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Abstract— Popular Blockchain-based cryptocurrencies, like 

Bitcoin, are increasingly being used maliciously to launder money 

on the dark Web. In order to trace and analyze suspected Bitcoin 

transactions and addresses, address clustering methods and 

Bitcoin flow analysis methods are gaining attention recently. 

However, existing methods only focus on Bitcoin addresses and 

flow, and neglect other important information, such as transaction 

structure and behavior features. In order to exploit all useful 

features of transactions, this paper proposes a Bitcoin transaction 

network analytic method for facilitating Blockchain forensic 

investigation based on an extended safe Petri Net. The structural 

features and dynamic semantics of Petri net are used in our 

proposed model to define the static and dynamic features of 

Bitcoin transactions. Nineteen features have been identified to 

define Bitcoin transaction patterns for analyzing and finding 

suspected addresses. Bitcoin gene has been embedded into the 

Petri net transitions to trace and analyze Bitcoin flow accurately. 

Finally, marginal distribution analysis of Bitcoin transaction 

features and data visualization techniques are used to eliminate 

some false positive samples further and to improve the accuracy of 

identifying suspected addresses. The proposed Bitcoin transaction 

network analytic method provides a reliable forensic investigation 

model along with a prototype platform which is beneficial for 

financial security. The efficiency of our proposed method is 

empirically verified based on a real-life case study analysis. 

 
Index Terms—Bitcoin, Blockchain, Petri Net, Forensic 

Investigation. 

I. INTRODUCTION 

ITCOIN has become increasingly popular as an alternative 

form of currency over the last few years [1], and its growth 

has been inevitable since its introduction by Satoshi Nakamoto. 

The market capitalization of Bitcoin has been witnessed to have 

reached more than $200 billion at the end of 2017. Bitcoins are 

not usually associated with their user identities such as user 

names, residential addresses, or other personal identification 

information. Due to this pseudonym nature, Bitcoin is falsely 

regarded as a form of anonymous currency in the Internet, and 

is falsely believed to be facilitating untraceable transactions 

during illegal trades [2]. 

Since its pseudonym nature, Bitcoin has soon been used by 
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illegal activities, such as illegal drugs and weapon trade etc. 

Silk Road [3], which was an online black market and the first 

modern dark net market initiated in 2011, has witnessed an 

increased illegal usage of Bitcoins. It used Bitcoin as a major 

source of transactions, an estimated $15 million dollars 

transactions have been recorded during the period of 3 February 

2012 to 24 July 2012. AlphaBay and Hansa [4] are two of the 

biggest “dark web” contraband marketplaces, used for illegal 

sale of guns, drugs, pharmaceuticals, forged documents, stolen 

card details and other forbidden merchandise, which has also 

witnessed an increased use of Bitcoin for illegal trades. Even 

enforcement agencies found it really challenging to ban and 

lock such dark net markets and so the illegal usage of Bitcoins. 

It is worthy of note that almost 95% of the laundered coins are 

linked to the nine dark-web marketplaces. An operator of BTC-

e [5], which is an exchange used to trade Bitcoins since 2011, 

laundered more than $4 billion worth of illegal funds by people 

involved in crimes ranging from computer hacking to drug 

trafficking. Terrorists have also been associated with Bitcoin as 

early as 2012, using Bitcoin for illegal fund transfers and 

donations. Moreover, Bitcoin is not recognized as lawful 

electronic currencies at present, thus defined regulations for 

using Bitcoin are hardly existing till now. Ajello [6] highlighted 

the importance of anti-money laundering of Bitcoin from a legal 

aspect. Similarly, Perri Reynolds and Angela S.M. Irwin [7] 

discussed the necessity of Bitcoin tracing and analysis from a 

legal perceptive. 

This necessitates an in-depth analysis of Bitcoin transactions 

for the purpose of detecting and acting against illegal 

transactions. Bitcoin transactions are stored on Bitcoin 

blockchain publicly. It means if a criminal Bitcoin address is 

known, Bitcoins passed the address can be tracked. Bitcoin 

exchanges are usual places of changing Bitcoins to fiat 

currencies. Generally, Bitcoin exchanges are required by "know 

your customer" law to collect personal information. If some 

coins are found being transferred from a suspicious address into 

an exchange's address, the identity of the suspect can be found. 

Therefore, analyzing the suspected addresses is very important 

for identifying suspects [8]. 

Tracking Bitcoins associated with a known address is not 
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usually an issue. However, tracking Bitcoins has been 

complicated, since criminal’s addresses are often cloudy and 

uncertain. To this end, this paper is aimed at distinguishing 

suspected addresses based on common transaction patterns and 

features. In general, some transactions might exhibit similarities 

and common patterns. For example, Bitcoin transactions being 

used to gather Bitcoins usually associate multiple input 

addresses and an output address. Analyzing the links between 

such input and output addresses could present useful insights 

when tracking unknown and suspected transactions. But such 

an analysis includes other complexities such as defining the 

Bitcoin transaction features, effectively identifying the features 

those can provide useful and meaningful information whilst 

identifying suspects, effectively tracking Bitcoins passed by 

multiple suspected addresses, and importantly resolving such 

analytics requirements with a reasonable time-scale to allow 

necessary actions, despite the nature of massive volumes of 

Blockchain data.  

With this in mind, this paper proposes an extended safe Petri 

net [9] based model to simulate the Bitcoin transactions, which 

is called Bitcoin Transaction Net (BTN). Its structural features 

and dynamic semantics are used to describe both the static and 

dynamic features of Bitcoin transactions, respectively. 

Nineteen static and dynamic Bitcoin transaction features have 

been identified to define Bitcoin transaction patterns for 

analyzing and finding suspected addresses by our pattern 

matching method. Another key contribution of our method is 

the development of the Bitcoin gene that is embedded into Petri 

net transitions. Three gene operations, called merging, splitting 

and dyeing, are defined to evolve genes when a transaction 

occurs. Bitcoin gene indicates whether an address has a 

relationship with some specific addresses, along with 

describing the strength of such relationships. Bitcoin gene can 

be efficiently used to trace and analyze the flow of Bitcoins 

easily and accurately. Furthermore, this paper proposes a set of 

match rules to find transactions and obtain suspected addresses, 

based on the combinations of match rules. Finally, a marginal 

distribution analysis of transaction pattern features is 

incorporated into the proposed model to remove part of false 

positive samples and enhance the accuracy of the identified 

suspected addresses. 

 The remainder of the paper is arranged as follows: Section 

II presents an analysis of related works based on categorizing 

Bitcoin transaction analysis methods. Section III describes our 

proposed framework to formalize transaction patterns and to 

analyze Blockchain data. Section IV presents the formal 

modelling of Bitcoin Transaction Net and Section V presents 

the static and dynamic transaction features. Section VI presents 

our methodology of analyzing Bitcoin Transaction Pattern and 

Section VII details the pattern analysis, along with presenting a 

case study in Section VIII. Section IX concludes this paper 

along with outlining our future research directions. 

II. RELATED WORK 

Early studies of the Bitcoin transaction analysis mainly 

focused on Bitcoin address cluster analysis that aims to cluster 

addresses owned by a user or an entity. For the forensic analysis, 

if a Bitcoin address a is suspected, and its owner is unknown. 

However, if the owner of another Bitcoin address b is known 

and b is located within the same cluster of a, then owner of a 

can be deduced. Reid and Harrigan [8] partitioned addresses 

into a cluster when these addresses are used as inputs of a 

transaction. For example, if addresses a and b are used as inputs 

of transaction t1, a and b are clustered into a single cluster. If 

addresses b and c are used as inputs of transaction t2, then c is 

clustered into the same cluster of a and b. This input address 

clustering method is used by many studies [10-14]. Ron and 

Shamir [10] used this clustering technique to create a contracted 

transaction graph to analyze the Bitcoin flow. Fleder et.al.[11] 

used the Bitcoin address clustering method to construct a user 

graph and used PageRank to find important users. Another 

address clustering method called change address clustering 

method or shadow address clustering method has also been 

widely used to collect back the “change” resulted from any 

transaction issued by the user (input addresses). Androulaki 

et.al.[12] used the input address clustering method and shadow 

address clustering method to cluster addresses. Meiklejohn 

et.al.[13] also used the input address clustering method and the 

change address clustering method to cluster addresses and 

evaluated the accuracy of the change address clustering method. 

Spagnuolo et.al.[14] presented a modular framework, called 

BitIodine, which parses the blockchain, clusters addresses that 

are likely to belong to a same user or group of users, and 

visualizes complex information extracted from the Bitcoin 

network. BitIodine also uses the two clustering methods to 

cluster addresses. Meiklejohn et.al.[13] pointed out that the 

change address clustering method has been less robust in spite 

of the changing patterns within the network, because it is not 

easy to identify the change addresses. Harrigan and Fretter [15] 

exhibited the efficiency of the input address clustering method. 

Therefore, in our framework, only the input address clustering 

method is used. The function of address clustering in forensic 

analysis is that once an address is suspected in a cluster, other 

addresses are also suspected because they are very likely to 

belong to the same user or group. However, address clustering 

method cannot identify and analyze transaction pattern.  

Another aspect of Bitcoin transaction analysis is the Bitcoin 

flow analysis. Many existing flow analysis methods [16-19] 

have used the clusters of addresses as vertexes, and transaction 

relationships between vertexes as direction edges. Bitcoins 

usually flow along edges from vertexes to vertexes. Zhao and 

Guan [16] proposed a classic Bitcoin flow analysis method, 

where they firstly clustered Bitcoin addresses and then 

connected the clusters by transaction relationships. Finally, the 

graph has been analyzed by the visualization methods and 

statistical methods. Maesa et al [17] further used this graph to 

analyze and verify the assumption whether "the rich get richer". 

Maesa et al [18] used the graph to analyze classical graph 

properties like densification, distance analysis, degree 

distribution, clustering coefficient and several centrality 

measures, but they have not addressed the Bitcoin trace issue. 

Ober et al [19] used the graph to analyze the features of the 

graph structure that could affect anonymity. However, all such 

works have not given enough emphasis on analyzing Bitcoin 
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transaction patterns. 

Petri net has been used to analyze Bitcoin transactions [20, 

21]. In the Petri net model, Bitcoin addresses are modeled as 

the places in Petri net and Bitcoin transactions are modelled as 

transitions in Petri net. Pinna et al [20] used input address 

clustering method in the Petri net model to cluster addresses and 

found common behavior pattern, such as one-time usage of a 

given address etc. Pinna [21] used Petri net to analyze 

disposable addresses which are the addressed used only once. 

The works of [21] postulated that transactions form chains and 

the lengths of these chains are characterized by a power-law 

distribution. These two models used the Bitcoin addresses as 

Petri net places/inputs of Bitcoin transactions. However, in the 

Bitcoin transaction net, inputs of Bitcoin transactions are not 

usually the addresses, but they are coins. Therefore, such 

models cannot efficiently analyze and quantify transaction 

features. This paper proposed an extended form of Petri nets for 

the Bitcoin transaction analysis, which organically integrates 

important bitcoin features, such as transaction, input and output, 

address, bitcoin quantity, transaction time and so on. 

In contrast to the existing methods which aim to find 

behavior features behind Bitcoin transactions, our method is to 

define transaction patterns by transaction features and to find 

suspected addresses based on the patterns. Monaco [22] 

presented and verified an assumption that identifying and 

verifying Bitcoin users based on the observation of Bitcoin 

transaction features over time holds true. Based on analyzing 

the behavioral features using 366 user samples, this work 

concluded that the behavioral patterns observed over time can 

be used to deprive a user, but this is not further developed into 

a model. Similar to Monaco [22], Harlev et al. [23] collected 

434 training samples and used the supervised machine learning 

method to classify unidentified entities into known classes. 

However, in the real world, criminals intend to hide their 

Bitcoin addresses. It is difficult to find their addresses in order 

to analyze their transaction features, which limits their practical 

applicability due to the lack of known samples. Different from 

their methods, our proposed method does not need such known 

samples. Our proposed method can use any known information 

such as information from information agencies to define a 

transaction pattern and to find addresses matching the pattern. 

Data Visualization methods have also been used for Bitcoin 

transaction analysis. Moser et al [24] tested the anti-tracing 

effectiveness of coin mixing services. Battista et al [25] 

developed a data visualization tool called BitConeView to 

present the effectiveness of coin mixing services. Christin [26] 

performed a comprehensive measurement analysis of Silk Road 

related data collected through web crawling. These 

visualization methods have been used to illustrate the data 

characters. Kondor et al [27] and Maesa et al [18] analyzed the 

structure of the Bitcoin transaction network by measuring the 

network characteristics and presented the results through 

various visualization methods. McGinn et al. [28] presented a 

systemic top-down visualization of Bitcoin systems, which can 

find the transaction patterns in a block through visual 

perception. But this method cannot find small transaction 

patterns behind massive transactions. Bistarelli et al [29] 

developed a tool called BlockChainVis that employs techniques 

from visual analytics to filter out undesired information in order 

to visually analyze the transactions. BlockChainVis allows 

users to define simple rules to filter out undesirable information. 

[24-26]focused on the visualization of some features of the 

Bitcoin transactions for specific purposes, while [18, 27, 28] 

tended to visualize the overall Bitcoin Blockchain. Therefore, 

some details are easy to be neglected. The works of [29] added 

customizable filters to find some specific transactions or 

addresses. Similar to [22], this method considered transaction 

features separately and ignored defining a transaction pattern. 

Visualization methods are usually dependent on visual 

perception to find results. However, due to the limitation of 

human brain capacity, some results tend to be neglected. In our 

method, matching of transaction pattern is processed by the 

pattern matching algorithm, not by visual perception. Therefore, 

it is more efficient, and hardly neglect details. Our proposed 

method uses visualization techniques to visualize marginal 

distributions of various transaction features to filter part of false 

positive samples, but not to analyze transaction features directly. 

Therefore, our visualization method does not inherit the 

drawbacks of the aforementioned visualization methods. 

[30] is one of our preliminary work presented in a conference 

paper that studied mappings between bitcoin transactions and 

Petri Net and mappings between transaction features and Petri 

Net properties. It provides feasibility for the method proposed 

in this paper.  

III. THE FRAMEWORK OF THE PROPOSED METHOD 

Our proposed method uses clues to formalize a transaction 

pattern and obtains addresses related to the pattern by analyzing 

Blockchain data. Fig. 1 presents the framework of our proposed 

method. 
 

Bitcoin block chain data

Bitcoin transaction data

stored in database

parse

Bitcoin transaction net

create

Address cluster information

stored in database

cluster

Preprocessing Transaction pattern 

information(Clue)

Bitcoin 

transaction net

BTN with feature 

information

Transaction 

pattern

formalize

Analyze transaction 

pattern

Output addresses
Analyze BTN

Analyze marginal 

distributions of 

address features

Final addresses  
Fig. 1. The framework of the proposed method. 

 

Our proposed framework includes a pre-processing 

procedure. It contains three steps:  

1) The first step is to parse transaction data from Bitcoin 

Blockchain data and save parsed bitcoin transaction 

information to a database. An open source tool called 

BitcoinDatabaseGenera-tor [31] is used to save the data onto 

the database; 

2) The second step is to read the transaction data from the 

database and to create a Bitcoin Transaction Net (BTN); The 

creation procedures is introduced in section IV; 

3) The third step is to cluster Bitcoin addresses and store the 

cluster information in the database. The input address clustering 
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method used by [8, 10-14] is adopted in our framework. The 

pre-processing procedure can be processed incrementally when 

new blocks are generated. The pre-processing results can be 

used by different case’s analysis. 

When analyzing a case, the BTN needs to be created by 

reading the transaction data from the database. Next step is to 

analyze the BTN to obtain various features. In this step, case 

information (clue) and address cluster information are used to 

set up the initial state of bitcoin gene for Bitcoin tracing. Petri 

Net analysis technics are used to analyze the BTN. After the 

analysis, a BTN with various feature values is obtained. 

After that, transaction pattern information (clue) is 

formalized. The formalized transaction pattern is matched and 

analyzed with the BTN with feature values. Some addresses 

related to the pattern are delivered as output. Finally, the 

marginal distribution analysis method is used to analyze the 

features of output addresses to eliminate some false positive 

samples. 

IV. FORMAL MODELING OF BITCOIN TRANSACTIONS 

A. Bitcoin transactions 

Bitcoin transactions are stored in a growing chain of blocks. 

There are two types of Bitcoin transactions such as coinbase 

transactions and regular transactions. A coinbase transaction 

generates Bitcoins. It has no input, but has at least one output. 

A regular transaction transfers coins between addresses. It has 

at least an input and at least an output. Outputs of a given 

Bitcoin transactions are usually considered as the inputs of the 

following transactions. A transaction output contains some 

Bitcoins that are locked by an address. Users can spend the 

Bitcoins if they have the private key of the address. 

p0

t0

t1

t2

t3

p1

p2

p3

p5

p4

a0

a3

a2

a1

2 2 1
1

1 1 1 1

1
 

Fig. 2. A simple presentation of connected Bitcoin transactions that contains 4 

transactions, 6 outputs and 4 addresses. 

 

Fig. 2 illustrates an example of simplified and connected 

Bitcoin transaction. It contains 4 transactions (t0, t1, t2 and t3, 

among them, t0 and t1 are coinbase transactions), 5 outputs (p0, 

p1, p2, p3, p4 and p5) and 4 addresses (a0, a1, a2 and a3). p0, p1, 

p2, p3, p4 and p5 contain 2, 1, 1, 1, 1 and 1 Bitcoins, respectively. 

They are locked by a0, a1, a0, a2, a0 and a3 respectively. Note 

that an output can only be locked by an address; an address can 

lock many outputs. 

B. Bitcoin transaction net 

An extended safe Petri net based formal model is proposed 

to describe connected Bitcoins transactions so that Bitcoin 

transactions can be analyzed through Petri net static and 

dynamic properties. 

Definition 1. Formally, a BTN for a given list of Bitcoin 

transactions is an 8-tuple N=(P, T, F, A, , , , M0) where P, T 

and A denote finite sets of places (Bitcoin transaction 

outputs/inputs), transitions (Bitcoin transactions), and Bitcoin 

addresses, respectively. F(PT)(TP) is a set of arcs 

between places and transitions. : P→R is a value function on 

places, where R denotes real numbers, and (p) is a number of 

Bitcoin quantity locked in the place P (transaction output).  

:P→A is an address mapping function on places and  (p) 

denotes an address associated with p. :T→T is a timestamp 

function on T, where T denotes timestamps, and (t) denotes 

timestamp of Bitcoin transaction t. M0 is an initial marking, 

where M0(p) is the number (0 or 1) of tokens in place p. 

Coinbase transactions do not have inputs, while a transition 

without input place in Petri nets is always fireable. In order to 

limit the fireable numbers of these transitions to 1, an input 

place is added to each coinbase transactions so that Bitcoin 

transactions can be analyzed with standard Petri net semantics. 

These added places are mapped into unique virtual addresses, 

respectively. The Bitcoin quantity of an added place of a 

coinbase transaction is the sum of Bitcoin quantities of its 

output places. In an initial state, if p has no input transition (i.e., 

p is an input place of a coinbase transaction), then M0(p)=1, 

otherwise M0(p)=0. 

Consequently, the transactions shown in Fig. 2 can be 

constructed as a BTN shown in Fig. 3. p6 and p7 are the newly 

added places with a token, respectively. Their Bitcoin quantities 

are 2 and 1, respectively. They are mapped to addresses a4 and 

a5, respectively. 

p0[a0][2]

t0

t1

t2

t3

p1[a1][1]

p2[a0][1]

p3[a2][1]

p5[a3][1]

p6[a4][2]

p7[a5][1]

p4[a0][1]

 
Fig. 3. The BTN of the Bitcoin transaction  

 

For convenience of analysis, Table 1 summarizes notations 

of BTN used in this paper. , ⸋ and * denote sets of places, 

transitions and addresses. For example, In Fig. 3, t0={p6}, 

t0={p0}, *t0={a4}, t0*={a0}, ⸋p0={t0}, p0⸋={t2}, a0={p0, p2, 

p4}, ⸋a0={t0, t2, t3} and a0⸋={t2}. 

 
TABLE 1. NOTATIONS OF BTN 

No Notation Meaning 

1 t={p|(p, t)F} The set of input places of transition t  

2 t={p|(t, p)F} The set of output places of transition t 

3 a={p| (p)=a} The set of places associated with the 

same address a 

4 ⸋p={t|(t, p)F} The set of input transitions of place p 

5 p⸋={t|(p, t)F} The set of output transitions of place p 

6 ⸋a= 

{t| (p)=at⸋p} 

The set of transitions whose output 

places are mapped to address a 

7 a⸋= 

{t| (p)=atp⸋} 

The set of transitions whose input 

places are mapped to address a 

8 *t={ (p)|pt} The set of addresses associated with all 

the input places of t 

9 t*={ (p)|pt} The set of addresses associated with all 

the output places of t. 
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V. TRANSACTION FEATURES 

A. Static and Dynamic Features 

This paper introduces 19 features to define transaction 

patterns. Other features can be added into our framework 

according to the requirement of analysis.  

Table 2 presents the 19 features and their definitions 

including 6 new notations. First and last transaction time of 

address a is denoted by f(a) and l(a). a.balance and a.received 

denote coin balance and the total received coin amount of an 

address a. The Bitcoin gene is a novel feature proposed in our 

paper to analyze the Bitcoin flow. Its computations and 

evolvement will be introduced in the following subsection. 

Coins' gene of a.balance and a.received are represented by 

a.balance.gene and a.received.gene.  

Features 1-14 are the static features which can be obtained 

from the structure of BTN. Features 15-17 are the dynamic 

features which can be analyzed by the firing of BTN, which will 

be introduced in the next section. Features 1-6 are the features 

related to the transaction (transition); Features 7-13, 16 and 17 

are the address features; Features 14 and 15 are the place 

features; Features 18 and 19 are the gene features. 
 

TABLE 2. 19 FEATURES 

No Feature Formal 

expression 

1 Transaction time of transaction t (t) 

2 Number of inputs of transaction t |t| 

3 Number of outputs of transaction t |t| 

4 Number of input addresses of transaction t |*t| 

5 Number of output addresses transaction t |t*| 

6 Transferred coin amount of transaction t ( )
p t

p
  

7 Number of times that address a has 

occurred in all the transaction outputs 
|a| 

8 Number of deposit transactions of address 

a 

|⸋a| 

9 Number of withdrawing transactions of 

address a 

|a⸋| 

10 First transaction time of address a f(a)=(t) such 

that (t)≤(ti) for 

t, ti⸋aa⸋ 

11 Last transaction time of address a l(a)=(t) such 

that (t)≥(ti) for 

t, ti⸋aa⸋ 

12 Number of incoming addresses that 

transfer coins to address a 

|{a'| (p)=a 

t⸋pa'*t}| 

13 Number of outgoing addresses to which 

coins are transferred from address a 

|{a'| (p)=a 

tp⸋a't*}| 

14 Coin amount of transaction output p (p)  

15 Whether an output p is spendable M(p) 

16 Coin balance of an address a a.balance 

17 Total received coin amount of an address 

a 

a.received 

18 Coins' gene of a.balance a.balance.gene 

19 Coins' gene of a.received a.received.gene 
 

B. Bitcoin Gene 

The notion of “Bitcoin gene” is proposed to track the 

origination and distribution of balance (received) coins of a 

given address. This is analogous to a “gene” in biology, which 

is transferred from a parent to offspring and can be used to 

determine some characteristics of the offspring. We use a gene 

to indicate where the Bitcoins passed through a given address 

(called dyeing address) have flown and to determine the 

relationship strength between the dyeing address and other 

addresses. In the Bitcoin system, only addresses are related to 

users. There are two address features related to coins, which are 

a.balance and a.received. Therefore, a.balance.gene and 

a.received.gene are the two gene features used in our method. 

Definition 2. A Bitcoin gene G is a set of DNAs, {(d0, q0, 

w0), …(dn, qn, wn)}, where di, qi, and wi are the DNA name, 

Bitcoin quantity, and weight in DNA (di, qi, wi), respectively. di 

is either a dyeing address or a dummy name , didj (ij), and 

∑𝑤𝑖=100%. ∑𝑞𝑖 represents the quantity of Bitcoins with the 

gene G that we analyzed.  

The gene definition in Definition 2 is called a row-definition 

of gene, which is inconvenient for gene operations. Therefore, 

the gene {(d0, q0, w0), …(dn, qn, wn)} is transferred into a matrix 

shown in Table 3 and a col-definition of gene is proposed in 

Definition 3. 
TABLE 3. THE MATRIX OF BITCOIN GENE 

 D (di)  (di)  

( d0  q0 w0 ) 

… … … … … 

( dn qn wn ) 

 

Definition 3. Given a Bitcoin gene G={(d0, q0, w0), …(dn, qn, 

wn)}, it can be defined as a 3-tuple G=(D, , ), where D=∪ 𝑑𝑖; 

 is a function from D to positive integer , (di)=qi; and  is a 

function from D to (0,1], (di)=wi, ∑𝑑𝑖=1.  

Three gene operations, merging, splitting and dyeing are 

defined to evolve and propagate Bitcoin genes when a 

transaction occurs. Assuming G1=(D1, 1, 1), G2=(D2, 2, 2), 

G3=(D3, 3, 3), their definitions are as follows. 

------------------------------------------------------------------------ 

Definition 4. Given G1 and G2, G1 merging with G2 is 

denoted as G1⊥G2. Assume G3=G1⊥G2, then, 

1. D3=D1D2; 

2. 3={(d, y)|dD3y=1(d)+2(d))}; (Note that ignore (d) 

if dD.) 

3. 3={(d, z)|dD3z=
3

3 3( ) / ( ( ))
d D

d d 


 }. 

------------------------------------------------------------------------ 

The merging operation is used to merge Bitcoin genes. Line 

1 depicts the union of D1 and D2 as the DNA name set of the 

merged gene. Line 2 represents the Bitcoin quantity of each 

DNA in the merged gene as the sum of Bitcoin quantities with 

the same DNA in G1 and G2. Line 3 represents the percentages 

of each DNA in the merged gene as the quotient of Bitcoin 

quantity in a DNA divided by the total Bitcoin quantity 

contained in G3. 

------------------------------------------------------------------------ 

Definition 5. Given G1 and n+ (
1

1( )
d D

n d


  ), G1 

splitting with n is denoted as G1\n. Assume G2=G1\n, then, 

1. D2=D1; 

2. 2={(d, y)|dG2y=1(d)n}; 

3. 2=1; 
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4. If 
1

1( )
d D

n d


  , G1={D1, {(d, y)|dG1y=1(d)-1(d) 

n}, 1}; 

5. If 
1

1( )
d D

n C d


=  , G1=. 

------------------------------------------------------------------------ 

The splitting operation is used to split gene homogeneously. 

Note that the splitting operation gives a result of G2 and affects 

G1 simultaneously. Line 1 sets the DNA name set of the split 

gene which is equal to the DNA name set of G1. Line 2 sets 

Bitcoin quantity of each DNA in G2 to 1(d)n. Line 3 sets the 

percentage of each DNA in G2 equal to the one in G1. Line 4 

and Line 5 define how the splitting operation affects G1. Line 4 

denotes that if the split Bitcoin quantity is less than the Bitcoin 

quantity of G1, DNA name and its percentage of each DNA in 

G1 maintain the same Bitcoin quantity of each DNA in G1 and 

is set to 1(d)-1(d)n. Line 5 is used to deal with a specific 

case, where if the split Bitcoin quantity equals to the Bitcoin 

quantity of G1, namely all DNAs would be moved out from G1, 

G1 is empty. 

------------------------------------------------------------------------ 

Definition 6. Given G1 and a DNA d, G1 being dyed by d is 

denoted as G1d. Assume G2=G1d, then, 

1. D2={d}; 

2. 3={(d, 
1

1( )
d D

d


 )}; 

3. 3={1}. 

------------------------------------------------------------------------ 

If an address a is a dyeing pool, it should have a dyeing DNA. 

All Bitcoins transferred to the address a should be dyed by the 

DNA. Line 1 changes the DNA name set to {d}. Line 2 sets the 

Bitcoin quantity of d to the Bitcoin quantity of G1. Line 3 sets 

the percentage of d to 100%. 

VI. ANALYSIS OF BTN 

A. The initial state of BTN 

The dynamic features are obtained through the firing of BTN 

transitions to simulate Bitcoin transaction occurrences.  

Algorithm 1 below describes the way of transforming a 

Bitcoin Blockchain into a BTN, along with setting up its initial 

values. 

--------------------------------------------------------------------------- 

Algorithm 1. Construction of BTN from a Bitcoin 

Blockchain. 

Input: A block chain (a list of blocks). 

Output: (P, T, F, A, , , , M0) 

1. For each block 

2.     For each Bitcoin transaction t in the current block 

3.         T={t}T; 

4.         (t)=the current block’s timestamp;  

5.         For each output p of transaction t; 

6.             P={p}P; 

7.             M0(p)=0; 

8.             (p)=Bitcoin quantity locked in the output; 

9.             F={(t, p)}F; 

10.              (p)=address a extracted from the ScriptPubKey field of 

output p; 

11.             A={a}A; 

12.             a.balance=0; 

13.             a.received=0; 

14.             a.balance.gene=; 

15.             a.received.gene=; 
16.         End for; 

17.         For each input p of transaction t 

18.             F=(p, t)F; 

19.         End for; 

20.     End for; 

21. End for; 

22. For each t{t| |t|=0} 

23.     Create a virtual and unique place p and P={p}P; 

24.     M0(p)=1; 

25.     F={(p, t)}F; 

26.     (p)=
'

( ')
p t

p
 ; 

27.     Generate a virtual and unique address a and A={a}A; 

28.      (p)=a; 

29.     a.balance=(p); 

30.     a.received=(p); 

31.     a.balance.gene={(, (p), 100%)}; 

32.     a.received.gene={(, (p), 100%)}; 

33. End for 

------------------------------------------------------------------------ 

Lines 1-21 parse data from the Blockchain and construct a 

BTN. Line 3 adds a new transition to the transition set. Line 4 

uses the block's timestamp as the transaction's timestamp since 

the Blockchain data does not save a transaction's timestamp. 

Lines 5-16 process the outputs of the transaction. Line 6 creates 

a new place for the output. Line 7 state that its usability is false, 

namely, it cannot be used as an input of other transactions. Line 

8 sets up the value of (p), which can be obtained from the 

Blockchain data. Line 9 adds (t, p) to F. Line 10 sets up the 

mapped address of  (p), which can be obtained from the 

ScriptPubKey field of output in the Blockchain. Line 11 adds 

the address a to the address set A. Lines 12/13 and 14/15 set up 

the balance/received coins and balance/received gene to 0 and 

empty. Lines 17-19 add each input (p, t) to F. 

Lines 22-33 add a virtual input and a virtual address to every 

coinbase transaction and configure the relative values. Line 23 

creates a virtual and unique place/input and adds it to a place 

set. Line 24 sets up the input as usable, namely, it can be used 

as an input of a coinbase transaction. Line 25 adds (p, t) to F. 

Line 26 sets up the value of (p) to the sum coin quantities of 

outputs of the coinbase that uses the place as input. Line 27 

generates a virtual and unique address and adds it to the address 

set. Line 28 sets up the map value of  (p) to the address. Lines 

29/30 and 31/32 set up the balance/received coins and 

balance/received gene to the coin quantity of the input and {(, 

(p), 100%)}. {(, (p), 100%)} as a row-definition of gene. Its 

col-definitions are {{}, {(, a.balance)}, {(, 100%)}}, where 

 represents a background DNA. Before Bitcoins are mined, 

their genes usually stay pure and unpolluted. The pure genes 

contain only one DNA , which are usually ignored as they are 

not related to any suspected address.  

By implementing Algorithm 1, a BTN is created, which can 

be fired to simulate transaction occurrences and calculate the 

features' values. 

Before the BTN firing process, each dyeing DNA of every 
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address is setup to empty (dyeing DNA of an address being 

empty means the address is not a dyeing pool). If we want to 

trace the passing through of Bitcoins with specific address, we 

need to set the corresponding address as a dyeing pool. 

a.dyeingDNA denotes dyeing DNA of address a. a.dyeingDNA 

should be given a specific identifier or name assuming d, i.e., 

a.dyeingDNA=d. In our framework, addresses are pre-clustered 

based on the input address clustering method. Every dyeing 

DNA of each address in the same cluster with address a should 

also be setup to d because addresses within a cluster are very 

likely belong to a user or group. 

B. Firing of BTN 

If a transition t satisfies the following conditions, it can be 

fired. 

Definition 7. Conditions of firing of transition t: 

1. For pt, M(p)=1; 

2. ( )
p t

p
 o

≥
'

( ')
p t

p
 o

; 

3. For a*t, a.balance≥
( )

( )
p t p a

p



  = o

. 

Condition 1 depicts that the inputs of transaction t are 

available. Condition 2 depicts that the Bitcoins locked in inputs 

of transaction t are more in quantity than Bitcoins locked in its 

corresponding outputs. Condition 3 states for each address of 

transaction t, its balance is no less than the Bitcoins withdrawn 

from the respective address.  

Results of firing a transition t are as follows. 

------------------------------------------------------------------------ 

Definition 8. Effects of firing of transition t: 

Assume that a temp gene G= in initial state. When t is 

firing, 

For pt, 

1. M(p)=0. 

2.  (p).balance= (p).balance-(p); 

3. G=G⊥( (p).balance.gene\(p)); 

For pt, 

4. M(p)=1; 

5.  (p).balance= (p).balance+(p); 

6.  (p).received= (p).received+ (p); 

7. G'=G \ (p); 

8.  (p).balance.gene= (p).balance.gene ⊥ G'; 

9.  (p).received.gene= (p).received.gene ⊥ G'; 

10. If  (p).dyeingDNA, then  (p).balance.gene 

= (p).balance.gene (p).dyeingDNA. 

------------------------------------------------------------------------ 

Lines 1-4 define the behaviors of transition's inputs. Line 1 

means transition's firing consumes tokens from its input places. 

Line 2 means that the balance of the address mapped by the 

place p is subtracted by the Bitcoin quantity withdrawn by p. 

Line 3 means that the balance gene of the address mapped by p 

is split by (p); the split gene is merged to G. 

Lines 4-9 define the behaviors of transition's outputs. Line 1 

means that the transaction produces a new token for the place. 

Line 5/6 adds (p) to the place's balance/received coins. Line 7 

splits (p) gene from G to G'. Line 8/9 merges G' to the 

balance/received gene of address mapped by p. Line 10 means 

that if the address mapped by p is a dyeing pool, its balance 

gene should be dyed by its dyeing DNA. 

Firing sequence is a sequence of transitions that represents 

an occurrence order of Bitcoin transactions. The Bitcoin 

Blockchain itself maintains a transaction sequence. The 

BitcoinDatabaseGenerator[31], i.e., the open source tool we 

used to parse the Bitcoin Blockchain, does not restore the 

transaction sequence. (One of our further works is to improve 

this Blockchain parsing tool.) In order to recover the transition 

sequence as close as possible to the transaction occurrence 

sequence, we find a firing sequence according to the transaction 

timestamps. The following algorithm describes the process of 

firing of transitions. 

--------------------------------------------------------------------------- 

Algorithm 2 Transition firing. 

Input: an initialized BTN N=(P, T, F, A, , , M0) 

Output: a BTN N with feature values. 
1. T '={t|M(p)=1pt}; 

2. While T '≠ do 

3.     Find tT ' such that (t)≤(ti) for tiT 'tti; 
4.     Fire t using Definition 8; 

5.     T '={t|M(p)=1pt}; 
6. End while 

--------------------------------------------------------------------------- 

Line 1 is used to find a transition set, where every transition 

in the set can be fired. Line 2-6 are used to fire transitions 

according to their fireable conditions and timestamps. Line 3 is 

to find a fierable transition with the smallest timestamp. Line 4 

is used to fire the transition according to Definition 8. Line 5 is 

used to update the fireable transition set. 

After processing Algorithm 2, a BTN with feature values is 

obtained. 

C. An Example 

The BTN presented in Fig. 3 is used as an example to 

illustrate how the values of dynamic features change during the 

transitions firing process. Assume that we want to trace 

Bitcoins passing through address a0. Let a0.dyeingDNA=d. In 

Fig. 3, a1 and a2 are clustered into the same class. Other 

addresses are clustered into different classes separately. 

Therefore, only a0 is set as a dyeing pool. Assume that a firing 

sequence is t0t1t2t3 and their states are M0M1M2M3 M4. Balance 

and received coins of an address can be derived from its balance 

gene and received gene. Therefore, in this example, we focus 

on the analysis of gene. 

In the initial state M0, only a4 and a5 have coins. Their 

balance/received gene are {(, 2, 100%)}/{(, 1, 100%)} and 

{(, 2, 100%)}/{(, 1, 100%)}. When t0 is fired, 2 coins are 

moved from a4 to a0. Since a0 is a dyeing pool, its balance and 

received gene become {(d, 2, 100%)} and {(d, 2, 100%)}. The 

balance gene of a4 becomes . When t1 is fired, 1 coin is moved 

from a5 to a1. The balance genes of a5 and a1 become  and 

{(, 1, 100%)}. Received gene of a1 becomes {(, 1, 100%)}. 

When t2 is fired, 2 coins in a0 are moved to a0 (1 coin) and a2 (1 

coin). The balance and received genes of a2 are {(d, 1, 100%)} 

and {(d, 1, 100%)}. The balance and received genes of a0 

become {(d, 1, 100%)} and {(d, 3, 100%)}. When t3 is fired, 

the BTN reaches the final state M4. Bitcoins in a1 and a2 are 
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mixed and moved to a0 and a3. The balance and received genes 

of a0 become {(d, 2, 100%)} and {(d, 4, 100%)}. The balance 

and received genes of a3 become {(, 0.5, 50%), (d, 0.5, 50%)} 

and {(, 0.5, 50%), (d, 0.5, 50%)}. balance.gene and 

received.gene  of every address in each state are shown in Table 

4 and Table 5. Genes in the two tables are represented by the 

form of Definition 2 which is easier for understanding. 
 

TABLE 4. BALANCE GENE OF EVERY ADDRESS IN EACH STATE 

 M0 M1 M2 M3 M4 

a0  {(d, 2, 100%)} {(d, 2, 100%)} {(d, 1, 100%)} {(d, 2, 100%)} 

a1   {(, 1, 100%)} {(, 1, 100%)}  

a2    {(d, 1, 100%)}  

a3     {(, 0.5, 50%), 

(d, 0.5, 50%)} 

a4 {(, 2, 100%)}     

a5 {(, 1, 100%)} {(, 1, 100%)}    

 

TABLE 5. RECEIVED GENE OF EVERY ADDRESS IN EACH STATE 

 M0 M1 M2 M3 M4 

a0  {(d, 2, 100%)} {(d, 2, 100%)} {(d, 3, 100%)} {(d, 4, 100%)} 

a1   {(, 1, 100%)} {(, 1, 100%)} {(, 1, 100%)} 

a2    {(d, 1, 100%)} {(d, 1, 100%)} 

a3     {(, 0.5, 50%), 

(d, 0.5, 50%)} 

a4 {(, 2, 100%)} {(, 2, 100%)} {(, 2, 100%)} {(, 2, 100%)} {(, 2, 100%)} 

a5 {(, 1, 100%)} {(, 1, 100%)} {(, 1, 100%)} {(, 1, 100%)} {(, 1, 100%)} 

 

VII. PATTERN ANALYSIS 

A. Constitution of Pattern 

Pattern matching aims to find addresses that satisfy a given 

pattern. However, it is not easy to describe a complicated 

pattern directly. Therefore, we propose instructions on how to 

define a pattern by logical expressions. 

Fig. 4 presents the constitution of a pattern. A pattern is 

defined by a set of properties. A property is a set of feature 

expressions. A feature expression can be defined as a logical 

expression over features according to the clues provided. In 

fact, the pattern, property and feature expression are all logical 

expressions over features. A feature expression is used to 

describe the character of a Bitcoin transaction feature. A 

property expression is used to describe an aspect of a pattern. A 

pattern expression describes a pattern. Generally, if we want to 

define a pattern, we should first analyze the aspects included in 

the pattern. Then for each aspect, a property should be defined 

by one or more feature expressions. 
 

Pattern

Property1 Propertyi ...

Expression1 Expressionj ...  
Fig. 4. Constitution of a pattern. 
 

Different types of feature expressions can be classed into 

three levels. The first level is the address expression, denoted 

as E1, which results in a set of addresses that satisfy E1; the 

second level is the transaction expression, denoted as E2, which 

results in a set of transactions that satisfy E2; and the third level 

is the place expression, denoted as E3, which results in a set of 

places that satisfy E3. 

A pattern results in a set of addresses since the aim of pattern 

matching is to find a set of addresses. A property also results in 

a set of addresses because a resulting address set of a pattern is 

the intersection of all the resulting address sets of the pattern's 

properties in our scheme. Therefore, a property expression must 

contain at least an address expression. Transaction expressions 

or place expressions cannot be used alone in a property 

expression. A transaction or place expression must be applied 

with an address expression combined by a joint clause. 

A transaction feature expression E2 can be used to refine an 

address expression E1. A joint clause between E1 and E2 is t⸋a 

or ta⸋. A place feature expression E3 can be used to refine an 

address expression E1. A joint clause between E1 and E3 is (p) 

=a. A place feature expression E3 can be used to refine a 

transaction expression E2. A joint clause between E2 and E3 is 

pt or pt. Fig. 5 shows the refining relationships between 

E1, E2 and E3. Table 6 presents the joint clauses between E1, E2 

and E3.  

Address features, i.e. the level 1 features, are easy to use. For 

example, the address balance is used to find addresses whose 

balances are limited to a range. An expression 0<a.balance 

<100 is used to find addresses whose balances are more than 0 

but less than 100, which results in an address set 

{a|0<a.balance<100}. Different features can be combined to a 

complex expression. For example, an expression 

(a.balance<100)(a.received>100) is used to find addresses 

where each of the balance is less than 100 and each of the total 

received coins are more than 100, which results in 

{a|(a.balance<100)(a.received>100)}. 
 

Address expression E1 Transaction expression E2

Place expression E3

Refine

RefineRefine

 
Fig. 5. Refining relationships between three level expressions. 

 
TABLE 6. JOINT CLAUSES AND THEIR FUNCTIONS 

Combination E1 and E2  E1 and E3  E2 and E3  

Clauses t⸋a, ta⸋  (p)=a  pt, pt 

 

A transaction feature (a Level-2 feature) expression needs a 

joint clause to become an address feature (level 1 feature) 

expression. For example, an express (t⸋a)( ( )
p t

p
 >10) is 

used to find addresses whose deposit transaction transfers more 

than 10 Bitcoins. t⸋a is a joint clause. The resulting address 

set is {a|(t⸋a)( ( )
p t

p
 >10)}. 

A place feature (a level-3 feature) expression needs a joint 

clause to become an address feature (a level-1 feature) 

expression. For example, an expression ( (p)=a)(M(p)=1) is 

used to find addresses having UTXOs.  (p)=a is joint clause. 

The resulting address set is {a|( (p)=a)( M(p)=1)}. An 

expression (t⸋a) (pt)((p)>10) is used to find addresses 

where every output of each deposit transaction of the address a 

moves more than 10 Bitcoins to this address a. The resulting 

address set is {a|(t⸋a)(pt)((p)>10)}. This expression 

contains two joint clauses. (p)>10 is a place feature 
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expression, which is combined with a joint clause pt. Then 

expression (pt)((p)>10) becomes a transaction feature 

expression. After that, (pt)((p)>10) is combined with joint 

clause (t⸋a), thus (t⸋a)(pt)((p)>10) becomes an 

address expression.  

A matching program of a pattern is written manually at 

present in our experiment. However, it would be more 

convenient to develop a compiler to compile patterns into 

programs automatically, which is a part of our further work. 

B. Marginal Distribution Analysis of Feature Values 

For a specific case, a set of addresses can be obtained once 

pattern matching is completed. However, it is possible that 

some addresses matching the rules may not relate to the case. 

These samples of addresses are false positive samples. Marginal 

distribution analysis is used to try to eliminate such false 

positive samples. 

An assumption of the marginal distribution analysis method 

is that behaviors in a transaction pattern are similar. This 

assumption is derived from another assumption that a user's 

repeated behaviors in regards to a specific activity are similar. 

This assumption is derived from statistical facts that have been 

widely used in recommendation methods and abnormal 

behavior detection methods. Therefore, samples of a feature 

directly or indirectly related to addresses found by through 

pattern matching should distribute near similar values. The 

samples far away from the values are less likely to be relevant 

to the case. Therefore, these deviated samples can be eliminated 

to improve accuracy. 

For example, let us assume an address set is obtained by 

pattern matching. Its value range of the total received coin 

amount is [x, y]. The range is divided into z intervals. If most 

samples (%) are distributed into some continuous intervals, 

then (1-)% samples can be deleted. The threshold  is an 

empiric value. A histogram can be used to assist with 

determining the value of . 

A subset can be obtained by removing the false negative 

samples based on their features. Different features can obtain 

different subsets. An intersection of these subsets delivers the 

final result set. 

VIII. CASE STUDY 

A. The Mt. Gox Case 

Mt.Gox [32] is a Bitcoin exchange launched in July 2010. In 

February 2014, Mt.Gox filed for bankruptcy protection since 

more than 500k Bitcoins have gone missing, which are to be 

likely stolen. Loss of Bitcoins probably started in August 2011 

and lasted until late 2013. Based on the analysis of a Mt.Gox 

deposit and withdrawal log data, which is leaked in 2014 (no 

longer publicly available now), WizSec identified a transfer 

pattern, as shown in Fig. 6 [33]. In this pattern, some Bitcoins 

have been collected from different addresses and stored into 

larger holding addresses (also called gathering addresses). After 

that, these Bitcoins have been split and deposited onto different 

exchanges. Although WizSec has identified millions of possible 

Mt.Gox addresses, these addresses are not available. In this 

paper, we use the transfer pattern shown in Fig. 6 and the public 

Mt.Gox address “1LNWw6yCxkUmkhArb2Nf2MPw6vG7u5-

WG7q” as the clues for further investigation. Our goal is to 

identify gathering addresses that match the transfer pattern. 

These addresses are likely to be used to transfer the lost 

Bitcoins.  
 

 
Fig. 6. A recurring transfer pattern of the lost Bitcoins form Mt.Gox [33]. 

B. Experiment Setup and Preprocessing 

The selected time window of Bitcoin transactions is chosen 

from Jan/03/2009 to Dec/28/2013, which consists of more than 

30,000,000 transactions. A virtual machine with 8 core CPU 

and 64G RAM is used for our analysis.  

The transaction data is parsed from the Bitcoin Blockchain 

and stored in a SQL Server Database using BitcoinDatabase-

Generator[31]. All addresses are clustered by the input address 

clustering method [8, 10-14]. The clustered information is 

stored in the SQL Server Database. Mt.Gox address 

“1LNWw6yCxkUmkhArb2Nf2MPw6vG7u5WG7q” is 

clustered into a class that contains 544k addresses. All these 

addresses in the class are setup as dyeing pools. The dyeing 

gene of each of them is setup to mgDNA. 

Creating BTN and its firing process are achieved in less than 

20 minutes and less than 40 minutes respectively. On the 

contrary, the pattern analysis takes less than a minute, which 

thus the entire process is completed in an hour. 

C. Pattern Setup 

WizSec pointed that "Mt.Gox Bitcoins have been sent to a 

new non-Mt.Gox address often in fairly recognizable amounts 

of a few hundred BTC at a time. Shortly afterwards, these 

addresses in turn would be gathered up into bigger addresses 

holding a few thousand BTC. From there, the coins would get 

deposited in chunks of some hundred BTC at a time onto 

various Bitcoin exchanges." The transfer pattern is shown in 

Fig. 6. The large holding addresses, also called gathering 

addresses, are used as distinguishable points.  

According to the clues indicated by WizSec, we formalized 

the transfer pattern with the following 7 properties in which a 

represents a gathering address. 

1. The number of incoming addresses of a gathering 

address a is not less than 3. The property is |{a'| (p)=a 

t⸋pa'*t}|≥3. 

2. “Each gathering address holds a few thousand Bitcoins”. 

According to this, a total amount of received Bitcoin of 
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a large holding address a is setup to 1000-10000. The 

property is 1000≤a.received≤10000. 

3. “The losing behavior started from August 2011”. For the 

sake of safety, we set the start date to July 15, 2011. The 

property (t⸋a)((t)≥July/15/2011). t⸋a is a joint 

clause. 

4. Every transaction that transferred Bitcoins to a gathering 

address a has only one output place. The property 

(t⸋a)(|t|=1). t⸋a is a joint clause. 

5. There are two methods to accept coin change: using the 

gathering address, and using a new change address. It is 

unknown which method has been used in the Mt.Gox 

case. 1) If the first was used, there would be many 

outgoing addresses, namely, the number of outgoing 

addresses would be greater than 2; 2) If the second was 

used, every transaction that transferred Bitcoins from a 

gathering address would have two outputs belonging to 

two different new addresses. Thus, the number of 

outgoing addresses of a gathering address would be 

equal to 2. According to 1) and 2), the number of 

outgoing addresses of a gathering address a is no less 

than 2. The property is (|{a'|  (p) = a  tp⸋a't*}|≥2). 

6. Every transaction that withdrew Bitcoins from a 

gathering address has only one incoming address. This 

property is (ta⸋)(*t=1). 

7. Received gene of every gathering address should contain 

mgDNA. This property is mgDNAa.receive-d.gene.D. 

The above 7 properties defined the pattern. Through analysis, 

an address set denoted as S containing 236 addresses is found, 

which transferred 560K bitcoins. 

D. Marginal Distribution Analysis 

The 236 addresses found are likely to contain false positive 

samples, namely some found addresses may follow the pattern 

but do not relate the Mt.Gox case. While the Marginal 

Distribution Analysis (MDA) is primarily attempted to spot and 

remove the false positive samples, it also found latent details 

hidden in the pattern. 

For example, as mentioned previously in section VIII.C, 

there are two methods to accept coin change, the pattern does 

not give insights into the method that is actually used. The 

marginal distributions in the number of withdrawn transactions 

and the number of outgoing addresses can reveal such details. 

Fig. 7 and Fig. 8 present the two distributions. Only 16 

gathering addresses from the totally found 236 gathering 

addresses characterize more than 2 withdraw transactions and 

outgoing addresses, which means most of them have used new 

addresses to accept changes. This finding also conforms with 

the fact that using a new address to receive change is safer than 

reusing an old address. Then an address subset by excluding the 

16 addresses is obtained, denoted as S1. 

When Bitcoins have been collected to a gathering address, 

information on the number of involved transactions collecting 

these Bitcoins are not known. Distribution of the number of 

deposit transactions of gathering addresses, as shown in Fig. 9, 

reveal such details. There are only 23 addresses characterizing 

2 or more deposit transactions, which means most of them have 

actually used just a single transaction to collect Bitcoins. This 

conforms with the fact that fewer number of transactions cost 

less transaction fee. Then an address subset excluding these 23 

addresses is obtained, denoted as S2. 

 

 
Fig. 7. Distribution of the number of withdrawn transactions of gathering 
addresses. 

 

 
Fig. 8. Distribution of the number of outgoing addresses of gathering addresses. 

 

 
Fig. 9. Distribution of the number of deposit transactions of gathering 
addresses. 

 

Fig. 10 presents the relationship between S, S1 and S2. About 

90% (213) addresses share the same characteristics. 
 

 
Fig. 10. Relationships between S, S1 and S2. 

 

For some features, it is not difficult to determine their 

thresholds which decide whether to include or exclude related 

addresses. However, for other features, their appropriate 

threshold values are not obvious. This entirely depends on the 

analysis requirements. If a high precision is required, a radical 

threshold should be selected to remove more addresses. If a 

high recall is needed, a conservative threshold should be 

selected to retain more addresses. For the above three features, 

it is not difficult to determine their thresholds. However, the 

following two features is on the contrary.  

WizSec stated that Mt.Gox Bitcoins have been collected in 
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amounts of a few hundred Bitcoins to form the gathering 

addresses which then comprised a few thousand Bitcoins. 

Nevertheless, we do not know the number of addresses 

collected to form the gathering addresses. Fig. 11 presents the 

distribution of the number of incoming addresses of gathering 

addresses, where 12, 18 and 51 are the optional thresholds. If 

we want to obtain addresses that have much higher similarity, 

12 is a reasonable selection. If we focus on the recall of the 

related addresses, 51 is an alternative. Herein, 18 is selected as 

a threshold. The obtained address subset, denoted as S3, contains 

203 addresses. 
 

 
Fig. 11. Distribution of the number of incoming addresses of gathering 

addresses. 
 

In some cases, we need to combine features to form new 

features for analysis. For example, the pattern information does 

not provide the information regarding the duration required to 

split the gathering Bitcoins into exchanges. Even among the 19 

features, none of the features has represented the time span 

directly. However, there are two features, the first and the last 

transaction time of addresses, which can be used to obtain the 

time span feature. Fig. 12 presents the distribution of time span 

between depositing and withdrawing Bitcoins to or from 

gathering addresses. There are many different thresholds, which 

can be selected, such as 1, 4 and 7 according to requirements of 

precision and recall. Herein, 4 is selected as a threshold. An 

address subset S4 is obtained, which contains 186 addresses. 
 

 
Fig. 12. Distribution of time span of depositing and withdrawing bitcoins to and 
from gathering addresses. 

 

Finally, an intersection of S1, S2, S3 and S4 is obtained. It 

contains 161 addresses that transferred about 352K bitcoins. 

The addresses in this intersection share similar features, and 

very likely they belong to the same person or group. The 

purpose of our analysis is to provide the 161 addresses that are 

very likely related to the pattern. Then law enforcement 

agencies can trace these Bitcoins. If they are transferred into an 

exchange and the exchange has the identity information, then 

suspects can be found effectively. It is not appropriate to argue 

that all of the identified addresses relate to the required pattern. 

But the results do provide very useful information for the 

analysis of lost Bitcoins. 

The Mt.Gox case is used as an example to illustrate the 

effectiveness and efficiency of the proposed method in 

analyzing Bitcoin patterns. From the above analysis, we can see 

that the proposed method is very flexible and can be used for 

various and complicated cases analysis. 

IX. CONCLUSIONS 

This paper proposed a novel framework for Bitcoin 

transaction network analysis. In this framework, Bitcoin 

transactions are formalized as an extended Safe Petri net, called 

BTN. Its structure and semantic features are used to describe 

Bitcoin transaction’s static and dynamic features. The gene 

feature of Bitcoins can be used for the Bitcoin flow analysis. 

Based on the described features, various transaction patterns 

can be defined. The addresses matched with the patterns can be 

identified. The proposed method has been proven to be an 

efficient tool for future Bitcoin transaction forensic 

investigation, based on real life case study analysis. 

In our experiments, pattern expressions are programmed 

manually. In the next step, a compiler will be developed to 

compile patterns into programs automatically. Bitcoin 

Blockchain data is tremendous, if intermediate states are saved 

at different time points, a considerable amount of time can be 

saved during a recent case analysis. Next, we will continue to 

investigate the means of preserving intermediate states of BTN. 

In our experiments, an open source tool, BitcoinDatabase-

Generator, is used to parse Bitcoin Blockchain. However, it 

does not recover block and transaction orders information 

which affects the analysis performance. Investigating this 

drawback of this tool is our another research objective as future 

work. An integrated bitcoin analysis platform is in our future 

plan to assist with bitcoin forensic analysis. 
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