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Abstract

A new contact law is proposed to describe the behaviour of plastically compressible particles. The law was
derived from contact simulations in which a general continuum constitutive model, the von Mises Double
Cap (VMDC) model, was introduced to represent the particle material behaviour, allowing distinct dilatory,
shearing and densification plastic flow regimes. Elastic and plastic properties were prescribed as functions
of density. Parametric studies were conducted covering the parameter space of published experimental data
for a range of pharmaceutical powders and granules.

The analysis showed plastic zones corresponding to the three flow regimes developing within the particle,
with size, shape, location and onset conditions being dependent on the strength ratios of the constitutive
model. The contact law established combines an initial quasi-linear region followed by an exponential
hardening region, arising from the initiation, growth and hardening of plastic zones, and the development
of dense and stable load-bearing structures.

The outcome of these studies is a new contact law, relationships for predicting contact law parameters
from material parameters for both loading and unloading, and guidelines for the analytical treatment of
plastic compressibility in particle contact. The contact law can be employed in discrete element and ho-
mogenisation models to predict macroscopic properties of porous granular materials, while the analytical
framework and qualitative findings can be used in the design of granules.

Keywords: Contact law, Compressible plasticity, Constitutive model, Granule deformation, Finite
elements

1. Introduction

Considerable efforts have been made in recent decades to increase understanding and predictability of the1

behaviour of granular materials using models which represent the spatial arrangement of their constituent2

particles explicitly and compute their interactions. Popular approaches for simulating the bulk mechanical3

behaviour of granular media, including the discrete element method (DEM) (Cundall and Strack, 1979)4

micromechanical models (Fleck et al., 1992) and homogenisation approaches (Chang and Gao, 1995), make5

use of contact laws which describe the relationship between the relative displacement of particle centres and6

contact force resultants for two spheres in contact.7

The problem of determining normal force-displacement relations describing solid spherical bodies in8

contact is of considerable heritage and there exists an extensive literature concerned with their development.9

Pioneering work was carried out by Hertz (1882), who derived a closed-form relation for elastic spheres in10

point contact. Relations describing elastic, plastic and combined behaviour have been formulated by Kogut11

and Etsion (2002), Jackson and Green (2005), among others. Modifications for elastoplastic materials12

including hardening have been described by Shankar and Mayuram (2008) and others. A review of contact13

relations for elastoplastic particles is provided by Ghaednia et al. (2018).14
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However, in the development of elastoplastic contact laws it is assumed that the sphere material exhibits15

classical (von Mises) plastic behaviour, where plastic deformation takes place at constant volume. Thus,16

to date, contact laws which capture the densification behaviour of compressible particles have not yet been17

formulated. The behaviour of compressible particles is of practical interest for many applications. Typically,18

such particles result from agglomeration processes and contain internal voids which may change in size or19

shape, redistribute, coalesce, or close when loading is applied to the particle. The importance of the influence20

of particle internal void fraction on the final deformation state attained by a particles assembly has been21

shown by Johansson et al. (1995), who carried out investigations using instrumented die compaction of22

powders. Consequently, as a preliminary to proposing models for particle materials, a short survey of23

constitutive models for compressible plasticity is warranted.24

The behaviour of granular materials in bulk is commonly described using continuum compressible elasto-25

plasticity models. In the field of soil mechanics, models such as the critical state (Cam-Clay) models (Roscoe26

et al., 1958), Drucker-Prager Cap model (Drucker and Prager, 1952), and Mohr-Coulomb model (Coulomb,27

1776; Mohr, 1900) have gained widespread acceptance in engineering practice and have been adapted for28

other applications, including the modelling of metal powder compaction (see, for example, Trasorras et al.29

(1989)). These models define a set of stresses from which deformations will be fully recoverable on unloading30

(specified by the yield function), a functional (the flow potential function) prescribing the plastic flow that31

may occur when the stress state reaches the boundary of this set, and rules describing how this set changes32

based on the loading history. Typically, isosurfaces of the yield function are prescribed to expand uniformly33

in stress space with increasing volumetric plastic strain (isotropic hardening), but translations of the yield34

surface in stress space with deviatoric plastic strain may also be considered (see, for example, de Boer and35

Brauns (1990)). Even greater flexibility in the definition of appropriate plasticity models can be achieved36

by calibrating generalized plasticity or hypoplastic models. As it is not always practical to conduct triaxial37

tests to determine the Lode angle dependence of plasticity models, it is common to define both elastic and38

plastic components in terms of scalar volumetric and deviatoric measures of stress (related to invariants I139

of the stress tensor and J2 of the deviatoric stress tensor) and corresponding strain measures.40

It is common to combine compressible plasticity models with elastic models employing moduli dependent41

on the compression state. Hyperelastic models in which elastic stresses are obtained from a potential function42

representing stored elastic energy have been developed for granular materials (see, for example, Szanto43

et al. (2008)), which ensure thermodynamic admissibility of the constitutive model. However, in practical44

investigations it is not always possible to determine a unique set of hyperelastic parameters which adequately45

reproduce the material response over the loading range, and often a hypoelastic description is preferred, in46

which elastic moduli are defined for different values of relative density. Relative density is defined as the47

ratio of current (apparent) density to the maximum density attainable by compaction. This is closely related48

to volumetric plastic strain, that is, state variables defined in the plastic part of the model. Relative density49

is often chosen as the only state variable for reasons of simplicity and practical utility; it is straightforward50

to measure and often used in the product specification. Alternatively, Borja (1991) describes algorithms51

for implementing models where elastic moduli are dependent on volumetric elastic strain. However, it52

appears reasonable to suppose that the elastic or unloading response of a granular compact is in some53

way dependent on its consolidation state, characterised by its volumetric plastic strain (Houlsby, 1981) or54

stress state (Duncan and Chang, 1970). A popular approach among investigators modelling bulk powder55

compaction for including dependence on plastic strain is described by Cunningham et al. (2004); Sinka et al.56

(2003) and others, where variation of the total (not incremental) elastic modulus with relative density is57

prescribed and an explicit scheme is used to update the elastic parameters. An alternative, fully implicit58

implementation that improves accuracy and computational efficiency is presented by Edmans and Sinka59

(2019).60

Particles of importance in engineering display a wide variation in mechanical and physical properties. A61

general summary of the mechanical properties of agglomerated particles is provided by Bika et al. (2001) and62

a study of their structure is detailed by Barrera-Medrano et al. (2007). The degree of porosity (quantified63

as one minus relative density) exhibited by agglomerated particles used in pharmaceutical applications64

is comparable in magnitude to interparticle void fractions (Macias and Carvajal, 2012), supporting the65

argument that particle compressibility should be considered in particle interaction models.66
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The evolution of elastic parameters due to densification has received attention from a number of authors.67

Walton (1987) developed an analytical model assuming a random packing of uniform elastic spheres and68

the Hertz contact law, which was used to calculate effective elastic moduli of assemblies of spheres. The69

model predicts that the stiffness of an assembly increases with the product of power-law functions of relative70

density, average number of contacts and applied pressure. Duckworth (1953) proposed that Young’s Modulus71

of porous materials should be an exponential function of relative density. The porous elasticity model,72

implemented in the finite element (FE) analysis code Abaqus (Dassault Systèmes, 2014), uses a quasi-73

exponential dependence of the elastic bulk modulus on volumetric elastic strain.74

Realistic models for the evolution of yield strength should predict that plastic compressibility and75

pressure-sensitivity of yield surfaces vanishes as porosity approached zero, as the material loses the capability76

to deform by reducing void fraction. This implies that hydrostatic yield pressure approaches infinity asymp-77

totically and yield strength in shear approaches a constant, finite value. Several rules have been proposed to78

model the transition between pressure-sensitive and pressure-independent plasticity, most notably the modi-79

fied Gurson model (Tvergaard, 1990), which incorporates a natural limit to hardening such that the material80

bulk yield behaviour approaches that predicted by the von Mises model as full density is approached. Nev-81

ertheless, approximating the dependence of yield strength as an exponential function of relative density has82

been found to be adequate if full density is not approached too closely, as in the following examples. The83

hardening rule for the original Cam-Clay model (Roscoe et al., 1958) prescribes an exponential increase in84

yield strength with relative density. Macias and Carvajal (2012) found an exponential relationship between85

the strength of granules and their density. Maeda and Miura (1999) find that an exponential model is also86

suitable for noncohesive granular materials, such as sand, while Spriggs (1961) found it suitable for porous87

ceramic materials. Die compaction experiments (for example, Cunningham et al. (2017)) have also found88

exponential relationships to be appropriate for describing pharmaceutical excipient powders in bulk.89

In spite of a vast literature concerning contact laws, and the existence of constitutive laws for compressible90

materials, to the authors’ knowledge contact laws for compressible particles have not yet been developed.91

Contact laws for compressible particles are important because in many cases, the porosity of a particle is92

significant in magnitude and influences the load-displacement response appreciably, as demonstrated later93

in this paper. It is proposed that incorporating particle compressibility effects in larger-scale models via94

improved contact laws will increase understanding and predictability of industrial processes. The approach95

and findings of the current work may be compared to other studies investigating the influence of material96

parameters on the load-displacement response of spheres in contact. These include Alcalá and Esqué-de97

los Ojos (2010), who used finite elements to investigate elastoplastic materials with von Mises plasticity98

and power-law hardening, and Russell and Wood (2009), who used analytical methods to investigate the99

influence of the tensile to compressive strength ratio in a damage-plasticity model.100

The article is organised as follows: in Section 2, a new constitutive model including hardening plas-101

ticity and elastic moduli which vary with volumetric plastic strain is introduced as a candidate model for102

compressible particles. In Section 3, a set of general material parameters for describing compressible plas-103

tic models is defined. Published data from die compaction testing are used to determine a representative104

base case and envelope of typical values of material parameters for pharmaceutical excipients, for use in105

subsequent parametric studies. Parametric finite element studies are described in Section 4 which establish106

load-displacement response for particles with a range of material properties. Results are presented in Sec-107

tion 5, including both load-displacement response and development of plastic zones. Results are presented108

for different plasticity models, and for combinations of parameters representing extreme ends of the chosen109

simulation space. A novel contact law for compressible particles is presented in Section 6 based on a com-110

prehensive set of simulations using the new constitutive model. The results of a secondary fitting procedure111

establishing a relationship between material parameters and contact law parameters is shown. Results are112

presented for both loading and unloading, giving expressions suitable for implementation in DEM software.113

Discussion and conclusions are presented in Sections 7 and 8, respectively.114

In this article, “compressible particle” is used to refer to a particle that is made of a material that can115

undergo densification, such as a porous granule. “Particle material” refers to a homogenised representation116

of the particle’s constituents or Lagrangian continuum mechanics model that simulates its behaviour. “Sub-117

particle” denotes any identifiable region within a particle’s volume showing greater continuity in displacement118
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field than the particle as a whole.119

2. Von Mises Double Cap (VMDC) model for compressible material behaviour120

Compressible particles present features similar to those of porous rocks/soils or powder materials un-121

dergoing compaction: 1) their mechanical response is sensitive to pressure, leading to different strengths in122

tension and compression, tensile strength being relatively low; 2) they can exhibit large inelastic deforma-123

tions which involve significant volumetric plastic strain, leading to reduction of porosity (densification) and124

3) both elastic and plastic properties evolve as the material densifies. Therefore constitutive laws capable of125

reproducing such behaviour will be considered for the development of a contact law for compressible parti-126

cles. In the following development, it will be assumed that deformation fields within compressible particles127

can be considered continuous at all times. Consequently, this approach is most appropriate for representing128

particles in which the characteristic internal pore size is small in relation to the particle diameter.129

As starting point for investigation, the Drucker-Prager Cap (DPC) model is considered, using the implicit130

assumption that the constitutive behaviour for the particle is equivalent to that of a compacted powder.131

The yield surface of the DPC model (shown in Fig. 1) is composed of a shear failure line and compaction132

cap. These features allow two key phenomena observed in granular media: the increase in density that can133

occur due to plastic flow when the stress state of the material is on the curved compaction segment of the134

yield surface, and the dilatory plastic flow which can occur when the stress state is on the shear failure135

line, respectively. The latter feature also represents the increasing resistance to deviatoric loading that is136

manifest when hydrostatic pressure increases.137

However, when considering models for materials, for compressible particles, there is a need to strengthen138

the shear failure line. The bonding between sub-particles, of whatever nature, may be stronger in resistance139

to shear, and their shear strength may have less dependence on the normal force than implied by the DPC140

model. This consideration led the authors to propose the von Mises Double Cap yield surface for compressible141

particle materials. The yield surface for the VMDC model is shown in Fig. 1. The proposed constitutive142

model has four key features. Firstly, the model is intended to compute the evolution of ductile, compressible143

materials during plastic yield by integrating a plastic flow rule; it is not intended to describe the current144

set of limit states only. Secondly, the formulation does not introduce indirect dependence of the material’s145

resistance to deviatoric loading on the degree of hydrostatic compaction experienced by the material (as in the146

DPC model); instead, shear strengthening behaviour may be reproduced by defining appropriate hardening147

laws explicitly. Relatedly, the fact that the size and shape of the tensile cap region of the yield surface148

are controlled by parameters that are independent of the degree of compaction allows greater flexibility in149

representing admissible stress states and plastic flow behaviour when hydrostatic stress is tensile. Finally,150

algebraic expressions for the yield function, flow rule and their associated partial derivatives are simpler151

than those used required by the DPC model, implying less risk of transcription errors on implementation.152

Thus, the VMDC model is one of the simplest possible yield surfaces that can describe compressible plastic153

behaviour and is capable of sustaining significant shear loads.154

In this Section, the yield functions, flow potential functions, hardening laws, and evolution laws relating155

yield function parameters to state variables are detailed for the VMDC and DPC models. For comparison,156

the von Mises (VM) model is included, which is later used both in perfectly plastic form (VM-PP), and157

with isotropic hardening. Generalised yield function parameters are employed to characterise plasticity158

models. Hydrostatic yield pressure is denoted with σy, maximum shear strength with Γ and maximum159

tensile strength with Λ. The axis ratio of the elliptical compaction section of the yield surface (where it160

exists) is denoted with ε. Corresponding initial values are denoted with σy0, Γ0, Λ0 and ε0, respectively.161

Model-specific yield function parameters are denoted by πi. Model components are expressed in terms of162

the hydrostatic stress p and equivalent stress q. Yield surfaces for the plasticity models considered in p-q163

space are shown in Fig. 1, where equal values of the shared yield function parameter π4 = σy are used to164

form equivalent surfaces. Expressions for the yield and flow potential functions used in this work are listed165

in Table 2. A summary of all symbols used in this article is provided in Table 1.166
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Table 1 Nomenclature

Abbreviation∗ Meaning

a Hardening exponent (contact law parameter) [-]

Dp Plastic rate of deformation tensor [s−1]

dpv Rate of volumetric plastic deformation [s−1]

E Young’s Modulus [Pa]

Ē Dimensionless stiffness

ea Area error [-]

ep Peak error [-]

F Normal contact force [N]

F̄ Dimensionless normal contact force

k Initial stiffness (contact law parameters) [-]

kH0 Dimensionless contact stiffness (Hertz law)

p Hydrostatic stress [Pa]

q Equivalent stress [Pa]

R Particle radius [m]

VM(-PP) Von Mises (- Perfectly Plastic)

DPC Drucker-Prager Cap

VMDC Von Mises Double-Cap

α Particle unloading exponent [-]

β Particle secant unloading stiffness [-]

Γ Shear strength [Pa]

Γ̄ Ratio of shear to compressive yield strength [-]

δ̄ Dimensionless normal particle displacement

δ̄t Transition displacement (dimensionless) between linear

δ̄H0 Separation displacement (dimensionless) during unloading

ε Eccentricity of compaction ellipse in yield surface [-]

ε Strain [-]

ζ Shear yield strength hardening exponent [-]

η Hydrostatic yield strength hardening exponent [-]

Λ Tensile strength [Pa]

Λ̄ Ratio of tensile to compressive yield strength [-]

ν Poisson’s Ratio [-]

ξ Stiffness increase exponent [-]

ξ1 Poisson’s ratio increase factor [-]

ξ2 Compression cap eccentricity increase factor [-]

πi Yield surface parameters

ρr Relative density [-]

σy Yield strength in hydrostatic compression [Pa]

φ State variable

ω Tensile yield strength hardening exponent [-]

∗zero subscripts indicate initial values of parameters,

superimposed dots indicate pseudotime derivatives
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Table 2
Yield functions (f) and flow potential functions (g) for the models investigated.

Name Yield function/Flow potential function

von Mises (VM) f(p, q,π) = g(p, q,π) =

(
q

π2

)2

− 1

von Mises Double Cap (VMDC) f(p, q,π) = g(p, q,π) =



(
p
π1

)2

+
(
q
π2

)2

− 1, p > 0(
q
π2

)2

− 1, 0 ≥ p ≥ −π3(
p+π3

π4−π3

)2

+
(
q
π2

)2

− 1, p < −π3

Drucker-Prager Cap (DPC) f(p, q,π) =


q + p tanπ6 − π5 p > −pi√

(p+ π3)2 + (q − (1−A)C)2 − π8C −pi ≥ p ≥ −π3√
(p+ π3)2 +B2π2

7q
2 − π7C p < −π3

g(p, q,π) =

{√
(p+ π3)2 tan2 π6 +B2q2 − C p ≥ −π3√
(p+ π3)2 +B2π2

7q
2 − π7C p < −π3

π3 = (π4 − π7π5) / (1 + π7 tanπ6)
A = π8/ cosπ6

B = 1/(1 + π8 −A)
C = π5 + π3 tanπ6

pi = π3 − π8C sinπ6
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A single state variable (φ) is used in all constitutive models considered in the current work, which167

represents volumetric plastic strain in the VMDC and DPC models. The rate-form evolution law for this168

variable is given by Eq. 1,169

φ̇ = −tr(Dp) = −dvp (1)

where Dp is the plastic rate of deformation tensor. In von Mises plasticity, the state variable instead170

represents equivalent plastic strain, and the evolution law is given by Eq. 2,171

φ̇ =

√
2

3
Dp : Dp (2)

In this work, following the results of the experimental work listed in the Introduction, elastic parameters172

and yield surface parameters are described as indirectly dependent on the state variable via the relative173

density, ρr (Eqs. 3a-3d),174

ρr = ρr0e
φ (3a)

π = π(ρr(φ)) (3b)

E = E(ρr(φ)) (3c)

ν = ν(ρr(φ)) (3d)

In von Mises plasticity, relative density remains unchanged when plastic flow occurs, and elastic parameters175

and yield surface parameters are instead described as functions of equivalent plastic strain.176

Compressible plasticity models where elastic moduli vary with plastic state variables have been im-177

plemented by several researchers (Cunningham et al., 2004; Diarra et al., 2018; Shang et al., 2012; Sinha178

et al., 2010; Sinka et al., 2003) using a method that combines an incremental elastoplasticity model with179

explicit update of elastic parameters based on volumetric plastic strain. In this work, a dedicated, fully180

implicit elastoplastic algorithm was used instead. This was implemented in the commercial finite element181

code Abaqus as a user-defined material subroutine (UMAT), allowing improved step-size convergence prop-182

erties over the explicit method. A full description of the algorithm and validation of the implementation is183

presented elsewhere (Edmans and Sinka, 2019).184

3. Experimental identification of material parameters185

3.1. General186

A variety of methods are used to characterise the properties of granules. Although direct testing can187

be used to determine the material properties of compressible particles (for example, Chan et al. (2013)),188

such experiments are difficult to conduct and the results show high variation in properties between different189

samples. Conversely, instrumented die compaction is an established procedure for developing and calibrating190

constitutive models for simulating bulk powder compaction (see Sinka et al. (2001, 2003) or Cunningham191

et al. (2017) for examples). In the current work, it is assumed that values of the elastic modulus and192

hydrostatic yield strength obtained for powders in bulk using instrumented closed-die compaction tests are193

also valid for the particle material.194

3.2. Nondimensionalisation195

As the size and mechanical properties of engineering particles vary widely, it is useful to develop nondi-196

mensional parameters to enable equivalent simulations using different plasticity models to be conducted197

and results to be generalised. The subscript 0 will be used to indicate quantities describing a particle’s198

initial state (before loading is applied). In this work, dimensionless quantities will be derived by dividing199
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by the hydrostatic yield stress in the initial state (σy0) for quantities with units of Nm-2; by the initial200

particle radius (R0) for quantities with units of m; and by πR2
0σy0 for forces. Dimensionless quantities will201

be indicated by a superimposed bar. This nondimensionalisation enables a first-order characterisation of202

compressible plasticity models with three parameters, Ē0, Γ̄0 and Λ̄0, representing initial elastic stiffness,203

initial maximum shear strength and initial tensile strength, respectively, together with the initial cap axis204

ratio ε0 and parameter evolution expressions. It is noted that the parameters Ē and Λ̄ are functionally205

equivalent to the bulk parameters strain index and bonding index, respectively, introduced by Hiestand and206

Smith (1984) as tabletting performance indicators. The relationship between generalised shape parameters207

and yield surface parameters specific to the plasticity models are given in Table 3.208

3.3. A general parameter evolution model for particle material209

Dimensionless strength and stiffness are assumed to have an exponential dependence on relative density,210

due to widespread use of such functions (see Introduction) and are described by the Eqs. 4a-4d,211

σy(ρr) = σy0 exp(η(ρr − ρr0)) (4a)

E(ρr) = E0 exp(ξ(ρr − ρr0)) (4b)

Γ(ρr) = Γ0 exp(ζ(ρr − ρr0)) (4c)

Λ(ρr) = Λ0 exp(ω(ρr − ρr0)) (4d)

where the independent exponents η, ξ, ζ and ω are material parameters. Note that setting ζ = ω = η will
result in self-similar yield surfaces. In addition, the Poisson’s ratio and compression cap axis ratio were
prescribed to vary linearly with the relative density (Eqs. 5a-5b),

ν(ρr) = ν0 + ξ1(ρr − ρr0) (5a)

ε(ρr) = ε0 + ξ2(ρr − ρr0) (5b)

Accordingly, the VMDC and the DPC plasticity models can be described by twelve parameters: initial212

compressive yield strength (σy0), initial relative stiffness (Ē0), two initial yield surface shape parameters213

(Γ̄0 and Λ̄0), four evolution exponents (η, ξ, ζ and ω), four supplementary parameters (ν0, ε0, ξ1 and ξ2)214

and the reference relative density (ρr0). For the von Mises model, the initial deviatoric yield stress is used215

in place of the hydrostatic yield stress as a reference value and the exponent η prescribes its evolution.216

3.4. Analysis of existing experimental data217

The reference experimental data used in this work are primarily those published by Cunningham et al.218

(2017), who conducted instrumented die compaction tests on seven powders commonly used as pharmaceu-219

tical excipients, and Bika et al. (2001), who provided a survey of particle strength data including granules220

produced using both wet and dry agglomeration procedures. Data obtained from instrumented die com-221

paction tests are relevant to the industrial dry granulation processes of “roller compaction” and “slugging”,222

both of which involve dry agglomeration of powders under compression followed by milling. Generalised223

yield surface parameters and evolution parameters defined in the previous two subsections for granules tested224

by Cunningham et al. (2017) were inferred by extracting data points from the published charts using ScanIt225

(AmsterCHEM, 2018) and subsequent curve-fitting. The full set of material parameters found are presented226

in Table 4. Values of Ē0 obtained from Bika et al. (2001) are listed in Table 5. Values of Ē0 obtained from227

both articles are included in Fig. 2b.228

3.5. Parameter space selected for numerical investigations229

Numerical studies described in this work will focus on the VMDC model. Based on the experimental230

values listed in Section 3.4, a set of representative values was selected to implement in a VMDC model. This231

model is subsequently referred to as the base case. The values selected are listed in Table 6. Furthermore,232

the effects of varying the stiffness ratio (Ē0), shear strength (Γ̄0) and tensile strength (Λ̄0) were investigated.233

9



The parameter space was designed to contain the envelope of parameters inferred from previous studies on234

pharmaceutical excipients with respect to these three dimensionless measures. The parameter space chosen235

for investigation was
[
(Ē0, Γ̄0, Λ̄0) ∈ R3 : 3 ≤ Ē0 ≤ 500, 0.25 ≤ Γ̄0 ≤ 1, 0.01 ≤ Λ̄0 ≤ 1.0

]
. This space is illus-236

trated in Fig. 2. The range of stiffness values was selected as the envelope of experimental values (excluding237

metallic powders). Values for shear and tensile strength were selected on the basis of the experimental data238

presented by Cunningham et al. (2017), but in setting up the parameter space, it was considered that both239

values were likely to be higher than those for compressed powders, as intraparticle forces are expected to240

be stronger than interparticle forces if particle integrity is maintained when these two loading actions are241

applied to an assembly.242
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Table 3
Generalised yield surface parameters for plasticity models.

Model Yield surface parameters

VM Γ = π2

DPC Λ = π5/ tanπ6, σy = π4, Γ = π5 + π3 tanπ6, ε = π7

VMDC Γ = π2, σy = π4, Λ = π1, ε = π2/(π4 − π3)

Table 4
Material parameters, as determined from Cunningham et al. (2017). Initial values are presented at relative density
ρr=0.4. Units of initial yield pressure (σy0) are MPa. ∗Negative values indicate that the linear model is
inappropriate for ρr=0.4.

Material σy0 Ē0 Λ̄0 Γ̄0 ξ2 ε0

Dical Emcompress 3.68 202 0.00149 1.139 0.844 0.455
Dical Fujicalin 28.2 36 0.0759 0.944 1.0222 0.645
Lactose DT 0.76 436 0.0925 1.141 1.006 0.304
Lactose 310 NF 0.33 500 0.00168 1.205 0.880 0.314
MCC PH-102 4.83 134 0.187 1.475 2.291 -0.0783∗

MCC PH-200 8.61 51.3 0.0995 1.351 2.007 0.147
Starch 1500 1.49 335 0.00367 1.825 3.0364 -0.103∗

Material η ξ ω ζ ξ1 ν0

Dical Emcompress 9.94 9.82 19.80 18.66 0.367 0.15
Dical Fujicalin 8.25 9.92 5.91 4.86 0.362 0.147
Lactose DT 12.01 8.39 9.45 8.66 0.123 0.172
Lactose 310 NF 13.62 9.60 18.77 14.18 0.231 0.153
MCC PH-102 7.17 4.48 6.27 5.41 0.511 0.119
MCC PH-200 6.11 5.25 6.28 5.43 0.443 0.1472
Starch 1500 16.29 4.96 14.03 15.10 0.878 0.063

Table 5
Values of Ē0 as determined from Bika et al. (2001)

Material Ē0

Silanized glass beads, dry 344.8
Lactose monohydrate, dry 133.3
Monocrystalline cellulose, dry 163.9
Starch, dry 174.3
Alumina, sintered (5% strain) 1357.8
Alumina, sintered (20% strain) 1574.5
Glass beads w/ polyvinylpyrrolidone (PVP) binder 32.0
Sillica sand w/ PVP binder 32.0
Lactose-Avicel-Starch w/ water binder 4.5
Lactose-Avicel-Starch w/ water/ethanol binder 5.3
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Table 6
Base case parameters for variable-stiffness VMDC model at ρr=0.7. Units of initial yield pressure (σy0) are MPa.

Material σy0 Ē0 Λ̄0 Γ̄0 ξ2 ε0

Base case 150 100 0.01 1.0 1.5 0.7

Material η ξ ω ζ ξ1 ν0

Base case 10 7.5 10 10 0.4 0.3

B

CD

GH

FE
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X

+Ē0
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Softest responses
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(a) Parameter space in Ē0, Γ̄0 and Λ̄0
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Ē0

D
at

a
se

t

Calcium phosphate Lactose

Microcrystaline Cellulose (MCC) Starch

Lactose-MCC-Starch w/ water/ethanol binder Silica sand w/ PVP binder

Glass beads w/ PVP binder Silanized glass beads
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Cunningham et al. (2017)

Bika et al. (2001)

Simulation space

(b) Parameter space in Ē0. Experimental data were obtained for dry compacted powders, unless binder is noted.

Fig. 2. The material parameter space considered, displayed using (a) Three dimensionless parameters (b)
Dimensionless stiffness only.
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4. Finite element modelling of particle contact243

An axisymmetric model of a sphere in normal contact with a plane was created using the Abaqus/CAE244

preprocessor. Taking advantage of symmetry, a half-sphere was modelled in contact with a rigid frictionless245

plane. A uniform displacement boundary condition was applied to all nodes on the sphere midplane in the246

vertical direction, leaving other degrees of freedom unconstrained, resulting in a configuration that is equiv-247

alent to contact between two identical spheres. The mesh and boundary conditions used are shown in Fig.248

3. 5372 triangular, axisymmetric (CAX3) elements of roughly equal size were used in an unstructured mesh.249

The constitutive models described in Section 2 were implemented in a user-defined subroutine (UMAT),250

enabling fully implicit integration of stresses and state variables, described elsewhere (Edmans and Sinka,251

2019).252

Contact was implemented using the “contact pairs” algorithm in Abaqus Standard. The Kuhn-Tucker253

normal contact constraints were enforced directly and updated using the finite-sliding tracking algorithm.254

The constraints were discretised using the “surface-to-surface” (mortar) method. A discrete rigid surface255

was used to represent the contact symmetry plane, discretised with elements roughly half the size of the256

elements used for the particle. Overpenetration was found to be negligible in all simulation results.257
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5. Numerical results258

In this Section, qualitative and quantitative results obtained from FE simulations of particle contact259

implementing the models described above are presented.260

5.1. Load-displacement response for particles using different plasticity models261

A comparison between the load-displacement response obtained from the base case VMDC simulation262

and those obtained using other material models with equal stiffness and shear yield strength is shown in263

Fig. 4. The Hertz solution (analytical elastic) and the elastic finite element solution (including geometric264

nonlinearity) are included for reference. By inspecting Fig. 4, it can be seen that the difference between265

responses obtained using the VMDC base case and the VM-perfectly plastic model lies in the hardening266

behaviour and the existence of the tension and compression caps; shear behaviour is identical. The similarity267

between the curves suggests that the presence of compaction hardening may not significantly affect the load-268

displacement response, at least for small to moderate particle deformations and some parameter sets.269

To investigate this further, a systematic study of differences between the VDMC and VM-PP models270

in load predicted was conducted. Discrepancies between loads predicted by the two models for parameters271

covering the entire parameter space (Fig. 2a) are shown in Fig. 6. These results show that the VM-272

PP model significantly underestimates contact loads when stiffness, shear strength and displacements are273

large. Differences are particularly sensitive to the value of the shear strength parameter Γ̄0. Fig. 6 can be274

interpreted as a quantification of the influence of particle compressibility on load-displacement response: as275

high compressibility implies low yield strength in compaction (high Γ̄0), the large positive errors noted in276

these regions in Fig. 6 can be understood to result from compaction hardening. Conversely, discrepancies277

are low at low values of Γ̄0. The shape of the yield approximates the VM surface more closely as Γ̄0, however278

the behaviour of the two models does not become identical, even in the limit, as additional complexities279

in behaviour are present in the VMDC models, such as the variable Poisson’s ratio. Fig. 6 illustrates the280

region of parameter space in which compaction hardening effects on particle load-displacement response are281

significant, and a contact law developed using a compressible plasticity model, rather than the von Mises282

model, should be employed.283

5.2. Plastic zone development in particles for different plasticity models284

Due to the use of compressible plasticity models, material points may exhibit different forms of yielding285

behaviour depending on their stress state. In the VM-PP model, only deviatoric yielding is defined. In286

the DPC model, distinct compaction and deviatoric yield behaviours are possible. In the VMDC model,287

compaction, deviatoric (“shear”) and tensile yielding are distinguished. Compaction yielding is associated288

with an increase in material density and tensile yielding is associated with material dilation. For all fig-289

ures in this Section, compaction, shear, tensile and elastic zones are coloured red, yellow, green and blue,290

respectively. Fig. 7 shows the variation of the total particle volume undergoing each type of yielding with291

time for simulations using the VMDC model with base case material parameters, and how this relates to292

the force-displacement response.293
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Fig. 6. Iso-discrepancy plots with respect to VM-PP load solution at maximum displacement (δ̄=0.5), showing
influence of initial stiffness ratio Ē0, initial shear strength ratio Γ̄0 and initial tensile strength ratio Λ̄0. Simulation
points are marked with crosses (x). The thick black line defines the parameters where the force-displacement
response predicted by the two models overlap. A logarithmic scale has been used on the stiffness axis for all plots.
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Three distinct phases can be identified in the load-displacement response obtained using the VMDC294

material. The first, in which the load displacement response is roughly linear, is associated with rapid295

growth of a compaction zone at the point of contact (Fig. 8a). In the latter part of this phase (Fig. 8c),296

a dilation zone develops on the surface of the particle somewhat ahead of the contact zone. This zone297

expands into the interior and moves further ahead of the contact zone until it reaches the particle midplane.298

Before this point is reached, the effect of dilation on the force-displacement response is small because the299

regions affected are outside the load paths. Meanwhile, Poisson effects lead to large lateral tensile stresses300

developing near the particle midplane. This causes a transitional shear zone to develop between the elastic301

and compaction zones, and later, a secondary tensile zone at the midplane. Elasticity is dominant and the302

two tensile zones coalesce at the end of this phase.303

In the second phase (Fig. 8e), the contact footprint and the dilation zone grow to such an extent that304

the force paths are disrupted, and the softening effect from dilation competes with the stiffening effect from305

compaction to reduce the stiffness of the particle response. The growth of the plastic zones is contained,306

but the zones gradually rearrange so that the load paths can be carried by strong channels of elastic and307

compacting material (Fig. 8g). This allow stiffening from compaction to progress more rapidly and the308

particle response stiffens again. The end of this phase is marked by the disappearance of all remaining309

elastic material.310

In the third phase (Fig. 8i), two zones dominate: a compaction core consisting of all the material above311

the contact footprint, and a dilation zone outside this. The compaction zone only grows slowly in this phase312

and the dominant cause of the stiffening observed in the load-displacement response is the plastic hardening313

associated with increasing density of the material. Due to the exponential hardening of the material, the314

particle load-displacement response also approaches an exponential response asymptotically.315

For comparison purposes, a simulation was carried out using the UMAT subroutine implementing the316

DPC model (with state-variable dependent elastic properties) with the same material parameters, using the317

equivalent yield surface concept illustrated in Fig. 1. A refined model with 21 030 elements was used to show318

plastic zone development more clearly. The load-displacement response and development of plastic zones is319

shown in Fig. 7. In distinction to the VMDC model, in the DPC model, the compaction zone remains small320

and the shear/dilation zone spreads from point just ahead of the compaction zones along the particle axis,321

and then spread out until about 85% of the whole particle is shearing when the simulation terminates (Fig.322

8b, Fig. 8d, Fig. 8f, Fig. 8h and Fig. 8j). Failure occurs, at small values of δ̄, when the particle is unable to323

sustain additional tensile/shear load due to the prevalence of the yielded state. Stiffness of the response is324

65% of the initial linear stiffness in the VMDC model (see Fig. 7). These results show that the shape of the325

yield surface in compressible plasticity models strongly influences particle behaviour. The patterns of yield326

zones shown by the simulations with the DPC model are qualitatively consistent with similar simulations327

carried out by Shang (2012) for a thin disk loaded across its diameter, which also used density-dependent328

parameters.329

5.3. Plastic zone development in particles for VMDC parameter space330

Comparisons between the proportion of the particle volume currently exhibiting each deformation mech-331

anism and load-displacement for cases at the eight corners of the parameter space are shown in Fig. 9. The332

spatial development of plastic zones for these cases are shown in Fig. 10. These results show that widely333

different patterns of plastic deformation within particles (and associated micromechanics) can lead to sim-334

ilar load-displacement behaviour. This observation has the practical implication that force-displacement335

responses measured experimentally may be insufficient to characterise particle response, as they may hide336

a multitude of deformation mechanisms. This can be important because microstructure determines other337

properties of particles or granules, such as tensile strength. In several cases, regions exhibiting elastic be-338

haviour reappear as deformation increases. This indicates the physical phenomenon of the stress state in339

these regions dropping below the yield surface temporarily until plastic flow resumes as loading increases.340

The high-frequency fluctuations in Figures 9e and 9f are numerical artefacts that arise in the computation341

of this phenomenon due to a number of elements exhibiting similar stress states. The oscillating nature342

of the flow states displayed by these elements can be appreciated by examining the instantaneous spatial343

distributions of flow behaviours shown in Fig. 10. For cases B and F, boundaries separating different flow344
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(a) δ̄ = 0.04 (b) δ̄ = 0.002375

(c) δ̄ = 0.08 (d) δ̄ = 0.0059375

(e) δ̄ = 0.125 (f) δ̄ = 0.0081875

(g) δ̄ = 0.20 (h) δ̄ = 0.0089375

(i) δ̄ = 0.40 (j) δ̄ = 0.010930

Fig. 8. Development of plastic zones in equivalent VMDC (left) and DPC (right) models, both with Ē0=100,
Γ̄0=1.0, Λ̄0=0.01, and state variable-dependent elastic moduli. Colouring of plastic flow zones is as defined in
Figure 7.
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behaviours are less distinct than for the other cases. It is noted that no corresponding fluctuations are noted345

in the load displacement response for these cases.346
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Fig. 9. Load-displacement response and development of volume proportion for deformation types at 8 corners of
parameter space illustrated in Fig. 2a.
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6. Contact law347

6.1. Loading348

Based on force-displacement simulation results and consideration of mechanisms, it is proposed that the349

force-displacement response of spherical particles behaving according to the VMDC material model can be350

represented by the following three-parameter contact law (Eq. 6),351

F̄model(δ̄) =

{
kδ̄, δ̄ ≤ δ̄t
kδ̄t exp(a(δ̄ − δ̄t)), δ̄t < δ̄ ≤ δ̄max

(6)

in which an initially linear response (corresponding to the first response phase described in Section 5.2) is352

combined with an exponential hardening response (corresponding to the second and third phases described353

in Section 5.2). As the range of applicability of this expression is limited by the source simulation data, the354

value of δ̄max is 0.5. The values of these parameters were determined for each load-displacement curve using355

a fitting procedure. The accuracy of this approximation was determined for each data set using the error356

area function (Eq. 7)357

ea =

(∫ δ̄max

0
(F̄model(δ̄)− F̄sim(δ̄))2 dδ̄

)1/2

∫ δ̄max

0
F̄sim(δ̄) dδ̄

(7)

and a peak error function (Eq. 8),358

ep = max
0≤δ̄≤δ̄max

(F̄model − F̄sim)/F̄sim(δ̄max) (8)

where F̄sim is the dimensionless load obtained from simulation.359

Values of the contact law parameters were determined using a nested procedure. This procedure used an360

outer Newton-Raphson loop to find the area error-minimising value of δ̄t, containing subroutines finding the361

best-fit parameters for each branch of Eq. 7 independently (by regression analysis) and return the area error.362

Cumulative error distributions for the fits obtained for all 160 simulations with this contact law are shown363

in Fig. 11, showing that median area error and maximum area errors are 0.388% and 3.96%, respectively.364

The worst, 90th percentile, 75th percentile and median cases for peak error are shown in Fig. 12a to Fig.365

12d, respectively.366
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Fig. 10. Contact zone development. The spatial distribution of plastic flow zones are shown for the eight extreme
combinations of material parameters Ē0, Λ̄0 and Γ̄0 designated with the letters A-H in Fig. 2a. Plastic flow zones
are shown at five successive intervals during particle compaction for each case.
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6.2. Yield surface shape study367

Sensitivity studies were carried out to determine the influence of material parameters of the particle368

load-displacement response. The results indicated that Poisson effects (related to parameters ν0 and ξ1)369

have little influence on the load-displacement response. The value of the stiffness evolution exponent ξ also370

does not affect the results greatly. These two observations can be explained by noting that the particle371

is unconstrained in the radial direction during compression and that once significant compaction/dilation372

occurs, the response is dominated by plastic behaviour, and hence variation in the elastic modulus is less373

important. Following this study, 6 material parameters are identified as having dominant influence on the374

load displacement behaviour: the stiffness ratio (Ē0), the yield surface shape parameters (Γ̄0 and Λ̄0), the375

compressive hardening exponent (η) and the cap shape parameters (ε0 and ξ2).376

Following the sensitivity study, a systematic study was carried out to determine the influence of the377

stiffness ratio Ē0 and initial yield surface shape parameters Λ̄0 and Γ̄0 on the parameters of the contact law.378

These parameters were selected for the study due as they are easiest to determine experimentally. Sphere379

contact simulations were carried out for all combinations Ē0 = 3, 4.5, 6, 12, 25, 50, 100, 150, 200, 500;380

Λ̄0 = 0.01, 0.1, 0.5, 1.0 and Γ̄0 = 0.25, 0.5, 0.75, 1.0, resulting in 160 simulations. The distribution of errors381

between the fitted contact law and the results from these simulations is shown in Fig. 11, where it can be382

seen that the median peak error in F̄ is 1.955% and the median area error (as defined by Eq. 7) is 1.03×10-4.383

The variation of the contact law parameters with the material parameters is shown in Figs. 13a - 13c.384

In general, these results show that the influence of particle shear strength (Γ̄0) is relatively strong while385

that of the tensile strength (Λ̄0) is relatively weak, and this is true for contact law parameters governing both386

the initial linear response (Fig. 13a) and the later exponential region (Fig. 13b). Secondly, the hardening387

exponent a decreases sharply between Γ̄0=1.0 and Γ̄0=0.75. By inspecting the development of contact zones388

in these models, it can be seen that the formation of the “double-cone” structure of compacted material389

noted in Section 5.2 is only achieved briefly when Γ̄0=0.75; the structure is absent at the end of the loading,390

which inhibits the particle hardening response.391

In order to use the contact law and unloading law for DEM of compressible particles, material parameters392

can be determined experimentally and k, δt and a can be interpolated from Figs. 13a, 13b and 13c,393

respectively. Relations allowing the direct prediction of contact law parameters from material parameters394

were derived using regression analysis, the results of which are shown in Appendix A.395
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6.3. Unloading396

Unloading of plastically deformed spheres is predominantly elastic but nonlinear. Load-displacement397

relations for unloading of spherical particles which have undergone plastic deformation have been proposed398

by Kogut and Etsion (2002), as well as several other investigators. However, almost all studies are limited399

to predicting unloading behaviour where displacements (δ̄) are small, and consequently are not applicable to400

the particle deformation scenarios explored in the finite element simulations carried out in the current work.401

Results from simulations of unloading from large displacements are shown by Li et al. (2009); however, the402

authors do not provide an explicit force-displacement relation.403

To formulate a contact law for general unloading processes, separate parameters representing the nonlin-
earity of the unloading curve and the relative unloading stiffness were defined. It is assumed that unloading
follows a power-law model (Eq. 9),

F̄unl(δ̄) =

{
0, δ̄ ≤ δ̄0
k(δ̄ − δ̄0)α, δ̄ > δ̄0

(9)

subject to the boundary condition F̄max = F̄unl(δ̄max), where δ̄0 is the nondimensionalised displacement404

at separation. Classical Hertzian unloading is recovered as a special case of Eq. 9, where the nonlinearity405

factor α is 1.5 and k is given by Eq. 10,406

k = kH =
4

3π

(
Ē0

1− ν2
0

)
(10)

Relative unloading stiffness can quantified using the secant stiffness ratio β, defined with Eq. 11,407

β =
δ̄max − δ̄H0

δ̄max − δ̄0
(11)

where the displacement at separation predicted by the Hertz model, δ̄H0 obtained when unloading from the408

same final load, F̄max, can be calculated using Eq. 12,409

δ̄H0 = δ̄max −
(
F̄max
kH

)2/3

(12)

In Fig. 14, sample unloading curves defined by Eq. 9 with varying α and constant β are illustrated.410

By substituting the unloading law into the boundary condition, the unloading law can be expressed in411

terms of the maximum load (Eq. 13).412

F̄ (δ̄) =

{
0, δ̄ ≤ δ̄0
F̄max

(
δ̄−δ̄0

δ̄max−δ̄0

)α
, δ̄ > δ̄0

(13)

A two-dimensional nonlinear least-squares regression was used to determine the parameters α and δ̄0 for413

each unloading curve that minimised errors between the model and the data. This procedure resulted in414

values of the coefficient of determination (R2) with a minimum of 0.998825 and median of 0.999948 across415

all 160 load cases. The stiffness k can then be determined using Eq. 14,416

k =
F̄max

(δ̄max − δ̄0)α
(14)
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Results for α and β for the unloading curves for the eight corners of the parameter space are shown in Figs.417

15a and 15b, respectively. Results for large-displacement elastic unloading and unloading from simulations418

using the VM-PP model are included for reference.419

The unloading stiffness of particles depends conceptually on both properties of the particle material and420

influences related to the geometry of deformation (itself related to material properties). It is evident from421

Figs. 15a and 15b that widely different values unloading stiffness (β) are obtained for different materials422

with the same degree of particle deformation (δ̄). Furthermore, this difference is not explained by different423

values of contact radius (ā) arising in different simulation for a given value of δ̄, as similar values of ā are424

obtained for simulations with different Ē0 but identical δ̄ (Fig. 16). Considering first unloading from a425

nonlinear elastic simulation, it can be seen that both the power-law exponent and secant stiffness ratio426

increase at large deformations, which results from the increasing inaccuracy of the assumptions of the Hertz427

model as deformation increases. Results from VM-PP simulations tend towards those for the nonlinear428

elastic response as Ē0 decreases, and becomes identical when Ē0 is low enough that no yielding occurs.429

Conversely, where Ē0 is large, nonlinearity in the unloading response is reduced and unloading stiffness (β)430

is significantly higher than that predicted by the Hertz law, even though no increase in the material stiffness431

has occurred. This reduction in α was also noted by Etsion et al. (2005) (Eq. 17); no dependence on Ē0432

is present in this version of the relation as an alternative nondimensionalisation is used that obscures the433

effect. In addition, the fact that these authors observe a decrease rather than an increase in nonlinearity,434

as is observed in the results presented in Figure 15b, may be explained that the former were obtained from435

simulations with relatively high values of Ē0 (297-2464). An additional cause is suggested by results from436

Jackson and Green (2005) (Fig. 6), which suggest that average contact pressure increases rapidly in the437

initial stages of contact to maximum value of about 3, then decreases at high displacements to 1, whereas438

in the simplified model, a value of only 1 is approached asymptotically.439

Trends in results for the simulations using the VMDC model are similar to those obtained with the VM-440

PP model at equal Ē0. Results from cases G and C show that the effect of increase in elastic modulus due441

to compaction on unloading stiffness is negligible, despite the large degree of compaction exhibited by the442

particle in these cases. Values obtained for the secant stiffness ratio for cases with reduced shear strength443

(A, E, B, F) are significantly larger than other results with equivalent Ē0. It is therefore proposed that444

the relevant stiffness ratio that influences shear unloading is E/σVMy0 = Ē0/Γ̄0 rather than Ē0, which is 12445

rather than 3 for these cases.446

In summary, the nondimensionalised displacement (δ̄) before unloading and the shear stiffness ratio447

(Ē0/Γ̄0) are found to be the most significant material parameters determining unloading stiffness. However,448

a fuller explanation of the effects shown in Fig. 15b and formulation of an explicit relation between material449

parameters and parameters of the contact law in the large-displacement unloading regime is left for future450

work.451
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7. Discussion452

The modelling approach described in this article relies on the assumption that the response to mechanical453

loading of a compressible particle can be described by a continuum, isotropic, elastoplastic constitutive law454

with initially homogeneous properties. Two issues may be distinguished in relation to this assumption:455

firstly, the degree of continuity and homogeneity of the particle’s initial state, and secondly, the influence456

of crack initiation and growth during particle deformation. Regarding the first issue, there is extensive457

literature in the field of granulation showing how the overall density of produced granules as well as their458

microstructure can be modified by controlling the granulation process type and process parameters. The459

internal structure of the granules can vary between extremes of hollow shells to granules with uniform460

porosity. Greater density can result in the outer regions of manufactured granules. It has been shown that461

it is possible to engineer compacts with different internal density distributions and how this affects their462

strength as measured using standard mechanical testing. The particle contact simulations described in the463

current work could be used to investigate the effects of initial density distributions; however, this is left for464

future work. A recent review and discussion of pore structure and influence on mechanical properties relevant465

to this issue is provided by Markl et al. (2018). Regarding the second issue, the growth of microscopic cracks466

under load could lead to brittle fracture at lower loads than the maximum loads obtained in the simulations467

carried out in this work. For example, single particle compression tests on 0.8mm diameter microcrystalline468

cellulose (a relatively ductile pharmaceutical excipient) particles by Che (2017) found that the average value469

of δ̄ when fracture occurred was 0.225. Maximum tensile principal stress is widely used as a criterion for470

failure due to cracking in continuum models. By predicting the deformation at which such a criterion is471

reached, the models described in this work could be used to relate particle material properties to particle472

strength, and explore the accuracy in predicting failure of different criteria in particles of varying ductility.473

The locations of crack initiation predicted by this model could be compared with experimental findings.474

The maximum deformation of δ̄ = 0.5 used in this work should cover most practical scenarios.475

The proposed contact law is presented in a form ready for DEM implementation for simulation of multi-476

particle systems. For dense systems, the realism of the assumption of independence of contact interactions477

should be considered.478

The findings of this work can be compared with empirical efforts at establishing performance indices479

by Hiestand and Smith (1984), which describe powder behaviour at the bulk level. These authors argued480

that the ratio of elastic stiffness to deviatoric yield limit E0/σ
VM
y0 should influence the strength of compacts481

because it arises in the expression for strain energy release rate that governs crack growth in classical linear482

elastic fracture mechanics theory, though later work concludes that its potential domain of influence is483

restricted to when values are low, as plastic deformation dominates in practical die compaction (Hiestand,484

1997). The current work suggests that the stiffening in the particle load-displacement response noted with485

increase in Ē0 should influence powder compactability. Future experimental work would be needed to486

quantify the relative importance of influences of Ē0 on inter-particle bonds and particle internal bonds487

during bulk compaction; results by Johansson and Alderborn (1996) suggest that the latter is of more488

importance, at least for ductile particles.489

The distinction between continuum material models for describing granular assemblies and those used490

as homogenised representation of compressible particles should be emphasised. It is typically assumed that491

the bulk behaviour of powders undergoing compaction can be described by standard compressible plasticity492

models, such as the popular Drucker-Prager Cap model. However, direct application of such models to the493

particle level is not straightforward, as shear forces acting between particles differ in strength and nature494

from those acting between the sub-particles within them, with the former resulting from adhesion and friction495

mechanisms and the latter from liquid and solid bridges. The numerical exploration of different compressible496

plasticity models carried out in the current work suggests that the VMDC yield surface is more realistic for497

modelling particle material mechanical behaviour than the DPC surface, as the latter predicts that particle498

limit loads will occur at much lower levels than in practice, for fixed values of initial tensile, shear and499

compressive yield strength. This in turn suggests that bonding within compressible particles is closer to the500

isotropic bonding that exists in sintered metals than the pressure-dependent frictional interactions implied501

by the DPC model. The future development of experimental techniques for direct or indirect determination502
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of compressible particle properties may help establish the extent to which this is the case.503

Use of more sophisticated and direct parameter characterisation methods for the particle material model504

would increase the utility of the current work. It is not possible to uniquely assign a material model to a505

particle or determine its parameters on the basis of particle uniaxial load-displacement data alone. As can be506

seen from Figure 6, the shear strength (Γ0) has strong influence on the particle stiffening. A proposed first507

step for further investigation could be to investigate the load-displacement response of a single particle under508

diametral compression loading to establish and quantify the extent of material densification and hardening509

(from Figure 4, it can be seen that some particle hardening is observed even without material hardening).510

Next, an estimate of shear strength could be made using microscopic inspection of the internal deformation511

of deformed particles. More accurate estimates of particle material properties could be achieved with other512

testing methods, such as triaxial testing apparatus for single particles. The authors believe that this type of513

apparatus is most suited to investigate material properties of granules and validate the contact law developed514

in this work. As these tests do not induce uniform stress states in the particles, these tests would still provide515

indirect estimates for the material yield points that might need further simulations to interpret. For particles516

whose internal structure is well understood, it might be possible to prepare larger samples with equivalent517

density and structure to the corresponding particles, and use standard triaxial testing techniques.518

The simulations conducted in this work do not include friction as they are intended to represent normal519

contact between two identical particles. Frictional forces do not arise in this configuration as there is no dif-520

ference in the radial displacement fields between the two particles. However, if experiments were conducted521

to validate the contact law by crushing a particle between two plattens, friction would arise, necessitating522

inclusion of a friction model in the corresponding numerical simulation. In this context, especially when523

large particle deformations occur, frictional effects may become relevant as friction restricts particle lateral524

deformation and, via Poisson effects, increases normal elastic stiffness. Similarly, in yielding material, this525

constraint could cause the hydrostatic component of the the stress to increase, leading to more rapid densifi-526

cation and particle stiffening. This effect has been noted in the different stress states observed in unconfined527

uniaxial compression and closed-die compaction of powders (see, for example, Shang et al. (2012), Figure528

1b). Frictional effects have been ignored in the current work for several additional reasons: (1) its effect529

was judged to be secondary to those of the stiffness and strength ratios; (2) it is difficult to quantify for530

real particles and more complicated still to relate to invariant properties of the particles as it depends on531

a number of factors: particle shape; surface roughness/asperity radius; surface chemistry and presence of532

adsorbtion layer; and presence of moisture or lubrication (3) it can introduce numerical problems of conver-533

gence and mesh distortion, though these can be addressed by using alternative discretisation approaches,534

such as the Material Point Method (Li et al., 2009). The authors believe that, at the current stage of535

development, it is more important to focus on the exploring the effect of the three most important ma-536

terial factors (stiffness:yield strength, shear strength:compressive strength and tensile:compressive strength537

ratios) on the contact law. The determination of contact laws describing relationships between tangential538

deformation/sliding and tangential loading is also desirable but outwith the scope of the current work.539

8. Conclusions540

In this work, the response of particles displaying irreversible deformation under contact was investigated.541

This was achieved by carrying out finite element simulations using a spherical particle geometry under542

the assumption that the mechanical response of the interior can be assumed to be homogenous and can543

be described by continuum flow plasticity models. In order to achieve this, a new constitutive law, the544

VMDC model, was introduced, which separates compressive, deviatoric and dilatory plastic behaviour,545

and incorporates both plastic hardening and increase of elastic moduli with material densification. A546

fully implicit scheme (details described elsewhere (Edmans and Sinka, 2019)) was used to integrate the547

constitutive law. Parameters used for the VMDC model in the studies described in this article were based548

on experimental data obtained for a range of granular materials, supporting the thesis that the trends and549

mechanisms discovered are applicable to real particles, with a wide range of properties, used in different550

industries. Given the generality of the VMDC model proposed, the qualitative findings of this work should551

also be applicable to particles with material behaviour described by other compressible plasticity models.552
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The primary result of this work is a new contact law (Eqns. 6 and 9) and methods for relating parameters553

of the contact law to material parameters, which is presented as a contribution in the field of contact554

mechanics and suitable for implementation in discrete element codes. To the authors’ knowledge, this is555

the first contact law that describes the behaviour of plastically compressible particles. The contact law556

is particularly useful for the analysis of dense particulate systems where individual particles are subject557

to large deformations under compressive, tensile and shear conditions. By mapping an extensive material558

parameter space, this work identifies the set of parameters for which material densification dominates the559

force-displacement response. In addition, results were obtained concerning (1) the spatial development of560

regions exhibiting distinct plastic flow behaviours; (2) the displacement range and region of parameter space561

in which the differences in load-displacement response with that predicted using a metal plasticity model562

become significant, and (3) the influence of material parameters on unloading stiffness and nonlinearity.563

Results in these three categories should be generalizable to non-spherical particles, though this remains to564

be shown.565

The following relationships between material parameters and contact law parameters for VMDC materials566

were found:567

• Increasing material stiffness (Ē0) leads to increased initial linear stiffness in the particle response (k)568

as expected (Fig. 13a), as unyielded material is most widespread in the response regime covered by569

the initial segment of the contact law (Eqn. 6). However, this effect is modest compared with the570

magnitude of the increase of material stiffness.571

• The shear strength (Γ̄0) has a strong positive influence on the rate of hardening (a) of the particle572

at large displacements (Fig. 13b). This occurs because zones of compacted material become smaller573

when the shear strength is reduced. As shown in Fig. 10 compacted zones are surrounded by wide574

regions of shearing material. As discussed later, hardening of the particle response is dependent on575

the establishment of stable load paths transmitting the contact loads on the particle.576

• Both the shear strength (Γ̄0) and tensile strength (Λ̄0) contribute positively to the particle stiffness,577

but the shear strength is significantly more important (Fig. 13a - Fig. 13c). The lower the tensile or578

shear strength is relative to the compressive yield strength, the greater the proportion of the particle579

volume that yields according to the associated mechanism.580

• The parameter δ̄t represents the deformation at which transition between the linear and exponential581

terms of the contact law is centred. Fig. 13c shows that increasing stiffness (Ē0) leads to an earlier582

transition because yielding occurs at smaller strains.583

Results from the finite element simulations were also employed to examine the interaction of internal584

loads developed to carry the contact pressure load. The results (shown in Fig. 9) indicate that the stiffness585

to yield strength ratio, (widely used as a criterion for characterising particles as “elastoplastic” or “plastic”586

in response) retains its importance when compressible plasticity models are used, and governs the proportion587

of the particle that remains in the elastic state. Conversely, the influence of the ratio of tensile strength588

to compressive strength is relatively weak, which is understandable as the loading and geometry tends to589

distribute loads such that hydrostatic pressure becomes tensile only near the two points on the particle590

circumference furthest from the contact points. The results also indicate that plastic deformation of the591

particle may additionally be characterised as “metallic” or “compacting”, depending on the proportion of592

material that exhibits deviatoric and compressive plastic flow, respectively. Results from the parametric593

studies indicate that a high ratio of shear strength to compressive strength is necessary for the development594

of connected regions of continually compacting material, which is a prerequisite for the realisation of the595

hardening capacity of the particle material. For general yield surfaces, this sensitivity suggests that more596

accurate representations of the compaction segment of a yield surface, established by experiments that597

probe the yield surface at several points, may be required to make reliable predictions regarding the load-598

displacement response of compressible particles. Fig. 10 illustrates the development of compacted regions599

clearly: in cases A, E, B and F, a connected region of compacted material never develops; in cases C and G,600
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the development is robust; in case D, development aborts; and in case H, the development is interrupted by601

the development of a central zone of shearing material, but later recovers. This spatial aspect suggests that602

it might be possible to engineer porous particles with a small, low-density (or otherwise weakened) core in603

order to reduce required compaction loads without reducing the tensile strength of the compacts produced.604

As shown in Figures 4, 6, 9h and 9d, load-displacement responses remain close to those predicted from605

simulations using a classical metal plasticity material model, up to displacements of at least δ̄ = 0.1 in the606

cases tested, even when an appreciable quantity of the material is compacting. However, significantly stiffer607

responses may be obtained when stiffness ratio and shear strength ratio are high, and displacements are608

large. These results indicate the condition when use of a contact law considering compressibility, rather609

than one derived from a metal plasticity model, should be considered.610
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Fig. 11. Distribution of errors in fitting contact law for yield surface shape study, taken over all 160 contact
simulations. Error measures are defined by Eqs. 7 and 8, for each load-displacement curve.
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Fig. 12. Example load cases comparing responses from FE models and 3-parameter contact law (a) 100th
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VM-PP (Ē0=500)
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Fig. 15. Unloading law parameters (a) Nonlinearity factor α, (b)
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Fig. 16. Variation of secant stiffness ratio with nondimensionalised contact area
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Appendix A. Relating contact law parameters to material parameters614

The outcome of the parametric study is a model for obtaining the parameters of a contact law (Eq. 6)615

from the particle material parameters Ē0, Γ̄0 and Λ̄0, which can be measured experimentally.616

Predicting k. Using and augmented bilinear fit for k (Eq. A.1),

k(Γ̄0, Ē0) = a1Γ̄0(ln Ē0) + a2Γ̄0 + a3(ln Ē0) + a4 (A.1)

gives a1 = 7.4613 × 10-4, a2 = -4.6910× 10-2, a3 = 1.8243× 10-2, a4 = 0.4262, with R2 = 0.9756.617

Predicting δ̄t. Using a biquadratic fit (Eq. A.2) and excluding data with Ē0 < 4.5,618

δ̄t(Γ̄0, Ē0) = a1Γ̄2
0 + a2

Γ̄0

Ē0
+
a3

Ē2
0

+ a4Γ̄0 +
a5

Ē0
+ a6 (A.2)

gives a1 =-6.487210 × 10-2 , a2 =6.271110 × 10-1 , a3 =-1.9770 , a4 =1.1830 × 10-1 , a5 =9.8478 × 10-1 ,619

a6 = 4.3846 × 10-1, with R2=0.8725.620

Predicting a. Using a biquadratic (Eq. A.3) fit for a, excluding data with Ē0 < 4.5,

a(Γ̄0, Ē0) = a1Γ̄2
0 + a2

Γ̄0

Ē0
+
a3

Ē2
0

+ a4Γ̄0 +
a5

Ē0
+ a6 (A.3)

gives a1 = 4.8807 , a2 = -3.5557 , a3 = 1.5682 × 101 , a4 = -3.9942 , a5 =-8.9363 × 10-1, a6 = 2.8104, with621

R2 = 0.7115.622

Although the general trends for the three parameters can be observed by inspection of Figures 13a,623

13b and 13c, and can be explained with reference to mechanisms, the regression results above show there624

remains unexplained variation in the results. Particularly at low values of nondimensional stiffness, the625

results deviate from the general trends. In particular, two features that require explanation are the fact626

that the transition to an exponential load-displacement response is earlier than expected for models with627

low nondimensional stiffness (Figure 13b) and the fact that the final stiffening rate for shear-strong particles628

is reduced for some values of nondimensional stiffness (Figure 13c). It appears that the persistence of629

elastic behaviour into later stages of the particle deformation makes the development of plastic flow zones630

more complicated. Low values of nondimensional stiffness seem to result in a nonlinear response in the first631

section of the load-displacement response. This can be appreciated by noting the combinations of parameters632

which cause the greatest deviations from the linear exponential contact law (Figure 12). Consequently, a633

modification to the first part of the contact law in line with solutions obtained for fully elastic spheres634

under large displacement, could be considered. The values of the contact law parameters obtained in the635

secondary fittings might then be more regular. The predictive relations listed in this Appendix could be636

improved with the addition of more polynomial terms of the introduction of transcendental terms. These637

ideas have not been pursued in the current work because (1) the three-term linear/exponential contact law638

is simple and provides a good fit for the majority of the load-displacement responses and (2) additional639

mechanisms in the particle deformation that could be linked to additional terms in the secondary fitting640

to give them physical meaning have not yet been identified. It is noted that the internal evolution of the641

particle has been mapped for the eight extreme cases only (Figure 10), where already it is evident that642

there is no universal deformation scheme that can be related to individual cases by a mapping dependent643

on the material parameters, as has been attempted for the VM-PP model; additional evolution patterns for644

intermediate combination should revealed by further investigation.645
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