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Thesis Abstract 

Teachers’ Orchestration of Mathematics for Different Groups of Students 

Fay Baldry 

Class composition for secondary mathematics lessons in England is often decided by 

measures related to prior attainment, with students grouped with others of similar 

‘ability’ and referred to as ‘setting’. Research suggests setting does not raise overall 

attainment and disadvantages students placed in lower attaining sets, with those 

students experiencing an impoverished curriculum, such as more ‘drill and practice’ 

(Wiliam and Bartholomew, 2004). This classroom-based video study explores 

mathematics teachers’ practice in ‘typical’ classrooms and changes that come about 

when they teach sets with different attainment profiles. The Orchestration of 

Mathematics Framework (OMF) was developed to interpret classroom activities; this 

framework integrates a range of theoretical perspectives, including variation theory 

(Marton and Pang, 2006) and classroom norms (Cobb et al., 2009). The application of 

the OMF in different settings demonstrated it facilitated cross-class comparisons, and 

while further research is needed, this evidenced the potential of the OMF as an 

analytical tool. Three teachers participated in this study; for each teacher two sets 

with different attainment profiles were studied. When the findings were analysed, a 

complex picture of teachers’ practice emerged. There were differences between sets, 

but many facets of teachers’ practice were relatively stable across classes. Some 

differences reflected previously reported characteristics associated with low attaining 

sets, such as tighter control over classroom talk (Kutnick et al., 2006), but others were 

absent; for example, there were no discernible shifts to ‘drill and practice’. One 

common thread was the low frequency of attention being drawn to mathematical 

concepts beyond that provided by examples. One question raised is whether students 

in higher attaining sets are those better placed to read the implicit mathematical 

meanings available in the act of ‘doing’ tasks.   
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1. Introduction  

1.1 Overview of the Study 

Mathematics holds a singular position in English schools, having a privileged status as 

one of the core subjects studied by all students, whilst being repositioned from one of 

the most popular subjects in primary schools to one of the most disliked by the end of 

compulsory education (e.g. Brown et al., 2008; Noyes, 2013). Whilst international 

comparisons of attainment place England above the international mean, performance 

does not match East Asian jurisdictions (Greany et al., 2016) and England has a higher 

proportion of students in the lowest attainment band (Andrews et al., 2017). 

Moreover, concerns persist about low levels of numeracy in adults (Evans et al., 2017), 

and the impact this has on individuals and the wider economy (Kuczera et al., 2016). 

Consequently, there is ongoing interest from a wide range of stakeholders in the 

teaching of mathematics. 

Discussions about the teaching and learning of mathematics are often framed in terms 

of dichotomies (Fan and Bokhove, 2014). For example, Skemp’s (1976) seminal work 

on relational and instrumental understanding has been frequently cited in support of 

the argument that both learners and teachers can hold very different views of what 

constitutes mathematical activity. For some, mathematics is about the efficient 

application of algorithms, relying on recall and reproduction, whilst for others it is 

about flexible thinking, based on an understanding of the structures within 

mathematics and links between concepts (Remillard and Bryans, 2004; Zan and Di 

Martino, 2007). Similarly, a ‘traditional’ style of teaching is frequently contrasted with 

inquiry-oriented approaches; with the former characterised as teacher-centred, using 

a transmission style to impart rules and procedures, and the latter as student-centred, 

focussed on developing conceptual understanding through the use of rich tasks (Stein, 

2000). Whilst these dichotomies represent an oversimplification of the complexities in 

the teaching and learning of mathematics, questions are raised as to what prompts 

these dichotomous perspectives and whether different groups of students experience 

mathematics in distinctive ways.  
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There does appear to be a disconnect between educational research and school 

practice (Boyd, 2007). For instance, mathematics educational research, often 

underpinned by a constructivist perspective (Lerman, 2013), tends to advocate more 

open problem-solving approaches to teaching (e.g. Mason, 2000; Boaler, 2010), but 

traditional ‘chalk and talk’ methods hold sway in many UK classrooms (Watson and 

Evans, 2012). Of particular interest here are issues related to ‘setting’, which is the 

practice of placing students of similar ‘ability’ in classes together, referred to as sets. 

Schools report they use measures of prior attainment to decide on the composition of 

sets (Francis et al., 2017). In England, setting happens more often and earlier in 

mathematics than in other subjects (Ireson et al., 2002; Taylor et al., 2017).  

The motivation for this research originates in the disconnect between research and 

practice in relation to setting and the implications for social justice. In English 

secondary schools, the practice of setting endures in spite of evidence that overall 

attainment is, at best, not improved, and students with low prior attainment and 

those from low socioeconomic backgrounds are disproportionally affected (e.g. Ireson 

et al., 2005; Forgasz, 2010). Whilst researchers have reported the detrimental effects 

of grouping students in this manner for many years (e.g. Boaler, 1997; Ireson et al., 

2002; Noyes, 2012), setting has been recommended by previous UK government 

departments responsible for education (DfEE, 2001; DfES, 2005) and is currently the 

dominant form of class composition for mathematics provision in English secondary 

schools (Taylor et al., 2017). Recently, the Education Endowment Foundation (EEF), a 

government funded body with a remit to embed evidence in policy decision-making 

(Gough et al., 2018), has reported that setting has a slight negative effect on student 

progress (EEF, 2018). Schools, however, appear reluctant to consider alternatives, such 

as mixed-attainment teaching for all subjects (Taylor et al., 2017), and struggle to 

adapt their setting practices, say to a more equitable deployment of teachers (Francis 

et al., 2019). 

In recent years, the UK government has focussed attention on the attainment of 

‘disadvantaged’ students through funding and accountability measures. Additional 

funds are provided for students identified as eligible for ‘Pupil Premium’, where the 

main criteria is eligibility for free school meals, a proxy for low socioeconomic 
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background. Schools also have to publish the gap in attainment between students 

eligible for Pupil Premium funds and others, with implications for school inspection 

outcomes if the gap is not narrowed (DfE, 2018). Research has demonstrated that 

students from low socioeconomic backgrounds are over represented in low sets, even 

when prior attainment is taken into account, which impacts negatively on their 

attainment (Dunne et al., 2011). However, in spite of the drivers to raise attainment of 

‘disadvantaged’ students, schools remain reluctant to challenge setting as a method of 

grouping students (Taylor et al., 2017).  

Published research about student attainment has included the analysis of large 

attainment datasets and international comparison studies, and have considered 

factors such as the impact of different class compositions and how teaching 

approaches vary (e.g. Hiebert et al., 2003b; Wiliam and Bartholomew, 2004; Francis et 

al., 2019). Research has identified a range of factors that influence students’ 

experience of mathematics. For example, classes with lower attainment profiles tend 

to experience a more restricted curriculum and be taught by less qualified and less 

experienced teachers (Wiliam and Bartholomew, 2004; Francis et al., 2019). There is 

also evidence that pedagogical approaches seen in sets with lower attainment profiles 

tend to have particular characteristics, such as more ‘drill and practice’ and less peer 

interaction, which results in the students experiencing an impoverished version of 

mathematics (Boaler, 1997; Watson, 2001; Hallam and Ireson, 2003).  

Whilst these general pedagogical characteristics have been identified, it is not clear 

the extent to which differences relate to any variation in the demographic of teachers 

allocated to lower or higher attaining sets. Drawing on self-reporting questionnaires, 

researchers have published findings about teachers’ perceptions of how they change 

their practice as they move between mixed-attainment classes and sets (Hallam and 

Ireson, 2005), and more recently between sets with different attainment profiles 

(Mazenod et al., 2019). However, there is less evidence as to how these changes are 

enacted in classrooms and the extent to which reported pedagogical differences 

between sets are manifest in individual teachers’ practice.  

This study seeks to contribute to our understanding of how students in different sets 

experience mathematics by exploring three secondary teachers’ practice as they teach 
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mathematics classes with different attainment profiles. The argument made is that 

there is little published research that directly compares individual teachers’ enacted 

classroom practice in contrasting sets, so a detailed analysis adds to our understanding 

of possible antecedents for the different pedagogical characteristics reported in sets 

with different attainment profiles. Moreover, insights provided by this study extend 

what is known about approaches that have the potential to ameliorate the effects of 

setting, and in particular how individual teachers might adapt their practice.  

In order to explicate teachers’ practice, a framework for systematically describing and 

interpreting teachers’ pedagogical moves was developed in this study, namely the 

Orchestration of Mathematics Framework (OMF). As the focus was on teachers’ 

current practice, independent of topic taught or pedagogical orientation, a mechanism 

for interpreting ‘typical’ lessons was required. One key contribution to knowledge of 

this study is the power of the OMF to integrate the myriad of interconnected facets of 

teachers’ pedagogical practice into meaningful narratives about mathematical 

practices in ‘typical’ lessons.  

1.2 Background of the Author 

I taught mathematics in English secondary schools for seventeen years. I then moved 

into the higher education sector, where I have worked on Initial Teacher Education 

(ITE) and education master’s courses for the past eight years. In my transition to the 

higher education sector, my engagement with educational research became much 

more extensive, which led to a growing awareness that many of my school practices 

were based on tacit knowledge. I also noticed a disconnect between my previous 

school practices and what was ‘known’ in research. One particularly stark contrast was 

in relation to setting; I had not only taught in sets, as head of department I had been 

responsible for their organisation, but I was unaware of the body of research on the 

topic.  

In my current role, I visit over twenty schools each year and observe student-teachers’ 

lessons. Whilst student learning is an incremental process over time, all parties 

involved, the student-teacher, the school-based mentor and I, are expected to have a 

sufficient understanding of the single observed lesson to hold discussions about 
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student learning and the student-teacher’s capabilities. Indeed, in schools, most 

observations of teachers that occur as part of professional development practices or 

performance management processes are similarly single lessons. Therefore, while ‘the 

lesson’ might not be an idea unit of study in relation to learning, it does reflect 

practice in schools.  

What I noticed during joint observations with school-based staff was that we appeared 

to read the classroom in very different ways. Work I have undertaken on lesson study 

(Larssen et al., 2018) drew my attention to the complexities of building a shared 

understanding of what may have happened in the lesson, and in particular, what might 

have been mathematically significant events. This led me to the challenging task of 

looking at typical lessons, with the aim to generate an understanding of the 

mathematics the students experienced and how the teachers’ actions might have 

brought that about. But to be clear, I am interested in how we can interpret the 

mathematics classroom; making evaluative judgments of teaching is not my purpose. 

These two strands, the inequities inherent in setting and the complexities in 

interpreting mathematics classrooms, led me to undertake a classroom-based study in 

the contexts of setting. Many professional development initiatives that aim to develop 

teachers’ practice are reported as being ineffective (Pedder and Opfer, 2011). If I can 

articulate how individual teachers shift their practice when teaching different sets, 

then ameliorating some of the effects of setting may be achievable through teachers 

implementing some of their current practices in different settings, rather than having 

to develop new ways of working; potentially a more achievable strategy.   

1.3 Outline of the Thesis 

This first chapter has provided an overview of the study and has outlined the 

motivational drivers behind some of the choices made. The second chapter offers an 

overview of current research about setting and the impact on attainment. The third 

chapter discusses the development of the Orchestration of Mathematics Framework 

(OMF) as a framework for interpreting classrooms. The first section draws on  the 

didactic triangle (Straesser, 2007) and the notion of classroom norms (Cobb et al., 

2001). The second section addresses teachers’ pedagogical moves and focusses on 
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task features, classroom discourse and the teachers’ management of the lesson 

trajectory. This includes extending the framework of a hypothetical learning trajectory 

(Simon, 1995) to incorporate different types of lessons. In section three, the 

Orchestration of Mathematics Framework (OMF) is presented as a mechanism to draw 

together the myriad of strands that form teachers’ pedagogical moves. This 

instrument was subsequently used throughout the data collection and analysis 

undertaken in this study. The fourth section discusses the further developments of the 

OMF during its application in the pilot study and the transition to the main study.  

Chapter four, the methodology, outlines the research questions that relate to how 

teachers’ pedagogical practice shifts when they teach different groups of students. 

The chapter details the opportunistic recruitment of three teachers from two schools 

and the associated data collection and analysis. For each teacher, two classes with 

different attainment profiles were observed and video recorded. Chapter five presents 

the findings, which form the evidence for the claims made in chapter six. After an 

overview, the substantive part of the chapter presents the lesson narratives. For each 

of the three teachers, one lesson from a set with a higher attainment profile and one 

lesson from a set with a lower attainment profile are presented in detail. When other 

lessons were also recorded, a summary of the analysis is provided.  

In chapter six, after an introduction the second section offers a response to the 

research questions. The remaining sections discuss the detailed claims made and 

provides the warrants (Toulmin, 2003) for those claims. Section three reviews the 

efficacy of the OMF, after which the fourth section discusses each element of the OMF 

in detail and concludes with an overview of the shifts in practice. Chapter seven is the 

conclusion; a summary of the responses to the research questions is presented along 

with the limitations of the study. Implications and further areas of research are 

considered.   
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2. Literature Review: Setting 

In order to explore teachers’ practice with classes that have different attainment 

profiles, an understanding of the implications of linking students’ class allocation with 

prior attainment is required. This chapter addresses this issue and establishes the 

context within which this study is situated.  

A limited range of schools and teachers participated in this study. In order to site this 

work in a wider context, national and international research related to setting is 

discussed in the following sections. First, the position of setting in English schools is 

discussed, and then evidence about the relationships between setting practices and 

student outcomes is explored. Pedagogical characteristics that have been associated 

with particular sets are then discussed, after which the implications of these issues are 

outlined.  

2.1 Setting in English Secondary Schools 

In England, classes in secondary schools are almost exclusively composed of students 

from the same year group. A common feature in most secondary schools is that 

students are grouped by ‘ability’ for at least some subjects; in England this is usually 

referred to as ‘setting’. Mathematics is one of the subjects where setting is most 

common, especially for older pupils (Ireson et al., 2005; Francis et al., 2019). There are 

reported issues of equity when this system is used, such as placement in lower 

attaining sets being more likely for students from low socioeconomic backgrounds 

(Wiliam and Bartholomew, 2004; Dunne et al., 2011), with this placement being 

detrimental to students’ progress (Boaler et al., 2000; Hallam and Ireson, 2003; Noyes, 

2012). In spite of the longstanding and ongoing debate in educational research about 

the effects of grouping students by notions of ability, setting remains predominantly 

unchallenged in English schools (Taylor et al., 2017); it is often seen as the only 

practical way to teach students who have a range of ‘abilities’ (Wiliam and 

Bartholomew, 2004; Hallam and Ireson, 2007). Boyd (2007) argued that it would take 

‘a paradigm shift in thinking about learning to dislodge [setting] from its pre-eminent 

position’ (p.293). More recently, Taylor et al. (2017) reported a commonly held view 

by English secondary school teachers was that mixed attainment classes were 
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problematic. So, it appears that this shift has not yet occurred, and setting is likely to 

remain a feature of the English education system for the time being at least. 

Therefore, research that adds to the understanding of the relationship between 

setting and the learning of mathematics should be of value. 

As will be discussed in more detail later (2.3), schools often present the mechanism for 

set allocation as measures of prior attainment (Muijs and Dunne, 2010). However, 

there is evidence that these processes are influenced by other factors and are often 

far from transparent (e.g. Dunne et al., 2011; Francis et al., 2017). In contrast, the 

language commonly used in English schools relates to ‘ability’, where the phrase 

‘setting by ability’ is the norm, with ‘tracking’ the US equivalent; as a consequence this 

language appears in research papers (Wiliam and Bartholomew, 2004). Therefore, the 

term ‘ability’ may be used in this study when referring to the setting process, as it 

forms an expedient label, but I would wish to echo the sentiments of Wiliam and 

Bartholomew (2004) when they stated ‘we believe that such notions of ability are not 

in any way well founded and are of dubious validity as predictors of potential’ (p.281). 

To reflect this stance, students will be referred to as low or high attaining when this 

will not cause confusion. The phrase ‘low attaining sets’ will be used to describe what 

schools often refer to as ‘bottom’ sets, and similarly ‘high’ in reference to ‘top’ sets, 

although it is acknowledged that there is considerable variety in how schools arrange 

the composition of sets (Roy et al., 2018). For example, some schools state they 

employ a strict hierarchy based on attainment data, whilst others will set using 

broader bands of attainment or will include parallel groups.  
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2.2 Relationships between Setting and Cohort Attainment 

A large number of studies have been undertaken into the impact of setting on 

attainment (Kutnick et al., 2005b). In order to gain an understanding of the research 

evidence available, a search was made of the British Educational Index and ERIC for 

peer-reviewed articles published after 2000, using the key terms ‘ability grouping’, 

‘setting’, ‘class’ and ‘school’. This was supplemented with a further search with 

‘setting’ replaced with ‘tracking’, as the latter is more commonly used in the US for 

grouping students by attainment. In addition, a search was made on Google Scholar 

with the inclusion of ‘mathematics’. These were filtered and considered in more detail 

if they included first-hand analysis of class-level attainment data for mathematics or 

were a meta-analysis of studies related to setting.  

However, there are considerable difficulties in separating class composition from other 

influences on attainment. National and international data on student attainment has 

become increasingly available over recent years. In England, the National Pupil 

Database (NPD) collates attainment data for all students in state education, recorded 

at different stages in their schooling. This includes results from standardised Key Stage 

assessments taken in primary schools, and GCSEs taken at the end of compulsory 

education in secondary schools. Contextual information, such as gender, ethnicity, 

eligibility for free school meals and school details are also included. Researchers have 

interrogated these large datasets; contextual information and multiple assessment 

points has allowed the attainment for different groups of students to be analysed over 

time (e.g. Strand, 2014).  

Analysis has highlighted variation between schools. For example, at least ‘one quarter 

of schools in England are differentially effective for students of differing prior ability 

levels’ (Dearden et al., 2011, p.1). However, as Strand (2014) argued, differential 

attainment is complex, being influenced by the interaction of many variables: school-

level factors, such as school ethos and quality of teaching; class-level factors, such as 

teacher expectations; and students’ backgrounds, such as ethnicity and class. 

Unfortunately, understanding the role of setting is an even more complex undertaking, 

as while there is a large amount of school-level and student-level data, class-level data 
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is not routinely available. For those interested in the impact of class composition, 

individual schools need to be approached, which has resulted in smaller scale studies.  

The difficulties in obtaining class-level data were reflected in the number and scale of 

research studies found in the literature search. Due to the complexities of taking into 

account cultural differences (Andrews, 2007), empirical studies based in England were 

the primary focus of the literature search, with international studies being drawn on 

when they offered supporting or contrasting evidence. Two studies were identified 

that included the analysis of class-level attainment data from national tests to explore 

the effects of set allocation on attainment; namely, those by Ireson et al. (2005) and 

Wiliam and Bartholomew (2004), which are considered in more detail below. The 

Education Endowment Foundation (EEF), a UK government funded What Works 

Network centre with a remit to generate evidence to improve teaching (Gough et al., 

2018), recently published their synthesis of research into the impact of setting or 

streaming. Their report mirrored the literature search undertaken for this study, 

stating there were relatively few UK based research studies in this field (EEF, 2018). 

Drawing on five meta-analyses, Hattie (2002) acknowledged that there were variations 

in findings from different studies, but concluded that the ‘overwhelming message is 

that tracking [setting] has minimal effects on learning’ (p.460). These conclusions were 

mirrored by Ireson et al. (2005) in their study of GCSE results in forty-five secondary 

schools in England. They found when prior attainment was taken into account, setting 

‘had little overall impact on GCSE attainment in English, mathematics or science’ 

(p.454). The EEF report concluded that setting had a slight negative impact on 

attainment as compared to mixed attainment teaching (EEF, 2018). As these studies 

indicate, research evidence about the impact of setting on overall attainment is not 

unequivocal but the prevailing view appears to be that any impact on overall 

attainment is marginal. However, as discussed in more detail below, there is more 

evidence about the differential impact of setting on different groups of students. 

A complex picture emerges when the details of research studies are examined. For 

example, the study by Ireson et al. (2005) involving forty-five schools, reported setting 

had little impact on overall attainment when factors such as prior attainment, gender, 

free school meals and attendance were controlled. They also reported that setting did 
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not have a differential impact on high or low attaining students in mathematics or 

English, but slight differences were seen in science, with exam results from higher 

attaining sets depressed and lower attaining sets increased. However, they 

acknowledged previous studies, including their own, had conflicting findings, some of 

which indicated that mixed-ability classes benefited students who would otherwise be 

placed in lower attaining sets, with setting benefiting those in higher sets. Hanushek 

and Woessmann (2006) analysed international attainment data for twenty-six 

countries in relation to setting policies. By comparing progress across secondary 

schools with different systems, they concluded that setting increased the spread of 

attainment and educational inequality. While the evidence was less conclusive, they 

also found there was a tendency for early setting to lower overall attainment. 

However, a second-order meta-analysis by Steenbergen-Hu et al. (2016) reported that 

setting had no impact on overall student outcomes.   

Whilst findings are not completely consistent, any differences reported were small 

(Steenbergen-Hu et al., 2016; EEF, 2018). The prevailing view appears to be that 

setting does not increase overall attainment, but has a differential effect on different 

attainment groups, with setting increasing the spread of attainment, depressing the 

attainment of students placed in lower attaining sets (Hattie, 2002; Ireson et al., 2005; 

Kutnick et al., 2006; Dunne et al., 2011; Yu et al., 2014; EEF, 2018). There appears to be 

more debate as to whether setting has a slight positive impact on students placed in 

higher attaining sets or has no effect (e.g. Hattie, 2002; EEF, 2018). 
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2.3 (Mis)allocation of Students to Sets: Implications for Students  

Researchers have considered the processes used to allocate students to different sets 

and the apparent differential impact set placement has on student attainment. 

Teachers generally describe the mechanism for allocating students to sets as being 

based on prior attainment (Hallam and Ireson, 2003; Dunne et al., 2011; Francis et al., 

2017). However, whilst there is variation between schools, there is usually a less 

transparent element of teacher recommendation within this process, with evidence 

that other criteria such as behaviour and perceptions of ‘educability’ are taken into 

account (Araujo, 2007; Taylor et al., 2017). The evidence presented in the previous 

section indicates setting depresses the attainment of lower attaining students. As 

discussed in detail below, there are further layers of potential inequity that arise from 

the use of teacher judgment in set allocation. First, for students with the same prior 

attainment, exam results are higher for students placed in a higher set compared to 

students placed in a lower set (Wiliam and Bartholomew, 2004). Second, students 

from low socioeconomic backgrounds and students with special educational needs 

(SEN) are overrepresented in low sets, even when prior attainment is taken into 

account (Dunne et al., 2011).  

This is of particular concern in mathematics, as setting is more common and starts 

earlier than in other subjects. Moreover, any negative effects are compounded by the 

fact that students rarely move between sets once established (Kutnick et al., 2006; 

Dunne et al., 2011). However, drawing conclusions about relationships between 

setting and attainment is not straightforward. In order to consider the complexities, 

the two UK studies identified in the literature review as drawing on class-level data are 

discussed in detail below.     

Wiliam and Bartholomew (2004) followed one cohort of students as they moved from 

year 8 to year 11. Starting in 1996, they tracked over 900 students in 42 classes from 6 

London secondary schools. Student questionnaires and interviews, lesson observations 

and attainment data from Key Stage 3 tests, and GCSE examinations in year 11 were 

analysed. There were variations in levels of attainment between the schools, but the 

progress made from Key Stage 3 to GCSE was similar. One key finding common to all 

the schools, though to different degrees, was that students with the same Key Stage 3 
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score did better if they were placed in a higher set and worse if placed in a lower set. 

In other words, a dividend accrued in terms of higher GCSE results for those students 

placed in higher sets compared to other students with the same Key Stage 3 scores.  

Wiliam and Bartholomew (2004) presented a nuanced argument regarding the role of 

set allocation on attainment. In all the schools, prior attainment in the form of Key 

Stage 3 test scores were used as part of the set allocation process, but all had some 

element of teacher recommendation; consequently, students with the same scores 

could be found in a range of sets. If teachers were able to accurately spot ‘potential’ or 

otherwise in students, which led to them being placed in sets other than their scores 

would dictate, then this would offer an explanation for differential set allocation that 

would not raise issues of equity. Wiliam and Bartholomew (2004) argued that if this 

was the case, then larger dividends would accrue when teachers overrode Key Stage 3 

scores more often; however, the reverse occurred. They claimed this, combined with 

their previous research, provided evidence that the differences in attainment by 

students of similar prior attainment when placed in different sets ‘are attributable to 

the process of setting, and the kinds of teaching that result’ (p.90). The implication 

being that students placed in lower sets would probably have gained higher exam 

results if allocated a place in a higher set and were thereby disadvantaged by that 

decision.  

Hallam, Ireson and colleagues published a number of papers based on a longitudinal 

study of 45 secondary schools, which followed students from a single cohort from 

1998 to 2000 and encompassed year 9 through to year 11 (e.g. Ireson et al., 2002; 

Hallam and Ireson, 2003; Ireson et al., 2005). Student and teacher questionnaires were 

used and Key Stage 3 test results and GCSE grades in English, mathematics and science 

were obtained, with Key Stage 2 results retrieved retrospectively. They used multilevel 

modelling to explore the effect of setting, taking into account prior attainment, 

gender, social disadvantage and attendance. However, this was only undertaken at 

two levels, student and school; the clustering based on class composition was not 

included. Set lists for mathematics were provided by 27 schools and a cross tabulation 

of Key Stage 3 levels with mean GCSE scores for top, middle and low sets was used to 

explore the impact of set placement. Their results mirrored those of Wiliam and 
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Bartholomew (2004); students of similar prior attainment were placed in different sets 

and attained higher GCSE grades when placed in higher sets, with the additional gains 

largest in mathematics. Some of this difference could be explained by the use of Key 

Stage levels by Ireson et al. (2005), as the schools may have placed students on the 

finer grained measure afforded by raw Key Stage scores. However, this could not 

explain all the disparity, as some students were placed out of rank order when levels 

were considered.    

These studies offered reminders that the analysis of data is complex and open to 

interpretation. For example, Wiliam and Bartholomew (2004) discussed the study by 

Ireson et al. (2002) and commented ‘the fragility of these effects suggests that 

between-class ability grouping cannot be understood as a simple phenomenon with 

predictable results’ (p.282). Moreover, they acknowledged the sample of six schools 

used in their study was too small for the findings to be statistically significant. In 

addition, both studies looked at set allocation in relation to progression across Key 

Stage 4. With many, but not all schools setting across Key Stage 3, the potential 

influences of earlier setting practices were not taken into account. In spite of these 

limitations, the argument that there is a differential effect on attainment based on set 

allocation, above and beyond that expected by prior attainment, is echoed by other 

researchers that have drawn on class-level data (Linchevski and Kutscher, 1998; Boaler 

et al., 2000). 

Dunne et al. (2011) surveyed over a hundred secondary schools about their setting 

policies and cross-referenced this information with attainment data from the NPD. 

Echoing the findings of Wiliam and Bartholomew (2004), they found while schools 

stated their setting policies were based on measures of attainment, other factors were 

taken into account, which resulted in disparities between set allocation and prior 

attainment. A significant feature of this analysis was that particular groups of students 

were disproportionately affected by this ‘misallocation’ to sets. They demonstrated 

that students from low socioeconomic backgrounds and students with SEN were 

overrepresented in low attaining sets, even when prior attainment was taken into 

account. It appears that setting may contribute to the perpetuation of social selection 

(Reay, 2010).  
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Comparable evidence was found in the Wiliam and Bartholomew (2004) study, albeit 

from a smaller sample of schools. Students with low socioeconomic backgrounds were 

overrepresented in the low attaining sets in all six schools, but the levels varied. In two 

schools, the placement of students with low socioeconomic backgrounds in sets lower 

than their Key Stage 3 results justified was large enough to be statistically significant. 

Indeed, in one school this represented nearly half of students with low socioeconomic 

backgrounds. 

The notion that there is ‘misallocation’ of students to sets has been reported in recent 

publications, and appears to have particular traction because particular groups are 

disproportionally affected (EEF, 2018; Roy et al., 2018). Suggested changes to practise, 

however, follow two different paths; those who look to reform setting practices and 

those who advocate mixed-attainment teaching. The EEF commissioned research into 

‘best-practice setting’ involving over a hundred schools. The ‘best-practice’ principles 

were specified as set allocation to be based purely on attainment, to at most four sets, 

with frequent reassignment of students and random allocation of teachers who are 

provided with pedagogical training (Roy et al., 2018). The notion appears to be that a 

‘pure’ version of setting could ameliorate any differential effects. However, the EEF 

reported that over half the schools dropped out of the study, and for those that 

remained there was low fidelity to the study protocols. Roy et al. (2018) concluded 

that schools found it difficult to alter their setting practices. There is a longer history of 

mathematics education researchers advocating mixed-attainment teaching (Boaler, 

1997; Linchevski and Kutscher, 1998; Hodgen, 2007; Boaler, 2008). Taylor et al. (2017) 

reported that schools are also reluctant to move towards mixed-attainment classes. It 

appears, therefore, that setting in its current form is likely to remain a feature of the 

English education system for some time.     
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2.4 Relationships between Teachers, Setting and Pedagogy  

Studies have considered a wide range of issues connected with setting, from 

curriculum access to the role of teachers’ expectations and beliefs (e.g. Zohar et al., 

2001; Watson and De Geest, 2005). The following section discusses the relationships 

between some of these key issues and pedagogy.  

2.4.1 Organisational Factors 

2.4.1.1 Classroom Organisation 

There are a number of ways that classroom organisation in lower attaining sets tends 

to differ from higher attaining sets or indeed mixed-attainment classes. They are 

usually smaller in size and more frequently have a teaching assistant working 

alongside the teacher (Blatchford et al., 2011). The situation is complicated by the fact 

that these same differences can be seen as offering support for lower attaining 

students or as mechanisms that exacerbate negative differential effects. For example, 

findings have indicated that teaching assistants can have a positive or negative impact 

on achievement (Farrell et al., 2010; Radford et al., 2011).  

Class size has similarly contrasting findings. In lower attaining sets, class sizes tend to 

be smaller, with students seated on their own more often, with less group work and 

peer interaction, which provides evidence of greater levels of students working in 

isolation (Kutnick et al., 2006; Mazenod et al., 2019). For those who perceive 

collaborative working as beneficial for developing mathematical reasoning, this 

increase in lone working would have negative implications. On the other hand, the 

higher allocation of staff resources could allow greater teacher-student interaction 

(Blatchford et al., 2011), which  could allow support to be more easily tailored to 

individual needs (Dunne et al., 2011).  

2.4.1.2 Teachers  

A number of studies report that low attaining sets tend to be taught by less 

experienced and less qualified teachers (Hattie, 2002; Wiliam and Bartholomew, 2004; 

Dunne et al., 2011). Francis et al. (2019), in their study of over a hundred secondary 

schools, also reported it was less likely for highly qualified teachers to teach low sets, 

findings that replicated the smaller Boaler et al. (2000) study of six schools.  
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2.4.1.3 Curriculum Access 

At the end of Key Stage 4, the majority of students in England sit mathematics GCSE 

exams, with schools following curricula specified by the respective exam 

specifications. Due to the Office of Qualifications and Examinations Regulation 

(Ofqual) requirements, the content specified by the different exam boards are very 

similar; all boards offer tiered exams, higher and foundation, with additional ‘harder’ 

content specified for the higher tier. The vast majority of schools set for mathematics 

in Key Stage 4 and the designation of sets as following either a higher or foundation 

track is common practice (Taylor et al., 2017). In 2018, 44% of students took the 

foundation tier (Ofqual, 2018) which places an upper limit on the grade that can be 

awarded. Whilst some middle attaining students study the higher tier curriculum but 

take the foundation papers, a significant minority of students only study the content 

found in the foundation tier (Boaler et al., 2000). For students in lower attaining sets, 

the restricted access to the curriculum often starts earlier than Key Stage 4, with 

different routes specified for different sets (Kutnick et al., 2005a). In addition, this 

stratification makes transitions between sets problematic, as students in lower 

attaining sets have often not experienced material and ideas met in higher attaining 

sets (Boaler et al., 2000).  

2.4.2 Pedagogical Characteristics of Sets 

In addition to differential access to teachers and the curriculum, there are also studies 

that explore links between setting and pedagogical approaches. A number of 

researchers have argued that low sets tend to have distinctive pedagogical 

characteristics that limit students’ access to mathematical ideas, thereby perpetuating 

a cycle of low attainment (Boaler, 1997; Kutnick et al., 2005a; Wilkinson and Penney, 

2014).  

Watson (2001) argued that secondary mathematics teachers often restrict low 

attaining students to activities requiring low-level recall, rather than allowing them to 

engage in sense-making activities. She found teachers focused on procedures and 

broke tasks down into small simple steps, leading students through the mathematical 

reasoning they themselves structured. These findings are replicated by other 

researchers, with ‘drill and practice’ and low cognitively demanding tasks (CDTs) 
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commonly reported features for low attaining sets (Boaler et al., 2000; Hallam and 

Ireson, 2005; Kutnick et al., 2006; Mazenod et al., 2019). This oversimplification of 

mathematics, combined with a more limited and conceptually fragmented curriculum, 

often results in low attaining students having limited access to mathematically 

significant ideas (Linchevski and Kutscher, 1998; Jorgensen et al., 2013).  

2.4.2.1 The Influence of Teachers’ Beliefs and Expectations 

As previously discussed, students from low socioeconomic backgrounds are 

overrepresented in low sets, even when prior attainment is taken into account (2.3). 

This appears to be related to teachers’ ‘interference’ in the setting process when they 

override attainment data when placing students in sets. A number of studies have 

made this connection through the analysis of results and have suggested teachers’ 

perceptions of ‘educability’ are a factor (e.g. Wiliam and Bartholomew, 2004), but 

there appears to be less evidence about how this social bias occurs in individual 

decisions.  

There is a long history of studies that have linked teacher expectations to student 

attainment (e.g. Brophy and Good, 1970; Slavin, 1990; de Boer et al., 2010). These are 

often described as self-fulfilling prophecies, as higher teacher expectations are 

associated with higher attainment, with the reverse for low expectations. There 

appears to be two intertwined aspects of teachers’ thinking in relation to students 

with low prior attainment; their beliefs about what pedagogical approaches are most 

suitable and expectations in relation to attainment and engagement (Knipping et al., 

2008).  

Above and beyond the content of mathematics lessons, there is evidence that 

teachers vary their pedagogical approaches in response to attainment profiles. For 

example, Zohar et al. (2001) interviewed 40 Israeli teachers and reported that nearly 

half of these teachers thought it was inappropriate to give low attaining students tasks 

that required higher-order thinking. Mazenod et al. (2019), from a survey of about 600 

teachers, reported that three-quarters agreed with the item: ‘I expect more 

independent work from high-attaining students’ (p.60). Kutnick et al. (2006) argued 

that some teachers perceive student behaviour as being worse in lower sets and 
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respond by employing tightly controlled whole-class explanations and individual 

seatwork, thus limiting peer interaction. These differences have been associated with 

low sets being exposed to an impoverished curriculum, with a negative impact on 

attainment (Boaler, 1997; Mazenod et al., 2019).  

Whilst the preceding discussions indicate that many studies link teacher beliefs and 

expectations with lowering attainment for students in lower attaining sets, there are 

also a few that have more positive outcomes. For example, in an action research 

project with ten secondary teachers, Watson and De Geest (2005) sought to develop 

innovative practice in the teaching of low attaining students. They argued that 

improvements in learning occurred but ‘the methods and strategies the teachers used 

were not always generalisable across the project, indeed some were contradictory’ 

(p.209). Instead, they identified a set of beliefs, common to all the teachers in the 

study, namely, all students could learn, and get better at learning, mathematics. 

Watson and De Geest (2005) argued this was a key factor in improving learning when 

combined with a commitment to the long-term development of students as learners 

of mathematics. However, this study was based on case studies of teachers with track 

records of success with low attaining students and were reported as a contrast to the 

norm.   

Stereotypical pedagogical characteristics are not, however, limited to low attaining 

sets. Teachers seem predisposed to teach sets as if they were one homogenous group, 

with little attention paid to differentiation (Wiliam and Bartholomew, 2004). For 

example, Kutnick et al. (2006) reported a greater use of whole-class teaching when 

classes were organised into sets rather than mixed-attainment classes, and Boaler 

(1997) reported that some students in top sets found the pace too fast for them. The 

Wiliam and Bartholomew (2004) study offers some evidence, albeit limited, that 

pedagogical characteristics of classes can influence attainment. In their study, two 

schools had ‘mixed ability’ classes in the lower years, where individual and small group 

working was established practice. These atypical pedagogical practices were carried 

over into Key Stage 4 when the students were taught in sets. In comparison to the 

other four schools in the study, these two schools had the smallest difference in exam 
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results between students with the same prior attainment who were placed in different 

sets. 

2.4.2.2 Individual Teachers’ Shifts in Practice  

As previously indicated, there is evidence that lower attaining sets tend to be taught 

by less experienced and less qualified teachers (Hattie, 2002; Wiliam and 

Bartholomew, 2004; Dunne et al., 2011; Francis et al., 2019). This could explain some 

of the differences between how sets are taught, and raises the question as to how far 

differences permeate to individual teachers’ practice. However, as discussed below, 

there is also evidence that individual teachers change their pedagogical practice when 

they move between different sets.  

For example, Hallam and Ireson (2005) surveyed English, mathematics and science 

teachers from forty-five UK secondary schools. Those teachers reported that for low 

attaining sets they structured activities more tightly, with greater levels of repetition 

and with a focus on basic skills. Forgasz (2010) surveyed thirty-six secondary 

mathematics teachers in Australia; thirty-three of whom indicated that they did 

change their pedagogy in response to teaching groups of different ability, but few 

commented on what changes were made. In the few reported explanations, reference 

was made to using more concrete, practical and real-life applications in low sets, 

whilst concept development and problem solving were mentioned in relation to high 

attaining sets. More recently, Mazenod et al. (2019) surveyed about six hundred 

teachers, the majority of whom reported they modified their teaching to meet the 

needs of students based on prior attainment. Whilst there was variation, teachers 

tended to say they used more repetition and practice, more structured work, more 

practical activities and less independent work with low attaining students. As the 

survey questions asked about high or low attaining students, it was less clear as to 

how these self-reported modifications translated into classroom practice when they 

taught in sets.  

These self-reported changes in practice do reflect the different pedagogical 

characteristics associated with low sets, which many researchers have argued 

contribute to low attaining sets having restricted access to significant mathematical 
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concepts (Boaler et al., 2000; Watson, 2001; Hallam and Ireson, 2005; Kutnick et al., 

2005a). This suggests that some of the distinctive pedagogical characteristics of low 

attaining sets are likely to be reflected in shifts in individual teachers’ practice when 

they teach different sets. However, the nature and extent of any shifts in practice are 

less clear as teachers’ enacted classroom practices have been shown to differ from 

their espoused beliefs (Ernest, 1989), and few studies have included classroom 

observations of individual teachers with different sets. 
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2.5 Implications for this Study 

Whilst there are variations in reported findings, there appears to be shifts in 

pedagogical practices when high and low attaining sets are considered (Boaler et al., 

2000; Wiliam and Bartholomew, 2004; Ireson et al., 2005). The prevailing view appears 

to be that it is not the setting process per se that causes a lack of student engagement 

with mathematically significant ideas in lower attaining sets, but it is how pedagogical 

practices are enacted (Boaler, 1997; Hallam and Ireson, 2005; Kutnick et al., 2005b; 

Dunne et al., 2011). Hallam and Ireson (2005) are amongst many that argue that it is 

the adoption of the pedagogical practices described above that drives the depression 

of attainment in lower attaining sets (Wiliam and Bartholomew, 2004; Watson and De 

Geest, 2005; Boaler, 2010).  

The implication being that changing pedagogical practices could bring benefits to low 

attaining students. Watson and De Geest (2005), drawing on case studies of ten 

teachers, articulated principles that contributed to improved attainment of low 

attaining students, and Dunne et al. (2011) argued they had found examples of 

innovative pedagogical practices that avoided the creation of stereotypical ‘bottom’ 

sets. However, in both studies, the cases were chosen to represent best practice as a 

contrast to the norm. Whilst acknowledging it may be possible to ameliorate negative 

aspects of setting, Boaler et al. (2000) cautioned ‘many of the disadvantages of 

setting… are contingent rather than necessary features of ability-grouping but we 

believe that they are widespread, pervasive and difficult to avoid’ (p.644). 

When pedagogical approaches are considered, it has been argued that conclusions 

cannot be drawn about students’ learning of mathematics from the mere presence or 

absence of particular features (Hiebert et al., 2003b; Watson and De Geest, 2005). For 

example, in the influential Trends in International Mathematics and Science (TIMSS) 

video study, Hiebert et al. (2003b) demonstrated that high achieving countries had 

different pedagogical practices, and argued that it was the nuances of how particular 

features were implemented that distinguished effective teaching. By implication, any 

study that aims to interpret a learning environment needs an instrument that moves 

beyond the categorisation of pedagogical approaches used. 
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The tendency for different approaches to be taken when different sets are taught does 

appear to be embedded in practice (Solomon, 2007; Dunne et al., 2011), but Wiliam 

and Bartholomew (2004, p.280) argued ‘what teachers actually do in classrooms is so 

weakly theorized’ that practice is not fully understood. The previous discussion has 

outlined key differences that are known; by studying the same teachers as they teach 

different groups of students, this study seeks to contribute to the understanding of 

any shifts in pedagogy that are not explained by a change in the demographic of 

teachers assigned to different sets. It is hoped that this focus on pedagogical moves 

could illuminate differences in learning environments experienced by different groups 

of students. 
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3. The Development of the Orchestration of Mathematics 

Framework (OMF) 

3.1 Overview 

Exploring teachers’ practice necessitates the interpretation of classroom behaviours. 

This chapter discusses theoretical perspectives drawn on in this study and articulates 

how a conceptual framework for interpreting classrooms was developed. 

Consequently, this chapter serves two purposes. First, the following includes a review 

of previous studies that have offered models for interpreting mathematics classrooms 

and those studies that have identified important pedagogical features in the teaching 

and learning of mathematics. Second, the chapter outlines how the process of 

undertaking the literature review led to the development of a conceptual framework 

that coordinated theoretical perspectives of classroom practice (figure 3.4: model A). 

Progressively, as a wider range of research was considered, this conceptual framework 

was developed into an overarching model of teachers’ pedagogical practice, which I 

have called the Orchestration of Mathematics Framework (OMF) (figure 3.8: model B). 

This process drew together features of classroom practice, identified as important in 

the literature, and integrated these from the perspective of the teacher. This 

framework was revised during the pilot study and in the transition to the main study. 

The resulting OMF (figure 3.14: model D) provided the model for interpreting ‘typical’ 

lessons that was used in the data collection and analysis in this study.  

Section 3.2 draws on the notion of the didactic triangle (Straesser, 2007) and 

classroom norms (Yackel and Cobb, 1996) to discuss models for interpreting 

mathematics classrooms. After defining orchestration, section 3.3 focusses on 

pedagogical features that prior research has identified as important in the learning of 

mathematics. The three key areas discussed are task features, such as multiple 

representations, the management of discourse, such as initiate-response-evaluate 

interactional patterns, and the management of the lesson trajectory. Section 3.4 

discusses the development of the OMF framework, from its inception in the literature 

review through to its iterative development during application in the pilot and main 

study.   
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3.2 Interpreting Classrooms 

In this section, the didactic triangle (Straesser, 2007) and the notion of classroom 

norms (Yackel and Cobb, 1996) are drawn on to consider how interactions in 

mathematics classrooms can be interpreted.  

3.2.1 The Didactic Triangle 

It is widely acknowledged that classrooms are complex, dynamic environments, and 

the multifaceted nature of classroom interactions means that there are no simple 

ways to understand pedagogical practices (Potari and Jaworski, 2002; Hiebert et al., 

2005; Derry et al., 2010). In order to develop an understanding of teachers’ practice, a 

theoretical framework for interpreting classroom activities is required. One common 

conceptualisation of the teaching and learning of mathematics is the ‘didactic triangle’ 

(figure 3.1), in which the teacher, students and mathematical content form the nodes 

of a triangle (Herbst and Chazan, 2012; Schoenfeld, 2012; Lerman, 2013). Whilst 

acknowledging that the complexity of the classroom cannot be reduced to a simple 

model, Goodchild and Sriraman (2012) argued that the triangle ‘serves as a starting 

point to theorize the dynamics of teaching–learning’ (p.581).  

The connections between nodes can be considered in terms of social interactions 

(Straesser, 2007), but equally the connections could be considered in terms of internal 

psychological processes. The interpretative framework offered by Cobb et al. (2001), in 

which cognition is considered as integrating interactional elements and psychological 

processes, allows each perspective to be foregrounded as appropriate. Taking their 

lead, both social constructivist and constructivist perspectives will be drawn on in this 

study.  

 

Figure 3.1: Didactic Triangle (Straesser, 2007, p.165) 

Teacher 

Mathematics 

Students 
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This study focusses on how the teacher’s actions shape the mathematics made 

available in the classroom, and how this might change for different groups of students. 

At first sight, this could be interpreted as ignoring the fundamental role of individual 

student participation. However, as discussed in detail in the following section, this 

study draws on the concepts of classroom norms and normative identities developed 

by Cobb and his colleagues (Yackel and Cobb, 1996; Yackel, 2001; Cobb et al., 2009; 

Cobb et al., 2011). The argument made below is that these constructs allow individual 

student participation to be taken into account through consideration of how their 

actions relate to those classroom norms. Moreover, classroom norms offer a 

mechanism to interpret specific instances of teachers’ pedagogical moves and 

classroom interactions more widely. The following section offers an outline of the 

research in this field and its relevance for this study. Limitations will also be discussed. 

3.2.2 Classroom Norms  

Classroom norms are considered to be recurring patterns of behaviour that fulfil the 

expectations the teacher and students have for the actions of others (Cobb et al., 

2009). In a yearlong teaching experiment, Yackel and Cobb (1996) sought to account 

for how students come to develop a mathematical disposition in a classroom 

environment. Building on the concept of classroom social norms, they developed the 

concept of sociomathematical norms. Yackel and Cobb (1996) defined 

sociomathematical norms as ‘normative aspects of mathematical discussions that are 

specific to students' mathematical activity’ (p.458); a notion that has been widely 

regarded as making a significant contribution to how mathematics classrooms are 

interpreted (e.g. Lopez and Allal, 2007; Staub, 2007; Levenson et al., 2009). In their 

analyses of classroom interactions, Yackel and Cobb (1996) associated a range of 

recurring patterns of behaviour with different norms. For example, a teacher 

accepting ‘correct’ answers whilst following-up on ‘errors’ was taken as an indication 

that the teacher was the arbiter of correctness. One indication of this norm was 

students changing their answers when their response prompted further questioning 

by the teacher.  



27 | P a g e  

Yackel and Cobb (1996) documented the way a teacher challenged and modified these 

norms over a year. Their analysis led them to classify the recognition of what 

constituted a different, efficient or sophisticated explanation as a sociomathematical 

norm, along with the recognition of what counts as a mathematical explanation or 

justification. In contrast, an example of a classroom social norm would be the 

expectation that explanations would be given, as this could apply to any subject. They 

argued this level of discrimination built on previous work on classroom microcultures 

and social norms.   

The modification of norms over time reflects their reflexive nature, insofar as actions 

both influence, and are influenced by, classroom norms. Of significance to Yackel and 

Cobb (1996) was the finding that the presence of sociomathematical norms, as 

established in their classroom experiment, were associated with an effective inquiry-

oriented learning environment. For example, a discussion as to what counted as a 

different mathematical explanation required comparison and evaluation, which 

provided opportunities for higher-level thinking. In their study, they reported the 

development of an inquiry-oriented classroom occurred with a corresponding 

modification of classroom norms over time. Whilst this enhanced the importance of 

sociomathematical norms for Yackel and Cobb (1996), it could be more problematic to 

apply this analytical approach to non-inquiry orientated settings. Cobb et al. (2001) 

saw no reason, in principle, as to why this analytical approach could not be applied to 

classrooms with a more traditional style, but they did foresee difficulties in so far as 

student reasoning would be less visible.  

Cobb et al. (2001) continued with a design research approach, which was an iterative 

cycle that combined classroom teaching experiments with theory informed 

instructional design. In describing the theoretical framework for their study, they 

situated sociomathematical norms in a wider interpretative framework, in which the 

social and psychological perspectives are in a reflexive relationship. In this framework, 

the social perspective encompasses normative activities about ways of working and 

reasoning. Three categories ascribe the level of association with mathematics: social 

norms relate to activities that are not mathematics specific; sociomathematical norms 

relate to ways of working mathematically; mathematical practices are those related to 
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a specific mathematical idea. The psychological perspective concerns individual 

cognition and there are three corresponding categories: beliefs about roles and school 

activities; mathematical beliefs and values; mathematical interpretation and reasoning 

(p.119). Cobb et al. (2001) argued that these two perspectives are so interdependent 

that each exists as ‘the background against which mathematical activity is interpreted 

from the other perspective’ (p.122). The social perspective foregrounds the ‘taken-as-

shared’ activities, where ‘an individual student’s reasoning is framed as an act of 

participation in these normative activities’ (Cobb et al., 2001, p.119). The psychological 

perspective foregrounds individual students' reasoning and their diversity of 

participation within these established norms.  

The interpretative framework introduced by Cobb et al. (2001) has been used in a 

number of other studies, especially the notion of sociomathematical norms. In their 

study of four primary classrooms, Kazemi and Stipek (2001) found that although the 

classes had similar social norms, such as collaborative group work and the sharing of 

strategies, subtle differences in sociomathematical norms limited opportunities for 

students to think conceptually. For example, the social norm of presenting different 

strategies was present in all the classes, but not the sociomathematical norm of 

understanding relationships amongst the different strategies. 

In an Australian study by Makar et al. (2015), a teacher’s explicit aim was ‘the 

development of argumentation-based inquiry norms and practices in a mathematics 

classroom’ (p.1107). The study documented the students’ adoption of these norms in 

response to the teacher’s pedagogical moves across a year. This did offer evidence 

that the interpretative framework allowed the dynamic nature of classroom 

microcultures to be interpreted, where actions by the teacher and students both 

shaped and were shaped by classroom norms. Makar et al. (2015) argued the teacher 

used questioning to indicate that explanations needed to go beyond the recital of 

procedural steps, which then contributed to a shift in students’ beliefs about what it 

meant to do mathematics. This in turn influenced students’ future actions when 

explanations were given, which contributed to a shift in a sociomathematical norm, 

demonstrated by peers holding each other to account if procedural explanations were 

given.  
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Cobb et al. (2001) argued that it would not be feasible for a teacher to consider each 

individual student’s anticipated reasoning when planning or delivering lessons. A key 

strength of this interpretative framework is that an understanding of the overall 

learning trajectory of a class can be developed, with ‘students’ participation in 

collective practices as constituting the conditions for the possibility of their 

mathematical learning’ (Cobb et al., 2011, p.110). Rasmussen et al. (2015) argued that 

particular ideas and ways of reasoning become normative in classroom discourse, and 

these norms function as a shared understanding of what constitutes mathematics in 

that setting; however, differences in students’ understanding remain.  

The argument made here is that the identification of sociomathematical norms and 

mathematical practices foregrounds what is mathematically available for students to 

learn, if they choose to participate. Moreover, it should be possible to analyse the 

teacher’s role in establishing and maintaining these norms without analysing individual 

student reasoning and engagement at each stage of a lesson. However, while 

sociomathematical norms and mathematical practices provide the taken-as-shared 

view of what is acknowledged as mathematics in particular settings, ‘they do not 

inform us whether the constructed knowledge is or is not mathematical in character’ 

(Kaldrimidou et al., 2008, p.237). Norms, therefore, appear to offer a way to 

foreground teachers’ actions in relation to students’ learning, but with the caveat that 

evidence about the mathematical nature of what is made available to students resides 

elsewhere.  

3.2.3 Identities 

3.2.3.1 Student Identities 

Cobb et al. (2009) continued to develop their analytical framework with work on 

identities. They posited moving the focus from individual to normative identities could 

inform pedagogical design and teaching. One of their central constructs was a 

normative identity as a doer of mathematics, which was defined as ‘the general and 

specifically mathematical obligations that delineate the role of an effective 

mathematics student in that classroom’ (p.43) (figure 3.2). This construct is closely 

associated with classroom norms, as sociomathematical norms provide the framework 

within which students develop their understanding of what it means to do 
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mathematics, and a normative identity is the taken-as-shared view of what is 

recognised as an ‘ideal’ student in that classroom.  

 

Figure 3.2 Facets of the normative identity as a doer of mathematics  
(Cobb et al., 2009,  p.46). 

However, Cobb et al. (2009) also considered the relationship between normative 

identities and individuals. A second central construct was that of personal identities of 

individual students. This encompassed a student’s view of their own competence, 

their perception of how peers viewed their competence and how closely they 

identified with the normative identity. Drawing on previous work, such as Boaler and 

Greeno (2000), Cobb et al. (2009) argued students could be classified as to whether 

they identified with, merely complied or resisted their classroom obligations in 

relation to engagement in mathematical activity. In other words, how closely they 

identified with the normative identity of an ‘effective student of mathematics’. There 

is some evidence that students in low sets engage less with mathematics (Boaler, 

1997; Horn, 2008; Noyes, 2012), which could be manifest in higher levels of resistance. 

Certainly, the levels of identification with normative identities have been shown to 

vary between classes (Boaler and Greeno, 2000). With the acknowledgement that 

factors from outside the classroom influence classroom behaviours (e.g. Boaler, 2005; 

Strand, 2014), the separation of normative and personal identities is of interest to this 

study, as it has potential to separate individual student engagement from the 

mathematics made available to them.   
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3.2.3.2 Teacher Identity 

As with normative identities for an effective student, there is an equivalent construct 

for teachers, defined by Gresalfi and Cobb (2011) as ‘a set of obligations that a teacher 

would have to fulfil to be recognised as a competent mathematics teacher in that 

setting’ (p.275). It could therefore be possible to consider if or how normative 

identities are different for different classes, but as Levenson et al. (2009) cautioned, 

how these vary may depend on who is constructing the identity. In the Gresalfi and 

Cobb (2011) interpretative framework, the teacher’s personal identity is conceived as 

developing as the teacher interacts in that environment. This offers a mechanism 

through which teachers’ perceptions of expectations and obligations for the teaching 

of mathematics could be considered. Moreover, this framework could allow 

expectations from outside the classroom to be taken into account.  

In a similar manner to student identities, the relationship between a teacher’s 

personal and normative identity could be explored. When focussing on the teacher’s 

pedagogical practice, it could be productive to consider the two interrelated facets of 

classroom norms and teacher identity. As discussed, a number of studies have 

demonstrated that different teachers establish different classroom norms (Lopez and 

Allal, 2007; Straehler-Pohl et al., 2013), whilst others have discussed how teachers 

modify classroom norms over time (Cobb et al., 2009; Makar et al., 2015). Taken 

together, normative identities and classroom norms offer a window through which to 

consider the relationship between the teacher and the mathematics in different 

settings.  

3.2.3.3 Mathematical Profiles of Classes 

Of key interest to this study is the mathematics that is made available to students. One 

thread that runs through educational research is that the mathematics experienced by 

learners varies in fundamental ways. For example, the relational versus instrumental 

divide or mathematics being seen as the production of fast and accurate solutions 

versus a problem solving process (e.g. Skemp, 1976; Di Martino and Zan, 2010). The 

notions of classroom norms and identities proposed by Cobb et al. (2011) could allow 

a complex image of what constitutes mathematics in particular classrooms to be built. 

The argument made is that, in addition to being able to describe ‘an effective student 
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of mathematics’ or a ‘competent teacher’, it is possible and useful to describe the 

normative mathematical profile of particular classrooms. 

Teachers and students construct significant narratives about mathematics, though the 

narratives may reside in intuitive behaviours rather than being well-articulated and 

shared explicitly (Sfard and Prusak, 2005). The affordance of the notion of a normative 

mathematical profile lies in its status as an object, albeit one that evolves over time. In 

particular, it allows the nature of mathematics made available to students to be 

brought into focus. For example, low attaining classes have a reputation for having 

students who are less engaged (Boaler and Greeno, 2000); the separation of the 

mathematical profile of the classroom from the students levels of participation could 

offer a window into teachers’ pedagogical practices that may otherwise be obscured 

by non-mathematical activity. It may also answer the question as to whether, from a 

learning of mathematics perspective, it would be worth the students engaging in the 

tasks offered. 

The question to be answered here is whether different classes for the same teacher 

have different normative mathematical profiles, and if so, how does this relate to 

classroom norms and different normative identities for both the teacher and students. 

In addition, how does a teacher contribute and respond to those norms, and how do 

they negotiate their personal identity within this complex environment. 

3.2.4 Authority and Agency 

Authority and student agency in classrooms have been identified by a number of 

researchers as critical features of mathematics lessons, as they can be determining 

factors in the nature of mathematics experienced by students (Boaler and Greeno, 

2000; Martin, 2000; Watson and Mason, 2007; Schoenfeld, 2013a). For example, 

Schoenfeld (2014) identified ‘agency, authority and identity’ as one of his five 

dimensions of mathematically powerful classrooms, which also included cognitive 

demand, the mathematics, use of mathematics and use of assessment (p. 407) (see 

3.4.3.2 for details). Cobb et al. (2009) similarly argued that authority and agency were 

important features of what it means to be an ‘effective student of mathematics’. For 

example, in the cases used to illustrate their interpretative framework, they 
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demonstrated that in one class the authority to evaluate responses resided with the 

teacher, whilst in the other both the teacher and students were involved. However, 

Cobb et al. (2009) acknowledged the context of the second class, where attendance 

was voluntary, could have contributed to the different dynamics.  

A number of studies have drawn on Cobb and colleagues’ model of classroom 

microcultures involving the notion of authority. Lopez and Allal (2007), in their study of 

two primary classes, also found the distribution of authority varied with different 

teachers, along with other aspects of sociomathematical norms. One teacher retained 

authority whilst developing an expectation that different approaches to solving 

problems would be considered. The other teacher distributed authority more widely 

but with a norm established of focusing on the most effective procedure. However, 

Lopez and Allal (2007) did offer a note of caution when they argued that the 

interpretation of sociomathematical norms was complex as they could only be 

interpreted in relation to each other. 

3.2.5 Affordances and Limitations of Classroom Norms 

The majority of studies conducted by Cobb and his colleagues (e.g. Yackel and Cobb, 

1996; Cobb et al., 2001; Gravemeijer and Cobb, 2006; Cobb et al., 2009) were reform-

orientated design research, involving classroom experiments undertaken in the 

elementary sector in the US. One consequence was an underpinning ethos of 

improving teaching and learning through the development of effective inquiry-

orientated classrooms. It does appear that this type of analysis, which utilises 

classroom norms and identities to investigate classroom microcultures, offers a 

mechanism through which behaviours valued in inquiry-oriented settings are 

captured. For example, a sustained press for explanations (Stein, 2000) and students 

holding peers to account (Goos, 2004) are two of those behaviours.  

A number of subsequent studies have illustrated the use of these constructs in the 

analysis of classroom interactions and the teachers’ role within those dynamic 

environments (Kazemi and Stipek, 2001; Lopez and Allal, 2007; Makar et al., 2015). 

Although many of those studies were also undertaken in primary inquiry-oriented 

settings, they did identify a wider range of norms, which went beyond those utilised by 



34 | P a g e  

Yackel and Cobb (1996). Some of these norms, such as authority residing with the 

teacher, are more closely associated with traditional classrooms. As such, these 

offered some evidence of the potential of analysis from the perspective of classroom 

norms to be viable beyond inquiry-oriented settings.  

A search of the British Educational Index and ERIC (terms: sociomathematical, 

microculture and norms) indicated there are few studies that utilised these constructs 

in more traditional settings or in secondary schools in England. Consequently, as yet, 

there is less evidence of the efficacy of these constructs in the analysis of typical 

English secondary classrooms. In spite of these limitations, the affordances offered by 

these constructs to interpret constantly varying situations and to identify patterns of 

participation have the potential to contribute significantly to this study. Specifically, 

classroom norms, and in particular sociomathematical norms and mathematical 

practices, allow specific interactions to be interpreted as to whether they represent 

typical or atypical occurrences. Consequently, the analysis of a relatively small number 

of lessons could offer a sufficiently representative picture of the mathematics made 

available to students more generally.   

3.2.6 The Relationships between Identities and the Didactic Triangle  

In this study, the affordances of classroom norms and normative identities, as co-

constructed in particular classrooms (Cobb et al., 2009), for interpreting classrooms 

lies in how different aspects of the didactic triangle can be brought into focus. In 

particular, individual student participation can be taken into account through how 

students’ actions relate to the normative identity of an ‘effective student of 

mathematics’. 

 

Figure 3.3: Identities in relation to the didactic triangle 
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Viewed from this perspective, the student node in the triangle embodies an ‘effective 

student of mathematics’, to which individual students will have varying levels of 

identification (figure 3.3) (3.2.3.1). Similarly, the teacher node embodies the 

normative identity of a ‘competent’ teacher, taking into account that different settings 

can create different sets of obligations. This model allows a teacher’s actions to be 

foregrounded through consideration of their relationship to these norms, without 

interrogating the actions of all the individual students at each stage of the lesson.  

As discussed in 3.2.2, the argument made is that a shared understanding of what it is 

to ‘do mathematics’ is built in individual classrooms. Within the didactic triangle, the 

mathematics node embodies the class mathematical profile. It should be noted, 

however, that activities undertaken under the label of ‘mathematics’ carry different 

meanings when applied to a mathematics classroom as compared to academics 

working in the field (Moreira and David, 2008). Ernest (1998) identified the differences 

between school and research mathematics as:  

 participants: all students - small groups of adults;  

 knowledge: learning existing knowledge that matters to the student - creating 

new knowledge for the public domain;  

 tasks and assessment criteria: imposed by the teacher - self-selected and shared;  

 tasks: short with short written answers - long-term problems with longer written 

outcomes (p.247).  

Burton (2002) argued learners would benefit if more elements of research 

mathematics were incorporated into school mathematics, such as a greater use of 

inquiry-based collaborative tasks. However, the characteristics of school mathematics 

identified by Ernest (1998) appear to have remained common practice in English 

secondary schools, although potentially more entrenched with low attaining sets 

(Noyes, 2012). Consequently, the intersection between school mathematics and the 

wider discipline may vary between classes. As such, norms offer a profile of what is 

accepted as ‘doing mathematics’ in particular settings, rather than the character of 

that knowledge in relation to mathematics as may be described by academics 

(Kaldrimidou et al., 2008)  
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3.3 Teachers’ Orchestration of Mathematics 

In this section, orchestration is defined and then research that explores teachers’ 

pedagogical practices is discussed. In particular, those studies that have sought to 

relate particular pedagogical approaches with student learning are considered in more 

detail. 

3.3.1 Introduction to Orchestration 

Classrooms are widely acknowledged as complex, dynamic environments that are 

influenced by a wide range of factors. As discussed in section 3.2, normative 

constructs offer a lens through which to interpret classroom interactions. Developing 

an understanding of how teachers teach mathematics requires consideration of a wide 

range of factors that are both brought to the classroom and evolve as the lesson 

unfolds. Numerous and diverse theoretical perspectives have been developed to 

consider different facets of teaching and learning. For example, Pedagogical Content 

Knowledge (PCK) for teaching was a theoretical framework introduced by Shulman 

(1986), which has been widely cited and developed since (e.g. Ball et al., 2008). 

Teachers’ knowledge, along with their beliefs and values, has been widely 

acknowledged as influencing teachers’ practice (e.g. Stipek et al., 2001; Hannula, 2002; 

Leatham, 2006). Schoenfeld (2011) drew together a number of these strands in his 

theoretical framework for teachers’ decision-making, with the model including 

teachers’ knowledge, goals, beliefs and values, alongside mechanisms for routine and 

non-routine decision-making. Whilst acknowledging this complex interplay of factors 

that influence teachers’ practice, the aims of this study are more modest. Specifically, 

the objective is to identify the mathematics the teachers make available to different 

groups of students and the actions taken by them to bring this about. In other words, 

how teachers orchestrate mathematics for different groups of students.  

3.3.2 Defining Orchestration 

The term ‘orchestration’ is often used in relation to teachers’ management of 

classroom discourse, although the metaphor is rarely explained (e.g. Henningsen and 

Stein, 1997; O'Connor, 2001; Goos, 2004; Leinhardt and Steele, 2005). For example, in 

their review of research relating to mathematics classrooms, Walshaw and Anthony 
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(2008) stated ‘the teacher orchestrated mathematical events by securing student 

attention and participation in the classroom discussion’ (p.527). In this study, the focus 

is the teachers’ orchestration of mathematics, where ‘orchestrate’ is taken to 

encapsulate the actions a teacher takes to select, organise and make available to 

students the mathematical tasks used in class, alongside their management of 

students’ mathematical contributions. The term ‘discourse’ is also used in different 

ways (Gee and Handford, 2013); see section 3.3.6.1 regarding use in this study. 

The power of any metaphor does not lie in any literal translation or in the detail it 

provides, but in the image evoked. The following discussion considers possible 

interpretations of ‘orchestration’ and hence offers a rationale for its use. The Oxford 

English Dictionary (2004) defines orchestration as: ‘To combine harmoniously, like 

instruments in an orchestra; to arrange or direct (now often surreptitiously) to 

produce a desired effect; To compose or arrange for an orchestra; to score for 

orchestral performance’ (entry 156048). Key differences between these literal 

meanings and their use in relation to discourse appear to be the in-the-moment 

decision making and the level of contingent responses a teacher has to make.  

When ‘orchestrate’ is used as a descriptor for classroom discussions, this could shift 

the image towards the class as an orchestra with the teacher conducting. In this 

context, the notion of leadership by the teacher, with authority to select, control and 

sequence activities could be brought to mind. Writing from the field of technology use 

in the classroom, Dillenbourg and Jermann (2010) explicitly discussed this metaphor. 

Whilst acknowledging that the teachers’ actions may be more reminiscent of a 

conductor, they highlighted orchestration’s intuitive appeal based on a shared purpose 

of the harmonisation of multiple voices. A teacher draws on their prior knowledge and 

planning to manage the complexities of integrating multiple contributions to a 

coherent whole, which resonates with an image of a composer come conductor. In this 

study, the phrase ‘orchestrate the mathematics’ is intended to foreground the 

mathematics in a manner akin to music that is produced by an orchestra, as something 

that is created in the shared space of the classroom and to be perceived by all, albeit 

in different ways.  
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3.3.3 Cognitive Demand 

In order to discuss how teachers orchestrate mathematics, aspects of their activities 

that are significant in relation to the learning of mathematics need to be identified. 

The notion of cognitive demand has been drawn on by a number of studies, especially 

those looking to explicate the impact of particular pedagogical practices on student 

learning (e.g. Charalambous, 2008; Boston and Smith, 2009; Schoenfeld, 2014; 

Leatham et al., 2015). As such, cognitive demand seems to offer a mechanism through 

which to evaluate the significance of particular practices in relation to the learning of 

mathematics. Therefore, this was of relevance to this study and is discussed below. 

One of the more commonly cited studies on cognitive demand is the work by Stein et 

al. (1996), where they introduced the Mathematical Task Framework (MTF) that 

modelled the relationship between task related variables and student learning. As part 

of this wider conceptual framework, they offered a rubric for categorising tasks as 

having low-level or high-level cognitive demand, where the purpose was to capture 

‘the level and type of thinking that a task has the potential to elicit’ (Boston and Smith, 

2009, p.122). ‘Memorisation’ and ‘procedures without connections to concepts’ were 

indicative of low-level tasks, which included following narrow algorithms without any 

requirement for explanations to go beyond describing the procedure (Stein et al., 

1996, p.455) (appendix 5). ‘Procedures with connections to concepts’ and ‘doing 

mathematics’ were classified as high-level. This included tasks that required 

connections to be made between multiple representations and cognitive engagement 

with concepts, such as justifications that go beyond describing procedures. The latter 

category encompassed self-regulatory behaviours as well as non-routine problem 

solving that required students to develop an understanding of the underlying 

mathematical structures.  

The term ‘rich task’ is often used to describe tasks that provide students with the 

opportunity to ‘do mathematics’ (e.g. Henningsen and Stein, 1997; Anderson, 2003; 

Watson and De Geest, 2005). However, the term is used in different ways. For 

example, Aubusson et al. (2014) include ‘authenticity in their relationship to real-world 

application and context’ (p.220). Here, ‘rich task’ is used as a label for those meeting 

the criteria for high-level cognitively demanding tasks.  
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A number of subsequent studies have drawn on the work by Stein and her colleagues 

on cognitive demand. For example, Schoenfeld (2014) identified cognitive demand as 

one of the five features of a powerful mathematics classroom, and Imm and Stylianou 

(2012) explored the relationships between cognitively demanding tasks and discourse. 

However, a note of caution was made by Charalambous et al. (2010) when they stated 

that they were not able to distinguish between ‘procedures with connections’ and 

‘procedures without connections’ with acceptable reliability. Furthermore, the 

development of the MTF was firmly rooted in the US reform agenda, underpinned by a 

constructivist stance, and consequently may not be as relevant in other contexts. In 

spite of these limitations, it appears that the construct of cognitive demand describes 

an important aspect of mathematical classrooms.   

The MTF modelled how tasks evolved from the way they appeared in curriculum 

materials through to how they were enacted in the classroom. One of the key 

affordances of the framework was that it allowed Stein et al. (1996) to track the 

maintenance or decline of cognitive demand as lessons unfolded. Of importance here 

is that they identified factors associated with this maintenance or decline, all of which 

fell within the remit of the teacher. For example, maintenance was associated with the 

presence of: scaffolding for thinking; modelling of high-level performance; support for 

self-assessment; tasks that build on prior knowledge; sufficient time; the teacher 

pressing for justifications, explanations and meaning; and frequent drawing of 

conceptual connections by the teacher (Smith and Stein, 1998, p.15) (appendix 5). 

Similarly, decline was also associated with teachers’ actions, with identified factors: a 

shift to a focus on the correctness of answers; routinisation of tasks; inappropriate 

amounts of time; unsuitable tasks; and students not being held accountable for high 

level reasoning.  

The relationship between the presence or absence of cognitively demanding tasks 

(CDTs) and the development of students’ mathematical thinking is not straightforward. 

Whilst many may agree that ‘high cognitive demand tasks create particularly fertile 

ground for student thinking to occur’ (Leatham et al., 2015, p.90), studies have shown 

decline to low level activity is common, especially in classrooms without an inquiry-

oriented tradition (Henningsen and Stein, 1997; Boston and Smith, 2009; Tekkumru 
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Kisa and Stein, 2015). Conversely, there is also evidence that high level thinking can 

occur in the absence of rich tasks. For example, Leatham et al. (2015) identified 

elements of lessons where opportunities for higher level thinking arose as teachers 

responded to student contributions, and which were not by necessity associated with 

CDTs. In their influential analysis of lessons from the TIMSS video studies, Hiebert et al. 

(2003b) concluded that the level of cognitive demand, as experienced by students, 

resided in the nuances of how classroom features were coordinated and classroom 

approaches were implemented, rather than in particular features of teaching per se.  

What appears undisputed, however, is that the level of cognitive demand is a key 

characteristic of mathematics classrooms. Although it is important to remember that 

the task difficulty as experienced by the student is related to their prior knowledge 

and their familiarity with problems of a similar nature (Burkhardt and Swan, 2013). So, 

whilst there is a complex relationship between tasks used and enacted classroom 

activity, the teacher’s classroom practice is the key component in determining the 

level of cognitive demand available to students.  

3.3.4 The Initial Development of the Teacher’s Orchestration of 

Mathematics Framework   

There is an extensive range of published research that explores teachers’ pedagogical 

activities and the implications for learning. As my review of literature continued, I 

found myself searching for ways to structure my understanding of such a wide range 

of perspectives. The previous discussions highlight that teachers have a pivotal role in 

establishing the level of cognitive demand available to students, and hence the type of 

mathematical thinking that might occur. There appears to be two interconnected 

elements of teachers’ practice that influence cognitive demand, namely their selection 

of tasks and their management of classroom interactions. Moreover, this demarcation 

aligns with wider research, with task design and teachers’ management of classroom 

discourse forming substantial bodies of work (e.g. Ainley et al., 2006; Liljedahl et al., 

2007; Stein and Smith, 2011). As such, I found this categorisation useful in my 

synthesis of literature. This prompted me to look for a more systematic way to 

integrate other substantive issues met in the literature, which led to the development 

of a conceptual framework as outline below.  
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In order to develop a conceptual framework for understanding how teachers 

orchestrate mathematics, both the mathematical tasks and the teachers’ activities in 

relation to mathematics would need to be categorised in meaningful ways. Moreover, 

how those actions would be recognised in classrooms would need to be articulated. 

The didactic triangle (3.2.1) had provided a model for viewing classroom activities 

from the perspective of the teacher, whilst still taking account of the students and the 

mathematics. It appeared that consideration of classroom norms (3.2.2), cognitive 

demand (3.3.3), classroom discourse and task features all had the potential to offer 

key insights into the mathematics made available to students through teachers’ 

pedagogical activities. This led to the development of the initial version of the 

Teacher’s Orchestration of Mathematics framework (figure 3.4: model A). This 

conceptual framework provided a mechanism through which to view the coordination 

of theoretical perspectives from the point of view of the teacher’s pedagogical moves.  

 

Figure 3.4: Model A - The Teacher’s Orchestration of Mathematics (TOM) Framework 

The shaded blocks represent the teacher’s task selection and management of 

classroom discourse, which classify pedagogical moves that have a critical effect on 

the mathematics made available to students. The two vertical blocks represent 

cognitive demand and classroom norms, features that run throughout each lesson. 

Cognitive demand offers a way of evaluating the type of thinking made available to 

students. This could be thought of as the potential of the teacher’s pedagogical moves 

to influence individual student’s cognition, as set up in the tasks and maintained 

throughout the lesson. Classroom norms feature here as a mechanism through which 
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classroom interactions can be interpreted, and activities acknowledged as 

mathematically legitimate can be recognised. Classroom norms both frame and are 

framed by classroom interactions; the arrows represent the significant and reflexive 

relationship between the teacher’s pedagogical moves and classroom norms, whilst 

the separation represents the role others have in shaping these norms.  

As the literature review continued, refinements were made to the framework. The 

following sections discuss the key issues that informed this ongoing development. First 

examples and tasks will be discussed in more detail. This will be followed by a 

discussion of the management of discourse in mathematics classrooms. Finally, the 

management of the lesson trajectory will be considered. Section 3.4 will then discuss 

how these theoretical perspectives were synthesised into a broader conceptual 

framework, the Orchestration of Mathematics Framework (OMF). 

3.3.5 Tasks: Activities, Explanations and Examples  

Whilst mathematics education research often focuses on the use of rich tasks, which 

encourage higher levels of cognitive demand and the development of inquiry-

orientated approaches, there is evidence that many English classrooms follow a more 

traditional structure (Boaler, 2000; Watson and Evans, 2012). A common structure 

sees lessons starting with teacher exposition, used to introduce topics where examples 

play a key role, which is then followed by students completing practice exercises (Bills 

et al., 2006). However, establishing absolute demarcations between classroom 

activities would be difficult. For example, teacher exposition may be interwoven with 

whole-class question-and-answer sequences. In order to take account of different 

classroom practices, here tasks are considered as anything given to students to do that 

is related to mathematics, encompassing anything from rich tasks through to 

completion of routine exercises.   

The relationship between task features and the development of students’ 

mathematical reasoning has been subject to substantial study. Tasks that lend 

themselves to use of multiple representations, tasks that have multiple solutions 

strategies, and tasks that have a requirement for explanations and justification have all 

been identified as important (Stein et al., 1996; Duval, 2006; Guberman and Leikin, 
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2013; Schoenfeld, 2013a). Furthermore, the use of real-life examples and the role of 

context have been debated (Cooper and Harries, 2002; Stylianides and Stylianides, 

2008). Identifying the presence or absence of these features may be relatively 

straightforward, but the implications for students’ learning are necessarily complex. As 

previously argued (3.3.3), it is not the presence or absence of particular features per se 

that influences the mathematics made available to learners, but rather it is in the 

nuances of how those features are coordinated and enacted (Hiebert et al., 2003a).  

At first sight, it might appear that there is a relatively direct route from tasks requiring 

explanations to high cognitive demand, but differing expectations for a process versus 

conceptually orientated contribution, or variation in accountability norms, could 

fundamentally change the nature of the task. To illustrate, responses to a teacher’s 

request to explain why 
2

7
+

3

7
=

5

7
 could range from “you add the numerators but not 

the denominators”, through to a contribution that drew on diagrammatical 

representations and number lines to illustrate the structure of the problem. The 

former outlines a procedure without reference to concepts, whereas the latter could 

offer insights into the multifaceted nature of fractions. Moreover, a contribution from 

a single student has wider relevance if the remaining students take responsibility for 

understanding explanations made by others, and take action if their perception is 

different (Cobb et al., 2009). However, without this wider responsibility, any potential 

higher-level thinking could remain in the purview of one student.  

Of interest to this study is whether it is possible to identify mathematically salient 

features of tasks chosen by teachers for use in their ‘typical’ lessons. The purpose here 

would be to explore whether teachers offer tasks with different features to different 

groups of students. The following discussion seeks to articulate in more detail how 

mathematically salient features could be identified. 

3.3.5.1 Salient Mathematical Features 

The abstract nature of mathematical concepts means that they are only accessible 

through the use of representations (Duval, 2006), where different representations 

draw different facets of a concept into focus. Research indicates that multiple 

representations of a concept have a paradoxical role; simultaneously being both a key 
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mechanism for developing understanding, whilst also constituting an area of profound 

difficulty for many learners (Ainsworth, 2006; Duval, 2006; Dreher and Kuntze, 2015). 

Duval (2006) discussed two types of transformations of representations, those within 

and between mathematical registers. Transformations within one register, such as 

manipulation of equivalent algebraic expressions, are more common. Whereas 

conversion between registers, such as between algebraic and graphical representation 

of a function, are more important for learning but harder to achieve. Duval (2006) 

argued that learners could only develop a limited and compartmentalised view of 

mathematics if they were not able to switch between different representations in 

different mathematical registers. However, this flexibility requires the recognition and 

interpretation of the links between the manifestations of a concept in different 

representations (Dreher and Kuntze, 2015). A challenge as this requires a more 

complete understanding of the concept, which is often derived from being able to 

access the concept from this very same range of different representations (Ainsworth, 

2006).  

Rau and colleagues published a number of papers that explored links between student 

learning and the use of multiple representations with fractions (e.g. Rau et al., 2013; 

Rau et al., 2017; Rau and Matthews, 2017). Drawing on their work with over five 

hundred students aged between 9 and 12 years, Rau and Matthews (2017) postulated 

learning principles that enhance student understanding and fluency with visual 

representations. In relation to understanding, they argued students should self-explain 

connections between visual representations and concepts, and between visual 

features of different representations. For example, ‘number lines can more easily 

depict fractions larger than 1, compared to circles and rectangles’ (p.538). However, 

they cautioned students needed support to identify mathematically salient features, 

as otherwise the tendency would be to describe superficial elements of the particular 

example. In relation to fluency, they argued that the order in which students met 

different examples of the same representation, different representations and the 

switching between representations was critical. The strategies described align with 

aspects of variation theory and levels of explicitness that are discussed in more detail 

below.   
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The Rau and Matthews (2017) research is of relevance as it highlights that the 

presence of multiple representations is not sufficient per se to provide effective 

learning opportunities for students. Instead, the activities that students are prompted 

to undertake need to include attention being drawn to the underlying mathematical 

structure or concepts. To illustrate, an activity where a student relates 4
5⁄  to a circle 

split into five equal parts with four shaded by saying “there are five equal parts and 

you shade four” would not meet the learning principles outlined by Rau and Matthews 

(2017). However, activities that would meet their criteria for linking visual 

representations to concepts include students making reference to the shape being 

designated as the unit whole where its size and shape are arbitrary, or students 

explaining the denominator indicates how many equal parts but those could be any 

shape with equal area. Analysis of tasks should allow the intended role of multiple 

representations to be traced through the activity, to determine the potential to make 

links accessible to learners, although actual use would only become apparent when 

enacted in the classroom.   

3.3.5.2 Examples and Variation Theory: Links to Generalisation  

Bills et al. (2006) argued that examples are a fundamental feature in the teaching of 

mathematics, regardless of the pedagogical orientation of the classroom. Concepts are 

often introduced to students inductively, through a sequence of examples. In this 

context learning is a process of seeing the general through the particular, leading to 

understanding that in turn could be applied to previously unseen examples (Mason 

and Pimm, 1984; Park and Leung, 2006). Examples can have a range of purposes: 

typical examples used to introduce topics; paradigmatic, intended to illustrate 

archetypal features; atypical, peculiar, boundary or non-examples to broaden an 

understanding of a concept (Watson and Mason, 2002).  

Mason (2015a) argued ‘without generality there is no mathematics’; one fundamental 

issue is whether learners make the step from particular examples to a generalisation, 

and if they do whether they perceive the same generalities as the teacher (Bills et al., 

2006). To illustrate, Watson and Mason (2002) offered the example of multiplying by 

0.3. They argued a teacher may see this as exemplifying multipliers in the 0 to 1 range 

make products smaller, but they questioned whether students would see beyond the 
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specific to perceive a more general outcome (smaller product) would occur for a range 

of values (0 to 1) (p.2). Furthermore, if the 0.3 did prompt a student to bring to mind 

the 0 to 1 range, would their numbers be restricted in some way that the teacher did 

not foresee, say to terminating decimals, and to the exclusion of others, such as 

fractions or irrationals.  

In recent years, a number of researchers have explored how variation theory could 

provide a framework for how learners might develop an understanding of 

mathematical concepts (e.g. Lam, 2013). Variation theory is based on the premise that 

learning is discernment, which requires variation set against a background of 

invariance (Lo, 2012); Runesson (2005) argued it was powerful enough ‘to reveal 

constraints on what it is possible to learn in mathematics classrooms’ (p.69). Inspired 

by Japanese and Chinese approaches to lesson and teaching study, Marton and Pang 

(2006) developed a framework for identifying conditions for learning. They explicated 

how discernment of critical features, from a structured sequence of particular 

instances of a concept, could lead to generalisations and hence meaning.   

With examples forming many of the ‘particular instances of a concept’, a simple 

illustration of the principles would be to consider how an understanding of ‘triangle’ 

could be constructed. Contrasting triangles from ‘not triangles’, by highlighting 

triangles from a range of polygons, could develop awareness of the critical ‘three-ness’ 

aspect (Marton and Pang, 2006). However, this is not sufficient to understand 

triangles. Mason (2011a) stated learning ‘is to become aware of aspects that can vary 

in examples while remaining as examples’ (p.108). In this case, keeping the triangle 

aspect invariant while systematically varying size, angles, orientation and position 

could allow the defining characteristics of triangles to be foregrounded, with non-

essential features ‘put away’ (Gu et al., 2004), but this can only occur once the critical 

aspects of a triangle are recognised (Lo and Marton, 2011). From this perspective, an 

understanding of the general notion of ‘triangle’ is the recognition of all possible 

variation. 

However, in practice it is far more complex, as there are a large number of interrelated 

features and what is attended to can vary. For example, in comparing triangles to 

other polygons, a student could focus on how polygons vary in the number of sides, 
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rather than ‘three-ness’ that makes this critical feature of triangles more visible. 

Moreover, Lam (2014) argued it was also possible for learners to discern the invariant 

aspect rather than the variant. Prior understanding could also change the nature of 

the discernment (Lo, 2012). For instance, in the above example, polygons would 

already have had to be separated from shapes with non-straight sides in order to 

attend to the number of sides.  

Drawing on work by Marton and colleagues, Watson and Mason (2005) offered their 

notions of ‘dimensions of possible variation’ and ‘range of permissible change’ as a 

way of exposing mathematical structure, and hence the mathematics made available 

for students to discern. The dimensions of possible variation are the aspects that can 

be varied. For example, if the object of learning was understanding straight-line 

graphs, the dimensions of possible variation would include gradient and position (e.g. 

the 𝑦 intercept). Discernment is possible if one aspect is varied against a backdrop of 

relative invariance of other aspects (Watson and Mason, 2006). The argument made is 

that discerning gradient would be more likely if position was relatively invariant, say by 

having a common point. Whereas, the range of permissible change is how that 

variation could happen; for straight-line graphs, gradient could vary between −∞ and 

∞ and position could be anywhere on the Cartesian plane.  

However, the situation with straight-line graphs is far more complex than two 

dimensions of variation. Different representations, and their relationships, and notions 

of infinity are just two of the multiple facets of a more complete understanding of 

linear functions. A known issue is that students can fail to recognise representations in 

atypical formats (Watson and Mason, 2006). In this example, vertical and horizontal 

lines are known to cause issues for some learners. Exposure to a wide range of 

permissible change within each dimension of possible variation could deepen students 

understanding of a concept, and the recognition of all possible variation would be 

generalisation (Watson and Mason, 2002).  

Watson and Mason (2006) contended that carefully controlled variation could 

foreground mathematical properties, structures and relationships, which in turn is ‘the 

raw material for mathematical conceptualization’ (p.95). They argued that any 

exercise given to students could be considered as a set of examples, thereby could be 
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treated as a single mathematical object analysable from a perspective of variation. To 

illustrate their argument, Watson and Mason (2006) offered a number of contrasting 

exercises, including:   

A. 𝑅𝑒𝑑𝑢𝑐𝑒 𝑡𝑜 𝑠𝑖𝑚𝑝𝑙𝑒𝑠𝑡 𝑡𝑒𝑟𝑚𝑠: 

(𝑎)
4

12
    (𝑏) 

36

12
   (𝑐)

240

300
   (𝑑) 5: 5    (𝑒) 𝑎𝑏: 𝑎𝑏    (𝑔) 2

1

4
: 1    (ℎ) 

6𝑎𝑏

3𝑏
  

(Lerman, 2001, cited in Watson and Mason, 2006, p.105) 

B. 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝑡ℎ𝑒𝑠𝑒:                 6 10⁄       18 20      ⁄ 6 8    ⁄      14 16⁄  

𝑁𝑜𝑤 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝑡ℎ𝑒𝑠𝑒:      15 25⁄      45 50⁄      15 20⁄     35 40⁄  

𝐶𝑜𝑚𝑝𝑎𝑟𝑒 𝑡ℎ𝑒 𝑎𝑛𝑠𝑤𝑒𝑟𝑠     

(Watson and Mason, 2006, p.107) 

Example A was considered unsystematic variation, as there were no discernible 

connections between questions, and they could be completed without connections 

being made to the concept of ratio. Whereas, example B was considered to have some 

controlled variation as ‘correctly-performed techniques were only the starting point 

for mathematization’, as connections could be made between questions (Watson and 

Mason, 2006, p.107). It appears that textbooks used in England often offer exercises 

with similar questions, but with arbitrary rather than systematic changes (Haggarty 

and Pepin, 2002; Watson and Mason, 2006). Therefore, a question remains as to how 

much systematic variation occurs in English mathematics classrooms and the impact 

this has on students’ access to mathematical concepts and generalisation through that 

variation.  

Moreover, there is some evidence to suggest that teachers in England do not readily 

consider the implications of variation theory when selecting their own examples 

(Watson and Mason, 2006; Zodik and Zaslavsky, 2008). Even if we are cognisant of 

issues relating to variation, understanding where our own attention lies is complex; 

interpreting this in others is even more difficult (Mason, 2015b). Consequently, 

analysing examples from a variation perspective could indicate what mathematics is 

potentially made visible, but interpreting how this may be seen by students would be 

non trivial. In spite of these difficulties, the apparent prevalence of ‘drill and practice’ 

exercises in low attaining classrooms means the analysis of tasks from a variation 

perspective could be particularly relevant.  
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Students’ mathematical errors can also be considered through the lens of variation 

theory. Overgeneralisation has been identified as one route for students to make 

rational decisions based on the information available to them, but which do not align 

with accepted mathematical reasoning (Swan, 2001). For example, a common recited 

misconception seen in primary students is that multiplication makes things bigger, 

which has been traced back to students only being exposed to positive integer 

examples. In other words, exposure to a limited range of permissible change.   

Variation theory can also suggest a mechanism by which the broader range of 

previously identified beneficial features could support learning. Specifically, this 

perspective can provide a rationale for the affordances of multiple representations, 

multiple solution strategies and rich tasks. The use of multiple representations has 

been associated with developing an understanding of mathematics (Duval, 2006). Rau 

and Matthews (2017) outlined their preferred order of student exposure to visual 

representations, arguing that they should first experience examples of the same 

representation within one type of activity, followed by the same representation in 

different activities, before switching between representations. In these situations, the 

concept is being held invariant whilst the context and then representation is varied; 

the term ‘conceptual variation’ has been used to describe this type of use of multiple 

representations (Gu et al., 2004).  

Many mathematical problems have a range of possible solutions strategies. If students 

experience multiple solution strategies, this would keep the problem invariant. 

Comparison of different strategies could shift the focus from a reproduction of a single 

procedure and allow the underlying structure of the problem to become more visible.  

Lai and Murray (2012) categorised multiple solution strategies for the same problem 

as one type of procedural variation. They included two further types in this category: 

the first being the same method applied to similar problems, which is common in 

English textbooks (Haggarty and Pepin, 2002); and the second where aspects of a 

problem are varied, such as changing conditions, which aligns with the notion of 

controlled variation discussed previously (example B) (Watson and Mason, 2006). If 

teachers employ rich tasks, then these would include some or all of multiple 

representations, multiple strategies, the press for explanation and justification, and 
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the search for patterns. As such, engagement with rich tasks could be construed as the 

student’s own exploration of variant/invariant relationships.  

3.3.5.3 Making ‘Visible’ 

A common thread that runs through this work is the notion of identifying which 

mathematical concepts are made more ‘visible’ to students and how this relates to 

teachers’ pedagogical moves. Adler and Ronda (2015) posited that variation theory is 

one way to analyse ‘what is mathematically available to learn’ (p.1). The argument 

made is that knowing which items are juxtaposed, and with what type of variation, 

allows the identification of which mathematical features are discernible (Bills et al., 

2006; Marton and Pang, 2006; Adler and Ronda, 2015). Mason (2011a), however, 

raised some interrelated issues; variation may be present but not experienced by 

learners, and while some level of explicitness may be helpful, understanding the role 

of implicit and explicit attention is complex:  

The conjecture is proposed that tension between explicitness and implicitness 

is present in all attempts both to implement theories in practice and to justify 

or analyse pedagogical choices using theories, of whatever kind. (p.107) 

For example, if students were exposed to different types of triangles, questions might 

be how much of the ‘three-ness’ of triangles is understood, and what overt action by 

the teacher might draw attention to the critical features. Mason (2011a) argued ‘it is 

part of the art of teaching to make choices about appropriate degrees of explicitness’ 

(p.111), including when and how to shift students’ attention from ‘doing’ tasks to the 

interrogation of those tasks. As will be discussed in section 3.3.7, this highlights the 

impact teachers’ ‘in-the-moment’ actions taken in the classroom have on the learning 

opportunities for students.  

Of interest here is the argument from Lo (2012) that students identified as high 

attaining are those more able to discern critical features independently, whereas 

students who do not identify these key features make less progress and are thereby 

identified as lower attaining. In a broader context of classroom interactions, Knipping 

et al. (2015) highlighted how some teachers’ intentions are communicated more 



51 | P a g e  

implicitly than others, and students vary in their understanding of these ‘unwritten 

rules’.  

The notion that raising levels of explicitness supports lower attaining students has 

some resonance with the formative assessment literature. Black and Wiliam (1998), 

drawing on over 250 published works, stated many studies had concluded ‘improved 

formative assessment helps low achievers more than other students’ (p.3). Black and 

Wiliam (2009) later argued that formative assessment, which entails providing 

students with feedback about where they are, where they are going and how they are 

going to get there, enhances learning by making more explicit what needs to be done. 

Likewise, in articulating their principles for supporting low-attaining students, Watson 

and De Geest (2005) listed ‘be explicit about connections and differences in 

mathematics’ (p.228). It appears, therefore, that there are varying levels explicitness in 

classrooms in relation to teachers’ intentions, task requirements and in how 

connections are made to mathematical principles. Moreover, there is the possibility 

that higher attaining students are more proficient at interpreting the implicit; with the 

corollary being that, whilst it would not be a straightforward process, increasing levels 

of explicitness may benefit learners, especially low attainers.   

3.3.5.4 Use of Context 

The use of context in mathematics lessons has been the subject of debate (Cooper, 

2001; Ainley et al., 2006). In particular, the potential tension between the use of 

context to support the understanding of mathematics and the role of mathematics in 

modelling and explicating real situations has been highlighted (Van Den Heuvel-

Panhuizen, 2003); the analysis of the use of contextualisation in the classroom is 

complicated by this duality. Moreover, what is considered as contextualisation varies. 

For example, proponents of Realistic Mathematics Education (RME), where realistic 

has a meaning of ‘what can be imagined’, argue that context relates to ‘working from 

contexts that make sense to them’ (Dickinson and Hough, 2012, p.1), whilst for others, 

the term is used when drawing on real-life experiences (Lowrie, 2011).  

One of the key debates for this study relates to the reported use of pseudo-contexts. 

By which is meant problems that use objects that do exist in the real world, such as 
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cars or apples, but are used in contrived and unrealistic ways. One example, taken 

from an English national assessment, and discussed by Cooper and Harries (2002), 

relates to asking students to work out how many lift journeys, with a given capacity, 

would be needed for a set number of people. The expected solution was the number 

of people divided by the lift capacity, rounded up to the nearest integer. Students 

were not expected to draw on other contextual information, such as the possibility of 

people using the stairs or not using the lift to capacity. Of relevance here is the finding 

that students with low socioeconomic backgrounds more frequently drew on 

‘inappropriate’ contextual information, as they failed to understand the implicit ‘rules 

of the game’ about how much context to use (Lubienski, 2000; Cooper and Harries, 

2002).  

Student motivation is often reported as a rationale for using real-life context rather 

than for direct pedagogical reasons per se, but some detrimental effects have been 

reported  (Stylianides and Stylianides, 2008; Lowrie, 2011). For instance, Stylianides 

and Stylianides (2008) reported a shift towards trial and check processes when the 

mathematical tasks were contextualised. Also, Lowrie (2011) argued that students use 

of genuine artefacts resulted in over-personalisation of the problems, which 

subsequently inhibited the establishment of a shared understanding of the situation. 

There is some evidence from international studies that the use of context varies 

between classes. For example, Gainsburg (2008) reported that teachers from four 

schools in her US study tended to use more connections to real-life contexts with 

higher attaining and well-behaved classes. In a small study of three teachers in Greece, 

Straehler-Pohl et al. (2013) presented a detailed description of how teachers shifted 

attention from the contextualised problem to an abstracted mathematical process. 

They contrasted the high and low attaining sets; for the former this was gradual and 

exposed the relationships between the context and the mathematics, and with the 

latter, this was abrupt and ‘the teacher created an artificial relation to the students' 

supposed lives’ (p.195). Due to the differing cultural contexts, the relevance of these 

last two studies to an English setting could be questioned. However, they do suggest 

that the use of context could be of interest when shifts in teachers’ pedagogy between 

sets are under consideration. 
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3.3.6 Management of Discourse 

3.3.6.1 Classroom Interactions: Discourse 

The previous sections discussed task features and how these could be related to the 

mathematics made available to students. If task selection provides the initial content 

for any lesson, then it is classroom interactions that govern how these tasks are 

enacted and hence shape how the mathematics unfolds as the lesson progresses. In 

this study, the term ‘discourse’ is used in the sense of ‘discourse as social interaction’ 

(Ryve, 2011, p.171), as the focus is on how teachers coordinate local face-to-face 

interactions and influence classroom norms. Gee (2004) included broader issues in his 

definition of ‘Discourse’, such as ‘ways of thinking, believing, valuing, and using various 

symbols, tools, and objects to enact a particular sort of socially recognizable identity’ 

(p.29). Some of these issues are of interest to this study but are signalled using 

terminology other than ‘discourse’ to avoid confusion.  

Classroom talk is integral to many classroom activities and plays a fundamental role in 

most classroom interactions (Lefstein and Snell, 2011). The amount and nature of 

teacher talk has been shown to vary between teachers, with consequential differences 

in student participation. For example, Truxaw and DeFranco (2008) analysed 

classroom interactions, categorising teachers talk as either univocal, where the 

purpose was transmission of meaning, or dialogic ‘that uses dialogue as a process for 

thinking’ (p.489); with the latter being more closely associated with developing 

students’ conceptual understanding (Imm and Stylianou, 2012).  

Lefstein and Snell (2011) stated that teachers typically spoke more than students, and 

they controlled classroom talk, both in terms of content and who could talk when. 

Teachers’ talk tends to include a mixture of exposition and teacher-student exchanges. 

In this study, teachers’ explanations in the form of monologues are considered to form 

part of mathematical tasks (3.3.5). The next section focusses on whole-class patterns 

of interaction and consideration will be given to the possible impact on classroom 

norms, especially authority and agency. Section 3.3.7 focusses on the function of 

classroom discourse in terms of how this shapes the mathematical trajectory of the 

lesson.  
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3.3.6.2 Patterns of Classroom Talk 

The most commonly found interactional pattern in whole-class discussions is an 

Initiate-Response-Evaluate (IRE) cycle, where the teacher asks a relatively closed 

question, for which they know the answer, a student responds and the teacher 

evaluates (Drageset, 2014; Lefstein et al., 2015). This IRE pattern is more closely 

associated with traditional approaches, where the teacher not only controls the 

questions asked but also acts as the arbiter of right and wrong (Imm and Stylianou, 

2012). This use can play a significant role in establishing norms relating to authority in 

the classroom (Cobb et al., 2011). However, questions form an integral part of 

mathematics lessons, both in written and verbal forms, where they can perform a 

variety of roles, from assessment of understanding to a tool for highlighting what is 

mathematically important (Mason, 2000). It is, therefore, important to understand 

what questions are asked, by whom, and how these are responded to, as this forms an 

important part of understanding mathematics classrooms.  

Classroom norms can provide insights into how interactions build up notions of 

accountability and agency. For example, one marker for accountability is a class’s 

response to being asked to evaluate a particular contribution. In a teacher-authority 

context, the classroom norm is often for ‘correct’ answers to be immediately 

acknowledged as such by the teacher, so any further scrutiny of the response cues the 

students to treat the original answer as incorrect, regardless of its mathematical 

validity. Whereas, in a class-authority context, the original response is considered on 

its merits (Brodie, 2014).  

Even within the apparently restrictive pattern of IRE interactions, there can be 

significant differences relating to who or what is asked. For example, even when the 

teacher decides what counts as a mathematically acceptable solution, the influences 

on the sociomathematical norms are likely to vary between responses that state an 

answer, outline a procedure or engage with concepts. Many researchers advocate the 

use of a broader range of questioning strategies to encourage discussion, where the 

type of questions asked, by whom and how solutions are evaluated are all opened up 

(e.g. Mason, 2000; Krussel et al., 2004; Cobb et al., 2011). For example, a strategy that 

extends the IRE sequence so that multiple students are expected to respond, where 
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they offer alternatives and evaluate or rephrase previous contributions, have been 

advocated as feasible ways to build on a traditional approach (Watson et al., 1998).  

In addition to issues of authority, the IRE pattern of interaction has drawn criticism, 

due to an association with low-level cognitive demand that can occur when recall 

questions are asked or if ‘funnelling’ occurs. The latter is where the teacher leads the 

students to the correct answer by progressively providing more and more information 

(Lefstein and Snell, 2011), thereby removing the requirement for the students to 

undertake any significant mathematical work. Though it should be noted that the line 

between funnelling and focussing students’ attention on what is mathematically 

significant is not always easy to determine (Wood, 1994). Moreover, Lefstein et al. 

(2015) argued the significance of individual questions cannot be considered in 

isolation, but rather its contribution to the sequence of events must be taken into 

account. Questioning that press for explanations and justifications have been 

associated with higher cognitive demand, although it is necessary to distinguish 

between contributions that focus on replaying procedures from those that discuss 

concepts (Cobb et al., 2001; Rau and Matthews, 2017).  

Of particular relevance here is the evidence suggesting that low attaining students are 

more likely to be asked low-level questions (Watson, 2001; Zohar et al., 2001). 

Moreover, students with low socioeconomic backgrounds, who are overrepresented in 

low sets, tend to be less successful in accessing the mathematics through an IRE 

interactional pattern, as their home experience is more likely to have a declarative 

structure (Jorgensen et al., 2013).   

The nature of teachers’ reactions to student contributions varies, even in IRE 

dominated classrooms. After a student contribution, the next turn is usually taken by 

the teacher. Whilst simple acknowledgements do occur, teachers also ‘revoice’ 

student contributions in different ways (Cazden and Beck, 2003). For example, 

teachers might repeat, rephrase or extend the contribution. These types of teacher 

actions can have a complex relationship to classroom norms, as they can indicate the 

student’s contribution is valued whilst simultaneously taking control. Moreover, 

studies using discourse analysis have demonstrated that understanding classroom 
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interactions is complex, as pauses, intonations and gestures also have nuanced 

meanings (Forman and Larreamendy-Joerns, 1998).  

One particular area where complex interactional patterns can occur is the treatment 

of ‘errors’. A common teacher response to a student ‘error’ is to highlight the problem 

in an indirect manner, say by pausing or repeating the problematic element of the 

response (Ingram et al., 2015). These actions allow further consideration of the source 

of the error. However, from a conversational analysis perspective, avoiding direct 

negative evaluation conveys the message that what has been said, namely the ‘error’, 

should be avoided (Sacks et al., 1974). As such, there is a potential tension between 

the learning potential of exploring mathematical errors and the message initiating this 

exploration could convey.  

Errors in mathematics can be viewed from different perspectives. The mathematical 

validity of some statements could be determined, such as 2 + 1 = 3  being considered 

valid and  2 + 1 = 2 invalid, whereas others are more ambiguous and open to 

interpretation. In classrooms, teachers may treat responses as ‘correct’ or as an 

‘error’, but these treatments may not perfectly align with the mathematical validity of 

the statements as viewed from the position of an expert mathematician. When a 

distinction needs to be made, quotation marks will be used when referring to the 

teachers’ treatment of student contributions as ‘correct’ or an ‘error’, and the phrase 

mathematical error will be used when referring to validity with respect to accepted 

mathematical reasoning (Swan, 2001). In the lesson analysis in this study, the terms 

satisfactory and unsatisfactory will be used when referring to the teachers’ treatment 

of student responses as either ‘correct’ or an ‘error’, respectively.  

Even when student responses do not contain mathematically invalid statements per 

se, teachers often filter and rephrase student contributions (Imm and Stylianou, 2012). 

This often involves the teachers ‘tidying up’ responses to make them conform to 

mathematical conventions, which could reinforce the teacher’s authority to decide on 

the legitimacy of solutions and appropriateness of terminology (Forman and 

Larreamendy-Joerns, 1998). Teachers ‘rebroadcasting’ of a student’s response through 

repetition could indicate the response is valued and accepted (Cazden and Beck, 

2003). However, it could also reinforce the notion that it is the teachers’ responsibility 
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to ensure that all the students heard and understood. Similarly, teachers may repeat 

with emphasis. This allows the teacher to use a student’s response to draw attention 

to a mathematically significant feature, simultaneously valuing the response whilst 

shifting ownership of the contribution from the student to the teacher.  

Whilst it remains the case that in many classrooms the teacher evaluates contributions 

(Krussel et al., 2004; Walshaw and Anthony, 2008; Lefstein and Snell, 2011; Imm and 

Stylianou, 2012), not all teachers conform to these dominant discourse patterns. In 

some classrooms students hold each other to account, although the evidence is often 

based in US reform contexts where the teachers are involved in professional 

development focussed on developing student participation (Larsson and Ryve, 2012; 

Wachira et al., 2013).  

The use of praise as part of a teachers’ evaluative move is also a complex issue. There 

are some who advocate the use of contingent praise, although this appears to be 

related to social behaviours (Simonsen et al., 2013). Dweck (2007), making links to her 

mindset theory, argued that praise had positive effects if directed at effort but 

negative if directed at notions of ability. However, difficulties could emerge if praise 

was given for effort when actually little effort was made (Hattie and Timperley, 2007). 

Meyer (1982) made a nuance argument that a recipient of praise may interpret this as 

the speaker believing their ability was low. This could have a negative impact on the 

student’s academic self-concept (Ireson and Hallam, 2009). Brophy (1981) argued the 

principal driver for the use of praise was the teachers reading of student needs, rather 

than any judgment of the quality of student contributions. As such, this appears to be 

linked to teachers’ expectations of students. Consequently, the use of praise could be 

of relevance to this study, especially if there is a differential use of praise by teachers 

with different groups of students (2.4.2).  

A number of researchers have argued for the value of classrooms where students are 

expected to make longer contributions and offer their own opinions, but studies have 

indicated teachers experience difficulties in establishing and managing these broader 

classroom discussions (e.g. Stein et al., 2008; Larsson and Ryve, 2012; Adler and 

Ronda, 2015). Difficulties appear to arise from the complexities involved in the 

interpretation of student contributions and the management of the tension between 
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exploring student reasoning and drawing attention to the logic of the discipline (Ball, 

1993; Sherin, 2002; Scherrer and Stein, 2013). Maintaining a productive discussion 

appears to be especially problematic when student responses are not easily 

recognised as part of a standard solution strategy. The evidence shows there is a 

tendency to reduce the level of cognitive demand by prompting specific procedural 

strategies (Henningsen and Stein, 1997; Krussel et al., 2004; Wilhelm, 2014).  

Of interest to this study is whether the same teacher exhibits different patterns of 

interaction with different groups of students, leading to the establishment of different 

classroom norms. 

3.3.6.3 Registers 

Documented differences between low and high attaining sets include how supposed 

real-life experiences are drawn on and how registers are used. Specifically, variations 

in the relationships between colloquial language and more formal mathematical 

terminology have been found. Drawing on his previous studies, Dowling (2010) argued 

that students in low sets encounter ‘mythologised versions of the students’ own lives’ 

(p.7), whilst the higher attaining groups focused on more formal mathematics.  

Gellert and Straehler-Pohl (2011) described horizontal discourse as relating to 

contextualised language and vertical discourse as more formal decontextualised 

mathematical discourse. They argued access to both registers is needed in order to 

develop mathematical understanding, but teachers varied in how they inducted 

students into the use of vertical discourse, tending to restrict access to those they 

considered more able. Similarly, Adler and Ronda (2015) argued that the use of 

colloquial discourse is crucial in allowing students to access mathematical concepts, 

but that the transition to a formal register is necessary to fully participate in the 

learning of mathematics. They contended there was a disinclination on the part of 

some teachers to use a more formal register, especially with low attaining students. 

As with context, it appears how language is used requires a nuanced interpretation, 

with informal discourse being necessary to support students’ access to mathematical 

concepts but would restrict understanding if relied upon at the expense of induction 
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to formal discourse. Of interest to this study is that it appears that differences in the 

use of more formal language might be related to different student attainment.  

3.3.7 Lesson Trajectories: Planning and In-lesson Sequencing 

3.3.7.1 Introduction 

Mathematics lessons are a sequence of events contingent on a wide range of factors. 

However, it is usual for teachers to plan classroom activities before the lesson. These 

evolve into enacted activities during the lesson, shaped by teachers’ in-the-moment 

decision making, students’ actions and classroom interactions. This section considers 

the relationship between these different stages of teachers’ thinking about the lesson 

and the mathematical direction of travel that occurs as the lesson unfolds. The term 

‘lesson trajectory’ is used to describe the course of the mathematical focus of 

classroom activities as the lesson progresses. First, the notion of learning trajectories 

will be discussed (Simon, 1995) in order to consider the relationship between pre-

lesson planning and the teachers’ in-class activities. Then teachers’ in-the-moment 

decision-making and the role of attention will be considered in more detail. Finally, the 

mathematical focus and actions taken by the teacher to ‘steer’ the lesson trajectory 

will be discussed. 

3.3.7.2 Learning Trajectories  

Over recent years, the term ‘learning trajectories’ has been used as a label for 

theoretical frameworks that describe the course of students’ mathematical reasoning 

through particular topics (Simon, 1995; Clements and Sarama, 2004; Wilson et al., 

2014). Whilst these discourses are rooted in a constructivist perspective, the meaning 

ascribed to the term learning trajectory has developed as the research focus shifted in 

grain size from classrooms to large-scale curriculum development. Of interest here is 

the analysis of classroom practice, so the origins of ‘hypothetical learning trajectories’ 

(HLT) introduced by Simon (1995) are discussed. Attention will be drawn to core 

features of the framework through consideration of how other researches have drawn 

on Simon’s construct to analyse classroom practice. Finally, consideration will be given 

to how the HLT framework was adapted to inform this study. 
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Simon (1995) argued that constructivism provides a valuable way to think about 

mathematical learning, but that there are no simple ways to translate this 

understanding into particular teaching approaches. In order to contribute to a 

dialogue about pedagogy, he conducted classroom teaching experiments with his own 

class of student-teachers. The analysis of which led to the development of his 

‘Mathematical Teaching Cycle’, a theoretical framework for pedagogy (p.131). One of 

the key issues a constructivist perspective brings to the classroom is the tension arising 

from responding to students’ thinking whilst also keeping ‘an eye on the mathematical 

horizon’ (Ball, 1993, p.373). Simon (1995) coined the term ‘hypothetical learning 

trajectories’ (HLT) to describe ‘the teacher’s prediction as to the path by which 

learning might proceed’ (p.135); as such his framework articulated how a teacher 

might manage that tension.  

  
Figure 3.5: Mathematical Teaching Cycle   

Figure 3.6: Testing Cycle 

A trajectory starts with the teacher’s learning goals, which indicates the planned 

direction of travel. This informs the teacher’s plan for learning activities, which in turn 

is in a reflexive relationship with their hypotheses of how students’ conceptual 

Hypothetical 
learning trajectory  

Teacher’s 
learning goal 

 

Teacher’s plan 
for learning 
activities 

 

Teacher’s 
hypothesis of 
process of 
learning 

 

Teacher’s 
knowledge  

Assessment of 
students’ 

knowledge 

Simon (1995, p.136) 

Hypothetical 
testing trajectory   

Teacher’s 
testing content 
goal 

  

Teacher’s plan 
for test 
preparation 
activities 

  

Teacher’s 
hypothesis 
testing process 

  

Teacher’s 
knowledge (of 
tests) 

Assessment of 
performance 

Adapted from Amador and Lamberg (2013, p.161) 



61 | P a g e  

development evolves during participation in those mathematical activities. This 

formed part of his wider theoretical framework of the Mathematical Teaching Cycle, 

where HLTs are continually revised in light of the teacher’s assessment of student 

reasoning and is informed by the teacher’s own knowledge (Simon, 1995) (figure 3.5). 

The narrative Simon (1995) provided was a detailed account of his assessment of the 

students’ understanding of concepts related to area, and how he developed 

mathematical activities based on student responses. Whilst this appeared to 

demonstrate a coherent way to model the iterative processes involved in his own 

pedagogical thinking and actions, it was strongly tied to the particular mathematical 

concepts and the individual student responses. Moreover, it was inextricably linked to 

Simon’s mathematical knowledge for teaching and his constructivist stance. Simon 

(1995) himself posited that it was unlikely that practicing teachers would have the 

time or resources to replicate this process in their own classrooms.  

The HLT framework is predicated on students’ individual meaning making, with the 

result that there could be as many different actual pathways of concept development 

as there are students. As such, it would be impractical for a teacher to generate HLTs 

on this scale. Cobb et al. (2001) argued their interpretative framework that utilises 

classroom norms, overcomes the difficulties in dealing with multiple, qualitatively 

different, student reasoning, and consequently allows HLTs to be utilised as an analytic 

tool at a class level. In the classroom experiments reported by Cobb et al. (2001), the 

research staff recorded their interpretation of diverse student thinking and then 

discussed this information with the teacher in ‘real-time’, which he then used to 

inform the latter stages of the lesson. So, whilst Cobb et al. (2001) demonstrated how 

they used HLTs to inform their instructional design, the use of staff beyond that 

normally available to teachers reinforces Simon’s (1995) assertion that HLTs in this 

form are unlikely to be accessible to teaching staff on a routine basis. 

3.3.7.3 Generic Trajectories 

In a US based study, Amador and Lamberg (2013) investigated four teachers’ planning 

and teaching utilising the HLT methodology. They were only able to analyse one 

teacher’s practice using this framework, suggesting, for some teachers at least, the 

fundamental features of the HLTs are not a regular part of practice. The one teacher’s 
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practice they could analyse utilising HLTs was aligned with an inquiry approach, with 

attention being paid to developing students’ conceptual understanding. Even though 

this teacher did not explicitly refer to HLTs, the goals she articulated, and the planning-

assessment cycle undertaken, were captured by the model, providing some evidence 

of the potential explanatory power of the HLT framework in inquiry-oriented contexts. 

The remaining three teachers did not articulate or enact learning goals as construed by 

Simon (1995). That is to say, goals related to the development of a conceptual 

understanding of significant mathematical ideas were not present. Instead, Amador 

and Lamberg (2013) developed an alternative trajectory to model these teachers’ 

actions, arguing that they followed a testing trajectory where the key focus was on 

student performance in high-stakes tests (figure 3.6).  

Whilst this study highlighted the difficulties in drawing on HLTs when exploring 

teachers’ typical classroom practice, it also offered some evidence that the underlying 

structure could be applied to a wider range of contexts. Amador and Lamberg (2013) 

were able to construct an alternative model that linked the teachers’ plans, 

predictions and assessment of classroom outcomes together. In doing so, the model 

still encapsulated the tension the teachers needed to manage between their intended 

lesson goals and being responsive to student activity, albeit in terms of test 

performance. With the English school system often characterised as highly 

performative in nature (Sealey and Noyes, 2011), this adaptability may make this 

model more relevant to this study. Moreover, it may offer a way to identify different 

trajectories for different classes, which may be of particular relevance as engagement 

rather than conceptual understanding is seen by some as an appropriate goal for low 

attaining students (Boaler et al., 2000). 

The term ‘lesson image’ has been used to describe ‘a broad vision of what the teacher 

expects to happen’ (Rowland et al., 2015, p.75). The previous discussion indicates that 

a generic trajectory, which encompasses a goal for the lesson, a plan for activities and 

anticipated student responses, has the potential to provide a framework for analysing 

a range of different styles of lessons. So here the term ‘lesson image’ has been 

adopted to describe a generic trajectory that encapsulates learning, performance and 

engagement orientations (figure 3.7). The original teaching cycle by Simon (1995) 
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incorporated a feedback loop as the trajectory was considered to be under constant 

review. In the model developed for this study, the teachers’ interpretation of the 

unfolding lesson trajectory is reviewed against their lesson image (hypothetical generic 

trajectory), with incremental or substantial adjustments possible as a result.  

 

Figure 3.7: Teaching Cycle including Generic Trajectory (Lesson Image) 
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algorithmic reasoning was the dominant form of teachers’ reasoning in classrooms. 

The argument being that once pedagogical routines are established, such as IRE 

patterns, these are easily accessible to teachers in-the-moment. Due to the amount 

and dynamic nature of information available in the classroom, algorithmic reasoning 

often occurs rather than more conscious deliberations. Watson (2019) argued this 

could at least partially explain the differences between teachers’ espoused and 

enacted beliefs. For example, a teacher might state they value student explanations 

but in practice limit students to short responses. An explanation suggested by this 

model is that if IRE patterns are normative for the teacher, there may be insufficient 

triggers to shift them to more deliberate, reflective processes needed for them to 

notice, and therefore be able to modify, the type of responses they accept.  

3.3.7.5 Steer: Focus of Attention 

Mason (2011b) stated that ‘noticing is a movement or shift of attention’ (p.45), where 

a person’s attention can be spontaneous or intentional, with varying levels of 

awareness about what they are attending to. For example, a mathematics teacher 

could interpret a diagram as representing an equilateral triangle without consciously 

bringing to mind that the three marks on the edges signify the sides were the same 

length. Mason (2011b) argued that mathematics necessitates shifting attention, which 

is often an intuitive action by experts but more difficult for novices. For example, when 

asked to graph a quadratic, an expert may shift attention between a few values, the 

roots, a translated mental image of 𝑦 = 𝑥2 and the associated symmetry in order to 

draw a graph efficiently and accurately. Whereas, a novice might focus solely on a 

table of values; without recourse to the relationships between the particular example 

and properties of quadratics more generally, mathematical errors could go unnoticed.  

One significant implication for the classroom is the role attention has in 

communication: 

When teacher and students are attending to different things, communication 

is unlikely to be efficient. Even when teacher and students are attending to the 

same things, they may be attending differently, and so communication may be, 

at best, restricted and incomplete, if it does not break down altogether. 

(Mason, 2011b, p.47)   
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The situation is complicated by the fact that individuals have varying levels of 

awareness of where their own attention lies (Mason, 2001); at best, inferences could 

be drawn about where other peoples’ attention lies based on their behaviours 

(Mason, 2011b). From this perspective, the expertise of a teacher could be linked to 

the level to which they understand where students’ attention might lie.  

Jacobs et al. (2010) coined the phrase ‘professional noticing’ to describe the in-the-

moment processes of teachers attending to students’ strategies, interpreting students’ 

understanding and making decisions about their own responses (p.169). With the 

focus on student reasoning, this appears to align with an in-the-moment enactment of 

the mathematical teaching cycle (3.3.7.2 & figure 3.5), but with the role of attention in 

the assessment of students’ activities acknowledged more explicitly. Jacobs et al. 

(2010) found that teachers had different levels of expertise in terms of professional 

noticing, but this could be developed. However, they also acknowledged that their 

research was set in a context of reform orientated CPD. It appears likely, therefore, 

that as with hypothetical learning trajectories, this type of noticing is less likely to 

occur in all classrooms, and performance and engagement orientations would need to 

be taken into account.  

The tension a teacher has to manage between attending to students’ thinking and 

maintaining their ‘eye on the mathematical horizon’ (Ball, 1993, p.373) was discussed 

in section 3.3.7.2. However, the lesson image that teachers hold may have 

performance and/or engagement orientations (Amador and Lamberg, 2013). As such, 

the teacher may attend to aspects of students’ activities other than reasoning, and 

their mathematical horizon might relate to the efficient application of algorithms. So, 

while the tensions between being responsive to student activities and managing the 

lesson trajectory remain for all teachers, a teacher’s orientation could lead to 

resolutions being a long way from the vision Ball (1993) held ‘that both honors 

children and is honest to mathematics’ (p.31). 

Mason (2011b) argued that inferences could be made about what teachers and 

students may be attending to and that different levels of attention occur. For example, 

at the micro-level attention can shift between the whole and details, or between 

relationships and properties, whereas at a macro-level attention can vary in focus, 
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strength, scope and source (p.46-7). In terms of observable behaviours that could be 

interpreted in classrooms, identifying macro-level attention appears to be more 

achievable, especially in terms of focus and source. In order to have productive 

discussions in the shared space of whole-class interactions, a shared focus of attention 

would be needed at some level (Mason, 2011b). In a classroom context, teachers’ 

actions that direct students’ focus of attention might be inferred through the analysis 

of classroom discourse. Whilst far less would be known about the attention of 

students not directly participating in whole-class discussions, if a class level focus could 

be established then it would be reasonable to consider that the attention of an 

‘effective student of mathematics’ would be drawn to that focus.   

With the nature of the foci forming an integral part of the lesson trajectory, who 

determines the foci and controls any shifts provides the mathematical steer for the 

lesson. Teachers tend to control classroom talk (3.3.6.1) and are therefore likely to 

play a significant part in managing the lesson trajectory, but some of this steer may 

come from algorithmic reasoning (3.3.7.4). In terms of the mathematics made 

available to students over the course of the lesson, how and when attention is drawn 

to mathematically significant features is important. For example, from a perspective of 

variation theory, the sequencing of examples is important, as features need to be 

varied and juxtaposed in relatively close time frames (3.3.5.2). However, whilst 

variation might make aspects of mathematics more visible, its presence alone does not 

guarantee learning (Mason, 2011a). Whilst making explicit reference to 

mathematically significant features may make learning more likely, it is a complex 

decision as to when and how to shift students’ attention from ‘doing’ tasks to the 

scrutiny of the mathematically significant features embedded in those tasks. 

Moreover, the level of explicitness that students might find useful is contingent on a 

range of factors and is likely to vary between students (Mason, 2011a).  

3.3.7.6 Summary: Lesson Trajectories 

The previous sections have outlined different aspects that regulate the mathematical 

direction of travel, from teachers’ pre-planning through to in-the-moment decision 

making. Key elements include the teachers’ orientation in terms of learning, 

performance or engagement, and how this influences their attention and where they 
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direct the attention of students. All teachers have to balance their attention to student 

contributions with how they focus on their mathematical horizon, but again the nature 

of their engagement with student contributions and the nature of their mathematical 

horizon are shaped by their orientations and beliefs. What the teacher draws attention 

to shapes the lesson trajectory and the mathematics made available to students.  
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3.4 The Orchestration of Mathematics Framework (OMF)  

Early in the literature review process, the Teacher’s Orchestration of Mathematics 

(TOM) conceptual framework (figure 3.4: model A) was developed to facilitate the 

synthesis of prior research (3.3.4). As the study progressed, this early model continued 

to be refined through the systematic integration of a range of theoretical perspectives 

that can be brought to bear on the interpretation of the mathematics classroom. In 

these developments, as discussed in detail below, the model was expanded and 

refined. A revised version of TOM was retained as the central element of the 

framework as this focussed on the teacher’s classroom activities. This was integrated 

with a teaching cycle (3.3.7.3) that could take into account pre-lesson planning and in-

lesson assessment, which resulted in the first iteration of the Orchestration of 

Mathematics Framework (OMF) (figure 3.8: model B). As the study moved into the 

data collection and analysis stages, the OMF was repositioned from a synthesis tool to 

an analytical framework, with further revisions made as a result. In the pilot stage a 

revised version of the OMF was used (figure 3.11: model C) and the transition to the 

main study brought the final iteration of the OMF (figure 3.14: model D).  

In designing the study, consideration was given to the use of classroom observation 

tools. A number of studies have developed observation frameworks, but many held an 

evaluative orientation (e.g. Learning Mathematics for Teaching Project, 2011). Also, 

they were often underpinned by particular initiatives, such as the reform agenda in 

the US (e.g. Remillard and Bryans, 2004; Schoenfeld, 2014) (3.4.3), or focussed on 

specific aspects of lessons, such as cognitive demand (Stein and Smith, 1998) (3.3.3). 

The aim of this study was to describe and analyse ‘typical’ lessons rather than offer an 

evaluation of teaching. As such, none of the frameworks reviewed appeared to have 

the breadth of coverage to capture the range of mathematical practices that prior 

research indicated were likely to occur in English classrooms, especially practices 

reported as more prevalent in lower attaining sets. Consequently, as the study moved 

towards the pilot stage, the decision was made to develop the OMF so that it could be 

used as an observation and analytical framework. 

This transition, from a conceptual framework as a distillation of relevant theoretical 

perspectives to one for the observation and interpretation of teachers’ pedagogical 
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practices, brought additional challenges. The framework would need categories that 

were both necessary and sufficient to capture mathematically significant events, with 

internal coherence and acceptable levels of separation (Schoenfeld, 2013a). The 

interconnectedness of classroom activities means that a completely unambiguous 

categorisation of teachers’ pedagogical moves is unlikely to be found. Moreover, it is 

recognised that the connections between different elements of a framework are as 

important as the elements themselves. Therefore, developing a coherent framework 

was a complex undertaking. 

Throughout the study, the development of the OMF remained an iterative process. 

Initially the moves were between the literature and the conceptual model, starting 

with the Teacher’s Orchestration of Mathematics framework, the first model of 

teachers’ pedagogical moves (figure 3.4: model A), and then with the broader OMF 

(figure 3.8: model B). Sections 3.2 and 3.3 outlined the relevant research that 

informed the developments from a theoretical perspective. As the study progressed, 

data from the pilot study were mapped against the framework, with initial revisions 

leading to the pilot version of the OMF (figure 3.11: model C). In the transition to the 

main study, the relationships between the coding protocols and the OMF led to 

further refinements, with amendments made and further literature sought as gaps and 

potential conflicts in the framework arose. This led to the final iteration of the OMF, as 

presented in figure 3.14 (model D). 

The following provides an overview of the influences of the literature and empirical 

data on the developments of the OMF. Section 3.4.1 outlines how the separate 

elements identified in the literature review were synthesised into the Orchestration of 

Mathematics Framework (OMF) (figure 3.8: model B). Section 3.4.2 discusses how 

further adjustments were made to the OMF during the application of the framework 

to the pilot study (figure 3.11: model C) and the transition to the main study (figure 

3.14: model D). In order to site the OMF in the wider field, section 3.4.3 undertakes a 

comparison with two other observation frameworks, and section 3.4.4 considers the 

affordances and limitations of the OMF.  
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3.4.1 OMF: Summary from the Review of Literature 

The initial model for teachers’ pedagogical moves was the Teacher’s Orchestration of 

Mathematics framework (figure 3.4: model A). This was structured around cognitive 

demand, classroom norms and the teachers’ activities related to their management of 

discourse and task design. The model was then expanded to include the teaching 

cycle, which captured the lesson image, the interpretation of classroom activity and 

teacher knowledge, beliefs and values. Additional dimensions were also added to the 

central TOM section. These features were integrated to form the first iteration of the 

OMF (figure 3.8: model B), as discussed in detail below. 

 

Figure 3.8: Model B – Orchestration of Mathematics Framework (OMF) – Literature Review 

The teaching cycle (figure 3.7) was incorporated due to its power to model teachers’ 

planning and assessment both prior to and during the lesson. TOM was included in the 

cycle between the lesson image and the interpretation of classroom activities as this 

Interpretation 
of Classroom 
Activity  

Noticing 
Assessment of 
student 
knowledge 

Concepts              Ways of working 
 
 
 
 
 
 
 
 
 
 
 
 

Teacher’s Orchestration of 
Mathematics  

Organisation 
Individual  
Group work 

Discourse 
Registers 
Patterns: IRE, Questioning 
Student Responses: Errors, Revoicing 

Tasks/ Examples, Explanation 
Task Features  
Context  
 

Sequencing 
Variation 
Links 
Students’ work 

In
d

iv
id

u
al

 S
tu

d
en

t 
A

ct
iv

it
y 

Lesson Image 

Plan for 
Activities 

Learning 
Performance 
Engagement 

  

Lesson Goals 
Hypotheses  
(Anticipation) 

Learning  
Performance 
Engagement 

Examples/ Tasks 
Organisation 

C
o

gn
it

iv
e 

D
em

an
d

: 
ty

p
e 

o
f 

th
in

ki
n

g
 

Heuristic 
responses 

C
la

ss
ro

o
m

 N
o

rm
s 

C
N

: A
cc

o
u

n
ta

b
ili

ty
 &

 A
g

en
cy

 S
M

N
: W

h
a

t 
co

u
n

ts
 a

s 
a

n
 

ex
p

la
n

a
ti

o
n

 (
in

c 
d

if
fe

re
n

t,
 e

ff
ic

ie
n

t,
 s

o
p

h
is

ti
ca

te
d

) 
 

 

Te
ac

h
e

r 
kn

o
w

le
d

ge
, 

b
el

ie
fs

 a
n

d
 v

al
u

es
 



71 | P a g e  

represented the stage where the teacher enacted their plans prior to review. The 

heuristic label was included to acknowledge some decision making is more intuitive 

and based on established pedagogical routines. In the central TOM section, classroom 

organisation (2.4.1.1) and sequencing (3.3.7) dimensions were added. These were 

included when the literature signalled their relevance to setting and their importance 

in relation to teachers’ pedagogical moves but did not fit within the developing 

descriptions of the task or discourse dimensions.  

Figure 3.8 (model B) represents the last iteration of the OMF from the substantive 

literature review undertaken before the pilot study commenced. However, further 

literature was drawn on after this point in the study. For example, the heuristic label 

was always an integral part of the OMF, but the work by Watson (2019) on algorithmic 

reasoning was subsequently drawn on to offer a more detailed theoretical perspective 

on that aspect of the OMF (3.3.7.4). Consequently, the main concepts discussed in 

sections 3.3.3 to 3.3.7 are to be found in figure 3.8 (model B), but there are some 

elements, such as algorithmic reasoning and the role of attention (3.3.7.5), that 

informed the last iteration of the OMF (figure 3.14: model D).  

3.4.1.1 OMF: Summary of the Theoretical Perspectives 

The central core of the OMF has the same overall structure as the original framework, 

and consists of the Teacher’s Orchestration of Mathematics (TOM), cognitive demand 

and classroom norms. Although TOM now only refers to the shaded section and has 

the added dimensions of sequencing and organisation. TOM encapsulates the 

dimensions related to the teachers’ in-class mathematically related activities. 

Specifically, the organisation (2.4.1), tasks (3.3.5), discourse (3.3.6), and sequencing 

(3.3.7) dimensions of TOM captures the teachers’ pedagogical moves that can have a 

critical effect on the mathematics made available to students.  

As previously discussed, cognitive demand offers a way to capture the potential of the 

teacher’s pedagogical moves to generate different types of student thinking, as set up 

in the tasks and managed throughout the lesson (3.3.3). Classroom norms are co-

constructed by all members of a class, where actions both shaped and are shaped by 

these norms. They provide a mechanism to identify what is recognised as 
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mathematically legitimate in particular settings (3.2.2). In order not to imply that 

teachers are the only influence on these norms, individual student activity is included 

in the framework, though the hashes signal that the student perspective is not the 

focus of this study.  

The extended teaching cycle is composed of the Lesson Image, TOM, the 

Interpretation of Classroom Activities and Teacher Knowledge, Beliefs and Values. This 

was included as it captures the teacher’s planning that begins prior to the lesson and 

the ongoing cycle of classroom activity, interpretation and revision of plans that 

continues as the lesson unfolds, all of which are influenced by the teacher’s 

knowledge, beliefs and values (3.3.7). The algorithmic reasoning is indicated by the 

‘heuristic’ label, and signifies the significant influence pedagogical scripts that have 

been built up over time can have on teachers’ decision making (Watson, 2019). This 

was included to acknowledge that many of the teacher’s in-class actions might be 

based on reasoning of a more autonomous nature (3.3.7.4).  

Teachers’ practice is a mixture of planned and contingent activities, based on 

conscious decisions and intuitive responses (Schoenfeld, 2011), and teachers respond 

to what is noticed, which varies (Mason, 2015b). Moreover, from a constructivist 

perspective, meaning making resides with the learner, so student responses will never 

be entirely predictable. Consequently, no two lessons are the same, even if the same 

tasks are used by the same teacher. A valuable analytic tool in these circumstances is 

the use of classroom norms, as this allows regularities in these constantly varying 

situations to be identified (Cobb et al., 2011).  

This study sought to build an understanding of the nature of mathematics made 

available to students resulting from the teacher’s pedagogical moves. This should be 

achievable through the identification of activities that are legitimised and accepted in 

particular classes as part of established classroom norms (Cobb et al., 2011). When 

considering mathematical activity, a common demarcation is distinguishing between 

particular mathematical concepts and ways of working (Schoenfeld, 2013a). A 

corresponding demarcation is made by Cobb et al. (2001) when they distinguish 

between mathematical practices and sociomathematical norms. As mathematical 

topics vary from lesson to lesson, and this study will not be imposing particular tasks, it 



73 | P a g e  

was anticipated that the focus would be orientated towards sociomathematical 

norms. 

3.4.2 OMF: Developments during the Pilot and Main Study. 

The OMF continued to be developed during its use in the pilot study and in the 

transition to the main study, both in terms of the refinement of the descriptors and 

my understanding of the OMF as a conceptual model. The analysis of lessons was an 

iterative process, moving between the data sources, the OMF and the emerging 

pedagogical profiles. In particular, audio transcripts formed a substantive part of the 

data, and their coding was conceptually and procedurally related to the OMF. 

Discussions of these issues would usually be considered in a methodology chapter. 

However, in order to provide a coherent narrative of the development of the OMF, the 

following sections discuss aspects of this study that were instrumental in that 

development, whilst chapter 4 addresses the wider methodological issues. The 

following sections include the formalisation of the coding strategy for the lesson 

transcripts and the transition to the main study. Figure 3.9 outlines the key OMF 

transition points and signposts where each version of the OMF is located.  

 

Figure 3.9: Summary of the Development of the Orchestration of Mathematics Framework (OMF) 

Figure 3.4: Teacher’s Orchestration of Mathematics – Model A 
3.3.4 The initial model developed early in the literature review 3.3.4 

Figure 3.8: The Orchestration of Mathematics Framework (OMF) – Model B 
3.4.2 The first complete OMF from the literature review prior to the pilot study. 
Major amendments: Incorporation of the teaching cycle and the addition of the 
sequencing and organisation dimensions to the central section (TOM).  

Figure 3.11: The Orchestration of Mathematics Framework (OMF) – Model C 
3.4.2.1 The OMF used in the second stage of the pilot study 
Minor amendments: refinement of the descriptions of Discourse and Interpretation  

Figure 3.14: The Orchestration of Mathematics Framework (OMF) – Model D 
3.4.2.3 The final iteration of the OMF developed in the transition to the main study 
Refinement of the descriptions of TOM and layout changes for Teacher Cognition 



74 | P a g e  

3.4.2.1 Pilot Study 

The pilot study consisted of the analysis of three publicly available videos from the 

TIMSS video study (Hiebert et al., 2003a) and two lessons recorded for this study.  

(a) Stage One: TIMSS Video Study 

The TIMSS videos were used as they were complete, unedited lessons, selected as 

representative samples rather than for the presence of specific features. In addition, a 

range of supplementary data was available (appendix 2), and the recordings took ‘the 

perspective of an ideal student’ (Hiebert et al., 2003a, p.15) that aligned well with this 

study. In this stage of the pilot, the OMF represented by figure 3.8 (model B) was used.  

Included in the TIMSS material were brief commentaries from the teachers and 

researchers. This was useful in gaining an understanding of how cognitive demand was 

interpreted by the researchers and offered a mechanism for comparing my analysis 

with that of other researchers, albeit in a very limited fashion (appendices 2.1.3, 2.2.3 

& 2.3.3). There was less information about the teachers’ planning. Therefore, only the 

central part of the OMF was the focus of the first stage of the pilot study (figure 3.10). 

The purpose of this stage was to explore the viability of this restricted framework as 

an analytical tool when the lessons were considered in isolation, thus providing 

evidence to shape the wider study.  

 

Figure 3.10: Central Section (TOM) from Model B (OMF)   

After an initial viewing of the videos and the accompanying material, each section on 

the lesson transcripts was coded for mathematical activity (appendices 2.1.1, 2.2.1 & 

 Concepts              Ways of working 
 
 
 
 
 
 
 
 
 

Teacher’s Orchestration of 
Mathematics (TOM) 

Organisation 
Individual  
Group work 

Discourse 
Registers 
Patterns: IRE, 
Questioning 
Student Responses: 
Errors, Revoicing 

Tasks/ Examples 
Explanation 

Task Features  
Context  
 

Sequencing 
Variation 
Links 
Students’ work 

In
d

iv
id

u
al

 S
tu

d
en

t 
A

ct
iv

it
y 

C
o

gn
it

iv
e 

D
em

an
d

: 
ty

p
e 

o
f 

th
in

ki
n

g
 

C
la

ss
ro

o
m

 N
o

rm
s 

C
N

: A
cc

o
u

n
ta

b
ili

ty
 &

 A
g

en
cy

 S
M

N
: W

h
a

t 
co

u
n

ts
 a

s 
a

n
 e

xp
la

n
a

ti
o

n
 (

in
c 

 d
if

fe
re

n
t,

 

ef
fi

ci
en

t,
 s

o
p

h
is

ti
ca

te
d

 )
  

 



75 | P a g e  

2.3.1). Classroom activities that were unrelated to mathematics, such as social 

interactions or classroom management, were coded as not mathematically related and 

were not subject to further analysis. The remaining sections were coded as 

mathematically related and were subject to further analysis. Those activities related to 

the organisation of the mathematical tasks, such as arranging students into groups, 

were coded and recorded on the organisation dimension of a lesson specific OMF. 

Other mathematically related episodes were subject to a more detailed analysis. Initial 

impressions for each section of the OMF were also recorded at the end of the first 

viewing. These interim representations consisted of annotated transcripts and a 

partially completed lesson-specific OMF (e.g. appendices 2.1.1 & 2.1.2).  

Mathematically related sections of the transcripts were revisited and considered in 

relation to the dimensions of TOM, cognitive demand and classroom norms. In effect, 

the OMF categories were used as an initial coding protocol (appendices 2.1.1, 2.2.1 & 

2.3.1). In addition, the tasks published in the supplementary information were 

analysed and compared to the enacted classroom tasks. During the analysis, I found 

myself moving between the lesson videos, transcripts and classroom artefacts in order 

to develop an understanding of the individual episodes. As characteristic themes in 

each dimension emerged, these were compared with other sections of the lesson. 

Features seen only when students were working individually or in small groups were 

noted and only included in the overall annotated OMF if they were seen more than 

once and included more than one student. This resulted in an annotated OMF for each 

lesson, with themes being linked with specific passages in the transcripts (appendices 

2.1.4, 2.2.4 & 2.3.4).  

Across the elements of the OMF different lesson characteristics did appear. For 

example, in relation to classroom norms, two teachers were the sole arbiter of what 

constituted an acceptable mathematical solution, and explanations were not expected 

when students answered questions. For the third lesson, there did appear to be a 

broader range of accountability (appendix 2.3). Whilst the teacher did evaluate the 

responses of many questions asked, there was a press for explanations in some 

contexts and some students held each other to account in group work. When TOM 

was considered, the interrelationship between the dimensions became apparent. For 
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example, in the third lesson the task dimension highlighted that the multiple solution 

strategies and multiple representations inherent in the task had the potential to 

expose critical features of triangles. However, the sequencing dimension highlighted 

the restricted nature of the examples used throughout the lesson, which then limited 

exposure to the range of permissible change, and hence generalisation.  

This analysis was compared to the publicly available material and none of the analysis 

above appeared to contradict the published commentary. For example, classroom 

organisation and the identification of multiple solution strategies were common to 

both my analysis and the published material for the ratio lesson (appendix 2.2.3). 

However, the detail provided in the published material was limited and focussed on 

describing the sequence of events (e.g. appendix 2.2.2). The analytical framework 

provided by the restricted OMF did provide a framework for summarising the lesson 

observations that allowed characteristics such as student accountability to be 

compared. As such, this provided some evidence that pedagogically noteworthy 

features were captured by this process.  

One amendment made to the OMF during this stage of the study was the inclusion of 

procedure/concept as one of the descriptions in the discourse dimension. This arose 

out of cognitive demand being categorised as low due to a focus on procedures (e.g. 

appendix 2.1.4). Tracing this back to the teachers’ pedagogical moves, these 

procedural foci were found to be embedded in the teachers’ questions and the type of 

responses they treated as satisfactory. However, as will be discussed in section 3.4.2.2, 

this classification was subject to further revisions later in the study.  

(b) Stage Two: Two Lessons 

Sam, one of the participating teachers, volunteered to have two lessons with the same 

high attaining class videoed. In addition to videoing the lessons, pre- and post-lesson 

semi-structured interviews were undertaken, and classroom artefacts were collected. 

Consequently, the complete version of the pilot OMF was used (figure 3.11: model C).  

This had a more compact layout, used for ease of publication. There were minor 

revisions to the discourse dimension and the interpretation of classroom activity in 
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comparison to figure 3.8 (model B), the Literature Review version of the OMF (the 

revisions are indicated by double underlining).  

 

Figure 3.11: Model C – Orchestration of Mathematics Framework (OMF) – Pilot Version 

The audio data from the lessons were transcribed and initially coded as 

mathematically related or not. Those episodes coded as mathematically related were 

then mapped against the OMF. As with the pilot study, the OMF dimensions were 

populated and the transcripts were subject to initial coding based on the OMF 

categories (an example is given below: extract 3.1 and table 3.1).   

The following is an extract of the transcription from the first stage 2 pilot lesson. Links 

made to the OMF are given in square brackets [ ]. The students were asked to answer 

six area questions and, after nine minutes, solutions were discussed as a whole class. 
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   Fin second one then 

  [IRE-E immediate acknowledgment (evaluation) and initiation of new IRE] 

81 Fin:  I did four add eight (.) twelve divided by two, six (..) times five makes 

   thirty centimetres squared.  

  [Norms: procedure accepted as explanation] 

⁞ 

113 T:  Sixteen centimetres squared, what did you do to get it? 

114 Shaz: It was just the last (…) 

115 T: Just the last answer (.) did anyone manage to do it with the maths? Raj 

  [‘error’ – not mathematical procedure – moved on to another student IRE 

reinstated] 

116 Raj: Three times (.) three times four so it’s the bottom rectangle 

117 T: Yep  

118 Raj: and that’s 12 meters squared (.) but then you triangle the top bit (.) 

which is three times four meters and divide by two 

119 T: So what Raj did, and I’m guessing what most people did who managed to 

get that was to draw a little line there to do our 3 times 4 which is 12 

meters squared and work out the triangle on top which was 4 meters 

squared OK good. 

  [E-IRE including revoicing explanation. Sequencing: Unsystematic 

variation – no links between questions] 

Extract 3.1: Pilot Lesson 
(adapted from Baldry, 2017, p.3045) 

The pre- and post-lesson interviews were transcribed and were similarly mapped 

against the OMF. These predominantly contributed to the lesson image and the 

interpretation of classroom activity sections.  

The data was then summarised in relation to the OMF (table 3.1) and cross-referenced 

with the lesson observation notes. Due to the nature of what can be more easily 

observed, the task, organisation and discourse dimensions of TOM were more 

straightforward to populate, with lower levels of inference required.  
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 Lesson Image  

Interpretation 

of classroom 

activity: errors, 

explanations 

not explored  

Goal: Performance Plan: Exam style questions Hypotheses: 

Familiarisation  

Tasks: Example; Explanations 

Multiple solution strategies were possible but no evidence 

of acknowledgement. All questions of standard format. 

Classroom Norms:  

Social Norms: Agency and 

accountability: resides 

predominantly with the 

teacher.  

SM norms: procedural 

explanation counts as 

explanation  

Mathematical practices: 

units important; area 

equates to multiplication  

Sequencing: Unsystematic variation and links were not 

explored. 

Organisation: Individual working  

Cognitive 

Demand: 

Potential- 

high; As 

enacted- low 

Discourse: Teacher led; Teacher requested (procedural) 

explanation, followed up when not provided  

IRE with teacher evaluation  

Teacher re-voiced contributions; repeating correct 

answer, rewording more complex explanations 

Table 3.1: OMF summary for lesson 1  
(adapted from Baldry, 2017, p.3046) 

In order to explore the potential of the OMF as an analytical tool to capture 

mathematically significant pedagogical characteristics, with resonance beyond the 

individual episodes, the two lesson OMF profiles from the pilot study were compared. 

Drawing on the similarities and differences, an integrated OMF was compiled (table 

3.2).  

OMF Lesson Image 

Interpretation 

of classroom 

activity:  

Professional 

noticing -…. 

Goal: Performance Plan: Exam style 

questions 

Hypotheses: Familiarisation  

Tasks: Multiple solution strategies were possible, 

but …  

Classroom Norms:  

Social Norms: Agency and 

accountability: resides 

predominantly with the teacher.  

Sociomathematical norms: 

procedural explanation counts as 

explanation. Mathematical 

competence equates to obtaining 

correct answers efficiently (errors 

to be avoided).  

Mathematical practices: Lesson 

1: Area equates to multiplication. 

Lesson 2: Proportional reasoning 

equates to multiplication 

Sequencing: Questions sets unsystematic 

variation. [Dimensions of variation and range of 

permissible change not made explicit] 

Cognitive 

demand: 

Potential - 

high 

As enacted - … 

Organisation: Individual working- tables in groups 

of four; peer-to-peer discussions were had.  

Discourse: Registers: teacher used colloquial 

language … 

Patterns: IRE dominant form of interaction. 

Correct answers acknowledged, often repeated or 

extended. Errors often ignored; when 

acknowledged focused on moving to standard 

solution, reverting to direct explanation if initial 

follow-up failed.  Extended student explanations 

….   

Table 3.2: Compilation OMF  
(extracts from Baldry, 2017, p.3047) 
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The two lessons were on different topics, area and proportional reasoning, so as 

anticipated the mathematical practices within the classroom norms were different, 

but across the other dimensions of the OMF the profiles were similar. For example, 

the sequencing of questions was categorised as unsystematic variation (Baldry, 2017). 

The analysis also identified a range of classroom norms, such as mathematical 

competence being equated to the efficient production of ‘correct’ answers. These 

were drawn from the discourse patterns in relation to the teacher’s reactions to 

student contributions, including errors. 

The interaction between the categories raised the question as to whether the OMF 

was sufficiently well-defined. Schoenfeld (2013b, p.614) argued we should ‘aim for a 

“nearly decomposable system” … in which the parts cohere internally and have 

minimal overlap’. Here, whilst features such as multiple solution strategies could have 

aspects that appear in the tasks, sequencing and norms sections of the OMF, the 

argument made is that the purposes were different. In tasks, multiple solution 

strategies related to the embeddedness in the planned tasks; in sequencing, it related 

to how the teacher drew attention to alternatives strategies in the management of the 

lesson trajectory; and in norms, it contributed to what counted as an explanation. 

Errors also appeared in different sections. Within the discourse dimension of TOM, 

errors related to the teacher’s actions, such as offering a partial evaluation of “not 

quite” and moving onto another student, whereas within classroom norms the 

teachers’ and students’ responses to errors provided information about accountability. 

Errors also featured in the interpretation of classroom activity, as this was one of the 

more overt means of interpreting evidence related to the teacher’s professional 

noticing (Jacobs et al., 2010). As such, the pilot study indicated that the orientation 

provided by the OMF was sufficient to capture mathematically significant pedagogical 

moves with adequate separation of categories.   

3.4.2.2 Transition to the Main Study: Coding of Lesson Transcripts  

In the pilot study, the pedagogical profiles for the lessons were built up by populating 

the dimensions of the OMF with lesson specific analysis. However, the analysis of the 

lesson transcripts formed a substantial part of this work. Whilst the OMF categories 
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were the reference point during the initial coding, to ensure substantive parts of 

teachers’ practice were not excluded by this process it was important that codes were 

also allowed to emerge from the data (4.6.2). Consequently, in the transition to the 

main study, coding protocols were revisited. Whilst the OMF categories were 

inevitably ‘kept in mind’, the lesson transcripts were scrutinised to compare incidents 

so categories and their properties could emerge, which were then mapped to the 

OMF.  

As previously discussed, the initial coding categorised talk as either mathematically 

related episodes or not related to mathematics. The latter category was not subject to 

further scrutiny. Whilst coding was an iterative process, for clarity an overview is 

provided first, after which the relationship to the OMF is discussed. Appendix 3 

provides a timeline of activities, an example of the final transcription protocols and 

further illustrations of how the codes were developed. 

(a) Coding Classifications  

Mathematically related episodes were reviewed sequentially; three levels of 

interaction were noted:   

 Whole class:  

 Everybody expected to focus on the same shared talk/activity  

 An ‘effective student of mathematics’ participated by listening and 

cognitive engagement (when not directly involved in exchanges).  

 Semi-public:  

 Talk/activity involved a limited number of students but heard/observable 

by other students (e.g. an exchange across the classroom, so it could be 

heard by others but without signals that listening was expected).  

 Local: 

 Talk/activity between individuals with no expectation of a wider audience. 

When students were seated at their desks, working individually or in small groups, this 

was collectively referred to as seatwork. 

The focus of the study led to teacher-talk being analysed in detail. Types of interaction 

were encompassed by the following categories:  
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 Turn-taking 

 teacher-initiated question-and-answer sequences (IRE) 

 facilitating peer-to-peer turn-taking 

 responding to student-initiated questions/comments  

 Monologues 

 exposition related to mathematical ideas (teacher explanations) 

 instructions to students about required actions  

Much of the talk fell into ‘conversational’ patterns of turn-taking, where alternate 

turns were taken by the teacher and individual students. Initiate-Response-Evaluate 

(IRE) (3.3.6.2) was the dominant form of turn-taking for all the teachers. Individual IRE 

exchanges were often followed by others to form extended whole-class question-and-

answer sequences. Another common feature was the teacher extending their 

evaluative IRE turn by the inclusion of an explanation, summary or more extensive 

revoicing of the student’s contribution. This occurred so regularly with all teachers 

that this variant was included within the IRE classification. In addition, there were 

occasions where more than one student responded to the initial questions in an IRE 

sequence before the teacher responded. There were also some teacher/student turn-

taking exchanges, prompted by student-initiated questions or comments. In that 

context self-initiated indicated the student was not responding to a question or direct 

invitation to contribute. There was also some student-to-student turn-taking, 

prompted by a teacher’s question but followed by multiple student contributions 

where they were responding to each other before a further teacher turn.  

Whilst many whole-class episodes contained sequences of alternating voices, there 

were also episodes where comments by individuals were more self-contained and 

without the structural mechanisms of turn-taking. Classified as monologues, these 

were usually extended mathematical explanations or instructions given by the teacher, 

where meaning was less dependent on preceding or following utterances. However, 

this categorisation was not unproblematic, as the regular inclusion of explanations in 

teachers’ evaluative IRE turns raised the question as to the boundary between IRE 

exchanges and monologues. Consequently, determination was based on the level of 

self-containment and duration; typically, monologues reported on multiple stages of a 
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procedure and lasted over twenty seconds. Occasionally, there were extended student 

explanations classified as monologues as they met the self-containment and duration 

criteria. 

Another aspect of talk related to the use of contextualised or colloquial language, as 

compared to inducting students into a more formal decontextualised mathematical 

discourse. The terms horizontal and vertical discourse were used to differentiate 

between these usages (Gellert and Straehler-Pohl, 2011). 

Another overarching theme was the role of talk in the regulation of the lesson 

trajectory. Almost always, it was the teacher who determined the mathematical focus, 

providing steer for the mathematical direction of travel. The apparent mathematical 

foci were traced, and the teachers’ talk was categorised based on the different 

regulatory functions that over time shaped the lesson trajectory:  

 Launch - when a new topic was introduced 

 Direction - when the talk maintained the focus on the same mathematical 

feature 

 Redirection – when the speakers’ foci diverged, and the teacher controlled the 

mathematical focus of the talk 

 Student reasoning - when student reasoning was explored  

Occasionally, student talk provided the mathematical focus, through peer-to-peer 

interactions at a whole-class level, student-initiated approaches or student 

explanations.  

For talk where the teacher controlled the mathematical focus, there were variations in 

how the complexity of mathematics was regulated. Specifically, three categories were 

identified, namely:  

 Simplifying - when the mathematics the students were asked to undertake was 

reduced in complexity. 

 Processing - when the focus was implementation.  

 Conceptualising - when attention was drawn to mathematically significant 

features or concepts.  
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In the simplifying category, the term funnelling was used when the reduction in 

complexity was to such an extent that students no longer had any meaningful 

mathematics to undertake (Wood, 1998). 

In mathematically related episodes, the type of classroom talk varied. Some was ‘talk 

as mathematics’, in so far as the comments contained mathematical statements that 

could be considered part of the verbal register of mathematics (Duval, 2006). There 

were two aspects to ‘talk as mathematics’: the particular mathematical features 

attended to and the ‘level’ of mathematics. The levels were classified as: 

 Recall - when mathematical facts were stated.  

 Computation - when results of calculations or procedures were stated. 

 Procedures - when what was done was described. 

 Process - when the talk remained focussed on how particular mathematical 

problems were completed but comments had some level of meaning outside 

the specific example. 

 Mathematical concepts - when links to underlying concepts or structures were 

made.  

These classifications of classroom talk have a structure analogous to the notion of 

levels of cognitive demand. Stein et al. (1996, p.455) defined low-level cognitively 

demanding tasks as those with the potential to educe thinking classified as  

‘memorisation’ and ‘procedures without connections to concepts’, with high-level 

tasks as those with the potential to educe thinking classified as ‘procedures with 

connections to concepts’ and ‘doing mathematics’ (see 3.3.3 for a detailed discussion). 

In the shared space of the classroom, the level of ‘talk as mathematics’ was considered 

the verbalisation of different types of mathematical thinking, with ‘recall’, 

computation’ and ‘procedures’ aligning with low-level cognitive demand, with 

‘process’ and ‘mathematical concepts’ aligning with high-level demand.   

On other occasions, there was ‘talk about mathematics’, where perceptions about the 

nature of mathematics and the learning of mathematics were implied. For example, 

Rowan, one of the participating teachers, commented “… ready to move straight onto 

the algebra… some of you practise doing it with the sums”. The implied hierarchy and 
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the reference to practise was taken as communicating embedded ideas about the 

nature of mathematics and the nature of the learning of mathematics, respectively.  

There was also some ‘talk about students’ that focussed on the student as a learner. 

This classification included notions of motivation and the expectations of an effective 

student of mathematics, where examples included awarding reward points for the 

accurate completion of work. 

(b) Coding Summary 

A summary of themes that emerged from the coding: 

 Structure of Talk 

 Level of interaction:  

 Whole-class; semi-public; local 

 Type of interaction:  

 Turn-taking  

 Teacher: IRE; IRE variant (extended teacher turn); multiple R 

o I: Simple; Self-contained; Single/Multiple Solutions 

 Student-initiated: peer-to-peer; questions/comments  

 Monologue Exposition:  

 Teacher: explains; instructs 

 Student: explains 

 Register (vertical  horizontal)   

 Steer: Regulation of Lesson Trajectory   

 Teacher led: 

 Launch, direction, redirection (simplifying, processing, 

conceptualising) 

 Focus: Mathematical horizon or student reasoning  

 Feedback: sharing solutions 

 Student led:  

 Student-initiated approaches 

 Type of Talk  

 Talk as mathematics:  

 Mathematical focus 

 Level (recall; computation; procedure; process; mathematical 

concepts) 

 Talk about mathematics:  
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 The nature of mathematics  

 The learning of mathematics  

 Talk about students:  

 Effective student of mathematics  

 Motivation and engagement  

(c) OMF: Lesson Transcripts, Interviews and Classroom Artefacts 

The coding derived from the lesson transcripts was cross-referenced with the OMF, as 

summarised below (figure 3.13). In general, the coding was consistent with the 

framework, by which is meant the themes identified above contributed to different 

sections of the OMF, albeit with some overlap. 

 

Figure 3.13: Mapping of coding themes to OMF 
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The pre- and post-lesson interviews and other data derived from the classroom 

artefacts were also analysed. The pre and post-lesson interviews, in particular, 

provided information relating to the lesson image and some insights into the teachers’ 

beliefs.  

The separate sections of the OMF have qualitatively different natures. For example, 

the central section, the Teacher’s Orchestration of Mathematics (TOM), comprises the 

more visible actions the teacher takes, whereas cognitive demand involves a 

judgement of the mathematical potential of an activity. These differences were 

mirrored in the coding. For example, the structure of teacher talk was drawn from the 

structures apparent in the transcripts, whereas talk about mathematics involved 

reading meaning into comments made.  

In terms of TOM, the level of interaction, types of interaction, and steer were mapped 

to the organisation, discourse, and sequencing dimensions respectively (figure 3.13). 

‘Talk as mathematics’ was the most common type of talk and contributed to both the 

task and sequencing dimensions. Whilst the main themes from the lesson transcripts 

aligned with dimensions of TOM, features did emerge that also related to the wider 

framework. For example, the levels of ‘talk as mathematics’ contributed to cognitive 

demand, as this verbalisation was considered to have the potential to prompt that 

type of thinking in cognitively engaged listeners. Whereas all types of talk were 

considered as contributing to classroom norms. For example, Sam’s statement “I 

should be hearing discussions” was coded as ‘talk about mathematics’ as this 

commented on the nature of learning mathematics. When considered in isolation, this 

talk was not a recurring pattern of behaviour that fulfils the expectations teachers and 

students have for the actions of others, and thereby, in of itself, is not a classroom 

norm. However, this talk was considered as having the potential to contribute to the 

building of a taken-as-shared view of what is expected in a mathematics classroom.  

(d) The Influence of the Coding Process on the OMF 

The coding process contributed to the refining of the properties of the dimensions of 

TOM and the wider framework. For example, the type of interaction and the 

regulation of the lesson trajectory categories influenced a clearer demarcation 

between the form of an interaction and its function, resulting in revisions of the 
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discourse and sequencing dimensions, as discussed in detail below. Also, additional 

descriptors were added. For example, to capture the variations in turn-taking patterns 

the coding identified, IRE was expanded to include variants with extended teacher 

turns and student-initiated interactions. In addition, subcategories were added to the 

questioning description. 

At the pilot stage, the discourse dimension was adapted when the procedure/concept 

description was added (3.4.2.1 & figure 3.11: model C). This was the first attempt to 

capture the dual aspects of form and function that are inherent in any interaction. 

During the coding process, the demarcations between the discourse and sequencing 

dimensions became more clearly defined. The discourse dimension became more 

tightly focussed on the form of interactions, and was renamed as discourse patterns to 

reflect this, whereas the function of those interactions was captured in the sequencing 

dimension. Consequently, the procedure/concept label was removed as this was 

considered a function, and instead was captured in the more clearly defined 

sequencing dimension.  

In his detailed discourse analysis, Drageset (2014) categorised teachers’ use of 

students’ contributions in terms of their function, with labels of redirecting, 

progressing or focusing. In this study, the coding categorised similar types of functions 

of the discourse in relation to the regulation of the lesson trajectory, using the labels 

launch, direction/redirection (simplifying, processing, conceptualising). This led to the 

refinement of the sequencing dimension. The key change was the inclusion of 

descriptors to capture the management of the lesson trajectory in relation to the focus 

of attention. In particular, the launch, direction and redirection descriptions captured 

how the lesson trajectory was managed. Student reasoning or the teacher’s 

mathematical horizon captured whose reasoning was the focus of that attention. The 

‘talk as mathematics’ category led to the mathematical focus being included in the 

sequencing dimension, in terms of how the focus on mathematically significant 

features evolved over time.  

Categories that were retained were also scrutinised, and the process highlighted the 

complexities involved in achieving a structure ‘in which the parts cohere internally and 

have minimal overlap’ (Schoenfeld, 2013b, p.614). For example, the register 
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classification relates to the use of vertical or horizontal discourse (3.3.6.3) and could 

be viewed as simply the form of language used. However, there is also the perspective 

of using language as a means to induct students into vertical discourse, and thereby be 

considered a function of that discourse. Here the register classification was retained in 

the discourse dimension but could be seen to be at variance with the tightening of the 

focus to discourse patterns discussed above. 

Similarly, the separation of the task and sequencing dimensions was not 

straightforward, as task features changed as they were enacted in the classroom. The 

form and function approach for discourse cued the clarification of these properties. 

The task dimension related to the more static mathematical features inherent in a 

task, with the sequencing dimension focussed on the mathematical function of those 

tasks under the teachers’ in-class deployment. However, the dynamic, interconnected 

nature of classrooms meant that the challenge of classifying teachers’ pedagogical 

activities in meaningful ways remained throughout the study.  

3.4.2.3 OMF: Final Iteration 

As discussed above, the main categories in the OMF were retained during the analysis 

of lessons in the pilot study and the coding processes, but the detailed descriptors 

were refined. During the transition to the main study, the final adjustments to the 

OMF were made as I reflected on the data collection and analysis, with the final 

iteration shown in figure 3.14 (model D).  

The main change related to the inverted L of Teacher Cognition. This change originated 

in the connectedness between the teachers’ talk about the individual lessons and their 

more general comments. The inverted L was introduced to connect the teacher’s 

knowledge and lesson image elements of the teaching cycle to emphasise the 

interrelated nature of these aspects of teachers’ cognition (figures 3.5, 3.6 & 3.7). This 

included embedding the teacher’s interpretation of classroom activity within teacher 

cognition as a means of acknowledging the influence of psychological processes on 

what is noticed and how noticed activities are interpreted (Mason, 2015b). The hashed 

lines for ‘Teacher’s Cognition’ was intended to make a clearer distinction between the 

Teacher’s Orchestration of Mathematics (TOM) section, which represents the more 
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visible in-class activities, from the less visible but highly influential aspects of teachers’ 

internal psychological processes.  

 

Figure 3.14: Model D – Orchestration of Mathematics Framework (OMF) – Final Iteration 
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teacher (see 4.4.1). Whilst details were added, these were viewed as being 

conceptually congruent to the OMF above. 

3.4.3 OMF: Relationships to Other Observation Frameworks 

As previously discussed, the development of the OMF was an iterative process, with 

figure 3.14 (model D) the final version. Whilst the previous sections have sought to 

outline the development process, the very nature of a linear narrative could mask the 

ongoing interplay between my analysis of the data and my understanding of the 

literature as embodied in the OMF as a conceptual framework. Moreover, whilst the 

OMF might represent a distillation of my understanding, the model remains untested 

outside of this study, and this includes how others may interpret this framework. The 

following section compares the OMF to two published observation schedules, in 

anticipation that this comparison will provide alternative ways to understand the 

OMF, whilst also providing the opportunity to consider the OMF’s affordances and 

limitations.  

In recent years there have been efforts to compare classroom observation 

frameworks, many of which are focussed on the evaluation of teaching through 

studying the quality of instruction (e.g. Ingram et al., 2018). For example, in 2018, a 

ZDM issue published papers that analysed the same three videos of mathematics 

lessons. Twelve papers reported their analysis using different frameworks; these 

approaches were then compared by the editors (Charalambous and Praetorius, 2018). 

Praetorius and Charalambous (2018) argued this comparison allowed the frameworks 

to be viewed synergistically, developing a shared understanding that would allow 

future researchers to build on prior work more effectively. Whilst it is beyond the 

scope of this study to undertake comparisons with other frameworks drawing on the 

same data sets, other than that undertaken in the pilot study with the TIMSS material 

(3.4.2.1), the following section reflects on the similarities and differences between the 

OMF and two of the mathematics specific frameworks, namely the TRU (Teaching for 

Robust Understanding) framework (Schoenfeld, 2013a) and MQI (Mathematical 

Quality of Instruction) (Learning Mathematics for Teaching Project, 2011). Both TRU 

and MQI are mathematics specific lesson observation frameworks that intend to offer 

a holistic view of a whole lesson. Whilst both provide measures that report on the 
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quality of instruction, the MQI focusses on the teacher and TRU is more student 

oriented (Praetorius and Charalambous, 2018).  

3.4.3.1 Mathematical Quality of Instruction (MQI) 

As the design team for MQI, Learning Mathematics for Teaching Project (2011) 

outlined the development of the framework and offered examples of how codes were 

applied. They described six dimensions: the richness and the development of 

mathematics; responding to students; connection to mathematics; language; equity; 

and the presence of unmitigated mathematical errors. For each dimension, there were 

scales that contained codes in the form of scoring rubrics. The full MQI coding rubric 

was only accessible to those that undertook specific training. As both time and cost 

prohibited access, comparisons here are made in reference to their descriptions of the 

scales in the published paper. For all of their dimensions, the majority of the 

descriptions appeared to be represented in the OMF. For example, the discussion of 

the richness dimension contained the following:   

Our instrument contains seven codes to capture the ‘‘richness’’ of the 

mathematics in a lesson. These include the presence of multiple 

mathematical models in classrooms (e.g. symbols and visual 

representations); links made between multiple models; mathematical 

explanations; mathematical justifications; and explicit talk about 

mathematical language, reasoning, and practices.  

(Learning Mathematics for Teaching Project, 2011, p.34) 

The multiple mathematical models could be captured by multiple representations in 

the OMF task dimension, with the links between models captured by the sequencing 

dimension. Whereas mathematical explanations and justifications would depend on 

who is undertaking the talk. These could contribute to classroom norms in the OMF, in 

relation to the expectation for explanations and justifications, whilst also contributing 

to cognitive demand, in terms of the level of mathematics. The level of explicitness 

could be captured in the task dimension, if those features were embedded in the 

activity, or in the sequencing dimension, if the teacher drew attention to those 

features as the lesson unfolded.  
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A similar pattern occurred when the other dimensions were considered. The majority 

of descriptions could be matched to elements of the OMF, such as language to the 

register element of the OMF discourse pattern dimension. The MQI equity dimension 

was described as having codes related to teacher explicitness, which could be 

captured in the sequencing dimension, although it was not fully transparent how the 

explicitness in the MQI equity dimension was distinct from the richness dimension 

discussed above. However, another strand of the MQI equity dimension, namely the 

opportunities for students to participate, does appear to be absent from the OMF. The 

MQI approached parsed the lessons into five-minute sections and observers recorded 

if students were engaged in mathematics. In this study, the breakdown of whole class 

activities (e.g. figure 5.6) indicated the relative amounts of mathematically related 

activities to non-mathematically related, so engagement was partially captured, 

though indirectly. 

When the comparison is considered from the perspective of the OMF, the details of 

discourse patterns, the explicit identification of classroom norms and organisational 

approaches did not appear in the commentary offered by Learning Mathematics for 

Teaching Project (2011). However, without access to the complete rubrics, firm 

conclusions cannot be drawn about equivalent notions being present or not in the 

MQI. 

Whilst the majority of MQI descriptions for each dimension mapped to the OMF, they 

mapped to many different parts. In other words, there were no clear links between 

the categories established for the MQI and the OMF. Whilst the non-alignment of 

dimensions raises challenging questions about the theoretical basis for the structure of 

the OMF, especially considering the scale of the MQI project, this issue is not unique to 

the OMF. This lack of consistency regarding the conceptualisation of dimensions has 

been found when a range of mathematics specific observation frameworks have been 

compared, including the MQI when this has been compared to other well-established 

frameworks (Schlesinger and Jentsch, 2016; Praetorius and Charalambous, 2018).  

In the early stages of this study, the MQI was considered but the evaluative 

perspective did not align with the research questions. In particular, the codes were 

intended to capture if particular features were present or not, and whether this was 
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appropriate or not appropriate. This latter element held a presumption that the 

observer could judge what should have been happening. In this study, the purpose 

was to describe and interpret so that level of judgment was deemed inappropriate. 

However, the Learning Mathematics for Teaching Project (2011, p.30) stated ‘the word 

quality can refer both to the distinctive character of something or to its rank, level, or 

grade. We use it primarily in the former sense’. In other words, it may have been 

possible to use the codes in a less evaluative manner. However, the orientation of the 

MQI to the reform agenda in the US suggested that certain classroom activities that 

may feature in a UK setting, such as ‘drill and practice’, may not have been captured 

by the codes (Praetorius and Charalambous, 2018). Consequently, with the full rubrics 

not readily available, the possibilities of using the MQI was not pursued in this study. 

After the conclusion of the funded research project, which included the publication by 

Learning Mathematics for Teaching Project (2011), the MQI appears to have shifted in 

focus. The Center for Educational Policy Research, at Harvard University, currently 

publishes the MQI framework on their website (CfEOR, 2019), where they offer MQI 

training and access to a video library. This appears to be orientated towards practicing 

teachers and there have been some changes to the MQI dimensions. The information 

provided does not indicate whether the changes were due to developments in the 

conceptual framework from a theoretical perspective or were in response to the 

different context, or some combination of the two. However, this served as a reminder 

that any shifts in use or user of the OMF would require a re-examination of its 

structure. For example, whilst recording of lessons is becoming more common in 

schools, its use is not ubiquitous, and even when used teachers are unlikely to have 

the time to commit to lengthy analysis.  

3.4.3.2. Teaching for Robust Understanding (TRU) 

The TRU framework was developed by a research team led by Alan Shoenfeld over a 

three-year period (Schoenfeld, 2013a). The overarching structure has five dimensions 

that Schoenfeld (2013a, p.607) argued ‘may have the potential to be a necessary and 

sufficient set of dimensions for the analysis of effective classroom instruction’. The 

dimensions and associated descriptors are summarised below: 
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The Mathematics 

How accurate, coherent, and well justified is the mathematical content? 

Cognitive Demand  

To what extent are students supported in grappling with and making 

sense of mathematical concepts?  

Access to Mathematical Content  

To what extent does the teacher support access to the content of the 

lesson for all students?  

Agency, Authority, and Identity 

To what extent are students the source of ideas and discussion of them? 

How are student contributions framed?   

Uses of Assessment 

To what extent is students’ mathematical thinking surfaced; to what 

extent does instruction build on student ideas when potentially valuable 

or address misunderstandings when they arise? 

(adapted from Schoenfeld, 2014, p.408) 

[There is some variation in the descriptions used in different publications.] 

From inception, one articulated goal was for the TRU framework to be usable in 

teachers’ professional development and there are a number of professionally 

orientated publications (e.g. Schoenfeld et al., 2014b). For each dimension there is a 

scoring rubric with three levels, and further more specialised rubrics have been 

written for whole class activities, small group work, student presentations and 

individual work, as well as topic specific rubrics for algebra (Schoenfeld et al., 2014a).  

On an initial inspection, some commonalties and differences between TRU and the 

OMF could be posited. For example, cognitive demand is named as a key dimension in 

each framework. However, the different orientations, namely the student versus the 

teacher perspectives, are apparent. In TRU, the observer is asked to make an inference 

about the students’ type of engagement, from memorised procedures to productive 

struggle (Schoenfeld et al., 2014a). With the OMF, cognitive demand is conceptualised 

in terms of potential. Whilst inferences could be made about individual students based 

on their verbal contributions to whole-class interactions, the coding relates to the 

mathematical potential if the students chose to engage with the activity.  
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The agency, authority and identity dimension in TRU appears to align with the social 

norms element of the OMF, at least in terms of the labels used. As before, the TRU 

framework specifically refers to students, whereas the OMF makes reference to all 

classroom norms. However, when the scoring rubrics for TRU are inspected, other 

structural differences of the two frameworks become apparent. For example, the 

lowest descriptor in TRU states ‘The teacher initiates conversations. Students’ speech 

turns are short (one sentence or less), and constrained by what the teacher says or 

does.’ (Schoenfeld et al., 2014b, p.2). These types of interactions would be captured in 

the discourse patterns dimension of TOM. As previously stated, the purpose of the 

OMF is to describe and interpret teachers’ pedagogical moves, where the TOM section 

captures the more visible in-class activities. As such, these descriptions themselves are 

fundamental to the analysis. It appears that in the TRU framework, these types of 

descriptions are an interim stage for the generation of scores for evaluation. This 

student orientated evaluative stance influenced the decision not to pursue the use of 

TRU in this study. 

The mathematics and use of assessment dimensions of TRU appear to be most closely 

aligned with the tasks and sequencing dimensions of TOM, respectively. For example 

the middle rubric descriptor for the mathematics states ‘Activities are primarily skills 

oriented, with cursory connections between procedures, concepts and contexts 

(where appropriate)’ (Schoenfeld et al., 2014b, p.2). This appears to align with the task 

dimension in the OMF, but the making of connections could be captured by the 

sequencing dimension and the resulting potential of any activities would contribute to 

cognitive demand. This does reflect the challenge found of clearly delimiting between 

dimensions of the OMF (3.4.2.2). Moreover, whilst there appears to be more links 

between the OMF categorisations and TRU than with MQI, there is still significant non-

alignment of dimensions. Consequently, the questions about the theoretical basis for 

the structure of the OMF are not resolved through this comparison. Although, as with 

MQI, similar issues have been raised when TRU was compared to other frameworks 

(Praetorius and Charalambous, 2018). 

The most apparent difference between the OMF and TRU relates to the Access 

dimension of TRU; a comparable difference was also found with the MQI in relation to 
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equity of access. With the OMF, the use of the notion of an ‘effective student of 

mathematics’ structurally removed differential access by different students. The 

argument made was that this allowed the OMF to focus on the teacher, which would 

allow the research questions to be investigated. However, student engagement has 

been reported as a differential feature of different sets (2.4.2), so the fact the OMF 

does not capture teachers’ moves in relation to equity of access for all students must 

be considered a limitation. That said, as Praetorius and Charalambous (2018) argued, 

there is considerable variation in the pedagogical features captured by different 

observational frameworks. As such, the hope is that the OMF can add a 

complimentary perspective to the interpretation of classrooms, albeit with 

acknowledged limitations.  

3.4.4 OMF: Affordances and Limitations 

The focus of this study was on describing and interpreting teachers’ pedagogical 

moves, so that any shifts in practice between sets could be explicated. An instrument 

that could build a holistic view of a typical mathematics lesson was sought. Most of 

the previously published mathematics-specific observation frameworks focussed on 

the quality of instruction (Praetorius and Charalambous, 2018) and those evaluative 

orientations did not align with the research questions in this study. As outlined in this 

chapter, this led to the development of the OMF.  

3.4.4.1 Research Perspective 

The attempt to capture the complexity of a mathematics lesson and provide a 

coherent picture of a teacher’s pedagogical activities, frames both the affordances and 

limitations of this study. In many respects, ‘the lesson’ is not an ideal unit of analysis. 

When any of the elements of the OMF are considered, more in-depth research has 

been undertaken in those fields and more comprehensive descriptors should therefore 

be possible. Moreover, finer grained analysis of classroom data could have been 

undertaken, such as conversation analysis of interactions. On the other hand, 

classrooms are dynamic environments and the relationship between features is often 

as important as individual elements. Therefore, there appears to be an inherent 

tension between the level of detail about particular aspects of the lesson under study, 
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and a more holistic view that allows the interrelated nature of classroom activities to 

be considered.  

Moreover, a lesson is only a snapshot of the teacher’s pedagogical practice and the 

students’ experience of mathematics is built up over years. However, ‘the lesson’ has 

been used in other observation-based studies (e.g. Hiebert et al., 2003b) and teachers 

are expected to make judgements about learning from single live lesson observations. 

Therefore, providing a coherent picture of a teacher’s pedagogical activities for a 

lesson appears to be a worthwhile goal. The question posed is whether the OMF 

framework balances the tension between detail and interconnectedness with 

sufficient coverage of mathematically significant events. It is believed that the findings 

of this study provide evidence of the affordances of the OMF in this regard. 

It has been acknowledged that no single model captures the complex and dynamic 

nature of the classroom (e.g. Derry et al., 2010). For example, Herbel-Eisenmann and 

Otten (2011) argued that ‘studies of mathematics classroom discourse need to attend 

further to the mathematics being construed in the discourse’ (p.452). Likewise, as 

powerful a construct as sociomathematical norms have become, they capture what is 

acknowledged as legitimate rather than the mathematical nature of any reasoning 

(Kaldrimidou et al., 2008). The intent underpinning the OMF is to allow different lenses 

to be made available as typical lessons unfold. So, for example, the analysis of the 

mathematics made available to students by drawing on variation theory is integrated 

with social perspectives, such as sociomathematical norms. It is not argued that the 

OMF captures all, but rather it provides a holistic pedagogical profile of a mathematics 

lesson that allows different perspectives to be interpreted in relation to each other. 

Thereby the OMF contributes to the debate, and indeed offers a model, as to how 

different theoretical perspectives can be brought to bear on the interpretation of 

pedagogical activities.  

A range of lesson observation frameworks have been developed and the comparison 

of these frameworks has been the focus of a number of papers in recent years 

(Schlesinger and Jentsch, 2016; Ingram et al., 2018; Praetorius and Charalambous, 

2018). On a smaller scale, section 3.4.3 compares the OMF to two established 

frameworks, namely MQI and TRU. The comparison demonstrated some areas of 
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commonality. In particular, a number of classroom activities, such as the use of 

multiple representations, were included in the OMF and MQI and/or TRU. However, in 

addition to having different purposes, the categorisations that operationalised the 

conceptual frameworks differed considerably. Whilst this was also found to be the 

case when other published frameworks were compared (Schlesinger and Jentsch, 

2016), this raises questions about the theoretical and empirical justification for the 

structure and categorisations within this or any other bespoke framework.  

3.4.4.2 Teacher Professional Development Perspective 

Many of the lesson observation frameworks have been designed to measure the 

quality of instruction (Charalambous and Praetorius, 2018). These evaluative 

frameworks often include a professional development element, where it is posited 

that teachers can use the frameworks to improve practice (e.g. Learning Mathematics 

for Teaching Project, 2011; Schoenfeld, 2014). For example, it was intended from the 

outset that the TRU framework would be used in professional development, and there 

are both professional and research orientated publications (e.g. Schoenfeld et al., 

2014b). The descriptions of the dimensions did vary between publications. For 

example, the mathematics dimension descriptor was given as: 

 ‘How accurate, coherent, and well justified is the mathematical content?’ 

(Schoenfeld et al., 2014b, p.2)  

‘To what extent is the mathematics discussed clear, correct, and well justified 

(tied to conceptual underpinnings)? (Schoenfeld, 2014, p.616).  

Whilst the origins of these changes were not made explicit, it appeared that the 

language was adapted for use by teachers. Moreover, with the MQI framework, there 

have been changes to the dimension and wording from the research orientated paper 

by Learning Mathematics for Teaching Project (2011) to the current professionally 

orientated MQI website (CfEOR, 2019).  

These changes highlight the distinction made between using frameworks for informing 

practice versus use in research. The argument made for the OMF is that its descriptive 

power has the potential to contribute to teachers’ understanding of their practice, an 

essential prerequisite for any professional development. However, the adaptions 
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made to both TRU and MQI signal that adaptions would need to be made for the OMF 

to be accessible and useful for teachers. For example, in terms of accessing 

appropriate data, the more static nature of the task dimension of TOM would make 

this dimension relatively accessible to teachers. Whereas recognising discourse 

patterns, that are normalised and happen in-the-moment, would be harder without 

access to recordings and time for analysis.  

Recently, Watson (2019) drew attention to the role algorithmic reasoning plays in 

teachers’ in-class decision making. By the very nature of this more intuitive reasoning, 

it is less available for teachers to review. Similarly, teachers develop normative 

patterns of participation, which they are less likely to notice due to their more 

autonomous nature. Consequently, it is more difficult for teachers to consider the 

pedagogical implications of those actions. In the OMF, the inclusion of ‘heuristic’ in the 

teaching cycle and the explicit reference to classroom norms (figure 3.14: model D) 

allows attention to be drawn to these less accessible aspects of teachers’ 

pedagogically related activities. Moreover, stepping back from evaluation provides the 

space for building a shared understanding of classroom activities and a closer 

interrogation of mathematically significant events.  

The wider value of the OMF can only become apparent with future use, but with the 

framework being structured from the perspective of the teacher, it could contribute to 

teachers’ professional development as a planning and review instrument. One starting 

point could be for a teacher to map an existing lesson plan to the OMF, which would 

have the potential to draw attention to alternative perspectives. For example, typical 

planning documents refer to the mathematical tasks to be completed, which could be 

used to populate the lesson image and the task dimension of TOM. The findings in this 

study indicate teachers rarely make explicit links between examples and general 

concepts; the descriptions in TOM could draw attention to the potential of increasing 

levels of explicitness. On a broader scale, the OMF draws on a range of theoretical 

perspectives, so the framework could provide a structure for teachers to relate theory 

with practice. For example, a teacher may be aware of the IRE pattern of interaction, 

but the OMF could prompt them to consider the impact this has on classroom norms 

and the taken as shared view of what constitutes mathematics in their classroom.  
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In this study, the decision to focus on description and interpretation, rather than 

evaluation, was made in response to the nature of the research questions. In relation 

to teachers’ professional development, this decision might be seen as a counter to a 

performativity culture. However, that might obscure the value of finding more 

effective means of building a shared understanding of what might be happening in a 

mathematics classroom. Fifteen years ago, Wiliam and Bartholomew (2004, p.280) 

argued that teachers’ actual classroom practice was ‘weakly theorized’. Whilst there 

has been considerable research undertaken since then, I would argue there is still 

work to be done to understand how a range of theoretical perspectives can be 

brought to bear on the interpretation of classroom activities, and in a manner that is 

accessible and useful to teachers; I would hope the OMF contributes to that debate.   
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4. Methodology 

4.1 Introduction 

The motivation for this research originates in the retention of setting for mathematics 

in many secondary schools, and in spite of evidence of the negative effects of this 

policy (e.g. Ireson et al., 2002; Forgasz, 2010). As there tends to be variation in both 

the curricula and teacher demographics when different sets are considered (e.g. 

Hiebert et al., 2003b; Wiliam and Bartholomew, 2004) (2.2), this research seeks to 

contribute to the field by focusing on how individual teachers adapt their practice 

when they teach different groups of students. This led to the development of the 

research questions discussed in the next section and the associated research design.  

4.2 Research Design 

This section outlines the rationale underpinning the development of this study and the 

approaches taken. The following sections outline in more detail the methods 

employed and the affordances and limitations of approaches taken.  

4.2.1. Research Questions 

RQ: How does a teacher orchestrate mathematics for different groups of students? 

RQa: How does a teacher shift their pedagogical approaches when teaching 

different groups of students? 

RQb: How does the character of the mathematics made available to students 

vary when a teacher teaches different groups of students? 

As previously defined, ‘orchestrate’ means all the actions a teacher takes to select, 

organise and make available to students the mathematical tasks used in class, and the 

management of the classroom discourse, including student contributions (3.3.2). 

4.2.2 Theoretical Background 

In seeking to answer these research questions, teachers’ activities in relation to 

mathematics and students need to be interpreted. In common with many 

mathematics education studies, here classroom interactions are considered to be 

complex and dynamic, with the cognition related to the learning of mathematics 
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equally complex and multifaceted (e.g. Cobb et al., 2009; Jaworski, 2012). An 

interpretivist paradigm underpins this work; the goal is to understand and interpret 

classroom behaviours that offer insights to compliment other perspectives, rather 

than to provide a single generalisable truth. 

Research has offered a wide range of models to help explicate the learning of 

mathematics, from more global psychological processes, such as Piaget’s logico-

mathematical thinking, to more local frameworks, such as the duality of process-

object approaches (Pegg and Tall, 2005). Furthermore, the analysis of classroom 

norms is an example where a social perspective can contribute to the understanding of 

learning. Taking the lead from researchers such as  Cobb et al. (2009) and Illeris (2003), 

here both internal cognitive processes and social interaction are taken to be integral 

and complimentary elements of learning. In other words, a constructivist perspective 

is considered not only to be compatible with a social constructivist perspective, but 

interdependent to the extent that each perspective offers the background against 

which the other is interpreted (Cobb et al., 2001).  

4.2.3 Development of the Research Design: Case Study 

In order to explore teachers’ pedagogical practices, data from classrooms are required. 

As classroom interactions are an integral part of that process, then lesson observations 

need to be part of that data. Whilst there is some limited open source material that 

includes video recordings of lessons, no publicly available data was found that 

included multiple classes for the same teacher in England. Consequently, primary data 

collection from lesson observations forms a substantial part of this study. The nature 

of the data and subsequent analysis determined that this would be a qualitative study. 

A case study approach has been undertaken, as this is an empirical study where the 

complexity of classrooms and the interrelated nature of activities necessitates an in-

depth exploration of each classroom. Moreover, the purpose is to explore a complex 

situation in a context that is bounded by time, with lessons being of a fixed duration, 

and by space, that of the classroom (Thomas, 2015). In addition, there is no control 

over the events, which cannot be separated from the context, and the research 

questions (RQ) are of a ‘how’ form that focus on contemporary events (Yin, 2018).  
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As discussed in detail in chapter 3, a conceptual framework for the interpretation of 

teachers’ pedagogical practice was developed. The result was the Orchestration of 

Mathematics Framework (OMF), designed to capture teacher activity in meaningful 

ways. Whilst a number of published studies have developed observational 

frameworks, some focussed on measuring the impact of particular initiatives (e.g. 

Remillard and Bryans, 2004) and others on specific aspects of lessons, such as 

cognitive demand (Stein and Smith, 1998). At the outset of this study, it appeared 

these did not have the breadth of coverage to capture and describe the range of 

practices that literature indicated would be found in ‘typical’ secondary mathematics 

lessons, particularly those activities thought to be prevalent in lower attaining sets. For 

example, the mathematical quality of instruction (MQI) instrument (Learning 

Mathematics for Teaching Project, 2011), developed as part of a large-scale study, was 

one of the instruments considered for use in this study. Whilst the associated 

reliability and validity measures would have been of benefit, it was decided that the 

focus on quality, as distinct from pedagogical processes, might preclude key elements 

of teachers’ practice from being captured.  

Consideration was given to using other mathematics specific frameworks, such as the 

Knowledge Quartet (Rowland et al., 2005). In that case, whilst acknowledging the 

framework has been employed in a wider range of contexts in more recent years, the 

original focus was on primary student-teachers and mathematical content knowledge. 

As such, this did not appear to be an appropriate instrument at the outset of this 

study. Recently, there have been some comparisons of observation frameworks and 

protocols (e.g. Boston et al., 2015; Ingram et al., 2018), which have demonstrated the 

range of instruments available and discussed their purpose and use in a range of 

contexts. Whilst it needs to be acknowledged that use of a pre-existing framework 

could have brought benefits of tested validity and reliability, a different context with a 

different researcher meant there would be no way to guarantee adoption with 

sufficient fidelity to automatically ‘transfer’ validity and reliability of previous 

measures. As this author was not aware of an approach that captured the sequences 

of planning and management of the lesson trajectory from an interpretative rather 

than evaluative perspective, the decision was made to develop the Orchestration of 
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Mathematics Framework (OMF). This added another dimension to the study, as the 

efficacy of the OMF would need to be considered.  

4.2.4 Scale 

This was a solo research project, which did present some natural limitations in terms 

of the scale of the research. In particular, the number of lessons observed and 

analysed, and the number of participating teachers were restricted due to time 

requirements and difficulties in recruitment. More significantly, only one person was 

substantially involved in the observation and analysis of lessons.  
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4.3 Methods 

4.3.1 Case Study 

In order to explore the complexities of a mathematics classroom, in-depth research 

into a small number of cases was undertaken (Thomas, 2015). A nested model was 

used, with two different classes for the same teacher studied in parallel, with three 

teachers recruited in total. The subject of the cases was the mathematics class taught 

by participating teachers, with the analytical frame the influence the teacher’s 

pedagogical approaches had over the nature of mathematics made available. As 

mathematics classes convene for short periods of time at regular intervals, a number 

of separate lessons were studied. 

  

Figure 4.1: Nested Parallel Case Studies 

The ultimate goal of this study is to contribute to the wider debate about the nature of 

mathematics made available to different groups of students and the pedagogical 

actions taken by teachers that contribute to any differences. As the intention was to 

offer insights into issues that go beyond the individual cases, with data drawn from a 

number of sources, this could be described as a collective case study (Stake, 1994). 

However, an in-depth understanding of each class was needed, both to consider the 

efficacy of the framework and to analyse any shifts in pedagogy when the two classes 

for each teacher were compared. Therefore, the first stage was to develop an 

understanding of the mathematical characteristics of each class before comparisons 

were made. The latter stage was to consider all three teachers; whilst the intention 

was to offer wider insights, the variability in teaching approaches meant that the 

identification of similar shifts in pedagogy for all three teachers was not anticipated. 

Rather, it was hoped that the detailed description and analysis would allow the reader 

Teacher A Teacher B 

Class 1 Class 1 

Class 2 Class 2 

Teacher C 

Class 1 

Class 2 
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to understand how potentially subtle changes in teaching approaches could occur and 

the impact this might have. 

4.3.2 Participating Teachers and Classes  

Due to the scale of the research and the in-depth study of particular classrooms, only a 

limited number of teachers and classes were involved. One decision was whether 

teachers from a range of schools should be approached or whether two or three 

teachers from the same school should be sought, as both approaches have advantages 

and disadvantages relating to the influence of the school context. However, finding 

teachers willing to commit the time, in schools prepared to support classroom-based 

research, was problematic, especially when consent from all parents and students in 

the participating classes also had to be obtained. Consequently, the decision was 

made pragmatically, based on the teachers I was able to recruit. I drew on personal 

contacts, developed through my role as a university-based Post Graduate Certificate of 

Education (PGCE) tutor, to recruit three mathematics teachers from two local schools 

where mathematics was taught in sets.  

A number of limitations arose from this opportunistic recruitment. A regular feature of 

my tutor role is the observation of student-teachers on school placements, which are 

usually undertaken jointly with the student-teachers’ mentor. This may have 

influenced the expectations of the participating teachers, especially as they had all 

been mentors of student-teachers and two had also been student-teachers on the 

PGCE course where I was a tutor. Consequently, previous discussions could have left 

them with beliefs about what I consider a ‘good’ lesson and they may have selected 

classes or planned lessons with those features in mind. In addition, they may have held 

an expectation that I would make judgments about their teaching. Teachers who 

volunteer for research projects may not have the most typical profile. Indeed, my 

personal knowledge of the participating teachers indicated they were more proactive 

than most in terms of engagement with professional development opportunities.  

The teachers were asked to select classes of a similar age but different attainment 

profiles. After gaining agreement from the head teachers, who act as the schools’ 

gatekeepers, parents and students from two classes for each teacher were 
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approached. The final decision about which classes were selected and when 

observations could be undertaken resided with the teachers. Practical considerations, 

such as my availability, also influenced which lessons were observed. This did lead to a 

variation in the number of lessons observed with each teacher (figure 4.2). One 

teacher, Joe, was observed once with each class. The second, Rowan was observed 

twice with each class two weeks apart. In addition to two lessons observed as part of 

the pilot study, the third teacher, Sam, was observed five times with each class, three 

of which were sequential lessons taught in the same week. Rowan and Sam were at 

the same school. 

 

Figure 4.2: Nested Parallel Case Studies with Lessons 

4.3.3 Ethics 

Ethical approval was obtained from the University of Leicester (appendix 1.1) and 

BERA ethical guidelines have been followed.  

The majority of students in the participating classes were under 16 years of age and 

were therefore considered vulnerable. However, the research was undertaken in 

school settings, where safeguarding policies and practices are established and are 

designed to protect the welfare of students. The research was approved by the 

schools’ head teachers, who had overall responsibility for the welfare and education of 

the students, and acted as gatekeepers, overseeing the recruitment of all participants. 

Informed consent was obtained from all participants, with approved standardised 

letters of consent used for parents/students (appendix 1.2). 

The research involved the exploration of normal school practice, so there was minimal 

change to the classroom experience for students. Within schools’ normal practice, 
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lessons are regularly observed, and even though recording of lessons is less common, 

its use is increasing and happens in both schools on occasions. I regularly work in 

schools, hold a current Disclosure and Barring Service (DBS) certificate and have a 

good understanding of how to minimise the impact of observations on student 

learning.  

The small number of participating teachers and their unique nature of participation, 

from the number of lessons recorded to the nature of the topics taught, would mean 

that teachers could recognise their part in the study. Consequently, care was needed 

to ensure that all the teachers gave informed consent. The analysis of the lessons in 

the pilot study was reported at a mathematics education conference, and I was very 

conscious that I was discussing an individual teacher. This prompted me to recheck the 

ethical issues relating to the participating teachers. In particular, this reinforced the 

need for clarity in the discussions I held with each participant, especially in relation to 

their expectations about the reporting of the analysed lessons. They had all 

undertaken small-scale classroom-based research projects as part of their own PGCE 

courses, and thereby had some prior knowledge of ethical considerations relating to 

research and the reporting of qualitative data. I ensured they were aware of the level 

of detail that would be reported in a doctoral thesis and the type of discussions that 

would be undertaken. In addition, I ensured that they understood that the unique 

nature of the lessons would mean that they could recognise their participation.  

The making of evaluative judgments of teaching is not part of the study, but when 

notions such as cognitive demand are discussed, phrases such as ‘low cognitive 

demand’ could be read as a negative judgement rather than an analysis of the data. 

Moreover, many pedagogical practices could be considered as being rooted in wider 

curriculum expectations that characterise mathematics teaching in England, rather 

than being a proactive choice by the individual teacher. For example, many of the 

textbooks and resources in the UK appear to have examples and question sets with 

unsystematic variation (Park and Leung, 2006; Rowland, 2008), with limited exposure 

to the full range of permissible change (Watson and Mason, 2006). Therefore, 

‘unsystematic variation’ could be seen as a cultural norm in English classrooms. 

Moreover, reported summaries do not provide all the contextual information. For 



110 | P a g e  

example, a performance goal orientation could be seen differently if it is known the 

lessons occurred towards the end of the academic year just prior to exams. 

Consequently, to ensure the participants were fairly represented, care was needed in 

both the analysis and the reporting of findings to ensure the context and the wider 

educational landscape were taken into account and communicated in published work.  

In summary, in order to ameliorate any issues related to the participating teachers 

being able to recognise themselves in published work a number of steps were taken. 

First, discussions were held with each participant. All had some prior understanding of 

research ethics and the reporting of qualitative data, but I ensured they understood 

the level of detail that would be reported and the likely nature of the discussions. They 

were made aware that they would be able to recognise their participation due to the 

unique nature of the data. Second, settings were anonymised as far as possible. For 

example, the key stage but not the year groups of the classes were reported. Third, 

reporting adheres to the aim of describing and interpreting classroom activities and 

seeks to clarify the use of terms, such as cognitive demand, that could otherwise imply 

evaluation. Fourth, the study outlines the context in which the lessons are set and 

highlights the influence of schools, educational traditions and curricula have on the 

teaching of mathematics. 
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4.4 Data   

4.4.1 The Orchestration of Mathematics Framework 

In order for the OMF to have explanatory power, the framework needed to orientate 

the data collection and analysis in a manner that offered insights above and beyond 

those obtainable from individual elements. To develop an understanding of how the 

OMF could be used as an analytical tool to investigate teachers’ orchestration of 

mathematics, data relevant to the different dimensions of the OMF were gathered.  

Figure 4.3 is equivalent to the final iteration of the OMF (figure 3.14: model D) but 

with the layout adapted for practical reasons. Specifically, the cognitive demand box 

was moved to allow more room for collating typed data (figure 4.3). Also, additional 

details were added to the task feature descriptions to differentiate between the 

potential features of tasks and those chosen for use by the teacher. 

The central shaded boxes relate to the in-class mathematical activity and are at the 

centre of this study. As a consequence, observations of classrooms and classroom 

artefacts formed key sources of data. Inferences about aspects of the broader 

teaching cycle were made from lesson observations, supplemented by information 

from participating teachers. Nonetheless, it is acknowledged that differing levels of 

inference were required for different elements of the framework. For example, 

establishing the organisational structures of lessons was relatively straightforward 

from direct observations, whereas determining what teachers attended to required a 

higher level of inference.  

Classroom norms had two important purposes in the analysis. First, identifying 

classroom norms, including sociomathematical norms and mathematical practices, 

provided a characterisation of the nature of mathematics in particular classrooms. It 

was this characterisation that had the potential to allow for comparisons between 

classes, even when the topics taught and tasks were different. Second, once 

established, classroom norms lowered the level of inference required when 

interpreting local interactions and behaviours.  
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Figure 4.3: Orchestration of Mathematics Framework (OMF): Lesson Summary Layout 

4.4.2 Data Collection 

In line with similar classroom-based studies, the complexity of interpreting classroom 

interactions meant that videoing of lessons in conjunction with real-time observation 

was the preferred option (e.g. Hiebert et al., 2003a; Staub, 2007; Even and Kvatinsky, 

2009). Jacobs et al. (2007) found that teacher questionnaires and copies of text-based 

classroom resources were the most useful forms of additional data. In this study, 

contextual information was gathered from the teachers, obtained through semi- 
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structured interviews (appendix 6) and sight of planning documentation and classroom 

artefacts. The full range of classroom resources used in the lessons informed the task 

and sequencing dimensions of the OMF. Therefore, copies of resources in the form of 

textbooks, worksheets or material presented to the whole class via a data projector 

were gathered. Boston and Smith (2009) concluded that students’ work could be 

analysed in relation to cognitive demand, and that this analysis was highly correlated 

with judgments based on lesson observations; therefore, copies of students’ work 

were collected.  

4.4.2.1 Observations 

Lesson videos form a rich data source but, as with any observation, it is not possible to 

capture everything that happens and analysis starts immediately; observers attend to 

different aspects of the lesson and decisions are made as to which elements of the 

lessons are recorded (Derry et al., 2010; Cohen et al., 2011). I was present in recorded 

lessons, acting as a non-participant observer (Ritchie and Lewis, 2013) taking field-

notes based on copies of the OMF. Throughout all the data collection and analysis, I 

needed to be cognisant of how my experience as a teacher and PGCE tutor affected 

what I attended to in classrooms (Mason, 2002). The presence of an observer and 

recording equipment could, by its very nature, be disruptive. However, Jacobs et al. 

(2007) argued that teaching is such an ingrained cultural activity that it changes little 

when observed and recorded.  

Jacobs et al. (2007) advocated that decisions about what to film should be based on 

the notion of where the attention of an ‘ideal student’ is likely to be. It seemed 

reasonable, therefore, to aim for the video to capture the teacher’s actions, including 

interactions with students at a whole-class level, and how they managed tasks 

presented to the class, including writing and gestures. The capturing of student 

contributions at a whole-class level was also desirable. Consequently, the decision was 

taken to use two static video cameras, one with a clear view of the board and the 

other a wider view of the class.  

The systematic collection of individual teacher-student and student-student 

interactions was practically more difficult and would have been more intrusive (Derry 



114 | P a g e  

et al., 2010), so data of this type was limited to that captured by proximity to the static 

cameras. Whilst individual-level data could have been informative, the fact that an 

‘ideal student’ would only be party to those interactions if they were directly involved, 

or in close proximity, should limit the impact of not systematically collecting that data. 

In addition, individual students’ seatwork can form a substantial part of student 

activity (Watson and Evans, 2012), but no attempts were made to capture data in 

relation to this activity during the recording or observation of lessons. Whilst this 

might be partially ameliorated by the retrospective examination of students work 

(Boston and Smith, 2009), this was another limiting factor in this research.  

Videos of lessons provide rich data and can be analysed in a variety of ways (Derry et 

al., 2010). In this study, audio data was transcribed as heard, rather than written as 

grammatically correct sentences. Based on a protocol developed from the TIMSS video 

study (Hiebert et al., 2003a), classroom episodes related to mathematics were 

identified. In addition, live observation notes were abridged, and classroom artefacts 

were scrutinised, to contribute to a more complete picture of the publicly shared 

mathematics. These intermediate representations were then used to select episodes 

for more in-depth analysis (Derry et al., 2010). The coding of the transcripts was an 

iterative process (see 3.4.2) and established classifications were mapped to the OMF.   

4.4.2.2 Lesson Structures 

Lessons have a sequential structure, with different types of activities being undertaken 

at different stages in the lesson. In this study, the term ‘phase’ was used to describe 

time periods where the focus was on a common mathematical theme, such as the 

completion of a mathematics exercise or the discussion of learning objectives. Within 

these phases, different types of activities could occur, such as whole-class talk, small 

group work or individual seatwork, as long as the mathematical focus was retained. 

The term ‘episode’ was used to describe sub-divisions of phases that had a level of 

mathematical coherence. For example, a sequence of turn-taking between a teacher 

and student as one question was discussed, or a monologue by the teacher as they 

modelled a solution, would be classed as an episode. The smallest sub-division of an 

episode was an ‘event’, which contain a single occurrence or linguistic feature.   
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4.4.2.3 Complementary Data  

Whilst the focus was on the mathematics in particular classrooms, the influence of the 

wider school context was taken into account. In particular, information about how 

class composition was decided and how the curricula were designed was sought. 

However, consideration was given to the research that indicates that setting practices 

are often far from transparent, with the implication that reported policies might not 

match practice (Hallam and Ireson, 2003).   

In order to gain a better understanding of the participating teachers’ lesson image, 

information was sought about the class and the observed lessons. This was in the form 

of semi-structured interviews with the teachers, conducted before and after the 

lessons (appendix 6), which drew on the protocols from the TIMSS video study (TIMSS, 

1999). This included how planning decisions were made, as well as lesson specific 

information such as how particular lesson content related to previous work covered 

and the school curriculum. After the lesson, participating teachers were asked if they 

thought the lesson progressed as anticipated or whether there were any notable 

incidents. However, due to other teaching commitments, the amount of time the 

teachers could spend before and after the lesson answering questions did vary, so the 

level of detail obtained fluctuated. Copies of any classroom resources and any content 

presented to the class by the teacher was collected, which supported the analysis in 

relation to task features and the use of context, as well as facilitating analysis from a 

perspective of variation theory. In addition, examples of student work were collected 

to support the interpretation of the video analysis and the evaluation of the level of 

cognitive demand.  

4.4.2.4 Summary of Data Sets 

The analysis was an iterative process, moving between the transcriptions, sections of 

videos and the supporting data, such as classroom artefacts and teacher interviews, as 

the developing interpretations were constructed. 
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data sources data sets research focus 

video of lessons  transcripts:   

 audio transcribed 

 gestures indicated 

 mathematics displayed 

on board described 

Viability of the Orchestration of 

Mathematics Framework (OMF) 

as an analytical tool 

 

abridged OMFs RQ Teacher’s orchestration of 

mathematics section of OMF live observations annotated OMF 

classroom 

artefacts 

copies of mathematical tasks  

copies of students’ written 

work 

teacher 

questionnaires 

pre and post 

transcripts RQ Teaching cycle elements of 

OMF (Lesson Image) 

Table 4.1: Summary of Data Sets  

4.4.3 Validity and Reliability 

Generalisation in qualitative studies has been widely discussed (e.g. Hartas, 2010; 

Cohen et al., 2011), where one key argument is that the statistical perspective of 

generalising from measurably representative samples to a population is inappropriate. 

Instead, notions such as ‘transferability’ and ‘trustworthiness’ are offered as means to 

judge whether the study has meaning ‘beyond the context in which it was derived’ 

(Ritchie and Lewis, 2013, p.263). Generalisation in qualitative studies can be 

considered from a number of different perspectives. For example, it is hoped that this 

study could contribute to the debate about equity issues relating to setting, whilst also 

allowing the reader to relate findings to other settings, which Ritchie and Lewis (2013) 

would characterise as theoretical and empirical generalisation, respectively.  

Similarly, issues of reliability and validity in qualitative studies are debated, including 

how these notions relate to generalisability (Hartas, 2010). The key tenet of reliability 

is often considered to be replicability (e.g. Cohen et al., 2011), but due to the complex, 

dynamic and unique nature of each lesson, a narrow interpretation of replicability is 

inappropriate in education contexts (Schoenfeld, 2002). Here it is understood that no 

two classrooms would be identical, and that teachers would not act in exactly the 

same ways as the teachers in this study. Rather, reliability in education contexts can be 

thought of as the ‘soundness’ of the study in relation to both the generation and 
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analysis of the data (Ritchie and Lewis, 2013). Whilst ‘duplication’ of context is not 

possible, the structural features of the situations that generated the data need to 

occur outside of the study in a recognisable form. Here it is taken that setting and the 

dimensions of teachers’ classroom activities, encapsulated in the OMF, would be 

recognisable in other classrooms.  

There are a number of limitations to this study. First, there was selective coverage of 

classroom activity due to the focus on whole-class interaction, which did limit the 

range of perspectives captured. Also, in terms of analysis in qualitative studies, 

reliability as replicability could be thought of as the level of agreement about 

judgements by others, and with the robustness of theoretical constructs established 

by wider use (Schoenfeld, 2002). The scale of this study does limit the level of 

demonstrable reliability (Hollingsworth and Clarke, 2017); as a solo research project 

the analysis has been undertaken by one person and the theoretical constructs have 

not yet been tested in other studies.  

Validity is frequently considered in terms of internal and external subconstructs. 

Whilst there are many subconstructs within validity, in broad terms the former 

considers the extent to which researchers research what they intended to research, 

and the latter the extent to which findings can be applied to other contexts or settings, 

often considered synonymous to generalisation (Hartas, 2010). Here, internal validity 

is focused on capturing of the phenomena, namely teachers’ orchestration of 

mathematics. In other words, validity is the viability of OMF as an analytical tool that 

can be brought to bear on the research questions. The level of external validity is 

dependent on the quality of ‘thick descriptions’ provided in this study. The depth and 

breadth of descriptions governs how far the reader can understand the findings in 

relation to this context, and thereby the level of ‘transferability’ to other settings with 

which they are familiar (Ritchie and Lewis, 2013). 
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4.5 Pilot Study 

As the OMF was integral to this study, a two-stage pilot study was undertaken to test 

its efficacy. As obtaining video recordings of lessons is difficult, the decision was made 

to use publicly available TIMSS videos for the first stage of the pilot. The second stage 

moved onto primary data collection. One teacher, Sam, requested trial recordings, so 

he could decide if he wanted to participate in the full study, and these two lessons 

formed the second stage of the pilot study.  

Section 3.4.2.1 discussed the pilot study in relation to the development of the OMF. 

Consequently, there is some overlap between sections, but here the focus is on the 

wider methodological issues.  

4.5.1 Stage One 

Whilst the TIMSS videos are over fifteen years old, and examples are not available 

from England, these videos had the advantage of being complete, unedited lessons, 

which were selected as representative samples, rather than for the presence of 

particular features or undertaken in response to professional development projects. In 

addition, they were accompanied by a range of supplementary data that is not 

routinely made available. This included the text-based resources used in lessons, 

lesson transcripts and detailed research protocols. The latter outlined the filming 

protocols, where the camera operator was asked to take ‘the perspective of an ideal 

student’ (Hiebert et al., 2003a, p.15), which aligned well with this study. The four 

Australian videos were selected, as research indicated these were likely to be the 

closest to practices in England (Vincent and Stacey, 2008). One was subsequently 

dropped as the majority of the lesson involved individual computer-based work. 

Included with the TIMSS videos were brief commentaries from the teachers and 

researchers (appendix 2). In a limited fashion, this provided a mechanism for 

comparing my analysis with other researchers. The central part of the OMF was the 

focus of the first stage of the pilot study (figure 3.10). The videos were viewed, lesson 

transcripts were annotated and lesson specific OMFs were populated (see 3.4.2.1 for 

details). This was an iterative process, moving between the data sources, primarily the 

transcripts and videos, and the restricted OMFs. This resulted in an annotated OMF for 
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each lesson, with themes being linked with specific passages in the transcripts 

(appendix 2) and reinforced the iterative nature of the analysis and the links between 

the OMF structure and the interpretation of the transcripts.   

4.5.2 Stage Two 

Early in the study, Sam volunteered to have two lessons of a high attaining set videoed 

as a trial. He wanted to find out how the videoing would work in practice before 

committing to the full study. This presented an ideal opportunity for the second stage 

of the pilot study, in which I could test the OMF in a real context and develop an 

understanding of the data capture processes. The complete version of the pilot OMF 

was used (figure 3.11: model C) as pre- and post-lesson interviews could be 

undertaken and classroom artefacts could be collected.   

I was present as a non-participant observer in both lessons, taking observation notes 

on a pro forma based on the OMF. Two static digital video recorders were placed so 

that the board was captured by one and the class perspective from the back of the 

classroom was captured by the other. Whilst this limited the level of individual 

teacher-student or student-student interaction that was captured, this also minimised 

the impact on the lesson. A couple of students did look at the viewfinder display and 

appeared to lose interest when they realised that, at most, students’ backs were 

visible. Whilst in the first ten minutes of the lesson there were a couple of comments, 

such as “you’re on camera”, after that there was no other overt evidence of students 

responding to the presence of the cameras or myself.  

The audio data were transcribed and coded as mathematically related or not, with the 

former mapped to the OMF. In attempting to understand the mathematics of the 

classroom, I found that the video recordings needed to be reviewed alongside the 

transcripts. In particular, views of the board that displayed the written mathematics 

and the teacher’s gestures were an integral part of the analytical process. Drawing on 

work by Derry (2007), I increased the level of detail in the transcriptions to include 

pauses and descriptions of visual features (appendix 3.3.1). Rising intonations at the 

end of statements were used as an indication of a question being asked, and appeared 

useful when interpreting student contributions. For example, if asked about fractions 
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by their teacher, a student reply of “part of a whole” has subtle shifts in interactional 

meaning if interpreted as a statement as compared to a question. The latter 

potentially indicating a level of uncertainty and could act as a self-mitigating tool for 

the student in the event that the response was treated as an error.  

In addition to the lesson transcripts, the pre- and post-lesson interviews were also 

transcribed and incorporated into the summarised OMF (table 3.1). The two lesson 

OMF profiles were then compared and an integrated OMF was compiled (table 3.2) as 

overall profiles were similar. For example, the sociomathematical norm of 

mathematical competence being equated to the efficient production of ‘correct’ 

answers was common to both. The question of whether the OMF was sufficiently well 

defined was considered (3.4.2.2). From my perspective, the ongoing process of 

mapping events to categories refined my understanding of the dimension descriptors, 

as evidenced by more rapid coding with less contradictory examples. As such, the pilot 

study contributed to the coherence of the dimensions of the OMF and a reduction in 

overlap, albeit from the perspective of a lone researcher. The populated OMFs 

indicated that mathematically significant pedagogical moves were captured by the 

analysis orientated by the OMF with adequate separation of categories.   
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4.6 Main Study 

4.6.1 Lessons from the Pilot Study  

The pilot study did raise broader questions, and in particular the structure and role of 

the OMF. The literature review made the argument for the OMF as a conceptual 

framework for interpreting teachers’ pedagogical practice, and as such, it could be 

construed as a theory of teaching. The complexities of classrooms would make any 

claim of the completeness of the OMF as a theory of teaching bold indeed, with the 

requirement that categories offered would be both necessary and sufficient 

(Schoenfeld, 2013a). In this study, however, the purpose of the OMF is to provide an 

instrument sensitive enough to reveal differences in a teacher’s pedagogical actions as 

they interact with different groups of students. In other words, completeness is not 

claimed, but rather the OMF orientates data collection and analysis in a manner that 

allows comparison of pedagogically significant aspects of teachers’ practice. The 

summary OMFs generated from the pilot study offered a picture of teachers’ practice, 

but as these related to individual lessons rather than two classes with the same 

teacher, the sensitivity of the OMF for comparisons across classes was not tested. 

The pilot study process also allowed some of the limitations of the data to be 

considered. For example, in the live lesson recordings there were some elements of 

classroom dialogue that were hard to discern, particularly when multiple voices were 

heard, and the changing light conditions meant that on a few occasions some of the 

written material on the board was unclear. As outlined in section 4.4.2, students’ 

seatwork and one-to-one interactions were unlikely to be captured through the use of 

static cameras, but in the pilot study the level of analysis possible drawing on the 

captured whole-class activity offered evidence that the research questions could be 

suitably investigated. Therefore, on reflection, it was decided that the advantages of 

two static cameras, in terms of minimising the level of intrusion, outweighed the 

disadvantages of any reduction in the data available. 

The semi-structured interviews with the teacher were transcribed, with the data 

principally informing the wider cycle of the lesson image and interpretation of 

classroom activity, rather than the dimensions of TOM. Whilst copies of students’ 
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written work were collected these were not used in the lesson analysis. Although 

Boston and Smith (2009) argued that students’ work is ‘stable within teachers and 

highly correlated with observed instruction’ (p.136), here it was found that students’ 

work was more difficult to interpret. This may have related to this particular teacher, 

as a large proportion of the lessons involved whole-class activities, with relatively little 

sustained independent seatwork. Consequently, it was difficult to ascertain if the 

written work represented the students’ thinking or whether it arose from the whole-

class interactions that included the sharing of solutions. Whilst copies of students’ 

written work continued to be collected in the main study, as this was a simple process 

with minimal impact on participants, the pilot study did indicate that this source of 

data might not play a significant part in the main study.  

Generating the lesson transcripts was the early stage of the analysis of the two live 

lessons. Speech was transcribed as heard, which included pauses and hesitation 

sounds (appendix 3.3). As discussed in the previous sections, the pilot study saw 

developments in the analysis of data. Specifically, the type and level of detail in the 

lesson transcripts was revised and adaptions were made to the OMF. During the 

transcription and coding of mathematically related episodes, in order to understand 

the mathematical activity, the videos had to be viewed to ascertain the mathematics 

presented on the class boards. This led to an increase in the level of descriptions of 

this shared written material in the transcripts. These annotated transcripts formed the 

principal data source; the mathematically related episodes were further scrutinised 

and coded. However, as non-mathematically related episodes were not scrutinised any 

further, the transcripts formed an abridged version of classroom activities. A further 

challenge was raised by Drageset (2015), who argued that both coding derived from 

the literature and coding derived from the data face considerable challenges. As the 

OMF, and hence the coding, was drawn from literature, his argument that noteworthy 

features could be missed through working within established categories needs to be 

acknowledged.  

The pilot study process raised some questions regarding the grain size of the analysis. 

In the transcripts, it became apparent that intonation was relevant when 

distinguishing between assertions and questions. This led to a wider review as to how 
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detailed the transcripts and how fine grained the analysis should be. One of the first 

interaction patterns noticed was how the teacher dealt with student errors. Drawing 

on a conversation analysis term, the teachers’ treated student errors as dispreferred. 

However, the transcripts were not as finely grained as conversation analysis would 

require. For example, whilst pauses were indicated these were not precisely timed. 

Nevertheless, the principle of orderly interactions, with turn taking following 

identifiable patterns that is associated with conversation analysis (Sacks et al., 1974), 

appeared to offer insights into these interactions.  

Within a western culture, one conversation convention is that an invitation has a 

preferred response that signals acceptance, and is given without hesitation. Whereas 

if one is going to decline, it is usually done with caveats, pauses and/or justification; a 

bald “no” is quite rare (Schegloff, 1987). Conversation analysis originated in the 

analysis of naturally occurring conversations in small groups (Sacks et al., 1974) and 

classroom interactions have their own customs and practice that can be distinct from 

everyday conversations. However, McHoul (1990) demonstrated that comparable 

initiation and response patterns could be identified in classroom exchanges.  

The notion of preferred and dispreferred responses had a particular resonance with 

the teachers handling of ‘correct’ responses, ‘errors’ and unwanted student 

contributions. Some student contributions were accepted immediately; this group was 

mainly responses to closed questions that were mathematically valid. Other student 

contributions were followed by hesitations, follow-up questions or redirection. 

Student contributions that were incomplete or had mathematical errors fell into this 

category, but there were also some mathematically valid contributions that were 

treated in this dispreferred manner. This appeared to signal that the teacher was 

attending to a different aspect of mathematics, related to their mathematical horizon, 

rather than exploring the students’ mathematical reasoning.   

Other aspects of a conversation analysis approach were intuitively appealing. For 

instance, analysis of interactional patterns have shown that people often employ 

conversational strategies to avoid dispreferred responses, such as asking someone 

about their plans before initiating an invitation (Schegloff, 1987; Goodwin and 

Heritage, 1990). Within the stage two pilot study lessons, there were some examples 
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where students appeared to adopt strategies to avoid dispreferred responses related 

to errors, which included phrasing responses as questions.  

Moreover, the reflexivity, whereby context is both shaped by and shapes each action, 

aligns with notions of the development and influence of classroom norms. However, 

significant points of departure needed to be considered. For example, in conversation 

analysis, categories for analysis are derived from participants’ interactions, with the 

influence of context derived from how the participants position themselves within the 

dialogue, rather than from outside information (Goodwin and Heritage, 1990). In this 

study, however, a wider range of contextual information was considered. This 

highlights a wider debate about the structure and role of the OMF and its coordination 

of a range of theoretical perspectives, with different grain sizes and underpinning 

theoretical principles. This question needs to be considered in the main study.  

4.6.2 Analysis in the Main Study 

As previously described, the data collection consisted of video recording of lessons 

using two static cameras, non-participant observation of lessons, collection of 

classroom artefacts and semi-structured interviews with the teachers. As I observed 

the lessons, analysis started immediately, through what and how I observed, noticed 

and noted. However, due to the transient nature of classroom interactions and the 

limitations of capturing classroom activity in field notes, the videos were treated as 

the principal source of data. Consequently, the transcription of these videos provided 

the starting point for the substantive analysis. It was easier to transcribe when I 

understood the mathematics being discussed. Consequently, additional descriptive 

details drawn from stills of the classroom boards or artefacts were added as the 

transcription progressed.  

The completed transcripts were then coded (3.4.2.2) and cross-referenced with the 

lesson-specific OMFs. The analysis was an iterative process that involved moving 

between sections of the data and between the data and the theoretical framework 

outlined in the OMF, and as such could be described as a ‘constant comparative 

method’. However, this term is often associated with grounded theory. As my coding 

drew on the OMF in addition to emerging from the data, then this study would be 
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considered as falling outside the parameters of a grounded theory study (Strauss and 

Corbin, 1994; Suddaby, 2006). Whilst the constant comparative method is most closely 

associated with grounded theory (e.g. Cohen et al., 2011), it is an approach that is also 

found in a broader range of studies (Fram, 2013). Consequently, the following offers a 

brief overview of the origins of the constant comparative method, before describing 

how this method has been applied in the context of this study and the resulting 

methods of analysis.  

Throughout the discussion it is useful to keep in mind that this iterative process was 

non-linear, with constant movement between the data and the analysis, whereas for 

clarity, both the description and reporting often takes a summary form that 

sometimes obscures this very process (Strauss and Corbin, 1994). In his early work, 

closely associated with grounded theory, Glaser (1965) stated that ‘the constant 

comparative method can be described in four stages: (1) comparing incidents 

applicable to each category, (2) integrating categories and the properties, (3) 

delimiting the theory, and (4) writing the theory’ (p.439). The first stage is to code 

incidents, which are initially compared with other incidents in the same category, then 

as coding continues into the second stage, comparisons between incidents means 

category properties can begin to emerge. This continual comparison of new data with 

the emerging constructs, undertaken with a critical eye, is recognised as an integral 

part of a constant comparative method (Suddaby, 2006). Fram (2013) made the 

argument that a constant comparative method can be used in conjunction with a 

theoretical framework drawn from literature, as it could be considered comparable to 

the knowledge that an experienced researcher would bring to the analysis.  

In this study, incidents were coded and compared to other incidents from the sections 

of the transcripts identified as mathematically related. For example, the management 

of errors in students’ contributions quickly emerged as a category. Glaser (1965) 

argued that it is out of this constant comparison that properties of categories and 

relationships with other categories evolve. This is where this method diverged from a 

process grounded entirely in the data, as the theoretical properties of categories and 

their relationship to other categories had been postulated in the OMF before the 

interrogation of the data. As the OMF was ‘kept in mind’ during the lesson 
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observations, the transcription processes and the coding, the comparison included 

reference to the theoretical framework encapsulated in the OMF. The analysis did 

reveal some new categories that led to some developments in the OMF. For example, 

the management of the lesson trajectory was not highlighted in the early iterations of 

the OMF but was added with the sequencing dimension as the analysis continued. 

Whereas other aspects that emerged from the data, such as the role of errors, were 

already included in the OMF. The OMF postulated theoretical relationships between 

elements of the framework; the data provided sets of examples to test and map the 

scope of these relationships.  

Glaser (1965) argued that the next stage was ‘delimiting the theory’, where the 

boundaries of the theory are determined. This occurs as fewer and fewer adjustments 

need to be made when new incidents are considered in relation to the properties of 

established categories. In the last stage, the properties of the categories are 

summarised and form the themes for the writing of the theory. In this study, the 

boundaries of the theory were postulated in the OMF and tested as the data from the 

lessons were categorised within this framework. The overarching theme of this study 

is the teachers’ orchestration of mathematics as they teach different groups of 

students. As my study consisted of three teachers, each with two classes and a 

number of different lessons (figure 4.4) the constant comparative method had a 

number of levels: for each case, there were comparisons within a single lesson and 

comparisons between lessons with the same class; in the nested cases there were 

comparisons between classes with the same teacher; and between parallel cases there 

were comparisons between teachers.  

 

Figure 4.4: Nested Parallel Case Studies with Lessons 
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Lesson 2 
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At each level of the comparison, the focus shifted. When individual lessons were 

considered, the constant comparative analysis classified mathematically related 

episodes to determine whether there were distinguishing features of the teacher’s 

pedagogy, and to consider any contradictions. This also allowed the categories within 

the OMF to be developed. When multiple lessons with the same teacher and class, 

were considered, the focus shifted to analysing whether distinguishing features 

established within single lessons were common to others. In other words, were there 

elements of the teacher’s practice that could be seen as stable characteristic traits of 

their teaching more generally. Episodes with the same coding were compared, 

allowing properties of categories to be developed. Consideration was also given to 

why some features appeared in some lessons but not others. Comparison between 

classes with the same teacher was the key part of this study. Comparisons between 

teachers allowed the efficacy of the OMF to be considered in a different context, and 

in particular, whether the dimensions of the OMF appeared sufficient. 
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5. Findings 

5.1 Introduction  

The previous chapter outlined the methodological approaches taken to gather and 

analyse data that would allow an exploration of how individual teachers adapt their 

practice when they teach different groups of students. Data has been obtained from 

two classes for each of three teachers, with lessons observed and videoed, teachers 

interviewed, and classroom artefacts collected. This chapter analyses that data with 

the purpose of identifying features of the teachers’ pedagogical activities that are 

mathematically important and the mathematics made available to students through 

those pedagogical moves.  

As previously discussed, classrooms are complex, dynamic environments with many 

interdependent factors, and the data reflected this level of complexity. The analysis 

was an iterative process, moving between data sources and different lessons, with 

pedagogical portraits for each class gradually built and refined over time, which 

formed the six cases. However, in order to communicate the findings, individual 

lessons for each teacher are discussed. This establishes a mathematical narrative for 

each lesson and provides frames of reference for the subsequent more nuanced 

discussions. All the lessons were coded and analysed, and summaries are provided in 

the form of summary OMFs, but one lesson for each class is reported on in detail to 

exemplify the pedagogical moves the teachers made; confirmatory, complimentary or 

contradictory evidence from other lessons is included in the discussions as 

appropriate. 
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5.2 Description and Interpretation 

As previously stated, the purpose of this study is to describe and interpret teachers’ 

pedagogical practices in order to explicate any shifts in practice when teachers teach 

different sets. Evaluation is not the purpose, but phrases such as ‘low cognitive 

demand’ or ‘unsystematic variation’ could be read as judgments. Moreover, one area 

that is potentially problematic to discuss is the teacher’s mathematical knowledge for 

teaching. Teachers continually draw on subject knowledge and pedagogical knowledge 

in the planning and execution of lessons, but interesting episodes can arise when it 

appears that teachers have made errors in interpreting student contributions or in 

their own explanations. In discussing these issues, it may appear that teaching is being 

evaluated and judgments made. Whilst description and interpretation of classrooms is 

the cornerstone of this study, making judgements is not the intention.  

Chapters 2 and 3 have outlined the context in which the study is set. For example, 

textbooks being characterised as having unsystematic variation (3.3.5.2) or the 

stratified curriculum (2.4.1) frames what happens in many mathematics classrooms in 

England. Nevertheless, the findings discuss three individual teachers, so before the 

presentation of the findings I would like to reiterate my opening acknowledgement as 

a means of conveying my stance: 

I would like to thank the three teachers who participated in this study and for 

the privilege of spending time in their classrooms. This study has reminded me 

above all else of the complexity of teaching mathematics, and the skill and 

dedication teachers demonstrate every day.   
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5.3 Lesson Narratives 

The following sections provide lesson narratives for each teacher. After providing 

some background information, the OMF is used to structure the description of each 

lesson in order to provide an overview of the significant mathematical activities (figure 

5.1). To report the findings in sufficient detail to make comparisons, a lesson narrative 

from one lesson for each class is provided to exemplify how pedagogical profiles were 

constructed.  

 

Figure 5.1: Orchestration of Mathematics Framework (OMF) and Lesson Narrative Structure 

5.3.1 Teacher: Joe 

5.3.1.1 Background 

In pre-lesson interviews, Joe explained that in recent years his school leaders had 

drawn on national and international research to inform their curriculum design. This 

resulted in a curriculum that sought to develop mathematical fluency in tandem with 

students tackling ‘big questions’, intended to offer the students a real-world 

application for the mathematics they undertake. The school also adopted a textbook, 

designed overseas, that follows a ‘concrete, pictorial, abstract’ approach to developing 

mathematical ideas. Joe engaged in internal CPD focused on the development and use 

of these curriculum plans.  
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The school placed students in sets for mathematics; the policy was to base this on 

targets generated from SATs performance and internal assessments. After the sets 

were first established, most movement between sets occurred once a year and 

involved about ten percent of students identified as outliers of each set, rather than 

an absolute re-ranking of all students. All classes in the same year followed the same 

curriculum plan in terms of the overall topics taught, but tiered routes were specified 

so sets did not always cover the same material.  

As the observed classes were from the same year group, they were following the same 

overarching curriculum as laid out in the school’s curriculum plans. Whilst both lessons 

were drawn from the same number topic, different routes were identified. For class A, 

the starting point for the overarching topic was ‘percentage of’, which led to 

‘percentage change’, with a final goal of ‘inverse percentage change’, whereas for class 

B the starting point was the multiplication of powers of ten, which would be followed 

by ‘percentage of’, with a final goal of ‘percentage change’. In effect, the initial lesson 

for class B was treated as presumed knowledge for class A and it was anticipated that 

class B would not meet inverse percentage changes.  

The recorded lessons were an hour long and were one of seven lessons held over a 

fortnight. Joe followed his departmental scheme of work and taught the recorded 

lessons as per his existing curriculum plans, with the level of planning typical for his 

lessons. Consequently, the lessons reported should represent examples of students’ 

everyday experiences. 

5.3.1.2 Teacher’s Knowledge, Beliefs and Values 

Joe’s key priority was to develop students’ deeper understanding of mathematics, with 

a particular focus on problem solving. In general, he felt the department’s curriculum 

plans aligned with his approach to teaching mathematics. In particular, he thought 

discussions were given greater prominence in the plans, which enriched students’ 

understanding. Whilst the ‘big questions’ had the potential to draw attention to the 

relevance of mathematics, which in turn could lead to greater student engagement, he 

felt that finding “genuinely relevant” problems was problematic at times. Whilst 

different routes through the curriculum were identified for different sets, Joe felt he 
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had the discretion to adapt the routes based on his assessment of the classes. 

However, Joe reported that in practice, for the majority of the time, he followed the 

planned routes. 

5.3.1.3 Joe: Class A 

This was a Key Stage 3 class, composed of about twenty-five students who had 

attainment profiles in line with the average for their year group in the school.  

(a) Lesson Specific: Teacher’s Knowledge, Beliefs and Values, incorporating Initial 

Lesson Image 

In the pre-lesson interview, Joe’s stated lesson goals were for students to be able to 

work out percentage change, with some students discovering alternative solution 

strategies; these aligned with learning goals shared with students in the lesson. As 

such, his articulated lesson goals were considered to be framed as performance for all 

students, with a learning orientation a possibility for some.  

The students had met simple percentage change the previous year and had completed 

‘percentages of’ questions in the preceding lessons. Joe anticipated that many 

students would be able to “find the percentage and add or subtract” (‘percentage first’ 

strategy) for simple problems with relatively little teacher intervention. He anticipated 

students would have greater difficulties when percentage change was applied to real-

life contexts and when non-integer solutions meant rounding was involved. Joe was 

uncertain if any of the students would discover alternative approaches themselves.  

(b) TOM: Organisation 

The lesson was timetabled for one hour and lasted fifty-seven minutes due to lesson 

transitions. Twenty-seven minutes were spent at a whole-class level, with the 

remaining time spent on seatwork. Desks, large enough to seat two students, were 

arranged in groups of three, which resulted in students seated in groups of five or six. 

Tasks set could have been completed independently, but peer discussion was 

encouraged. For example, in phase 3, students were asked to discuss possible 

solutions with peers, although solutions were taken from individual students, and 

during seatwork, when a student indicated she was stuck, Joe asked if she had spoken 

to her peers.  
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Figure 5.2: Joe Class A Organisation  

(c) TOM: Tasks, Examples and Explanations – Overview 

The lesson was entitled ‘Percentage Change’. It was from a sequence of lessons that 

started with calculating percentages and the intention was to move onto reverse 

percentage calculations.  

Phase 1: Starter 

The departmental scheme of work specified the start of the lesson should focus on 

developing fluency. Joe displayed a PowerPoint slide (figure 5.3) and students selected 

which set(s) of questions to attempt in four minutes. Students were familiar with the 

form of the task and no specific instructions were given. 

 Start 33      use your answer in the next sum  
 (green)  (orange)  (red) 

 +17  ×2  × 2 

 +50  +34  +24 

 −51  −22  10% 𝑜𝑓 

 +11  ÷ 2  𝑠𝑞𝑢𝑎𝑟𝑒 𝑟𝑜𝑜𝑡 

 −22  +21  × 25 

 +16  ÷ 12  +45 

 −27  × 15  5% 𝑜𝑓 

 +43  +25  × 30 

 −40  ÷ 5  ÷ 9 
 +24  +22  × 5 

 

Figure 5.3: Joe Class A Tasks 

The students were expected to complete this using any mental or written methods. 

After the individual seatwork, answers were displayed on a PowerPoint slide. Students 

self-marked and points were awarded for correct answers, with graded tariffs from 

green to red.   
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Phase 2: Sharing Learning Outcomes 

There was a departmental expectation that each lesson had a ‘big question’, which 

could be an overarching theme for a sequence of lessons, and learning outcomes that 

were shared with students. These were displayed on a PowerPoint slide and Joe read 

them out.  

The ‘big question’: What is a pay-day loan and why are they called loan sharks 

Learning outcome: To apply what we have learnt about percentages to work out 

percentage change. 

The learning outcome was split into tiered learning goals:  

 Bronze: Calculate integer percentages of a number 

 Silver: Calculate percentage change 

 Gold: Create alternative methods to calculate percentage change  

Phase 3: Percentage Change Problems 

Percentage reduction problems, based on online offers, were presented. Students 

were given a few minutes of seatwork to find a product’s cost (figure 5.4), after which 

there was a whole-class discussion. This pattern was repeated for three questions. 

Q1. Phone: list price of $179.99 with 43% off.  

Q2. Kindle: list price of £79.99 with 38% off.  

Q3. OLED TV bundle: list price of £3499.99 

with 18% off.  

Figure 5.4: Joe Class A Tasks 

As part of extended question-and-answer sessions, Joe structured a solution strategy 

that he wrote on the class whiteboard. For each question the same ‘percentage first’ 

strategy was used, namely dividing the original amount by 100, multiplying by the 

percentage reduction and subtracting this amount from the original. For example: 

179.99 ÷ 100 = 1.7999                           (1%)   

1.7999 × 43 = 77.3957                          (43%)  

179.99 − 77.3957 = 102.5943 

Figure 5.5: Joe Class A Tasks  

The percentages written in brackets were linked to the calculation by Joe asking what 

the amount represented. For example, after writing 77.3957 Joe asked: 
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66 T: what does that give you (.) what does that represent Tom (.) 

67 Tom: erm (.) it would (.) be forty-three percent 

   [T writing: (43%) ] 

Extract 5.1: Joe Class A 

The calculations for all three questions resulted in answers with four decimal places. 

For each question, rounding in the context of money was discussed, and then Joe 

revealed the offer price from the websites, which were compared to their solutions.  

Phase 4: Textbook Exercises 

Students worked from an online textbook and were given the choice of which exercise 

to complete; as with the learning goals these were tiered. (A show of hands later in the 

lesson indicated all students started at exercise B).  

Bronze - Ex A:  Q1. Find 12% of 120 …  Q6. Find 15% of $50 … 

Silver - Ex B:  Q1. A bag valued at $240 has 7% GST added before it goes on sale.  

How much did it cost?  

Q2. An investment of $8000 attracted 5.5% interest per year.  

How much was it worth at the end of one year? …  

⁞ 

Q6. A car originally costing $82500 lost 40% of its value. 

How much is it now worth? 

Gold – Ex B:  Create new methods and see if questions work both ways.  

All the percentages and solutions were either integers or terminating decimals, with all 

percentages less than one hundred. In contrast to problems met in phase A, there 

were no cases that required rounding because of the context.  

Phase 5: Review of Learning Objectives  

The students reviewed the learning objectives by writing about WWW (what went 

well) and EBII (even better if I…); this activity was undertaken in most lessons.  

Phase 6: Plenary 

It was usual for Joe to undertake a whole-class discussion with the aim to review a key 

mathematical feature and to make links to future lessons. In this case, an alternative 

strategy for calculating percentage change was discussed.  
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General 

Whilst the ‘big question’ was not addressed in this lesson, Joe’s intention was that 

future lessons would consider percentage change in the context of loan sharks. The 

majority of the percentage problems were set in contexts with some potential links to 

the ‘real world’, but the problems were of a form students were unlikely to meet 

outside the classroom. 

The examples in phase 3 were drawn from current online offers from well-known 

websites. Joe drew attention to his personal interest in the products. For example, to 

explain how he found one offer he stated “my wife has a Kindle... she really loves it (.) 

erm so I was having a look…”, and another was a product he had bought. One student 

stated, “sir I know how much you spent on it (.) too much”, indicating they were 

making personal judgments about the value of the products. However, the problems 

were constructed for the classroom, in so far as Joe had hidden the offer prices that 

were visible on the websites. So, while the websites offered a potential link to 

students’ personal experiences, the students were unlikely to meet these calculations 

outside of the classroom.  

In phase 4, the problems drew on different contexts, but were from an overseas 

textbook; students’ questions indicated that many were unfamiliar with local 

terminology, such as GST. Moreover, ‘just sufficient’ mathematical information was 

provided to undertake the required calculations, and were of a form usually only seen 

in classrooms; a label of ‘pseudocontext’ was considered appropriate.  

Multiple solution strategies and multiple representations were possible with these 

percentage change problems. However, a numerical calculation based on the 

‘percentage first’ approach was used at a whole-class level for most of the lesson, and 

was the only one presented in written form on the whiteboard. 

When the overall sequence of questions was considered, the early focus on 

percentage reduction was extended to include percentage increases, but the problems 

remained similar whilst the ‘contexts’ changed. In phase 3, questions were percentage 

reductions with non-integer answers that required rounding to have meaning in the 

context. In phase 4, exercise B contained decimal percentages and introduced 
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percentage increases alongside decreases, although rounding was not required. Apart 

from these differences, the main changes to the questions were the context in which 

the problems were set. For each question, there was no requirement to go beyond the 

correct application of the procedure and there were few discernible connections 

between questions. As such there did not appear to be systematic variation in the 

exercises and examples (Watson and Mason, 2006) (3.3.5.2). That is to say, the same 

approach could have been undertaken in each question and there were no prompts to 

cue further interrogation of the problems or the approaches taken. In addition, all 

percentages remained less than one hundred and, as students started at exercise B, 

they did not have to attempt any ‘not’ percentage change questions.  

(d) TOM: Discourse 

In terms of the mathematical register, mathematical operations were the main 

examples of mathematical terminology. ‘Times’ was commonly used to indicate 

multiplication by both Joe and the students, with Joe occasionally using ‘multiply’. 

Some terms related to unfamiliar contexts were explained, such as GST, but ‘integer’ 

was the only mathematical term where meaning was discussed.  

In whole-class episodes, approximately 90% of talk was classified as mathematically 

related (figure 5.6: subdivision 1). There were two sub-categories of mathematically 

related whole-class episodes; turn-taking was the most common form of talk, with the 

remaining time classified as monologues (subdivision 2). The monologues consisted of 

explanations or instructions given by Joe (subdivision 3 T:E). Within turn-taking, the 

initiate-respond-evaluate (IRE) pattern, or a variant thereof, was the most common 

form of talk (subdivision 3 T:IRE); the variant was the extension of the evaluative turn 

by the inclusion of a short explanation or summary by Joe. It was common for IRE 

exchanges to be followed by additional IRE turns, forming extended whole-class 

question-and-answer sequences. Periodically, Joe shifted away from the IRE pattern by 

collecting a range of final answers from a number of students (subdivision 3 T:M), 

postponing any evaluation until they could be compared. Occasionally, students 

initiated a turn-taking exchange by asking a question or making a comment 

(subdivision 3 S:L). 
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Whole-class talk  

   

Mathematically Related Episodes  Other Subdivision 1 

     

Turn-taking  Monologues Other Subdivision 2 

       

T: IRE (inc. IRE variant) T:M S:L T:E Explains/ 
Instructs 

Other Subdivision 3 

 Figure 5.6: Joe Class A Breakdown of Whole-Class Episodes 

In IRE exchanges, Joe indicated student responses were satisfactory in a number of 

ways: repetition of the student’s comment; utilisation of the response, either by 

translation to written form on the class whiteboard or incorporation into the next 

question; use of an affirmative word, such as “OK” or a superlative such as “fantastic” 

(extracts 5.2 & 5.7); or some combination of these. About three-quarters of IRE 

responses were treated as satisfactory, in other words as ‘correct’. The remaining 

responses consisted of ‘don’t know’ comments or mathematical statements treated as 

unsatisfactory, otherwise referred to as ‘errors’. To indicate responses were 

unsatisfactory Joe sometimes replied with an evaluative phrase, such as “not quite”, 

and once challenged a response with “is it?”. On other occasions, he used repetition in 

combination with referral to other students. For example, when the 43% reduction of 

$179.99 was discussed the following exchange occurred: 

48 T: … how did you start this (.) 

49 S1: found one percent 

50 T: you found one percent (..) how did you find one percent 

51 S1: by dividing by a hundred 

52 T: so what did you divide by a hundred (..) 

53 S1: one seven nine (.) nine nine  

54 T: so you did a hundred and seventy-nine ninety-nine right (.) divided that 

by one hundred 

   [writing: 179.99 ÷ 100 = 1.7999 board]  

⁞ 

72 T: seventy-seven point three nine five seven (..) 

   [writing: × 43 = 77.3957         (43%)] 
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   are we done (.) you’re saying no (.) I saw a bit of a no but why  

73 S2: erh (.) cause you have to (..) I don’t know 

74 T: OK (.) you don’t think we’re finished yet (.) OK Mel 

   [a few students had their hands raised, including Mel] 

⁞ 

82 T: … so because it’s forty-three percent off what have I got to do (..) 

83 S2: divide it  

84 T: divide it (..) do you agree (..) you don’t (.) go on then  

   [Joe scanning then looking at a student shaking their head] 

85 S3: you take it away from er (.) that (.) first price (.)  

Extract 5.2: Joe Class A 

Lines 50, 52 and 54 are examples of Joe treating responses as satisfactory. Line 50 has 

repetition and a follow-on question and line 52 incorporated the response into 

another follow-on question. In line 54, Joe rephrased the number in a more standard 

form and summarised the whole calculation, which he wrote on the whiteboard. Lines 

48 to 52 were considered to be two cycles of IRE, whilst the revoicing, writing and 

summarising in line 54 was coded as the IRE variant. The IRE sequences continued, 

forming an extended question-and-answer sequence about the same problem. Line 73 

contained a ‘don’t know’ response. In this case, Joe asked another student, who had 

indicated their willingness to respond by their raised hand. Lines 82 to 85 contained an 

example of the treatment of an unsatisfactory response following the repetition and 

referral pattern. In this case, after the repetition Joe paused and asked, “do you agree” 

(line 84); his scanning of the room indicated this question was directed to the class in 

general. A student who had shaken his head was invited to contribute and offered an 

alternative response (line 85). Thus, there appeared to be a shared understanding that 

Joe’s actions indicated the response in line 83 was unsatisfactory.  

A common feature in the treatment of satisfactory responses was the immediacy of 

the transition away from the original question, often to the next stage of the 

procedure, via a follow-on question or explanation, or to a new idea. After ‘don’t 

know’ responses Joe either redirected the original question to another student, as 

above, asked the same student a simpler follow-up question or offered his own 

explanation. The treatment of unsatisfactory responses was either repetition followed 
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by redirection to another student, as above (extract 5.2, line 84), or indirect evaluation 

used in conjunction with a follow-up question to the same student, usually simplified 

(e.g. extract 5.6, line 138).   

As in extract 5.2 above, the last turn in one IRE exchange often formed the first turn of 

another, forming a step-by-step approach to an overarching procedure for a 

multistage problem. The majority of Joe’s questions had a limited range of 

mathematically valid responses. After a particular approach to a multi-step problem 

had started, Joe’s questions often asked for a result of a calculation or one step in the 

procedure. Joe translated students’ verbal contributions into written calculations on 

the board; he often accepted single phrase responses that he periodically revoiced 

into a more extensive description of the procedure (e.g. extract 5.2, line 54). He 

occasionally asked ‘why’, but these occurred in reference to particular steps in a 

procedure (e.g. extract 5.2, line 72). Consequently, whilst this language is usually 

associated with more open questions, in this lesson the range of mathematically valid 

responses remained limited.  

Within IRE sequences, responses treated as satisfactory were mathematically valid 

statements. That is to say, they could be interpreted as a mathematically appropriate 

response to a question posed. Whereas responses treated as unsatisfactory contained 

mathematical errors, meaning they included a mathematically invalid statement or 

response to a posed question, such as a numerical value not being the result of the 

requested calculation. 

In overall terms, IRE exchanges were predominantly initiated with a question with a 

limited range of mathematically valid responses. The most common response was a 

valid mathematical contribution that was treated as satisfactory, which was followed 

by an immediate transition to a new question. The remaining responses were either 

‘don’t know’ or mathematically invalid contributions that were treated as 

unsatisfactory. In these cases, Joe subsequent actions maintained the focus on the 

original question, either by asking a follow-up question, redirecting the question to 

another student or by offering a direct explanation himself. Joe often extended his 

own turn by including an explanation or summary. 
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There were a few occasions when Joe departed from the IRE pattern by collecting a 

range of final answers without any immediate evaluation. For example, after Joe wrote 

$179.99 − 77.3957 = $102.5943 on the class whiteboard when calculating 43% off 

$179.99 the following exchange occurred: 

106 T: … so if we rounded would we have (..) 

107 S1: erm a hundred and three dollars  

108 T: oh all right you’d go straight for a hundred and three dollars (.) OK 

interesting (.) interesting (.)  

   [writing: $103.00]                               

  Nat you said rounding as well what d’you think 

109 Nat (.) er (.) maybe a hundred and two dollars and fifty no sixty cents 

110 T:  so you’re going for hundred and two dollars and sixty cents (.) OK (.)  

   [writing: $102.60]  

  interesting (.) anybody else yeh 

111 S2: I’m saying a hundred and (.) two dollars and fifty-nine 

   [T writing: $102.59] 

Extract 5.3: Joe Class A 

After Joe had written the different answers on the whiteboard, he revealed the 

reduced price listed on the website of $102.50 and the students’ responses were 

compared to this price. There was no comparison of the students’ responses with each 

other.  

There were a few occasions when students-initiated turn-taking exchanges by making 

a comment without a direct invitation from Joe. For example, the discussion about the 

phone continued with: 

112 T: … I feel robbed cause that’s not thirt- that’s not forty-three percent off 

(.) we’ve just shown that that’s not forty-three percent off (.) Amazon 

needs to sort out its pricing (.) a hundred and two dollars fifty they’re 

charging which I think is a tiny bit over  

113 S: it’s cheaper 

114 T: (..) it is isn’t it (.) to be fair we’re saving nine cents we should be fairly 

happy shouldn’t we… 

Extract 5.4: Joe Class A 
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In line 112, Joe was in the process of offering an explanation that implied Amazon was 

overcharging. In line 113, a student called out, without a direct invitation from either a 

posed question or a request for a contribution, in which he offered an alternative 

interpretation. After a short pause, Joe acknowledged and agreed with the student’s 

contribution and goes on to add more detail by quantifying how much money is saved.  

Extended periods of talk by Joe were classified as monologues based on their duration 

and levels of self-containment. These episodes usually occurred when Jo was ‘setting 

up’ the examples used in phase 2. There was no student talk long enough to be 

similarly classified. In almost all IRE exchanges, the students’ contributions were 

shorter than Joe’s. Taken in conjunction with monologues, this resulted in over three-

quarters of class-level talk being undertaken by Joe. 

(e) TOM: Sequencing 

Joe controlled the overall trajectory of the lesson, shaped by the prepared resources, 

and he regulated the mathematical focus through questions asked and explanations 

given. For the majority of the lesson he directed or redirected student responses 

towards approaches he introduced. The inference made was that Joe usually attended 

to his mathematical horizon rather than the interrogation of student reasoning when 

managing whole-class interactions. 

The learning outcomes indicated alternative approaches were encouraged, but Joe 

maintained the focus on the ‘percentage first’ method for most of the lesson (figure 

5.5). He gave students time to attempt problems with their peers before whole-class 

discussions were held, which provided an opportunity for students to use methods of 

their choosing. However, in phases 3 and 4 only the ‘percentage first’ approach was 

discussed at a whole-class level; having established this approach in Q1, Joe drew 

attention to this procedure as being appropriate for the next calculation, stating: 

120 T: … so we’ve just done one previously and the workings here (.) so we 

divided by a hundred to find one percent (.) we times’d by forty-three to 

give us our forty-three percent so we’ll have to change that a little bit 

because we’ve got a different amount this time 

   [pointing at original amount and percentage] 

Extract 5.5: Joe Class A 
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During the discussion of Q2 Joe curtailed and postponed discussions of alternative 

approaches: 

130 T:  you’ve divided something by a hundred 

131 S: divided thirty-eight 

132 T: you divided thirty-eight by a hundred  

   [writing: 
38

100
= 0.38]  

  OK so thirty-eight divided by a hundred equals nought point three eight 

(.) then what did you do (.) 

133 S: erh don’t know 

134  you don’t know (.) ok so you’re going to have to listen really really 

carefully to what other people say aren’t you (.) Lex what did you do (.) 

   [erasing board] 

135: Lex: I did (..) I did (.) seventy-nine nine nine times one hundred (.) 

136 T: times a hundred 

137 Lex: yep 

138 T:  you’ve got a couple of people looking at you a bit weirdly there Lex (.) 

what should you have done instead 

139 Lex: divide 

⁞ 

164 T:  one final one (.) Mel 

165 Mel: the method does work 

166 T: argh does it brilliant can I share that with everyone a little bit later…  

Extract 5.6: Joe Class A 

In line 132, Joe repeated the student’s response and wrote on the board, which was a 

normal indication of a satisfactory response. However, when the student was unable 

to continue the calculation (line 133) Joe moved onto another student (line 134) and 

erased the 0.38 calculation without any further discussion. Whilst the 0.38 calculation 

was originally accepted, and there was no indication as to the source of any 

mathematical error, the likely message was that this approach was without merit, 

even though a number of successful solution strategies could follow from this starting 

point. In line 135, Lex offered an alternative starting point, which contained a 

mathematically invalid response to the problem. Joe then repeated part of Lex’s 
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response; repetition usually indicated a satisfactory response and Lex’s next turn 

indicated that he did not identify any issues with his original response (line 137). In his 

next turn, Joe’s more explicit indication of an issue (line 138) led to Lex correcting the 

operation. After this point, the IRE exchanges continued and resulted in the 

‘percentage first’ method being written on the board. 

After Joe had written the final line, 79.99 − 30.6962 = 49.9538, he asked students to 

“put that back into a price”. Alternative rounded answers were offered by a few 

students. As part of those exchanges, rather than offer another rounded answer, Mel 

responded by indicating he had an alternative approach that worked (line 165). Joe 

positively acknowledged this contribution including a superlative (line 166) but 

postponed the discussion until the last three minutes of the lesson:  

269 T: … so does that person want to share (.) yep OK go for it then 

270 Mel: because percentages are out of a hundred (.) er to get to a hundred you 

do (.) sixty-six percent 

271 T: fantastic (.) thank you so that’s the first bit (.) thirty-four percent off (.) 

so if we start with one hundred percent … if we take away thirty-four 

percent (.) what that means is that we are left (.) with sixty-six percent 

left (.) er of our original total…  

Extract 5.7: Joe Class A 

Joe had previously identified Mel as a student with an alternative strategy and asked if 

she wanted to share (line 269). After the student’s contribution (line 270), Joe used a 

superlative to positively evaluate the contribution; he used superlatives on four 

occasions, three of which were in relation to this explanation. He then revoiced the 

student’s response, extending the explanation by outlining the origins of sixty-six 

percent and completing the calculation.  

For all three questions in phase 3, the ‘one percentage’ approach established the offer 

price in an unrounded form, after which students offered a range of rounded answers 

that Joe wrote on the whiteboard. For example, in Q1 $103.00, $102.60 and 

 $102.59 were associated with $102.5943 (e.g. extract 5.3, line 106-111) and for Q2, 

£50, £49.50, £49.60 and £49.59 were associated with 49.9538. There was no explicit 

discussion about the accuracy or appropriateness of the rounded figures in any of the 
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questions. Instead, Joe drew attention to the accuracy of the online price by revealing 

the online offer (e.g. extract 5.4, line 112-114).  

(f) Interpretation of Classroom Activities 

For the majority of the lesson, Joe directed or redirected students’ attention to 

mathematical foci he introduced. As this included his management of student 

responses, the inference made was that he was often attending to his mathematical 

horizon when interpreting student contributions; the interrogation of student 

reasoning was less common. For example, in the discussion of Q2 (extract 5.6, lines 

130-134) Joe moved on to another student and the ‘one percent’ strategy when the 

student could not offer the next step after 
38

100
= 0.38; the reasoning behind this 

response was not interrogated further.  

There were occasions where Joe’s revoicing of responses may have gone beyond the 

student’s understanding. For example, when Joe was outlining the learning outcomes 

the term ‘integer’ was discussed: 

23 T: … so I want everybody to be able to calculate an integer percentage of a 

number (.) what’s an integer (..) go on Nat 

24 Nat: it’s a number without a tenth 

25 T: fantastic it’s a whole number so thirty-three twenty-one seventy-four (.) 

all integer percentages 

Extract 5.8: Joe Class A 

In line 25, Joe explicitly acknowledged Nat’s contribution as satisfactory and then 

offered his own explanation. He appeared to interpret Nat’s comment about tenths as 

inferring a broader understanding of integers.  

In the post-lesson interview, Joe stated that he had chosen to postpone the discussion 

of alternative strategies until the end of the lesson, as not all students appeared to be 

confident to apply the first method. He thought it was important that the students 

were successful with one method before others were introduced. He attributed most 

issues students encountered in phase 4 to the use of a Singapore based text, with 

students having to work with unfamiliar contexts, such as dollars and GST.  
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(g) Cognitive Demand 

Multiple solution strategies were possible, which was acknowledged and encouraged 

in the articulation of the learning goals. Moreover, students were asked to complete 

percentage change questions and participate in small group discussions before these 

were discussed at a whole-class level. Consequently, students had the opportunity to 

structure solutions themselves. However, the whole-class discussions predominantly 

focussed on the ‘percentage first’ approach, with this solution strategy structured 

step-by-step by Joe through his use of IRE sequences. As such, this ‘talk as 

mathematics’ could be seen as an articulation of a particular procedure.   

Joe also signalled that the ‘percentage first’ approach outlined for Q1 should be used 

in subsequent questions (extract 5.5). This had the potential to draw attention to the 

structure of the problem by highlighting the similarities and differences, but could 

have limited students’ subsequent considerations of alternative strategies. In addition, 

the requirement for students to articulate what the amount represented in terms of 

percentages in the early stages of the calculations provided some justification for the 

procedure. So, whilst the talk remained focussed on particular examples, some 

discussions had the potential to convey meaning beyond the examples used. 

Consequently, the majority of ‘talk as mathematics’ was classified as procedural or 

process.  

When the sequence of questions is considered, the main differences were the context 

in which the problems were presented. Indeed, all the questions contained the original 

cost, the percentage change and whether it was an increase or decrease. Once the 

students had extracted this information, they could have successfully completed all 

the tasks using the ‘percentage first’ approach (figure 5.5). Difficulties seemed to arise 

in interpreting the contexts as presented. For example, interpreting GST and interest 

as percentage increases. The questions drawn from online products exposed students 

to ‘messier’ answers that can arise when ‘real’ data is considered. This allowed 

attention to be drawn to the necessity of rounding to give meaning in monetary 

contexts. However, there was no explicit discussion of the different levels of accuracy 

when students offered their rounded answers. 
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Joe signalled that other approaches were possible, and it was desirable to find these 

methods, albeit with the expectation that only a few students working at ‘gold’ would 

engage in this activity. As such, students had the opportunity to work on the tasks in a 

manner that required higher levels of cognitive demand, but there was no 

requirement to do so. For the student, Mel, who offered the alternative strategy at the 

end of the lesson, there was no clear evidence as to whether she had met this 

approach previously or had ‘discovered’ it for herself in the lesson. There was a short 

whole-class discussion of this alternative approach, and as such an ‘effective student 

of mathematics’ would have had the opportunity to consider at least one alternative 

strategy. However, this was a wholly verbal exchange between Joe and Mel held at the 

end of the lesson and without a written solution being presented on the class 

whiteboard. This would have made it more difficult for the remaining students to 

consider this strategy and compare it with the ‘percentage first’ approach.  

Consequently, the potential cognitive demand of tasks was high. However, if students 

had followed the ‘percentage first’ approach that dominated the whole-class 

discussions, they could have successfully completed all tasks without working at these 

higher levels.  

(h) Classroom Norms  

Within the lesson, Joe directed student activities and regulated the mathematical 

direction of travel, determining both the content and mathematical approaches to be 

taken. As such, he could have been seen as having high levels of agency within his 

classroom. The learning goals and tiered exercises contributed to the notion that 

mathematics has a hierarchy, both in terms of the mathematical content and the 

learning of mathematics. In particular, demonstration of competence in terms of 

performance was the expectation for all students and was a prerequisite for moving 

onto tasks that involved more student-led thinking. Moreover, the latter was 

appropriate for a minority of students who moved onto the highest learning goal.  

The most common form of interaction was IRE turn-taking, and Joe tended to revoice 

student contributions, often summarising or extending explanations. These actions 

reinforced the norm that Joe was the arbiter of correctness and that he was 

responsible for explanations. Although, towards the end of the discussions of each 
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question in phase 3, Joe collected multiple answers from students and postponed any 

evaluation. This shifted Joe out of an evaluative role, albeit for short periods of time, 

and provided exposure to situations where more than one solution could be 

considered acceptable. There were a few occasions where students took more of an 

initiative. For example, a student ‘corrected’ Joe’s interpretation of the accuracy of 

rounding on a website (extract 5.4, line 113), thus demonstrating some aspects of 

agency. Thus, there were signals that student contributions were valued, but the final 

judgment about the legitimacy of mathematical contributions resided with Joe.  

Most of the questions asked by Joe were related to a particular procedure and had a 

limited range of valid mathematical solutions. Whilst explanations were part of some 

student responses, a description of the next step in a procedure was treated as a 

satisfactory explanation. Within IRE sequences, Joe usually indicated a response was 

satisfactory with an immediate transition to a new question, whereas unsatisfactory 

responses led to follow-up questions until the ‘correct’ response was forthcoming. 

These contributed to the narrative that the efficient production of the correct answer 

was the expectation of an ‘effective student of mathematics’, and if met, errors should 

be corrected. However, while Joe structured the solutions, the students were regularly 

asked to provide the steps, with Joe occasionally providing the answer; for example:  

199 T:  what’s our first step 

200 S: divide (.) erm three four nine nine (point nine nine) by a hundred 

201  T: so three thousand four hundred and ninety-nine divided by a hundred (.) 

and that gives us thirty-four point nine nine (.) nine nine and what does 

that represent… 

Extract 5.9: Joe Class A 

This could contribute to the narrative that an ‘effective student of mathematics’ can 

also be responsible for structuring the problem, indicating the process carries 

importance as well as the numerical answer.   
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5.3.1.4 Joe: Summary for Class A  

Throughout the iterative analysis process, pedagogical features of particular lessons 

were mapped to lesson-specific OMFs. These OMFs were working documents, 

gradually populated as different data were analysed. Figure 5.7 was the final working 

document generated through this process for Joe’s class A. This exemplifies how the 

OMF summarises the pedagogical profile for a lesson. This document was drawn on in 

the further analysis, forming a key point of comparison when Joe’s class A was 

compared to class B, and later when the three teachers were compared.  

However, these lesson-specific summary OMFs were working documents that 

contained descriptions in note form and bespoke abbreviations. Accordingly, in order 

to communicate the key themes from the analysed lesson, a written summary has 

been provided before the presentation of the OMF. This written summary offers an 

overview of the pedagogical features of the lesson, though it should be noted that the 

OMF models the relationships between features. 

(a) Joe Class A: Written Summary – Percentages Lesson  

The following outline draws together the key themes from the analysed lesson 

discussed in the preceding section (5.3.1.3). As such, this is a summary of the 

pedagogical features for the observed lesson.  

A) Curriculum 

a) From a ‘middle’ curriculum route  

B) Organisation 

a) Seatwork: individual, peer discussion encouraged but not required; self-

selected tiered textbook work  

b) Interleaved seatwork with whole class  

C) Discourse patterns: aligned with patterns previously reported (e.g. Drageset, 2015) 

a) IRE dominant, limited solution questions in linked sequences  

b) Typical satisfactory/unsatisfactory norms: ‘Correct’ responses  follow-on 

questions; ‘errors’  follow-up questions 

c) Revoicing; rephrasing (increasing precision) and explanations extended 

D) Tasks 
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a) Links to ‘real-world’ contexts but psuedo-contexts for textbook work  

b) Focus on one solution strategy and limited use of multiple representations.  

c) Model – exercises; limited range of permissible change (Bills et al., 2006) 

E) Sequencing 

a) Focus on mathematical horizon; (re)direction to solution strategy introduced  

b) Some attention drawn to mathematical structure through questioning 

F) Teacher Cognition 

a) Espoused priority was to develop student understanding; articulated lesson 

goals had performance orientation 

b) Privileged his mathematical horizon when interpreting student responses 

G) Classroom norms 

a) Teacher arbiter of correctness  

b) Procedure counts as explanation; mathematics as a hierarchy 

H) Cognitive Demand 

a) Potential high but range low to high (limited press to move beyond procedural) 

(b) Joe Class A: Summary OMF – Percentages Lesson 

As previously indicated, the lesson-specific summary OMF was a working document. 

Descriptions were in note form and abbreviations were used, which are summarised in 

table 5.1. 

Standard subheadings  Text abbreviations  
MSS  
MR  
Generaln 
SN 
SMN 
MP 
ESM 

Multiple solution strategies 
Multiple representations 
Generalisation 
Social norms 
Sociomathematical norms 
Mathematical practices 
Effective student of mathematics 

Soln 
Sat 
Unsat 
SS 
RoPC 
DoV 
T 
SW 
ISW 
WC 

Solution 
Satisfactory 
Unsatisfactory 
Solution strategy 
Range of permissible change 
Dimensions of variation 
Teacher 
Seat work 
Individual seat work 
Whole class 

Table 5.1: Abbreviations for Summary OMF 
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Joe Class A Summary OMF 

 

Figure 5.7: Joe Class A Summary OMF  
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5.3.1.5 Joe: Class B 

This was a Key Stage 3 class, composed of about fifteen students who had attainment 

profiles below average for their year group in the school. 

(a) Lesson Specific: Teacher’s Knowledge, Beliefs and Values, incorporating Initial 

Lesson Image 

Joe’s stated lesson goal was for students to become more fluent with multiplying by 

tens, hundreds and thousands when decimals were involved, which aligned with the 

learning goals shared with students. As such, Joe’s articulated lesson goal was 

considered performance orientated. Joe added that a few students might progress 

onto division. This was set up as a student led activity, where they would attempt 

problems without seeing modelled solution strategies. As such, a learning orientation 

was considered a possibility for some.  

In his assessment, a number of the students had weak mental arithmetic skills that 

could hinder progress. For this reason, he felt the ‘fluency starter’ was particularly 

beneficial for this class. Preceding lessons focussed on multiplication by powers of ten; 

Joe’s assessment was the majority of students could accurately multiply integers by 

ten, a hundred and a thousand. He anticipated errors would occur with decimals, with 

a variety of origins. For instance, he thought some might “add zeros”, rather than use 

a place value approach, such as headed columns. In addition, he thought difficulties 

would arise in managing the decimal point if calculations required decimals to be 

multiplied by integers. Consequently, he planned a × 10n first approach to reduce the 

requirement to use decimals in latter stages. Joe did plan for the class to move onto 

percentage calculations and percentage change in subsequent lessons, but anticipated 

more time would be needed. Specifically, he thought it would take two lessons to 

cover the percentage change content delivered to class A in one lesson, and that he 

would need to take out the rounding aspect.   

(b) TOM: Organisation 

The lesson was timetabled for one hour and lasted fifty-six minutes due to lesson 

transitions. Nineteen minutes were spent at a whole-class level with the remaining 

time spent on individual seatwork. Desks were arranged in groups; most students sat 
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in pairs or threes, with a couple of students sitting on their own. Students were 

encouraged to work with their peers. For example, when a couple of students were 

self-marking, Joe suggested they worked together to correct mistakes. During the 

second half of the lesson, Joe circulated and interacted with all students at least once, 

either individually or in small groups.    

Whole 
class 

                                                        

Seat 
work 

                                                        

 1st: 
Starter 

2 
* 

3rd:  
Qs Board 

 
Pens 

4th:  
 PP Questions 

5th:  
 Textbook 

6th: 
*LO  

 

  

            5 mins    13 mins   9 mins       20 mins         5 mins 

*Learning Objectives: 1 minute in phase 2 and 5 minutes in phase 6.   

Figure 5.8: Joe Class B Organisation 

(c) TOM: Tasks, Examples and Explanations – Overview 

The lesson was entitled ‘Multiplying by 10s, 100s and 1000s’. It was part of a sequence 

of lessons that started with multiplying by powers of ten. The intention was to move 

onto percentages, including percentage change.  

Phase 1: Starter 

Joe used the same fluency starter as for class A (figure 5.3); these students were also 

familiar with this type of task. After individual seatwork, students self-marked their 

work and points were awarded for correct answers.   

Phase 2: Sharing Learning Outcomes 

The ‘big question’ and learning outcomes were displayed on a PowerPoint slide and 

there was a short discussion.  

The ‘big question’: What is the relevance of these  

[a picture of a pile of hundred and thousand sprinkles] 

Learning outcome: To be able to multiply decimals by 10s, 100s and 1000s. 

The learning outcome was split into tiered learning goals:  

 Bronze: Multiply decimals by ten, hundred and a thousand 

 Silver: Multiply decimals by tens, hundreds and thousands 

 Gold: Divide decimals by ten, hundred and a thousand 
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3.14 × 20 = 3.14 × 10 × 2 

          = 31.4 × 2 

   = 62.8 

Phase 3: Multiplication Problems 

Questions related to the bronze and silver learning goals were discussed at a whole-

class level. Joe initially asked what the difference was between multiplying by ten and 

by tens. When students were initially unable to recall, Joe hand wrote a set of 

questions on the board:  

Q1  3.14 × 10  Q2  3.14 × 20  Q3  3.14 × 40 

The approach taken was to write the tens, hundreds or thousands as factors of powers 

of ten and a single digit; for example:               

 

 

 

Figure 5.9: Joe Class B Tasks 

During the discussions about Q1 Joe used column headings to demonstrate how the 

digits ‘moved’ when multiplying by 10:   𝐻 ǀ 𝑇 ǀ 𝑜𝑛𝑒𝑠 ǀ 𝑡𝑒𝑛𝑡ℎ𝑠 ǀ ℎ𝑢𝑛𝑑𝑟𝑒𝑑𝑡ℎ𝑠  

Two questions were then presented on PowerPoint slides and discussed.  

For the second slide, ‘100 

packs’ was replaced with ‘30 

packs’. 

 

 

Figure 5.10: Joe Class B Tasks  

Phase 4: Practice Questions 

With the next PowerPoint slide (figure 5.11), Joe talked through the example, making 

reference to the different order of the first line in comparison to his previous examples 

(figure 5.9). Students were then asked to complete the questions. 

  

If I wanted to order 100 packs of pens for the 
school how much would that cost? 

£3.49 
£3.39 
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PowerPoint 

Example: Multiply 0.8 by 200    0.8 × 200 = 0.8 × 2 × 100    

      = 1.6 × 100              

      = 160    

Q What are the missing numbers? 

𝑎) 0.7 × 400 = 0.7 ×  × 100  𝑏) 0.19 × 4000 = 0.19 × 4 ×    

           =  × 100        =  × 1000 

           =         =  

𝑐) 0.143 × 3000 = 0.143 ×  × 1000 

                                 =  × 1000 

Figure 5.11: Joe Class B Tasks 

Phase 5: Textbook Exercises 

Students were given a choice of which exercise to complete from an online textbook; 

as with the learning goals these were tiered. 

Bronze:  Q1 0.3 × 100 … Q6 1.43 × 1000 …  

Silver:   Q1 0.7 × 300 … Q6 3.24 × 30 … 

Gold:   Q1 3.2 ÷ 10 …   Q6 0.3 ÷ 10 … 

In all the multiplication sums, the multiplier was a decimal and the multiplicand was a 

multiple of a power of ten. The decimal multipliers had one, two or three digits and 

were less than one in early questions, with decimals greater than one introduced later. 

Some questions needed the use of zero placeholders. Early answers were integers, 

with later answers a mixture of decimals and integers but there appeared to be no 

connections between questions. The division questions started with dividends greater 

than one, moving onto decimals less than one in later questions. Students were asked 

to check their own work using a calculator.  

Phase 6: Review of Learning Objectives  

The students reviewed the learning objectives by writing about WWW (what went 

well) and EBII (even better if I…); this activity was undertaken in most lessons. This 

included time to self-mark their work. 

General 

Whilst the intention behind the ‘big question’ was to offer a real-world application, Joe 

stated this was one of those occasions where he had not found anything suitable. This 

led him to focus on the learning outcomes in phase 2. The first set of questions in 
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phase 3 was context free. The PowerPoint questions were based on a real website and 

Joe drew attention to his personal interest in the product, stating “these are my 

favourite type of pens … they take a little while to run in but they’re good when 

they’re run in”. However, while the students were likely to be familiar with online 

ordering, it was far less likely there would be a need to perform calculations of this 

type. As such, students could have perceived the activity as classroom mathematics 

rather than having relevance outside the school context.  

Multiple solution strategies were possible, including formal and informal written 

methods and mental strategies. A range of strategies was seen, although these were 

usually applied separately to different questions rather than in parallel and applied to 

the same question. For example, the shared strategy in phase 3 was factorising the 

multiplicand into a power of ten and a single digit (figure 5.9), with the product of the 

initial multiplier and power of ten calculated first. The phase 4 PowerPoint (figure 

5.11) introduced a different order; Joe stated this was also “perfectly reasonable” but 

there was no further discussion about why this was the case. In the whole-class 

discussions, multiplying by a power of ten was done mentally, but having modelled the 

use of columns early in the lesson, Joe advocated their use to check if students were 

unsure.  

When the overall sequence is considered, there was a transition from multiplying by 

ten, hundred and a thousand to tens, hundreds and thousands. In addition, multipliers 

and multiplicands varied such that zero placeholders were needed in phase 4. 

However, all the multiplication questions were of the same format, and could have 

been completed using the strategy modelled in phase 3. For each question, there was 

no requirement to go beyond the correct application of a procedure and there were 

few discernible connections between questions. As such, there did not appear to be 

systematic variation in the exercises (3.3.5.2). 

(d) TOM: Discourse 

In terms of the mathematical register, the main use of mathematical terminology in 

whole-class talk related to multiplication. Whilst Joe used ‘multiply’ and ‘times’ in 

about equal proportion, students only used the term ‘times’. Early in the lesson, Joe 

asked the students about the difference between multiplying by ‘ten’ and ‘tens’. A 



157 | P a g e  

student responded, “would it be like like (.) times tweny and times thirty”. After Joe 

offered an explicit positive evaluation of this response, there was no further reference 

to these terms. 

In whole-class episodes, approximately 90% of talk was classified as mathematically 

related (figure 5.12: subdivision 1). There were two sub-categories of mathematically 

related whole-class episodes; turn-taking was again the most common form of talk, 

although monologues by Joe formed a higher proportion of talk compared to class A 

(subdivision 2). The monologues consisted of explanations or instructions given by Joe 

(subdivision 3 T:E). Within turn-taking, taken together, IRE exchanges and the variant 

with an extended evaluative turn were the most common form of talk, which were 

often linked to form extended question-and-answer sequences (subdivision 3 T:IRE). 

On a couple of occasions Joe shifted away from an IRE pattern by not immediately 

evaluating a student’s response (subdivision 3 T:M); this allowed different answers to 

be collected and compared. Occasionally students initiated a turn-taking exchange by 

asking a question or making a comment (subdivision 3 S:L). These general discourse 

patterns were similar to his other class.  

Whole-class talk  

   

Mathematically Related Episodes  Other Subdivision 1 

    

Turn-taking  Monologues  Other Subdivision 2 

      

T: IRE (inc. IRE variant) T 
M 

S 
L 

T:E Explains/ Instructs  Other Subdivision 3 

Figure 5.12: Joe Class B Breakdown of Whole-Class Episodes 

Joe indicated whether student responses in IRE exchanges were satisfactory or 

unsatisfactory in similar ways as with class A. Namely, satisfactory responses were 

acknowledged immediately with affirmative words, by repetition, the utilisation of the 

response, or some combination of these. About three-quarters of IRE responses were 

treated as satisfactory, with about one fifth of the evaluative turn containing a 

superlative. Most of the remaining responses consisted of ‘don’t know’ comments or 

mathematical statements that were treated as unsatisfactory. Joe used indirect 
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indicators that responses were unsatisfactory, such as repeating the question, asking a 

follow-up question or offering an explanation; on a couple of occasions, he offered his 

interpretation of student reasoning. Occasionally, Joe’s evaluative turn was more 

neutral as he sought clarification or redirected the question. For example, having 

rephrased the first ‘pens’ question (figure 5.10) as “If I want a hundred packs of pens, 

how much is that going to cost me”, Joe continued:   

109 T: … how many do I want (.) 

110 S1: you need ten packs 

111 T: ooh do I need ten packs (.) arh no I want a hundred packs of pens not a 

hundred pens OK (.) I want a hundred packs (.) so what am going to need 

to do (.) 

112 S2: you (.) times it by a hundred 

113 T: brill so you’re going to do three pounds forty-nine (.) multiplied by a 

hundred  

   [writing: 3.49 × 100] 

Extract 5.10: Joe Class B 

When line 111 is taken into account, in line 109 Joe appeared to be asking students to 

state the first part of the ‘pens’ question, namely how many packs were wanted, 

although the phrasing was ambiguous. The student’s response (line 110) was not valid 

with respect to that question. In line 111, Joe reworded the student’s response as a 

question, but before anybody responded he appeared to interpret the student’s 

reasoning as misreading the question as ‘how many packs for a hundred pens’, for 

which ten is correct. Joe then answered the question himself and concluded his turn 

with a new question. So, while Joe did not treat the response as satisfactory, he 

identified the source of the trouble as the reading of the question rather than a ‘faulty’ 

mathematical calculation. In line 113, Joe used a superlative as an explicit positive 

evaluation. This was a typical example of how he used superlatives, namely in the 

evaluation of a correct calculation. He then extended the student’s response by 

including the complete sum. 

As with class A, Joe regularly revoiced the students’ satisfactory contributions, often 

extending the response by including more of the mathematical calculation (e.g. extract 
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5.10, line 113). Another common feature of Joe’s treatment of satisfactory responses 

was the use of his turn to transition to a new question or idea, whereas, his actions 

associated with unsatisfactory responses kept the focus on the original question.  

As with class A, IRE exchanges were often linked to form a step-by-step approach to a 

multistage procedure. The majority of questions had a limited range of mathematically 

valid responses, with the questions posed often a request for one step in a procedure 

(e.g. extract 5.10, line 112) or the result of a calculation. Within IRE sequences, 

responses treated as satisfactory could be considered to be mathematically valid 

statements, albeit with varying levels of mathematical precision. Responses treated as 

unsatisfactory either did not address the question posed (e.g. extract 5.10, line 110) or 

contained a mathematical error, such as “three hundred and ten” in response to 

3.14 × 10.  

In overall terms, most IRE exchanges were initiated with a question with a limited 

range of mathematically valid responses. The most common pattern was a valid 

mathematical response, treated as satisfactory and with an immediate transition to a 

new question. In the remaining cases, Joe’s subsequent actions maintained the focus 

on the original question, either by seeking clarification, asking a follow-up question or 

by offering a direct explanation himself. Joe often extended his own turn, by including 

an explanation or summary.  

There were a few occasions when students-initiated turn-taking exchanges by making 

a comment without a direct invitation from Sam. For example, the discussions about 

multiplying by a hundred (figure 5.10) continued with: 

25 T: we would move the numbers over two 

26 S:  basically er add a zero on them  

27 T: mmm sometimes (.) sometimes (.) how far do we move the numbers if 

we are multiplying by ten  

Extract 5.11: Joe Class B 

As Joe did not ask a question in his turn (line 25), the student’s comment was classified 

as student-initiated. In line 27, Joe partially acknowledged the student’s contribution 

before redirecting attention back to using place value and column headings.  
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Some periods of talk by Joe were classified as monologues, which were mostly 

extended explanations; there was no student talk long enough to be similarly 

classified. In all bar one IRE exchange, the students’ contributions were shorter than 

Joe’s. Taken in conjunction with monologues, this resulted in about four fifths of class-

level talk being undertaken by Joe. 

(e) TOM: Sequencing 

Joe controlled the overall trajectory of the lesson, shaped by the prepared resources, 

and he regulated the mathematical focus through questions asked and explanations 

given. For much of the lesson he directed or redirected attention towards approaches 

he introduced, with the inference made that he attended to his mathematical horizon 

more often than student reasoning when managing classroom interactions.  

There was one occasion when Joe maintained the focus on the original response after 

treating it as satisfactory. This occurred after a student had offered “one hundred and 

four point seven pounds”, which Joe had accepted but went on to ask “can I have 

point seven pounds”. The following exchange then occurred: 

135 S1 no it’s one hundred and four pounds point er (.) erm and seven pence 

136 T: is it seven pence 

137 S2: yes 

138 S3: seventy 

139 S4: no seven 

140 T: this is an interesting one isn’t it (.) how would we write (..)  

Extract 5.12: Joe Class B 

It appeared that Joe had used the opportunity to explore students’ understanding of 

decimals in a monetary context. However, he structured the explanation and drew to a 

conclusion by writing £104.07 for seven pence and £104.70 for seventy pence and used 

columns to demonstrate £104.7 was the same as £104.70.  

Multiple solution strategies are possible for multiplying by tens, hundreds and 

thousands. For the majority of the lesson Joe maintained the focus on factorising as a 

power of ten and a single digit, multiplying by the power of ten first. This included 

redirecting students back to this approach when they were offering an alternative 
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starting point that could have led to a correct solution. For example, when discussing 

the cost of thirty packs of pens, the following exchange occurred: 

124 T: … which as you quite rightly said is three point four nine times ten times 

three (.) go on  

   [on board: 3.49 × 30 = 3.49 × 10 × 3] 

125 S1: so the nine would be um er (.) twenty-seven 

126 T: oh hang on can we times by ten first 

Extract 5.13: Joe Class B 

The student’s comment on line 125 could have been part of a mathematically valid 

approach to calculating the required cost. However, in line 126, Joe redirected the 

student’s attention to multiplying by ten, without ascertaining how the student was 

going to use the partial calculation. 

When the example on the PowerPoint used a different order, multiplying by the power 

of ten last, Joe explained this was also “perfectly reasonable”, but there was no further 

whole-class discussion or comparison of methods. For the stage when students 

needed to multiply by a single digit, Joe accepted a range of strategies, such as 

doubling twice for multiplying by four, but stated, “I would recommend maybe doing it 

like that” whilst writing out a ‘long multiplication’ sum. So, whilst acknowledging 

alternative strategies, it appeared that Joe endorsed particular approaches.  

(f) Interpretation of Classroom Activities 

Joe regulated whole-class interactions through his use of questions and explanations 

and he usually directed or redirected student responses towards approaches he 

introduced (e.g. extract 5.13, line 126). Whilst there were a couple of cases where Joe 

appeared to be interpreting students’ reasoning (e.g. extract 5.10, line 111), on many 

occasions Joe revoiced student contributions, rephrasing in more formal terms. The 

inference made was that Joe often attended to his mathematical horizon when 

interpreting whole-class interactions.  

Some of Joe’s revoicing into more precise language may or may not have represented 

the student’s understanding. For example, when Joe was introducing the lesson goals 

the following exchange occurred: 
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19 T: … what do we do when we multiply by a hundred 

20 S: would you (.) er (.) take it up twice 

21 T: what do you mean by take it up 

22 S:  so when you have the grid 

23 T: er the number columns 

24 S: yeh you would take the decimals up twice 

25 T: we would move the numbers over two 

Extract 5.14: Joe Class B 

In line 21 Joe seeks clarification from the student; as such this was classified as a 

neutral evaluative turn. In Joe’s next turn (line 23), he reworded the student’s 

comment, which the student accepted in their following turn (line 24). In line 25, Joe 

reworded the student’s contribution into more precise terms. As there was no 

example involved, it was unclear how the student would enact her manipulation of 

decimals.  

In the post-lesson interview, Joe stated that he had added the additional examples of  

3.14 × 10, 3.14 × 20 and 3.14 × 40 after the discussion of the learning goals, as he felt 

the students had not recalled the difference between multiplying by ten and tens. 

However, he said in retrospect that 20 and 40 were not the best choice for examples, 

as the students could use doubling strategies that would not work on other decimal 

multiplications.  

(g) Cognitive Demand 

Multiple solution strategies were possible and were acknowledged at some points in 

the lesson. However, the whole-class discussions predominantly focussed on the one 

approach and this solution strategy was structured step-by-step by Joe through his use 

of IRE sequences. Consequently, such talk could be seen as an articulation of a 

particular procedure. The inclusion of column headings offered a more explicit 

representation of the decimal number system and the factorisation/product approach 

allowed students to manipulate numbers in different ways, both of which provided an 

opportunity for students to make links to the underlying mathematical structure. For 

example, the requirement for and the placement of zero as a placeholder was 

illustrated through this modelling. So, whilst the talk remained focussed on particular 
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examples, some discussions had the potential to convey meaning beyond the 

particular examples used. Consequently, the majority of this ‘talk as mathematics’ was 

classified as procedural or process. 

In phase 3, there was a whole-class discussion about a question that required the 

modification of a decimal answer for a monetary context (extract 5.12), but this type 

of question was not met again, so the students had no further opportunities to engage 

with this issue. Different types of decimal manipulation were required in different 

questions. For example, later questions had calculations that most students would not 

have been able to do with mental methods and some required the use of zero 

placeholders. So, the efficiency and ease of different approaches varied between 

questions. As students could choose their own strategies, there was the potential for 

them to develop a more flexible approach to calculations, but there was no whole-

class comparison of different approaches. Consequently, whilst it was possible for 

students to work on the tasks in a manner that required high levels of cognitive 

demand, this would have been at their own instigation; the students could have 

successfully completed the tasks by applying one approach with which they were 

familiar, thereby working at lower levels of cognitive demand. 

(h) Classroom Norms  

As with class A, Joe directed student activities, determined the mathematical content 

and regulated many of the mathematical approaches taken. As such, he could have 

been seen as having high levels of agency within his classroom. The learning goals and 

tiered exercises contributed to the notion that mathematics has a hierarchy, both in 

terms of the mathematical content and the learning of mathematics.  

IRE was the most common interaction, and Joe tended to revoice student 

contributions, often summarising or extending in his turn. These actions reinforced the 

norm that judgments about the legitimacy of mathematical contributions resided with 

Joe. There were a few occasions where students made self-initiated contributions, 

demonstrating some agency (e.g. extract 5.11). There were a couple of occasions 

where Joe postponed an evaluation (e.g. extract 5.12, lines 137-139), which shifted 

him out of the evaluator role for short periods of time, but he drew the discussions to 
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a conclusion by offering an explanation, reinforcing the notion that he was the arbiter 

of correctness and was responsible for explanations. 

Most of the questions asked by Joe related to a particular procedure and had a limited 

range of valid mathematical responses. Most student responses were short and were 

often only part of a calculation; a description of a partial next step in a procedure was 

treated as satisfactory, with Joe often adding greater mathematical detail in his turn. 

Within IRE sequences, satisfactory responses were usually followed by an immediate 

transition to a new question, whereas unsatisfactory responses led to follow-up 

questions until the ‘correct’ response was forthcoming. These contributed to the 

narrative that the efficient production of the correct answer was the expectation of an 

‘effective student of mathematics’ and that if errors were met, they should be 

corrected. The fact that students were asked to check their answers using a calculator, 

and to move on if they were correct, could have reinforced the notion that finding the 

‘correct’ answer was the goal, with the process used of less importance.  
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5.3.1.6 Joe: Summary for Class B 

As with class A, analysis was an iterative process and an OMF for class B was populated 

during this process. The lesson-specific summary OMF (figure 5.13) was the final 

working document that summarised the pedagogical profile for the lesson. Again, it 

was this lesson-specific summary OMF that was used in the further analysis when 

lessons and teachers were compared. As before, a written summary is provided first to 

communicate the key themes from the analysed lesson.  

(a) Joe Class B: Written Summary – Multiplying Lesson 

As with class A, the following outlines the key themes from the analysed lesson 

discussed in the preceding section (5.3.1.5).  

A) Curriculum 

a) From a ‘lower’ curriculum route  

B) Organisation 

a) Seatwork: individual, peer discussion encouraged but not required; self-

selected tiered textbook work  

b) Block of whole-class work followed by block of seatwork 

C) Discourse patterns: aligned with patterns previously reported (e.g. Drageset, 2015) 

a) IRE dominant, limited solution questions in linked sequences  

b) Typical satisfactory/unsatisfactory norms: ‘Correct’ responses  follow-on 

questions (superlatives used in one fifth); ‘errors’  follow-up questions 

c) Revoicing; rephrasing (increasing precision) and explanations extended 

D) Tasks 

a) Initial questions: tenuous links to ‘real-world’ (psuedo-contexts)  

b) Focus on one solution strategy and limited use of multiple representations.  

c) Model – exercises; limited range of permissible change (Bills et al., 2006) 

E) Sequencing 

a) Focus on mathematical horizon, (re)direction to solution strategy introduced  

b) Some attention drawn to mathematical structure through questioning 

F) Teacher Cognition 

a) Espoused priority was to develop student understanding; articulated lesson 

goals had performance orientation 
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b) Interpretation of student responses usually privileged his mathematical 

horizon; occasional attention to student reasoning 

G) Classroom norms 

a) Teacher arbiter of correctness  

b) Procedure counts as explanation; mathematics as a hierarchy including ways of 

working  

H) Cognitive Demand 

a) Potential high but range low to high (limited press to move beyond procedural) 

(b) Joe Class B: Summary OMF – Multiplying Lesson 

This lesson-specific summary OMF was a working document, with descriptions in note 

form and bespoke abbreviations used (see table 5.1). 
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Joe Class B Summary OMF 

 

Figure 5.13: Joe Class B Summary OMF 
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5.3.1.7 Joe: Class Comparisons 

One lesson from each class was recorded and analysed. Joe’s two lessons were 

compared, which used the lesson-specific summary OMFs as a key point of 

comparison. These allowed common and differential themes to be identified and 

facilitated the interrogation of the lesson narratives to identify episodes that 

exemplified these features. When these two lessons were compared, there were many 

similarities in Joe’s pedagogical approaches, although differences were also noted 

The comparison of lessons from the perspective of the summary OMFs can be found in 

appendices 3.5.1 & 3.5.2, where underlining was used to highlight common and 

differential features. These comparisons, cross-referenced with the more detailed 

lesson narratives, informed the written summary given below. For ease of comparison, 

this follows the same structure as the written summaries for the individual lessons. 

Similarities between the classes are indicated with normal type and differences are 

indicated with italics.  

A) Curriculum 

a) Class A: ‘Middle’ route (sequence of lessons: ‘percentage of’, percentage 

change, inverse percentages). Class B: ‘Lower’ route (sequence of lessons: 

powers of ten(s), ‘percentage of’, percentage change) 

B) Organisation 

a) Seatwork: Individual, peer discussion encouraged but not required; self-

selected tiered textbook work  

b) Class A: Interleaved seatwork with whole-class. Class B: Block of whole-class 

work followed by a block of seatwork 

c) Class B contained fewer students 

C) Discourse patterns: aligned with patterns previously reported (e.g. Drageset, 2015) 

a) IRE dominant, limited solution questions in linked sequences  

b) Typical satisfactory/unsatisfactory norms: ‘Correct’ responses  follow-on 

questions (Class B: superlatives used more frequently); ‘errors’  follow-up 

questions 

c) Revoicing; rephrasing (increasing precision) and explanations extended 

D) Tasks 
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a) Class A: some links to ‘real-world’ contexts. Both: elements of psuedo-contexts 

b) Focus on one solution strategy and limited use of multiple representations.  

c) Model – exercise; limited range of permissible change (Bills et al., 2006) 

E) Sequencing 

a) Focus on mathematical horizon, (re)direction to solution strategy introduced  

b) Some attention drawn to mathematical structure through questioning 

F) Teacher Cognition 

a) Espoused priority was to develop student understanding; articulated lesson 

goals had performance orientation 

b) Interpretation of student responses usually privileged their mathematical 

horizon. Class B: occasional attention to student reasoning 

G) Classroom norms 

a) Teacher arbiter of correctness  

b) Procedure counts as explanation; mathematics as a hierarchy including ways of 

working  

H) Cognitive Demand 

a) Potential high but range low to high (limited press to move beyond procedural) 
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5.3.2 Teacher: Sam 

5.3.2.1 Background 

Sam engaged in a wide range of CPD opportunities that included both school-initiated 

and self-directed courses. This resulted in Sam being involved in more CPD than the 

majority of his colleagues.  

The school placed students in sets for mathematics. Their policy was to use targets 

generated by SATs performance and internal assessments to make judgments, but 

after the sets were first established, this also involved teacher recommendation. Most 

movement occurred once a year and, rather than use a re-ranking of all students 

based on attainment, the two or three students with highest and lowest attainment in 

each set was considered and moved based on teacher recommendation and set sizes. 

However, the school leadership also placed a few students in particular sets based on 

issues related to behaviour. Consequently, about ten percent of students moved 

classes each year. There was a single curriculum plan for each Key Stage 3 year group, 

but alternative routes were identified for different sets. In each topic area, content 

was tiered, with different content listed as ‘core’ or ‘optional’ for different sets.  

The pre-lesson interviews indicated that the level of planning and resource 

development for the recorded lesson was typical of about one in five of his lessons. He 

followed his departmental scheme of work and the specific topic chosen for the 

recorded lessons fell within the then current overarching theme. However, the 

recording did prompt some adjustments. First, Sam chose to teach lessons on indices 

out of sequence from the order specified in the scheme of work, as he felt that this 

was a “rich topic full of potential”. Second, he used very similar resources for both 

classes and planned the two lessons together, as he thought this would “aid 

comparison”; this was not his usual practice. As will be discussed in more detail in 

subsequent sections, this resulted in a typical lesson for class A, but a more atypical 

lesson for class B. The recorded lessons were one hour long and were one of four 

mathematics lessons held each week. 
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5.3.2.2 Teacher’s Knowledge, Beliefs and Values 

In the pre- and post-interviews, Sam outlined his priority was to enable students to 

engage in tasks where they could develop an understanding of the mathematics. In 

particular, he wanted students to have the opportunity to discuss mathematical ideas 

and consider the ‘why’. He felt student engagement in “rich tasks” that allowed 

discussions was important, as this was an effective way to expose and challenge 

misconceptions whilst also leading students to become more invested in the 

mathematics. Whilst different routes through the curriculum were identified, Sam felt 

he had the discretion to develop bespoke routes based on his assessment of the 

classes. However, in practice, Sam reported that more often than not his lessons 

aligned with the suggested content for each set; the recorded lessons for class B were 

some of the exceptions.   

A key strategy Sam identified for developing students’ understanding was planning 

lessons around “what about the mathematics”. He explained this as having a clear idea 

as to what mathematical concepts students would meet when engaging in particular 

activities. Referencing variation theory, Sam talked about how, both individually and in 

collaboration with departmental colleagues, he considered the specifics of the 

examples being used. He used an example of algebra, where from a starting point of 

𝑥 + 𝑥 he explained he would consider what difference it would make moving onto, say, 

𝑦 + 𝑦 or 2𝑥 + 𝑥. Sam stated he had paid particular attention to the impact of changing 

exponents when planning the PowerPoint questions.  

5.3.2.3 Sam: Class A 

This was a Key Stage 3 class, composed of about thirty students who had attainment 

profiles higher than average for that year group in the school.  

(a) Lesson Specific: Teacher’s Knowledge, Beliefs and Values, incorporating Initial 

Lesson Image 

In the pre-lesson interview, Sam’s stated lesson goal was to enrich the students’ 

understanding of powers. He linked this to the demonstration of particular skills, 

namely the recall and application of the rules of indices. As such, his articulated 
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learning goal was considered to be learning orientated, albeit with a potentially 

narrow interpretation of learning.  

The students had done some work on indices in the previous year but had not met 

formally written rules of indices. Sam planned to present completed examples of how 

two powers could be combined and ask “why?”; he thought this would draw attention 

to the reasoning behind the ‘rules’. A questions-rules-questions pattern was planned 

as he thought this would help students bridge the gap between specific examples and 

the general case. He anticipated students would be confident using individual rules 

with integers but thought algebraic powers and the inclusion of coefficients might 

bring errors.  

(b) TOM: Organisation 

The lesson was timetabled for one hour and lasted fifty-six minutes due to lesson 

transitions. Twenty-four minutes were spent at a whole-class level, with the remaining 

time spent on individual seatwork. The desks, large enough to seat two students, were 

arranged in two concentric horseshoes. Whilst Sam encouraged students to talk to 

their peers, the tasks set could have been completed independently. 

Whole 
class 

                     

Seat 
work 

                 

Phases 1st 2nd: multiply divide 𝑥0 * 3rd: worksheet 
 

         *powers 

            5 mins  28 mins    20 mins  

Figure 5.14: Sam Class A Organisation 

(c) TOM: Tasks, Examples and Explanations - Overview 

The lesson was entitled ‘The rules of indices’. This was one of two planned lessons on 

indices drawn from the department’s three-week topic plan on algebra. 

Phase 1: Starter 

Sam displayed a PowerPoint slide (figure 5.15) and students were expected to start 

once seated.  
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Figure 5.15: Sam Class A Tasks 

The first two parts required the recall of the meaning of square and cube numbers and 

the capability to calculate or recall their values, whilst the last part required some 

knowledge of indices. 

Phase 2: Rules of Indices 

The mathematics focussed on the ‘rules of indices’ relating to multiplication, division 

and powers. Each operation was introduced with a completed example, accompanied 

with “why”. There was a mixture of seatwork and whole-class discussions for each rule 

and students had the opportunity to complete questions displayed on the PowerPoint.  

Expanding powers, writing them as a repeated multiplication followed by 

simplification, was a recurring part of Sam’s explanations. This approach was included 

in some of the prepared PowerPoint slides.  

Prepared Resources  

Multiplication introduction: Sam stated, “two squared times two cubed is two to the 

power five; why?”, accompanied by 22 × 23 = 25 written on the whiteboard. 

 

Division introduction: “two the power five divided by two cubed”, accompanied by 

25 ÷ 23 = 22 written on the whiteboard. 

 

Starter – no calculators! 
Write down the first 12 square numbers  
Write down the first 6 cube numbers  

What is the value of 24 
 

Multiplying – spot the rule 
What is 25 × 24 
What is 34 × 32 
What is 82 × 83 
Pattern?       Note: same base! 

What is 𝑥2 × 𝑥6 
What is 𝑥𝑎 × 𝑥𝑏 
 
 
 

Write down the rule! 
Index Law 1: 
Multiplication Rule 

𝑎𝑚 × 𝑎𝑛 = 𝑎𝑚+𝑛 
 
Example: 54 × 59 = 513 
 

Three quick questions  
Find the value of 𝑎  
 

𝑦5 × 𝑦8 = 𝑦𝑎 
36 × 3𝑎 = 317 

2𝑘3 × 4𝑘2 = 𝑎𝑘5 
 

Write down the rule! 
Index Law 2: 
Division Rule 

𝑎𝑚 ÷ 𝑎𝑛 = 𝑎𝑚−𝑛 
Example: 59 × 55 = 54 
 

Three quick questions  
Find the value of 𝑎  

𝑦9 ÷ 𝑦2 = 𝑦𝑎 
14𝑡6 ÷ 7𝑡4 = 𝑎𝑡2 

𝑘7 ÷ 𝑘7 = 𝑎 
 

Anything to the power of 
zero is 1 

𝑎0 = 1 
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Powers introduction: The ‘Powers – spot the rule’ slide.  

 

 

 

 

Figure 5.16: Sam Class A Tasks 

Some further prepared slides were not used and Sam inserted three additional 

examples into the sequence of planned questions. First, after the initial example of 

25 × 24, Sam added 34 × 23. Second, after the powers to powers’ introduction, he 

added (23)2. Finally, after a whole-class discussion about “anything to the power zero 

is one”, Sam introduced a pattern of:  

       103 = 1000          102 = 100          101 = 10          100 =           10−1 =   

Figure 5.17: Sam Class A Tasks 

For all the prepared questions, there was a common base, either a positive integer or a 

letter. The requirement for ‘the same base’ for the ‘rules of indices’ to apply was 

highlighted by “note: the same base!” on the first slide and by the inserted question, 

namely 34 × 23. 

Phase 3: Worksheet 

A worksheet was completed by the students (figure 5.18).   

As with all bar one question in phase 2, all the questions had a common base and 

focussed on multiplication, division and powers. There was some variation, in so far as 

addition of like terms and three power terms were introduced.  

 

 

Powers – spot the rule 
What is (52)3 
 

(5 × 5)3 
= (5 × 5) × (5 × 5) × (5 × 5) 

= 56 
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Figure 5.18: Sam Class A Tasks  

General 

In phase 2, Sam introduced the rules of indices sequentially. The expansion of power 

terms as repeated multiplication followed by simplification had potential to provide 

insight into the mathematical structure underpinning ‘the rules of indices’, but 

justification was based on single examples. In the ‘spot the rules’ and ‘quick questions’ 

there were multiple changes between each question; bases, exponents and 

coefficients were changed. Varying more dimensions was likely to have made it harder 

for students to discern the variation, making relationships less visible, especially with 

the small number of examples. Moreover, there was no requirement to go beyond 

finding individual answers, and with few discernible connections between questions, 

variation did not appear to be controlled systematically (3.3.5.2) 

Some task elements had the potential to draw attention to aspects of the ‘rules of 

indices’. Specifically, the inserted ‘not the same base’ question could have highlighted 

the requirement for the ‘same base’, and the inclusion of non-unitary coefficients to 

the requirement for correct manipulation of the non-power elements. In addition, the 

inclusion of ‘not multiply’ (addition) could have highlighted the relationship of the 

‘rules of indices’ to multiplication. However, other boundaries, such as bases not being 

zero, were not part of the tasks. The range of permissible change (Bills et al., 2006) of 

 

Simplify the calculations, cross 
out the corresponding squares in 
the grid. When finished the 
remaining squares will reveal a 
message. 



176 | P a g e  

bases and exponents for the ‘rules of indices’ to hold are not straightforward. The 

rules hold for all integer exponents provided the base is non-zero and for any positive 

base with rational exponents. In this lesson, in pre-prepared questions all powers had 

exponents that were positive integers or zero, which included the answers to division 

questions as all the exponents of the dividend were set to be greater or equal to the 

exponent of the divisor. Whilst the inserted powers of ten example (figure 5.17) 

offered a window into how integer powers could vary, drawing attention to the range 

of permissible change of bases and exponents was not an explicit part of the prepared 

tasks.  

(d) TOM: Discourse 

In terms of the mathematical register, students were exposed to topic specific 

language, but it appeared they were not expected, as a matter of routine, to develop 

their use of formal language in their own public talk. For example, the term ‘power’ 

was commonly used by all in phrases such as “two to the power (of) four”, with the 

abbreviated form “two to the four” also heard and accepted. Normally, bases and 

exponents were referred to by their value or representation, namely “two” and “four” 

in the example given above, but there were a few occasions where these component 

parts of powers were indicated in more general terms. For example, the context 

implied “just add the powers” referred to the exponents rather than the whole term, 

and there were other similar examples, from both students and Sam. The term ‘base’ 

was first introduced by a student when discussing 34 × 23:  

66 T: oh did someone just say what dif- what is the difference (.) it’s a 

different (..) 

67 Ss: denominator base base  

   [answers called out in quick succession by multiple students] 

68 T: excellent word Jade (.) base well done (…) 

Extract 5.15: Sam Class A 

In line 68, Sam made no overt response to “denominator” and praised the use of 

“base”. Subsequently, there were no further examples of students using the term, 

although Sam used the term twice; for example: 

219 S:  … do you just keep the number each time 
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220 T: (.) d- yes you keep the base the whole time  

Extract 5.16: Sam Class A 

In line 220, Sam accepted the student’s ambiguous response, and inferred they had 

been attending to the base as he revoiced the contribution. However, there was no 

press for the student to use more formal language themselves.  

In whole-class episodes, approximately 90% of talk was classified as mathematically 

related episodes (figure 5.19: subdivision 1). There were two sub-categories of 

mathematically related whole-class episodes; turn-taking was the most common form 

of talk, with the remaining time classified as monologues (subdivision 2). Taken 

together, IRE exchanges and the variant with an extended evaluative turn were the 

most common form of turn-taking, which were often linked to form extended 

question-and-answer sequences (subdivision 3 T:IRE). The remaining turn-taking 

episodes consisted of questions or comments initiated by students (subdivision 3 S:I) 

and questioning sequences initiated by Sam but with multiple student contributions 

between each of his turns (subdivision 3 S:M). The monologues consisted of 

mathematical explanations and instructions given by Sam (subdivision 3 T:E) and a 

small number of student explanations (subdivision 3 S:E). 

Whole-class Talk  

    

Mathematically Related Talk   Other Subdivision 1 

    

Turn-taking Monologues Other Subdivision 2 

       

T: IRE (inc. variant) S: M (Peer 
to Peer) 

S: I T:E Explains/ 
Instructs 

S: E Other Subdivision 3 

Figure 5.19: Sam Class A Breakdown of Whole-Class Episodes 

In IRE exchanges, Sam indicated whether the student response was satisfactory or 

unsatisfactory in similar ways to Joe. Usually, Sam indicated responses were 

satisfactory immediately and directly by using affirmative words such as “yep”, 

repetition, the utilisation of the response, or some combination of these; superlatives, 

such as “wonderful”, were included in about one third of cases. On occasions, Sam 

moved on and asked a new question without any comment. Common to all positive 
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evaluations was the immediate transition to a new question, task or idea. On the other 

hand, unsatisfactory responses were indicated by pauses, follow-up questions or by 

redirection of the question to another student, thus maintaining the focus on the 

original question. For example:  

46 T:  two to the power four 

47 Ss: sixteen   

48 T: sixteen loverly OK (.) Ben (.) what does two to the power four mean 

49 Ben: sixteen 

50 T: what does it mean 

51 Ben: oh it means two times two times two times two 

52 T:  excellent (.) good (.) so we sort have got a rough understanding of that (.) 

erm (..) I am going to tell you first that (.) two squared times two cubed is 

two to the power five (.) ok um why (..) Mel  

   [some students’ hands were raised] 

53 Mel: you add the powers 

54 T: yes so that’s what we can do (…) Fay  

   [some students’ hands were raised] 

Extract 5.17: Sam Class A 

In line 48, Sam’s use of repetition and a superlative indicated a satisfactory response, 

and he concluded with a new question, which led to an extended question-and-answer 

sequence. After Ben responded (line 49), Sam’s partial repetition of the question, with 

an emphasis on ‘mean’, indicated a deficiency and the location of the issue (line 50). 

Ben treated Sam’s evaluation as an opportunity to take a further turn (line 51), which 

was accepted by Sam immediately and directly with the use of a superlative (line 52). 

Sam extended his turn and transitioned to the first operation by providing a 

completed example. In Sam’s next evaluative turn, he offered agreement (line 54), but 

the emphasis on “do”, followed by the nomination of another student, indicated Mel’s 

response, whilst not incorrect, was not sufficient. As such, this had features of both 

positive and negative evaluations and was coded as both. 

One indication of an unsatisfactory response was Sam asking a follow-up question (e.g. 

extract 5.17, line 50). A second indication was Sam redirecting the question to another 

student. In these circumstances, he continued until either a satisfactory answer was 
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heard, or he offered an explanation himself. For example, Sam asked what 2𝑘3 meant 

and the following exchange occurred:  

173 S: erm (.) is it (.) six (like) 𝑘 four times (.) 

174 T: Mel 

175 Mel:  is it two 𝑘 times two 𝑘 times two 𝑘 

176 T:  (.) any other ideas Jan 

177 Jan: is it k to the power three times two 

178 T: (.) how I’m going to write it out for now (.) er  you do two times 𝑘 times 𝑘 

times 𝑘...  

   [writing: 2 × 𝑘 × 𝑘 × 𝑘] 

Extract 5.18: Sam Class A 

In this exchange, Sam redirects the question to three students before offering his own 

explanation after a short pause (line 178). Whilst Jan’s response was mathematically 

valid (line 177) it was not acknowledged by Sam (line 178). 

A third indication of an unsatisfactory response was Sam not responding verbally, 

which resulted in an extended pause; in some cases, the interaction shifted from IRE 

to a peer-to-peer exchange. These had characteristics of an informal debate, in so far 

as opposing points of view were put forward with multiple student contributions. For 

example, when Sam asked for the value of 𝑎 in 𝑘7 ÷ 𝑘7 = 𝑎 the following exchange 

was heard: 

243 Ss: 𝑘      

   [chorused by multiple students]  

244 T: (…) 

245 S1: yes its 𝑘 isn’t it 

246 S2: one 

247 S3: cause seven divided by seven is one  

248 S4: seven minus seven is zero 

249 S5: no isn’t it zero 

250 S6: 𝑘 divided by 𝑘 is 𝑘  

251 S7: one  

252 S8: I think it’s zero 

253 S9: no it isn’t its one guys OK its one 
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254 T:  er vote then (.) vote for zero 

Extract 5.19: Sam Class A 

The opening turns of this exchange was coded as IRE, with line 243 coded as R and the 

pause by Sam treated as a turn and coded E. Line 245 onwards was coded as peer-to-

peer turn-taking. In this exchange, there appeared to be a combination of students 

offering opinions and responding to others, though not necessarily to the directly 

preceding turn. Sam drew the peer-to-peer exchanges to a close by asking for votes for 

zero then one, after which he offered his own explanation.  

Within IRE sequences, there were also differences in the precursors to responses being 

treated as satisfactory or unsatisfactory. In all bar one case, responses treated as 

satisfactory were mathematically valid statements. In the exception, a student offered 

“five 𝑘”, which Sam initially acknowledged before correcting himself to “𝑘 to the 

power of five not five 𝑘” after a short pause. Whereas responses treated as 

unsatisfactory occurred with two different precursors. First were mathematically valid 

statements that did not meet Sam’s requirements. Whilst the student responses did 

not contain mathematical errors per se, Sam usually indicated where the response did 

not match his expectations (e.g. extract 5.17, line 50). Second were mathematical 

errors, with mathematically invalid answers or statements (e.g. extract 5.19, line 243). 

There was another category of ‘don’t know’ responses, which Sam treated in a similar 

manner as unsatisfactory responses.  

IRE exchanges were often linked to form a step-by-step approach to a multistage 

procedure and regularly contained some level of explanation by Sam. The majority of 

questions in these exchanges had a limited range of mathematically valid responses. In 

addition to the recall of multiplication facts in phase 1, about one quarter of questions 

were considered simple and self-contained, in so far as they were considered easily 

answerable by students from the information contained in the question. For example: 

235 T: … that is my representation of fourteen 𝑡 to the power six (..) and that’s 

my representation of seven times 𝑡 to the power four and I’m going to 

do the same as I did before there are 𝑡’s divided by 𝑡’s (.) and one times 

by one it doesn’t change (.) what is this  

   [written: 
14×𝑡×𝑡×𝑡×𝑡×𝑡×𝑡

7×𝑡×𝑡×𝑡×𝑡
 and pointing at the uncancelled 𝑡s] 
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236 S: 𝑡 squared 

237 T: and fourteen divided by seven (.) 

238 S: two 

Extract 5.20: Sam Class A 

In line 235, Sam’s explanation included the expansion of power terms and a structure 

for division. The prompts given by Sam as he asked the question at the end of his turn 

meant students could have answered without a full understanding of the division of 

powers. In line 237, Sam used a simple and self-contained question to complete the 

process. Considered as a sequence, Sam’s explanation and questions offered a 

structure for the division of powers.  

In overall terms, the most common IRE pattern was a limited solution question, 

followed by a valid student response treated as satisfactory, and concluded with an 

immediate transition to a new question or idea. A regular but less common pattern 

was a student response containing a mathematically invalid element, which was 

treated as unsatisfactory. On the few occasions when more open questions were 

posed, such as when meaning was asked for, all types of student responses and 

teacher evaluative turns occurred, which included responses that did not contain 

mathematical errors per se but were treated as unsatisfactory.   

On a few occasions, students initiated a turn-taking exchange by asking a question or 

making a comment without a direct invitation from Sam. In all bar one case, Sam 

acknowledged the contribution and treated it in the same manner as a satisfactory 

response to a question. For example, in extract 5.16, line 219, a student asked, “do 

you just keep the number each time”, which Sam positively evaluated. The exception 

occurred when negative exponents were discussed:  

369 S:  sir you know if you got to like nought point nought nought nought 

whatever (.) then we are still not ever going to minus like 

370 T: don’t worry about minuses they’ll look after themselves… 

Extract 5.21: Sam Class A 

In line 369, Sam appeared not to engage with the student’s comment, and he moved 

the talk on by asking a new question at the end of his turn.  
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Some periods of talk by Sam were classified as monologues, most of which were 

extended explanations. There were three student explanations long enough to be 

similarly classified. These occurred after Sam stated, “anything to the power zero is 

one (.) sixty seconds talk between yourselves to tell me why that is”. After a period of 

seatwork, the students offered extended explanations that contained multiple stages.  

(e) TOM: Sequencing 

Sam controlled the overall trajectory of the lesson, shaped by his use of prepared 

resources and initiation of transitions between activities. He directed or redirected 

attention to his foci, namely onto strategies he introduced or procedures he was 

structuring through questioning. The inference made was that Sam attended to his 

mathematical horizon rather than the interrogation of student reasoning when 

managing most classroom activities.  

A recurrent theme was the expansion of power terms as repeated multiplication, 

followed by simplification. Sam drew attention to this through direct explanation and 

the treatment of student responses as satisfactory or unsatisfactory dependent on 

whether they conformed to this approach (e.g. extract 5.17, lines 46-52). Indeed, Sam 

indicated that this approach offered meaning beyond a particular example used. For 

example, when 𝑥𝑎 × 𝑥𝑏 was discussed students’ initial responses related to 𝑥𝑎𝑏, and 

peer-to-peer debates followed. Sam drew these to a conclusion by referring back to a 

previous numerical example, stating “so if our base is exactly the same (.) and we have 

got our powers there we can add them (.) OK”, while pointing sequentially at the 

numerical exponents. Moreover, at the end of a discussion about 25 ÷ 23 = 22 Sam 

stated “so (.) your rule that you have spotted then erm is to take away those top 

powers”. Consequently, this approach, drawing on examples, was linked to meaning 

and justification of the ‘rules of indices’.  

The key point of departure from drawing on an expanded layout as the principal 

explanatory approach was when exponents of zero were met. This started with the 

example 𝑘7 ÷ 𝑘7 = 𝑎. The initial response chorused by students was “𝑘” and a peer-to-

peer debate followed, focussed on zero and one (extract 5.19). Sam then intervened 

and asked questions where the dividend and divisor were the same: “nine divided by 
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nine”; “one million four hundred and twenty-three thousand two hundred and sixty 

eight divided by one million four hundred and twenty-three thousand two hundred 

and sixty eight”; “smiley face divided by smiley face”. After “one” had been chorused 

for each answer, Sam repeated the initial question “so 𝑘 to the power seven divided 

by 𝑘 to the power seven is …” and students chorused “one” in response.   

This was followed by a few overlapping student comments until the following 

interaction occurred: 

282 Lyn: but seven takeaway seven is zero 

283 T: is zero (.) absolutely (.)  

284 S1: so what’s the answer 

285 S2: one 

286 T:  so if we are doing our takeaway rule Lyn (.) that would give us 𝑘 to the 

power zero 

287 Ss: that’s what I put; which is zero; that’s zero  

288 T: let’s see what it is now (.) erm now I’m going to tell you to add fuel to 

the fire (..) that anything to the power zero is one  

   [showing PowerPoint slide: 𝑎0 = 1] 

Extract 5.22: Sam Class A 

The “but” in Lyn’s comment (line 282) indicated that she might have had an issue with 

the previously acknowledged answer of “one” and the reference to sevens indicated 

she was applying a ‘rule of indices’ to the exponents. After Sam agreed with Lyn’s 

comment another student called out a question (line 284), answered by a third 

student. In line 286, Sam readdressed Lyn, confirming that based on takeaway rule the 

answer would be “𝑘 to the power zero”, which was followed by a number of 

overlapping student voices (line 287). It was unclear as to whether the students were 

referring to the base, exponent or the resulting value, namely the quotient, but it 

appeared there was still some debate about the role of zero. This appeared to be an 

example of the teacher and students attending to different aspects of powers, 

resulting in inefficient communication (Mason, 2011b) (3.3.7.5). 

When the overall trajectory of the 𝑘7 ÷ 𝑘7 = 𝑎 discussion is considered, Sam appeared 

to be attending to a direct route to the resulting value of one, whilst students who 
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contributed to whole-class discussions appeared to be drawing on the subtraction of 

exponents used in previous division questions. In particular, in the early part of the 

discussion Sam drew attention to “one” when the dividend and divisor were identical, 

whilst some students appeared to have subtracted exponents and were attending to 

the resulting exponent, namely zero. Sam engaged with the student-initiated focus on 

the manipulation of exponents and zero, acknowledging that 𝑘0 was the result of 

following the rule (extract 5.22, line 286), but an explicit link was not made between 

identical dividends and divisors that resulted in “one” and 𝑘7−7 = 𝑘0. In other words, 

students would have to have noticed the juxtaposition of 𝑘7 ÷ 𝑘7 = 1 and  𝑘7−7 = 𝑘0 

in the discussion, and understood that both these arguments were correct, in order to 

apprehend the respective roles of zero and one inherent in the relationship 𝑘0 = 1. 

Sam then stated, “anything to the power zero is one” and gave the students sixty 

seconds to prepare an explanation through discussions with a peer. Three student 

explanations followed; for example: 

304 S: so could it be a hundred of that to the power seven divided by a hundred 

to the power seven yeh (.) then a hundred divided by a hundred will 

equal one then seven minus seven will equal zero so that that just equal 

one 

Extract 5.23: Sam Class A 

The students made reference to cancelling, but the language remained ambiguous, 

particularly in relation to zero and one. Whilst Sam acknowledged these student 

explanations, with comments such as “that looked quite good”, there was no 

interrogation of the individual students’ reasoning or reference to how the rules of 

indices related to the dividend/divisor approach.  

Sam then introduced patterns related to powers of ten, moving from 103 to 100 

initially, after which 10−1 was also considered. This was the second occasion when he 

moved away from prepared resources. He used a sequence of simple questions to 

establish the following pattern:  
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Figure 5.20: Sam Class A Artefact 

Sam concluded with:   

370 T:  … so can everyone see from this pattern at least that 10 to the power 

zero could equal 1 (..)  

371 Ss: yeah 

372 T:  thank you (.) look have a look at it see what you think I quite like that 

erm (.) but there you go 

Extract 5.24: Sam Class A 

The use of “could” in line 370 and “see what you think” framed this as a possibility. 

Sam indicated he liked the approach, but with the implication that the students could 

make their own judgment. This was offered as an alternative approach to 

understanding powers, and particularly when the exponent was zero, but there was no 

explicit link made between this and the earlier approaches.  

Over the course of the lesson the students were exposed to three approaches related 

to an exponent of zero: the division ‘rule of indices’; quotient when the divisor and 

dividend were identical; descending powers of ten. Consequently, the students had 

the opportunity to experience and gain insights from different perspectives. However, 

each approach was treated separately, and language was ambiguous at times, so it 

was not always clear which aspect of powers were being referred to. Indeed, in the 

𝑘7 ÷ 𝑘7 = 𝑎 discussion there was evidence that Sam attended to the quotient whilst 

students attended to the exponent, with some remaining confusion regarding the 

relationship between zero and one. Taken as a whole, these episodes allowed the 

exploration of exponents from different perspectives, but discontinuities in attention 

may have made the mathematical features less apparent.   

There were two occasions when additional examples had the potential to draw 

attention to the range of permissible change. The first was 34 × 23, inserted after 
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multiplication had been introduced. The initial student response “is it six to the power 

seven” indicated they had misapplied the ‘rule’ for exponents and applied it to bases. 

The treatment of this response as unsatisfactory and the subsequent discussion had 

the potential to draw students’ attention to this boundary, namely the requirement 

for the same base for the ‘rules of indices’ to be applied. Whilst Sam made reference 

to identical bases when discussing ‘rules of indices’, and written on a PowerPoint slide 

was ‘Note: same base!’, this was the students only exposure to a ‘not the same base’ 

question (Watson and Mason, 2006).   

The second was when Sam extended his powers of ten example to negative 

exponents. 

361 T: lets make a prediction (.) erm what’s ten to the power minus one 

362 S1: minus ten (.) or is it minus one 

363 Ss: minus ten (inaudible) 

364 T:  who said that (.) was that you Jon 

365 Jon: nought point one 

366 T: listen (.) if I carry on the pattern of keep dividing by ten (.) divide by ten 

again here 

   [writing: 10−1 = 0.1       = 1
10⁄ ] 

367 S2: what s-sir say that was minus 10 (.) minus 10 to (the power) minus two 

(.) would that be nought point nought one 

368 T: yep 

369 S3:  sir you know if you got to like nought point nought nought nought 

whatever (.) then we are still not ever going to minus like 

370 T: don’t worry about minuses they’ll look after themselves erm so can 

everyone see from this pattern at least that 10 to the power zero could 

equal 1 (..) 

Extract 5.25: Sam Class A 

In line 364, Sam appeared not to react to the mathematically invalid comments and 

asked Jon to repeat his answer. Sam indicated this response was satisfactory when he 

wrote on the board. There followed two student-initiated comments. The first, related 

to 10−2 (line 367), was positively evaluated, but without further comment (line 368). 

In the second, the student appeared to have recognised that powers of ten remain 



187 | P a g e  

positive with negative exponents. In this case, however, Sam curtailed that line of 

reasoning and redirected attention back to an exponent of zero and no further 

references were made to negative powers. 

(f) Interpretation of Classroom Activities 

Sam regulated whole-class interaction through his questions, explanations and 

management of student responses. As he usually maintained the focus on strategies 

he introduced, the inference made was that he usually attended to his mathematical 

horizon when interpreting classroom activities, with the interrogation of student 

reasoning far less common.  

In the post-lesson interview, Sam did identify elements of the lesson where he 

adapted his plans. For example, the ‘Note: same base!’ written on the PowerPoint 

slide had prompted him to include the 34 × 23 example. Sam also identified elements 

where he reacted to student contributions. For example, he stated he introduced the 

powers of ten because of the extended debate about 𝑘7 ÷ 𝑘7; he had anticipated the 

equivalence of 𝑘0 and 1 would have been established quickly, but the variety of 

answers had been unexpected. He took action by including additional ways of 

deriving 𝑎0 = 1, although his focus returned to his expansion approach. 

One other area where students had unexpected difficulties was when 𝑥𝑎𝑏 was offered 

instead of the correct mathematical response of 𝑥𝑎+𝑏. Sam’s interpretation was this 

was a notation issue rather than a “mathematical misunderstanding”. Sam attributed 

the issue to the fact that students were “happy” to add the exponents when these 

were numbers but were confused when they could not combine the 𝑎 and 𝑏 into a 

single result.  

(g) Cognitive Demand 

During the lesson, the students were asked to complete questions and participate in 

whole-class discussions related to the manipulation of powers. The approach to each 

question, as shared at a whole-class level, could be seen as an articulation of a 

particular procedure. Indeed, with simple, self-contained questions a regular feature, 

much of ‘talk as mathematics’ was initially classified as procedural or computational. 

However, the common approach involved expressions with powers being written in an 
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expanded form, then manipulated and simplified. This gave the students the 

opportunity to view powers in different forms and could have provided an insight into 

the mathematical structure of the expressions that had meaning beyond the particular 

example under scrutiny. As such, this ‘talk as mathematics’ was classified as related to 

process.  

Whilst much of the students’ written work was just the final answer, some students 

had division sums written in an expanded form, providing evidence those students 

could apply the approach to similar contexts. However, there was no discussion about 

the underlying numerical properties that made the manipulation possible, or how a 

general case could be similarly manipulated in order to prove the ‘rules of indices’. 

Consequently, little of the talk was classified as related to mathematical concepts.   

When the sequence of questions is considered, there was some variation in bases, 

exponents and operations, with the opportunity to notice similarities and differences. 

Whilst the dimensions of variation and the range of permissible change were not 

explicitly discussed (Watson and Mason, 2006), and the range of variation was limited, 

the different forms and operations did provide an opportunity for students to make 

links between examples. On two occasions student comments offered evidence that 

the lesson activities prompted thinking about cases that did go beyond the specific 

example. The first was when negative exponents of powers of ten were discussed 

(extract 5.25, line 369) and a student seemed to notice the value would remain 

positive. The second was during a discussion of (23)2; the process of writing out in 

expanded form had been completed when the following exchange occurred: 

388 T:  which is (..) 2 to the power 6 (..) 

   [writing: = 26] 

  and what’s happened incidentally (…) 

389 S1: times the powers 

390 T: times the powers OK 

391: S2: does that happen every time 

392 T: yep 

Extract 5.26: Sam Class A 
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Whilst the student’s question in line 391 does not capture the full scope and limits of 

the ‘rule of indices’, they were prompted to consider the link between the specific 

example under discussion and a more general context.  

There were episodes when students misapplied the ‘rules of indices’ to inappropriate 

parts of power terms. The first time, as previously discussed, was in the mixed base 

question, namely 34 × 23, with the response “six to the power seven”. The second was 

with coefficients other than one; when 2𝑘3 × 4𝑘2 = 𝑎𝑘5  was discussed some students 

offered “six” for the value of 𝑎. These are common mistakes and the mathematically 

invalid responses were challenged, in so far as they were identified as incorrect, but 

student reasoning was not explored. Instead, the ‘correct’ answers were identified and 

explained through processes structured by Sam.  

In overall terms, the lesson provided questions that could have been answered in a 

procedural manner. However, the use of expanded forms, patterns of sequential 

powers of ten and the overall sequence of questions provided an opportunity for 

students to make links to the underpinning mathematical structures. Moreover, 

attention was drawn to the justification of the ‘rules of indices’ through the use of 

‘why’ questions, albeit associated with particular examples rather than explicit proofs. 

Consequently, the potential cognitive demand was high, but students may have 

successfully completed tasks without eliciting these high levels.  

(h) Classroom Norms  

Within the lesson, Sam directed student activities and regulated the mathematical 

direction of travel, determining both the content and mathematical approach to be 

taken almost all of the time. As such, Sam could have been seen as having high levels 

of agency within his classroom.  

The IRE interaction pattern was a common feature, and this cycle reinforced the norm 

that Sam was the arbiter of correctness. However, there were occasions when 

students took more of the initiative where, for example, they offered their own 

observations, demonstrating aspects of agency. There were also occasions where 

peer-to-peer interactions unfolded. Whilst some students stated their position rather 

than respond directly to a previous student’s turn, this shifted Sam out of an 
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evaluative role and placed students more centrally, albeit for short periods of time. 

However, any peer-to-peer interactions were followed by IRE sequences or teacher 

explanations that concluded with the identification of the answer found acceptable by 

Sam. So, there were signals that student contributions were valued, but the final 

judgment about the legitimacy of mathematical contributions resided with Sam.  

Many of the questions asked by Sam had single mathematical solutions, and most of 

the remaining questions, such as ‘why’, were treated by Sam as having one acceptable 

response. As discussed, a particular example in expanded form was accepted as an 

explanation of how powers were combined. So, whilst explanations were part of some 

student responses, a description of a procedure was treated as a satisfactory 

explanation. In particular, this implied that exploration of examples was sufficient 

justification of a general case.  

Within IRE sequences, the established norm was for Sam to immediately signal 

responses he found acceptable, cued by explicit positive evaluation, repetition or 

transition to the next question. This contributed to the narrative that mathematics is 

about finding ‘the’ answer, which an ‘effective student of mathematics’ can provide. 

Sam indicated responses were unsatisfactory by asking follow-up questions or 

redirecting the question to other students until the ‘correct’ response was 

forthcoming, and on occasions through extended pauses that cued peer-to-peer 

debates. The first two contributed to the narrative that the efficient production of the 

correct answer was the expectation, whereas the latter broadened the narrative to 

one where discussions of alternatives have a role to play in determining the answer. 

Indeed, Sam attached the word “exciting” to the prospect of a debate about two 

contradictory answers. However, the end goal of a ‘correct’ answer remained, 

contributing to the narrative that if errors were met, they should be corrected.  

The inclusion of self-mitigating phrases were a regular part of student responses, 

which often took the form of phrasing responses as a question. This process distanced 

the students from fully endorsing as correct their own mathematical statements. This 

may have indicated that students did not want errors to be attributed to them and 

that an ‘effective student of mathematics’ would avoid making errors.  
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5.3.2.4 Sam: Summary for Class A 

Five lessons of Sam’s class A were recorded and analysed in the main study. As 

previously discussed, one lesson has been reported in detail in the preceding section 

(5.3.2.3) and is referred to as the indices lesson. The remaining lessons were similarly 

analysed and lesson-specific summary OMFs were produced. These summary OMFs 

structured the comparisons in the analysis, where one output was an all-lesson 

summary OMF for class A.  

As before, these summary OMFs were working documents that used descriptions in 

note form and bespoke abbreviations. Consequently, written summaries have been 

provided before the presentation of the OMFs to communicate the key pedagogical 

features of the lessons under discussion. 

First, the written summary for the indices lesson is provided. This is followed by the 

lesson-specific summary OMF (figure 5.21). After this, a written summary of all 

recorded lessons for Sam’s class A is provided, with additional features not seen in the 

indices lesson indicated by italics. Finally, an all-lesson summary OMF is presented 

(figure 5.22).    

(a) Sam Class A: Written Summary – Indices Lesson  

The following outline draws together the key themes from the indices lesson that was 

reported in detail in the preceding section (5.3.2.3).  

A) Content 

a) Content was tiered: formal rules considered ‘core’ content for this class 

B) Organisation 

a) Seatwork: individual, peer discussion encouraged but not required  

b) Interleaved seatwork with whole class 

C) Discourse patterns: mostly aligned with patterns previously reported  

a) Power terms used but no press for student use 

b) IRE dominant, single/limited solutions questions in linked sequences, but some 

peer-to-peer ‘debates’ 
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c) Typical satisfactory norms, some variation in unsatisfactory responses: 

‘Correct’ responses  follow-on questions (1/3 superlatives); IRE ‘errors’  

often follow-up questions, some debates (resolved by IRE/teacher explanation) 

d) Revoicing; repeating (occasional rephrasing into more formal/complete phrase) 

D) Tasks 

a) Focus on rewriting as multiplication (same register different representations); 

examples used to justify.  

b) Model – exercises; limited range of permissible change (Bills et al., 2006) 

E) Sequencing 

a) Focus on mathematical horizon, (re)direction to ‘rewriting’ solution strategy  

b) Some attention drawn to ‘not’ rules of indices  

c) Alternative ways to consider zero exponents introduced but separately  

F) Teacher Cognition 

a) Discussion considered important in developing student reasoning.  

G) Classroom norms 

a) Teacher arbiter of correctness  

b) Procedure counts as explanation; examples justify rules 

c) ESM errors: discussion exciting 

H) Cognitive Demand 

a) Potential high but range low to high (limited press to move beyond procedural) 

(b) Sam Class A: Summary OMF – Indices Lesson 

As before, analysis was an iterative process and a lesson-specific summary OMF was 

populated, with figure 5.21 the final working document. Descriptions in note form and 

abbreviations were again used (table 5.1). 

  



193 | P a g e  

Sam Class A Summary OMF – Indices Lesson   

 

Figure 5.21: Sam Class A Summary OMF – Indices Lesson 
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(c) Sam Class A: Written Summary of All Recorded Lessons 

In addition to the indices lesson, which was reported in detail in the preceding section 

(5.3.2.3), and the pilot study, four other lessons were recorded and analysed with 

Sam’s class A. Three were consecutive lessons on the topic of fractions and one lesson 

focussed on the manipulation of algebraic expressions using an area model for 

multiplication. These lessons were analysed in the same manner, with lesson-specific 

summary OMFs equivalent to figure 5.21 compiled for each lesson.  

These lessons for class A were compared, with the lesson-specific summary OMFs 

being the key points of comparison. Other than the mathematical practices that were 

particular to the lesson topic, most dimensions of the OMFs were similar. An 

amalgamated OMF was used to capture the pedagogical profile for all class A’s lessons 

(figure 5.22). 

As with the other summary OMFs, descriptions were in note form and abbreviations 

have been used (table 5.1). However, in order to provide an overview of the common 

and differential features for different lessons for class A, a written summary is 

provided below. For ease of comparison, this follows the same structure as the written 

summary for the individual lessons. The following outlines the key themes from all 

Sam’s recorded lessons with class A. Additional features not seen in the indices lesson 

are indicated by italics. 

I) Content 

a) Content was tiered: topics listed in the top route in the departmental scheme 

of work were considered ‘core’ content.  

J) Organisation 

a) Seatwork: mostly individual - peer discussion encouraged but not required; 

some groups tasks - sharing of resources. 

b) Interleaved seatwork with whole class. 

K) Discourse patterns: mostly aligned with patterns previously reported  

a) Some mathematical terms introduced but no press for use – colloquial terms 

used and accepted 

b) IRE dominant, single/limited solutions questions in linked sequences, but some 

peer-to-peer ‘debates’ 
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c) Typical satisfactory norms, some variation in unsatisfactory responses: 

‘Correct’ responses  follow-on questions (superlatives); IRE ‘errors’  often 

follow-up questions, some debates (resolved by IRE/teacher explanation) 

d) Revoicing; repeating, some rephrasing (more formal/complete), extending 

L) Tasks 

a) Multiple representations: same register and different registers; tasks focussed 

on specific examples, and examples used to justify.  

b) Model – exercises; limited range of permissible change – not explicit 

c) Either no context or context with pseudocontext  

M) Sequencing 

a) Focus on mathematical horizon, (re)direction to standard strategies introduced 

b) Links, when made, focussed on specific examples rather than on links between 

mathematically significant features of the representations   

N) Teacher Cognition 

a) Discussion considered important in developing student reasoning.  

O) Classroom norms 

a) Teacher arbiter of correctness  

b) Procedure counts as explanation; examples justify rules 

c) ESM errors: usual - errors to be avoided or corrected, but some debates. 

P) Cognitive Demand 

a) Potential high but range low to high (limited press to move beyond procedural) 

(d) Sam Class A: Summary OMF of All Recorded Lessons 

As an integral part of the analysis, lesson-specific summary OMFs were produced, 

which were then compared, leading to the all-lesson summary OMF (figure 5.22). The 

same note form and abbreviations were used as in previous summary OMFs (table 

5.1). 
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Sam Class A Summary OMF – All lessons 

 

Figure 5.22: Sam Class A Summary OMF – All lessons 
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5.3.2.5 Sam: Class B 

This was a Key Stage 3 class, composed of about twenty-five students who had 

attainment profiles lower than average for that year group in the school.  

(a) Lesson Specific: Teacher’s Knowledge, Beliefs and Values, Incorporating Initial 

Lesson Image 

Sam’s stated lesson goal was for students to be able to recall and apply the rules of 

indices. As this was related to the demonstration of particular skills, this was 

considered to be performance orientated, although his broader discussions also 

indicated a learning orientation.  

The students would have met multiplication of indices in the previous year but had 

limited experience of division or powers and had not formally met the ‘rules of 

indices’. He decided to base the lesson on the same resources as class A, though 

anticipated they would spend longer on each operation and he would focus on 

different PowerPoint slides. Again, Sam thought the questions-rules-questions pattern 

would help students to bridge the gap between specific examples and the general 

case. However, Sam thought it was important to use simple numbers, so the students 

could focus on the patterns, as in his assessment the students had weak number skills. 

Drawing on his experience of teaching class A, Sam planned to include the question 

with different bases and the powers of ten example he added to the previous lesson. 

Sam acknowledged he had undertaken relatively few discussion-based activities with 

this class, so elements of the lesson would be atypical. Under normal circumstances, 

he would have demonstrated each rule with a couple of examples, followed by 

students practicing similar questions in individual seatwork. Instead, as before, Sam 

intended to introduce each operation with a completed example and ask “why” but 

was unsure if these students would engage in discussions in a productive manner, 

stating he thought off-task behaviour could adversely affect the quality of any 

discussions. In general, Sam felt that this class needed more encouragement to stay on 

task.  
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(b) TOM: Organisation 

The lesson was timetabled for one hour and lasted fifty-five minutes due to lesson 

transitions. Twenty-four minutes were spent at a whole-class level, with the remaining 

time spent on individual seatwork. The desks were arranged in two concentric 

horseshoes. Whilst Sam encouraged students to talk to their peers, the tasks set could 

have been completed independently.   

Whole 
class 

                                                    

Seat 
work 

                                                 

 1st: starter 2nd: multiply divide powers 𝑥0 3rd: worksheet 
  

      

            10 mins  29 mins    12 mins  

Figure 5.23: Sam Class B Organisation  

(c) TOM: Tasks, Examples, Explanations - Overview 

As with class A, the lesson was entitled ‘The rules of indices’. This was one of two 

lessons on indices drawn from the department’s topic plan. 

Phase 1: Starter 

The same starter was used as for class A (12 square numbers, 6 cube numbers and the 

value of 24) (figure 5.15). Students were expected to begin once seated.  

Phase 2: Rules of Indices 

The topic was the ‘rules of indices’ relating to multiplication, division and powers. The 

same overall approach was used as with class A, with operations introduced with a 

completed example and powers written in an expanded form followed by 

simplification.  

The same PowerPoint presentation was used, although Sam used more of the 

prepared slides in whole-class discussions.  
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Prepared Resources  

Multiplication: As class A (except  𝑥𝑎 × 𝑥𝑏 not discussed). 

Division: As class A (except 𝑥0 was discussed after powers) plus:  

  

Powers: As with class A with an additional introductory question of “five squared to 

the power two” (52)2, plus:  

followed by   

Figure 5.24: Sam Class B Tasks 

As before, Sam inserted 34 × 22 and the powers of ten pattern, although negative 

exponents were not included.   

Phase 3: Worksheet 

The same worksheet was completed by students in individual seatwork (figure 5.18).   

General 

Apart from negative exponents, the range of examples the students were exposed to 

was very similar to class A. Consequently, the task features were very similar. 

(d) TOM: Discourse 

In terms of the mathematical register, students were exposed to some topic specific 

language, but informal language was frequently used by both Sam and the students; 

there was no press for students to use formal language in their public talk. ‘Power’ was 

heard at a whole-class level and was regularly used by both students and Sam in 

phrases such as “two to the power (of) four”. In addition, ‘power’ was used to indicate 

exponents. For example, when 23 × 22 and 25 × 24 were discussed the following 

whole-class interaction occurred:   

Division – spot the rule 
 

25 ÷ 23 

=
2 × 2 × 2 × 2 × 2

2 × 2 × 2
 

= 22 

Division – spot the rule 
What is 57 ÷ 54 
What is 83 ÷ 82 
Pattern?       Note: same base! 

What is 𝑥9 ÷ 𝑥6 
What is 𝑥𝑎 ÷ 𝑥𝑏 
 
 

Anything to the power of 
zero is 1 

𝑎0 = 1 
 

Three quick questions  
Find the value of 𝑎  

(79)2 = 718 
(𝑝𝑎)8 = 𝑝40 

(7𝑘4)2 = 𝑎𝑘8 
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125 T:  yes there are two times two times two times two times two (.) so 

noticing (.) what we have written here and what we have done how do 

you think we could write that 

   [pointing at 2 × 2 × 2 × 2 × 2 written on the board] 

126 S1: two five 

127 S2: two times five 

128 T: good 

129 S3: two little five 

130 T: two little five (.) two five (.) I’m going to say two to the power of five ok 

I’m going to say that’s a power 

   [gesturing at the 5 in 25] 

131 S3: two to the power of five 

132 T: that’s it well done brilliant OK (..) so (.) let’s have a look at this one then 

this top one here two to the power of five times two to the power of 

four (.) having a quick look at what happened here  

   [pointing at exponents in 25 × 24 = 29 written on the board] 

  can we spot anything that might make our lives easier 

133 S3: yes cause you could just do two nine 

134 S4: two to the power of nine 

135 T:  you could you could just do two nine 

136 S4: two to the power of nine 

Extract 5.27 Sam Class B 

In line 126, the first student responded with an ambiguous “two five” that required 

drawing meaning from the context to interpret this as 25. In line 127, a second student 

made a mathematically invalid comment, in so far as a literal translation of the verbal 

comment as 2 × 5 is not mathematically equivalent to 25. This student’s speech 

overlapped both the first student’s talk (line 126) and Sam’s subsequent turn (line 

128). With no overt interrogation of this comment, there was little information as to 

the student’s intended meaning or whether Sam had noticed this comment. Sam’s 

positive evaluation (line 128) was followed by a third student’s self-initiated 

contribution of “two little five” (line 129), after which Sam repeated both the first and 

the third student contributions and revoiced by introducing the term “power” (line 

130). At the end of this comment, Sam’s gestures indicated ‘power’ referred to the 
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exponent, but it was not completely clear and may have been referring to the whole 

term. In the following turn (line 131), the third student, who had previously used 

“little”, appeared to rehearse the language of powers introduced by Sam. In line 133, 

the third student made a further contribution; having previously rehearsed the full 

version, here they reverted to a more ambiguous form. In this case, Sam mirrored the 

language of the student’s contribution (line 135) and it is another student who 

revoiced this in a more mathematically explicit form (lines 134 and 136).  

Bases and exponents were usually referred to by their value or representation, such as 

“two to the power four”. On occasions, exponents were referred to in more general 

terms, although informal language was the norm. The most common phrase used for 

exponents was ‘top number’; Sam had referred to exponents as ‘powers’ a couple of 

times and ‘little’ was occasionally used, but after Sam introduced ‘top number’ this 

was usually used by all. There were a few occasions when more general reference was 

made to bases. Sam combined “these things” with pointing at the board and the 

phrase ‘bottom number’ was heard from both Sam and students, but ‘base’ was not 

heard at a whole-class level.  

In whole-class episodes, approximately 85% of talk was classified as mathematically 

related episodes (figure 5.25: subdivision 1). Turn-taking was the most common form 

of whole-class talk, with the remaining time classified as monologues (subdivision 2). 

The monologues consisted of explanations or instructions given by Sam (subdivision 3 

T:E). Taken together, IRE exchanges and the variants were the most common form of 

turn-taking, and were often linked to form extended question-and-answer sequences 

(subdivision 3 T:IRE). The remaining turn-taking episodes were instigated by student-

initiated comments or questions (subdivision 3 S:I); in most of these cases Sam took 

the following turn and evaluated the students’ contributions. The general discourse 

patterns were similar to his other class, although there were differences in subdivision 

3 in relation to the student-initiated or student-led interactions. 
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Whole-class Talk 
 

   

Mathematically Related Talk Other 
Subdivision 

1 

    

Turn-taking Monologues Other 
Subdivision 

2 

     

T: IRE (inc. variants) 
S:I  

Initiated 
T:E Explains/ 

Instructs 
Other 

Subdivision 
3 

Figure 5.25: Sam Class B Breakdown of Whole-Class Episodes 

There were two IRE variants. First, in common with class A, an extended evaluative 

turn was common. The second occurred when more than one student responded 

before Sam’s turn. Often Sam did not directly nominate a student to respond to 

questions, and students self-nominated by calling out answers. Most of the multiple 

student responses were characterised by a lack of a pause between responses and/or 

overlapping speech (e.g. extract 5.27, lines 126-7 & 133-134). These cases were 

classified as an IRE variant, as the second or third student appeared to be responding 

to Sam’s initial question rather than the previous student’s turn.  

Within IRE sequences, Sam indicated responses were satisfactory in the same ways as 

with class A. That is to say, he signalled with affirmative words, repetition, the 

utilisation of the response or an immediate transition; superlatives were included in 

about one third of cases. Unsatisfactory responses were usually indicated by a 

restatement of the question, often with a level of simplification; on a few occasions, a 

label of funnelling was applied when the level of mathematics was significantly 

reduced. Occasionally Sam used gestures in his evaluative turn and once used a bald 

“no”. For example, when (52)3 = 56 was discussed the following exchange occurred:  

431 T: … now we get to our final answer five to the power six when we’ve got 

these brackets (.) can you think using these numbers here how we might 

get a shortcut to that (..) 

   [gesturing at 6] 

432 S1: add them  

433 T: (…) 

   [pointing sequentially at 2, 3 and 6] 
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434 S1: two plus three 

435 T: no 

436 S2: no it’s two times three 

437 T: exactly  

Extract 5.28: Sam Class B 

After the initial response (line 432) and Sam had pointed at the exponents (line 433), 

the first student changed their response (line 434). This student’s behaviour was 

consistent with her interpreting Sam’s actions as communicating her response was 

deficient. In line 435, Sam gave a bald negative evaluation of this second response, 

after which another student offered an alternative that Sam immediately positively 

evaluated. As it was the norm for unsatisfactory responses to be followed by a 

repetition of the question and for students to self-nominate, additional student turns 

after unsatisfactory treatment were considered to form IRE sequences (e.g. lines 434 

& 436), where the initiating turn was the original question.  

About a quarter of turn-taking episodes were not initiated by Sam and instead arose 

when students made comments or asked questions without a direct invitation. 

Classified as student-initiated, these occurred after Sam had offered an explanation or 

positively evaluated another student’s response. For example, in extract 5.27 line 129, 

a student offered “two little five” after Sam had just positively evaluated the previous 

contribution. As the norm was for Sam to transition immediately to a new question, 

stage or topic after treating a response as satisfactory, this was deemed to be a 

student-initiated action. However, whilst these types of instances were coded as 

student-initiated, they were closely linked to Sam’s activities. For example, when Sam 

asked what (52)2 meant the following exchange occurred: 

420 T: … so what this actually means is that I need to do five times five (.) and I 

need to times it by five times five (..) 

   [writing 5 × 5 × 5 × 5 on the board] 

421 S: so would you do five times five (.) double the answer (.) twenty-five 

times two 

422 T:  no you would do five times five5 (.) times (.) five times five (..) 

Extract 5.29: Sam Class B 
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In line 420, Sam concluded his turn by writing the power term as repeated 

multiplication. As Sam did not ask a question whilst occupied writing on the board, 

Lee’s contribution in line 421 was coded as self-initiated. However, whilst Sam had 

regularly associated meaning with writing powers in an expanded form in this lesson, 

the action of writing a sum on the board would normally be associated with a request 

for the calculation to be undertaken. As such, the student’s action in line 421 could be 

seen as responding to that norm, especially as self-nomination responses were 

common. In line 422, Sam started his turn with a bald negative evaluation, followed by 

his own explanation. As above, in the majority of cases, Sam took the turn after the 

student-initiated comment and he evaluated the contribution. 

As with class A, the majority of questions posed by Sam had a limited range of 

mathematically valid responses. A pattern of step-by-steps solutions, structured by 

Sam, formed most question-and-answer sequences; about a quarter of questions were 

considered to be simple and self-contained. For example, after the division 

question 25 ÷ 23 = 22 had progressed to Sam writing 
2×2×2×2×2

2×2×2
 , the exchange 

continued:  

269 T:  … so here I’ve got all these twos and here I’ve got two divided by two (.) 

what’s two divided by two 

270 Ss: one 

271 T: so what I do is cancel these twos out like that (..) 

   [crossing out pairs of twos] 

  and then cancel those 2s out like that (.) and those two like that (.)  

Extract 5.30: Sam Class B 

In line 269, Sam concluded with a simple question and appeared to use this to support 

his subsequent explanation of how the expression simplified through cancelling (line 

271).  

Sam treated mathematically valid responses as satisfactory, and mathematically 

invalid responses as unsatisfactory (e.g. extracts 5.27 & 5.28). There were occasions, 

however, when more than one student called out answers that contained 

contradictory answers; for example: 
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308 T: … what is eight to the power one 

309 S1 one 

310  S2 eight 

311 T: eight (.) well done folks 

Extract 5.31: Sam Class B 

In line 311, Sam repeats the mathematical response given in line 310 and offers an 

explicit positive evaluation. There is no apparent reaction by Sam to the 

mathematically invalid response given in line 309. In general, when mathematically 

invalid responses occurred alongside valid responses, the former were ‘ignored’ whilst 

the latter were positively evaluated.  

When Sam asked questions, responses arose from a mixture of teacher-nomination 

and student self-nomination. The former was less common and occurred when Sam’s 

gestures nominated a student or when he named them. Pauses at the end of a 

question were an indication that students could self-nominate and call out an answer. 

For example: 

194 T: 𝑦 to the power five times 𝑦 to the power eight (…) what is that (…)  

   [pointing at the exponents in turn] 

  𝑦 to the power of (.) 

195 Ss: thirteen  

196 T: so 𝑦 to the power thirteen (.) 

Extract 5.32: Sam Class B 

At the end of his turn in line 194, Sam stated “𝑦 to the power of” and after a short 

pause a few students chorused “thirteen” (line 195). Sam accepted the response and 

revoiced in the more complete base-to the power-exponent form. However, earlier in 

Sam’s turn, there were two extended pauses; it would have been an accepted 

classroom norm to call out responses at these earlier points. In effect, the students 

had an opportunity to respond but declined to answer. Sam responded by pointing at 

the exponents and then simplified the question by providing a prompt. Sam’s follow-

up action after the pauses, namely simplification, was comparable to his treatment of 

many unsatisfactory responses.  
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There was a difference in evaluation patterns between IRE sequences and those 

occasions when Sam evaluated student-initiated contributions (table 5.2). Within IRE 

sequences Sam treated far more responses as satisfactory compared to unsatisfactory, 

whilst within student-led interactions the frequencies were similar. When treatment 

of responses as unsatisfactory were considered, direct acknowledgement through bald 

negative evaluations, such as “no”, were almost exclusively heard in response to 

student-initiated comments (e.g. extract 5.29), whereas all bar one of the negative 

evaluations within IRE sequences was signalled more indirectly (e.g. extract 5.28).  

Treated as satisfactory - positive 
evaluations 

IRE Student-
led 

Acknowledged indirectly  
(e.g. limited to repetition, moving on) 

8 0 

Acknowledged directly 
(e.g. “yep”) 

22 4 

Acknowledged directly with judgment 
of quality (e.g. “excellent”) 

13 
 

3 

 

Treated as unsatisfactory – negative 
evaluations  

IRE Student-
led 

Acknowledged indirectly 
(e.g. simplifying the question) 

9 0 

Acknowledged directly 
(e.g. “no”) 

1 9 

Table 5.2: Classification of Evaluations  

In overall terms, as with class A, the most common IRE pattern was a single solution 

question, followed by a valid student response treated as satisfactory, and concluded 

with an immediate transition. A regular but less common pattern was a student 

response that contained a mathematically invalid element, which was treated as 

unsatisfactory. However, there were also student-initiated exchanges where Sam 

treated mathematically valid contributions as satisfactory and invalid contributions as 

unsatisfactory, the difference being in the nature of that acknowledgment for 

unsatisfactory responses (table 5.2).   

In addition to offering qualitative feedback on mathematical solutions or comments, 

Sam also praised students for engagement and task completion. For example, two 

minutes into the lesson Sam stated, “well done those who have made a start” and 
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later on stated “amazing” when a student reported that they had already copied a 

rule. In total, in addition to the sixteen occasions when students were praised for 

offering a satisfactory mathematical contribution, there were thirteen occasions when 

Sam offered praise related to engagement. 

(e) TOM: Sequencing 

As for class A, Sam controlled the overall lesson trajectory and regulated the 

mathematical focus through questions asked and explanations given. Writing powers 

in an expanded form followed by simplification was similarly central to explanations, 

and Sam retained the association of this approach with meaning. This included the use 

of particular examples to justify the general ‘rules of indices’, although there was no 

explicit discussion as to why examples could be extended to a more general case. In 

student-initiated exchanges, Sam took the next turn in the majority of cases; he always 

included some level of explanation that redirected talk back to procedures he had 

previously introduced. 

Again, a key point of departure from the expanded layout was when questions related 

to zero exponents were discussed. The first instance was 𝑘7 ÷ 𝑘7 = 𝑎. Sam pre-empted 

the discussion of this particular question with nine simpler examples where the 

dividend and divisor were the same. After ‘one’ was heard as the answer for all, when 

the 𝑘7 ÷ 𝑘7 = 𝑎  question was posed students chorused “one”. As such, this was coded 

as a funnelling sequence. Sam moved onto the next operation without an explicit 

discussion of how this linked to processes used in previous division questions; no 

reference was made to the subtraction of exponents, specifically  𝑘7−7 = 𝑘0 = 1. 

‘Anything to the power zero is 1’ was returned to after powers raise to powers had 

been discussed. As before, Sam used a power of ten example and the following 

concluded the discussion:  

482 T: … ten to the power one is just ten we said earlier (.) so what do we have 

to do there 

   [pointing at 100 and then 10]  

483 S:  divide by ten 

484 T: so following the same pattern (.) 

485 S: divide by ten 
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486 T: what is ten to the zero 

487 Ss:  zero one one 

488 T: one (..) dividing by ten each time OK (.) we can do that (.) we can do that 

(.) with any number we like (.) anything to the power zero is one 

Extract 5.33: Sam Class B 

As elsewhere in the lesson, Sam structured a step-by-step procedure in which students 

answered self-contained questions. In line 487, a number of students called out 

answers simultaneously. In line 488, Sam’s repetition indicated acceptance of ‘one’ 

and made reference to a general case, but there was no explicit response to zero.   

As with class A, the students experienced three approaches to an exponent of zero: 

the division ‘rule of indices’; identical divisor and dividend; descending powers of ten. 

However, the application of the rule of indices to division with equal exponents was 

not discussed at a whole-class level and links between the other two approaches were 

not explicitly made. Taken as a whole, these episodes allowed the exploration of zero 

exponents from different perspectives, but the separation of approaches may have 

made the mathematical features less apparent. 

In terms of meeting examples of ‘not rules of indices’, Sam introduced 34 × 22. Once 

more, a student initially tried to combine both the exponents and bases, stating in a 

student-initiated comment “three add two equals five and you do five to the power 

whatever”. Sam replied with a bald “no” before offering his explanation. There were 

further references to ‘the same base’, both verbally by Sam and on the PowerPoint 

slides, but this was the only direct exposure to a ‘not’ example. After 25 ÷ 23 had been 

discussed, a student asked as self-initiated question:  

292 S: but what if the numbers are different  

293 T: if the numbers are different it does not work the rule does not work 

Extract 5.34: Sam Class B 

Whilst it had to be inferred from ‘different’ that the student was referring to bases, 

her question drew attention back to the issue of common bases (line 292) and 

indicated this student was attending to some level of generality beyond the particular 

question. Sam redirected attention back to the rule without exploring this further (line 

293).  
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(f) Interpretation of Classroom Activities 

Sam regulated whole-class interaction through his questions, explanations and 

management of student responses. He directed or redirected the focus of attention 

onto strategies he introduced or was structuring through questioning. The inference 

made was that Sam usually attended to his mathematical horizon when managing 

classroom interactions, with the interrogation of student reasoning far less common. 

In the post-lesson interview, Sam explained he thought the students had grasped 

division of powers but 𝑘7 ÷ 𝑘7 = 𝑎 could have caused confusion if a zero exponent was 

introduced at that point of the lesson. As such, he pre-empted the discussion of this 

question by following the approach he felt had worked with class A, namely examples 

with identical devisors and dividends. However, he also expressed pleasure and some 

surprise as to how engaged the students had become in the mathematical discussions. 

He also felt that the students had been able to understand the main concepts in a 

manner more similar to class A than he had anticipated. 

(g) Cognitive Demand 

As the resources and approaches taken were similar to class A, the level of cognitive 

demand was also similar. In particular, the students engaged in activities related to the 

manipulation of powers, and the approaches taken at a whole-class level were the 

enactment of particular procedures. However, the expanded form gave students the 

opportunity to engage with mathematical terms expressed in different forms, with the 

potential to provide insights into mathematical structures. As such, these elements of 

‘talk as mathematics’ were classified as process.  

The sequence of questions introduced some variation in bases, exponents and 

operations. Whilst the dimensions of variation and range of permissible change were 

not an explicit part of tasks, and range of variation was limited, the students did have 

opportunities to make links. For example, when division problems were under 

discussion, one student asked “but what if the numbers are different”; it appeared, 

therefore, one student had drawn on the multiplication discussions and had 

recognised common bases was also an issue for other operations. On occasions, 

students misapplied the rules of indices. For example, when questions with 

coefficients were completed some students applied the ‘rule’ to the coefficients as 
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well as the exponents. As with class A, these mathematical errors were identified and 

corrected, either directly by an explanation by Sam or through a sequence of simple, 

self-contained questions. As students’ contributions were not interrogated, it 

remained unclear as to whether reasoning inconsistent with mathematical principles 

had been challenged. 

In overall terms, tasks could have been completed in a procedural manner, but 

expanded forms, sequential powers of ten and the sequence of questions provided an 

opportunity for links to be made to the underpinning mathematical structures. 

Although the notion that consideration of a limited number of examples could justify a 

more general case could have been reinforced. Consequently, the potential cognitive 

demand was high, but students may have successfully completed tasks without 

eliciting these high levels. 

(h) Classroom Norms  

As with class A, Sam directed student activities and regulated the mathematical 

direction of travel, and as such, Sam had high levels of agency within his classroom. 

The dominance of IRE exchanges reinforced the notion that he was the arbiter of 

correctness. Student-initiated contributions did occur throughout the lesson, 

demonstrating aspects of student agency. However, these were also evaluated by 

Sam, who retained the judgment about the legitimacy of mathematical contributions.  

Many of the questions asked by Sam had single mathematical solutions, often asked as 

one step in a sequence of questions related to a larger problem. As discussed, Sam 

structured the step-by-step approach and it was sufficient for an ‘effective student of 

mathematics’ to be able to provide the individual responses. After Sam introduced one 

‘rules of indices’ through the use of a particular example, he announced the result 

applied to “anything”. As with other instances, this carried a message that 

manipulation of expanded forms of particular examples contained a level of 

justification of a more general case.   

After satisfactory responses were offered Sam moved on, whereas after unsatisfactory 

responses he took follow-up action that resulted in the ‘correct’ response being 

identified in subsequent turns. Moreover, if both satisfactory and unsatisfactory 
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responses were offered, Sam acknowledge the ‘correct’ response and ‘errors’ 

appeared to be ignored. Within IRE sequences, praise, in the form of superlatives, was 

only offered in relation to satisfactory responses. These contributed to the narrative 

that an ‘effective student of mathematics’ would efficiently produce correct answers 

and if errors were met, they should be corrected. The inclusion of self-mitigating 

phrases was part of some student responses, which may have indicated that students 

did not want errors to be attributed to them. 

  



212 | P a g e  

5.3.2.6 Sam: Summary for Class B 

As with Sam’s class A, five lessons were recorded and analysed, with lesson-specific 

summary OMFs produced. These were used for comparisons across the different 

lessons for class B and the cross-class comparisons. As before, written summaries are 

provided first in order to communicate the key themes from the analysed lessons.  

First, the written summary for the indices lesson is provided, which is followed by the 

lesson-specific summary OMF (figure 5.26). Then a written summary of all the 

recorded lessons for Sam’s class B is provided, followed by the all-lesson summary 

OMF (figure 5.27). 

(a) Sam Class B: Written Summary – Indices Lesson 

The following outline draws together the key themes from the indices lesson reported 

in detail in the preceding section (5.3.2.5). 

A) Curriculum (atypical – same resources used as for class A) 

a) Content was tiered: formal rules considered ‘optional’ content for this class 

B) Organisation 

a) Seatwork: individual, peer discussion encouraged but not required;  

b) Interleaved seatwork with whole class 

C) Discourse patterns: mostly aligned with patterns previously reported  

a) Informal language the norm 

b) IRE dominant, single/limited solutions questions in linked sequences, some 

multiple student turns from the same initial I; some student-initiated turns 

c) Typical satisfactory/unsatisfactory norms for IRE: ‘Correct’ responses  follow-

on questions (1/3 superlatives); IRE ‘errors’   follow-up questions, some 

funnelling; multiple responses  correct solution acknowledged/ error 

ignored; Atypical response for student-initiated ‘errors’  bald ‘no’ 

d) Revoicing; repeating (occasional rephrasing into more formal/complete phrase) 

D) Tasks 

a) Focus on rewriting as multiplication (same register different representations); 

examples used to justify.  

b) Model – exercises; limited range of permissible change (Bills et al., 2006) 
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E) Sequencing 

a) Focus on mathematical horizon, (re)direction to ‘rewriting’ solution strategy  

b) Some attention drawn to ‘not’ rules of indices  

c) Alternative ways to consider zero exponents introduced but separately  

F) Teacher Cognition 

a) Discussion considered important in developing student reasoning. 

i) For this class: belief discussions may be unproductive – off-task behaviour, 

praise for engagement   

ii) Interpretation of classroom activity: students engaged in productive 

discussions and understood main concepts in a similar manner as class A 

G) Classroom norms 

a) Teacher arbiter of correctness  

b) Procedure counts as explanation; examples justify rules 

H) Cognitive Demand 

a) Potential high but range low to high (limited press to move beyond procedural)  

(b) Sam Class B: Summary OMF – Indices Lesson 

As before, analysis was an iterative process and an OMF was populated, with the 

lesson-specific summary OMF (figure 5.26) the final working document. Descriptions in 

note form and bespoke abbreviations were used (table 5.1).  
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Sam Class B Summary OMF – Indices Lesson 

 

Figure 5.26: Sam Class B Summary OMF – Indices Lesson 

Lesson Image: Sam Class B 
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(c) Sam Class B: Written Summary of All Recorded Lessons 

In addition to the indices lesson, which was reported in detail in the preceding section 

(5.3.2.5), four other lessons were recorded with class B. As with class A, these were 

three lessons on fractions and one on manipulation of algebraic expressions. Lesson-

specific summary OMFs compiled for each lesson were compared and an all-lesson 

summary OMF was produced (figure 5.27).  

Similar to class A, many of the dimensions of the OMF were stable across class B’s 

lessons, although there was more variation in the use of whole-class discussions and 

the treatment of errors. The following outlines the key themes from all the recorded 

lessons. Additional features not seen in the indices lesson are indicated by italics and 

features seen predominantly in the indices lesson are indicated by bold type. 

A) Content (atypical – same resources used as for class A – less material covered) 

a) Content was tiered: topics listed in the higher route were considered ‘optional’  

B) Organisation 

a) Seatwork: mostly individual - peer discussion encouraged but not required 

b) Interleaved seatwork with whole class. 

C) Discourse patterns: mostly aligned with patterns previously reported  

a) Some mathematical terms introduced but no press for use – colloquial terms 

often used and accepted 

b) IRE dominant, single/limited solutions questions in linked sequences, some 

multiple student turns from the same initial I (Initiate-Response-Evaluate); 

some student-initiated turns. 

c) Typical satisfactory /unsatisfactory norms for IRE: ‘Correct’ responses  

follow-on questions (superlatives); IRE ‘errors’  follow-up questions, some 

funnelling; multiple responses  correct solution acknowledged, error ignored. 

(the bald ‘no’ predominantly seen in the reported lesson) 

d) Revoicing: repeating, some rephrasing into more formal/complete phrase, 

extending explanations.  

D) Tasks 

a) Multiple representations: same register and different registers; tasks focussed 

on specific examples, and examples used to justify.  



216 | P a g e  

b) Model – exercises; limited range of permissible change – not explicit 

c) Either no context or context with pseudocontext  

E) Sequencing 

a) Focus on mathematical horizon, (re)direction to standard strategies introduced 

b) Links, when made, focussed on specific examples rather than on links between 

mathematically significant features of the representations   

F) Teacher Cognition 

a) Discussion considered important in developing student reasoning – conscious 

decision to try to use more whole-class discussion (structure through IRE) with 

class B (aware he relied on model-individual practice approach more often with 

class B). Considered whole-class discussion ‘successful’ in reported lesson, but 

more unpredictable in the other lessons – some success but some curtailed due 

to a perceived lack of engagement.  

G) Classroom norms 

a) Teacher arbiter of correctness  

b) Procedure counts as explanation; examples justify rules 

c) ESM errors: usual - errors to be avoided or corrected. 

H) Cognitive Demand 

a) Potential high but range low to high (limited press to move beyond procedural) 

(d) Sam Class B: Summary OMF of All lessons 

Lesson-specific summary OMFs were produced as part of the analysis of each lesson. 

One output from comparing all class B’s lessons was an all-lesson summary OMF 

(figure 5.27). Descriptions were in note form and bespoke abbreviations were used 

(table 5.1).  
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Sam Class B Summary OMF – All lessons 

 

Figure 5.27: Sam Class B Summary OMF – All lessons 

Lesson Image: Sam Class B – All Lessons  
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5.3.2.7 Sam: Class Comparisons 

In the main study, five lessons from each class were recorded and analysed. Lesson-

specific summary OMFs were an integral part of the analysis and these structured the 

comparison processes. When lessons for the same classes were compared, many of 

the dimensions of the OMF were similar, which allowed all-lesson summary OMFs for 

each class to be produced (figures 5.22 & 5.27). These in turn structured the cross-

class comparison. However, as previously discussed, Sam’s decision to base the lessons 

on the same materials also facilitated cross-class comparisons of individual lessons 

down to the level of mathematical practices. When the two classes were compared, 

there were many similarities in Sam’s pedagogical approaches, but differences were 

also noted.  

The comparison process from the perspective of the summary OMFs can be found in 

appendices 3.5.3, 3.5.4, 3.5.5 & 3.5.6, where underlining has been used to highlight 

common and differential features between the two classes. Those comparisons, cross-

referenced with the more detailed lesson narratives, informed the written summary 

given below. This provides an overview of the similarities and differences between 

class A and class B, with the latter indicated by italics. The written summary focusses 

on the indices lessons so the comparisons can be related to the detailed lesson 

narratives provided in the previous sections. However, complementary or 

contradictory features from the other recorded lessons are indicated with square 

brackets [ ]. The bold indicates where Sam changed his practice for the recorded 

lessons.  

A) Curriculum 

a) Content tiered: formal rules ‘core’ for class A and ‘optional’ for class B 

b) Atypical – used same resources for both classes  

B) Organisation 

a) Seatwork: individual, peer discussion encouraged but not required;  

b) Interleaved seatwork with whole class 

c) Class B contained fewer students 

C) Discourse patterns: mostly aligned with patterns previously reported  

a) Power terms used but no press for student use, class B informal language  
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b) IRE dominant, single/limited solutions questions in linked sequences; for class 

A some peer-to-peer ‘debates’; for class B some multiple responses to initial I 

and student-initiated turns 

c) Typical satisfactory norms: ‘Correct’ responses  follow-on questions (1/3 

superlatives); Some atypical unsatisfactory norms: For class A ‘errors’  often 

follow-up questions, some debates; for class B IRE ‘errors’   follow-up, some 

funnelling; multiple responses  correct solution acknowledged/ error ignored; 

student-initiated ‘errors’  bald ‘no’ [in other class B lessons, there were few 

instances of a bald ‘no’]   

d) Revoicing; repeating (occasional rephrasing into more formal/complete phrase) 

D) Tasks 

a) Focus on rewriting as multiplication (same register different representations); 

examples used to justify.  

b) Model – exercises; limited range of permissible change (Bills et al., 2006) 

E) Sequencing 

a) Focus on mathematical horizon, (re)direction to ‘rewriting’ solution strategy  

b) Some attention drawn to ‘not’ rules of indices  

c) Alternative ways to consider zero exponents introduced but separately  

F) Teacher Cognition 

a) Discussion considered important in developing student reasoning.  

i) Atypical – attempting to adopt a similar approach (discussion) with class B 

as he often used with class A 

ii) For class B initial belief discussions may be unproductive – off-task 

behaviour, praise for engagement 

iii) Interpretation of classroom activity: students engaged in productive 

discussions and understood main concepts in a similar manner as class A 

[whole-class discussions varied in ‘success’, with some curtailed due to 

perceptions of engagement] 

G) Classroom norms 

a) Teacher arbiter of correctness  

b) Procedure counts as explanation; examples justify rules 

c) For class A errors considered exciting to discuss 
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H) Cognitive Demand 

a) Potential high but range low to high (limited press to move beyond procedural)  
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5.3.3 Teacher: Rowan  

5.3.3.1 Background 

Rowan engaged in internal and external CPD opportunities. For example, she had been 

participating in a year-long CPD course and was drawing on those resources and 

approaches to introduce more student-led problem-solving activities. In addition, her 

department meetings regularly focused on resource development and how these 

supported the learning of mathematics.  

She followed her departmental scheme of work and did not make any adjustments to 

the topic taught to accommodate the recording. Rowan did indicate that the level of 

planning and development of resources for the lessons reported on here was typical of 

about one in five of her lessons. So, whilst the lessons reported might not fully 

represent the students’ everyday experience, they were a constituent part of the 

students’ usual experience of school mathematics. The recorded lessons were one 

hour long and were one of four mathematics lessons held each week. 

The school placed students in sets for mathematics. After year 7, their policy was to 

use internal assessments to make judgments about group composition, but this also 

involved teacher recommendation and set sizes. Usually most movement occurred 

once a year, with the two or three students with highest and lowest attainment in 

each set considered, but the intention was to keep the classes as stable as possible 

over the two years leading up to GCSE exams, so movement was rare after the first 

term of year 10. There were two curriculum routes specified for Key Stage 4, namely 

higher and foundation, linked to the GCSE specifications. In Key Stage 4, two thirds of 

the sets followed the higher tier route, with the remaining sets following the 

foundation route. There was some commonality in topics between higher and 

foundation routes at the start of year 10, but these routes quickly became more 

distinct. By year 11, the higher route focussed almost exclusively on the content 

designated as grade 6 and above and the foundation route on grade 5 and below. For 

the higher route, the content included in the foundation route was considered 

presumed knowledge, and only met when embedded in other activities and tasks.  
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5.3.3.2 Teacher’s Knowledge, Beliefs and Values 

Pre- and post-lesson interviews indicated that Rowan felt she had a relatively free 

choice about her style of teaching, but some school structures restrained her capacity 

to act. In particular, she perceived the school’s curriculum plans and expectations for 

exam preparation as constraints. This was mitigated to some extent by resource 

innovations introduced by the mathematics department, which provided some leeway 

to deviate from the prescribed curriculum. So, while she felt that the use of more open 

tasks would be supported by school leaders, the content heavy departmental plans 

that specified the material to be covered lesson by lesson restricted her movement. 

However, the level of freedom was related to the attainment of the class, where she 

perceived greater ‘exam pressure’ with higher attaining sets but felt she had more 

freedom of movement with lower attaining sets. Rowan stated she invested time in 

developing resources that would allow students to move away from following 

algorithms modelled by herself and towards problem solving approaches. 

5.3.3.3 Rowan: Class A 

This was a Key Stage 4 class, composed of about thirty students who had attainment 

profiles higher than average for that year group in the school.  

(a) Lesson Specific: Teacher’s Knowledge, Beliefs and Values, incorporating Initial 

Lesson Image 

In the pre-lesson interview, Rowan stated that she wanted the students to improve 

their algebraic manipulation skills and make links to other topics, as well as developing 

their problem-solving skills. As such her articulated lesson goal was considered to 

include elements of both learning and performance orientations. Within the lesson, 

there was a similar duality. For example, when reviewing particular questions, Rowan 

stated, “that it’s a very very common exam question you guys slipped up on in the 

mocks”, but framed the task as “can anyone make sense of that picture and those 

expressions and how they link”.  

Rowan indicated she was aiming to develop students’ ability to problem solve. Whilst 

this was her aim, a typical lesson for this class was more ‘traditional’, in that Rowan 

modelled a solution, after which students completed exercises containing similar 
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questions. She felt this approach was supported by both colleagues and students as an 

efficient way to cover the required curriculum. However, Rowan had been introducing 

more open tasks over the course of the year, believing an improvement in problem 

solving would develop students’ ability to answer the non-routine questions that were 

incorporated into the then new-style GCSE exams. So, whilst this lesson might not 

represent the students’ usual day-to-day experience, this type of lesson approach was 

part of the students’ overall experience of mathematics lessons.  

Rowan felt the students currently exhibited more positive attitudes to a ‘traditional’ 

approach, as this produced a greater quantity of written work, considered 

synonymous with good progress and, as yet, they could not see the purpose of open 

tasks. However, based on her teaching in a different school, she thought this was 

based on prior experiences. She argued the students needed to experience positive 

outcomes of a more open approach, in terms of being able to answer the new-style 

GCSE questions, in order to be persuaded to engage fully in these types of lessons. In 

effect, Rowan was attributing a performance orientation to her students (Dweck, 

1999).  

Before the lesson, Rowan indicated that she thought that the students might struggle 

to see the relationship between the algebraic expressions and the diagrams, but they 

were familiar with area as a model for multiplications so that should be an appropriate 

starting point. In addition, she thought the students would struggle when deciding on 

a course of action with the open-ended nature of some of the tasks.   

(b) TOM: Organisation 

The lesson was timetabled for one hour and lasted fifty-six minutes due to lesson 

transitions. Seventeen minutes were spent at a whole-class level, with the remaining 

time spent on seatwork. The desks, large enough to seat two students, were arranged 

in rows and the students were asked to work in pairs. Rowan explicitly stated that she 

wanted to hear discussions, although the starter activity and the worksheet could have 

been completed independently. The card sort activity was done in pairs or groups of 

three, with sets of cards shared, although students were expected to write up the 

results in their own exercise books.  
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Whole 
class 

 

                                                        

Seat 
work 

 

                         

 
 

1st: starter 2nd: worksheet 

part 1 

 
pt2 

 
solve/prove 

3rd: card sort 
 

 

           15 mins           21 mins    20 mins 

 Figure 5.28: Rowan Class A Organisation 

(c) TOM: Tasks, Examples and Explanations - Overview 

The lesson was entitled ‘The visual representations of algebra’. 

Phase 1: Starter 

Rowan displayed a question on a PowerPoint slide that the students started as they 

arrived (figure 5.29). An additional question, entitled ‘bright spark’, was added after a 

couple of minutes and then there was a whole-class discussion. 

 

Figure 5.29: Rowan Class A Tasks 

Q1 drew on the area of a rectangle as a model of multiplication and required the 

manipulation of compound surds. For the bright spark, all the surds were simple, but it 

was a multistage problem. Students took a subtraction approach, initially calculating 

the area of the two rectangles followed by attempts to subtract the terms; the lack of 

information as to the exact placement of the smaller rectangle and the naming as a 

‘hole’ may have cued this approach. Other dissection strategies would have involved 

‘seeing’ the area as equivalent if the removed section was placed elsewhere, with 

Visual representations of algebra 
Q1. Calculate the area of the rectangle and 
simplify the answer where possible.  
Q1. Calculate the area of the rectangle and 

1 + ξ3e 

2 − ξ3e 

Bright Spark: A piece of card has a 
whole cut in it. Calculate the area 
left as a percentage of the original.  
Q1. Calculate the area of the 

ξ20  

ξ8 ξ5 

ξ2 
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dimensions of the remaining card then calculable. However, it was also solvable 

without calculating areas if the similarity of the rectangles was recognised.  

Phase 2: Worksheet 

The students completed tasks relating to a worksheet (figure 5.30).   

  

Figure 5.30: Rowan Class A Tasks 

*The ‘L’ part of the rectangle was coloured blue and the small rectangle was red 

Initially, in reference to part 1, Rowan asked them, “what’s the connection between 

those expressions on the side and this diagram”. A period of seatwork then whole-

class discussion followed. Then Rowan asked the students to move onto part 2; initially 

students were asked, “how many different expressions can you come up with from 

that diagram”. After a further period of seatwork, the students were asked to consider 

the two questions on the worksheet related to solving and proof; the diagram/ 

expressions from part 1 were used as well as those from part 2.    

For the worksheet, and the later card sort, the ‘L’ shape was the common format 

(figure 5.30). Three dissections were associated with finding the area of the ‘L’ (figure 

5.31a-c): subtracting the area of the smaller rectangle from the larger; dissecting the 

‘L’ vertically into two rectangles and adding; and dissecting horizontally and adding. 

Other dissections, such as figure 5.31d, were not included. One dimension of the 

compound shape was labelled 𝑥, with some others given positive integer values; 

enough information was provided to find all the dimensions of the ‘L’. Conservation of 

area meant that different but equivalent expressions could be generated for each 

3 

𝑥 

12 

 

96 − 5𝑥 

36 + 5(12 − 𝑥) 

8(12 − 𝑥) + 3𝑥 

3 

8 

4 

8 

𝑥 

Worksheet 

Is it possible to 
solve for 𝑥? 

Can you prove that 
the expressions for 
the blue* part are 
equivalent? 

Part 2 Part 1 
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dissection. Consequently, this had the potential for students to explore the 

equivalence of algebraic expressions before they could prove this was the case by 

algebraic manipulation. 

 

Figure 5.31: Rowan Class A Tasks 

The form of the diagrams for part 1 and 2 may have made the critical features harder 

to discern. They were the same shape and size, and two dimensions, namely 8 and 3, 

were retained, but 12 was replaced by 𝑥 and 𝑥 by 4. The visible likeness and the 

retention of some dimensions could have cued students to read the diagrams as 

congruent, and the use of the same letter could have been interpreted as the letter 

representing the same variable. If the diagrams were read as congruent, then 𝑥 = 4 in 

the first diagram and 𝑥 = 12 in the second; in this context, if students accepted that 𝑥 

could represent two different lengths then all the dimensions would be known. If 𝑥 

represented the same unknown, then the reader had to ignore the visible ‘sameness’ 

and appreciate that if drawn ‘to scale’ the diagrams would look different. In this 

situation, equations could be formed and solved for 𝑥. Whereas, if  𝑥 represented 

different variables then the students would still have to ignore the visible ‘sameness’ 

but appreciate that the 𝑥s are unrelated and could vary as constrained by the given 

dimensions. All of which could have taken attention away from the key mathematical 

features related to equivalence, namely the equivalence of expressions drawn from 

finding the same area of a compound shape using different dissections. 

In part 2, two questions were posed, “Is it possible to solve for 𝑥?” and “Can you prove 

that the expressions for the blue square are equivalent?”. The first had the potential 

to draw attention to the meaning of solving, including the conditions under which 

something is solvable, and the second to the notion of proof. Both questions related to 

underlying mathematical structures and their juxtaposition could have drawn 

attention to the assumptions being made and the different conditions under which 

equivalence and solving apply.   

a. b. d. c. 
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Phase 3: Card Sort 

The students worked on a card sort activity, matching equivalent expressions and 

expressions with diagrams (figure 5.32).

 

Figure 5.32: Rowan Class A Tasks 

A range of strategies were possible, including ‘guessing’ dimensions followed by 

finding expressions for each dissection, factorising terms in each expression and 

simplifying expression in order to match the twelve cards.  

General  

Multiple representations were part of all the tasks, although the level of 

embeddedness varied. For example, Q1 in the starter used a diagram to present the 

information, but once the required calculation had been established the problem 

could be solved without further reference to the diagram. Whereas in later problems 

there was a greater requirement to shift between diagrams and algebraic expressions. 

Each activity drew on the area of a rectangle as a model of multiplication. This 

relationship was not mentioned explicitly, but the students’ reactions to the problems 

indicated that they were familiar with this model. Most tasks also involved compound 

shapes, which included the possibility of multiple solution strategies.  

(d) TOM: Discourse 

In terms of the mathematical register, the communication of meaning of key terms 

was supported by the context. For example, in reference to ‘solving’, Rowan used the 

phrase “can you use them to solve and find what 𝑥 is?”. Equivalence of algebraic 

Card sort resource 

63 − 5𝑥 
8𝑥 + 5(6 − 𝑥) 
5𝑥 + 8 
9𝑥 − 4(𝑥 − 2) 
18 + 5(𝑥 − 2) 
48 − 3(6 − 𝑥) 

8𝑥 − 20 
2𝑥 + 7(9 − 𝑥) 
3𝑥 + 30 
3𝑥 + 5(𝑥 − 4) 
18 + 5(9 − 𝑥) 
8(𝑥 − 4) + 12 

Cards: 12 cards with algebraic 
expressions and ‘blank’ diagrams  

A 
B 
C 
D 

Printed table:  
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expressions was a key element of the lesson tasks and Rowan used the term 

‘equivalent’ seven times in whole-class discussions; for example: 

105 T: ... the version of the expression that we’ve got here to represent the 

blue area (..) is equivalent to (.) this one that we’ve got for the blue area 

because they should be equivalent shouldn’t they because they’re both 

talking about the blue area… 

Extract 5.35 Rowan Class A 

In line 105, the meaning of ‘equivalence’ could have been inferred from the 

relationship of the expressions with the same area on the diagram, although the term 

was not explicitly defined. 

There was one occasion when a student appeared to be referring to features related 

to equivalence: 

112 S: work out that they were the same 

113 T: prove that they are the same (.) yeah… 

Extract 5.36: Rowan Class A 

The student used the phrase ‘the same’, which was mirrored by Rowan, although she 

revoiced part of the student’s contribution, replacing the ‘work out’ with ‘prove’; the 

term equivalence was not used. In this lesson, students were regularly exposed to the 

term ‘equivalence’ but there was no press for them to use the term in their own public 

talk. 

In whole-class episodes, approximately 85% of the talk was classified as 

mathematically related episodes (figure 5.33: subdivision 1). Turn-taking was the most 

common form of whole-class talk, but monologues were just under half of the 

mathematically related episodes (subdivision 2). The monologues consisted of 

explanations or instructions given by Rowan (subdivision 3 T:E). Taken together, IRE 

exchanges and the variant with an extended evaluative turn were the most common 

form of turn-taking (subdivision 3 T:IRE). These were often linked to form extended 

question-and-answer sequences. There was one student-led episode of turn-taking, 

which occurred when Rowan asked a student to explain her approach (subdivision 3 

S:L), although Rowan structured the talk with questions and her own explanations. 



229 | P a g e  

This was classified as student-led as the student’s contribution was longer than in 

typical IRE exchanges and the approach originated with the student.   

Whole-class talk  

   

Mathematically Related Episodes Other Subdivision 1 

      

Turn-taking Monologues Other Subdivision 2 

       

T: IRE (inc. variant) S:L T:E Explains/ Instructs Other Subdivision 3 

Figure 5.33: Rowan Class A Breakdown of Whole-Class Episodes  

Within IRE sequences, Rowan indicated responses were satisfactory in a number of 

ways. In addition to using explicit affirmative words, such as “yes”, Rowan indicated 

responses were satisfactory by writing the answer on the class whiteboard, repeating 

or revoicing the response, drawing on the response in her following turn and moving 

on. There was only one occasion where Rowan added a superlative to her evaluative 

turn, in this case “perfect”. All the responses treated as satisfactory could be 

considered as a mathematically valid response. For example:  

88 T: but where’s the five come from (..) 

89 S: eight minus three 

90 T: OK yes this dimension’s eight this dimension’s three that must be five 

therefore this must be five 𝑥 (.) if I subtract that from the whole 

rectangle I’m left with the blue area (.) yeah  

   [gesturing at PP]  

  (.) the thirty six plus (.) five bracket 𝑥 minus twelve…  

Extract 5.37: Rowan Class A 

The student’s response in line 89 draws on the appropriate dimensions from the 

diagram, and line 90 contains an explicit positive evaluation indicating acceptance as a 

satisfactory response. Rowan extended her turn by adding a further explanation; this 

occurred in the majority of the IRE interactions. Rowan’s turns were almost always 

longer than the students’, as extended student contributions were rare. 
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Rowan indicated that responses were unsatisfactory in less direct ways. Rather than 

use explicit evaluations, she used follow-up questions related to the original question, 

usually with some form of simplification. This pattern was also followed for ‘don’t 

know’ responses. For example, when the ‘bright spark’ starter question was being 

discussed the following exchange occurred:  

31 T: so what did we get as the area of the large rectangle 

32 S1: four root ten (.) that’s what the calculator said  

33 S2:  (root one sixty) 

34 T: root eight multiplied by root twenty is (..) 

35 S2: root one sixty 

36 T: OK (..) … 

   [writing ξ160  on the whiteboard]  

Extract 5.38: Rowan Class A 

After Rowan’s initial question (line 31) two separate answers were distinguished on 

the recording (lines 32 & 33), although they overlapped and the second was quieter. In 

line 34, Rowan simplified the question, moving from asking for the area, to specifying 

the calculation. As “root one sixty” was subsequently positively evaluated by Rowan 

when offered in line 35, the interpretation made was that in line 34 she was 

responding to “four root ten” and was treating this as an unsatisfactory response 

(although 4ξ10 = ξ160). 

The exchange continued:  

36 T: … what’s the area of the blue section 

37 S4: minus root twenty 

38 T:  what’s five 5 times two 

39 S5: ten 

40 T:  [adding 10, then −ξ  to show ξ160 − ξ10 ] 

Extract 5.39: Rowan Class A 

After asking about the area of the blue section (line 36) and the student’s response 

(line 37), Rowan asked a simple follow-up question that all the students would be able 

to answer with ease, and without reference to the previous questions or the tasks 

undertaken in the lesson (line 38). This indicated “minus root twenty” was treated as 
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an unsatisfactory response. The writing of 10 on the board after line 39 indicated this 

response was satisfactory, although it was Rowan who completed the original 

question by writing the square root.  

This last extract demonstrated the characteristics of funnelling. This was the 

simplification of the mathematics being asked to a point where the students could 

answer with minimal cognitive effort. Whilst there were a relatively small number of 

student responses treated as unsatisfactory, in four out of seven of these occasions 

Rowan simplified the mathematics being asked to the point where the funnelling label 

could be applied. 

The precursors for responses to be treated as unsatisfactory did vary. There were a 

couple of occasions when students’ responses would normally be considered a 

mathematically valid answer. For example, “four root ten” (extract 5.38, line 32) was 

the requested area but was treated as an ‘error’. There were other occasions, as in 

extract 5.39, line 37, when the response was not the result of the requested 

calculation and would be considered a mathematical error. Finally, there were a 

couple of times when the response did not contain a mathematical error per se, but 

Rowan thought was insufficient in some way. For example, when asked why the area 

was 5𝑥, a response of “because it’s five times 𝑥” was subject to a follow-up question.  

In overall terms, IRE exchanges were the most frequent form of interaction, where 

Rowan asked questions with a limited range of mathematically valid responses. The 

most common exchange was Rowan asking these relatively closed questions, followed 

by a mathematically valid response, which Rowan treated as satisfactory whilst 

extending her turn by adding an explanation of her own. Responses that were treated 

as unsatisfactory were less common and had more diverse precursors. In her 

evaluative turn, Rowan kept the same focus but tended to follow-up by simplifying the 

question. IRE exchanges were usually contained in extended sequences related to an 

overarching process.  

Extended periods of talk by Rowan, classified as monologues due to their length and 

level of self-containment, occurred throughout the lesson. These predominantly 

focussed on mathematical explanations but there were also some task instructions. No 
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student talk was long enough to be similarly classified. Rowan’s monologues, taken in 

conjunction with explanations in her evaluative IRE turns, meant that she contributed 

the majority of class talk. 

(e) TOM: Sequencing 

Rowan controlled the overall trajectory of the lesson, shaped by the use of prepared 

resources and her selection of students’ work as the focus for whole-class discussions. 

She regulated the mathematical focus through questions asked and explanations 

given. 

In the first phase, Rowan drew attention to a particular method of multiplying surds. 

Referring to multiplication of brackets done in previous lessons, five times she said, 

“don’t abandon the methods”. Stating, “I was really scared that someone was going to 

do this”, Rowan modelled an error on the board for (1 + ξ3)(2 − ξ3) (figure 5.34). 

Figure 5.34: Rowan Class A Tasks  

When the ‘bright spark’ was discussed, Rowan focused on the generation of 

unsimplified versions of surds that represented the area of rectangles, namely ξ160  

and ξ160 − ξ10.  This one solution strategy was privileged over other possible 

approaches. In addition, the focus on unsimplified surds may have made subsequent 

calculations more difficult and obscured the proportional relationship in ‘bright spark’. 

Rowan did not complete the ‘bright spark’ problem in the whole-class discussion, 

leaving the final resolution of the problem with the students.  

In phase 2, Rowan drew attention to finding and labelling missing dimensions as the 

first stage of the task (extract 5.37). She also highlighted relationships between 

particular terms or expressions and the areas of parts of the diagrams. Whilst some 

IRE exchanges led to the labelling of dimensions, much of this relationship work was 

undertaken by Rowan in extended explanations. For example, she outlined how two 

out of the three expressions in part 1 were derived:  

92  T: so if we do (.) if we say five (.) which is this  

        1 × 2 = 2 

ξ3 × −ξ3 = −3 
                     −1 
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   [pointing at 𝑎 on figure 5.35]  

  multiplied by twelve minus 𝑥 (.) that tells you this dimension (.)  

   [pointing at 𝑏] 

  and then (.) three multiplied by twelve which gives you this strip here (.) 

   [point at 𝑐] 

   is thirty-six (.) so that’s another expression that represents the blue area 

(..) what about the last one (.) another way of expressing the blue area if 

we cut it (.) here  

   [making a horizontal line with an arm across the top of 𝑑]   

  (.) then this part is three 𝑥 (.) yeah (.) and this part (.) is twelve minus 𝑥 (.) 

multiplied by eight (.)  

   [pointing at the red rectangle then 𝑑] 

  so three different ways of representing exactly the same area but if you 

look at those expressions they don’t look the same do they (..) how many 

different expressions can you come up with from that diagram 

   [pointing at diagram labelled part 2] 

Extract 5.40: Rowan Class A 

  

Figure 5.35: Rowan Class A Tasks 

Rowan concluded by drawing attention to the notion that different expressions 

represented the same area but looked different. As this was followed by an immediate 

transition to finding expressions for the diagram in part 2, there was no explicit 

discussion about the notion that the expressions were equivalent and would rearrange 

into the same form.  

Phase 2 continued with students generating expressions for the second diagram and 

exploring the two questions relating to ‘proving equivalence’ and ‘solving’. When 

Rowan drew the class back together for the final whole-class discussion in this phase, 

𝑎, 𝑏, 𝑐, 𝑑 and dashed 
lines/ shading were 
not on the diagrams 
in the lesson – 
added for ease of 
reference  8 

𝑏 

3 

𝑥 

𝑎 

12 
𝑐 

8 

𝑏 

3 

𝑥 

𝑎 

12 
𝑑 
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it was more difficult to discern which mathematical concept was the focus of 

attention; Rowan opened the discussion with:  

109 T:  … so did you find making (.) this equivalent to this  

   [point at: 8(12 − 𝑥) + 3𝑥 and 36 + 5(12 − 𝑥)] 

  or this equivalent to this (.) did that enable you to solve that equation 

110 Ss: no  

   [chorused by a number of students] 

111 T: what did it enable you to do though 

112 S: work out that they were the same 

113 T: prove that they are the same (.) yeah…   

Extract 5.41: Rowan Class A 

In line 109, although Rowan used the term ‘equivalent’, her reference to ‘making’, 

when the expressions were already equivalent, and her reference to ‘solving’ made it 

unclear if she was attending to the equivalence of the expressions. Moreover, as there 

were no equations written on the board, it was not clear as to which equation she was 

referring to. The students’ responses indicated they thought that solving was not 

possible in the circumstances prescribed, but their reasoning was not interrogated. 

 Still referring to part 1, Rowan continued:  

113 T: … so probably end up if you simplified it all d’both of them  

   [pointing to: 36 + 5(12 − 𝑥) and 8(12 − 𝑥) + 3𝑥] 

  you’d have ninety-six minus five 𝑥 is equal to ninety-six minus five 𝑥 (..) 

   [writing: 96 − 5𝑥 = 96 − 5𝑥] 

   𝑥’s on both sides (.) we’d (.) add five 𝑥 to get rid of it here so ninety-six  

   [writing: 96 = 96] 

114 S: equals ninety-six  

115 T: oh I’ve just cancelled out my x’s on both sides (.) which proves that 96 

equals 96 well we knew that anyway (.) but really interestingly what Beth 

did (.) erm (.) was… 

Extract 5.42: Rowan Class A 

Rowan had a surprised tone to her voice at the beginning of line 115; it appeared that 

she had not anticipated the result of her action. In the second part of her turn, Rowan 

shifted attention to Beth’s approach of setting up and solving an equation. Similar to 
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discussions about part one, there were no explicit discussions about the manipulation 

of expressions, and in particular, the question about proving equivalence had not been 

explicitly addressed.    

Rowan then asked Beth to describe her approach. Beth had formed an equation from 

the two simplest expressions for the two blue areas from part 1 and part 2 and solved 

the resulting equation, namely 8𝑥 − 20 = 96 − 5𝑥. Rowan added a longer explanation 

that included an explicit articulation that the assumption had been made that the blue 

areas were the same. However, there was no explicit discussion about the role of 𝑥, 

and in particular that this approach contained the inherent assumption that the 𝑥s 

represented the same unknown in both diagrams.   

In the last phase of the lesson, the students completed the card-sort with relatively 

little whole-class interaction. Apart from organisational instructions, Rowan drew 

attention to strategies for completion; for example:  

143  T: but if you start by looking at the diagram (.) and writing the same 

expressions that were written for the previous sheet with the blue areas 

(.) you doing the exact same thing (.) you’ll just know if you’ve got the 

answer right cause it will be on- appear on the other cards (.) 

Extract 5.43: Rowan Class A 

However, the shared strategy did not include discussions as to how the dimensions of 

the blank diagrams could be worked out or alternative approaches that could be used 

to match up expressions. 

Phase 2 of the lesson contained the majority of whole-class talk related to Rowan’s 

lesson goals. She directed attention towards the generation of expressions and how 

these linked to the area of the compound ‘L’ shape. The “same area” was used on a 

couple of occasions to argue that the expressions were equivalent. The students were 

not exposed to a sequence of examples. Instead, the structure of the problem drew 

attention to equivalence, albeit with the previously discussed issues regarding the 

visual ‘sameness’ of the two diagrams. In the last phase, the card sort maintained the 

connection to the principle that different expressions representing the same area 

were equivalent. As such, the students had the opportunity to develop an 
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understanding that different forms of algebraic expressions can represent the same 

area, hence build on the notion of equivalence. However, with a variety of solution 

strategies possible, the task could have been completed without manipulating 

algebraic expressions to show equivalence.  

One key consequence of this management of this lesson trajectory was that the actual 

algebraic manipulation to prove two expressions were equivalent was not undertaken 

at a whole-class level. In particular, the whole-class discussions in phase 2 appeared to 

be side-tracked when Rowan wrote equivalent expressions equal to one another. 

Consequently, students could have completed the tasks as set without having 

experienced algebraic expressions are equivalent 𝑖𝑓𝑓 they can be rearranged into the 

same form. 

(f) Interpretation of Classroom Activities 

In the whole-class elements of the lesson, Rowan determined the mathematical focus 

of discussions. In particular, she redirected students to approaches she structured 

without interrogating student contributions, which included treating as unsatisfactory 

mathematically valid responses. There was an episode about generating and solving an 

equation that was more student led, in so far as it appeared Rowan had not 

considered that approach before the lesson. She discovered this approach during a 

period of seatwork and chose to share this in the subsequent whole-class discussion, 

but she controlled this with IRE exchanges. The inference made was that Rowan was 

attending to her mathematical horizon during whole-class interactions.  

(g) Cognitive Demand 

The tasks required algebraic expressions to be linked to diagrammatical 

representations, thereby providing the opportunity for students to consider links 

between representations and between representations and underlying concepts. In 

particular, the notion that expressions of different forms can represent the same area, 

and thereby be ‘the same’ was met repeatedly throughout the lesson. There was the 

possibility to transition from the principle of expressions being equivalent based on 

the shared representation of an area to the principle that equivalence is demonstrable 

through algebraic manipulation. However, this was dependent on individual student 
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activity as this was not an explicit part of whole-class discussions or a requirement of 

the tasks.  

Students’ ‘talk as mathematics’ was almost always classified as procedural or process. 

These student contributions predominantly occurred in response to questions posed 

by Rowan. For example: 

90 T: … what dimension is (.) twelve minus 𝑥 (..) 

91 S: you go from the red line you like draw a line through the whole thing and 

the bottom half it would be twelve minus 𝑥 

92 T: so this bit  

  [pointing at the PowerPoint]  

  the twelve minus 𝑥 (.) the whole of this side is twelve and its bin- (.) had 

𝑥 subtracted (.)…   

Extract 5.44: Rowan Class A 

Whilst this student’s response was related to this particular example, the process of 

dissection was applicable to other examples. As such, this was classified as process.  

On the other hand, Rowan’s contributions had a greater variety of classifications. 

Whilst many comments were focussed on particular calculations, and hence classified 

as procedural, there were more examples where comments could be interpreted in a 

wider context and thereby classified as process or mathematical concept (e.g. extract 

5.40). An ‘effective student of mathematics’ would thereby have been exposed to 

these ideas, but without the requirement to engage in this dialogue themselves.  

The questions in phase 2 about solving and proving expressions are equivalent 

provided an opportunity for students to consider underlying mathematical concepts, 

such as proof and the difference between an equation and an identity, albeit without 

being exposed to all the associated language. However, as the whole-class talk did not 

explicitly discuss these issues, the engagement with these broader concepts was 

reliant on independent student activity.   

It appears, therefore, that the lesson provided opportunities for an ‘effective student 

of mathematics’ to engage in tasks that had the potential to elicit higher level thinking. 

Whilst, to some extent, all the students were involved in the generation of expression 
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representing area, they could have completed all the required tasks without moving 

beyond this one procedure. Moreover, much of the ‘talk as mathematics’ was 

procedural or process and most high-level talk was undertaken by Rowan. In other 

words, the lesson had the potential to elicit higher level thinking, but students could 

have completed the tasks working in a procedural manner, thereby not engaging in 

these higher levels of thinking.  

(h) Classroom Norms  

Rowan directed student activities within the lesson and the authority to decide what 

was done, and how, resided with her. For example, Rowan initiated all the whole-class 

discussion and decided when to move onto the next task. As such, she could be seen 

as having high levels of agency within her classroom. 

Within the lesson there were a number of events that contributed to a narrative that 

an ‘effective student of mathematics’ should avoid errors. Rowan expressed pleasure 

when an anticipated error in the multiplication of surds was not reported, and when 

errors did occur, Rowan tended to simplify the mathematics until an acceptable 

response was uttered. In addition, Rowan signalled that bravery was required to tackle 

more challenging mathematics.  

Rowan regulated the mathematical direction of travel, determining the focus for the 

whole-class discussions. Rowan’s choice to focus on single solution strategies, when 

alternatives were possible and occasionally voiced by students, contributed to the 

narrative that mathematics was about finding ‘the’ answer quickly and efficiently. The 

IRE/exposition pattern reinforced the norm that Rowan was the arbiter of correctness 

and responsible for explanations, whereas students’ responsibility was contributing 

correct results or procedural explanations. There was one occasion where Rowan drew 

on a student’s approach for a substantive whole-class discussion. This had the 

potential to communicate that students’ explanations are legitimate and valued; 

however, Rowan revoiced Beth’s contribution and extended the explanation, 

reinforcing the notion that Rowan was the arbiter of correctness and ultimately 

responsible for explaining the mathematics.  
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5.3.3.4 Rowan: Summary for Class A 

Two lessons were recorded and analysed with Rowan’s class A, with lesson-specific 

summary OMFs produced as part of the analysis process. These were the key point of 

comparison across the two lessons with class A and the cross-class comparisons with 

Rowan’s class B. As with Joe and Sam, the OMFs were working documents, with 

descriptions in note form and bespoke abbreviations used (table 5.1). So, in order to 

communicate the key themes from the lessons, written summaries are provided 

before the summary OMFs are presented.   

First, there is the written summary for the equivalence lesson, which was reported in 

detail in the preceding section (5.3.3.3). This is followed by the lesson-specific 

summary OMF (figure 5.36). Then, the written summary for the second recorded 

lesson is provided, which is referred to as the algebra lesson. Finally, the lesson-

specific summary OMF for the algebra lesson is presented (figure 5.37).  

(a) Rowan Class A: Written Summary – Equivalence Lesson 

The following outline draws together the key themes from the equivalence lesson 

reported in detail in the preceding section (5.3.3.3).  

A) Curriculum 

a) From a higher tier curriculum route  

B) Organisation 

a) Seatwork: individual, peer discussion encouraged and some group work   

b) Interleaved seatwork with whole class 

C) Discourse patterns: aligned with patterns previously reported  

a) No press for the use of mathematical terms 

b) IRE dominant, limited solution questions in linked sequences but extended 

teacher exposition was also a regular feature 

c) Typical satisfactory and unsatisfactory norms: ‘Correct’ responses  follow-on 

questions; ‘errors’  follow-up questions (funnelling) 

d) Revoicing; repeating rephrasing and explanations extended 

D) Tasks 
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a) Multiple representations used; mathematical structure (equivalence/ 

conservation of area) embedded in tasks but not an explicit element  

b) Some ambiguous features (scale, visual similarity, letter representation) 

E) Sequencing 

a) Focus on mathematical horizon, (re)direction to strategies introduced 

b) Occasional reference to mathematical structure, but this included ‘erroneously’ 

equating equivalent expressions and bypassing equivalent  rearrangeable  

c) One student’s solution was made the focus of a whole-class discussion 

F) Teacher Cognition 

a) Espoused priority was to develop students’ problem solving, but felt pressured 

to teach more ‘traditionally’  

b) Privileged her mathematical horizon when interpreting student responses 

G) Classroom norms 

a) Teacher arbiter of correctness  

b) Procedure counts as explanation 

H) Cognitive Demand 

a) Potential high but range low to high (possible to complete tasks using modelled 

single solution strategy) 

(b) Rowan Class A: Summary OMF – Equivalence Lesson 

As before, analysis was an iterative process and an OMF was populated, with the 

lesson-specific summary OMF (figure 5.36) the final working document. Descriptions in 

note form and bespoke abbreviations were again used (table 5.1). 
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Rowan Class A Summary OMF – Equivalence Lesson 

 

Figure 5.36: Rowan Class A Summary OMF – Equivalence Lesson 

Lesson Image: Teacher Class  
 
 

       

  

 

Teacher 
Cognition 
 
 
 
 
 
Knowledge, 
MCK : 
[equivalence] 
Beliefs and 
Values 
Values: to shift 
away from 
teacher led to 
student problem 
solving 
Beliefs: 
Colleagues and 
students 
preferred 
‘traditional’ 
teaching – 
coverage of 
content, 
especially with 
higher attaining 
sets.  
 

Concepts                        Ways of working 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Teacher’s Orchestration of Mathematics 

Teacher’s 
Interpretation 
of Classroom 
Activity:  
Reference point 
Mostly 
mathematical 
horizon 
(included a 
student’s 
approach to 
‘solving’ in 
whole-class 
discussions). 
 

Organisation: Individual (peer discussion 
encouraged), some group (cooperation), 
interleaved WC/SW 
 Discourse Patterns  
Registers: Term used (equivalence) – no 
press for student use. Interaction: IRE 
dominant, extended teacher turns, linked 
longer sequence. Monologues: Teacher 
expositions common Questioning: Mostly 
limited soln – part of step-by-step 
procedure. Responses: Typical satisfactory 
& unsat Errors: (some funnelling) 
Revoicing-repeat, rephrase, extend 
 Tasks, Examples, Explanations (model-
exercises*). Features: Context-area model 
for multiply. Generaln: not explicit (structure 
embedded). MSS: possible (T focus - single) 
others ‘avoidable’. MR: used (same and 
different registers), mathcal features/ links 
not explicit (area equivalence/ conservation 
of), ambiguous features (scale, visual 
similarity, 𝑥, specific /general). Example 
variation: few examples*  to general model  
 Sequencing Lesson trajectory 
Focussed mathcal horizon, (re)direction to 
introduce approaches. Focussed on 
expressions, then (erroneously) on equating 
equivalent expressions, then solving a case. 
Occasional attention drawn to mathcal 
structure (area  equivalent) but not to 
‘equivalent  rearrangeable. Students’ 
work: solving example (assumption about 
area articulated, but not others e.g. 𝑥)  

Cognitive Demand 
Type of thinking:  
Potential: High 
 
Range: Low to high   
Procedural 
approach possible 
and attention not 
consistently drawn 
to mathematical 
features 
 
 

Classroom Norms 
SN: Teacher arbiter 
of correctness. 
(student-initiated; 
agency to act) 
Some student 
contributions to 
explanations (one 
pre-selected), but 
teacher control 
Errors: avoid/ 
correct 
SMN: Procedure as 
explanation (one 
procedure to soln). 
ESM: Efficient 
production of 
correct answer 
MP: Equivalence 
sometimes treated 
as ‘equals’ 

 

Heuristic 
responses 

Lesson Goals:  
Performance and 
learning 
(improve problem 
solving & algebraic 
manipulation) 

Plan Rationale:  
Students were 
familiar with area 
as multiply 
providing concrete 
link to equivalence 

Hypotheses:  
Barriers: lack of 
familiarity with open 
problems; recognising 
relationships between 
diagrams and algebra 
 

In
d

iv
id

u
al

 S
tu

d
en

t 
A

ct
iv

it
y 



242 | P a g e  

(c) Rowan Class A: Written Summary – Algebra Lesson 

In addition to the equivalence lesson reported in detail, one other lesson was recorded 

and analysed with class A. The lesson focussed on the manipulation of algebraic 

expressions involving brackets and fractions (substitution and rearranging). The main 

resource used was a set of worksheets with ‘graded’ questions. This lesson was 

analysed in the same manner, with a lesson-specific summary OMF produced as part 

of that process (figure 5.37). The two recorded lessons for Rowan’s class A were 

compared, with the lesson-specific summary OMFs structuring this part of the analysis. 

Many of the dimensions of the OMF for Rowan's algebra lesson were similar to her 

equivalence lesson, although the task features were dissimilar. The written summary 

below provides an overview of the pedagogical features of the algebra lesson. 

Features seen in this second lesson that were different from the equivalence lesson 

(5.3.3.3) are indicated by italics.    

A) Curriculum 

a) From a higher tier curriculum route  

B) Organisation 

a) Seatwork: all individual, peer discussion encouraged   

b) Interleaved seatwork with whole class 

C) Discourse patterns: aligned with patterns previously reported  

a) No press for the use of mathematical terms 

b) IRE dominant, limited solution questions in linked sequences but extended 

teacher exposition were a regular feature 

c) Typical satisfactory and unsatisfactory norms: ‘Correct’ responses  follow-on 

questions; ‘errors’  follow-up questions 

d) Revoicing; repeating rephrasing and explanations extended 

D) Tasks 

a) Same register (rearrangements); multiples solution strategies possible but not 

integrated into tasks – single approach privileged.  

b) Pre-categorised questions, limited implicit exposure to RoPC e.g. not explicit 

links, boundary/not questions not met - unsystematic variation.  

E) Sequencing 
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a) Focus on mathematical horizon, (re)direction to strategies introduced, 

including treating alternative rearrangement/ solution strategy as an ‘error’. 

b) Occasional reference to mathematical structure through links between 

substitution and rearranging algebraic expressions  

F) Teacher Cognition 

a) Espoused priority was to develop students’ problem solving, but felt pressured 

to teach more ‘traditionally’  

b) Privileged her mathematical horizon when interpreting student responses 

G) Classroom norms 

a) Teacher arbiter of correctness  

b) Procedure counts as explanation – BODMAS treated as a mathematical 

principal 

H) Cognitive Demand 

a) Potential high but range low to high (possible to complete tasks using modelled 

single solution strategy) 

(d) Rowan Class A: Summary OMF – Algebra Lesson 

As an integral part of the analysis of the algebra lesson, a lesson-specific summary 

OMF was produced (figure 5.37). The same note form for descriptions and bespoke 

abbreviations were used (table 5.1).  
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Rowan Class A Summary OMF– Lesson 2: Algebra Lesson

 

Figure 5.37: Rowan Class A Summary OMF – Lesson 2: Algebra Lesson  
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5.3.3.5 Rowan: Class B 

This was a Key Stage 4 class, composed of about twenty students who had attainment 

profiles lower than average for their year group in the school.  

(a) Lesson Specific: Teacher’s Knowledge, Beliefs and Values, incorporating Initial 

Lesson Image 

In the pre-lesson interview, when asked about lesson goals, Rowan stated “I want 

students to be fluent in using this visual representation… to rearrange by inspection of 

the diagram as opposed to following an algorithm”. She also made reference to 

performance in exams, stating “I feel that they are more likely to be able to use this in 

an exam”. As such, Rowan’s articulated lesson goals included elements of both 

learning and performance orientations. In addition to using more diagrammatic 

representations, she wanted to use more student-led activities to build the 

independence that may help the transition to exam conditions. There was a similar 

duality in the lesson. Rowan made reference to the aim being for students to 

understand rearranging equations, whilst the tasks were presented as hierarchical 

skills to be successfully completed, with practice the required first step. 

Rowan thought this class required a different approach from higher attaining classes 

taught the same topic. She ascribed poor retention as an issue for these students, so 

more time was required to revisit and practise basic skills. Rowan stated she used 

more short tasks with interactive or competitive elements to keep students engaged 

and thought they needed more encouragement to stay on task. Her use of superlatives 

and ‘reward points’ for engaging in tasks and answering particular questions appeared 

to support a belief that extrinsic motivation was of benefit. Rowan also said the 

diagrammatic approach with multiple equations would be useful because “this could 

get them doing more maths without realising it”; it appeared she thought the students 

would not be intrinsically motivated by the mathematics. 

Rowan planned for the numerical and algebraic examples to be modelled by the 

students with strips of paper. She thought being able to change the physical 

arrangement of the bars would allow students to build links between bar models and 

rearranging sums. Whilst the students had used bar diagrams in the past, they were 
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not in regular use. Her aim was to develop students’ use of bar models, and as the 

students could already confidently rearrange integer sums, she thought bar models 

with integer questions would be an effective entry point. Rowan anticipated the 

students would be able to use bar models to represent numerical equations involving 

addition but might struggle with subtraction. Rowan considered the transition to 

algebra as more complex. For example, she recognised the use of scale in the first 

example might not help the student to understand scale “did not matter” in the 

algebraic model.  

(b) TOM: Organisation 

The lesson lasted one hour, and about twenty-five minutes were spent at a whole-

class level, with the remaining time spent on individual seatwork. The desks were 

arranged in rows. Whilst Rowan asked the students to complete the seatwork in pairs, 

and moved students to ensure that all had partners, the tasks set could have been 

completed independently. During seatwork, Rowan circulated and interacted with all 

pairs of students.   

Whole 
class                                             

 

Seat 
work  

                          

 1st: 
3 + 8 

2nd: 
𝑎 + 𝑏 

3rd:  
worksheet 

     4th: 
subject 

5th: 
worksheet 

 

Figure 5.38: Rowan Class B Organisation  

 

(c) TOM: Tasks, Examples and Explanations - Overview 

The lesson was entitled ‘Rearranging using the bar method’. 

Phase 1: Integers 3, 8, 11 bars 

The students were asked to cut strips of paper into bars 3, 8 and 11cm in length and to 

arrange them to “show a sum”. A whole-class discussion concluded with two diagrams 

and three sums written on the whiteboard by Rowan (figure 5.39). 
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Figure 5.39: Rowan Class B Tasks   

When subtraction was discussed, a prepared PowerPoint slide was also referred to: 

The top half, related to addition, 

was not discussed. 

 

 

 

Figure 5.40: Rowan Class B Tasks 

Phase 2: Algebra 𝑎 + 𝑏 = 𝑐 

Students were given three new strips of paper and Rowan asked them to “cut them up 

and arrange them to show that 𝑎 + 𝑏 = 𝑐”. After some individual seatwork, a whole-

class discussion ensued. Rowan presented a bar diagram on a PowerPoint slide (figure 

5.41) and wrote 𝑎 + 𝑏 = 𝑐 on the board. In response, students offered three more 

equations, which Rowan added to the whiteboard.  

 

Figure 5.41: Rowan Class B Tasks 

8 + 3 = 11 

11 − 8 = 3 

11 − 3 = 8 

c 

a b 

𝑐 

𝑎 𝑏 𝑎 + 𝑏 = 𝑐 
𝑏 + 𝑎 = 𝑐 
𝑐 − 𝑎 = 𝑏 
𝑐 − 𝑏 = 𝑎 

So if we take the 11 bar and chop off 3 cm  

 11 8 

3 

11 8 3 

So 3 + 8 = 11 
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Phase 3: Worksheet 

A worksheet was completed by the students (figure 5.42). 

 

Figure 5.42: Rowan Class B Tasks 

After a period of seatwork there was a whole-class discussion focussed on skill 3.  

Phase 4: Subject of the formula 

The whole-class discussion shifted focus to ‘changing the subject of the equation’, and 

in particular the identification of the subject.  

Phase 5: Worksheet 

The focus returned to the worksheet. A whole-class discussion of skill 3 question 2 was 

followed by a further period of seatwork.  

General 

The use of multiple representations was an integral part of the tasks. Apart from the 

first section of the worksheet, all the examples and tasks required the construction of 

a diagram to represent an equation or the writing of equations to match a diagram. 

After the initial 3, 8 ,11𝑐𝑚 example, an important mathematical feature of the 

diagrams was the relative length of the sets of bars. Adjacent bars represented 

addition, with equivalence indicated when sets of bars had the same overall length, 

with this feature mapping to the equal sign. A comparison of the ‘to scale’ first 

example and later ‘not to scale’ examples was not an explicit part of the tasks.  

Skill 1 – Reversing with 
numbers 
a)  8 + 2 = 10 
            2 = 10 - …… 
            8 = 10 - …… 
b)  7 + 4 = …… 
            7 = ………………….. 
            4 = ………………….. 
c) 13 – 5 = …… 
           13 = ………………….. 
  13 - …… = …… 
d)  4 x 2 = …… 
            4 = ………………….. 
            2 = ………………….. 

Skill 2 – Draw a bar picture & 
label it for each equation 
a) F + G = 17 
b) 7 + H = Q 
c) P + T = W 
d) M – 3 = 7 
e) G – 4 = 11 
f) V – J = K 
  Skill 3 – Write 4 different equations for each bar picture  

  
 
 
               1.                             2.                               3. 
 

15 
    E          F 

  F           G 
        8        W 

          A 
  K       4      L 



249 | P a g e  

Two different layouts of bars were used during the lesson. The majority of the time a 

vertical layout was used (figures 5.39 & 5.41), where equivalence was shown by the 

bars end points being vertically inline. In phase 1, two vertical arrangements 

representing one set of rearranged sums were shared, whereas later one diagram was 

used to represent four versions of a rearranged equation. As such, the latter diagram 

could be seen as an object representing the relationships between the letters and 

numbers, with the absolute positioning of the individual bars not carrying 

mathematical meaning. A horizontal layout was used in the prepared numerical 

PowerPoint slides (figure 5.40). Here the bars were more closely associated with the 

calculation procedure; the order of the bars was the same as the written sum, and in 

the case of subtraction, the longer bar was manipulated (had a section removed) to 

represent the process of subtraction. Equations were linked to diagrams throughout 

the lesson and attention was drawn to the significance of bars being the same length. 

However, a consideration of how critical features of diagrams varied between 

examples or the relevance of other features, such as bar position, was not an explicit 

part of the tasks.  

There was a mixture of numbers and letters used, and letters took different roles, both 

fixed unknowns, such as 𝑀– 3 = 7, and variables, such as 𝐹 + 𝐺 = 17. For the 

majority of the lesson, students were working on questions with three letters/ 

numbers in the form 𝐴 ± 𝐵 = 𝐶. The prevalence of this format may have made it 

harder for students to appreciate alternatives were possible, such as 𝐶 = 𝐴 ± 𝐵, 

especially for any students with an operational understanding of the equal sign (Knuth 

et al., 2006). In ‘skill 3’, more letters/numbers were introduced through the bars being 

further subdivided by the addition of extra vertical lines.  

(d) TOM: Discourse 

In terms of the mathematical register, ‘takeaway’ was the standard term used when 

referring to subtraction, although Rowan introduced the term “chop off”, initially in 

relation to the physical strips of paper, but also later when discussing the subtraction 

model. Both these terms were heard in student talk. Rowan introduced the term 

‘subject’, with the definition of “a number on its own” (which is different from the 

usual definition). Students responded in appropriate ways to questions framed by 
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Rowan about ‘changing the subject’, but they were not heard using ‘subject’ at a 

whole-class level. In this respect, students were introduced to a mathematical term 

that they were expected to understand but not expected to use in their own public 

talk.  

In whole-class episodes, approximately 80% of talk was classified as mathematically 

related episodes (figure 5.43: subdivision 1). Turn-taking was the most common form 

of whole-class talk, with the remaining time classified as monologues (subdivision 2). 

The monologues consisted of explanations or instructions given by Rowan (subdivision 

3 T:E). Taken together, IRE exchanges and the variant with an extended evaluative turn 

were the most common form of turn-taking, and were often linked to form extended 

question-and-answer sequences (subdivision 3 T:IRE). There were a few occasions 

when students-initiated turn-taking exchanges (subdivision 3 S:I). These general 

discourse patterns were similar to her other class, although less time was classified as 

monologues. 

Whole-class talk  

   

Mathematically Related Episodes Other Subdivision 
1  

       

Turn-taking Monologues Other Subdivision 
2 

        

T: IRE (inc. variant) S: 
I 

T:E Explains/ 
Instructs 

Other Subdivision 
3 

Figure 5.43: Rowan Class B Breakdown of Whole-Class Episodes 

There were two distinct patterns of IRE exchanges within whole-class talk. When 

compared to the rest of the lesson, the episode about ‘the subject of the equation’ in 

phase 4 had distinctive characteristics, both in terms of the nature of the questions 

asked and the subsequent interactional patterns.  

Outside of the ‘subject’ discussion in phase 4, most questions posed by Rowan had a 

single or a limited number of mathematically valid replies. Satisfactory responses were 

indicated in similar ways to her other class, namely by an affirmative word, an 

immediate repetition or a combination of both. Superlatives, such as “fantastic”, were 
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used in over half these positive evaluations. All responses treated as satisfactory were 

mathematically valid responses to the question posed. For example: 

213 T: … can you tell me another equation (.) based on that diagram 

214 S1: fifteen takeaway 𝑓 equals 𝑒 

215 T:  fifteen takeaway 𝑓 equals 𝑒 (.) fantastic 

216 S1: or you could do fifteen takeaway 𝑒 equals 𝑓 

217 T: fantastic (..) what we’re actually doing here (.) and what I’m trying to get 

you to understand (.) is rearranging equations … (..) it’s all about (.) doing 

the inverse on the other side its similar (.) to when we’re solving 

equations  

Extract 5.45: Rowan Class B 

Lines 213 to 215 formed an IRE sequence, where the response described a legitimate 

equation and the evaluative turn contained repetition and an explicit evaluation. 

Rowan does not explicitly ask for another equation in her evaluative turn (line 215) so 

the student’s next comment was classified as self-initiated even though they were 

responding to the same question (line 216). In line 217, Rowan treated this 

contribution as satisfactory and extended her turn by including a short explanation.  

In a similar manner to class A, satisfactory responses were indicated by positive 

evaluations provided immediately and often explicitly. Rowan indicated she found 

responses unsatisfactory using signals that were less overt and often included pauses 

and follow-up questions. In whole-class discussions, there were no instances of a 

student’s verbal response including a mathematical error. That is to say there were no 

responses that contained an invalid mathematical statement such as an inaccurate 

computation or procedure. On one occasion a student did say 𝑎 when 𝑓 should have 

been used; Rowan attributed the error to the poor clarity of the whiteboard image and 

as soon as she named the actual label the student self-corrected. Instead, the few 

student responses that Rowan treated as unsatisfactory related to the construction of 

the bar models. For example, after Rowan asked “show me that 𝑎 plus 𝑏 equals 𝑐” the 

following exchange occurred: 

100 T: so have we got 𝑎 plus 𝑏 equal 𝑐 with our strips 

101 S:  [student showing their arrangement of bars] 
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102 T:  (.) but are you showing that that one’s equal to these two  

103 S: (.) no  

   [moving the bars] 

Extract 5.46: Rowan Class B 

In line 102, the “but” and the restatement of the question in a more precise form 

indicated that the student’s diagrammatical layout was not in the required form. 

There were also a few occasions where students did not respond or indicated a non-

response through “don’t know” or similar. Twice Rowan asked another student to 

reply and twice she offered an explanation by outlining what other students had done. 

Once Rowan modelled the reasoning from the previous question: 

138 S: the last one would be a (…) 

139 T: what do you think (.) so we’ve said (.) this (.) takeaway that part is equal 

to that part (.)  

   [modelling the previous subtraction on the bar diagram]  

  is there another one that is there another equation that we could write 

140 S: 𝑐 takeaway 𝑎 equals 𝑏 

Extract 5.47: Rowan Class B 

In line 138, the student was unable to name the last equation, after which the teacher 

re-explained the previous equation indicating each bar with arm gestures in 

conjunction with the verbal commentary; this was considered to be an example of 

scaffolding (Anghileri, 2006). 

Periodically, Rowan used students’ work in her explanations. For example, Rowan 

opened the discussion of 8 + 3 with: 

33 T: let’s see what you’ve done Max (.) what sum are you showing me (.) 

34 Max: doneno don’t get it 

35 T:  so this is what Iva showed me (.) this is what Iva showed me initially (..) 

   [showing the 3 bar moved next to the 8 bar] 

  and then she started saying because (.) shhh are you watching (.) she 

started saying because that plus that equals that she moved it over there  

Extract 5.48: Rowan Class B 
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This was one of the occasions when Rowan drew on another student’s work after a 

‘don’t know’ response. Rowan named the student then explained their actions in her 

own words, in effect ‘broadcasting’ that activity to a wider audience. In other parts of 

the lesson, Rowan ‘broadcasted’ students’ work in her standalone explanations.   

There were also times where Rowan paused and then reduced the complexity of the 

questions within her own turn. Students were usually nominated by Rowan to 

respond, by either name or gesture, but there were regular occurrences of students 

self-nominating by calling out answers. Therefore, the pauses may have been an 

opportunity for students to contribute, but with no overt nominations, this may not 

have been Rowan’s intention nor the interpretation by the students. For example: 

106  T:  do you need to actually measure them (..) how could you show that 

that’s equal to that (..)  why isn’t it equal at the minute maybe (..) 

Extract 5.49: Rowan Class B 

In line 106, Rowan starts with a question that challenges the role of measuring in the 

task and moves to a specific question about the bars the students have cut out. This 

reduction in complexity was considered funnelling as the final question was self-

contained and required minimal mathematical thinking.  

Phase 4 started when Rowan asked, “what do you think is the subject in this 

equation”, whilst pointing at 𝐸 + 𝐹 = 15. There followed an extended sequence of IRE 

exchanges in which the student responses did not contain computation or procedural 

errors in mathematics per se, but Rowan signalled that all the responses were 

insufficient or unsatisfactory in some way. For example, when 15 − 𝐹 = 𝐸 was being 

discussed the following exchange occurred: 

228 T:  why do you think 𝑒 is now the subject 

229 S: because it’s the answer  

230 T: because it’s the answer (.) what do you mean it’s the answer 

231 S: it’s what goes from (.) fifteen and 𝑓 equal to (..) 

232 T: (.) yes sort of (.) but when you say it’s the answer 

Extract 5.50: Rowan Class B 
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The question in line 228 is somewhat ambiguous and, depending on the student’s 

understanding of the word ‘answer’, he could have been attending to ‘the letter on its 

own’ in his response. As such, his response could represent some valid mathematical 

thinking. Rowan repeated the student’s contribution, which was a common indicator 

of a satisfactory response, but she also asked a follow-up question (line 230). Thereby 

indicating that while the response was not wrong, it was not sufficient either. Again, in 

line 231, the student’s response does not contain a mathematically invalid statement; 

although the meaning of “and” is unclear. Again, in line 232, Rowan did not completely 

dismiss the student’s response but indicated it was still not sufficient. These types of 

exchanges with ambiguous evaluative turns continued until Rowan told the students 

her definition of ‘the subject’.  

In overall terms, other than phase 4, the majority of Rowan’s questions had a limited 

range of mathematically valid responses, such as naming of an equivalent equation or 

one-step in a procedure. A minority were simple and self-contained questions of a 

level where all students could be expected to answer with little cognitive effort. Most 

common was an IRE pattern with a limited solution question, followed by a valid 

student response that was treated as satisfactory, and concluded with an immediate 

transition. On the relatively few occasions when students did not respond or 

responses were treated as unsatisfactory, Rowan kept the focus on the original 

question by asking follow-up questions or by offering an explanation. IRE exchanges 

were usually contained in extended sequences related to an overarching process. As 

discussed, phase 4 had different characteristics. In particular, the questions focused on 

a mathematical definition and there were a large number of responses that Rowan 

treated as being deficient in some manner.   

Whilst the IRE was the most common form of whole-class interaction, there were also 

a few instances of student-initiated turn-taking. These occurred after Rowan had taken 

a turn that concluded without an explicit question (e.g. extract 5.45, line 216). The 

reactions of all parties indicated that, whilst student-initiated turns were less frequent 

than teacher-initiated turns, they were an accepted interactional norm.    

Student turns were almost always shorter than Rowan’s; questions posed were usually 

longer than students’ responses and Rowan regularly included an element of 
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explanation in her evaluative turn. Extended periods of talk by Rowan, classified as 

monologues, occurred periodically throughout the lesson and included extended 

explanations and task instructions; no students talk was long enough to be similarly 

classified. Consequently, Rowan contributed the majority of class talk. 

(e) TOM: Sequencing 

Rowan controlled the overall trajectory of the lesson, shaped by the use of prepared 

resources and her instigation of whole-class discussions. She regulated the 

mathematical focus through questions asked and explanations given. Throughout the 

majority of the lesson, Rowan maintained a focus on the deriving of equations from 

diagrams and the construction of diagrams from equations. When attention was 

drawn to mathematical features of the diagrams, specifically the role of bar lengths, 

this was predominantly accomplished through teacher exposition or gesture. As such, 

the inference made was that Rowan attended to her mathematical horizon when 

managing most classroom activities.  

In the first phase of the lesson, when 3, 8, 11𝑐𝑚 bars and addition was discussed, 

Rowan drew attention to a vertical layout of bars through the public endorsement of 

one student’s work (figure 5.39); the horizontal layout for addition on the prepared 

PowerPoint slide (figure 5.40) was not discussed. As such, it appeared that Rowan had 

adapted her lesson trajectory, at least in part, in response to student activity. As the 

discussions continued, Rowan drew an inverted version (figure 5.39b), which she said 

showed “11 is equal to 8 add 3”. This action could have communicated that the 

position of the bars had meaning. However, this was the only point in the lesson when 

two vertical diagrams were used to represent one set of equivalent equations.  

A student then introduced the notion of subtraction by offering 11 − 3 = 8. Rowan 

redirected attention to her prepared horizontal layout (figure 5.40) without 

responding to the student’s use of the single diagram for both addition and 

subtraction. This shifted the focus to subtraction as a process of removal; however, 

this model was not referred to after this one example had been presented. After this 

point, both Rowan and the students associated equivalent equations, involving either 

addition or subtraction operations, with one vertical diagram. For example, in phase 2, 

one vertical representation of bars was associated with four equivalent equations, 
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namely  𝑎 + 𝑏 = 𝑐,   𝑏 + 𝑎 = 𝑐,   𝑐 − 𝑎 = 𝑏,   𝑐 − 𝑏 = 𝑎. As the later prepared PowerPoint 

slides used this vertical layout, this shift appeared to be the intention. However, 

Rowan did not make an explicit comparison of different layouts nor did she draw 

attention to why particular formats were chosen.  

During the atypical interactional pattern when the ‘subject of the equation’ was 

discussed in phase 4, Rowan’s goal appeared to be a student articulated definition of 

‘the subject’. For example, four equations had been generated from a worksheet 

question, 𝐸 + 𝐹 = 15, 𝐹 + 𝐸 = 15, 15 − 𝐹 = 𝐸, 15 − 𝐸 = 𝐹, when the following 

exchanges occurred: 

220 T:  what do you think is the subject in this equation  

   [indicating 𝐸 + 𝐹 = 15] 

221 S1:  the answer 

222 T:  the answer this bit here (.) the bit that’s on its own (.) so here this is the 

subject (.)   

   [circling 15]  

  now have changed the subject in this one (.) what’s the subject now 

   [pointing at 𝐸 in 15 − 𝐹 = 𝐸] 

223 S2: 𝐸 

224  T:  𝐸 (.) why  

   [circling 𝐸 and writing ‘subject’] 

225 S2:  because 15 takeaway 𝐹 equals 𝐸 

226 T:  yeah (..) why does that mean 𝐸 is the subject  

Extract 5.51: Rowan Class B 

In line 222, Rowan indicated that “the answer” was accepted by repetition and 

intonation, but when “the answer” was re-offered by a student in a later interaction, 

Rowan followed-up by asking for meaning (extract 5.50, line 230). It appeared there 

were issues with how terms were being understood by different participants and by 

participants at different points in time. In lines 224 and 226, Rowan indicated partial 

acceptance of the student responses with repeats but asked “why”. This type of 

exchange continued, and Rowan circled solitary letters or numbers in equations and 

asked, “why is that the subject”. The students replied using a variety of language, such 

as “at the end” and “outside the equals sign”, none of which were treated by Rowan 
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as fully satisfactory responses. On face value, Rowan repeatedly asking students “why” 

could have been interpreted as exploring student reasoning, but she continued to 

rearrange and annotate equations. These actions were interpreted as attempts to 

redirect the focus of the talk towards a particular form of language for the meaning of 

‘the subject’. After six minutes Rowan concluded with a statement “that this subject of 

an equation is the thing that is on its own”, which mirrored the opening line of the 

discussion (line 222). (Rowan used ‘the subject’ label for a solitary letter/number on 

both the left and right side of any equation.)  

The number of student responses treated as deficient, combined with Rowan stating a 

definition in her concluding remarks, indicated that a student definition of ‘the 

subject’ was not achieved. Eight equations had the ‘subject’ circled, so it may have 

been possible to identify some characteristics of that position from the information 

provided. However, the “why” drew student responses that focussed on a range of 

features, from the relationship to the rest of the equation (e.g. line 225) to position 

descriptors. For those unfamiliar with the definition of the subject “as the thing that is 

on its own” there may have been no way to determine which feature Rowan was 

attending to. Unaligned attention (3.3.7.5), combined with a lack of clarity about the 

meaning of other terms used, could explain the particular characteristics of this 

episode.    

(f) Interpretation of Classroom Activities 

Throughout the whole-class elements of the lesson, the talk almost exclusively 

remained focussed on mathematical features determined by Rowan, with less 

evidence of the exploration of student reasoning or exchanges with student-led talk. 

Although student contributions were drawn on to adapt the lesson trajectory, 

particularly in terms of the use of diagrams, the inference made was that Rowan was 

attending to her mathematical horizon during most whole-class interactions. 

(g) Cognitive Demand 

The multiple representations use in examples and the worksheet provided an 

opportunity for students to make links between representations and between 

representations and underlying concepts. Most teacher-posed questions asked 

students to name equations or construct one diagram. These were linked to particular 
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examples, but as there was a requirement to make links between representations this 

‘talk as mathematics’ was classified as procedural or process. There were a few 

instances of talk that focussed on wider concepts or mathematical structures, but this 

was far less common and when it occurred it was undertaken by Rowan. For instance, 

the lengths of the bars and their equivalence were highlighted by Rowan through 

exposition:  

195 T:  … so yours should look something like that (.) 

   [indicating a bar diagram on the PowerPoint slide]  

  they could be the other way round (.) there could be different lengths 

between 𝑓 and 𝑔 cause we don’t know (.) which one is bigger that which 

(.) we just know that when you put them together (.) they add to make 

the same length (.) as seventeen 

Extract 5.52: Rowan Class B 

Some students appeared to have perceived the bars as placeholders for numbers, 

rather than the length representing the letter/value and placement representing an 

equivalence relationship. For example, one student placed the letters and numbers 

into boxes in the order they appeared in the question and added operations, with the 

longest bar reserved for the single letter/number on the right-hand side of the equals 

sign: 

 

Figure 5.44: Rowan Class B Artefact 

As such, there was evidence that some students may not have interpreted length 

and/or position of the bars as having mathematical meaning.  

An inherent part of the tasks was for rearranged equations to be generated. This 

provided some opportunities for students to experience the equal sign in terms of 

equivalence, although the prevalence of 𝐴 ± 𝐵 = 𝐶 format may have made this less 

visible. Also, as with other features of the representations, the tasks did not include a 

mechanism to draw attention to equivalence in an explicit manner, and as such may 

not have been noticed by students. As discussed above, there were constraints as to 
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the type and form of equations and diagrams met by the students, but when the 

whole lesson is considered, an ‘effective student of mathematics’ could have engaged 

with a range of representations. As with the equals sign, this variation could have 

provided opportunities for students to see patterns that could move them towards 

understanding generalities, but as a discussion of the range of permissible change was 

not an explicit part of the tasks, this was more reliant on independent recognition by 

students.   

In overall terms, the majority of ‘talk as mathematics’ was procedural or process, with 

attention only occasionally being drawn to mathematically significant features of 

diagrams in an explicit manner. There were opportunities for students to engage with 

underpinning mathematical concepts, but students could also have worked in a 

procedural way to complete the tasks. Consequently, the lesson provided 

opportunities for students to engage with mathematics that had the potential to elicit 

higher level thinking, but it was also possible to complete the tasks without engaging 

at these higher levels.    

(h) Classroom Norms  

As with her other class, Rowan directed student activities and the authority to decide 

what was done and how resided with her. As such, Rowan could be seen as having 

high levels of agency within her classroom.  

The positive evaluations associated with ‘correct’ answers contributed to the narrative 

that an ‘effective student of mathematics’ should be able to answer questions quickly 

and accurately. The focus on procedural talk and the lack of press for explanations 

beyond procedures also contributed to this narrative. The references to practice and 

skill levels contributed to the narrative that mathematics is a hierarchy and the 

learning of mathematics requires the practise of ‘lower level’ skills first; once a skill is 

mastered, progression onto the next level is warranted and is a measure of success. 

Within the lesson, Rowan regulated the mathematical direction of travel, determining 

the mathematical approach to be taken almost all of the time. Moreover, the 

dominance of IRE reinforced the norm that Rowan was the arbiter of correctness, that 

is to say she judged the legitimacy of mathematical contributions. However, there 
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were also a few occasions where the students took the initiative or offered 

alternatives. For example, one student unprompted asked “miss, can I explain what we 

are doing”. Furthermore, on two occasions students did not agree with Rowan’s 

interpretation of their thinking. For example:  

66  T: Alex the way you’ve laid them out does that show me (.) that this one 

and this one is equal to this one 

67 Alex: naw I was doing that takeaway that equals that 

68 T:  oooh (.) let’s have a look at how we might show takeaway … 

Extract 5.53: Rowan Class B 

As such, there was evidence that students made some choices about how to act 

mathematically, displaying aspects of agency.  

On a few occasions, Rowan used students’ work to draw attention to a particular 

mathematical approach (e.g. extract 5.48, line 35). Whilst Rowan chose what to share, 

and thereby contributed to the notion that judgment about mathematical legitimacy 

resided with her, the public acknowledgment shifted the status of the contribution 

from one in need of evaluation to one valuable enough to share. The attribution to 

particular students also had the potential to communicate that students’ 

mathematical decisions have a legitimate part to play in mathematics classrooms. 
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5.3.3.6 Rowan: Summary for Class B 

As with Rowan’s class A, two lessons with class B were recorded and analysed, which 

included lesson-specific summary OMFs being produced. As before, the OMFs were 

working documents, with descriptions in note form and bespoke abbreviations. So, in 

order to outline the key themes from the lessons, written summaries are provided 

before the OMFs are presented. 

First, there is the written summary for the equations lesson, which was reported in 

detail in the preceding section (5.3.3.5). This is followed by the lesson-specific 

summary OMF (figure 5.45). Then, there is a written summary for the directions 

lesson, which was the second recorded lesson. In this summary, differences between 

the equations and directions lessons are indicated by italics. Finally, the lesson-specific 

summary OMF for the directions lesson is presented (figure 5.46).  

(a) Rowan Class B: Written Summary – Equations Lesson 

The following outline draws together the key themes from the equations lesson, 

reported in detail in the preceding section (5.3.3.5).     

A) Curriculum 

a) From a foundation tier curriculum route  

B) Organisation 

a) Seatwork: individual, peer discussion encouraged but not required  

b) Longer blocks of seatwork and whole class 

C) Discourse patterns: aligned with patterns previously reported  

a) No press for the use of mathematical terms (‘unsuccessful’ effort to get 

students to derive the definition of ‘subject’; non-standard meaning)  

b) IRE dominant, limited solution questions in linked sequences; some 

‘broadcasting’ of other students’ responses in explanations  

c) Typical satisfactory and unsatisfactory norms: ‘Correct’ responses  follow-on 

questions (superlatives); ‘errors’  follow-up questions, some funnelling, after 

‘don’t know’ some broadcasting 

d) Revoicing; repeating, rephrasing and explanations extended 

D) Tasks 
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a) Multiple representations used, including physical models; mathematical 

structure (equivalence) embedded in tasks but not an explicit element 

b) Some ambiguous features (scale, arrangement of diagrams) 

E) Sequencing 

a) Focus on mathematical horizon, usually (re)direction to strategies introduced, 

but shifted to a vertical layout earlier based on student contribution  

b) Occasional reference to mathematical structure, but this included steer in 

‘subject’ discussion    

c) Students’ work ‘broadcasted’ as part of explanations  

F) Teacher Cognition 

a) Espoused priority was to develop students’ problem solving, but had different 

expectations (more practice required and more extrinsic motivation) 

b) Privileged her mathematical horizon when interpreting student responses 

G) Classroom norms 

a) Teacher arbiter of correctness; student contributions valued through 

‘broadcasting’   

b) Procedure counts as explanation 

H) Cognitive Demand 

a) Potential high but range low to high  

(b) Rowan Class B: Summary OMF – Equations Lesson 

As before, the analysis was an iterative process and an OMF was populated, with the 

lesson-specific summary OMF (figure 5.45) the final working document. Descriptions in 

note form and bespoke abbreviations were again used (table 5.1).  
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Rowan Class B Summary OMF – Equations Lesson 

 

Figure 5.45: Rowan Class B Summary OMF – Equations Lesson 
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(c) Rowan Class B: Written Summary – Directions Lesson 

In addition to the equations lesson reported in detail, one other lesson was recorded 

and analysed with class B. The lesson focussed on direction, and in particular the use 

of compass headings and bearings. This lesson was analysed in the same manner, with 

a lesson-specific summary OMF produced as part of that process (figure 5.46). As with 

class A, many of the dimensions of the OMF were similar across both Rowan’s class B 

lessons. The following written summary outlines the key themes from this second 

lesson. Features seen in this directions lesson that were different from the equations 

lesson are indicated by italics.    

A) Curriculum 

a) From a foundation tier curriculum route  

B) Organisation 

a) Seatwork: individual, peer discussion encouraged and some paired tasks 

b) Longer blocks of seatwork and whole class 

C) Discourse patterns: aligned with patterns previously reported  

a) Mathematical terms introduced; use encouraged but not required 

b) IRE dominant, limited solution questions in linked sequences  

c) Typical satisfactory and unsatisfactory norms: ‘Correct’ responses  follow-on 

questions (superlatives); ‘errors’ (few)  follow-up questions, some funnelling, 

after ‘don’t know’ occasional broadcasting 

d) Revoicing; repeating, rephrasing and explanations extended 

D) Tasks 

a) Context and pseudocontext (maps but classroom oriented activities)  

b) Multiple representations used – different registers, but mathematical features 

and links between representations not an explicit part of the tasks  

c) Some example variation (angles, lengths, scales) but no explicit reference to 

range of permissible change or dimensions of variation  

E) Sequencing 

a) Focus on mathematical horizon, usually (re)direction to strategies introduced, 

but shifted to a vertical layout earlier based on student contribution  
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b) Occasional reference to mathematical features – attention drawn to the 

process of estimating but not to how suitability determined 

c) Students’ work ‘broadcasted’ as one follow-up to nil responses  

F) Teacher Cognition 

a) Espoused priority was to develop students’ problem solving, but had different 

expectations (more practice required and more extrinsic motivation) 

b) Privileged her mathematical horizon when interpreting student responses 

G) Classroom norms 

a) Teacher arbiter of correctness; student contributions occasionally valued 

through ‘broadcasting’   

b) Procedure counts as explanation 

H) Cognitive Demand 

a) Potential high but range low to high as the work could have been completed by 

following modelled procedures  

(d) Rowan Class B: Summary OMF – Directions Lesson 

As an integral part of the analysis, a lesson-specific summary OMF was produced 

(figure 5.46). The same note form for descriptions and bespoke abbreviations were 

used (table 5.1).  
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Rowan Class B Summary OMF – Lesson 2: Directions Lesson 

 

Figure 5.46: Rowan Class B Summary OMF – Lesson 2: Directions Lesson 
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used (different registers)-mathcal 
features/links not explicit. Example 
variation: some variation in angles /length/ 
scale, but no explicit reference to RoPC, DoV 
 Sequencing Lesson trajectory 
Focus mathcal horizon, (re)direction to 
introduced methods, Mathcal features: Used 
direct explanation when task didn’t produce 
intended use of language. Attention drawn 
to the range of suitable estimates in 
particular examples, and how estimates 
could be made, but not how suitable was 
determined. Students’ work: Verbal 
contributions (IRE) (broadcasting) 
   

Cognitive Demand 
Type of thinking:  
Potential: 
Low-High 
 
Range:  
Low to high   
Procedural 
approach possible;  
linking estimations 
to calculations, and 
comparing 
alternative angle 
calculation 
strategies (links to 
parallel lines) was 
possible  
 

Classroom Norms 
SN: Teacher arbiter 
of correctness. 
(student-initiated; 
agency to act)  
Some students 
contributions to 
explanations. 
Errors: avoid/ 
correct. Praise. 
SMN: Procedure as 
explanation, (one 
procedure to soln) 
ESM: Efficient 
production of 
correct answer 
MP: Estimation 
separated from 
appropriateness 

Heuristic 
responses 

Lesson Goals:  
Performance; some learning 
(measuring and estimation 
skills, language; spatial 
awareness, application)   

Plan Rationale:  
Use of language  
encouraged 
through paired 
tasks (in context) 

Hypotheses:  
Barriers: 
reading off 
double-scale 
protractors  
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5.3.3.7 Rowan: Class Comparisons  

Two lessons for each class were recorded and analysed with lesson-specific summary 

OMFs produced (figures 5.36, 5.37. 5.45 & 5.46). These summary OMFs structured the 

comparison of the two lessons with the same class and the cross-class comparisons. As 

with Joe and Sam, when the two classes were compared, there were many similarities 

in Rowan’s pedagogical approaches, but differences were also noted.  

The comparison process from the perspective of the summary OMFs can be found in 

appendices 3.5.7, 3.5.8, 3.5.9 & 3.5.10, where underlining has been used to highlight 

common and differential features between the two classes. Those comparisons, cross-

referenced with the more detailed lesson narratives, informed the written summary 

given below. This written summary provides an overview of the similarities and 

differences between class A and class B, with differences indicated by italics. This 

focusses on the two lessons reported on in detail in the previous sections (5.3.3.3 & 

5.3.3.5) so the comparisons can be related to the detailed lesson narratives. However, 

complimentary or contradictory features from the two other recorded lessons are 

indicated with square brackets [ ].   

A) Curriculum 

a) Class A from higher tier and class B from foundation tier curriculum route  

B) Organisation 

a) Seatwork: individual, peer discussion encouraged and some group work   

b) Class A interleaved seatwork and whole-class; class B had longer blocks of each 

c) Class B contained fewer students 

C) Discourse patterns: aligned with patterns previously reported  

a) No press for the use of mathematical terms [Class B – use of terms encourage 

but not required] 

b) IRE dominant, limited solution questions in linked sequences. Class A extended 

teacher exposition, class B some ‘broadcasting’ of students’ responses 

c) Typical satisfactory and unsatisfactory norms: ‘Correct’ responses  follow-on 

questions (in class B superlative used); ‘errors’  follow-up questions (some 

funnelling and in class B after ‘don’t know some broadcasting) 

d) Revoicing; repeating rephrasing and explanations extended. 
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D) Tasks 

a) Multiple representations used (physical models for class B); mathematical 

structure embedded in tasks but not an explicit element 

b) Some ambiguous features  

c) [Unsystematic variation of questions in exercises formed of sets of questions 

on the same topic] 

E) Sequencing 

a) Focus on mathematical horizon, usually (re)direction to strategies introduced; 

class B earlier shift to a vertical layout in response to student contribution 

b) Occasional reference to mathematical structure, but steer bypassed many key 

features and sometimes focussed on ‘erroneous’ features  

c) In class A one students work was the focus of a whole-class discussion; for class 

B snippets of students’ work was ‘broadcast’ to other students in explanations. 

F) Teacher Cognition 

a) Espoused priority was to develop students’ problem solving; for class A felt 

pressured to teach more ‘traditionally’, for class B felt more practice and 

extrinsic motivation was needed.  

b) Privileged her mathematical horizon when interpreting student responses 

G) Classroom norms 

a) Teacher arbiter of correctness; student contributions valued in class A through 

use in a whole-class discussion and in class B through ‘broadcasting’.  

b) Procedure counts as explanation 

H) Cognitive Demand 

a) Potential high but range low to high  
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6. Discussion 

6.1 Introduction  

The previous chapter presented the detailed findings for six lessons, one for each class 

in the study. For each teacher, this has allowed lesson profiles to be built for their two 

classes with different attainment profiles, which formed the three pairs of nested 

cases. This chapter offers a discussion of those findings, drawing on the evidence from 

the other lessons in the study when this provided confirmatory, complimentary or 

contradictory evidence not available from the six lessons reported on in detail. The 

purpose here is twofold; first, to offer a response to the research questions, and 

second, to position the study to show how the findings relate and contribute to the 

existing body of knowledge.   

6.2 Research Questions 

The core motivation for this study arose from the prevalence of setting for 

mathematics in England and the reported inequities that result from different 

pedagogical approaches being associated with low attaining sets. Whilst previous 

studies have provided evidence of trends at cohort levels, there appeared to be less 

evidence as to how individual teachers change their practice. This led to the research 

questions to focus on an explication of how teachers’ pedagogy may change with 

different sets.  

Research questions: 

RQ: How does a teacher orchestrate mathematics for different groups of 

students? 

RQa: How does a teacher shift their pedagogical approaches when 

teaching different groups of students? 

RQb: How does the character of the mathematics made available to 

students vary when a teacher teaches different groups of students? 

In order to respond to these research questions, the Orchestration of Mathematics 

Framework (OMF) was developed in this study as an analytical tool. In the following 
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discussions, the viability of the OMF as an analytical tool in this study will be addressed 

first. After which, the research questions will be considered. This will focus on 

individual elements of the OMF, where sets for the same teachers will be compared, 

and comparisons across teachers will be made, including differential features 

identified in the comparisons of sets. In other words, comparisons will be made within 

each nested case for each teacher and across the parallel cases (figure 4.1).  

6.2.1 The Scope of the Response to the Research Questions 

At each stage of this study, the notion that classrooms are complex, dynamic 

environments with many interdependent factors has been recognised. Of particular 

relevance is the acknowledgement by Schoenfeld (2013a), amongst others, of the 

complexities involved in constructing observational schemes. Moreover, as previously 

discussed (4.4.2), the limitations of developing and implementing an analytical 

framework by a lone researcher have to be acknowledged (Hollingsworth and Clarke, 

2017).  

In these circumstances, only a partial confirmation of the analytical power of the OMF 

can be offered, but the claim made is that the OMF has provided a viable structure for 

this researcher to chart substantive parts of participating teachers’ pedagogical moves. 

Moreover, inferences were made about the mathematics made available, although 

this required an additional layer of analysis, with activities interpreted through 

particular theoretical lenses of how mathematics may be learnt. The efficacy of the 

OMF for use beyond this study, in terms of both external validity and reliability, would 

need to be tested with wider use. As discussed in section 6.3, connections to other 

theoretical perspectives have provided potential starting points for this process. 

As discussed in more detail in subsequent sections, the claims made in response to the 

research questions are that: 

There is sufficient internal validity and reliability in the study to build coherent 

pedagogical profiles for the teachers that allow cross-class comparisons. 

Specifically, the orientation provided by the OMF has produced profiles that 

describe how the teachers orchestrated mathematics for classes with different 

attainment profiles. As such, commonalties and shifts in pedagogical 
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approaches have been identified, with some inferences made about the 

differences in mathematics made available to students.  

The evidence for these claims has been presented in the previous chapter. The 

detailed claims with regard to the teachers’ shifts in practice and the mathematics 

made available to students, along with the warrants for these claims (Toulmin, 2003), 

are discussed in section 6.4.  
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6.3 Viability of OMF  

6.3.1 The OMF in this Study  

In studies that have sought to measure the quality of instruction, there have been 

some debates about the minimum number of lessons that need to be observed in 

order to make measures sufficiently reliable (Derry, 2007; Hill et al., 2012; Schlesinger 

and Jentsch, 2016). One point of consensus appears to be that it depends on the 

purpose of the study and the facet of instruction under consideration. For example, 

Schlesinger and Jentsch (2016) argued elements of classroom management were more 

stable and measurable over single lessons, whereas those elements related to 

students’ mathematical thinking, such as cognitive demand, required nine lessons. This 

study did not seek to measure the quality of instruction, but rather to build a profile of 

teachers’ pedagogical practice. However, as a relatively small number of lessons have 

been observed, the notion that some aspects of teachers’ pedagogical practice have 

more local stability, whilst others are more varied, has important implications for 

these discussions.  

In this study, a number of aspects from the OMF were, for the most part, stable 

between phases within lessons and between lessons with the same class. Discourse 

patterns was the most notable dimension that had local stability, although particular 

aspects of other dimensions, such as the teachers’ focus on their mathematical 

horizon, had comparable attributes. In particular, the most common whole-class 

interaction followed an IRE pattern, with the teachers’ management of student 

responses falling into discernible patterns that were maintained both within and 

across lessons (5.3.1.7, 5.3.2.7 & 5.3.3.71). For example, the treatment of satisfactory 

and unsatisfactory student responses followed patterns apparent from the analysis of 

the first whole-class interaction (e.g. extract 5.2).   

That is not to say exceptions did not occur. There were individual instances of atypical 

behaviours, and occasionally there were extended episodes of alternative patterns of 

participation. However, these were associated with distinctive and atypical teacher 

activity. For example, as reported, Rowan’s discussion of ‘the subject’ in class B had 

                                                      
1 references starting 5.3.1 refers to Joe, 5.3.2 refers to Sam & 5.3.3 refers to Rowan  
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idiosyncratic features when compared to the rest of the lesson (5.3.3.5). It was 

associated with an atypical pedagogical focus, namely the students articulating a 

definition that met her requirements. When individual classes were considered, there 

were also instances of inter-lesson differences. For example, Sam’s use of a bald ‘no’ 

was a distinctive feature of his class B lesson that is reported on in detail (5.3.2.5) but 

was less common in other recorded lessons for this class (5.3.2.6). Again, this occurred 

with an atypical pedagogical focus, specifically a conscious shift by Sam to try to 

include more whole-class discussions than typical for that class. Whilst causality is not 

being claimed, a greater level of student-initiated comments occurred with this partial 

reorientation of his management of student talk. One possible trigger for the increase 

in bald negative evaluations could have been the increase in unanticipated student 

contributions (Baldry, 2019).  

Previous studies indicated IRE patterns were likely to be the predominant form of 

whole-class interaction (Lefstein and Snell, 2011; Drageset, 2015) (3.3.6.2). Whilst that 

was the case for these lessons, and there were commonalties between teachers, 

differences were also noted. For example, extended teacher-turns and IRE exchanges 

being linked together to form longer sequences were common patterns for all the 

teachers. However, the OMF analysis also identified differential features. Specifically, 

whilst the majority of questions asked by all the teachers had a limited range of 

mathematically valid responses, the proportion of simple, single solution questions 

asked by Sam was higher than for the other two teachers. Moreover, differences 

between classes with the same teachers were also noted. For example, the rate of 

inclusion of superlatives by Rowan (5.3.3.7) and the response to multiple student 

contributions by Sam (5.3.2.7) were relatively stable across different lessons with the 

same set but were a differential feature when their two sets were compared.    

It appeared, therefore, the discourse pattern dimension of TOM had discernible 

features with relative stability both within and across lessons. In comparison to other 

features analysed, the finer grain size of turn-taking provided a large number of events 

for analysis. Moreover, classroom norms shape interactions, making stable patterns in 

those interactions more likely, and the collective reaction of participants did allow 

atypical and typical responses to be identified from individual occurrences (3.2.2). As 
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such, this frequency and the stabilising influence of norms would have contributed to 

discourse patterns becoming apparent over a shorter time frame.   

Other aspects, such as task features, had larger grain sizes; with fewer cases, the 

establishment of any regularities would naturally require a greater level of 

observation. For instance, the inclusion of context varied, but the presence or absence 

did not appear to be related to the teacher or the class, but rather to the schools’ 

curriculum designs and the relative prevalence of the topics outside of the 

mathematics classroom. For example, there are relatively few school-level real-world 

applications of indices and Sam’s two lessons on this topic were recorded as ‘no 

context’ (5.3.2.4 & 5.3.2.6). There was an expectation in Joe’s school for reference to 

be made to real-world applications (5.3.1.1). Both his lessons contained elements of 

psuedo-context, but his lesson on percentages contained some more realistic 

applications, whilst his lesson on multiplying and dividing contained more context free 

elements. There were too few lessons to draw conclusions about when and how the 

teachers would choose to use context, but the identification of context/psuedo-

context/no context supported the analysis of the mathematics made available.  

As a minimum, it appears the OMF allowed data relating to different aspects of 

classroom activities to be collected, analysed and discussed using similar language. 

However, the identified features, such as IRE patterns, have been identified in 

previous studies using different instruments. A such, the analytical power of the OMF 

still has to be established. Section 6.4 explores the differential pedagogical practices 

identified in the analysis; the depth of discussion made possible should, at least in 

part, help address this question.   
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6.3.2 Relationship of the OMF to the Didactic Triangle 

The origins of the OMF resided in the early reviews of literature undertaken at the 

outset of this study. During the synthesis of a wide range of research findings that 

could be brought to bear on the interpretation of mathematics classrooms, a network 

of key features emerged. When the decision was made to develop an analytical 

framework, those key features formed the first iteration of the OMF, which was 

developed further as the study unfolded. Having taken a constant comparison 

approach, the OMF could be viewed as both the theoretical framework brought to 

bear on the data (Fram, 2013) and a distillation of my understanding of the field. As 

such, the conceptualisation of the OMF for this researcher has in-built cohesion; the 

challenge is the assessment of the OMF from other perspectives. 

One question is whether the OMF categories are necessary and sufficient for capturing 

teachers’ pedagogical moves, with internal coherence and acceptable levels of 

overlap. Furthermore, the framework needs to have analytic power. Within the 

iterative development of the OMF, one key challenge was the relationship between 

the form of interactions and their function, and how this was captured in the 

framework. The most notable examples were how discourse patterns related to the 

mathematical object under discussion, especially when the use of classroom artefacts 

was also taken into consideration. The approach taken to the scrutiny of the 

coherence of the framework was to trace the analysis in terms of the didactic triangle 

as a conceptualisation of teaching and learning (Straesser, 2007). Whilst the triangle 

might ‘offer an overly idealised model of relations between teacher, student and 

content’ (Ruthven, 2012, p.361), it has nevertheless provided the basis for the 

conceptualisation of teaching and learning in a range of studies (Herbst and Chazan, 

2012; Schoenfeld, 2012; Lerman, 2013). Here, it has provided the point of departure 

for the theorisation of teachers’ orchestration of mathematics. In particular, how the 

teacher can be retained as the focus of the study whilst taking into account the 

dynamic relationships between the teacher, students and mathematics (figure 6.1).  
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Figure 6.1: Adapted from the didactic triangle (Straesser, 2007, p.165)  

The forms of interaction are conceptualised as the relationship between the teacher 

and students, with the function the mathematics to which the teacher draws 

attention. The relationship between the students and the mathematics is then their 

engagement with the mathematics made available to them through the teachers’ 

pedagogical moves.  

From this perspective, when the Teacher’s Orchestration of Mathematics (TOM) is 

considered, the discourse dimension focusses on patterns of interaction. As such, this 

dimension is primarily encompassed by the form of the relationship between the 

teacher and the students. Whereas, the task dimension focusses on mathematical 

features and is primarily part of the mathematics element of the didactic triangle. 

However, classroom activities were selected by the teacher, so there is also a 

relationship between the teacher and the tasks, starting with the planning process. In 

addition, the analysis of tasks identified their potential to make mathematics visible to 

‘an effective student of mathematics’; as such this encompassed the potential 

relationship between the mathematics and the students. The sequencing dimension is 

encompassed by the relationships between the teacher and the mathematics and 

between the teacher and the students, manifest in how the teacher manages the 

lesson trajectory. In particular, this captures the tension the teacher has to manage 

between attending to their mathematical horizon and to student reasoning (3.3.7), 

which is an inherent part of the dynamic triad. As such, the TOM dimensions appear to 
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Mathematics 
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Mathematics 
made available  

Form 

Function 

An ‘effective student 
of mathematics’ 
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of mathematics 
 

Class mathematical 
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be interpretable from the perspective of the didactic triangle model of teaching and 

learning of mathematics.      

However, absolute demarcations did not occur, albeit a foreseeable situation from the 

perspective of the didactic triangle. The dynamic nature of classrooms means there is 

an ongoing interplay between elements of the didactic triangle (Goodchild and 

Sriraman, 2012; Ruthven, 2012), though different aspects become foregrounded when 

the focus is on particular features of the classroom. Here, for example, the discourse 

patterns in the treatment of student responses appeared dependent on the teachers’ 

interpretation of the mathematical validity of contributions; the norm was for an 

immediate transition after ‘correct’ responses and further scrutiny of ‘incorrect’ 

contributions (e.g. 5.3.1.2). Moreover, those interactions were usually managed to 

maintain a focus on the teacher’s mathematical horizon, which shaped the 

mathematics made available to students. As such, all facets of the triangle were ‘in 

play’.  

Viewed from the perspective of the didactic triangle, attempts at further 

decomposition of the OMF to increase discrimination between categories could be 

seen to compromise the modelling of dynamic interactions. From the perspective of 

the OMF, these examples would appear to support the view held by Ruthven (2012) 

that the didactic triangle is ‘overly idealised’ (p.361). However, the argument made 

here, and exemplified above, is that the internal validity of the TOM categorisations 

was sufficient for this author to structure observations and data analysis from which 

comparisons could be made. Ritchie and Lewis (2013) argued external validity is reliant 

on the quality of the description being sufficient for ‘others to assess their 

transferability to another setting’ (p.268), and as such resides in the eye of the reader.  

The wider framework of the OMF is integral to the study. For instance, the learning 

trajectory cycle enabled the rationale for planning decisions to be captured, along with 

elements of teachers’ beliefs and values. This was considered important due to the 

range of external classroom factors within which teaching is embedded (Ruthven, 

2012), especially as teaching in sets is associated with a wide range of contextual 

influences (Francis et al., 2017). For example, Rowan’s perceptions of ‘exam pressure’ 

appeared to have a differential impact on pedagogical choices she made with her 
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higher and lower attaining sets (5.3.1.1). From the perspective of the didactic triangle, 

the teacher cognition elements of the OMF are encompassed by the ‘teacher’ node. 

However, the situation is more complex than just the consideration of the individual 

perspective of a teacher. For example, Rowan also shared her perspectives on 

colleagues’ and students’ expectations of mathematics lessons, with implications for 

the notion of a shared understanding of what constitutes a ‘competent teacher’ in 

particular settings (Gresalfi and Cobb, 2011). The interpretative framework offered by 

Cobb et al. (2001), holds that social and psychological perspectives are in an 

interdependent reflexive relationship. The above example from Rowan exposes the 

same duality in the OMF. Following the lead from Cobb et al. (2001), these 

intrapersonal and interpersonal perspectives are seen as complementary and co-

dependent.    

The other two elements of the OMF are cognitive demand and classroom norms. 

Cognitive demand provides a summary of the ‘the level and type of thinking that a task 

has the potential to elicit’ (Boston and Smith, 2009, p.122). As such, this is 

encompassed by the relationship between the students and the mathematics, 

providing an evaluation of the level of mathematics made available to them.  

The relationship of classroom norms to the didactic triangle is more complex. These 

norms are a constituent part of a wider interpretative framework from Cobb et al. 

(2001), which from the outset has been drawn on to argue how different aspects of 

the didactic triangle can be brought into focus (3.2.6). As such, this has been used in 

the scrutiny of the OMF above. The social elements of their framework, namely 

classroom norms, have been privileged in the OMF, as these are more visible in the 

classroom. As these norms are considered to be recurring patterns of behaviour that 

fulfils the expectations the teacher and students have for the action of others (Cobb et 

al., 2009), they are considered to correspond to the relationship between the teacher 

and students. As the subcategories of classroom norms, specifically social norms, 

sociomathematical norms and mathematical practices, become more focussed on 

mathematical ways of working and specific practices, they encompass more aspects of 

the teachers’ and students’ relationship with mathematics (figure 6.2).  
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Figure 6.2: The relationship between classroom norms and the didactic triangle 

(Straesser, 2007, p.165) 

Hollingsworth and Clarke (2017), amongst others, have argued that the complex 

relationship between classroom activity and learning necessitates research that draws 

on a ranged of theoretical and methodological frameworks. They called for ‘careful 

parallel analyses of high quality, complex data’ by research teams (p.459). Whilst the 

nature of this study precluded a research team approach, it is hoped that the mapping 

of the OMF to existing theoretical framework allows the reader to relate this study to 

the wider field.    
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6.4 Pedagogical Profiles: Differential Pedagogical Practices 

A range of pedagogical practices has been associated with teaching in sets, and low 

attaining sets in particular. For example, research indicates that low sets tend to 

access a more limited and fragmented curriculum, with a focus on low-level recall 

within more tightly controlled whole-class activities and more individual seatwork 

(Linchevski and Kutscher, 1998; Watson, 2001; Francis et al., 2017) (2.4.1). As 

demonstrated in chapter 4, for each teacher in this study there were some differential 

features when pedagogical profiles for their lower attaining set (class B) were 

compared with their higher attaining set (class A). There were differences between the 

three teachers’ pedagogical profiles, and identified differential features mirrored this 

variation. The following sections discuss shifts in the teachers’ practice and how this 

relates to other research findings.  

6.4.1 Curriculum 

One of the most evident differences between the higher and lower attaining sets was 

the nature of the curriculum to which students were given access. The three teachers 

all taught from school curriculum plans that contained different routes for different 

sets.  

Rowan’s Key Stage 4 classes followed routes aligned with the two tiers of GCSE exams. 

Class A followed the school’s higher curriculum route and class B the foundation route, 

with any commonality between the routes diminishing as Key Stage 4 progressed 

(5.3.3.1). Whilst Rowan indicated she had discretion to choose how to teach particular 

topics, she felt pressure to “cover the content for the exams”, especially for the higher 

attaining class (5.3.3.2). Consequently, her lessons aligned closely with the school’s 

differential curriculum routes and her classes experienced different mathematical 

topics and material.  

For Joe and Sam’s Key Stage 3 classes, each school had schemes of work where the 

same overarching topics were scheduled to be taught at the same time to all classes in 

the same year, but the specific content identified as appropriate for different sets did 

vary. Both Joe and Sam said they had the discretion to deviate from the curriculum 

route suggested for each set, but in practice, their lessons predominantly aligned with 
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these different routes (5.3.1.1 & 5.3.2.1). Whilst there was considerable overlap of 

content indicated on the different routes, this did result in students in different sets 

having different mathematical experiences.  

For example, the content for Joe’s class B lesson was presumed knowledge for class A, 

and students in class A only met that content when embedded in other tasks. The 

recorded lessons were part of a percentage topic. When the whole sequence of 

lessons was considered, it was anticipated that only class A would work on reverse 

percentage calculations. Over time, the differential routes resulted in Joe’s higher 

attaining set meeting mathematical content, identified in school curriculum plans as 

‘higher level’, which students in the lower attaining set would not meet in that 

academic year. These stratified curriculum routes, with lower attaining sets 

experiencing a more restricted curriculum, reflects findings from previous research 

(e.g. Dunne et al., 2011; Francis et al., 2017) (2.4.1).  

The setting policies at both schools were based on measures of prior attainment, 

starting in year 7 with Key Stage 2 results, after which internal assessments were used. 

All the teachers reported that some students were moved between sets, but as 

reported in other studies (e.g. Dunne et al., 2011), the number of students moved was 

relatively low, at about ten percent of students per year. Decisions were based on 

teacher recommendation and students being identified as ‘outliers’, rather than an 

absolute re-ranking based on attainment measures, and Sam reported a few students 

were placed because of behavioural issues (5.3.1.1 & 5.3.2.1). Whilst a detailed 

analysis of the composition of sets and set moves was beyond the scope of this study, 

the systems in place could have allowed sets to be skewed in relation to issues such as 

students’ socioeconomic status or SEND, as reported in previous studies (Wiliam and 

Bartholomew, 2004). Moreover, the limited movement of students, with set moves 

less frequent as the students approached GCSE exams, meant many students in the six 

classes were in the same or similar sets as they had been in year 7, and this was likely 

to remain the case. This type of teacher-influenced and restricted set moves mirrors 

findings in other studies (2.3). Unprompted comments from Sam and Joe indicated 

that when students were moved into higher attaining sets, gaps in knowledge caused 
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some difficulties, some of which they attributed to the moved students not having 

previously covered the same material. 

Whilst the participating teachers were asked to ‘teach as normal’, Sam changed his 

approach to teaching his class B in the recorded lessons (5.3.2.1). In unrecorded 

lessons he typically used different resources for classes A and B, whereas for the 

recorded indices lessons, both were based on the same resources, a practice he 

adopted in the subsequent recorded lessons. When all of Sam’s ten lessons are 

considered, class B tended to take longer to complete tasks and activities, so fewer 

were completed, but the level of difference varied between lessons. For example, in 

the indices lessons the content coverage was very similar, with the inclusion of a 

negative exponent the only additional material used in class A (5.3.2.3 & 5.3.2.5). 

Whereas, for the three sequential lessons on fractions, class B covered the material 

from the first two lessons for class A, and did not meet models for multiplication and 

division that was the focus of class A’s third lesson. This did result in class A continuing 

to meet a wider range of mathematical ideas, but Sam thought the differences were 

smaller than normal. Moreover, for some lessons, Sam’s assessment of students’ 

understanding of concepts was similar for both classes. This change also brought 

atypical ways of working to class B (5.3.2.5).  

As, in general, the three teachers taught their sets in line with the schools’ tiered 

curriculum routes, for many students their curriculum ‘diet’ was determined by their 

set allocation and their school’s curriculum. However, Sam’s departure from his 

normal practice for his lower attaining set provided some evidence that teachers’ 

expectations unduly reduced the level of mathematics offered (2.4.2); limits that were 

successfully challenged, albeit partially, in his recorded lessons (5.3.2.5). As the 

teachers’ default positions were to follow the schools’ stratified curriculum plans, 

changing practice would also necessitate changing expectations at a departmental 

level.  

6.4.2 Organisation 

For all three teachers, there were fewer students in the lower attaining sets. Across all 

the recorded lessons, the amount of whole-class work ranged from 15 to 30 minutes, 
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with no discernible patterns regarding which sets spent longer at this level of 

interaction. For Joe and Rowan, the distribution of time did follow different patterns; 

for higher attaining sets, whole-class periods were shorter but interspersed 

throughout the lesson, in effect interleaving whole-class and seatwork, whereas for 

the lower attaining sets the whole-class talk was contained in fewer longer sections of 

interaction (figures 5.2, 5.8, 5.28 & 5.38). In Joe’s class, whole-class interactions were 

used to introduce a task that led into longer blocks of seatwork, whereas for Rowan it 

was the other way around with the whole-class element occurring at the end of a task 

or activity. Both Sam’s classes followed a similar interleaving pattern (figures 5.14 & 

5.23); a similarity that could be related to his decision to adopt the same resources 

and approaches for both classes (5.3.2.3 & 5.3.2.5). 

During seatwork undertaken in lower attaining sets, both Joe and Rowan were seen to 

circulate the room and interact with all the students at least once, either individually, 

in pairs or small groups. This level of individual interaction did not occur in the higher 

attaining sets; the larger student numbers and shorter episodes of seatwork may have 

made this less feasible. One outcome of these different patterns was a greater 

opportunity for students in the lower attaining sets to interact with their teacher on a 

one-to-one basis, but reduced opportunities for students to share ideas with their 

wider peer group. If these patterns persisted, students in the lower attaining sets 

might have greater individual attention from their teacher but at the cost of a more 

isolated experience of mathematics, a trait reportedly more common with low 

attaining sets (Kutnick et al., 2006) (2.4.1).  

6.4.3 Discourse  

Many of the teachers’ discourse patterns were consistent across both of their classes, 

and indeed, there were many similarities between teachers; the commonalities and 

exceptions are discussed in more detail below. For instance, in none of the classes was 

there a requirement for students to adopt the more precise language modelled or 

introduced by the teachers (25.3.1.3d, -1.5d, -2.3d, -2.5d -3.3d, -3.5d). Moreover, the 

                                                      
2 For reference to multiple classes, shorthand notation is used. The dash is a placeholder for repeating 
the underlined. E.g. (5.3.1.3d, -1.5d, -2.3d, -2.5d -3.3d, -3.5d) refers to 5.3.1.3d, 5.3.1.5d, 5.3.2.3d, 
5.3.2.5d, 5.3.3.3d & 5.3.3.5d, namely Joe’s class A&B, Sam’s class A&B and Rowan’s class A&B 
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three teachers often rephrased and extended the students’ contributions into more 

mathematically precise terms. As such it appeared there was no press to induct 

students into a vertical discourse (Gellert and Straehler-Pohl, 2011) (3.3.6). However, it 

was noted that Sam used more informal language with class B in comparison to class A 

(5.3.2.3 & 5.3.2.5).   

IRE was the dominant form of whole-class interactions in all the lessons (5.3.1.7, 

5.3.2.7 & 5.3.3.7). These exchanges were often linked together to form longer 

sequences, with the teachers’ evaluative turns often extended to include revoiced 

student contributions or additional levels of explanation. Questions asked usually had 

a limited range of mathematically valid responses, which were part of a step-by-step 

procedure structured by the teacher (e.g. extract 5.6). As such, many whole-class 

interactions could be characterised as ‘guided algorithmic reasoning’ (Lithner, 2008), 

with the teacher directing the overall strategy and the students’ role often limited to 

engagement with individual steps. As such, these type of exchanges are often 

classified as low-level cognitive demand (3.3.3). Watson (2001), amongst others, 

associated this type of approach, where the students are led through steps in a 

procedure, with the teaching of low attaining classes (2.4.2). However, in this study 

this approach was ubiquitous and occurred in all lessons, regardless of the sets’ 

attainment profile, and with all teachers.  

Whilst many discourse patterns were common to all lessons, some differences in how 

satisfactory and unsatisfactory responses were treated were noted. For all, there was 

a greater use of superlatives with the lower attaining sets (5.3.1.5, 5.3.2.5 & 5.3.3.5). 

Although for Joe, occurrences were in single figures, so more caution was needed in 

interpreting this as a recurring pattern of behaviour. Superlatives appeared to be used 

in different ways. In Joe’s class B, these were part of positive evaluations in IRE 

exchanges that were focused on calculations (e.g. extract 5.10, line 113). While the 

same types of questions were also regularly asked in Joe’s class A, a superlative was 

only used once in an evaluative IRE turn. The few other instances of superlative use 

were related to a student’s explanation of an alternative solution strategy (extract 5.6, 

line 166). In Rowan’s lessons, there were almost no instances of superlatives being 

used with class A, whereas in class B these were included in about half of all positive 
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evaluations in IRE exchanges (e.g. extract 5.45). She also used superlatives in relation 

to behaviour and engagement in class B. Sam, on the other hand, used superlatives at 

a similar rate and manner in both classes when positively evaluating responses (e.g. 

extract 5.27), but he only used them in relation to engagement with class B (5.3.2.5d). 

As discussed in section 3.3.6.2, if superlatives are interpreted as ‘praise’ this in of itself 

is a complex issue (Hattie and Timperley, 2007). Brophy (1981) argued that teachers 

use praise based on their reading of student need rather than as a reaction to the 

quality of the response. From this perspective, it is possible that the differential use by 

the teachers indicated they held different views of the students’ social needs related 

to attainment. Indeed, Sam and Rowan indicated they thought their lower attaining 

sets needed more encouragement to stay on task (5.3.2.5 & 5.3.3.5). Meyer (1982) 

argued if the student perceives the activity as easy, praise may be interpreted as 

inferring they have low ‘ability’. In Joe’s and Rowan’s lower attaining sets and both of 

Sam’s classes, superlatives were usually used in the positive evaluation of a single step 

in a calculation or a process, which students answered immediately and with 

mathematically valid responses (5.3.1.5, 5.3.2.7 & 5.3.3.5). This suggested those 

questions were straightforward for some to answer. There was the potential, 

therefore, for those questions to be perceived as ‘easy’ by the students and hence the 

inclusion of superlatives could have a negative impact on the students’ academic self-

concept (Ireson and Hallam, 2009). For students in the lower attaining sets, this had 

the potential to reinforce self-perceptions of ‘low ability’ that can arise from their set 

placement (Boaler et al., 2000).   

The treatment of errors was a differential feature in Sam’s classes (5.3.2.7). In both, 

Sam’s typical action after interpreting a student response as an ‘error’ was to ask 

follow-up questions. There were occasions when multiple students responded to an 

initial question; if these contained one or more errors, in class A he allowed some 

peer-to-peer ‘debates’ to run (e.g. extract 5.19). This pattern of participation did not 

occur in class B; if one of the responses was ‘correct’ Sam drew immediate attention 

to that response through direct acknowledgement, otherwise errors were followed-up 

by questions or explanations. In class B, Sam’s reaction to student-initiated comments 

with errors was the bald ‘no’; this had a similar effect of returning the focus of the 
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interaction back to ‘correct’ responses, promptly and in a teacher-controlled manner. 

Whilst Sam used simple self-contained questions with both his classes, ‘funnelling’ in 

response to errors was more common in class B (5.3.2.5d). Therefore, it appeared Sam 

controlled the follow-up to errors more tightly in his lower attaining set.  

Kutnick et al. (2006) argued that some teachers controlled whole-class interactions 

more tightly in lower attaining sets (2.4.2). In addition to Sam’s treatment of errors, 

there were other indications that the three teachers shifted how they controlled 

whole-class interactions. For example, in class B, Rowan ‘broadcasted’ some students 

work to the whole class rather than asking the students to explain (extract 5.48). 

Whilst this could be seen as a way of valuing the students’ contribution by sharing 

work with their peers, this was also undertaken in a teacher-controlled manner. In 

Joe’s classes, there was more individual seatwork and less whole-class discussions with 

his class B (5.3.1.5b), and students in class A were given time to attempt problems 

before whole-class discussions, so were more likely to be reporting their solution 

strategies (5.3.1.3e). Therefore, it did appear that all the teachers controlled whole-

class interactions more tightly in the lower attaining sets, albeit in different ways and 

to differing extents. 

6.4.4 Tasks 

The curriculum from which tasks were selected varied, dependent on the attainment 

profile of the sets (6.4.1). This resulted in different activities being undertaken in Joe’s 

and Rowan’s classes; Sam’s were more closely aligned due to changes he made for the 

recorded lessons. The type of activities Joe planned, such as questions modelled at a 

whole-class level and exercises from textbooks, were similar for both his classes. 

Rowan stated that class B undertook shorter activities that included more practical, 

interactive or competitive elements (5.3.3.5a) designed to support engagement 

(6.4.6), whereas class A there had more ‘traditional’ lessons, which consisted of 

teacher modelling followed by practice (5.3.3.3a). However, as discussed below, when 

the tasks were compared across the recorded lessons for each pair of classes, the 

mathematical features were similar. In particular, a clear-cut shift to more ‘drill and 

practice’ for lower attaining classes, as reported in some studies (e.g. Boaler, 2002), 

was not in evidence.    
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Sam and Rowan used multiple representations as an integral part of many tasks in 

their recorded lessons, which often included visual representations (e.g. figures 5.30 & 

5.38). Whilst the tasks required students to use different representations, the focus 

was on specific examples rather than how features of the representations related to 

mathematical concepts. For example, the tasks in Rowan’s class B required students to 

use bar models alongside written equations but there was no requirement to 

comment on critical features of the model and how these changed, such as relevance 

of absolute or relative length of bars (5.3.3.6). Similarly, in her class A, the tasks 

required the students to link algebraic expressions with different area decompositions, 

but equivalence was viewed through those examples. In Sam’s indices lessons, 

expanded layouts were used to justify rules, but without attention being explicitly 

drawn to how the examples generalised (5.3.2.3c). A key element of Sam’s other 

recorded lessons was the use of multiple representations of fractions (Baldry, 2018). In 

a similar manner to Rowan, the use of multiple representations was embedded in the 

tasks but with a focus on examples. For instance, when Sam asked, “you’re going to 

tell me why the shaded area is four fifths” a student responded, “cause it’s twenty-five 

and the number is twenty shaded”.  

It has been argued that multiple representations can either aid learning or be the 

source of confusion, dependent on how they are deployed (3.3.5). For example, 

engaging students in self-explanations about how visual features relate to 

mathematical concepts is thought to facilitate an understanding of visual 

representations (Rau et al., 2017). Both Sam and Rowan used multiple 

representations, and thereby offered students some conceptual variation (3.3.5.2), but 

with tasks structured around examples; the occasional more generalised comments 

were predominantly made by the teachers (e.g. extract 5.35). Consequently, students 

used different representations, but student self-explanations were not an explicit part 

of tasks and discussions about connections between features of representations, and 

between representations and concepts, were rare.  

In terms of multiple solution strategies, Joe and Rowan predominantly modelled one 

procedure for each activity, which included problems where more than one approach 

was possible. Whilst they acknowledged alternative strategies, these were not 
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included in their explanation, and the tasks that were subsequently met could all have 

been completed using the modelled approach; a comparison of strategies was not a 

required nor prompted element of the tasks (5.3.1.3c, -1.5c, -3.3c & -3.5c). Sam 

sometimes included multiple solution strategies, but when used these were 

introduced sequentially and making links between approaches were not an integral 

part of the tasks (5.3.2.3c & 5.3.2.5c). As such, the tasks in all classes provided limited 

access to the multiple solution strategy strand of procedural variation (3.3.5.2), and 

reinforced the norm that accurate application of a procedure was the expectation for 

an ‘effective student of mathematics’. 

All three teachers used exercises containing similar questions in some phases of their 

lessons (e.g. figures 5.11, 5.18 & 5.42). Rowan’s class A lesson was atypical in this 

regard, as this focussed on the manipulation of equivalent expressions, but her other 

recorded lesson for this class followed the more typical model/exercise pattern 

(5.3.3.4). New features, such as transitioning from drawing bar diagrams to 

interpretation, were introduced as the exercises progressed. Consequently, the tasks 

exposed students to some variation, although the form and level of control of that 

variation differed. For example, Joe’s percentage questions (5.3.1.3) and Rowan’s class 

A (lesson 2) worksheets (5.3.3.4) had the same method applied to similar problems in 

slightly different contexts, where an accurately executed procedure for each question 

was the requirement. With few discernible connections between questions, tasks were 

usually classified as unsystematic variation (3.3.5.2). When this was coupled with the 

use of one register and one solution strategy, this limited exposure to variation that 

could have led to discernment. And while Sam often included multiple representations 

in his lessons, as with Joe and Rowan, the focus of questions in sequences of examples 

or exercises was often on the application of a procedure, and questions were usually 

self-contained with few interconnections (e.g. figure 5.18). As such, in terms of 

procedural variation, Sam’s tasks were similarly classified as unsystematic variation.  

Across the lessons, the students experienced a range of questions that could have 

extended their experience of the range of permissible change (3.3.5.2), but this was 

often in one dimension with only a small subset of the possible changes met. 

Moreover, most examples were in a common format; atypical, boundary or non-
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examples were infrequently seen. So, students may have had a restricted 

understanding of possible variation, which could have limited their understanding of 

generalisation. In addition, there was rarely explicit reference to the range of 

permissible change or dimensions of possible variation.  

Considering the lessons from the different perspectives variation theory can offer 

(3.3.5.2), it appears students could have experienced some variation, but with varying 

levels of control and generally in an implicit form. This may have limited the students’ 

discernment of critical features and hence generalisation (Mason, 2011a). However, 

there appeared to be no systemic differences between the higher and lower attaining 

sets for each teacher in this regard.  

When all the recorded lessons are considered, there were occasions when the 

teachers in this study included problems set in contexts related to the real-world, and 

aspects of these lessons were coded as ‘pseudo-context’ as the problems appeared 

contrived for the classroom (5.3.1.3, 5.3.2.6 & 5.3.3.7). For Sam, there were few 

discernible differences between how context was used in the higher and lower 

attaining sets (5.3.2.4 & 5.3.2.6). Rowan used some ‘real-world’ context with class B, 

but not with class A. For class B, the second recorded lesson used local maps (5.3.3.6), 

but the task design allowed the students to complete the work without using compass 

directions, the stated learning objective. For Joe, there were more links to ‘real-world’ 

contexts in class A than class B; the school policy was to include this in all lessons, but 

Joe indicated he found this harder in some topics, such as his class B lesson. In his class 

A, there were some instances of students not understanding terminology and others 

where students made personal judgements about the context rather than attending to 

the mathematical problem (5.3.1.3). It appears, therefore, that these contexts may 

have distracted from the learning intentions and produced some conflicts of attention.  

Research indicates that students from low socioeconomic backgrounds may be more 

likely to draw on ‘inappropriate’ contextual information (Cooper and Harries, 2002) 

(3.3.5.4), but students’ background information was beyond the scope of this study. 

Here, while some differences in the use of context were noted, the small number of 

cases meant drawing conclusions about the differential use of context based on 

attainment was not possible. 
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6.4.5 Sequencing 

In all the recorded lessons, the three teachers predominantly directed or redirected 

the focus of attention onto approaches they introduced (5.3.1.7, 5.3.2.7 & 5.3.3.7). 

With IRE the dominant form of interaction, the teachers initiated the focus of 

attention a significant amount of the time, but they also redirected students back to 

approaches they introduced far more often than they interrogated student reasoning. 

This included situations where student contributions could have been part of a 

mathematically valid solution strategy.  

For example, when asked to calculate 3.49 × 10 × 3, a student attempted to multiply by 

three first; Joe used an IRE sequence to redirect the student back to multiplying by ten 

first (extract 5.13). In a similar fashion, Sam redirected an exchange back to the 

previous focus, namely exponents of zero, without exploring the student’s reasoning, 

which appeared to be related to a generalised feature, that of powers of ten always 

remaining positive with negative exponents (extract 5.21). Rowan often redirected the 

focus of attention to approaches she introduced (5.3.3.3e), which resulted in students’ 

alternative approaches being treated as errors. For example, in the second lesson with 

class A, a student offered  𝑥 =
𝑔+𝑐

𝑎
+ 𝑏 as a rearrangement of 𝑎(𝑥 − 𝑏) = 𝑔 + 𝑐. Rowan 

redirected exchanges so the bracket was expanded first, as per previously modelled 

questions, leading to 𝑥 =
𝑔+𝑐+𝑎𝑏

𝑎
 (figure 5.37: sequencing).  

Consequently, it appeared the three teachers predominantly privileged their 

mathematical horizon over the interrogation of student reasoning in their 

management of the lesson trajectories (3.3.7.2 & 3.3.7.5). There were some 

exceptions, such as in Rowan’s class B, when she accepted a diagrammatic layout 

introduced by a student, albeit returning to her prepared layout afterwards (5.3.3.5e). 

However, these types of episodes were rare and, for the most part, the focus 

remained on approaches the teachers introduced.  

Student contributions were predominantly part of IRE exchanges, with the focus 

controlled by the teachers’ questions. On occasions, the teachers utilised more 

extensive ideas from students but in a teacher-controlled manner. For example, 

Rowan, nominated a student to explain their approach, which became central to a 
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whole-class IRE sequence, but Rowan knew about the approach beforehand, and 

reworded and extended the explanation (5.3.3.3e). In a similar way, Joe integrated a 

known student’s approach into an IRE sequence (extract 5.6 & 5.7). After giving 

students sixty seconds to prepare, Sam asked three students to explain ‘anything to 

the power zero is one’ (extract 5.23), but these explanations were not interrogated, 

and Sam drew to a conclusion with his own explanation. Consequently, when using 

students’ approaches, the overall lesson trajectories remained aligned with the 

teachers’ mathematical horizons.  

Whilst drawing firm conclusions from single episodes in lessons is not feasible, all 

these instances of intentional shifts of focus to more extensive student explanations 

occurred in the higher attaining sets. There were no equivalent examples of Joe, Sam 

or Rowan incorporating more extensive contributions into whole-class talk in their 

lower attaining sets. Rowan ‘broadcasted’ students work in her class B, but she 

selected and worded the contribution rather than the explanation being voiced by the 

students (e.g. extract 5.42). This could be seen to contribute to the evidence that talk 

in lower attaining classes was more tightly controlled by the teachers. 

Most of the questions in IRE sequences were self-contained and a fair proportion were 

relatively simple. When combined with the teachers’ structuring of procedures, even 

for students directly engaged in the interaction, the level of cognitive demand could 

have been low. However, as discussed in 3.3.6.2, the surrounding sequence of events 

needs to be taken into account when evaluating the significance of particular 

questions (Lefstein and Snell, 2011). When extended sequences of IRE exchanges were 

considered, mathematical structures and concepts were involved. For example, as part 

of the modelled solutions, Joe signalled the relationship between the value and the 

percentage represented (extract 5.1), Sam structured his IRE turn-taking to include 

shifts between different representations of indices (e.g. extract 5.17) and Rowan asked 

how different equations could be formed from a diagram (e.g. extract 5.47). So, 

extended IRE sequences had the potential to focus attention on aspects of 

mathematical structure. However, these exchanges predominantly focussed on the 

particular examples under discussion; explicit links to concepts were rare.  
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In a similar manner, the sequencing of activities needed to be taken into account. For 

example, Sam introduced different ways of exploring powers with exponents of zero, 

Joe presented different ways of multiplying by powers of ten and Rowan had 

alternative bar-model representations. These juxtaposed alternatives provided some 

variation, but the teachers usually maintained the focus of attention on the current 

procedure, with any comparisons left to individual student discretion. It appeared, 

therefore, that more generalised concepts could have been available if students could 

see through the specific to the general (3.3.5.2) or if they made links between 

different classroom episodes. However, the teachers rarely marked critical features 

explicitly, so relationships and links to concepts often remained implicit. Consequently, 

students could have engaged in whole-class talk and responded appropriately whilst 

encountering low levels of cognitive demand, but there was the possibility of higher 

levels of cognitive engagement as some may have attended to the more 

mathematically significant features. This, however, would have been dependent on 

individual students’ self-directed discernment.   

As with the task dimension, the teachers’ management of the lesson trajectory was 

similar for both their classes, with few systemic differences attributable to attainment. 

As with the analysis of tasks from a perspective of variation theory, differences in the 

mathematics made available might lie in how successful the students were at reading 

the implicit mathematical meaning embedded in sequenced activities. This in turn 

could be dependent on how they interpreted particular instances of a concept and 

whether they made self-generated links between sequential episodes. The argument 

made in section 3.3.5 is that this might occur more often with students in higher 

attaining sets. 

6.4.6 Teacher Cognition 

The ambitions all three teachers articulated for students had elements related to 

developing mathematical understanding. For example, Joe and Rowan discussed 

problem solving (5.3.1.2 & 5.3.3.2) and Sam referred to developing conceptual 

understanding (5.3.2.2). However, there were some subtle shifts in lesson goals; while 

all three teachers had a mixture of learning and performance orientations, learning 

was given more emphasis in their higher attaining sets (5.3.1.3a, -1.5a -2.3a, -2.5a,       
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-3.3a, & -3.5a). In addition, Rowan mentioned practice was important for her class B, 

due to her perception of their poor retention skills, and both Joe and Sam discussed 

how they planned to adapt lessons because of students’ weaker number skills in their 

respective lower attaining sets.  

Kutnick et al. (2006) argued that some teachers perceived student behaviour as being 

more problematic in lower attaining sets (2.4.2.1). There was some evidence that Sam 

and Rowan held similar views; student engagement and behaviour were only 

mentioned in respect to their lower attaining sets (5.3.2.5a & 5.3.3.5a). In particular, 

Rowan ascribed different motivational states to her class B, with the students 

requiring greater extrinsic motivation; adaptions she adopted included using shorter, 

more competitive tasks. Sam stated that students in his class B required more 

encouragement to stay on task and behaviour could adversely affect whole-class 

discussions; in class B superlatives were used with reference to engagement, which did 

not occur in class A (5.3.2.5d). As discussed in 6.4.3, Joe and Rowan used more 

superlatives with their lower attaining sets within IRE exchanges, which again could 

indicate they perceived the needs of the students in those classes differently from 

their higher attaining sets (2.4.2.1 & 3.3.6.2). It appeared, therefore, that all three 

teachers had elements of their beliefs where they held different expectations for 

students in different sets.  

Sam did change his practice for the recorded lessons (5.3.2.1 & 6.4.1). He 

acknowledged that he usually used more individual ways of working with his lower 

attaining set, but planned to adopt a similar discussion-based approach in both classes 

for the recorded lessons. When he discussed his evaluation of the indices lessons, he 

was pleasantly surprised at the success of this change, in terms of both engagement 

and his assessment of student understanding in class B (5.3.2.5f). This offered 

confirmation that he previously held different expectations for class B and suggested 

the experience may have challenged aspects of those beliefs. Sam continued to use 

the same resources and approaches for the remaining recorded lessons. From his 

perspective there was mixed success; the students could access the resources but 

engagement in whole-class discussions remained unpredictable, with some discussions 

curtailed due to a perceived lack of engagement. 
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The teachers’ interpretation of classroom activities and their in-the-moment decision 

making appeared to be predominantly orientated to their mathematical horizon, with 

the interpretation of student reasoning at a whole-class level a rare occurrence (e.g. 

extract 5.10). This was indicated, for example, when teachers used IRE sequences to 

redirect attention back to processes they had previously introduced (e.g. extract 5.6). 

However, with IRE patterns of interaction such a consistent part of all the teachers’ 

discourse patterns, many of their in-the-moment decisions may have fallen within 

algorithmic reasoning rather than being a reflectively conscious act (Watson, 2019) 

(3.3.7.4). There appeared to be few discernible differences between higher and lower 

attaining sets in this regard. 

In overall terms, the lesson images appeared slightly more performance orientated 

with the lower attaining groups, with more significant differences in the content 

covered due to the stratified curriculum routes that the teachers followed (6.4.1). 

Whilst there were indications that the teachers planned different types of tasks for the 

different sets, when tasks were analysed there were few differences in their features 

(6.4.4). 

6.4.7 Cognitive Demand 

In section 3.3.3, cognitive demand was defined as ‘the level and type of thinking that a 

task has the potential to elicit’ (Boston and Smith, 2009, p.122). Here, a common 

feature of many of the tasks was they could have been completed in a procedural 

manner based on models the teachers presented to the class. Similarly, in whole-class 

discussions, there was little requirement to go beyond describing procedures (5.3.1.3g, 

-1.5g, -2.3g, -2.5g, -3.3g & -3.5g). However, there were also elements that went 

beyond the purely procedural, such as the use of multiple representations by Sam and 

Rowan, and the attention Joe paid to structure through the use of place value or 

percentage/value links. So, as activities had the potential to convey some meaning 

beyond the particular, the majority of the tasks and ‘talk as mathematics’ were 

classified as procedural or process.  

As discussed in sections 6.4.4 and 6.4.5, attention was rarely drawn in an explicit 

manner to the links between examples and concepts or between representations and 
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their mathematically significant features. Consequently, whilst there were 

opportunities for students to make connections with mathematical concepts, they 

could have worked in a procedural way when completing tasks or taking part in whole-

class discussions. So, the lessons provided opportunities for the students to engage in 

activities with the potential to elicit higher-level thinking, but the students could have 

participated, in ways accepted as legitimate, with low-levels of cognitive demand. In 

this regard, there were no systemic differences discernible between sets with different 

attainment profiles.  

6.4.8 Classroom Norms 

In terms of social norms, in all classes the teacher was the arbiter of correctness 

(5.3.1.7, 5.3.2.7 & 5.3.3.7). The dominance of IRE sequences, with the norms of 

immediate acceptance of ‘correct’ responses and follow-up action after ‘errors’, 

appeared to be significant contributory factors (e.g. extract 5.2). In this respect, the 

three teachers’ practice mirrored previous research findings (3.3.6.2). In addition, the 

three teachers tended to redirect students’ attention back to a single procedure they 

introduced, thereby privileging finding the answer through known procedures over an 

exploration of alternative routes. These repeated patterns of interaction indicated that 

an ‘effective student of mathematics’ would be seen as one who could efficiently 

produce a ‘correct’ answer and errors were to be avoided or corrected if met (5.3.1.4, 

-1.6, -2.4, -2.6, -3.4 & -3.6).  

Other types of student engagement were valued. In all the classes, students 

demonstrated some agency to act through student-initiated questions or comments. 

However, these occurrences were usually limited to a few individual comments within 

teacher directed whole-class interactions. In terms of differences between classes, as 

discussed (6.4.3 & 6.4.5), student contributions appeared to be more tightly controlled 

by the teacher in the lower attaining sets, potentially imposing further limits on those 

students’ agency.  

From the perspective of sociomathematical norms, descriptions of procedures were 

accepted by all the teachers as explanations (e.g. extract 5.2). Moreover, examples 

were used to justify more general cases without making links explicit or drawing 
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attention to the range of permissible change. For example, Joe accepted one 

alternative percentage reduction calculation as justification of that process (extract 

5.7), Sam used examples to justify the ‘rules of indices’ (5.3.2.3h) and Rowan discussed 

equivalence based on particular examples of compound areas (extract 5.35); the 

resulting message being that examples are sufficient to justify a more general case.  

6.4.9 Shifts in Pedagogy 

Research indicates when students are taught in sets, classes with lower attainment 

profiles tend to have access to a more restricted curriculum, be taught by teachers 

with lower expectations, and have distinctive pedagogical characteristics (2.4.2). If 

these features occur, they can combine to limit students’ access to significant 

mathematical ideas. The following discussion draws on sections 6.4.1 to 6.4.8 to 

summarise how aspects of those previous research findings were apparent in the 

individual teachers’ shifts in practice.  

In these three pairs of case studies, the stratification of the curricula did place 

restrictions on the mathematical content students experienced (6.4.1). Whilst the 

teachers felt they could adapt their school’s curriculum plans, in practice they 

generally followed the prescribed stratified routes (5.3.1.1, 5.3.2.1 & 5.3.3.1). These 

differences were driven by school level decisions, influenced by England’s exam 

structures (2.4.1). Sam’s change to using the same curricula materials for both classes 

in the recorded lessons (5.3.2.5c) raised the question as to whether teachers’ 

expectations, both in designing the curricula and in selecting content for particular 

lessons, unduly limits students’ access to the curriculum when placed in a low 

attaining set. 

It was noted that the three teachers had similar differential expectations about 

student engagement related to attainment, albeit manifest in different ways. For 

example, for the three lower attaining sets, the teachers use of superlatives, Sam’s 

caution about holding discussions and Rowan’s use of shorter tasks, indicated they all 

expected those students to need more support to remain engaged in the mathematics 

(6.4.6). There were also some subtle differences in the level of control the teachers’ 

exerted in whole-class discussions, with tighter control seen in the lower attaining 
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sets. Specifically, there were differences in the management of ‘errors’ (6.4.3) and the 

use of student explanations (6.4.5).     

However, there were many similar features to discourse patterns, tasks and the 

sequencing of lessons, and consequently the levels of cognitive demand were also 

comparable (see 6.4.3 to 6.4.7); key features are highlighted below. All three teachers 

talked more than the students, frequently using IRE patterns of interaction, where 

they revoiced student contributions and extended explanations. In general, classroom 

discourse and tasks focused on the ‘doing’, in other words the efficient execution of 

procedures, and there was relatively little explicit attention drawn to mathematical 

relationships, concepts or strategies. Procedures were accepted as explanations and in 

many whole-class discussions, the teacher directed or redirected attention onto a 

single procedure with little comparison of multiple solution strategies. Multiple 

representations were used in similar ways across attainment groups. When attention 

was drawn to links between representations, and between representations and 

concepts, this was predominantly undertaken at the level of examples (e.g. extract 

5.37), rather than between features of representations and concepts.  

Students were exposed to different types of variation, but this varied in type and level 

of control. For example, the use of multiple representations provided access to an 

aspect of conceptual variation, but this was likely to remain an implicit part of the task 

as attention was rarely drawn to these features through the task requirements or 

whole class talk. Unsystematic variation in exercises was relatively common, as the 

accurate execution of a procedure was the normal requirement for each question, 

with few discernible links between them (5.3.1.3c, -1.5c, -2.3c, -2.5c, -3.3c & -3.5c).  

In overall terms, there were relatively few systemic differences attributable to 

attainment when the task, sequencing and cognitive demand dimensions of the OMF 

were considered. Previous studies have reported common features for lower attaining 

sets include low cognitively demanding tasks, the breaking down of tasks into simple 

steps and a shift to ‘drill and practice’ (2.4.2). Here, however, if these features were 

part of a teacher’s pedagogical approach they tended to occur in both sets, and there 

was no wholesale shift to ‘drill and practice’. Whereas differences were notable in 

curriculum access, aspects of discourse and teacher cognition elements of the OMF, 
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specifically in relation to expectations, motivation and level of teacher-control, all of 

which have been reported in previous studies (2.4.1 & 2.4.2).  
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7. Conclusion  

7.1 Summary of Responses to the Research Questions 

In this study, the  research questions asked how a teacher orchestrates mathematics 

for different groups of students (RQ), with a focus on how teachers shift their 

pedagogical approaches when teaching different groups of students (RQ1a) and how 

the character of mathematics made available to students varies (RQ1b). Due to the 

complexity of the classroom, the response to this research question is multifaceted 

and while there were areas of commonality between the teachers, this was not 

universal (6.4.9). In overall terms, shifts were noted in the areas of curriculum access, 

expectations and control of whole class talk, albeit manifest in different ways. The 

teachers planned lessons from a more restricted curriculum for their lower attaining 

sets, so those students experienced less content coverage compared to their peers. In 

relation to engagement and motivation, lower attaining classes appeared to be seen as 

requiring higher levels of extrinsic motivation, manifest in the use of competitive tasks 

or a greater use of praise. Whilst many of the teachers discourse patterns were stable 

across both their respective classes, there was evidence that the teachers controlled 

whole-class talk more tightly in their lower attaining classes.  

However, there were other aspects of the teachers’ practice where there appeared to 

be no systemic differences between the different sets. For instance, how the teachers 

talked about mathematics and to what they drew attention were similar across their 

classes. In general, classroom discourse and tasks focussed on ‘doing’, with attention 

drawn to procedures. The use of multiple representations and structured solution 

strategies offered students opportunities to consider some underpinning 

mathematical concepts and relationships, but examples tended to be used without 

explicit attention being drawn to how the specific and general relate. For example, 

exercises tended to have unsystematic variation and when variation was controlled 

more tightly this was an implicit part of the task; drawing explicit attention to variation 

or relationships at a conceptual level was rare. Consequently, it is argued that the 

mathematics made available to students would have been dependent on how 
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successful individual students were at attending to the implicit mathematically 

significant features. 

In terms of the two parts of the research question (RQ), class pedagogical profiles have 

been built up that have allowed cross class comparisons, which have allowed a 

detailed response to the first part (RQa). Some inferences have been made about the 

mathematics made available to students, summarised in relation to cognitive demand, 

which has allowed a partial response to the second part (RQb).  

It should be noted that this study focussed on teachers’ pedagogical moves and the 

mathematics made available to an ‘effective student of mathematics’. Only episodes 

categorised as mathematically related were coded and analysed. As discussed in 

section 3.2.3.1, students can identify with, merely comply or resist the classroom 

obligations of an ‘effective student of mathematics’. Whilst the normative identity for 

all classes was predominately related to the efficient production of ‘correct’ answers, 

it was beyond the scope of this study to consider if there were differing levels of 

identification with these obligations.  

In order to answer the research questions the Orchestration of Mathematics 

Framework (OMF) was developed. Consequently, consideration needs to be given to 

the viability of the OMF as an analytical tool for charting teachers’ pedagogical 

approaches and for characterising the mathematics made available to students. As 

discussed in 6.3, the OMF provided me with a structure for the coordination of 

different theoretical lenses when building an understanding of pedagogical moves in 

‘typical’ mathematics lessons. The arguments made in section 6.4 provide the 

warrants for the claim that the OMF is a viable analytical tool for charting substantive 

parts of participating teachers’ pedagogical moves, with inferences made about the 

mathematics made available to students. Sections 3.4.3 and 6.3.2 considered the 

relationship of the OMF to other theoretical perspectives in order to site this work in 

the wider field.  

7.2 Limitations and Ethical Considerations 

This thesis is composed of a classroom-based video-study, structured as a case study 

of three teachers and six classes. To a large extent, this study relies on video 
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transcripts of the lessons and it could be argued that this reliance raises a question as 

to the appropriateness and robustness of a case study approach. To have meaning 

beyond this study requires the work to have sufficient trustworthiness and 

transferability, which can be achieved through providing sufficient descriptions of the 

study and transparency in the analysis for the reader to relate these cases to settings 

with which they are familiar (4.4.2).  

The study explored the teachers’ pedagogical moves. Whilst the complexity of the 

classroom necessitated selecting a perspective through which to view classroom 

interactions, foregrounding teachers’ moves did place individual students’ activities in 

the background. The argument made was that the notion of classroom norms allowed 

students’ participation to be taken into account without a detailed examination of 

individual students’ activities (3.2.2). However, this did mean that the teachers’ 

activities in relation to supporting equity of access were not considered (3.4.4). In 

addition, the focus was on whole-class interactions that accounted for about a third to 

half of the lesson time and other aspects of the lessons were not subject to direct 

analysis. Technology does exist that would allow students’ seatwork to be captured in 

more detail, both audio and visual, and camera systems can automatically track the 

teacher. Therefore, it would be worth considering capturing a wider range of data in 

any future studies.   

Another limitation of this study is that it has been undertaken by a sole researcher. 

The OMF has value if it can contribute to building a shared understanding of what 

happens in mathematics classrooms. Sections 3.4.3 and 6.2 outlined how the 

conceptualisation of the OMF had cohesion for this researcher and discussed how it 

related to other theoretical frameworks, as a starting point for situating the OMF in 

the wider field. However, the efficacy of the framework can only be tested with wider 

use. So, while the development of the OMF supported my understanding of previous 

research and potential relationships between different perspectives, the question 

remains as to whether a bespoke framework designed by a sole researcher was the 

most effective way to produce a sufficiently robust study.  

In terms of the design and implementation of the study, the difficulties in recruiting 

participants led to the opportunistic recruitment of three teachers. Whilst this in of 
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itself was not an issue, as I was looking to find a way to explore any typical lessons, it 

did mean that I had pre-existing and ongoing relationships with the teachers. Two 

were PGCE alumni and all had been mentors for ITE students on the PGCE course I 

work on. I did adapt to their preferred ways of participating, for example not 

challenging Sam when he changed his way of working as he reported this as a positive 

experience. As the teachers were used to the PGCE model of joint observation of 

student-teachers, followed by a debrief that included elements of judgment, it proved 

difficult to steer post-lesson discussions away from that format. Many of the 

pedagogical approaches that have been challenged in educational research have roots 

outside of the individual teacher, such as stratified syllabus structures and the 

prevalence of unsystematic variation in English textbooks. As my analysis progressed, 

it was difficult to describe and interpret classroom activities in ways that took into 

account the research literature but without inadvertently implying judgment of the 

teachers (4.3.3 & 5.2). 

7.3 Implications  

7.3.1 The Orchestration of Mathematics Framework 

Numerous theoretical perspectives can be brought to bear on the interpretation of 

mathematics classrooms. Previous research studies have offered a range of lesson 

observation frameworks to interpret classrooms, which have diverse purposes and 

formats though many have an evaluative stance. Within this field, the OMF provides a 

holistic pedagogical profile of a teacher’s practice that allows different theoretical 

perspectives to be interpreted in relation to each other. The descriptive and 

interpretative focus of the OMF could compliment evaluative perspectives by 

capturing classroom activities that fall outside other studies’ criteria for effective 

instruction. Moreover, the OMF orientation from the perspective of the teacher has 

the potential to compliment other orientations, such as a focus on the learner more 

typically found in lesson study (Larssen et al., 2018). 

The descriptive and interpretative power of the OMF has the potential to provide 

teachers with new ways to understand their practice, and thereby support their 

professional development. The OMF could be used as both a planning and review tool, 
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providing the framework for focussing attention on features that are significant in the 

learning of mathematics. In particular, the OMF draws attention to elements of 

practice that are usually less visible, such as classroom norms. As previously discussed 

(3.4.4.2), the transition from a research instrument to an accessible and effective 

professional development tool would not be straightforward. Consequently, it is likely 

that the OMF would initially be used in contexts supported by teacher educators, such 

as Initial Teacher Education (ITE) or professional development courses.  

Within ITE, for example, student-teachers meet a range of theoretical perspectives 

during their course. Over time, the OMF could provide a structure for relating those 

perspectives to their classroom practice. Used as a planning tool, different elements of 

the OMF could be in focus at different stages of their course, so student-teachers 

could build-up their understanding of the different facets of their practice within a 

coherent framework. In ITE courses, school-based mentors undertake the majority of 

lesson observations of student-teachers and usually take the lead in lesson review 

processes. There can be a tendency for judgments to be made without an explicit and 

detailed discussion of what happened in the lesson. So, if the mentors could be 

inducted into the use of the OMF, its descriptive orientation could provide the 

structure for building a better shared understanding of what happened, and thereby 

provide the foundations for more productive discussions between the student-teacher 

and the mentor.  

7.3.2 Setting 

Prior research has explored the effect of teaching students in sets from a range of 

perspectives. Studies have sought to explicate the relationships between setting and 

students’ experience of mathematics by analysing attainment, identifying 

characteristic pedagogical approaches and exploring differential access to teachers 

and the curriculum. However, the conflation of these factors in the setting process 

makes it more difficult to determine the relative influence of each. In surveys, teachers 

have reported how they adapt their practice when teaching sets with different 

attainment profiles. This study contributes to the field through the detailed study of 

three teachers’ actual classroom activities when they taught different sets, charting 

shifts in practice and exploring possible antecedents.  
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Specifically, this study provides insights into the influence of stratified school 

curriculum plans on individual teachers’ lesson choices, and the level of ‘in-built’ 

expectations regarding students’ capabilities to access the curriculum. As the GCSE 

exams have a tiered curriculum, stratification appears to be structurally embedded 

and may therefore be difficult to counter. However, Sam’s change in practice for the 

recorded lessons provided a brief window on the potential of more closely aligning 

teaching approaches for different sets; a possible avenue for further study.  

In this study, some differences were noted in how the teachers controlled the 

classroom discourse in their higher and lower attaining sets, but there were few 

discernible differences in patterns of interactions and the management of lesson 

trajectories. In particular, the steer towards procedures and the low level of 

explicitness in how mathematical representations, relationships and concepts were 

discussed were common features across the classes. If the norm is for many aspects of 

mathematical meaning to be conveyed through implicit means, maybe the question 

raised is whether students in higher attaining sets are those better placed to discern 

mathematically significant features and make connections between representations 

and mathematical concepts themselves. The corollary being that raising levels of 

explicitness may support all students, but particularly those in lower attaining sets, 

although that would be a far from straightforward undertaking (Mason, 2011b). 

7.4 Learning through Research   

This study has been undertaken part-time alongside my work in ITE. Shifting my 

perspective from tutor to researcher was not always straightforward but brought 

additional insights. This study highlighted the regularity of patterns of participation in 

classrooms and the role of normative identities. As a PGCE tutor, I have developed 

ways of working and there are expectations, from both student-teachers and school-

based staff, about that role. Having to consciously shift language and ways of being in 

classrooms away from evaluation, I believe prompted recognition of some of my own 

algorithmic reasoning (Watson, 2019). For example, my research diary indicates I 

moved from summative comments to more detailed lesson observation notes that 

attempted to capture individual interactions and activities. This was undertaken in 

response to identifying a need to make the description and analysis stages of 
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observations more explicit. Contending with the tensions between tutor and 

researcher perspectives has also influenced my professional practice, where, for 

example, I now have a greater focus on supporting student-teachers to articulate links 

between tasks and mathematical concepts.   

Lesson study is a model of collaborative planning, teaching, observation and review of 

lessons, undertaken by teams of teachers and framed by pedagogical research. My 

work in this field focusses on the nature of observation. In the UK, one tradition is to 

focus the observation on a few case-study students rather than the teacher or the 

whole class. This challenged my thinking about my argument that lessons can be 

analysed using the notion of an ‘effective student of mathematics’. As previously 

discussed, the complexity of the classroom cannot be captured with a single model. As 

such, an area for my future research might be to consider how to bring together the 

OMF, with its focus on the teacher, and a lesson study approach, with a focus on the 

students. 

7.5 Concluding Remarks 

When I moved from teaching mathematics in the state school system to working in the 

higher education sector I was surprised at the breadth and depth of mathematics 

education research, and disappointed that so little of this research appeared to be 

accessed by teachers. This study has sought to integrate the most relevant theoretical 

perspectives, so these can be drawn on to analyse typical lessons, as it is typical 

lessons that form the day-to-day experiences of teachers and students. The ultimate 

goal being that the OMF could contribute to linking theory and practice, and in 

particular provide a means for teachers to consider ways in which they can ameliorate 

the impact of setting.  
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Appendices  

Appendix 1: Ethical Approval 

1.1 Confirmation of Ethical Approval 

 University Ethics Sub-Committee for Sociology; Politics and 
IR; Lifelong Learning; Criminology; Economics and the School 
of Education 

12/06/2016 

Ethics Reference: 4511-fb128-education 

TO: 
Name of Researcher Applicant: Fay Baldry 
Department: Education 
Research Project Title: Teachers Orchestration of Mathematics 
 
Dear Fay Baldry,  
RE:  Ethics review of Research Study application 
 
The University Ethics Sub-Committee for Sociology; Politics and IR; Lifelong Learning; 
Criminology; Economics and the School of Education has reviewed and discussed the 
above application.  
 
1. Ethical opinion 
The Sub-Committee grants ethical approval to the above research project on the basis 
described in the application form and supporting documentation, subject to the 
conditions specified below. 
 
2. Summary of ethics review discussion  
The Committee noted the following issues:  
Please ensure that the opportunity to withdraw without reason appears in letters to 
parents/children and teachers. We support the gaining of consent from children as a 
way of showing respect to them in line with their participation being voluntary, even 
though legally as minors their signatures are not legally binding. Including parent/carer 
and child signatures on the same form is supported. Good luck with your study. 
 
3.  General conditions of the ethical approval 
The ethics approval is subject to the following general conditions being met prior to 
the start of the project: 
 
As the Principal Investigator, you are expected to deliver the research project in 
accordance with the University’s policies and procedures, which includes the 
University’s Research Code of Conduct and the University’s Research Ethics Policy. 
If relevant, management permission or approval (gate keeper role) must be obtained 
from host organisation prior to the start of the study at the site concerned. 
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4.  Reporting requirements after ethical approval 
You are expected to notify the Sub-Committee about: 
• Significant amendments to the project 
• Serious breaches of the protocol 
• Annual progress reports 
• Notifying the end of the study 
 
5. Use of application information 
Details from your ethics application will be stored on the University Ethics Online 
System. With your permission, the Sub-Committee may wish to use parts of the 
application in an anonymised format for training or sharing best practice.  Please let 
me know if you do not want the application details to be used in this manner. 
 
Best wishes for the success of this research project. 
 
Yours sincerely, 
Dr. Laura Brace  
Chair  
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1.2 Parent / Carer Letter of Consent  

 
Dear Parent / Carer, 
There is a lot of interest in how mathematics can be best taught, especially in light of 
the curriculum changes that are currently underway. Observation of lessons is a key 
tool in understanding how mathematics lessons progress for different learners. Fay 
Baldry, a researcher from the School of Education, University of Leicester, is 
undertaking research into how classroom observations can best be used to build a 
picture of how mathematics unfolds in different settings. She is looking to observe and 
video a small number of mathematics lessons and ask the class teacher about the work 
that students completed.  
All recordings will be stored securely by Fay Baldry and only viewed by herself and the 
class teacher to ensure confidentiality. Any reports will be written to ensure that 
student anonymity is preserved at each stage of the research process (i.e. any reports 
will not include names or other details that could identify individuals). Any student 
who would not want to be part of the recorded lessons would not be penalised, and 
any student could withdraw once the study has commenced without needing to 
provide a reason. 
Fay Baldry taught mathematics in secondary schools for over 15 years before taking on 
her current role in teacher education; this project forms part of her own PhD studies. 
In order to share good practice with others in the education sector, it is hoped that 
finding from this research could be used for professional and academic publication, in 
journals or conference proceedings. Any published material will have strict student, 
teacher and school anonymity. 
If you have any further questions concerning this matter, please feel free to contact 
the school (or Fay Baldry). Please discuss this with your child, and complete the slip 
below to indicate whether or not you would all be happy for some of their lessons to 
be recorded and used for this purpose. Thank you for reading this letter and for your 
co-operation. 
Yours faithfully 
     Fay Baldry 
fb128@le.ac.uk 
School of Education 
21 University Road 
  

_____________________________________________________________________ 
 
 
Name of student:__________________________ 
Parent/Carer Signature:____________________________   Date:__________ 
Student signature:____________________________  Date:_________        
We are happy for lessons for the above to be recorded and used in this study:   
Yes/No*         
 *please delete as appropriate 
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Appendix 2: Pilot Study Stage 1 

2.1 Class A (AU3: Box and Whisker Plots) 

2.1.1 Transcript Extract: Class A  

Downloaded from https://www.timssvideo.com/transcripts.  

Annotations are indicated by [italics]. 

Coding:  

Mathematically related; Mathematical organisation; Not mathematically 

related – only mathematically related was subject to further analysis.  

 

Problem:  

How many choc chips are needed to ensure 6 cookies have at least 3 each?  

 

Transcript: 

Teacher: Okay, write down the answers to these please. Yes, Daniel. 

Student: Um, what time are we gonna come back from computing? 

⁞ 

Teacher: All right, here's the story. My wife bakes hot chocolate chip cookies, which I 

like. But lately, the number of cookies- or the number of chocolate chips in the 

cookie... has been decreasing. We're going to simulate an experiment here whereby 

we have to find out how many chocolate chips I've got to put into a mixture to create 

six cookies. Which you have on that sheet that I've given you- so that I can be pretty 

sure that each cookie is going to end up with at least three, yes? Now, anyone got any 

ideas as to how many chocolate chips I would have to put into my mixture so that I 

would end up with at least three in each cookie? 

[Discourse: Exposition IRE] 

Student: Eighteen? 

Student: Eighteen 

Teacher: What about if I had 18- now, they're mixed up in this mixture for the six 

cookies- are you sure that each time you scoop out some of that mixture, you're gonna 

get three? So you- you're riding on the bare minimum there, aren't you? You're 

hoping- you're hoping that you're going to get three each scoop.  

https://www.timssvideo.com/transcripts
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[IRE: answer treated as error] 

What we're going to do is this little simulation exercise and it's just to gather some 

statistical data so we can carry on with our statistics. You're gonna work in pairs. One 

person's going to roll the dice. The number of the dice indicates the cookie and your 

cookies are numbered one to six. For example if I rolled a five that means I've got one 

chocolate chip for cookie number five. You're going to have to roll the dice sufficient 

times to end up with a minimum of three chocolate chips in each cookie. Do you 

understand? 

[Context – initially ‘real’, but link between context and model used not made explicit, 

and assumptions not considered so psuedocontext as enacted] 

Student: Yeah 

⁞ [30 minutes of rolling dice until each ‘cookie’ had 3 ‘chocolate chips’.  

Class results collated: Frequency distribution table compiled, median, upper 

and lower quartile calculated, box plot requested]  

Teacher: And just before we go on there... How many chocolate chips do you think you 

would need to ensure that you ended up with three? 

[IRE] 

Student 1: Twelve million of 'em.   

Student 2: At least 40  

Teacher: At least? 

Student: Forty  

Student 3: There's no way you could tell because if all the cookies- all of the chips 

(inaudible)  

Teacher: Well let's face it, you know... If we- if we put these chocolate chips into the 

mixture and mixed them around, we would expect them to get mixed a little bit and 

not sit in one corner, wouldn't we? Right? 

[Treated responses as errors – ‘ignored’. Interpretation: Student questions related to 

raw data; Teacher responded with summary statistics] 

But using- using the information that we gathered from that little thing- 

Student: Twenty-nine?  

Teacher: Twenty-nine?  

Student: About 30. 
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Teacher: So where are you getting these figures from? 

[IRE; treated as errors – ‘ignored’] 

Student: From the mean. 

Teacher: The mean! The mean? Okay. Let's just have a look at those three numbers 

again: a mean of thirty point five seven, a median of twenty-eight point five, and a 

mode of 25. So you are electing, in this case, to use the mean.  

Student: Yeah 

2.1.2 OMF: Interim OMF Class A 

 

 

2.1.3 Researcher’s Comments: Class A 

Downloaded from: 

https://static1.squarespace.com/static/59df81ea18b27ddf3bb4abb5/t/5ca513c0e2c4

834be286549e/1554322368430/AU3+Researcher+Comments.pdf 

References to national data were removed. 

Analysis: 

Examples of cross referencing with OMF analysis: Task Features, Cognitive 

Demand 

 

https://static1.squarespace.com/static/59df81ea18b27ddf3bb4abb5/t/5ca513c0e2c4834be286549e/1554322368430/AU3+Researcher+Comments.pdf
https://static1.squarespace.com/static/59df81ea18b27ddf3bb4abb5/t/5ca513c0e2c4834be286549e/1554322368430/AU3+Researcher+Comments.pdf
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Researcher’s Comments: 

The remainder of the problems in this lesson were related to one another, mostly 

mathematically or thematically. The rest were repetitions. 00:03:38 This problem is 

situated in a real-life context. The problem also involves the use of physical materials, 

in this case dice. Students throw the dice to determine which cookie will get a 

chocolate chip. Here the teacher provides a goal statement, telling the students that 

they are going to work on a simulation exercise that is related to their study of 

statistics. 00:06:05 At this point the classroom interaction shifts from public to private. 

This is the first of 12 shifts between public and private interaction throughout the 

lesson. Overall, 57% of the lesson is devoted to public interaction and 43% is devoted 

to private interaction. In this segment, the students are working in pairs. However, 

during the private interaction segments that occur later in the lesson, the students 

work individually. 00:24:16 In this problem, in which students are asked to construct a 

box-and-whisker plot, they are given a choice of how to create the scale. Therefore the 

problem is considered one in which students are allowed a choice of solution 

methods. The problem also involves the use of physical materials, in this case rulers 

00:34:31 The students are led through an exercise in using their graphing calculators, 

although they do not have a chance to complete it during this lesson. 5). This time-

point also marks the beginning of the introduction of new content in this lesson. Up to 

this point, the students have been reviewing previously learned content. Therefore, 

81% of the lesson time is spent reviewing and 19% is spent introducing new content.  
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2.1.4 OMF: Summary Class A  

 

  

 Concepts Ways of    working 
  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
 
 
 
 
 
 

Teacher’s Orchestration of 
Mathematics 

Organisation 
Individual  
Group work 

Discourse: Registers; Patterns: IRE, Questioning;  
Student Responses: Errors, Revoicing 
Register: used formal mathematical register 
himself, but little or no requirement for 
explanations off students- they did not use.  
Patterns: IRE (focus on answers, no explanations) 
Errors: ignored & moved on to correct responses 
from another student, or provided the complete 
solution to the whole-class. 
Revoicing: DW- responses to students’ questions 
related to correcting procedure 

Tasks: Examples Explanations 
Task Features: Single solution strategy.  
Multiple representations of the data (raw, table, 
summary and box plot); no rationale for choice  
Context: Psuedo-context. Initial real, but model 
flawed and not explained. ‘Classic’ students drawing 
on real context in discussion @ end which had to be 
deflected by the teacher as it did not fit pseudo-
model used.  

  
Sequencing:  
Variation; No separation, limited  
range of permissible change 
(RoPC) or dimensions of variation 
(DoV). No sequence of examples, 
but multiple calculations with the 
same data set  
Links; No evidence 
Students’ work: Not used 
beyond answers. 

 

Cognitive 
Demand: type of 

thinking 
Low: Procedural 
Algorithmic 
approach, no 
ambiguity.  
Potential High: No 
overt attempt to link 
activity with 
purpose/ concepts of 
different 
representations, but 
the same data set in 
more than one way 
may have made links 
visible to some 
High attempted: One 
‘which is more 
appropriate’ but 
ineffective as initial 
question flawed. 
Checking planned… 
though procedural 

Classroom 
Norms 
Accountability & 
Agency  
 
Teacher arbiter of 
correctness. 
Focus on correct 
answers. 
Explanations not 
required. (Single 
numerical 
answers 
accepted) 
No action 
appeared to be 
required when 
student made 
errors.  

 

In
d

iv
id

u
al

 S
tu

d
en

t 
A

ct
iv

it
y 

Interpretation:  
Teacher-Students 
discontinuity.  
Student questions: 
raw data 
Teacher response: 
summary data   
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2.2 Class B (AU4: Ratio) 

2.2.1 Transcript Extract: Class B 

Downloaded from https://www.timssvideo.com/au4-ratios#tabs-3.  

Annotations are indicated by [italics]. 

Coding:  

Mathematically related; Mathematical organisation; Not mathematically 

related 

 

Transcript:  

Teacher: Lindsey you can take any spares and put them in the box and bring the box to 

the front, okay? All right. Now let's just go over what we did yesterday. Yesterday you 

had to divide your 12 into different ratios. Let's do one of those again. Or two of them. 

Let's divide the 12 you have in the ratio, uh... five to seven. Divide them into ratio five 

to seven. Thank you. So that means that you're going to separate them into two 

groups on your table with how many in the first group? 

[Organisation. Explanation (procedure). IRE initiated] 

Student: Five. 

Teacher: Five and seven in the second one. Okay. What if I say I want them divided 

into ratio one to two? 

[IRE] 

Student: (inaudible)  

[Error indicated by teacher response] 

Teacher: No. Six in each would be?  

[Bald no] 

Student: Fourteen.  

Teacher: Six to six which would be? One to one.  

[Ignoring error, answering own question] 

Student: Eight in one group and four in the other.  

Teacher: Eight in one group. Which group?  

[Order error – opportunity to correct] 

Student: In the two.  

https://www.timssvideo.com/au4-ratios#tabs-3
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Teacher: Groups, so you really should have told me four to eight because remember 

with ratio the order is important.  

[Ignores student response, corrects but with answer only… the teacher did the 

explanation].  

Now I want you, for what we're moving onto today, to actually make them equal piles. 

So I want how many piles altogether really?  

Student: Two 

Teacher: No.  

[Bald no. Treated as error although could be considered ‘correct’] 

Student: Three.  

Teacher: Three piles all together and I want you to stack them up so you have three 

piles. One on your left, and two on your right. Stack them up so you have one on your 

left and two on your right.  

[procedural explanation] 

One two three four five... six seven eight nine 10 11 12. All right. So what we actually 

have there- Danny doesn't seem to, but the rest of us should have. Is when we- 

We have three piles worth 12 and you have created one pile of four and two piles of 

eight. Okay? 

2.2.2 Researcher’s Comments: Class B 

Downloaded from:  

https://static1.squarespace.com/static/59df81ea18b27ddf3bb4abb5/t/5ca5168271c1

0b0f2bc1bb0f/1554323074755/AU4+Researcher+Comments.pdf 

References to national data were removed. 

Analysis: 

Examples of cross referencing to OMF: Task Features, Cognitive Demand 

 

Researcher’s Comments: 

At the beginning of the lesson, the teacher writes the heading for today's class on the 

board: "Dividing a Given Quantity in a Given Ratio." 00:01:58 Here the teacher is 

https://static1.squarespace.com/static/59df81ea18b27ddf3bb4abb5/t/5ca5168271c10b0f2bc1bb0f/1554323074755/AU4+Researcher+Comments.pdf
https://static1.squarespace.com/static/59df81ea18b27ddf3bb4abb5/t/5ca5168271c10b0f2bc1bb0f/1554323074755/AU4+Researcher+Comments.pdf
https://static1.squarespace.com/static/59df81ea18b27ddf3bb4abb5/t/5ca5168271c10b0f2bc1bb0f/1554323074755/AU4+Researcher+Comments.pdf
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handing out counting blocks that the students will use to help solve various problems 

dealing with ratios. These blocks are considered to be "special mathematical 

materials"; that is, mathematical materials used for a mathematical purpose during 

the lesson. 00:09:56 In this problem, students are asked to divide 200 dollars in the 

ratio 1 to 3. Problems involving calculations and algebraic manipulations such as this, 

were considered to have "using procedures" problem statements. During the interval 

10:21-13:34 the teacher and students use procedures to complete the problem; 

specifically, they divide the 200 dollars by four and then assign the appropriate 

amount to each part of the ratio. 00:21:33 At this point in the lesson, the students are 

given a problem on which they work privately, in groups of 2 or 3. The lesson switches 

between public and private work a total of 10 times. Overall, 57% of the lesson is 

spent in public interaction and 43% is spent in private interaction. During all the other 

periods of private interaction, the students work individually. Most of the private 

interaction time (73% per lesson, on average) was devoted to working individually. 

00:29:31 This problem, in which students are asked to create a story about why they 

want to divide Smarties (a type of candy) in a given ratio, is the first one in the lesson 

that is set up with a real-life connection. (Several of the previous problems had a real-

life connection brought in as they were solved, but they were not set up in a real-

world context.) 00:43:18 Here the teacher introduces a new method to solve a 

problem worked on earlier in the lesson (at 14:04). The lesson shifts back and forth 

between introducing and practicing new content several times. Overall, 10% of the 

lesson time is devoted to reviewing, 40% is devoted to introducing new content, and 

50% is devoted to practicing new content. There are seven shifts in purpose. 00:54:50 

A student can be seen here using a calculator for computation purposes. 00:55:54 At 

this point, the teacher assigns a group of problems for students to begin in class, and 

then complete at home for homework. Altogether, the class spent approximately 12 

minutes working on nine "future homework" problems. These problems all involve 

Smarties, a type of candy, which are considered both real-world objects used in the 

lesson and physical materials used to solve problems. 
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2.2.3 OMF: Summary Class A  

 

  

      Concepts Ways of    
working 

  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  
  

Teacher’s Orchestration of 
Mathematics 

Organisation 
Individual  
Group work 

Discourse: Registers; Patterns: IRE, Questioning;  
Student Responses: Errors, Revoicing 
Register: horizontal 
Patterns: IRE, short pauses, sometimes quiet 
individual/chorused answer, teacher answered 
own questions. Closed down/funnelling without 
giving students chance to contribute.  Errors: 
ignored/baldly acknowledged, correct answer 
accepted. No discussions either way. 

 

Tasks: Examples Explanations 
Task Features: manipulable but token use 
No multiple representations 
Preferred  solution strategy (ie offered manipulables 
and allowed alternative procedure, but not 
critiqued and TWC used one solution strategy) 
Context: Psuedo-context , Which did lead to issues 
with later student work and a ‘classic’ focus on 
reality that was not deemed warranted by the 
teacher.   

  

Sequencing: Variation; Links; 

Students’ work. 
Variation: Unsystematic, no 
separation . Little RoPC or DoV 
exception:  RoPC highlighted 
‘using easy numbers- factors’. 
Links: not made 

 

Cognitive 
Demand: type of 

thinking 
  
Low: Procedural 
No links made to 
underlying concepts 
Explanations not 
sought  
  
  

Classroom 
Norms 
Accountability & 
Agency  
  
Teacher arbiter of 
correctness. 
Focus on correct 
answers. 
Explanations not 
expected; any 
explanations/ 
justifications 
provided by the 
teacher.  

  



332 | P a g e  

2.3 Class C (AU2: Congruent Triangles) 

2.3.1 Transcript Extract: Class C  

Downloaded from https://www.timssvideo.com/au2-congruence 

Annotations are indicated by [italics]. 

Coding:  

Mathematically related; Mathematical organisation; Not mathematically 

related 

 

Lesson:  

Starter activity: used this as the example of congruent triangles 

 

Main task: activity designed for students to establish the minimum set of rules 

that would produce congruent triangles. 

One student draws a triangle and creates rules, a second student follows the 

rules and ‘tests’ congruence. 

 

Transcript: 

Teacher : …how many instructions did you actually need for each one? 

Student: Yep, I needed four.   

[‘correct’ answer: three] 

Teacher: You needed four, what were they? 

Student: Um, interval AB is vertical and measures five centimetres and AC is 

horizontal. 

Teacher: So if it's saying horizontal it's saying it's at an angle aren't you? 

[Reframing: students vertical – horizontal and other no-defining features. Teacher 

reframes in terms of defining features. Discontinuity] 

Student: Yeah. 

https://www.timssvideo.com/au2-congruence
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Teacher: So we're saying one's vertical and one's horizontal. 

Student: Yeah and you um... 

Teacher: Then you're defining the angle between them aren't you? 

2.3.2 OMF: Interim OMF Class C 

2.3.3 Researcher’s Comments: Class C 

Downloaded from: 

https://static1.squarespace.com/static/59df81ea18b27ddf3bb4abb5/t/5bbe1513a422

2f8030f6e571/1539183892086/AU2+Reseacher+Comments.pdf) 

References to national data were removed. 

Analysis: 

Examples of cross referencing: Task Features, Cognitive Demand 

 

Researcher’s Comments: 

The lesson begins with a review of congruent triangles. The review lasts until 4:51, at 

which time new content is introduced. Then, near the end of the lesson (at 38:07) 

there is a brief period during which the students practice and apply what they have 

just learned. Introducing new content accounts for a relatively large portion of time in 

https://static1.squarespace.com/static/59df81ea18b27ddf3bb4abb5/t/5bbe1513a4222f8030f6e571/1539183892086/AU2+Reseacher+Comments.pdf
https://static1.squarespace.com/static/59df81ea18b27ddf3bb4abb5/t/5bbe1513a4222f8030f6e571/1539183892086/AU2+Reseacher+Comments.pdf
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this lesson (73%). 00:04:51 This problem is the only one in this lesson where students 

are explicitly given a choice of solution methods. That is, they are told that there are 

multiple ways to solve the problem, and they can decide which method they want to 

use (see 8:56). When the results are presented, several alternative solution methods 

are shown, and they are explored at length. This problem is mathematically related to 

the earlier problems in the lesson; more specifically, it is an extension of the 

mathematical ideas and operations involved in the previous problems. This problem is 

also considered to be at a high level of procedural complexity due to the fact that it 

requires more than four steps and has several embedded sub-problems. The problem 

is stated in such a way that students are asked to conjecture and reason about the 

minimum pieces of information needed to determine if two triangles are congruent. 

After students work on the problem, the teacher goes over the results. Because she 

focuses on the answers and identifying the corresponding rules, without making 

explicit the mathematical reasoning behind these rules, the problem is considered to 

have a "stating concepts" implementation. 00:09:32 At this point the students begin 

working in groups at their seats. This is the first of two periods of private interaction 

during the lesson (the second begins at 40:00). Altogether, 38% of the lesson is 

devoted to public interaction and 62% is devoted to private interaction. All of the 

private work time is spent in groups. The remainder of the time was spent working 

individually. 00:38:07. These four problems, assigned as a group, are all applications. 

That is, they require students to apply procedures they previously learned in one 

context to a different context. These problems are begun in class, but students are 

expected to complete them for homework (see 44:51). Altogether about five minutes 

are spent working on them.  
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2.3.4 OMF: Summary Class C 

 

  

      Concepts Ways of    
working 

  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
 
 
 
 
 
 
 

Teacher’s Orchestration of 
Mathematics 

Organisation 
Main task 
genuine Group 
work.  
Individual @ end  

Discourse: Registers; Patterns: IRE, Questioning;  
Student Responses: Errors, Revoicing 
Register: used formal mathematical register and 
some expectation for students (e.g use of 
hypotenuse).   
Errors: sometimes baldly acknowledged, 
sometimes ignored, accepted/ correct answers 
often revoiced to draw attention to side/angle 
defining features of triangles, sometimes 
appearing to move beyond student meaning. 

 

Tasks: Examples Explanations 
Task Features: Multiple solution strategies available 
in task, though students selected a limited range for 
their own work.  
Multiple representation: instructions and diagrams 
Context: No context. But task ‘real’ in a classroom 
context  

  
 

Sequencing: Variation; Links; 

Students’ work. 
 Variation: limitation RoPC- single 
orientation of triangles in starter 
and use of horiz/vertical in main 
tasks. Some RoPC/DoV- 
congruent triangles with 
different criteria. No evidence of 
seeing general in the specific.  
Links: Not apparent 
Students work; generic examples 
of students work used @ end of 
lesson, mainly presented by the 
teacher- minimal student input. 

Cognitive 
Demand: type of 

thinking 
 High potential: Task 
had potential for 
students to make 
links between 
features of triangles 
and congruence, 
thereby developing 
an understanding of 
the critical features 
of triangles. Reduced 
by the amount of 
information provided 
(such as the number 
of different 
approaches and how 
they were different). 
Also, as enacted, 
some pupils were 
working with their 
own unchallenged 
features of triangle 
construction rather 
than triangle 
features.  
Low for some 
students. 

Classroom 
Norms 
Accountability & 
Agency  
  
Mixed 
accountability.  
 
Focus was mainly 
on the correct 
answer, but 
evidence that 
students’ own 
expectation that 
they understood 
(e.g. going back 
to explanation of 
error). 
 
DGW: students 
challenged each 
other  
 

 
  

Interpretation:  
Teacher-Students 
discontinuity.  
Student comments: 
related to drawing 
instruction (vertical, 
line segment from…) 
Teacher response:  
interpreted in terms 
of ‘sides and angles’ 
as defining features 
of triangles. 
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Appendix 3: Coding and Analysis 

The following provides exemplars of the analysis strategy of the transcription coding 

and the development of the OMF. Appendix 3.1 provides an overview of the timeline. 

Appendices 3.2, 3.3 & 3.4 provide exemplars of the coding and how this developed 

over time. Appendix 3.5 provides the annotated summary OMFs that structured the 

lesson comparisons with the same class and the cross-class comparisons.   

3.1 Timeline 

As described in section 3.4 and exemplified in appendix 2, the initial coding was 

developed from the categories on the OMF. 

The development of the OMF and coding were iterative and intertwined. The following 

summarises the main development points, but there were overlaps between events. 

Literature Review  

TOM: Initial Conceptual Model (figure 3.4: model A). 

OMF: Model refined, to include sequencing and organisation dimensions and 

the mathematical teaching cycle, producing the first iteration of the OMF 

(figure 3.8: model B). 

Pilot Study  

Coding: Lesson transcripts based on OMF categories (appendix 2). 

OMF: Category descriptions were refined through application to empirical data 

in stage 1&2 (figure 3.11: model C). 

Transition to Main Study 

Coding: Lesson transcription protocols revisited and formalised (3.4.2.2). 

OMF: Coding cross reference with OMF, with category descriptions refined 

leading to the final iteration of the OMF (figure 3.14: model D). 

Interview transcripts annotated based on coding protocols. Data from 

transcripts, interviews and classroom artefacts mapped to OMF. 
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3.2 Transcription Annotations 

Pauses: (.) short notable pause in speech (originally without brackets) 

(..) pause of about two seconds duration (not timed) 

(…) pause of over two seconds  

Visual/ contextual information: [square brackets] contain additional non-verbal 

information.  

Truncated speech: a dash - is used when it appears that the utterance is a truncated 

word e.g. thirt-   

Overlapping speech: wavy underlining is used to indicate overlapping speech.  

Emphasis: Vocal emphasis is indicated by underlining the stressed word or syllable. 

Volume: notably quieter talk was indicated by (brackets). 

Indistinguishable talk: (inaudible) indicates talk during whole-class episodes that 

cannot be heard. This could, therefore, be private talk not intended to be part of 

whole-class discussions but picked up by the microphones.  

T – teacher talk 
S – student talk 
S1, S2 etc. to indicate different students were contributing to the same exchange.  
Ss – multiple students talking 

 
Class Activity Codes 
WC: Whole-class – fully public activity 

Implied expectation that the whole-class is attending to a single activity. 
Typically the teacher or a student talking to the class, either exposition or 
question-and-answer session.  

TWC: Teacher Whole-class – fully public activity 
As above but where the teacher is the leading voice, either exposition or asking 
questions 

Semi: Semi-public.  
Could be heard by most students but without signals that listening was 
expected.  

DW: Desk Work (Seatwork) 
Students working at their desks on individual or group tasks 

DWI: Individual Seatwork 
DWG: Group Seatwork 
TM: Teacher Movement 

Teacher circulating the room 
ITS: Teacher-Student Interaction (Initiated by the teacher) 

Individual Teacher Student interaction, not intended for a wider audience 
ITSac: as ITS but across room – so audible to other students 
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IST: Teacher-Student Interaction One (Initiated by the student) 
ITSm: Teacher-Student Interaction Many- semi-public 

Interaction with one or a small group of students, which is applicable to other 
students in the vicinity.  

ITSpair: as ITSm but to a pair of students 
ISS: Student-Student Interaction 

Group interactions 
 
Mathematics Activity Codes 
MN: Mathematics-not related 

Classroom management/organisational issues unrelated to the mathematics. 
E.g. handing out of resources, collecting in of homework, disciplinary matters, 
and social interactions.  

MR: Mathematically related 
MA: Those activities with mathematical content activities 
MO: Mathematics Organisation  

E.g. practicalities such as arranging into groups 
Type of talk/interaction 
Expo: Exposition 
Ins: Instructions 
Q&A: Question and answer sequence 
Ir E: Part of Initiate Response Evaluate sequence with capitalisation indicating what 
part of the sequence. 
Ex: Extended explanation as part of IRE sequence. 
Evaluation:  

+ve treated as satisfactory 
+veQ treated as satisfactory with ‘praise’ – indication of quality 
-ve treated as unsatisfactory 

 
Comp: Computation- result of calculation 
Pro: Procedure or process (see below) 
Proc: Procedure – what was done 
Pros: A more generic comment that could be applied outside that particular question 
MC: Mathematical concept- links to wider mathematical structure, concepts or 
generalisation  
 
CN: Classroom Norms  
SN: Social Norm - Agency Accountability Authority Responsibility  
SMN: Sociomathematical Norm - explanation; learning of mathematics (e.g. practice; 
hierarchical skills) 
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3.3 Early Transition Coding Protocols for Lesson Transcripts 

The lesson transcripts were in tables, with the first three columns the time stamp, the 

speaker (teacher or student(s)) and the transcript. Additional columns were added to 

include the description, level of interaction, an activity code, the level of mathematics 

and a line number. The table below indicates which columns in the table contained 

which type of information. The abbreviations are explained in appendix 3.2, but were 

refined over time. 

 

Ti
m

e 
 

Sp
ea

ke
r 

 T
ra

n
sc

ri
p

t Description 
Italics - interpretation 

Level 
inter-
action 

Activity 
 

 

Li
n

e 
n

o
. 

   IRE 
+ve 
+veQ 
-ve 
 
Questions:  
closed/open; 
single/multiple solutions;  
simple; recall;   
narrow (limited)-procedural (the answer 
unlikely to new insights); self-contained/ 
links beyond individual question; 
reducing parameters (leading; funnelling) 
 
SN: e.g. repetition of response => 
indicates acceptance 
SMN: e.g. procedure accepted as 
explanation 

TWC 
ITS 
IST 
ISS 
ITSac 
ITSpair 
ITSm 
DWI 

Ins 
Expo 
Q&A 
Ir E 
Ex 
 
FS – 
follow 
on 
student  
 

MO 
Comp 
Pro 
Proc 
Proc 
 
 
 
 
 

 

 

An example of early coding is given below. Section 3.4.2.2 outlined how the coding 

was formalised. An exemplar lesson transcript using the final version of the coding 

protocol is given in appendix 3.4.2. 
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3.3.1 Exemplar Lesson Transcript – Early Coding  

  Transcript (date and group):  Description 
Italics - interpretation 

Level  Activity 
 

 

0044 T  open your books for me 
please  

 Semi   

###  ** done  <no inaud> fine 
**^ <inaud> 

    

0115 T name are you ok     
   teacher sitting at desk 

register 
   

0209 T if you have finished you can 
go to see if you can do the 
next one the next one …  

Instruction TWC  MO 

###   TM students appear to be 
completing starter  

   

       
0358 T 1 squared  Q: closed, recall,  single soln. 

self-contained 
TWC Q&A 

I 
 

Pro 

0359 SS 1 (fairly quiet) A: recall single result    
 T ergh     
 S 1 (loud) Student interpreted teacher’s 

response to reply more 
loudly. 

   

 T 2 squared +ve No comment on response 
and moved on => acceptance 
Q: closed, recall, single soln. 
self-contained 

TWC Q&A 
r E I 
 

Pro 

 SS 4 (louder)     
 T 

<
Ss
> 

3 squared <9> 4 squared 
<16> 5 squared <25> 6 
squared <36> 7 squared 
<49>  8 squared <  64> 

+ve 
Q: closed, recall, single soln. 
self-contained 

 Q&A 
r E I 

Pro 

       
0456 T 2 to the power 4 Q: closed, single soln, self-

contained. Level:  recall 
TWC Q&A 

 I 
Pro 

 S 16 A: single result    
 SS  16     
 T 16 loverly OK . Tom what 

does 2 to the power 4 mean 
+veQ 
SN: repetition of response => 
indicates acceptance 
Q: asked for meaning 

 Q&A 
r E I 

Pros 

 S
1 

[not Tom very quietly] 16 A: single result    
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 S
2 

[hesitantly: probably Tom] 
16 

    

 T  what does it mean  -ve: follow up question 
16 not acknowledged and 
followed up by partial 
repetition  

   

0506 S oh it means 2x2x2x2 A: procedural/process 
explanation  

TWC  Proc
/s 

0516 T excellent . good . so we sort 
have got a rough 
understanding of that . erm 
.. I am going to tell you first 
that . 2 .. squared times 2 
cubed is 2 to the power 5 . 
ok um why .. Clarisa   

+veQ SN: procedural 
explanation accepted 
writing on board  

22 × 23 = 25 
Q: wider – giving sum and 
asking for explanation 

TWC Expo 
Tell 
Q&A 
r EEx I 
 

 

0535 S you add the powers inaud A: single procedural 
explanation  

   

 T so that’s what we can do … 
Amber  

-ve  Follow up question (or 
=ve??) 
SN: emphasising ‘do’  
Implied Q about why 
student moved onto a more 
structural explanation => 
indicating that explanation is 
more than ‘do’ 
Q: indicating more than ‘do’ 
required 

 Q&A 
r E I 
 

MC 

 S isn’t it because it looks like 
2x2.x. 2x2x2 

A: process explanation self-
mitigation  

  Proc
/s 

 T wonderful . ok so let’s think 
about this .. 2 squared is 
just 2x2 . and we are 
multiplying that . by 2x2x2 
2cubed which is 2 to the 
power 5.. is that OK . yeh  
good ..  

+veQ  
revoicing explanation  

 Q&A 
r EEx  
I-next 
box 

Pro 
MC 

0603 T erm .. so for instance on a 
few of these . 2 to the 
power 5 times 2 to the 
power 4 . is what . 

questions on powerpoint  
variation: “note  the same 
base” -highlighting boundary 
to students 
Q: closed, single soln, self-
contained 

 Q&A 
r EEx I 
 

 

0616 S (/2 to the power 
9\)inaudible  

A: single result    
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3.4 Coding Protocols 

After the pilot study, the coding protocols were revisited and were mapped to the 

OMF (see section 3.4.2.2). This resulted in revisions of the OMF and updated coding 

protocols. The coding summary is given below, which is followed by an example of the 

final transcription process.  

3.4.1 Coding Summary 

A summary of themes that emerged from coding. 

 Structure of Talk 

 Level of interaction:  

 Whole-class; semi-public; local 

 Type of interaction:  

 Turn-taking  

 Teacher: IRE; IRE variant (extended teacher turn); multiple R 

o I: Simple; Self-contained; Single/Multiple Solutions 

 Student-initiated: peer-to-peer; questions/comments  

 Monologue Exposition:  

 Teacher: explains/instructs 

 Student: explanation 

 Register (vertical  horizontal)   

 Steer: Regulation of Lesson Trajectory   

 Teacher led: 

 Launch, direction/redirection (simplifying, processing, 

conceptualising) 

 Focus: Mathematical horizon or student reasoning  

 Feedback: sharing solutions 

 Student led:  

 Student-initiated approaches 

 Type of Talk  

 Talk as mathematics:  

 Mathematical focus 

 Level (computation; procedure; process; mathematical concepts) 

 Talk about mathematics:  

 The nature of mathematics  

 The learning of mathematics  
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 Talk about students:  

 Effective student of mathematics  

This summary was tabulated for ease of reference for the coding of transcripts.  

Structure of Teacher 
Talk  

Sequencing: Steer  Type of Talk 

Level of interaction:  
Whole-class 
Semi-public 
Local 

Teacher: 
How 
Launch 
Direction 
Redirection 

Whose 
Mathematical horizon 
Student reasoning 

Feedback 
 
Student: 
Student initiated (S:I) 

Talk as mathematics (TasM):  
Computation  
Procedure 
Process 
Mathematical concept 

Type of interaction:  
Turn taking  

Teacher: IRE, type of 
question  

    Student initiated (S:I) 
Monologue 

Talk about mathematics (TabM): 
The nature of mathematics 
The learning of mathematics  

Talk about students (TaS): 
Effective student of 
mathematics 
Motivation and engagement 

 

3.4.2 Exemplar Lesson Transcription - Final Transcription Protocol 

The final protocols contained the descriptions of classroom activity, such as the 

content of board work in [ ], as part of the transcription.  

IRE exchanges were numbered, with the capitalisation indicating the place in the 

sequence of that particular exchange. (Where one IRE exchange leads into another IRE 

then both are indicated – e.g. irE(1) Ire(2) in sequence).  

The level of interaction was included in the time stamp box to free up space for 

analysis. Mathematical organisation continued to be shaded green and not 

mathematically related grey. The type of talk was listed in the last column at transition 

points only.   
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Time  Transcription   Inter-
action 

 

1041 
TWC 

T OK well let’s move onto that last point 
then how many ways can we think of 
of writing two thirds (.) or putting two 
thirds (.) what is two thirds James 

Steer: Launch 
Q: MS (multiple 
solutions) 
 

Ire(1) TaM 
(continues 
until change) 

1050 S1 It’s two thirds of a whole  iRe(1)  
1053 
TWC 

T Two thirds of a whole (.) how are you 
going to represent that  

+ve (repeat, Q: follow-
on) 
Q: not closed 
Steer: direction-
processing 
Focus: representation 
Level: process 

irE(1) 
Ire(2) 

SN: correct, 
efficient 

1056 S1 By make three then shade in two   iRe(2)  
1100 
TWC 

T Make three what  +ve (Q: follow-on) irE(2) 
Ire(3) 

 

1101 S1 (inaud)    
1102 
TWC 

T Of what  Clarification  
Level: process/concept 

Ire(3)  

1102 S1 Whole   iRe(3)  
TWC T What are you calling the whole  +ve (use, Q: follow-on) 

Steer: direction-
processing/concepts 
Focus: representation 
Level: process/concept 

irE(4)  

1106 S1 circle  iRe(4)  
TWC T A circle (.) ok  

[drawing circle on board, splitting into 
3 equal parts, shading 2] 

+ve (repeat, use) 
Level: process 

irE(4) SN: 
responsibility 
for 
explanation  

 Ss (circle . pizza)    
1116 T Like that yeh  Revoicing: Extending 

student explanation – 
one word to diagram 

[ire(4)] SMN: 
explanation 

 S1 Yeh     
1117 
TWC 

T Cool (.) any other ways (..) Q: MS 
Steer: direction- 
processing 
Focus: other 
representations 

Ire(5)  

1118 Ss (square (…) square)  No T response   
1122 S3 You could really do it with any shape 

can’t you 
S:I Level: concept  S:I(1) SN: student 

agency 
TWC T rectangle square any sort of shape yeh 

(..) it might be quite more difficult with 
some shapes that others mightn’t it 

Steer: acknowledged 
S:I but not pursued 
(horizon)   

S:I(1)E  

      
  So what would that be Lowis  

[pointing to circle with 2/3 shaded] 
Q: single soln, self-
contained 

Ire(8)  

  Pardon (.)  iRe(8)  
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[teacher pointing at board] 
 Oh zero point six recurring 

1224 
TWC 

T Zero point six recurring  

[writing: 0. 6̇] 

+ve (repeat, use) irE(8) SMN: what 
expected wrt 
explanation 

1227 
TWC 

T .. Joe what else  Q: MS 
Steer: direction-
representation 

Ire(9)  

 S percentage  iRe(9)  
1229 
TWC 

T Percentage yeh so there’s lots of 
different ways . what does 
percentage mean^…  

+ve (repeat, explicit) 
Q: not closed 
Level: process/concept 

irE(9) 
Ire(10) 

 

 S Out of a hundred   iRe(10)  
1236 
TWC 

 Out of a hundred yeh (.) youknow 
so if you split up the word percent 
you get per and cent (.) it literally 
means per one hundred because 
cent means one hundred in French 
(.) yeh (..) so per cent (. )per one 
hundred (.) erm anything else we 
can say about fractions then (..) ok 
(…) well let’s see what I thought 
about it then let’s see what I’ve 
come up with then (.) I really like a 
couple of those things by the way I 
particularly like this one (.) and this 
one  
[point at decimal and part-whole 
on the board] 
I particularly like one number 
divided by another number and 
part of a whole they’re quite nice 
comments (.) so it’s four fifths and 
I’m telling you that actually all of 
them represent four fifths can we 
look at all of the rest of those 
shapes on there (.) all the rest of 
the diagrams (..) and see how they 
represent four fifths  

+ve (repeat, explicit) 
 
 
 
 
 
 
 
 
Level: process  
Multiple 
representations: but 
no explicit links 
between 
representations and 
concepts or between 
features of different 
representations. 

irE(10) 
extend 
 
 
 
 
Mono- 
Expo 

SN: 
responsibility 
for 
explanation 
 
SMN: 
explanation  
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3.5 Comparison of Lessons and Classes using Summary OMFs 

The following are the summary OMFs presented in figures 5.7, 5.13, 5.21, 5.22, 5.26, 

5.27, 5.36, 5.37, 5.45 & 5.46. The key points of comparison between lessons for the 

same class and cross-class comparisons were these summary OMFs. These 

comparisons, cross-referenced with the more detailed lesson narratives, structured 

the findings and informed the written summaries.  

In the versions below, underlining has been used to indicate the common and 

differential features when class A was compared to class B.  

KEY:  Common feature; Differential feature; Lesson specific 

As discussed in section 5.3.1.4, the summary OMFs were working documents, which 

have descriptions in note form and bespoke abbreviations are used (table 5.1).    
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3.5.1 Joe Class A OMF 

 

KEY: (Compared to B) Common feature; Differential feature; Lesson specific 

Lesson Image: Teacher Class  
 
 

       

  

 

Teacher 
Cognition 
 
 
 
 
 
Knowledge, 
Beliefs and 
Values 
MCK 
Priority: to 
develop 
student’s 
understanding 
of mathematics 
(particularly 
problem 
solving). 
Discussion 
beneficial to 
enrich 
understanding.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Teacher’s Orchestration of Mathematics 

Teacher’s 
Interpretation 
of Classroom 
Activity:  
Reference point 
Mathematical 
horizon 
(over-
interpretation 
of student 
reasoning?) 
 
 

Organisation: Individual (peer encouraged); 
interleaved SW-WC (ISW first); self-
selecting tiered tasks 
 Discourse Patterns  
Registers: term explained (integer) but no 
press for students’ use  
Interaction: IRE dominant, extended 
teacher turns, linked longer sequence. 
Some multiple responses pre evaluation 
Questions: Most limited soln – part of step-
by-step procedure (T summarised) 
Responses: Typical satisfactory & unsat 
Revoicing: repeat, rephrase-formal, extend  

Tasks, Examples, Explanations: (model-
exercises) Features Context: some ‘real-
world’ questions constructed for classroom. 
Textbook psuedocontexts. Generaln: not 
explicit MSS: possible, acknowledged and 
shown, but not required. One method in 
teacher explanations (%  +/-) MR: possible- 
not used Example variation: limited RoPC 
DoV (% change with all information 
provided), ‘contexts’ varied but similar 
form/ format, no ‘not’ 
 
Sequencing: Lesson trajectory 
Focus on mathematical horizon, redirection 
to single procedure (% change, finding % 
then +/-). Drew attention to the relationship 
between value and % represented 
(structure). Focus on comparison with 
online reductions  excluded exploration of 
rounding. Variation: Alternative SS 
acknowledged (used at end of lesson*): 
Students’ work: alternative SS shared* 
 

Cognitive Demand 
Type of thinking:  
Potential: High 
(discovering 
alternative 
strategies ‘gold 
goal) 
Range: Low to high 
Procedural 
completion of tasks 
following modelled 
examples was 
possible (no press 
for higher).  
 

Classroom Norms 
SN: Teacher arbiter 
of correctness. 
(student-initiated; 
agency to act). 
Errors: avoid/ 
correct.  
SMN: Procedure as 
explanation, (one 
procedure to soln); 
students articulate 
next step a few 
times (prompted). 
Mathematics as a 
hierarchy (content, 
ways of working). 
ESM: efficient & 
correct answers 
MP: ‘one percent’ 
approach for % 
change 

Heuristic 
responses 

Lesson Goals: 
Performance, learning 
for some  
(silver: find % change; 
gold: find alternative 
methods) 

Plan Rationale:  
Online examples 
offered relevance 
and rounding 
opportunities.  

Hypotheses:  
Find % then ± would 
be students’ default 
approach. Contexts 
may cause issues.  
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3.5.2 Joe Class B OMF 

 

KEY: (Compared to A) Common feature; Differential feature; Lesson specific 

 

Lesson Image: Teacher Class  
 
 

       

  

 

Teacher 
Cognition 
 
 
 
 
 
Knowledge, 
Beliefs and 
Values 
MCK 
Priority: to 
develop 
student’s 
understanding 
of mathematics 
(particularly 
problem 
solving). 
Discussion 
beneficial to 
enrich 
understanding.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Teacher’s Orchestration of Mathematics 

Teacher’s 
Interpretation 
of Classroom 
Activity:  
Reference point 
Usually 
mathematical 
horizon  
(over-
interpretation 
of student 
reasoning?) 
(attended to 
student 
reasoning on a 
couple of 
occasions)  
 

Organisation: Individual (peer encouraged); 
block WC then SW (WC first on problems); 
self-selecting tiered tasks 
 
Discourse Patterns  
Registers: no terms introduced 
Interaction: IRE dominant, extended 
teacher turns, linked longer sequence, more 
superlatives Questioning: Most limited 
soln- part of step-by-step procedure (T 
summarised) Responses: Typical 
satisfactory (1/5 superlatives) & unsat 
Revoicing: repeat, rephrase, extend  

Tasks, Examples, Explanations: (model-
exercises). Features Context:  notionally in 
‘big question’; psuedocontext (pens), mostly 
context free. Generaln: not explicit MSS: 
possible, alternatives acknowledge, but one 
method in teacher explanations (× 10𝑛 first) 
MR: column headings/mental 
Example variation: limited RoPC DoV 
(powers of ten  multiples of powers of 
ten, some required zero placeholder) similar 
form/ format, no ‘not’ 
 
Sequencing: Lesson trajectory  
Focus on mathcal horizon and (re)direction 
usually to single introduced procedure 
(factorise then × 10𝑛). Drew attention to 
place value through column headings 
(structure). Variation: Alternative SS when 
met were acknowledge, considered 
separately, not compared. Students’ work: 
Calculator check ‘correct’=> move on, drew 
attention to one method.  

 

Cognitive Demand 
Type of thinking:  
Potential: High 
 
Range: Low to high 
Procedural 
completion of tasks 
following modelled 
examples was 
possible (no press 
for higher).  
 
 

Classroom Norms 
SN: Teacher arbiter 
of correctness. 
(student-initiated; 
agency to act). 
Errors: avoid/ 
correct Praise 
SMN: Procedure as 
explanation, (one 
procedure to soln), 
students articulate 
next step a few 
times (prompted). 
Mathematics as a 
hierarchy. ESM: 
efficient & correct 
answers 
MP: factorisation to 
aid multiplication 
with 10s, 100s, 
1000s… 
 

Heuristic 
responses 

Lesson Goals:  
Performance, learning 
a possibility for some 
(silver: fluent x10s 
100s, 1000s; gold: 
student-led ‘flipped’) 
 

Plan Rationale:  
Weak numeracy 
skills => starter 
useful and model 
× 10𝑛 first to limit 
decimal use. 

Hypotheses:  
Some- still ‘add zeros’ 
for decimals × 10𝑛 
Others- errors with 
single digit × decimal 
w.r.t. decimal point 
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3.5.3 Sam Class A OMF – Indices Lesson 

 

KEY: (Compared to B) Common feature; Differential feature; Lesson specific 

  

Lesson Image: Sam Class A Lesson Indices  
 
 

       

  

 

Teacher 
Cognition 
 
 
 
 
Knowledge, 
Beliefs and 
Values 
MCK 
Discussion aids 
engagement 
and conceptual 
reasoning  
 
Examples: 
Careful choice 
important in 
developing 
mathematical 
reasoning CPD: 
variation theory 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Teacher’s Orchestration of Mathematics 

Teacher’s 
Interpretation 
of Classroom 
Activity:  
Reference point 
Mathematical 
horizon 
Some 
interpretation 
of student 

reasoning (𝑥𝑎𝑏 
in post-lesson) 
 
 

Organisation: Individual (peer-to-peer 
discussion promoted, written work 
individual); interleaved WC-SW 
 Discourse Patterns Registers: Power terms 
used – no press for student use. Interaction: 
IRE dominant, extended teacher turns, linked 
longer sequence; some peer-to peer turn-
taking (debates). Questioning: Mostly limited 
solution in step-by-step procedure (1/4 
simple, self-contained) some funnelling 
Responses: Typical satisfactory (1/3 
superlatives) Errors often typical unsat-
sometimes debate prompted  
Revoicing: repeat, rephrase, extend 
 Tasks, Examples, Explanations: (model-
exercises). Features Context: No Context. 
Generaln: mathcal structure exposed 
(expanded form), examples used to justify. 
MSS: mostly single, alternatives separated.  
MR: same register - different forms 
(manipulation principles not explicit part of 
tasks). Example variation: Some variation in 
examples (operations, coeffs); not explicit, 
limited RoPC DoV (e.g. integer exponents) 
 
Sequencing 
Focussed on mathcal horizon, (re)direction to 
introduced processes (rearrangement). Plans 
adapted (zero exponents) – different 
approaches introduced but separately - links 
not explicit. Variation: Example set – ‘not’ 
the same base example introduced. Other 
boundary conditions not explicitly met. 
Students’ work: Errors used as starting point 
for peer-to-peer debates 
 

Cognitive Demand 
Type of thinking:  
Potential: High (MR 
mathcal structure; 
zero exponents) 
Range: Low to high   
Procedural 
approach possible 
(no sustained press 
for higher) 
 

Classroom Norms 
SN: Teacher arbiter 
of correctness. 
Errors discussion 
exciting but to be 
corrected. (student-
initiated; agency to 
act, debates but 
IRE/T explanation 
resolution). ESM: 
Efficient production 
of correct answer & 
ideas/debate;  
SMN: Procedure as 
explanation, (one 
at a time procedure 
to soln). Examples 
used to justify 
rules. 
MP: Expanded form 
for manipulation of 
powers. ‘Power’ 
used w.r.t 
exponent and 
whole term 
 

Heuristic 
responses 

Lesson Goals:  
Learning & 
Performance 

Plan Rationale:  
Expanded form + “why” => 
reasons for rules.  
Question-rule- question => 
support generalisation  

Hypotheses:  
Issues would be 
with algebraic 
exponents and 
coefficients  
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3.5.4 Sam Class A OMF – All Lessons 

 

KEY: (Compared to B) Common feature; Differential feature; Lesson specific 

Lesson Image: Sam Class A - All Lessons   
 
 

       

  

 

Teacher 
Cognition 
 
 
 
 
Knowledge, 
Beliefs and 
Values 
MCK 
Discussion 
considered 
important- aids 
engagement 
and conceptual 
reasoning  
 
Examples: 
Careful choice 
important in 
developing 
mathematical 
reasoning CPD: 
variation theory 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Teacher’s Orchestration of Mathematics 

Teacher’s 
Interpretation 
of Classroom 
Activity:  
Reference point 
Mathematical 
horizon 
e.g. errors not 
explored 
(student 
reasoning) 
 
 
 

Organisation: Individual, group, peer-to-peer 
discussion promoted, interleaved WC-SW 
 
Discourse Patterns  
Registers: no press for vertical, colloquial 
used and accepted 
Interaction: IRE dominant, extended teacher 
turns, linked longer sequence. Questioning: 
limited solns often part of step-by-step 
procedure.  Responses: Typical sat 
(superlatives). Errors: often typical unsat 
ignored or follow-up/direct explanation, 
sometimes debate. Revoicing: repeat, 
rephrase, extend.  

Tasks, Examples, Explanations: (model-
exercises). Features: Context: No context or 
context with psuedocontext.  Generaln: some 
mathcal structure exposed, examples used to 
justify. MSS: single or multiple (separately 
rather than compared). MR: common, either 
same register different forms or different 
registers (links when made focussed on 
specific examples rather than general 
features). Example variation: Some variation 
in examples; limited and not explicit RoPC 
DoV  

 Sequencing 
Focussed on mathematical horizon, 
(re)direction to strategies introduced  
Variation: attention drawn to specific 
examples, links between or to mathcal sig 
features not explicit; student errors/ 
explanations usually redirected towards 
standard procedure. Students’ work:  
Discussion encouraged but steer towards 
mathcal horizon; some students @ board  
 

Cognitive Demand 
Type of thinking:  
Potential: High 
(MR)  
Range: Low to high   
Procedural 
approach possible 
(no sustained press 
for higher) 
 

Classroom Norms 
SN: Teacher arbiter 
of correctness. 
Accountability 
predominantly with 
the teacher 
(student-initiated; 
agency to act; class 
discussion-debates) 
Errors: IRE avoid-
debate interesting 
/ correct 
SMN: Procedure as 
explanation, (one 
at a time procedure 
to soln).  
ESM: efficient & 
correct answers & 
ideas/debates 
MP:  
 

 

Heuristic 
responses 

Lesson Goals:  
Learning 
Performance 

Plan Rationale:  
Discussion planned 
to expose 
misconceptions 

Hypotheses: Articulated 
generic ‘ways of 
working’ (e.g. discussion) 
rather than topic specific 
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3.5.5 Sam Class B OMF – Indices Lesson 

 

KEY: (Compared to A) Common feature; Differential feature; Lesson specific  

Lesson Image: Sam Class B 
 
 

       

  

 

Teacher 
Cognition 
 
 
 
 
 
Knowledge, 
Beliefs and 
Values MCK 
Discussion aids 
engagement 
and conceptual 
reasoning. 
Examples: 
Careful choice 
important in 
developing 
mathematical 
reasoning CPD: 
variation theory 
Belief: 
engagement 
problematic; 
praise for 
engagement  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Teacher’s Orchestration of Mathematics 

Teacher’s 
Interpretation 
of Classroom 
Activity:  
Reference point 
Mathematical 
horizon  
Students had 
been able to 
engage in 
discussions in a 
positive 
manner, and 
had understood 
the concepts 
similar class A 
 

Organisation: Individual; interleaved WC-SW 
 Discourse Patterns: Registers: Informal 
language (e.g. little number) the norm, but 
unprompted student mirroring.  Interaction: 
IRE dominant, extended teacher turns and 
multiple student turns wrt initial I, linked 
longer sequence; some student-initiated 
turns, superlatives (IRE and B4L).  
Questioning: Mostly limited solution in step-
by-step procedure (1/4 simple, self-
contained); some funnelling Responses: 
Typical sat (1/3 superlatives) Errors often 
typical unsat, some ‘bald’ no’s (student led), 
ignored errors parallel to correct. Revoicing: 
repeat (occasional rephrase) 
 
Tasks, Examples, Explanations (model-
exercises).  Features: No context. Generaln: 
mathcal structure exposed (expanded form), 
examples used to justify.  MSS: mostly 
single, alternatives separated.  MR: same 
register- different forms (manipulation 
principals not explicit). Example variation: 
Some variation in examples (operations, 
coefficients); not explicit, limited RoPC DoV 
(e.g. positive integer exponents) 
 Sequencing: pre-emptive strike? 
Focussed on mathematical horizon 
(rearrangement process). Plans adapted 
(zero exponents) – different approaches 
introduced but separately - links not explicit 
Variation: Example set – ‘not’ the same base 
example introduced. Other boundary 
conditions not explicitly met 
Students’ work: Verbal contributions shared 
 

Cognitive Demand 
Type of thinking:  
Potential: High (MR 
mathcal structure; zero 
exponents) 
Range: Low to high   
Procedural approach 
possible (no sustained 
press for higher) 
 
 

Classroom Norms 
SN: Teacher arbiter of 
correctness.  
(student-initiated; 
agency to act; turns 
acknowledged). 
Errors: avoid/ correct 
Praise engagement 
SMN: Procedure 
accepted as 
explanation (one at a 
time procedure to 
soln) Examples used 
to justify rules  
ESM: Efficient 
production of correct 
answer; 
MP: Expanded form 
used for manipulation 
of powers.  

 

Heuristic 
responses 

Lesson 
Goals:  
Performance 
and some 
learning  

Plan Rationale:  
Atypical: try same approach/ 
resources as class A.  Question-
rule- question  support 
generalisation. Weak number 
skill  simple numbers  

Hypotheses: 
Discussions may be 
unproductive – off 
task behaviour/ more 
encouragement 
needed.  
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3.5.6 Sam Class B OMF – All Lessons  

 

KEY: (Compared to A) Common feature; Differential feature; Lesson specific 

bold linked to a particular lesson. Underlined atypical (recorded vs normal lesson) 

Lesson Image: Sam Class B – All Lessons  
 
 

       

  

 

Teacher 
Cognition 
 
 
 
 
Knowledge, 
Beliefs and 
Values MCK 
Discussion 
important- aids 
engagement 
and conceptual 
reasoning  
Examples: 
Careful choice 
important in 
developing 
mathematical 
reasoning CPD: 
variation theory 
Belief: 
engagement 
problematic – 
could engage in 
productive 
discussions but 
‘unpredictable’  
POST - Similar 
approaches: less 
content 
coverage than 
A, sometimes 
‘worked’ (wrt 
student 
understanding) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Teacher’s Orchestration of Mathematics 

Teacher’s 
Interpretation 
of Classroom 
Activity:  
Reference point 
Mathematical 
horizon.  
 

Organisation: Individual, [discussion promoted 
(interleaved WC-SW)]   
 Discourse Patterns [more WC interactions] 
Registers: no press for vertical, colloquial 
/informal used more often and accepted. 
Interaction: IRE dominant, extended teacher 
turns, linked longer sequence, multiple student 
turns wrt initial I (calling out), superlatives 
(IRE&B4L). Questioning: limited (simple ¼) solns 
often part of step-by-step procedure, some 
funnelling. Responses: Typical sat (superlatives) 
[some student-initiated]. Errors: often typical 
unsat, ignored (esp. multiple R-accepted correct) 
or follow-up/direct explanation [student-
initiated bald ‘no’]. Revoicing: repeat, 
rephrase, extend.  

Tasks, Examples, Explanations: (model-exercises). 
Same tasks as class A Features: 
Context: No context or context with 
psuedocontext. Generaln: some mathcal structure 
exposed, examples used to justify. MSS: single or 
multiple (separately rather than compared). MR: 
common, either same register different forms or 
different registers (links when made focussed on 
specific examples rather than general features). 
Example variation: Some variation in examples; 
limited and not explicit RoPC DoV  

Sequencing Focussed on mathcal horizon, 
(re)direction to strategies introduced. Variation: 
attention drawn to specific examples, links 
between or to mathcal sig features not explicit; 
student errors/ explanations usually redirected 
towards standard procedure. Students’ work: 
[Discussion encouraged but steer towards mathcal 

horizon]; some students @ board 
 

Cognitive 
Demand 
Type of thinking:  
Potential: High 
(MR)  
Range: Low to 
high   
Procedural 
approach 
possible (no 
sustained press 
for higher) 
 

Classroom 
Norms 

SN: Teacher 
arbiter of 
correctness. 
Agency and 
accountability 
resides 
predominantly 
with the teacher 
(student-
initiated; agency 
to act) 
Errors avoid/ 
correct 
 SMN: Procedure 
as explanation, 
(one at a time 
procedure to 
soln).  
ESM: Efficient 
production of 
correct answer  
MP:  
 

Heuristic 
responses 

Lesson Goals:  
Performance 
Learning for 
some 

Plan Rationale:  
Discussion exposes 
misconceptions 
Weak ‘basis skills’ 
simpler examples 

Hypotheses: Articulated 
generic ‘ways of working’ 
(e.g. discussion) rather than 
topic specific. Behaviour– 
more encouragement needed 
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3.5.7 Rowan Class A OMF – Equivalence Lesson 

 

KEY: (Compared to B) Common feature; Differential feature; Lesson specific 

Lesson Image: Teacher Class  
 
 

       

  

 

Teacher 
Cognition 
 
 
 
 
 
Knowledge, 
MCK : 
[equivalence] 
Beliefs and 
Values 
Values: to shift 
away from 
teacher led to 
student problem 
solving 
Beliefs: 
Colleagues and 
students 
preferred 
‘traditional’ 
teaching – 
coverage of 
content, 
especially with 
higher attaining 
sets.  
 

Concepts                        Ways of working 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Teacher’s Orchestration of Mathematics 

Teacher’s 
Interpretation 
of Classroom 
Activity:  
Reference point 
Mostly 
mathematical 
horizon 
(included a 
student’s 
approach to 
‘solving’ in 
whole-class 
discussions). 
 

Organisation: Individual (peer discussion 
encouraged), some group (cooperation), 
interleaved WC/SW 
 Discourse Patterns  
Registers: Term used (equivalence) – no 
press for student use. Interaction: IRE 
dominant, extended teacher turns, linked 
longer sequence. Monologues: Teacher 
expositions common Questioning: Mostly 
limited soln – part of step-by-step 
procedure. Responses: Typical satisfactory 
& unsat Errors: (some funnelling) 
Revoicing-repeat, rephrase, extend 
 Tasks, Examples, Explanations (model-
exercises*). Features: Context-area model 
for multiply. Generaln: not explicit (structure 
embedded). MSS: possible (T focus - single) 
others ‘avoidable’. MR: used (same and 
different registers), mathcal features/ links 
not explicit (area equivalence/ conservation 
of), ambiguous features (scale, visual 
similarity, 𝑥, specific /general). Example 
variation: few examples*  to general model  
 Sequencing Lesson trajectory 
Focussed mathcal horizon, (re)direction to 
introduce approaches. Focussed on 
expressions, then (erroneously) on equating 
equivalent expressions, then solving a case. 
Occasional attention drawn to mathcal 
structure (area  equivalent) but not to 
‘equivalent  rearrangeable. Students’ 
work: solving example (assumption about 
area articulated, but not others e.g. 𝑥)  

Cognitive Demand 
Type of thinking:  
Potential: High 
 
Range: Low to high   
Procedural 
approach possible 
and attention not 
consistently drawn 
to mathematical 
features 
 
 

Classroom Norms 
SN: Teacher arbiter 
of correctness. 
(student-initiated; 
agency to act) 
Some student 
contributions to 
explanations (one 
pre-selected), but 
teacher control 
Errors: avoid/ 
correct 
SMN: Procedure as 
explanation (one 
procedure to soln). 
ESM: Efficient 
production of 
correct answer 
MP: Equivalence 
sometimes treated 
as ‘equals’ 

 

Heuristic 
responses 

Lesson Goals:  
Performance and 
learning 
(improve problem 
solving & algebraic 
manipulation) 

Plan Rationale:  
Students were 
familiar with area 
as multiply 
providing concrete 
link to equivalence 

Hypotheses:  
Barriers: lack of 
familiarity with open 
problems; recognising 
relationships between 
diagrams and algebra 
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3.5.8 Rowan Class A OMF – Algebra Lesson  

 

KEY: (Compared to B) Common feature; Differential feature; Lesson specific  

Lesson Image: Teacher Class  
 
 

       

  

 

Teacher 
Cognition 
 
 
 
 
 
Knowledge, 
MCK : 
[rearrangement
] 
Beliefs and 
Values 
Values: to shift 
away from 
teacher led to 
student problem 
solving 
Beliefs: 
‘traditional’ 
teaching seen 
as the way to 
cover content, 
especially with 
higher attaining 
sets.  
 

Concepts                        Ways of working 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Teacher’s Orchestration of Mathematics 

Teacher’s 
Interpretation 
of Classroom 
Activity:  
Reference point 
Mostly 
mathematical 
horizon (single 
solution 
strategy). 
 

Organisation: Individual, (peer discussion 
encouraged); interleaved WC/SW 
 Discourse Patterns  
Registers: No press for formal terminology  
Interaction: IRE dominant, extended 
teacher turns, linked longer sequence. 
Monologues: Teacher expositions common 
Questioning: Mostly limited soln – part of 
step-by-step procedure. Responses: Typical 
satisfactory & unsat. Errors: few (treated 
alternate MSS as error). Revoicing: repeat, 
rephrase, extend 
 
Tasks, Examples, Explanations (model-
exercises). Features: Context-none   
Generaln: no explicit reference to order of 
operations (beyond examples)  
MSS: possible but not integral part of tasks 
(not discussed/ acknowledge @ whole-
class). MR: same register (rearrangements). 
Example variation: different types of 
examples, pre-categorised, appeared 
unsystematic – no explicit links between 
examples and RoPC DoV 
 Sequencing Lesson trajectory 
Focus mathcal horizon, (re)direction to 
introduced strategies. Mathcal features: 
Focussed on one way of rearranging – did 
not acknowledge others (treated as error). 
Occasional attention drawn to mathcal 
structure (substitution  algebraic 
rearrangement) but at example level. 
Students’ work: Verbal contributions (IRE) 

Cognitive Demand 
Type of thinking:  
Potential: High 
 
Range: Low to high   
Procedural 
approach possible, 
with single solution 
strategy @WC; 
students could 
have taken 
alternative routes 
in individual work.   
 

Classroom Norms 
SN: Teacher arbiter 
of correctness. 
(student-initiated; 
agency to act) 
Some student 
contributions to 
explanations but 
part of procedure.  
Errors: avoid/ 
correct 
SMN: Procedure as 
explanation, (one 
procedure to soln). 
ESM: Efficient 
production of 
correct answer 
MP: BODMAS 
accepted as a 
mathematical 
principle  

Heuristic 
responses 

Lesson Goals:  
Performance; some 
implied learning 
(accurate rearranging of 
formulae; links to 
substitution) 

Plan Rationale:  
Students were 
familiar 
substitution – used 
as a model for 
algebraic formula 

Hypotheses:  
Barriers: 
misapplication of 
BODMAS, 
manipulation of 
fractions 
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3.5.9 Rowan Class B OMF – Equations Lesson 

 

KEY: (Compared to A) Common feature; Differential feature; Lesson specific  

Lesson Image: Rowan Class A 
 
 

       

  

 

Teacher 
Cognition 
 
 
 
 
 
Knowledge, 
Beliefs and 
Values 
MCK 
Values: to shift 
away from 
teacher led to 
student problem 
solving 
 
Beliefs: Class 
needs related to 
attainment 
profile: Lower 
attainers need 
more practice & 
extrinsic 
motivation. But 
more leeway to 
try open tasks 
as content 
coverage 
pressures are 
less 
 

Concepts                        Ways of working 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Teacher’s Orchestration of Mathematics 

Teacher’s 
Interpretation 
of Classroom 
Activity:  
Reference point 
Mathematical 
horizon  
 
 

Organisation: Individual (peer discussion 
encouraged), longer blocks WC/SW 
 Discourse Patterns  
Registers: Term introduced (subject) – no 
press for student use.  
Interaction: IRE dominant, superlatives (IRE 
and B4L), extended teacher turns, linked 
longer sequences. Questioning: Mostly 
limited soln – part of step-by-step 
procedure. Responses: Typical satisfactory 
& unsat, Errors: sometimes used other 
students’ work in reply, some funnelling 
(non-responses). Revoicing-repeat, 
rephrase, extend 
 Tasks, Examples, Explanations (model-
exercises/practical). Features: Context-
physical model & diagrams used. Generaln: 
not explicit (structure embedded). MSS: 
possible but not integral to the tasks MR: 
used (within the same and different 
registers)-mathcal features/links not explicit. 
Example variation: some variation in format 
& numbers/ letters, but limited RoPC, 
boundary conditions not explicitly met 
 Sequencing Lesson trajectory 
Focus mathcal horizon but adapted to 
vertical layout earlier*, (re)direction to intro 
methods. Mathcal features: Diagram layout 
changed, but no explicit comparison. 
Attention drawn to the role of bar length, 
but changes in features (e.g. relevance of 
scale) not explicitly discussed. Steer towards 
students deriving defn of ‘subject’- 
‘unsuccessful’. Students’ work: *introduce 
vertical layout; explanations (broadcasting) 
   

Cognitive Demand 
Type of thinking:  
Potential: 
High 
 
Range:  
Low to high   
Procedural 
approach possible;  
attention drawn to 
a limited number of 
key mathcal 
features 
 

Classroom Norms 
SN: Teacher arbiter 
of correctness. 
(student-initiated; 
agency to act) 
Students have 
some role in 
explanations 
(broadcasting).  
Errors: avoid/ 
correct 
Praise. 
SMN: Procedure as 
explanation, (one 
procedure to soln). 
ESM: Efficient 
production of 
correct answer 
MP: ‘Subject’ 
considered as ‘on 
own’ either side of 
= sign 

Heuristic 
responses 

Lesson Goals:  
Performance and 
learning (rearrange 
equations using 
diagrams)   

Plan Rationale:  
Diagrams provide 
non-algorithmic way 
of manipulating 
equations 

Hypotheses:  
Barriers: 
Algebraic 
understanding 
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3.5.10 Rowan Class B OMF – Directions Lesson 

 

KEY: (Compared to A) Common feature; Differential feature; Lesson specific  

Lesson Image: Rowan Class A 
 
 

       

  

 

Teacher 
Cognition 
 
 
 
 
 
Knowledge, 
Beliefs and 
Values 
MCK 
Values: to shift 
away from 
teacher led to 
student problem 
solving 
 
Beliefs: Class 
needs related to 
attainment 
profile: Lower 
attainers need 
shorter 
activities and 
games 
(competition) 
for motivation. 
Real-life 
connections 
mentioned  

Concepts                        Ways of working 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Teacher’s Orchestration of Mathematics 

Teacher’s 
Interpretation 
of Classroom 
Activity:  
Reference point 
Mathematical 
horizon  
 
 

Organisation: Individual, paired tasks 
(collaboration), longer blocks WC/SW 
 Discourse Patterns  
Registers: Terms introduced (directions) – 
task completable without use, use 
encouraged but not required in whole-class. 
Interaction: IRE dominant, superlatives (IRE 
and B4L), extended teacher turns, linked 
longer sequences. Questioning: Limited soln 
soln – part of step-by-step procedure, or 
description of activity. Responses: Typical 
satisfactory & unsat, Errors: few 
(broadcasting for ‘don’t know’). Revoicing-
repeat, rephrase, extend 
 Tasks, Examples, Explanations (model-
exercises/activities). Features: Context-
maps and diagrams used, psuedocontex 
(map tasks completable without engaging 
with mathcal stated aim – use of language). 
Generaln: not explicit. MSS: possible (T focus 
on one) but not integral to the tasks MR: 
used (different registers)-mathcal 
features/links not explicit. Example 
variation: some variation in angles /length/ 
scale, but no explicit reference to RoPC, DoV 
 Sequencing Lesson trajectory 
Focus mathcal horizon, (re)direction to 
introduced methods, Mathcal features: Used 
direct explanation when task didn’t produce 
intended use of language. Attention drawn 
to the range of suitable estimates in 
particular examples, and how estimates 
could be made, but not how suitable was 
determined. Students’ work: Verbal 
contributions (IRE) (broadcasting) 
   

Cognitive Demand 
Type of thinking:  
Potential: 
Low-High 
 
Range:  
Low to high   
Procedural 
approach possible;  
linking estimations 
to calculations, and 
comparing 
alternative angle 
calculation 
strategies (links to 
parallel lines) was 
possible  
 

Classroom Norms 
SN: Teacher arbiter 
of correctness. 
(student-initiated; 
agency to act)  
Some students 
contributions to 
explanations. 
Errors: avoid/ 
correct. Praise. 
SMN: Procedure as 
explanation, (one 
procedure to soln) 
ESM: Efficient 
production of 
correct answer 
MP: Estimation 
separated from 
appropriateness 

Heuristic 
responses 

Lesson Goals:  
Performance; some learning 
(measuring and estimation 
skills, language; spatial 
awareness, application)   

Plan Rationale:  
Use of language  
encouraged 
through paired 
tasks (in context) 

Hypotheses:  
Barriers: 
reading off 
double-scale 
protractors  
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Appendix 4: Early Iterations of Frameworks  

4.1 Earliest Conceptual Model 

 

The first key change was to move Cognitive Demand out of the central box, which 

allowed the focus to shift to the teacher.  

4.2 Expansion of TOM 

 

During the literature review, different categorisations of additional dimensions were 

explored.   
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4.3 Different Layouts 

 

During use, different layouts were tried for practical reasons and for drawing attention 

to particular features of the model. E.g. Connecting the lesson image with other 

aspects of teacher’s cognition to recognise the holistic influence of teacher knowledge, 

beliefs and values. 

4.4 Summary Version 

 

Used in publications and presentations.  
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Appendix 5: Cognitive Demand Criteria 

SMITH, M. S. & STEIN, M. K. 1998. REFLECTIONS on Practice: Selecting and Creating mathematical Tasks: 

From Research to Practice. Mathematics Teaching in the Middle School, 3, 344-350. 

Lower-Level Demands  

Memorization Tasks  

• Involves either producing previously learned facts, rules, formulae, or definitions OR 

committing facts, rules, formulae, or definitions to memory.  

• Cannot be solved using procedures because a procedure does not exist or because the time 

frame in which the task is being completed is too short to use a procedure.  

• Are not ambiguous – such tasks involve exact reproduction of previously seen material and 

what is to be reproduced is clearly and directly stated.  

• Have no connection to the concepts or meaning that underlie the facts, rules, formulae, or 

definitions being learned or reproduced.  

Procedures Without Connections Tasks  

• Are algorithmic. Use of the procedure is either specifically called for or its use is evident 

based on prior instruction, experience, or placement of the task.  

• Require limited cognitive demand for successful completion. There is little ambiguity about 

what needs to be done and how to do it.  

• Have no connection to the concepts or meaning that underlie the procedure being used.  

• Are focused on producing correct answers rather than developing mathematical 

understanding.  

• Require no explanations, or explanations that focus solely on describing the 

procedure that was used. 

Higher-Level Demands  

Procedures With Connections Tasks  

• Focus students’ attention on the use of procedures for the purpose of developing deeper 

levels of understanding of mathematical concepts and ideas.  

• Suggest pathways to follow (explicitly or implicitly) that are broad, general procedures that 

have close connections to underlying conceptual ideas as opposed to narrow algorithms that 

are opaque with respect to underlying concepts (Henningsen and Stein, 1997).  

• Usually are represented in multiple ways (e.g., visual diagrams, manipulatives, symbols, 

problem situations). Making connections among multiple representations helps to develop 

meaning.  
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• Require some degree of cognitive effort. Although general procedures may be followed, they 

cannot be followed mindlessly. Students need to engage with the conceptual ideas that 

underlie the procedures in order to successfully complete the task and develop understanding. 

Doing Mathematics Tasks  

• Requires complex and non-algorithmic thinking (i.e., there is not a predictable, well-

rehearsed approach or pathway explicitly suggested by the task, task instructions, or a 

worked-out example).  

• Requires students to explore and to understand the nature of mathematical concepts, 

processes, or relationships.  

• Demands self-monitoring or self-regulation of one’s own cognitive processes.  

• Requires students to access relevant knowledge and experiences and make appropriate use 

of them in working through the task.  

• Requires students to analyze the task and actively examine task constraints that may limit 

possible solution strategies and solutions.  

• Requires considerable cognitive effort and may involve some level of anxiety for the 

student due to the unpredictable nature of the solution process required. 

(Smith and Stein, 1998, p.348) 
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Appendix 6: Interview Schedule 

Your expectations:  

Background 

1. Is the material ‘new’ to the pupils or a review lesson? 

2. Is the lesson part of a larger unit or sequence of lessons? 

 Planning 

3. What are your lesson goals? 

4. How were they decided (i.e. SOW, your choice based on…) 

5. What is are the origins of lesson activities (e.g. SOW, text book scheme…) 

6. How are the planned activities related to the lesson goals? 

7. Is this a ‘typical lesson’? 

The lesson ‘expectations’ 

8. What do you think will happen? 

9. What misconceptions might arise? 

10. What elements may students struggle with? 

Learning 

11. Where do you think the learning gains will come from (i.e. what elements of the 

activities will be particularly useful in meeting your lesson goals). 

12. How do you think the lesson will play out for different pupils (or groups of pupils) 

e.g. are you anticipating that particular students will respond differently to different 

parts of the lesson? 

Organisation 

13. How did you decide on the seating arrangements?  

14. For paired or group work on what basis were students assigned groups.  

Post Lesson Review 

What were the main things you wanted the students to learn and are you satisfied 

that the lesson achieved that purpose? 

What moments did you think were particularly important for students’ learning? 

Where they anticipated or unexpected? 

How did students’ reasoning impact on how the lesson unfolded?  
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Thinking about how you taught the lesson; how would this compare with how you 

would ideally like to teach the lesson.  

What are the limiting factors; for example to what extent did any of the following limit 

you from reaching the ideal (National curriculum; School SoW; Student motivation; 

Class size; Time for planning; Not enough resources (specify); Poor IT resources for the 

teacher; Poor IT resources for the students; …)  


