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Abstract

The lack of consensus on meaningful and interpretable physical activity outcomes from accelerometer data hampers
comparison across studies. Cut-point analyses are simple to apply and easy to interpret but can lead to results that are
not comparable. We propose that the optimal accelerometer metrics for data analysis are not the same as the optimal
metrics for translation. Ideally, analytical metrics are precise continuous variables that cover the intensity spectrum,
while translational metrics facilitate meaningful, public-health messages and can be described in terms of activities (e.g.
brisk walking) or intensity (e.g. moderate-to-vigorous physical activity). Two analytical metrics that capture the volume
and intensity of the 24-h activity profile are average acceleration (volume) and intensity gradient (intensity distribution).
These allow investigation of independent, additive and interactive associations of volume and intensity of activity with
health; however, they are not immediately interpretable. The MX metrics, the acceleration above which the most active
X minutes are accumulated, are translational metrics that can be interpreted in terms of indicative activities. Using a
range of MX metrics illustrates the intensity gradient and average acceleration (i.e. 24-h activity profile). The M120, M60,
M30, M15 and M5 illustrate the most active accumulated minutes of the day, the M1/3DAY the most active accumulated
8 h of the day. We demonstrate how radar plots of MX metrics can be used to interpret and translate results from
between- and within-group comparisons, provide information on meeting guidelines, assess individual activity profiles
relative to percentiles and compare activity profiles between domains and/or time periods.

Key Points

� For accelerometer-assessed physical activity, the op-
timal analytical metrics are precise, cover the whole
spectrum of physical activity intensities and reflect
directly measured acceleration. The optimal transla-
tional metrics are associated with greater prediction
error as they need to be expressed in terms of typ-
ical activities (e.g. brisk walking, running).

� The average acceleration and intensity gradient are
continuous data-driven analytical metrics that

facilitate investigation of independent, additive and
interactive effects of volume and intensity of physical
activity on health.

� Radar plots of the MX translational metrics provide
a visual translation of these analyses, in relation to
typical activities (e.g. walking, running), facilitating
the development of public-health friendly
recommendations.

Main text
The problem
Large-scale studies of accelerometer-measured physical
activity have become commonplace. However, the lack
of consensus on meaningful and interpretable activity
outcomes hampers comparison or data harmonization
across studies, limiting the potential value of these data.
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When accelerometers started being used in physical ac-
tivity research, in order to give biological meaning to the
data, cut-points were developed to calibrate accelerom-
eter output relative to energy expenditure [1]. Applica-
tion of cut-points allowed estimates of time spent at a
given activity intensity, e.g. time spent in moderate-to-
vigorous physical activity (MVPA). Cut-point approaches
are commonly used as they are simple to apply, lend
themselves to interpretation relative to public health
guidelines and have facilitated substantial progress in the
evaluation of physical activity in relation to health (e.g.
[2, 3]). However, application of cut-points collapses data
into categories for analysis, rendering it impossible to
compare datasets deploying different cut-points. This is
problematic as multiple cut-points are available and in
regular use [4, 5]. Recently Migueles et al. [5] demon-
strated that the prevalence of meeting guidelines varied
from 8 to 96% of their sample of children depending on
which cut-point they applied. They concluded that it
was ‘not possible (and probably will never be) to know
the prevalence of meeting the physical activity guidelines
based on accelerometer data’ ([5], p., 1). One approach
to address this has been the development of conversion
equations to ‘standardise’ estimates of MVPA to a com-
mon cut-point estimate [4]. A further problem is that,
by definition, collapsing data into categories by applying
cut-points prior to analysis leads to results that ignore
substantial proportions of the data.

Separating the analysis and translation of accelerometer
data
We propose that the accelerometer metrics used for data
analysis do not have to be the same as the metrics used
for translation or interpretation. Indeed, the requirements
for optimal analytical metrics (e.g. to assess associations
with health or effectiveness of interventions) and for opti-
mal translational metrics (e.g. to translate results into ac-
tivity recommendations) can be contradictory. For
example, analytical accelerometer metrics ideally cover
the whole spectrum of physical activity intensities and re-
flect directly measured acceleration; the further the accel-
erometer metric moves from the original dimension
measured, i.e. acceleration, the greater the scope for error
in the estimation of the physical activity dimension [6]. In
contrast, to be meaningful, physical activity recommenda-
tions need to be couched in terms of discrete recognisable
activities or intensities, e.g. walking, running and/or
moderate-to-vigorous physical activity (MVPA), that typ-
ically only account for relatively small proportions of the
day. As these are not the directly measured variables, and
there is variability in accelerometer outcomes for any
given activity type or intensity, prediction of these activ-
ities or intensities increases error [6]. Arguably, this is
more acceptable for translation where examples of activity

types are given than for analysis where greater precision of
measurement is required. Precision is necessary to in-
crease the specificity of PA exposures for specific health
outcomes, understanding of dose-response relationships,
sensitivity to the effects of interventions, and to monitor
temporal trends in physical activity [7].
We propose that using different metrics for analysis

and for translation of accelerometer data could help fa-
cilitate comparison between datasets using the same ac-
celerometer wear-site while maintaining meaningful
translation of accelerometer data.

Analytical metrics
There is increasing recognition of the importance of
capturing the intensity distribution of physical activity
rather than focusing on MVPA alone (e.g. [8]). Specific-
ally, it is important to capture both volume and the in-
tensity distribution as, depending on the health
outcome/marker, the volume of activity may be more
important than the intensity (e.g. [9–11]), intensity may
be key (e.g. [12, 13]) or intensity and volume may have a
cumulative effect (e.g. [14]). Two data-driven metrics
that, together, capture the volume and intensity of phys-
ical activity of the 24-h activity profile are the average
acceleration (indicative of volume) and the intensity gra-
dient (intensity distribution) [15]. In brief, the intensity
gradient describes the negative curvilinear relationship
between activity intensity and the time accumulated at
that intensity. The intensity gradient is always negative,
reflecting the drop in time accumulated as intensity in-
creases; a more negative (lower) gradient reflects a
steeper drop with little time accumulated at mid-range
and higher intensities, while a less negative (higher) gra-
dient reflects a shallower drop with more time spread
across the intensity range. Together, the average acceler-
ation and the intensity gradient enable investigation into
whether the volume and intensity of physical activity
have independent, additive or interactive effects on
health. Using these metrics, we have recently shown that
the intensity gradient was independently associated with
body fatness, metabolic risk and cardiorespiratory fitness
in children [14, 16]; intensity and volume were additively
associated with body fat in adults; and adult bone health
was highest if activity intensity was high, somewhat irre-
spective of volume [14].
While appropriate for data analyses due to coverage of

the entire 24-h period and not imposing arbitrary cut-
points on data, these metrics are not immediately inter-
pretable or public-health message friendly. The purpose
of the translational metrics we present is to provide an
interpretation of these analytical metrics. The optimal
translational metrics are by nature relatively arbitrary.
As previously stated, to enhance understanding and the
value of public health messages, it is useful to express
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recommendations in terms of time spent in common ac-
tivities, e.g. brisk walking. To avoid the main problem
with the cut-point approach, i.e. collapsing data into cat-
egories for analysis which renders it impossible to com-
pare datasets deploying different cut-points, we turn
cut-point analysis on its head. Instead of reporting the
minutes above a given acceleration threshold, we report
the minimum acceleration achieved for a given dur-
ation—MX where X refers to the duration, e.g. M60 re-
fers to the minimum acceleration for the most active 60
min of the day. This acceleration can then be interpreted
using cut-points, e.g. 200mg for MVPA [17], or the ac-
celeration associated with a typical activity, e.g. brisk
walking. Importantly, this is applied at the translation
stage rather than the analysis stage meaning that the
data are not tied to a cut-point but can be interpreted
using any cut-point. This is akin to the calculation of
body mass index identically for adults and children, but
interpretation with population-specific thresholds for
overweight and obesity. Alternatively, pattern recogni-
tion approaches could be used to identify types of activ-
ities. However, these more sophisticated approaches are
not currently widely accessible. The reason cut-point ap-
proaches are so widespread is their simplicity. We
propose these metrics as an alternative, simple to apply,
data-driven approach that avoids rendering datasets in-
comparable by applying cut-points prior to data analysis.
It could enable meaningful visual comparisons of within-
and between-group comparisons and generation of data-
driven norms, and aid public-health friendly interpret-
ation of data analyses carried out on 24-h data. Further,
it uses the freely available open-source R package, GGIR
[18], thus could be widely applied to enhance the trans-
lation of accelerometer data.

Translational metrics
The acceleration above which a person’s most active X
minutes/time (MX) are accumulated focuses on a per-
son’s most active periods rather than summarising the
24-h profile [19]. The active minutes can be accumu-
lated in any way across the day, with no need for the
activity to be in bouts in line with recent guidelines [20].
For example, if a child had an M60 value of 210mg, this
would indicate that the child accumulated 60min of
activity at accelerations (intensity) greater than 210 mg
across the day. In the future, we may be able to compare
this to accelerometer-driven physical activity guidelines
(e.g. [21]). For now, for illustrative purposes, if we compare
our M60 value to an MVPA cut-point, e.g. 200mg [17], we
can conclude the child is meeting the 60-min daily MVPA
guideline [20, 22] as the M60 of 210mg is higher than the
cut-point. However, according to a more stringent 250-mg
MVPA cut-point [23], the child does not quite reach the
guideline as the M60 of 210mg is lower than the more

stringent cut-point. If we had followed the conventional
cut-point approach, we would have collapsed our data
upfront according to the 200-mg cut-point, i.e. each data-
point simply classified as above or below 200mg. This
allows the calculation of the minutes accumulated above
200mg but precludes comparison to any other cut-point.
Importantly, with the MX approach, the data are not
collapsed, but instead simply compared with a cut-point
post-hoc. The advantages of post-hoc translation of acceler-
ometer metrics are clear; we maintain the continuous
nature of our variable, and we can compare the MX to any
cut-point or acceleration indicative of a standard activity
(e.g. brisk walking). In contrast, analysing data with cut-
points imposes thresholds on the data, which are collapsed
into categories for analysis, rendering it impossible to
compare datasets deploying different cut-points [19].
Translating the MX metrics in terms of indicative activ-

ities (e.g. brisk walking and running) provides a public-
health friendly interpretation. Using a broad range of MX
variables provides a meaningful illustration of the intensity
and volume of the 24-h activity profile, facilitating com-
parisons between and within groups. For example, the
M120, M60, M30, M15 and M5 illustrate the more active
periods of the day, while the M1/3DAY refers to the most
active 1/3 (8 h) of the day. The value of the M

1/3DAY is thus
the acceleration that discriminates between the least and
most active half of the waking day, if sleep approximates
8 h. These are exemplar MX metrics, more or fewer could
be used, but we have found that six to eight (adding the
M10 and M2 to the metrics above) MX metrics provide a
good illustration of the activity profile. To ensure compar-
ability between datasets, it would be necessary for agree-
ment on the durations of the MX metrics to be presented.
We speculate that it would perhaps be easier for re-
searchers to agree on a range of time durations of interest
that could be applied to all populations than it would be
to agree on specific intensity cut-points which not only
vary within and across populations but are also dependent
on the protocol used to generate them. In the following
sections, we provide examples of how the translational
metrics can be used to interpret and translate results ob-
tained from applying the analytical metrics to several di-
verse samples of children and adults. All samples wore
GENEActiv or ActiGraph raw acceleration wrist-worn ac-
celerometers 24 h a day for up to a week [14]; data were
processed in the open-source R package, GGIR [18], as
previously described [14]. In brief, the average magnitude
of dynamic acceleration corrected for gravity (Euclidean
Norm minus 1 g, ENMO) was averaged over 5 s epochs
expressed in milli-gravitational units (mg). Participants
were excluded if they had fewer than three days of valid
wear (defined as > 16 h per day), or wear data was not
present for each 15-min period of the 24-h cycle. The de-
fault non-wear setting was used, i.e. invalid data were
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imputed by the average at similar time-points on different
days of the week. The average acceleration, intensity gradi-
ent and MX metrics were generated for each day and av-
eraged across all valid days.

Examples of translation
Between-group comparisons
Plotting the MX metrics on a radar plot illustrates the activ-
ity profile quantified by the analytical metrics, the intensity
gradient and average acceleration; tables of exact values for
means and standard deviations for the MX values could be
provided in supplementary information of manuscripts. Fig-
ure 1 shows the MX metrics for three groups differing in
both average acceleration and intensity gradient: highest:
adolescent girls (N = 1669, age (mean ± SD) = 12.8 ± 0.8
years), mid: adult office workers (N = 114, age = 41.2 ± 10. 9
years), lowest: adults with type 2 diabetes (N = 475, age =
64.2 ± 8.7 years) [14]. The MX metrics are plotted on the
radii of the plot, one radius for each metric. The points are
joined, resulting in a shape for each group; the greater the
surface area of the plotted shape on the left of the radar plot
(where the shorter duration MX metrics (M5, M15, M30)
are situated) is, the higher the intensity gradient. This is high-
est for the adolescent girls, followed by the office workers,
then the adults with type 2 diabetes. The dashed red circles

show approximate accelerations associated with a slow and
brisk walk [14, 17, 19, 23, 24]; these can be used to translate
the MX metrics. For example, the average M60 for each
group is indicative of intensities greater than a slow walk for
60min per day, but not a brisk walk. The average M30 for
the adolescent girls is indicative of intensities greater than a
brisk walk for 30min per day, but not for the other groups,
although the office workers come close. These radar plots
provide an informative illustration of the intensity profile as-
sociated with differing intensity gradients allowing diverse
populations to be compared directly. The dashed red lines
enable the translation of the MX metrics in terms of time
spent in typical activities, e.g. slow and brisk walking, provid-
ing meaningful interpretation. These are ballpark estimates
based on calibration studies and energy expenditure com-
pendiums as described in Rowlands et al. [19]. Currently,
there are limited data from which to draw these estimates
(e.g. [17, 23, 24, 25) and there is a need to generate more
data showing the acceleration ranges associated with repre-
sentative activities across a wide range of demographics.

Meeting guidelines: example with adolescent girls
It is possible to look at a single group more closely. Mov-
ing forward, it is desirable to develop accelerometer-
driven physical activity guidelines [21, 25], rather than

Fig. 1 Radar plot illustrating MX metrics for (clockwise) the most active 8 h of the day (M1/3DAY), 120 min (M120), 60 min (M60), 30 min (M30), 15
min (M15) and 5min (M5) for three groups with differing average acceleration and intensity gradient: highest: adolescent girls, mid: adult office
workers, lowest: adults with type 2 diabetes. Av accel, average acceleration; IG, intensity gradient; T2D, type 2 diabetes; SD, standard deviation
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inappropriately comparing physical activity assessed by ac-
celerometer cut-points to guidelines developed from self-
report data, which are conceptually different [26]. But
presently, for example, the M60 metric can be used to as-
sess whether children are meeting current MVPA guide-
lines. Figure 2a plots the percentiles for each MX metric
for our sample of adolescent girls facilitating evaluation in
terms of cut-points or normative acceleration values typ-
ical of walking/running. The grey shading for each MX
metric represents the percentile with the lowest percentile
in white through to the highest in dark grey. The levels for
each percentile are marked on the M5 metric. While the
M60 shows that 22% of girls meet the guidelines accord-
ing to MVPA threshold 1 [17], this drops to 5% for MVPA
threshold 2 [23]. It can also be seen that 28% of girls ob-
tain 5min of vigorous activity [17]. Comparison to any
cut-point/typical activity is possible. It is difficult to see
the results for the longer duration MX metrics; we are
working towards developing interactive online plots that
will allow readers to expand parts of the radar plots and to
obtain exact values for the MX metric by hovering the
mouse over the plots. The use of companion plots show-
ing the standardised MX metrics can also be used to
clearly illustrate differences in metrics of all durations as

demonstrated in the ‘Within-group comparisons, illustrat-
ing differences in intensity gradient’ section.
The MX metrics for sub-groups or individual participants

can be overlaid to illustrate the percentiles each MX metric
falls on. For example, Fig. 2b overlays the MX metrics for an
overweight 14-year-old girl. The average acceleration for this
girl was near the median (46th percentile), while the intensity
gradient was very low relative to her peers (6th percentile).
The intensity of the longer duration MX metrics is relatively
high or comparable (M1/3DAY = 72nd percentile and M120 =
55th percentile, M60 = 47th percentile, right-hand side of
the plot), while the shorter duration MX metrics reflect low-
intensity activity relative to the whole group (M30 = 38th
percentile, M15 = 28th percentile, M5 = 16th percentile, left
side of plot). The comparatively high levels of M1/3DAY and
M120, indicating more ‘pottering around’, result in similar
average acceleration to the median (46th percentile) despite
relatively little high-intensity activity. This participant spends
about 30min in MVPA (threshold 1, 15min according to
threshold 2). Moving forward, population-referenced age-
and sex-specific percentiles could be generated for the ana-
lytical and translational metrics allowing us to interpret phys-
ical activity levels as we do body mass index (BMI), fitness,
height and weight.

Fig. 2 a Evaluation of meeting guidelines (adolescent girls): Presenting percentiles for (clockwise) the most active 8 h of the day (M1/3DAY), 120
min (M120), 60 min (M60), 30 min (M30), 15 min (M15) and 5min (M5) facilitates evaluation of meeting guidelines relative to any given threshold.
Examples are shown for two MVPA thresholds. b Comparison of a single participant (14-year-old overweight girl) relative to the sample percentiles.
The longer duration MX metrics are relatively high or comparable to the sample (M1/3DAY = 72nd percentile, M120 and M60 > 47th percentile), while
the shorter duration MX metrics reflect low-intensity activity relative to the sample (M30, M15 and M5 < 38th percentile). Together this results in
similar average acceleration to the group median, but much lower intensity gradient. Av accel, average acceleration; IG, intensity gradient; MVPA,
moderate-to-vigorous physical activity
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Within-group comparisons: illustrating differences in
intensity gradient
While average acceleration was not associated with
BMI in our sample of 10-year-old children (N = 145,
age = 9.6 ± 0.3 years) [14, 27], the intensity gradient
was independently negatively associated (p < 0.001).
To translate the association with intensity of activity
when the volume is similar, Fig. 3a illustrates the MX
metrics for children with similar average acceleration
(mid-tertile), but different intensity gradient (low/mid/
high tertile). Plotting data for children with similar
average acceleration, but low, mid and high-intensity
gradient, focuses on the importance of intensity
highlighted by the independent main effect of the in-
tensity gradient. The higher intensity gradient is
clearly seen in the proportionally greater areas cov-
ered on the left of the plot for the high- and mid-
intensity gradient groups. This can be seen more
clearly on a standardised plot, where the MX metrics
are standardised within metric (Fig. 3b). As each MX
metric is standardised, the mean is 0 (marked by the
dashed black line) and the SD is ± 1. (Note, here the
MX metrics are standardised within the sample, but
when population-based norms are available it would
also be possible to standardise them relative to

norms.) Children in the lower intensity gradient ter-
tiles show comparatively high levels of M1/3DAY and
M120 or ‘pottering around’, resulting in similar aver-
age acceleration despite relatively little high-intensity
activity (low M5, M15, M30). It can also be seen that
the intensity gradient tertiles are similar for the M60,
but increasingly disparate for the M30, M15 and M5.
On average, all groups get 60-min MVPA (M60 >
200 mg, Fig. 3a), but within this 60 min the highest
intensity gradient group averages 15 min of vigorous
activity (M15 > 700 mg, Fig. 3a) including 5 min of
much higher intensity activity (M5 > 1200 mg, Fig.
3a). A similar pattern of results, albeit at lower inten-
sity, was obtained for our sample of adolescent girls.
These are cross-sectional data, but if further research
supported these findings and a causal relationship was
found, it would suggest that of the 60-min accumu-
lated MVPA recommended daily for children at least
5-15 min should be higher intensity, e.g. 15 min jog-
ging including 5 min of faster running/jumping.

Within-group comparison: illustrating differences across
domains and/or time periods
The plots can also be used to explore differences
between domains, e.g. occupational/leisure, and time

Fig. 3 Translation of negative association between intensity gradient and BMI, independent of average acceleration (10-year-old children). Illustration of the
physical activity profile associated with low/mid/high-intensity gradient, but similar average acceleration for a raw MX metrics ((clockwise) the most active 8 h of
the day (M1/3DAY), 120min (M120), 60min (M60), 30min (M30), 15min (M15) and 5min (M5)) and b standardised MX metrics. As the MX metrics are standardised
within metric the mean = 0 (dashed black line) and SD = 1. The standardised plot (b) for children with the lowest intensity gradient is skewed to the right due to
high levels of M1/3DAY and M120; this results in similar average acceleration despite low levels of M5, M15 and M30. BMI, body mass index; SD, standard deviation;
Av accel, average acceleration; IG, intensity gradient; MVPA, moderate-to-vigorous physical activity

Rowlands et al. Sports Medicine - Open            (2019) 5:47 Page 6 of 11



periods, e.g. weekdays/weekend. The activity profile of
our adolescent girls showed significantly lower average
acceleration and intensity gradient on weekends com-
pared with weekdays. This is illustrated in Fig. 4a (raw
plot) and 4b (standardised plot). As both volume and in-
tensity of activity were lower on the weekend, it is not
surprising that all MX metrics, regardless of duration,
were lower. The relative differences were greatest for the
longer duration low-intensity metrics (M120, M1/3DAY,
Fig. 4b). This is in contrast to when the intensity gradi-
ent is lower but the average acceleration is similar (Fig.
3a, b), where the activity profile is characterised by rela-
tively high M120 and M1/3DAY coupled with relatively
low M5, M15 and M30.

Application to different wear-sites
While the values of these analytical and translational
metrics are wear-site specific, the same principle could
be applied to monitors worn at any wear-site. To illus-
trate this, we applied the analytical metrics to data from
accelerometers worn at the hip by 10–12-year-old chil-
dren (N = 58) [28]. Consistent with results from children
and adolescent girls wearing wrist-worn accelerometers
[14, 16], the intensity gradient was independently nega-
tively associated with BMI and percent fat (p < 0.05).

Figure 5a (raw) and b (standardised) show that these
data translated in the same way as the children’s data
from wrist-worn accelerometers in Fig. 3. The dashed
line shows hip site–specific cut-points for MVPA and
vigorous activity [17]. On average, all intensity gradient
tertiles attain 30 min of MVPA, but not 60 min, and only
the mid and high tertiles attain 5 min of vigorous/run-
ning activity. Albeit cross-sectional, as with the data
from wrist-worn accelerometers (Fig. 3), these data from
hip-worn accelerometers suggest it may be prudent to
consider including shorter periods (5–15 min) of run-
ning type activity within the 60-min MVPA daily
guidelines.
Figure 6a (raw) and b (standardised) plot unpublished

data from our research group from thigh-worn acceler-
ometers for two healthy adults (P1 and P2) with similar
average acceleration but differing intensity gradients (N
= 20, age = 28.3 ± 6.2 years). As with wrist-worn (Fig. 2)
and hip-worn (Fig. 6) accelerometers, a high-intensity
gradient (P2) is characterised by vigorous activity, with a
greater area covered on the left of the radar plot (Fig.
6a), while the participant with the low-intensity gradient
(P1) has comparatively high levels of M1/3DAY and M120
(Fig. 6b), resulting in similar average acceleration despite
relatively little high-intensity activity.

Fig. 4 Activity profile illustrated with a raw MX metrics ((clockwise) the most active 8 h of the day (M1/3DAY), 120 min (M120), 60 min (M60), 30
min (M30), 15 min (M15) and 5mins (M5)) and b standardised MX metrics across time periods: weekdays/weekend (adolescent girls). Average
acceleration and intensity gradient were significantly lower on weekends than weekdays. As both volume and intensity of activity were lower all
MX metrics, regardless of duration, were correspondingly lower. SD, standard deviation; Av accel, average acceleration; IG, intensity gradient;
MVPA, moderate-to-vigorous physical activity
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It is important to note that although these analytical
and translational metrics can be applied to any wear-
site, with the pattern of results appearing to be similar,
the values of the metrics are wear-site specific. There-
fore, the metrics should only be compared when col-
lected at the same wear-site. In particular, while the
example activity profiles from the hip and the thigh
are based on small samples (hip) or example partici-
pants (thigh), they suggest the M5 value tends to be
higher relative to the other MX metrics for wrist-
worn monitors. Further, measured acceleration may
differ between some brands of monitor; while values
appear to be similar between the GENEActiv and
Axivity devices, average acceleration values are ap-
proximately 10% lower for the ActiGraph [29]; it may
be possible to address this with an affine conversion
of the acceleration values. The examples herein use
accelerometer data collected at 100 Hz and the aver-
age of the ENMO metric [18] over 5 s epochs as is
widely used [14–17, 21]. However, the principle could
be applied to any sampling frequency, epoch. Note
that while the analytical and translational metrics
should be relatively independent of the sampling fre-
quency [30], the epoch should be similar between

datasets being compared as averaging over larger
epochs would smooth out higher intensity activity.

Pros and cons of the proposed data-driven metrics for
analysis and translation
Pros

� Easy to generate analytical and translational metrics
that could be widely applied using open-source soft-
ware, GGIR [18], that is already routinely deployed
in epidemiological studies.

� Data-driven approach reflects directly measured
acceleration and maintains the continuous nature of
accelerometer metrics, minimising prediction error.

� Translational metrics can be interpreted post-hoc in
relation to any cut-points, e.g. recently developed
age-equivalent cut-points [31] and/or accelerations
indicative of typical activities. This shifts prediction
error to translation and facilitates the development
of public-health friendly recommendations.

� As data accumulate, population-based norms could
be developed for the analytical and translational
metrics enabling researchers and clinicians to

Fig. 5 Application to different wear-sites: Data from hip-worn monitors (10–12-year-old children) translated in the same way as the children’s
data from wrist-worn accelerometers in Fig. 3. a Raw MX metrics ((clockwise) the most active 8 h of the day (M1/3DAY), 120 min (M120), 60 min
(M60), 30 min (M30), 15 min (M15) and 5min (M5)) and b standardised activity profiles of children with similar average acceleration (mid-tertile),
but low, mid and high-intensity gradient. The standardised plot (b) for children with the highest intensity gradient is skewed to the left due to
high levels of M5, M15 and M30 resulting in similar average acceleration despite low levels of M1/3DAY and M120. SD, standard deviation; Av
accel, average acceleration; IG, intensity gradient; MVPA, moderate-to-vigorous physical activity
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interpret physical activity profiles of samples and in-
dividuals in relation to norms.

Cons

� To ensure comparability between datasets, it would
be necessary for agreement on key MX metrics to
be presented.

� Metrics are wear-site specific and may differ be-
tween some brands of monitors. For example, evi-
dence suggests that while the magnitude of
acceleration measured by the GENEActiv and Axiv-
ity devices is similar, values are approximately 10%
lower for the ActiGraph [29].

� The emphasis on a simple widely applicable
approach means further information contained in
the accelerometer signal, e.g. relating to angles and
the frequency domain, is ignored and more
sophisticated pattern recognition approaches are not
used to identify types of activities.

� The metrics do not take into account the temporal
pattern of accumulation. Incorporation of metrics
such as the aggregate [32] and the most active
continuous X minutes could be beneficial.

Conclusion
The MX metrics facilitate a visual and public-health
friendly translation of analyses conducted using the

analytical metrics: average acceleration and intensity gra-
dient. We have demonstrated how radar plots of the MX
metrics can be used to provide (i) a visual translation of
between- and within-group comparisons; (ii) information
on meeting physical activity guidelines; (iii) visualisation
of individual physical activity profiles relative to the lar-
ger group or norms (if available); and (iv) comparison of
activity profiles between domains and/or time periods.
Further, the MX metrics associated with differing inten-
sity gradients, but similar average acceleration, illustrate
the importance of high-intensity activity where inde-
pendent and/or interactive associations of the intensity
gradient are seen with health markers [14]. The MX
metrics associated with ‘healthy’ physical activity profiles
can be interpreted using accelerations indicative of typ-
ical activities to provide effective public health messages.
This is a translational methodology, rather than a pre-
scribed method; it could be applied to a variety of
scenarios, some of which are exemplified here. While
the values of the analytical and translational metrics
are wear-site specific, the principle could apply to any
wear-site.

Abbreviations
M1/3DAY : The acceleration above which a person’s most active 1/3 (8 h) of
the day is accumulated.; MVPA: Moderate-to-vigorous physical activity;
MX: The acceleration above which a person’s most active X minutes/time are
accumulated

Fig. 6 Application to different wear-sites. Data from thigh-worn monitors. a Raw MX metrics ((clockwise) the most active 8 h of the day (M1/3DAY),
120 min (M120), 60 min (M60), 30 min (M30), 15 min (M15) and 5min (M5)) and b standardised activity profiles for two example adult participants
(P1 and P2) with similar average acceleration but differing intensity gradients. P1 has a low-intensity gradient, with comparatively high levels of
M1/3DAY and M120 (b), P2 has a high-intensity gradient characterised by a greater area on the left-hand side of the radar plot. This results in a
similar average acceleration. Av accel, average acceleration; IG, intensity gradient; MVPA, moderate-to-vigorous physical activity
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