z o1
oo (3 3)
do ¢ 0(#(S7) ol o©
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6.3.2 Example on W? — ¢ Martingale Market

Let the stock price at maturity time 7 be
Sr=So+0(W7i—T),

and the paroff H only depends on S7. That is, H = ®@(S7).

Suppose that the option price at time t = 0 is

Vo=e"TEg(¢(S7)).

The derivative of Vy with respect to the parameter o can be computed as follows.

Mo vro (o OST
5 =¢ TE(0(n5T)

= e TEo(¢'(ST)(WE —T)),

as
by using 8_6T = WT2 —T.

Set F =87, G= WT2 —T and u = 1, we deduce
D[FZZGWT,

and therefore

T
D'F — / 26 Wyd
0

= ZGTWT.
Then we have
_ Wr 1
Gu(D'F)™ ' = — — .
WD) = 5 T T 2w,

Recall the proof of Proposition 2.4.8 we know that the equation

E((Df(F),Gu(D"F)~")u) = E(f(F)8(Gu(D"F)™"))
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holds if Gu(D“F)~! belongs to Domd.
1 W,
As the expectation E <—> is not defined and —— —
Wr 20T 20Wr

domain of &, we can not apply Proposition 2.4.8 to compute this Greek.

does not belong to the

Set H(x) = ¢(So+o(x—T)), we have

H'(x) = 6¢/(So+ 0 (x—T)).

Define function Q(x) by

Q(x) =H(x) —H(0) — H'(0)x,

we deduce

Q'(x) = H'(x) —H'(0)

=0¢'(So+o(x—T))—H'(0).

Then the derivative of V) with respect to the parameter o is

oV, ,
5o =€ TE(9'(ST)(WF ~T))
—rT
= “—[Eo(Q' (W) (W7 —T)) + H'(0)E(WF ~T).
By using
EWZ—-T)=0
we obtain
Mo _ e W WE T
96 o o(Q'(Wr)(Wr —T))
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d
Set x% = y, we have dx = —y, then

VY
*rT o] _l
[T o06-me T
86 o\2rnT 2y
€ o= 2T d
N 26\/27TT/0 o0)

By using integration by parts, we obtain

T B [ (0D, 3 g,

Jdo  20V2aTl fy

By using Q(0) = 0, we have

96 20v2aT 2T VY o 232 Y Y

—¢—/ (5-2- ot 2T
- eulowi(F-2-7))

As we know that ‘ oW ‘ < constant, the expectation above is well defined.
Another way to compute this Greek is stated as follows.

First by applying the perturbation

= lim e T Eg(6/(S7) (W7 = T)1(Wr[> €)).

Then, by applying the D" operator

M (DO(ST) 0
o = lime B (e W =)Wl ) ).
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Then, by integration by parts formula

Ta = I Saptolosns (e gz J1wri= )]

Then, by Proposition 2.3.28 and similar technique

5o = il sr 07 -Ti1> - [0 (v 10w )
= lim ;Gr;EQ [¢(ST) ((WT2 —T)1(|Wr|> ) — T(l + Wi%)1(|WTy> g)dl)i| ,

Finally, by straightforward arguments

oVo .. e T ) T2
9o = lm 5 e 9(sr) (WP -27 - W—Tz>1<|WT|> e)]

efrT

~ S atoto(sr) —o(sr—oT)(WE 27 - )]




Chapter 7

Conclusion

Brief summary of the thesis

In this dissertation we presented variety of probabilistic and stochastic calculations related
to the weighted self-normalized sum of exchangeable variables, the Ornstein-Uhlenbeck
process, various operators defined on the Wiener space and Greeks in mathematical finance.

In particular, several properties of the weighted self-normalized sum of exchangeable
variables are discussed.

Different order moments of the Ornstein-Uhlenbeck process are computed by using Itd
calculus.

Various operators defined on the Wiener space, such as the derivative operator, the
divergence operator, the infinitesimal generator of the Ornstein-Uhlenbeck semigroup and its
characteristics are computed via the Malliavin calculus.

We also apply Malliavin calculus to compute Greeks where in addition to the classical

Black-Scholes model we also treat share price Itd martingale models such as B; and B> —¢.

Main results

We generalize examples of calculations of various moments of the Brownian motion and
Ornstein-Uhlenbeck process to the Itd processes of the Ornstein-Uhlenbeck type.

We presented the variety of examples

(i) on calculations of the derivative operator D and the operator D";
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(i1) on calculations of the operator L ;

(iii) on calculations of the the norms ||-||z and ||-

2,2
In addition, the integration by parts formula is modified to calculate Greeks for the Itd

martingale stock markets.

Future works
It would be interesting to solve the second order ODE stated in section 4.3.2 to obtain

Exf for Ornstein-Uhlenbeck type process.

It would be interesting to compute higher order derivatives of option prices for Black-

Scholes model.

It would be interesting to consider the relative financial markets and compute Greeks for
the cases:
(1) Itd martingales with Y; being an Orntein-Uhlenbeck process.

(1) Discrete time martingales with Y; being exchangeable.
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Appendix A

Exchangeable variable

Assume {Y;},- is a sequence of independent, identically distributed random variables, where

Y is non-negative, and let {X;} i>1 be a sequence of i.i.d. X random variables independent of

{Yi};>1, where X satisfies
E(X?)< o and E(X)=0.

Let R, denote the randomly weighted self-normalized sum

i1 XiYi

R, = .
Y7

By definition and swapping expectation and summation

b

E(R,) ( Li Xt XiY")

n .
i—17Yi

Then, by independence
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As Y; are 1.1.d., we deduce

which is equal to

And therefore we have

n
1
E(R,) =} E(X;)-— =E(X) =0.
i=1
XiY; . : :
Set §; = ———, notice that § is an exchangeable variable.

i=11i

Then we have
n 2
E(Z1 5) E<1<§<n5,~6j>

E(5i2) + ZE((S,’(S]'),
1 i#]

-

1

again as X; and ¥; are i.i.d., we get

5i)2 — nE(82) +n(n—1)E(8,5,).

3
Furthermore, we can use this method similarly on the situation of E (Z?:l 5i> and

E( ’ 55)4:
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Case n = 3 (third moment). By a straightforward arguments and then splitting the sum

into equal and not equal indices we derive

Y E(8)+ ¥ E(G88)+ Y E(38%).
i=1 i=j#k; i ], j#kik

Then, by independence

< 3 3 3 2
E( 5,-) — nE(8%) + i n(n— DE(828) +n(n—1)(n—2)E(8,6,53)
i=1

= nE(8%) +3n(n—1)E(878) +n(n—1)(n—2)E(8,6,83).

Case n = 4 (forth moment). Similarly, we split the sum into equal and not equal indices.
To do it, we first fix the number of different indices in the vector (i, j,k,1) = (i1,i2,13,i4), say
z=1,2,3,4. Then, roughly, consider all combinations of subsets of size z out of (1,2,3,4).

For example, for z = 2, by choosing a pair, say (1,2) we also fix the remaining pair (3,4).
So we take all vectors

(1,2),(3,4) corresponding to the case that i = i, or i = j (for (1,2)) and iz =iq or k =t¢
(for (3,4))and i=j # k=t;

(1,3),(2,4) corresponding to the case that i; = i3 or i =k and i = iq or j =t and
i=k#j=1

(1,4),(2,3) corresponding to the case that iy =i4 or i =t and i, = i3 or j = k and
i=t+#j=k

For z =3,

(1,2,3),4 corresponding to the case that iy =ip =i3ori=j=kandi= j=k#1;
(1,3,4)
(1,2,4)
(2,3,4)

,2 corresponding to the case that iy = i3 =i4ori=k=tandi=k =t # j,
,3 corresponding to the case thatiy =ip =iy ori=j=tandi= j=1#k;

2,3,4),1 corresponding to the case that iy = i3 =iyork=j=tand k= j=t #1.
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Overall the sum will be

E(Ys) =E( Y s8a8)

i=1 1<i,jkt<n
n
=Z EGH+Y, Y E@Fs)+Y Y  E(5)
i=1 r#mr=i=j=k,m=t; r#Emr=i=jm=k=t
r=i=k=t,m=j; r=i=k,m=j=t;
r:i=J=t,m:k r=i=t,m=j=k
r=j=k=t,m=i
£ Y Y EGIEGEG)+ Y EGEG)EGIES).
réntqr=i=jm=kq=t: i 7kt
r=i=k,m=j,q=t
r=i=t,m=j,q=k
r=j=k,m=i,q=t
r=j=t,m=i,q=k
r=k=t.m=i,q=j
Therefore, the sum can be computed as
n
(Z 5,) E(8%) + 4n(n—1)E(8%)8, +3n(n — 1)E(8282) +6n(n—1)(n—2)E(828:5;)
i=1

Fn(n—1)(n—2)(n—3)E(88:8;5,).
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