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Comparability of accelerometer 
signal aggregation metrics across 
placements and dominant wrist 
cut points for the assessment of 
physical activity in adults
Jairo H. Migueles   1*, Cristina Cadenas-Sanchez1, Alex V. Rowlands   2,3,4, 
Pontus Henriksson1,5,10, Eric J. Shiroma6, Francisco M. Acosta1, Maria Rodriguez-Ayllon1, 
Irene Esteban-Cornejo7,1, Abel Plaza-Florido1, Jose J. Gil-Cosano   1, Ulf Ekelund8, 
Vincent T. van Hees9 & Francisco B. Ortega1,5

Large epidemiological studies that use accelerometers for physical behavior and sleep assessment differ 
in the location of the accelerometer attachment and the signal aggregation metric chosen. This study 
aimed to assess the comparability of acceleration metrics between commonly-used body-attachment 
locations for 24 hours, waking and sleeping hours, and to test comparability of PA cut points between 
dominant and non-dominant wrist. Forty-five young adults (23 women, 18–41 years) were included 
and GT3X + accelerometers (ActiGraph, Pensacola, FL, USA) were placed on their right hip, dominant, 
and non-dominant wrist for 7 days. We derived Euclidean Norm Minus One g (ENMO), Low-pass filtered 
ENMO (LFENMO), Mean Amplitude Deviation (MAD) and ActiGraph activity counts over 5-second 
epochs from the raw accelerations. Metric values were compared using a correlation analysis, and 
by plotting the differences by time of the day. Cut points for the dominant wrist were derived using 
Lin’s concordance correlation coefficient optimization in a grid of possible thresholds, using the non-
dominant wrist estimates as reference. They were cross-validated in a separate sample (N = 36, 10 
women, 22–30 years). Shared variances between pairs of acceleration metrics varied across sites and 
metric pairs (range in r2: 0.19–0.97, all p < 0.01), suggesting that some sites and metrics are associated, 
and others are not. We observed higher metric values in dominant vs. non-dominant wrist, thus, we 
developed cut points for dominant wrist based on ENMO to classify sedentary time (<50 mg), light PA 
(50–110 mg), moderate PA (110–440 mg) and vigorous PA (≥440 mg). Our findings suggest differences 
between dominant and non-dominant wrist, and we proposed new cut points to attenuate these 
differences. ENMO and LFENMO were the most similar metrics, and they showed good comparability 
with MAD. However, counts were not comparable with ENMO, LFENMO and MAD.
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Physical behaviors occurring during the 24 hours of the day consist of physical activity (PA), sedentary behavior 
and sleep. These three behaviors are of major public health interest due to their well-documented influence on 
health1–4. Objective methods to assess free-living PA range from cost-efficient tools such as pedometers to rel-
atively expensive multi-sensor devices, e.g., Actiheart5. Accelerometers provide a balance of cost and feasibility 
and have been increasingly used in large epidemiological cohorts6,7, for example in the Women’s Health Study 
(WHS) and the National Health And Nutrition Examination Survey in the United States (NHANES), the Biobank 
study in the United Kingdom (UK Biobank), and the International Study of Childhood Obesity, Lifestyle and 
the Environment (ISCOLE) which collected data worldwide. Furthermore, accelerometers have been validated 
for the estimation of PA8–10, sedentary time11–13 and sleep14–16. However, accelerometer utilization requires data 
collection and processing decisions which could affect the final estimations17.

Data collection decisions start with the selection of the most appropriate anatomical location to attach the 
accelerometer17. Hip and wrist are the most frequently selected locations17, and both have been demonstrated to 
be valid locations for classifying PA intensities and sedentary time8–10,17, as well as to assess sleep14–16. However, it 
is unclear how much the accelerometer outcome measures vary between body sites. Previous studies have found 
high correlations (i.e., intraclass-correlation coefficients >0.9) between acceleration values from both wrists18 
with slightly lower values in the non-dominant wrist, although non-significantly different from the dominant 
wrist19,20. Likewise, moderate-to-high correlations between acceleration values from either wrist and the hip have 
been reported (i.e., r coefficients between 0.7 and 0.9)20,21. These studies had a focus on PA and sedentary time 
(i.e., waking hours) and did not report associations during sleeping hours. Furthermore, cut points to estimate 
PA have been proposed for the non-dominant wrist8,11 and hip8,11,22 in adults, but not for the dominant wrist. 
Therefore, studies where accelerometers were placed on the dominant wrist do not have specific cut points pro-
posed for their data, for instance the UK Biobank trial23.

Data processing aims to remove the gravitational component and noise from the raw signal, in order to obtain 
an acceleration signal aggregation metric (from herein acceleration metric) intended to reflect body move-
ment24. For example, acceleration metrics include Euclidean Norm Minus One g with negative values rounded 
to zero (ENMO)24, ENMO of the low-pass filtered raw accelerations (LFENMO)23, Mean Amplitude Deviation 
(MAD)25,26 as well as manufacturer-specific metrics such as ‘activity counts’ (hereinafter counts), among oth-
ers (see definitions of these acceleration metrics in Table 1). To our knowledge, these acceleration metrics have 
not previously been compared to each other in the same study. Comparing these metrics using data from hip, 
dominant wrist and non-dominant wrist and focusing on different periods of the day (i.e., 24 hours, waking and 
sleeping hours) could benefit researchers interested in either PA, sedentary time and/or sleep.

Moreover, the movement pattern identified throughout the day by each of these metrics (i.e., acceleration 
metric values throughout the day) and the data from different body attachment sites may be useful to describe 
PA27. Only one study has investigated differences in movement patterns identified from hip, dominant wrist and 
non-dominant wrist19. This study only analyzed counts during waking hours in a sample of older adults19. The 
drawbacks of using brand-dependent activity counts have been described (e.g., precludes comparison across 
studies, complicates the interpretation of results, summarizes raw data which may minimize their potential)28, 
as well as the importance of moving forward with open-source derived metrics from raw accelerometer data29,30. 
Therefore, the present study aimed to: 1) study the comparability between different acceleration metrics across 
right hip, dominant wrist and non-dominant wrist attachment sites during different periods of the day (i.e., 
24 hours, waking and sleeping hours); and 2) use previously established cut points for accelerations measured at 
the non-dominant wrist8,11 to develop and cross-validate cut points in a separate sample for accelerations meas-
ured at the dominant wrist in a sample of young adults.

Methods
Study design and participants.  The present cross-sectional study analyzed free-living data from a con-
venience sample composed of students and research personnel from the University of Granada, Spain. The study 
was carried out in two waves of 45 (23 women, 18–41 years old) and 36 (10 women, 22–30 years old) young 
adults, respectively. Wave 1 (cut-point calibration sample) was used to compare different acceleration metrics 
across body attachment sites and to develop cut points for the dominant wrist that are consistent with the only 
set of cut points proposed to estimate PA intensity from the non-dominant wrist in adults to date8,11. Wave 2 (cut-
point cross-validation sample) data were used to cross-validate the new set of cut points in a different sample of 
participants with similar characteristics. All participants were informed of the purpose of the study and written 
informed consent was obtained. This study was conducted according to the Declaration of Helsinki and approved 

Acceleration 
metric

Frequency 
filter Definition

ENMO None Euclidean norm minus one g of the raw accelerations, with resulting negative values rounded to zero and 
then averaged over 5 s epochs.

LFENMO Low-pass Euclidean norm minus one g of the low-pass filtered raw accelerations with resulting negative values 
rounded to zero (Butterworth 4th order filter; ω = 20 Hz).

MAD None Euclidean norm of each raw acceleration data point minus the mean of its correspondent 5 s epoch.

Counts Band-pass Counts are obtained by using a band-pass frequency filter to the raw signal (by default: ω0 = 0.025 Hz, 
ω1 = 2.5 Hz). The rest of information is mostly unknown.

Table 1.  Brief description of the acceleration metrics included. ENMO: Euclidean norm minus 1 g; LFENMO: 
Low-pass filtered ENMO; MAD: Mean amplitude deviation.
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by the Ethics Committee on Human Research (CEIH) of the University of Granada and the study was approved 
by the institutional review board of the University of Pittsburgh and National Institute on Aging.

Procedures.  Participants’ body weight and height were measured to the nearest 0.1 kg and 0.1 cm using an 
electronic scale (SECA 861, Hamburg, Germany) and a precision stadiometer (SECA 225, Hamburg, Germany). 
We calculated body mass index (BMI) as mass (kg)/height2 (m2). Participants were instructed to wear acceler-
ometers (ActiGraph GT3X+, Pensacola, FL, USA) for seven complete days (24 hours per day). Cut-point calibra-
tion sample participants wore three accelerometers placed on the right hip, dominant wrist and non-dominant 
wrist. Cut-point cross-validation sample participants wore accelerometers on both wrists. All participants were 
instructed to remove the accelerometers during bathing and showering, to always wear and remove all of the 
accelerometers at the same time, and to keep a diary of the times they went to bed and got off the bed every day.

Accelerometers.  ActiGraph GT3X+ is a triaxial accelerometer with a dynamic range of +/− 6 G. 
Accelerometers were initialized to capture and store accelerations at 100 Hz. Raw accelerations were then down-
loaded (“.gt3x” files) and converted to “.csv” format using ActiLife v.6.13.3 (ActiGraph, Pensacola, FL, USA).

Data processing.  Raw “.gt3x” files were loaded in the ActiLife software to export raw data in.csv format 
and to obtain counts over 5 second epochs using the software’s default filter (ω0 = 0.025 Hz, ω1 = 2.5 Hz). Next, 
raw “.csv” files were processed using the GGIR software (version 1.6–0, https://cran.r-project.org/web/packages/
GGIR/)24,31. The processing methods of GGIR involved: (1) Auto-calibration of the data according to the local 
gravity32; (2) calculation of ENMO, LFENMO and MAD and inclusion of the previously obtained counts over 
5 seconds epochs (Table 1) to participant datasets to follow the same non-wear time calculation and processing 
decisions than the rest of the acceleration metrics; (3) detection of the non-wear time based on the raw accelera-
tion from the three axes using a validated algorithm24, briefly, each 15-min block was classified as non-wear time 
if the standard deviation of 2 out of the 3 axes was lower than 13 mg during the surrounding 60-min moving win-
dow or if the value range for 2 out of the 3 axes was lower than 50 mg; (4) detection of sustained abnormal high 
accelerations, i.e., higher than 5.5 g; (5) imputation of detected non-wear time and abnormal high accelerations 
by means of the acceleration for the rest of the recording period during the same time interval than the affected 
periods; and 6) separation of waking and sleeping hours using a validated algorithm on the non-dominant wrist 
data and guided by logged timestamps by participants14. Logged times were 9 min (95% confidence intervals 
[CI95%]: −6 to 25 min) earlier and 17 min (CI95%: 2 to 32 min) later than accelerometer detected times for sleep 
onset and wake-up times, respectively. Finally, waking and sleeping hours detected from the non-dominant wrist 
were applied to the hip and dominant wrist measurements of each participant. All participants with at least 4 days 
with ≥16 hours wearing accelerometers were included in the analyses.

Data analysis.  Sedentary time and time spent in each PA intensity (i.e., light, moderate and vigorous PA) 
were estimated from the ENMO metric from the dominant wrist and non-dominant wrist-worn accelerometer 
data. Hildebrand et al.’s8,11 ENMO cut points developed for the non-dominant wrist were applied to the dominant 
wrist and non-dominant wrist data. Additionally, we calculated the same variables using the validated cut points 
incremented by 5 and 10 mg8,11 for the dominant wrist data only. Daily means of the acceleration metrics for 
24 hours, waking hours and sleeping hours, as well as estimations of time spent in sedentary behaviors and PA 
intensity levels from the wrist-worn accelerometers were included in the analyses.

Statistics.  Descriptive statistics were calculated as means and standard deviations. We used linear regressions 
to study the associations between the different acceleration metrics (i.e., ENMO, LFENMO, MAD and counts) 
calculated from the same and different body attachment sites (i.e., right hip, dominant wrist and non-dominant 
wrist) (i.e., aim 1).

In order to study whether acceleration metrics identify a different movement pattern over the day (i.e., aim 2), 
we plotted 30-min averages of acceleration metrics across body attachment sites. As each acceleration metric has 
a different unit of measurement, we used z-scores when different acceleration metrics appeared in the same plot. 
Furthermore, we performed a curve analysis using statistical parametric mapping (SPM)33 to compare accelera-
tions from dominant and non-dominant wrists throughout the day. Acceleration data over the day were depicted 
as curves. These acceleration curves produced throughout the day are highly variable between individuals due 
to several factors (e.g., lifestyle, working schedule). To minimize this high variability and allow for a compari-
son of the curves, we sorted accelerations produced every day per participant in an increasing order. Therefore, 
all of the curves start with the periods of the day when activity was low (e.g., sleep, sedentary activities…) and 
finish with the periods of the day with the highest intensity activities, independently of the moment of the day 
when they occurred. T-tests were used to determine significant differences between the curves for dominant and 
non-dominant wrists. SPM involved 4 steps to compute the t-test analysis: (1) computing the value of a test sta-
tistic at each point in the normalized time series; (2) estimating temporal smoothness on the basis of the average 
temporal gradient; (3) an equally smooth random process is performed to compute the value of the test statistics 
above which only α = 5% of the data would be expected to reach; (4) computing the probability that specific 
suprathreshold regions could have resulted from an equivalently smooth random process.

Finally, the Lin’s concordance correlation coefficient (LCCC), two sample t-tests and mean absolute percent 
error (MAPE) were used to study the agreement between sedentary time and time spent in each PA intensity 
derived from non-dominant wrist with validated cut points (reference) and all cut points used for dominant wrist 
(see Data processing section) (i.e., aim 3).

Cut-point selection was made following these criteria: (1) closest vigorous PA estimation if any; (2) closest 
moderate PA estimation if any (the upper threshold is already defined in step 1); (3) closest light PA estimation if 
any (the upper threshold is already defined in step 2). When two or more thresholds provided similar results, we 
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tried to respect the original distance between the previously-established thresholds for non-dominant wrist8,11. 
The closest thresholds were selected based on mean differences, LCCC and MAPE. Then, the selected cut points 
were cross-validated using data from the cut-point cross-validation sample. All analyses were performed in R 
v.3.4.1 (https://cran.r-project.org/). The significance level was set at p < 0.05.

Results
Descriptive characteristics of participants.  Out of the 45 participants from the cut-point calibration 
sample, three were excluded from the analyses for either not having accumulated enough wear time (n = 2) or 
having mis-placed the dominant wrist and non-dominant accelerometers for ≥1 day (n = 1). All of the cut-
point cross-validation sample participants were included in the cross-validation analyses (i.e., aim 3). Descriptive 
characteristics of the included participants, as well as acceleration metric values for each body attachment site 
(i.e., right hip, dominant wrist and non-dominant wrists) across periods of the day (i.e., 24 hours, waking hours 
and sleeping hours) are presented in Table 2. Since wear time was high and practically the same for the right hip, 
dominant wrist and non-dominant wrist accelerometers, we did not delete unmatched non-wear time across 
accelerometers.

Comparison of each acceleration metric across body attachment sites.  Table 3 presents the 
shared variances for every acceleration metric across different body attachment sites, i.e., hip, dominant wrist 
and non-dominant wrist. Overall, shared variance between wrists (r2 between 0.56 [CI95%: 0.33–0.74] and 0.94 
[CI95%: 0.89–0.97]) was higher than shared variance between any of the wrists and the hip (r2 between 0.21 [CI95%: 
0.03–0.45] and 0.88 [CI95%: 0.78–0.93]) for all the metrics analyzed. Figure 1 shows that acceleration values (for 
all of the metrics) for the wrists are higher than for the hip, with the highest values reached in the dominant wrist. 
Although the PA pattern seemed to be concordant for dominant wrist and non-dominant wrists, SPM analysis 
showed significant differences (p < 0.001) between the 50th and the 90th percentile of the accelerations produced 
(when accelerations start to increase, indicating periods of PA, see Fig. 2). In regards to the PA pattern identified 
from hip, besides recording lower values, peaks of activity were not totally concordant with those identified by 
the wrists.

Cut-point calibration sample Cut-point cross-validation sample

All (N = 42) Men (N = 19) Women (N = 23) All (N = 36) Men (N = 26) Women (N = 10)

Age (years) 27.3 (5.3) 27.2 (5.9) 27.4 (4.9) 24.3 (1.9) 24.4 (2.3) 24.1 (1.1)

Weight (kg) 67.8 (12.1) 78.3 (8.5) 59.1 (6.3) 70.3 (14.2) 77.0 (13.1) 58.3 (5.1)

Height (cm) 171.0 (8.3) 178.0 (1.7) 165.1 (5.2) 172.3 (9.7) 177.0 (7.8) 163.8 (6.6)

BMI (kg/m2) 23.0 (2.6) 24.6 (1.7) 21.7 (2.5) 23.5 (3.6) 24.5 (3.8) 21.8 (2.5)

Cut-point calibration sample (N = 42) Cut-point cross-validation sample (N = 36)*
Acceleration metrics 24 hours Waking hours Sleeping hours 24 hours Waking hours Sleeping hours

Wear time (h/day)

Right hip 23.9 (0.3) 17.2 (0.7) 6.7 (0.7) — — —

Dom. wrist 24.0 (0.2) 17.0 (0.7) 6.9 (0.6) 23.7 (1.3) 16.2 (1.7) 7.5 (1.8)

Non-dom. wrist 24.0 (0.2) 17.0 (0.7) 7.0 (0.6) 23.6 (1.4) 16.2 (1.4) 7.4 (1.5)

ENMO (mg)

Right hip 16.0 (5.6) 21.4 (7.7) 2.4 (1.3) — — —

Dom. wrist 33.9 (7.6) 46.5 (10.6) 3.0 (1.5) 31.7 (14.0) 43.1 (13.8) 3.5 (2.3)

Non-dom. wrist 31.3 (6.8) 43.1 (9.9) 3.2 (1.4) 29.9 (12.9) 40.7 (12.8) 4.4 (4.8)

LFENMO (mg)

Right hip 12.1 (4.7) 16.0 (6.4) 2.1 (1.1) — — —

Dom. wrist 26.4 (6.4) 36.1 (8.9) 2.5 (1.2) — — —

Non-dom. wrist 24.9 (5.9) 34.3 (8.6) 2.6 (1.2) — — —

MAD (mg)

Right hip 24.4 (6.9) 33.4 (9.4) 1.5 (1.7) — — —

Dom. wrist 48.4 (8.9) 67.0 (12.2) 2.8 (2.2) — — —

Non-dom. wrist 44.2 (8.5) 61.4 (12.0) 2.9 (2.1) — — —

Counts/5 s

Right hip 41.4 (9.9) 56.3 (13.6) 3.6 (3.0) — — —

Dom. wrist 176.9 (31.8) 242.6 (43.2) 14.6 (8.9) — — —

Non-dom. wrist 164.9 (29.3) 226.7 (41.6) 15.0 (7.8) — — —

Table 2.  Descriptive characteristics of participants. Data are presented as mean (standard deviation) *Cut-
point cross-validation sample data was only used to cross-validated cut points for dominant wrist based on 
ENMO, so they did not wear hip-worn accelerometers and only ENMO was derived. BMI: Body mass index; 
ENMO: Euclidean norm minus 1 g with negative values rounded to zero; LFENMO: Euclidean norm minus 
1 g of the low-pass filtered raw accelerations with negative values rounded to zero; MAD: Mean amplitude 
deviation.
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Comparison of acceleration metrics derived from the same body attachment site.  Table 4 shows 
the shared variances (r2) between pair of acceleration metrics derived from the same body attachment site and 
period of the day (i.e., 24 hours, waking and sleeping hours). ENMO and LFENMO were the metrics which pre-
sented the highest shared variances among all of the metrics included (r2 ranged from 0.95 [CI95%: 0.90–0.97] to 
0.97 [CI95%: 0.93–0.98] for all locations and moments of the day). The lowest shared variances were found between 
LFENMO and Counts (r2 = 0.19 [CI95%: 0.02–0.42]), and for LFENMO and MAD during sleeping hours for the 
hip (r2 = 0.21 [CI95%: 0.03–0.45]). For the rest of the metrics, in general, they presented higher r2 values during 
waking hours (r2 between 0.38 [CI95%: 0.11–0.57] and 0.92 [CI95%: 0.85–0.96]) than during sleeping hours (r2 
between 0.32 [CI95%: 0.10–0.55] and 0.79 [CI95%: 0.65–0.88]). A graphical comparison of all of the acceleration 
metrics for each body attachment site can be found in Fig. 3. While ENMO, LFENMO and MAD were describing 
almost the same movement pattern when derived from the same attachment site, counts were more discordant in 
some periods of the day (e.g., between 9 and 11 am, counts did not detect a peak of activity identified by the rest 
of the metrics in all of the placements, Fig. 3).

Cut-point replication.  As the shared variance between ENMO derived from the dominant and 
non-dominant wrist was fairly high during waking hours (r2 = 0.79 [CI95%: 0.65–0.88], Table 4), and the move-
ment pattern over the day identified was very similar for both wrists (Fig. 1), we replicated the cut points val-
idated by Hildebrand et al. in the non-dominant wrist8,11 using dominant wrist ENMO values (Table 5). After 
considering the criteria defined to select the new cut points, we found that the closest estimation between wrists 
was achieved with 50, 110 and 440 mg to classify sedentary time and light, moderate and vigorous PA intensities, 
respectively. Criteria were: (1) closest vigorous PA estimation if any, no threshold was selected since all of them 
were equally comparable; 2) closest moderate PA estimation if any, 110–430 mg, 110–435 mg and 110–440 mg 
provided similar results, so 110–440 mg was selected to respect the distance between previously-established cut 
points (i.e., 100–430 mg); (3) closest light PA estimation considering the upper threshold defined in step 2 (i.e., 
110 mg). This selection of cut points was cross-validated using data from the wave 2; estimations were not signif-
icantly different between wrists for any of the intensities and showed high LCCCs (0.85–0.92) and low MAPEs 
(0.67–14.29%).

Discussion
Main findings.  The main findings of this study were: (i) the dominant wrist showed systematically higher 
acceleration metric values than the non-dominant wrist, which were translated into different sedentary time and 
PA estimations when using the same cut points; (ii) dominant and non-dominant wrist based estimations of PA 
became comparable by modifying the validated cut points, which was confirmed in a cross-validation sample; 
(iii) non-dominant and dominant wrist acceleration metrics shared a higher proportion of variance than between 
the hip and either wrist, while MAD was the metric with the highest shared variances across body attachment 
sites; (iv) overall, the metrics ENMO, LFENMO and MAD shared higher proportions of variance than any of 
these metrics with counts, especially when the metrics were derived from the wrist-worn accelerometers; (v) the 
movement pattern identified throughout the day was visually equivalent for any given acceleration metric (e.g., 
ENMO) from the dominant wrist and non-dominant wrist, and was also similar when comparing either wrist 
with the hip and across acceleration metrics derived from the same body site (with the exception of counts). 
Altogether, these findings demonstrate the extent to which different factors related to data collection (e.g., ana-
tomical wear location) and processing procedures (e.g. different accelerometer metrics) could modify the final 
PA, sedentary time and sleep estimations.

Comparison of each acceleration metric across body sites.  Comparisons between each metric derived 
from different body attachment sites add important knowledge to the field. Studies attaching accelerometers to 

ENMO LFENMO MAD Counts

24 hours

Right hip vs. Dominant wrist 0.37** 0.28* 0.68** 0.40**

Right hip vs. Non-dominant wrist 0.34** 0.25* 0.77** 0.43**

Dominant vs. Non-dominant wrist 0.79** 0.78** 0.86** 0.71**

Waking hours

Right hip vs. Dominant wrist 0.37** 0.31** 0.66** 0.38**

Right hip vs. Non-dominant wrist 0.35** 0.28* 0.75** 0.42**

Dominant vs. Non-dominant wrist 0.79** 0.79** 0.86** 0.70**

Sleeping hours

Right hip vs. Dominant wrist 0.37** 0.21* 0.88** 0.75**

Right hip vs. Non-dominant wrist 0.39** 0.27* 0.88** 0.69**

Dominant vs. Non-dominant wrist 0.67** 0.56** 0.94** 0.92**

Table 3.  Shared variance (r2) for each acceleration metric across different body attachment sites (i.e., hip, 
dominant and non-dominant wrists). ENMO: Euclidean norm minus 1 g with negative values rounded to zero; 
LFENMO: Euclidean norm minus 1 g of the low-pass filtered raw accelerations with negative values rounded to 
zero; MAD: Mean amplitude deviation. *p < 0.01 **p < 0.001.
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the hip (e.g., WHS34, NHANES 2003–2004 or ISCOLE), to the dominant wrist (e.g., UK Biobank), and to the 
non-dominant wrist (e.g., NHANES 2012–2013, and Whitehall II Study35) could reach conflicting conclusions in 
regards to PA, sedentary time and/or sleep outcomes. This study quantifies these potential differences. Accordingly 
with previous evidence18, our findings show higher associations between the dominant and non-dominant wrists 
than between either wrist and the hip for all the metrics included. Comparison of acceleration metrics across 
the body attachment sites revealed higher shared variances for MAD compared with the rest of the metrics. 
Furthermore, comparisons between the dominant wrist vs. hip, and the non-dominant wrist vs. hip were similar for 
all of the metrics included, as occurred in a previous study in adults20. In regards to the movement pattern through-
out the day, we observed almost identical patterns between the dominant and non-dominant wrists (with slightly 
lower values for the non-dominant wrist). To a lesser extent, hip movement pattern was similar to those from wrists. 
This suggests that the relationship between the dominant and non-dominant wrist accelerations is linear, which is 
also supported by a previous study in adults18. This implies that activities across the day should be captured similarly 
by all sites, especially between the dominant and non-dominant wrist.

Comparison of acceleration metrics derived from the same body attachment site.  Our findings 
show moderate to high associations between pairs of acceleration metrics derived from the same body attachment 
site. Likewise, previous findings by van Hees et al.24 reported moderate to high shared variances between ENMO 
and other acceleration metrics (r2 from 0.46 to 0.95) not included in the present study. Also in concordance with 
van Hees et al.’s study24 in adults, our findings show stronger associations between pairs of metrics with none or 
minimal filtering (ENMO, LFENMO and MAD) than the comparisons of any of these metrics with counts, which 
may be explained by the application of a frequency filter to the raw signal. We also found that the movement 
pattern identified throughout the day was visually similar for ENMO, LFENMO and MAD, while counts did not 
identify some peaks of movement detected by the rest of the metrics. The current study complements the study by 
van Hees et al.24 by using 24 hours of accelerometer recording for both the hip (only waking hours in the previous 
study) and both wrists, as well as including different acceleration metrics for comparison, i.e., LFENMO, MAD 
and ActiGraph’s counts23,24,26,36. Furthermore, pairwise comparisons of acceleration metrics showed better agree-
ment during waking hours than during sleeping hours in all the body attachment sites. However, it is important 
to note that absolute values of all acceleration metrics are lower during sleeping hours, which could produce these 
lower shared variances even when the absolute differences are rather small (see descriptive values in Table 2). 
To the best of our knowledge, this is the first study providing this comparison stratified by waking and sleeping 
hours.

Figure 1.  Means of ENMO (Panel a), LFENMO (Panel b), MAD (Panel c) and Counts (Panel d) over 30-min 
periods for the hip, dominant and non-dominant wrist. Each data point is the average for this time interval for 
all participants from the cut-point calibration sample (N = 42). ENMO: Euclidean norm minus 1 g with negative 
values rounded to zero; LFENMO: Euclidean norm minus 1 g of the low-pass filtered raw accelerations with 
negative values rounded to zero; MAD: Mean amplitude deviation.
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Cut-points replication.  The fact that there are only cut points available to assess PA and sedentary time 
from the non-dominant wrist makes their application to data from the dominant wrist controversial. Indeed, 
differences found between acceleration curves from the dominant and non-dominant wrists indicate the need 
to propose new cut points for the dominant wrist. Accordingly, we detected 25 min/day less of sedentary time, 

Figure 2.  Comparison of means of ENMO (Panel a), LFENMO (Panel b), MAD (Panel c) and Counts (Panel d) 
sorted in an increasing order between dominant and non-dominant wrist. Each data point is the average for all 
participants from the cut-point calibration sample (N = 42). ENMO: Euclidean norm minus 1 g with negative 
values rounded to zero; LFENMO: Euclidean norm minus 1 g of the low-pass filtered raw accelerations with 
negative values rounded to zero; MAD: Mean amplitude deviation.

https://doi.org/10.1038/s41598-019-54267-y


8Scientific Reports |         (2019) 9:18235  | https://doi.org/10.1038/s41598-019-54267-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

14 min/day more of light PA, 16 min/day more of moderate PA and similar estimations of vigorous PA using 
the original cut points (i.e., for non-dominant wrist) in data collected from the dominant wrist. The linear-
ity in the association between wrists (i.e., consistent movement pattern detected from both the dominant and 
non-dominant wrists) make it possible to adapt cut points developed for one of the wrists to the other by applying 
slightly different new cut points. This strategy has been used previously by Rowlands et al. to replicate hip-based 
moderate-to-vigorous PA cut points using non-dominant wrist data37. In the present study, we develop cut points 
for the dominant wrist using previously validated cut points for the non-dominant wrist as reference8,11; and 

ENMO vs. 
LFENMO

ENMO 
vs. MAD

ENMO vs. 
Counts

LFENMO 
vs. MAD

LFENMO 
vs. Counts

MAD vs. 
Counts

24 hours

Right hip 0.97** 0.72** 0.46** 0.59** 0.34** 0.81**

Dominant wrist 0.96** 0.91** 0.55** 0.86** 0.51** 0.66**

Non-dominant wrist 0.97** 0.87** 0.49** 0.82** 0.47** 0.56**

Waking hours

Right hip 0.97** 0.74** 0.48** 0.62** 0.38** 0.81**

Dominant wrist 0.97** 0.92** 0.54** 0.87** 0.51** 0.64**

Non-dominant wrist 0.97** 0.89** 0.52** 0.85** 0.51** 0.57**

Sleeping hours

Right hip 0.95** 0.42** 0.32** 0.21** 0.19* 0.54**

Dominant wrist 0.97** 0.75** 0.44** 0.59** 0.37** 0.47**

Non-dominant wrist 0.97** 0.79** 0.42** 0.66** 0.37** 0.44**

Table 4.  Explained variance (r2) between different acceleration metrics derived from the same body attachment 
site (N = 42). ENMO: Euclidean norm minus 1 g with negative values rounded to zero; LFENMO: Euclidean 
norm minus 1 g of the low-pass filtered raw accelerations with negative values rounded to zero; MAD: Mean 
amplitude deviation. *p < 0.01 **p < 0.001.

Figure 3.  Means of ENMO, LFENMO, MAD and Counts, over 30-min periods for non-dominant wrist (Panel 
a), dominant wrist (Panel b) and hip (Panel c). Each data point is the average for this time interval for all 
participants from the cut-point calibration sample (N = 42). ENMO: Euclidean norm minus 1 g with negative 
values rounded to zero; LFENMO: Euclidean norm minus 1 g of the low-pass filtered raw accelerations with 
negative values rounded to zero; MAD: Mean amplitude deviation.
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then, we cross-validated these newly developed cut points in a different sample. Estimations from previously val-
idated cut points on the non-dominant wrist and their translation to the dominant wrist were almost equal and 
highly correlated. The cut points we propose in this study for the dominant wrist could help to obtain equivalent 
and comparable estimations of PA between studies using the dominant wrist attachment with studies using the 
non-dominant wrist attachment.

This study complements existing information by using a long-term measurement (7 days) for these compar-
isons since previous studies used 1-day measurements18,20. Furthermore, our stratified analyses for waking and 
sleeping hours allow an understanding of how acceleration metrics agree or disagree for PA, sedentary time and 
sleep-related estimations. Notably, our 24-hour-based comparisons across body attachment sites and acceleration 
metrics are similar to waking-hour-based comparisons.

Mean (SD) non-
dominant wrist 
(min/day)

Mean (SD) 
dominant wrist 
(min/day) LCCC

Mean diff. [95% CI] 
(min)b MAPE

Cut-points translation

Sedentary time thresholds (mg)

45a 769 (69) 744 (71) 0.86 −25 [−55 to 6] 3.25%

50 — 766 (69) 0.92 −3 [−33 to 27] 0.39%

55 — 786 (67) 0.90 17 [−13 to 46] 2.21%

Light PA thresholds (mg)

45–100a 147 (29) 161 (34) 0.84 14 [0 to 28] 9.52%

45–105 — 170 (37) 0.73 23 [9 to 37] 15.65%

45–110 — 179 (38) 0.63 31 [17 to 46] 21.09%

50–100 — 139 (30) 0.91 −8 [−21 to 5] 5.44%

50–105 — 148 (33) 0.93 1 [−12 to 15] 0.68%

50–110 — 157 (34) 0.89 9 [−4 to 23] 6.12%

55–100 — 120 (27) 0.62 −27 [−40 to −15] 18.37%

55–105 — 129 (29) 0.78 −19 [−31 to −6] 12.93%

55–110 — 137 (31) 0.88 −10 [−23 to 3] 6.80%

Moderate PA thresholds (mg)

100–430a 104 (28) 120 (30) 0.72 16 [3 to 28] 15.38%

100–435 — 120 (30) 0.72 14 [0 to 28] 13.46%

100–440 — 120 (30) 0.72 16 [4 to 29] 15.38%

105–430 — 111 (28) 0.82 7 [−5 to 19] 6.73%

105–435 — 111 (28) 0.81 7 [−5 to 19] 6.73%

105–440 — 111 (28) 0.81 7 [−5 to 19] 6.73%

110–430 — 103 (26) 0.84 −1 [−13 to 10] 0.96%

110–435 — 103 (26) 0.84 −1 [−13 to 11] 0.96%

110–440 — 103 (26) 0.84 −1 [−13 to 11] 0.96%

Vigorous PA thresholds (mg)

430a 9 (7) 9 (7) 0.95 0 [−3, 3] 0%

435 — 9 (7) 0.95 0 [−3, 3] 0%

440 — 9 (7) 0.95 0 [−3, 3] 0%

Cross-validation

Sedentary time 750 (78)c 755 (94)d 0.85 5 [−36, 45] 0.67%

Light PA 134 (34)c 133 (36)d 0.89 −2 [−18, 15] 1.49%

Moderate PA 103 (44)c 97 (44)d 0.92 −6 [−26, 15] 5.82%

Vigorous PA 7 (7)c 7 (7)d 0.90 1 [−2, 4] 14.29%

Table 5.  Cut-point translation from previously proposed non-dominant wrist cut points for dominant wrist 
ENMO. Cut-point selection (values presented in bold) was made following these criteria: 1) closest vigorous 
PA estimation if any, no threshold is selected since all of them were equally comparable; 2) closest moderate 
PA estimation if any, 110–430 mg, 110–435 mg and 110–440 mg provided similar results, so 110–440 mg was 
selected to respect the distance between previously-established cut points (i.e., 100–430 mg); 3) closest light PA 
estimation considering the upper threshold defined in step 2 (i.e., 110 mg). PA: Physical activity; LCCC: Lin’s 
concordance correlation coefficient; CI: Confidence interval; SD, standard deviation; MAPE, mean absolute 
percent error Bold text indicates the cut-point selection based on the criteria defined above. aIndicates original 
cut points validated in non-dominant wrist8,11. bDominant wrist minus non-dominant wrist. cDerived with the 
original cut points validated in non-dominant wrist, i.e., 45/100/4308,11. dDerived with the cut points proposed 
in the present study for dominant wrist, i.e., 50/110/440.
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This study has practical implications for studies using the same acceleration metric, but attaching accelerome-
ters to different body sites or vice versa. Furthermore, accelerometers are not only used to estimate PA and seden-
tary time, but also to assess sleep. Researchers focused on any of these behaviors can benefit from the comparisons 
presented in this study across acceleration metrics and body attachment sites during waking and sleeping hours, 
since these associations were different depending on the period of the day analyzed. Finally, this study provides 
information to quantify methodological discrepancies across studies, as it provides cut points to get similar PA 
estimations from dominant wrist and non-dominant wrist. We suggest these cut points are used to obtain compa-
rable estimations across studies. It should be noted that differences found between sites and acceleration metrics 
do not constitute different associations between sedentary time, physical activity and/or sleep outcomes with 
health parameters. Whether associations with health parameters differ depending on data collection and process-
ing decisions should be studied by future research.

The main limitation of this study is the lack of a criterion that would allow us to assess the accuracy of each 
acceleration metric in the measurement of PA and/or sleep. Likewise, the lack of an energy expenditure measure 
precludes us from deriving cut points for dominant wrist against a criterion. Thus, although our derived cut 
points may be of great value to identify PA from the dominant wrist, these cut points should be tested against an 
energy expenditure measure in future studies. Another limitation is the use of a convenience sample and all anal-
yses were only carried out with data from one accelerometer brand (ActiGraph GT3X+), which could limit the 
generalization of our findings to other devices38,39, or even to different generations of the same brand40. Strengths 
of the present study were: 1) the fact that we used consistent data processing techniques with all the metrics (e.g., 
same calculation of non-wear time or waking and sleeping hours detection) which allow for a direct comparison 
between metrics and body attachment sites; and 2) the fact that our participants reached high wear times, allow-
ing for a complete range of daily living accelerations.

Conclusion
In conclusion, our findings suggest higher acceleration metric values in the dominant wrist compared with the 
non-dominant wrist. These differences could be attenuated by applying the new set of cut points provided in this 
manuscript. Furthermore, ENMO and LFENMO were the metrics that compared the best, and to some extent, 
they also showed good comparability with MAD for daily average values and for the movement pattern identified 
throughout the day. However, counts were demonstrated to be less comparable to the previously-mentioned 
metrics. Future studies should test which of these metrics and body locations are the best to accurately capture 
physical activity against a criterion (e.g., calorimetry).
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