
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

1

Abstract— Popular Blockchain-based cryptocurrencies, like

Bitcoin, are increasingly being used maliciously to launder money

on the dark Web. In order to trace and analyze suspected Bitcoin

transactions and addresses, address clustering methods and

Bitcoin flow analysis methods are gaining attention recently.

However, existing methods only focus on Bitcoin addresses and

flow, and neglect other important information, such as transaction

structure and behavior features. In order to exploit all useful

features of transactions, this paper proposes a Bitcoin transaction

network analytic method for facilitating Blockchain forensic

investigation based on an extended safe Petri Net. The structural

features and dynamic semantics of Petri net are used in our

proposed model to define the static and dynamic features of

Bitcoin transactions. Nineteen features have been identified to

define Bitcoin transaction patterns for analyzing and finding

suspected addresses. Bitcoin gene has been embedded into the

Petri net transitions to trace and analyze Bitcoin flow accurately.

Finally, marginal distribution analysis of Bitcoin transaction

features and data visualization techniques are used to eliminate

some false positive samples further and to improve the accuracy of

identifying suspected addresses. The proposed Bitcoin transaction

network analytic method provides a reliable forensic investigation

model along with a prototype platform which is beneficial for

financial security. The efficiency of our proposed method is

empirically verified based on a real-life case study analysis.

Index Terms—Bitcoin, Blockchain, Petri Net, Forensic

Investigation.

I. INTRODUCTION

ITCOIN has become increasingly popular as an alternative

form of currency over the last few years [1], and its growth

has been inevitable since its introduction by Satoshi Nakamoto.

The market capitalization of Bitcoin has been witnessed to have

reached more than $200 billion at the end of 2017. Bitcoins are

not usually associated with their user identities such as user

names, residential addresses, or other personal identification

information. Due to this pseudonym nature, Bitcoin is falsely

regarded as a form of anonymous currency in the Internet, and

is falsely believed to be facilitating untraceable transactions

during illegal trades [2].

Since its pseudonym nature, Bitcoin has soon been used by

• Yan Wu and Fang Tao are with the School of Computer Science and
Telecommunication Engineering, Jiangsu University, Jiangsu, China and
and also with Jiangsu Key Laboratory of Security Technology for Industrial
Cyberspace, Jiangsu University, China. (e-mails: wuyan04418@ujs.edu.cn;
taofang7906@hotmail.com).

• Lu Liu (corresponding author) and Mohammad Nasir Shahzad are with the
School of Informatics, University of Leicester, UK. (e-mails:
l.liu@leicester.ac.uk; mns14@leicester.ac.uk)

illegal activities, such as illegal drugs and weapon trade etc.

Silk Road [3], which was an online black market and the first

modern dark net market initiated in 2011, has witnessed an

increased illegal usage of Bitcoins. It used Bitcoin as a major

source of transactions, an estimated $15 million dollars

transactions have been recorded during the period of 3 February

2012 to 24 July 2012. AlphaBay and Hansa [4] are two of the

biggest “dark web” contraband marketplaces, used for illegal

sale of guns, drugs, pharmaceuticals, forged documents, stolen

card details and other forbidden merchandise, which has also

witnessed an increased use of Bitcoin for illegal trades. Even

enforcement agencies found it really challenging to ban and

lock such dark net markets and so the illegal usage of Bitcoins.

It is worthy of note that almost 95% of the laundered coins are

linked to the nine dark-web marketplaces. An operator of BTC-

e [5], which is an exchange used to trade Bitcoins since 2011,

laundered more than $4 billion worth of illegal funds by people

involved in crimes ranging from computer hacking to drug

trafficking. Terrorists have also been associated with Bitcoin as

early as 2012, using Bitcoin for illegal fund transfers and

donations. Moreover, Bitcoin is not recognized as lawful

electronic currencies at present, thus defined regulations for

using Bitcoin are hardly existing till now. Ajello [6] highlighted

the importance of anti-money laundering of Bitcoin from a legal

aspect. Similarly, Perri Reynolds and Angela S.M. Irwin [7]

discussed the necessity of Bitcoin tracing and analysis from a

legal perceptive.

This necessitates an in-depth analysis of Bitcoin transactions

for the purpose of detecting and acting against illegal

transactions. Bitcoin transactions are stored on Bitcoin

blockchain publicly. It means if a criminal Bitcoin address is

known, Bitcoins passed the address can be tracked. Bitcoin

exchanges are usual places of changing Bitcoins to fiat

currencies. Generally, Bitcoin exchanges are required by "know

your customer" law to collect personal information. If some

coins are found being transferred from a suspicious address into

an exchange's address, the identity of the suspect can be found.

Therefore, analyzing the suspected addresses is very important

for identifying suspects [8].

Tracking Bitcoins associated with a known address is not

• Jiayan Gu and John Panneerselvam are with the School of Electronics,
Computing, and Mathematics, University of Derby, UK. (e-mails:
j.gu2@unimail.derby.ac.uk; j.panneerselvam@derby.ac.uk)

• Rongbo Zhu is with the College of Computer Science, South-Central
University for Nationalities, China. (e-mail: rbzhu@mail.scuec.edu.cn)

A Bitcoin Transaction Network Analytic Method

for Future Blockchain Forensic Investigation

Yan Wu, Fang Tao, Lu Liu, Member, IEEE, Jiayan Gu, John Panneerselvam, Rongbo Zhu, Mohammad

Nasir Shahzad

B

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

2

usually an issue. However, tracking Bitcoins has been

complicated, since criminal’s addresses are often cloudy and

uncertain. To this end, this paper is aimed at distinguishing

suspected addresses based on common transaction patterns and

features. In general, some transactions might exhibit similarities

and common patterns. For example, Bitcoin transactions being

used to gather Bitcoins usually associate multiple input

addresses and an output address. Analyzing the links between

such input and output addresses could present useful insights

when tracking unknown and suspected transactions. But such

an analysis includes other complexities such as defining the

Bitcoin transaction features, effectively identifying the features

those can provide useful and meaningful information whilst

identifying suspects, effectively tracking Bitcoins passed by

multiple suspected addresses, and importantly resolving such

analytics requirements with a reasonable time-scale to allow

necessary actions, despite the nature of massive volumes of

Blockchain data.

With this in mind, this paper proposes an extended safe Petri

net [9] based model to simulate the Bitcoin transactions, which

is called Bitcoin Transaction Net (BTN). Its structural features

and dynamic semantics are used to describe both the static and

dynamic features of Bitcoin transactions, respectively.

Nineteen static and dynamic Bitcoin transaction features have

been identified to define Bitcoin transaction patterns for

analyzing and finding suspected addresses by our pattern

matching method. Another key contribution of our method is

the development of the Bitcoin gene that is embedded into Petri

net transitions. Three gene operations, called merging, splitting

and dyeing, are defined to evolve genes when a transaction

occurs. Bitcoin gene indicates whether an address has a

relationship with some specific addresses, along with

describing the strength of such relationships. Bitcoin gene can

be efficiently used to trace and analyze the flow of Bitcoins

easily and accurately. Furthermore, this paper proposes a set of

match rules to find transactions and obtain suspected addresses,

based on the combinations of match rules. Finally, a marginal

distribution analysis of transaction pattern features is

incorporated into the proposed model to remove part of false

positive samples and enhance the accuracy of the identified

suspected addresses.

 The remainder of the paper is arranged as follows: Section

II presents an analysis of related works based on categorizing

Bitcoin transaction analysis methods. Section III describes our

proposed framework to formalize transaction patterns and to

analyze Blockchain data. Section IV presents the formal

modelling of Bitcoin Transaction Net and Section V presents

the static and dynamic transaction features. Section VI presents

our methodology of analyzing Bitcoin Transaction Pattern and

Section VII details the pattern analysis, along with presenting a

case study in Section VIII. Section IX concludes this paper

along with outlining our future research directions.

II. RELATED WORK

Early studies of the Bitcoin transaction analysis mainly

focused on Bitcoin address cluster analysis that aims to cluster

addresses owned by a user or an entity. For the forensic analysis,

if a Bitcoin address a is suspected, and its owner is unknown.

However, if the owner of another Bitcoin address b is known

and b is located within the same cluster of a, then owner of a

can be deduced. Reid and Harrigan [8] partitioned addresses

into a cluster when these addresses are used as inputs of a

transaction. For example, if addresses a and b are used as inputs

of transaction t1, a and b are clustered into a single cluster. If

addresses b and c are used as inputs of transaction t2, then c is

clustered into the same cluster of a and b. This input address

clustering method is used by many studies [10-14]. Ron and

Shamir [10] used this clustering technique to create a contracted

transaction graph to analyze the Bitcoin flow. Fleder et.al.[11]

used the Bitcoin address clustering method to construct a user

graph and used PageRank to find important users. Another

address clustering method called change address clustering

method or shadow address clustering method has also been

widely used to collect back the “change” resulted from any

transaction issued by the user (input addresses). Androulaki

et.al.[12] used the input address clustering method and shadow

address clustering method to cluster addresses. Meiklejohn

et.al.[13] also used the input address clustering method and the

change address clustering method to cluster addresses and

evaluated the accuracy of the change address clustering method.

Spagnuolo et.al.[14] presented a modular framework, called

BitIodine, which parses the blockchain, clusters addresses that

are likely to belong to a same user or group of users, and

visualizes complex information extracted from the Bitcoin

network. BitIodine also uses the two clustering methods to

cluster addresses. Meiklejohn et.al.[13] pointed out that the

change address clustering method has been less robust in spite

of the changing patterns within the network, because it is not

easy to identify the change addresses. Harrigan and Fretter [15]

exhibited the efficiency of the input address clustering method.

Therefore, in our framework, only the input address clustering

method is used. The function of address clustering in forensic

analysis is that once an address is suspected in a cluster, other

addresses are also suspected because they are very likely to

belong to the same user or group. However, address clustering

method cannot identify and analyze transaction pattern.

Another aspect of Bitcoin transaction analysis is the Bitcoin

flow analysis. Many existing flow analysis methods [16-19]

have used the clusters of addresses as vertexes, and transaction

relationships between vertexes as direction edges. Bitcoins

usually flow along edges from vertexes to vertexes. Zhao and

Guan [16] proposed a classic Bitcoin flow analysis method,

where they firstly clustered Bitcoin addresses and then

connected the clusters by transaction relationships. Finally, the

graph has been analyzed by the visualization methods and

statistical methods. Maesa et al [17] further used this graph to

analyze and verify the assumption whether "the rich get richer".

Maesa et al [18] used the graph to analyze classical graph

properties like densification, distance analysis, degree

distribution, clustering coefficient and several centrality

measures, but they have not addressed the Bitcoin trace issue.

Ober et al [19] used the graph to analyze the features of the

graph structure that could affect anonymity. However, all such

works have not given enough emphasis on analyzing Bitcoin

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

3

transaction patterns.

Petri net has been used to analyze Bitcoin transactions [20,

21]. In the Petri net model, Bitcoin addresses are modeled as

the places in Petri net and Bitcoin transactions are modelled as

transitions in Petri net. Pinna et al [20] used input address

clustering method in the Petri net model to cluster addresses and

found common behavior pattern, such as one-time usage of a

given address etc. Pinna [21] used Petri net to analyze

disposable addresses which are the addressed used only once.

The works of [21] postulated that transactions form chains and

the lengths of these chains are characterized by a power-law

distribution. These two models used the Bitcoin addresses as

Petri net places/inputs of Bitcoin transactions. However, in the

Bitcoin transaction net, inputs of Bitcoin transactions are not

usually the addresses, but they are coins. Therefore, such

models cannot efficiently analyze and quantify transaction

features. This paper proposed an extended form of Petri nets for

the Bitcoin transaction analysis, which organically integrates

important bitcoin features, such as transaction, input and output,

address, bitcoin quantity, transaction time and so on.

In contrast to the existing methods which aim to find

behavior features behind Bitcoin transactions, our method is to

define transaction patterns by transaction features and to find

suspected addresses based on the patterns. Monaco [22]

presented and verified an assumption that identifying and

verifying Bitcoin users based on the observation of Bitcoin

transaction features over time holds true. Based on analyzing

the behavioral features using 366 user samples, this work

concluded that the behavioral patterns observed over time can

be used to deprive a user, but this is not further developed into

a model. Similar to Monaco [22], Harlev et al. [23] collected

434 training samples and used the supervised machine learning

method to classify unidentified entities into known classes.

However, in the real world, criminals intend to hide their

Bitcoin addresses. It is difficult to find their addresses in order

to analyze their transaction features, which limits their practical

applicability due to the lack of known samples. Different from

their methods, our proposed method does not need such known

samples. Our proposed method can use any known information

such as information from information agencies to define a

transaction pattern and to find addresses matching the pattern.

Data Visualization methods have also been used for Bitcoin

transaction analysis. Moser et al [24] tested the anti-tracing

effectiveness of coin mixing services. Battista et al [25]

developed a data visualization tool called BitConeView to

present the effectiveness of coin mixing services. Christin [26]

performed a comprehensive measurement analysis of Silk Road

related data collected through web crawling. These

visualization methods have been used to illustrate the data

characters. Kondor et al [27] and Maesa et al [18] analyzed the

structure of the Bitcoin transaction network by measuring the

network characteristics and presented the results through

various visualization methods. McGinn et al. [28] presented a

systemic top-down visualization of Bitcoin systems, which can

find the transaction patterns in a block through visual

perception. But this method cannot find small transaction

patterns behind massive transactions. Bistarelli et al [29]

developed a tool called BlockChainVis that employs techniques

from visual analytics to filter out undesired information in order

to visually analyze the transactions. BlockChainVis allows

users to define simple rules to filter out undesirable information.

[24-26]focused on the visualization of some features of the

Bitcoin transactions for specific purposes, while [18, 27, 28]

tended to visualize the overall Bitcoin Blockchain. Therefore,

some details are easy to be neglected. The works of [29] added

customizable filters to find some specific transactions or

addresses. Similar to [22], this method considered transaction

features separately and ignored defining a transaction pattern.

Visualization methods are usually dependent on visual

perception to find results. However, due to the limitation of

human brain capacity, some results tend to be neglected. In our

method, matching of transaction pattern is processed by the

pattern matching algorithm, not by visual perception. Therefore,

it is more efficient, and hardly neglect details. Our proposed

method uses visualization techniques to visualize marginal

distributions of various transaction features to filter part of false

positive samples, but not to analyze transaction features directly.

Therefore, our visualization method does not inherit the

drawbacks of the aforementioned visualization methods.

[30] is one of our preliminary work presented in a conference

paper that studied mappings between bitcoin transactions and

Petri Net and mappings between transaction features and Petri

Net properties. It provides feasibility for the method proposed

in this paper.

III. THE FRAMEWORK OF THE PROPOSED METHOD

Our proposed method uses clues to formalize a transaction

pattern and obtains addresses related to the pattern by analyzing

Blockchain data. Fig. 1 presents the framework of our proposed

method.

Bitcoin block chain data

Bitcoin transaction data

stored in database

parse

Bitcoin transaction net

create

Address cluster information

stored in database

cluster

Preprocessing Transaction pattern

information(Clue)

Bitcoin

transaction net

BTN with feature

information

Transaction

pattern

formalize

Analyze transaction

pattern

Output addresses
Analyze BTN

Analyze marginal

distributions of

address features

Final addresses
Fig. 1. The framework of the proposed method.

Our proposed framework includes a pre-processing

procedure. It contains three steps:

1) The first step is to parse transaction data from Bitcoin

Blockchain data and save parsed bitcoin transaction

information to a database. An open source tool called

BitcoinDatabaseGenera-tor [31] is used to save the data onto

the database;

2) The second step is to read the transaction data from the

database and to create a Bitcoin Transaction Net (BTN); The

creation procedures is introduced in section IV;

3) The third step is to cluster Bitcoin addresses and store the

cluster information in the database. The input address clustering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

4

method used by [8, 10-14] is adopted in our framework. The

pre-processing procedure can be processed incrementally when

new blocks are generated. The pre-processing results can be

used by different case’s analysis.

When analyzing a case, the BTN needs to be created by

reading the transaction data from the database. Next step is to

analyze the BTN to obtain various features. In this step, case

information (clue) and address cluster information are used to

set up the initial state of bitcoin gene for Bitcoin tracing. Petri

Net analysis technics are used to analyze the BTN. After the

analysis, a BTN with various feature values is obtained.

After that, transaction pattern information (clue) is

formalized. The formalized transaction pattern is matched and

analyzed with the BTN with feature values. Some addresses

related to the pattern are delivered as output. Finally, the

marginal distribution analysis method is used to analyze the

features of output addresses to eliminate some false positive

samples.

IV. FORMAL MODELING OF BITCOIN TRANSACTIONS

A. Bitcoin transactions

Bitcoin transactions are stored in a growing chain of blocks.

There are two types of Bitcoin transactions such as coinbase

transactions and regular transactions. A coinbase transaction

generates Bitcoins. It has no input, but has at least one output.

A regular transaction transfers coins between addresses. It has

at least an input and at least an output. Outputs of a given

Bitcoin transactions are usually considered as the inputs of the

following transactions. A transaction output contains some

Bitcoins that are locked by an address. Users can spend the

Bitcoins if they have the private key of the address.

p0

t0

t1

t2

t3

p1

p2

p3

p5

p4

a0

a3

a2

a1

2 2 1
1

1 1 1 1

1

Fig. 2. A simple presentation of connected Bitcoin transactions that contains 4

transactions, 6 outputs and 4 addresses.

Fig. 2 illustrates an example of simplified and connected

Bitcoin transaction. It contains 4 transactions (t0, t1, t2 and t3,

among them, t0 and t1 are coinbase transactions), 5 outputs (p0,

p1, p2, p3, p4 and p5) and 4 addresses (a0, a1, a2 and a3). p0, p1,

p2, p3, p4 and p5 contain 2, 1, 1, 1, 1 and 1 Bitcoins, respectively.

They are locked by a0, a1, a0, a2, a0 and a3 respectively. Note

that an output can only be locked by an address; an address can

lock many outputs.

B. Bitcoin transaction net

An extended safe Petri net based formal model is proposed

to describe connected Bitcoins transactions so that Bitcoin

transactions can be analyzed through Petri net static and

dynamic properties.

Definition 1. Formally, a BTN for a given list of Bitcoin

transactions is an 8-tuple N=(P, T, F, A, , , , M0) where P, T

and A denote finite sets of places (Bitcoin transaction

outputs/inputs), transitions (Bitcoin transactions), and Bitcoin

addresses, respectively. F(PT)(TP) is a set of arcs

between places and transitions. : P→R is a value function on

places, where R denotes real numbers, and (p) is a number of

Bitcoin quantity locked in the place P (transaction output). 

:P→A is an address mapping function on places and  (p)

denotes an address associated with p. :T→T is a timestamp

function on T, where T denotes timestamps, and (t) denotes

timestamp of Bitcoin transaction t. M0 is an initial marking,

where M0(p) is the number (0 or 1) of tokens in place p.

Coinbase transactions do not have inputs, while a transition

without input place in Petri nets is always fireable. In order to

limit the fireable numbers of these transitions to 1, an input

place is added to each coinbase transactions so that Bitcoin

transactions can be analyzed with standard Petri net semantics.

These added places are mapped into unique virtual addresses,

respectively. The Bitcoin quantity of an added place of a

coinbase transaction is the sum of Bitcoin quantities of its

output places. In an initial state, if p has no input transition (i.e.,

p is an input place of a coinbase transaction), then M0(p)=1,

otherwise M0(p)=0.

Consequently, the transactions shown in Fig. 2 can be

constructed as a BTN shown in Fig. 3. p6 and p7 are the newly

added places with a token, respectively. Their Bitcoin quantities

are 2 and 1, respectively. They are mapped to addresses a4 and

a5, respectively.

p0[a0][2]

t0

t1

t2

t3

p1[a1][1]

p2[a0][1]

p3[a2][1]

p5[a3][1]

p6[a4][2]

p7[a5][1]

p4[a0][1]

Fig. 3. The BTN of the Bitcoin transaction

For convenience of analysis, Table 1 summarizes notations

of BTN used in this paper. , ⸋ and * denote sets of places,

transitions and addresses. For example, In Fig. 3, t0={p6},

t0={p0}, *t0={a4}, t0*={a0}, ⸋p0={t0}, p0⸋={t2}, a0={p0, p2,

p4}, ⸋a0={t0, t2, t3} and a0⸋={t2}.

TABLE 1. NOTATIONS OF BTN

No Notation Meaning

1 t={p|(p, t)F} The set of input places of transition t

2 t={p|(t, p)F} The set of output places of transition t

3 a={p| (p)=a} The set of places associated with the

same address a

4 ⸋p={t|(t, p)F} The set of input transitions of place p

5 p⸋={t|(p, t)F} The set of output transitions of place p

6 ⸋a=

{t| (p)=at⸋p}

The set of transitions whose output

places are mapped to address a

7 a⸋=

{t| (p)=atp⸋}

The set of transitions whose input

places are mapped to address a

8 *t={ (p)|pt} The set of addresses associated with all

the input places of t

9 t*={ (p)|pt} The set of addresses associated with all

the output places of t.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

5

V. TRANSACTION FEATURES

A. Static and Dynamic Features

This paper introduces 19 features to define transaction

patterns. Other features can be added into our framework

according to the requirement of analysis.

Table 2 presents the 19 features and their definitions

including 6 new notations. First and last transaction time of

address a is denoted by f(a) and l(a). a.balance and a.received

denote coin balance and the total received coin amount of an

address a. The Bitcoin gene is a novel feature proposed in our

paper to analyze the Bitcoin flow. Its computations and

evolvement will be introduced in the following subsection.

Coins' gene of a.balance and a.received are represented by

a.balance.gene and a.received.gene.

Features 1-14 are the static features which can be obtained

from the structure of BTN. Features 15-17 are the dynamic

features which can be analyzed by the firing of BTN, which will

be introduced in the next section. Features 1-6 are the features

related to the transaction (transition); Features 7-13, 16 and 17

are the address features; Features 14 and 15 are the place

features; Features 18 and 19 are the gene features.

TABLE 2. 19 FEATURES

No Feature Formal

expression

1 Transaction time of transaction t (t)

2 Number of inputs of transaction t |t|

3 Number of outputs of transaction t |t|

4 Number of input addresses of transaction t |*t|

5 Number of output addresses transaction t |t*|

6 Transferred coin amount of transaction t ()
p t

p


7 Number of times that address a has

occurred in all the transaction outputs
|a|

8 Number of deposit transactions of address

a

|⸋a|

9 Number of withdrawing transactions of

address a

|a⸋|

10 First transaction time of address a f(a)=(t) such

that (t)≤(ti) for

t, ti⸋aa⸋

11 Last transaction time of address a l(a)=(t) such

that (t)≥(ti) for

t, ti⸋aa⸋

12 Number of incoming addresses that

transfer coins to address a

|{a'| (p)=a

t⸋pa'*t}|

13 Number of outgoing addresses to which

coins are transferred from address a

|{a'| (p)=a

tp⸋a't*}|

14 Coin amount of transaction output p (p)

15 Whether an output p is spendable M(p)

16 Coin balance of an address a a.balance

17 Total received coin amount of an address

a

a.received

18 Coins' gene of a.balance a.balance.gene

19 Coins' gene of a.received a.received.gene

B. Bitcoin Gene

The notion of “Bitcoin gene” is proposed to track the

origination and distribution of balance (received) coins of a

given address. This is analogous to a “gene” in biology, which

is transferred from a parent to offspring and can be used to

determine some characteristics of the offspring. We use a gene

to indicate where the Bitcoins passed through a given address

(called dyeing address) have flown and to determine the

relationship strength between the dyeing address and other

addresses. In the Bitcoin system, only addresses are related to

users. There are two address features related to coins, which are

a.balance and a.received. Therefore, a.balance.gene and

a.received.gene are the two gene features used in our method.

Definition 2. A Bitcoin gene G is a set of DNAs, {(d0, q0,

w0), …(dn, qn, wn)}, where di, qi, and wi are the DNA name,

Bitcoin quantity, and weight in DNA (di, qi, wi), respectively. di

is either a dyeing address or a dummy name , didj (ij), and

∑𝑤𝑖=100%. ∑𝑞𝑖 represents the quantity of Bitcoins with the

gene G that we analyzed.

The gene definition in Definition 2 is called a row-definition

of gene, which is inconvenient for gene operations. Therefore,

the gene {(d0, q0, w0), …(dn, qn, wn)} is transferred into a matrix

shown in Table 3 and a col-definition of gene is proposed in

Definition 3.
TABLE 3. THE MATRIX OF BITCOIN GENE

 D (di)  (di)

(d0 q0 w0)

… … … … …

(dn qn wn)

Definition 3. Given a Bitcoin gene G={(d0, q0, w0), …(dn, qn,

wn)}, it can be defined as a 3-tuple G=(D, , ), where D=∪ 𝑑𝑖;

 is a function from D to positive integer , (di)=qi; and  is a

function from D to (0,1], (di)=wi, ∑𝑑𝑖=1.

Three gene operations, merging, splitting and dyeing are

defined to evolve and propagate Bitcoin genes when a

transaction occurs. Assuming G1=(D1, 1, 1), G2=(D2, 2, 2),

G3=(D3, 3, 3), their definitions are as follows.

--

Definition 4. Given G1 and G2, G1 merging with G2 is

denoted as G1⊥G2. Assume G3=G1⊥G2, then,

1. D3=D1D2;

2. 3={(d, y)|dD3y=1(d)+2(d))}; (Note that ignore (d)

if dD.)

3. 3={(d, z)|dD3z=
3

3 3() / (())
d D

d d 


 }.

--

The merging operation is used to merge Bitcoin genes. Line

1 depicts the union of D1 and D2 as the DNA name set of the

merged gene. Line 2 represents the Bitcoin quantity of each

DNA in the merged gene as the sum of Bitcoin quantities with

the same DNA in G1 and G2. Line 3 represents the percentages

of each DNA in the merged gene as the quotient of Bitcoin

quantity in a DNA divided by the total Bitcoin quantity

contained in G3.

--

Definition 5. Given G1 and n+ (
1

1()
d D

n d


 ), G1

splitting with n is denoted as G1\n. Assume G2=G1\n, then,

1. D2=D1;

2. 2={(d, y)|dG2y=1(d)n};

3. 2=1;

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

6

4. If
1

1()
d D

n d


  , G1={D1, {(d, y)|dG1y=1(d)-1(d)

n}, 1};

5. If
1

1()
d D

n C d


=  , G1=.

--

The splitting operation is used to split gene homogeneously.

Note that the splitting operation gives a result of G2 and affects

G1 simultaneously. Line 1 sets the DNA name set of the split

gene which is equal to the DNA name set of G1. Line 2 sets

Bitcoin quantity of each DNA in G2 to 1(d)n. Line 3 sets the

percentage of each DNA in G2 equal to the one in G1. Line 4

and Line 5 define how the splitting operation affects G1. Line 4

denotes that if the split Bitcoin quantity is less than the Bitcoin

quantity of G1, DNA name and its percentage of each DNA in

G1 maintain the same Bitcoin quantity of each DNA in G1 and

is set to 1(d)-1(d)n. Line 5 is used to deal with a specific

case, where if the split Bitcoin quantity equals to the Bitcoin

quantity of G1, namely all DNAs would be moved out from G1,

G1 is empty.

--

Definition 6. Given G1 and a DNA d, G1 being dyed by d is

denoted as G1d. Assume G2=G1d, then,

1. D2={d};

2. 3={(d,
1

1()
d D

d


)};

3. 3={1}.

--

If an address a is a dyeing pool, it should have a dyeing DNA.

All Bitcoins transferred to the address a should be dyed by the

DNA. Line 1 changes the DNA name set to {d}. Line 2 sets the

Bitcoin quantity of d to the Bitcoin quantity of G1. Line 3 sets

the percentage of d to 100%.

VI. ANALYSIS OF BTN

A. The initial state of BTN

The dynamic features are obtained through the firing of BTN

transitions to simulate Bitcoin transaction occurrences.

Algorithm 1 below describes the way of transforming a

Bitcoin Blockchain into a BTN, along with setting up its initial

values.

Algorithm 1. Construction of BTN from a Bitcoin

Blockchain.

Input: A block chain (a list of blocks).

Output: (P, T, F, A, , , , M0)

1. For each block

2. For each Bitcoin transaction t in the current block

3. T={t}T;

4. (t)=the current block’s timestamp;

5. For each output p of transaction t;

6. P={p}P;

7. M0(p)=0;

8. (p)=Bitcoin quantity locked in the output;

9. F={(t, p)}F;

10.  (p)=address a extracted from the ScriptPubKey field of

output p;

11. A={a}A;

12. a.balance=0;

13. a.received=0;

14. a.balance.gene=;

15. a.received.gene=;
16. End for;

17. For each input p of transaction t

18. F=(p, t)F;

19. End for;

20. End for;

21. End for;

22. For each t{t| |t|=0}

23. Create a virtual and unique place p and P={p}P;

24. M0(p)=1;

25. F={(p, t)}F;

26. (p)=
'

(')
p t

p
 ;

27. Generate a virtual and unique address a and A={a}A;

28.  (p)=a;

29. a.balance=(p);

30. a.received=(p);

31. a.balance.gene={(, (p), 100%)};

32. a.received.gene={(, (p), 100%)};

33. End for

--

Lines 1-21 parse data from the Blockchain and construct a

BTN. Line 3 adds a new transition to the transition set. Line 4

uses the block's timestamp as the transaction's timestamp since

the Blockchain data does not save a transaction's timestamp.

Lines 5-16 process the outputs of the transaction. Line 6 creates

a new place for the output. Line 7 state that its usability is false,

namely, it cannot be used as an input of other transactions. Line

8 sets up the value of (p), which can be obtained from the

Blockchain data. Line 9 adds (t, p) to F. Line 10 sets up the

mapped address of  (p), which can be obtained from the

ScriptPubKey field of output in the Blockchain. Line 11 adds

the address a to the address set A. Lines 12/13 and 14/15 set up

the balance/received coins and balance/received gene to 0 and

empty. Lines 17-19 add each input (p, t) to F.

Lines 22-33 add a virtual input and a virtual address to every

coinbase transaction and configure the relative values. Line 23

creates a virtual and unique place/input and adds it to a place

set. Line 24 sets up the input as usable, namely, it can be used

as an input of a coinbase transaction. Line 25 adds (p, t) to F.

Line 26 sets up the value of (p) to the sum coin quantities of

outputs of the coinbase that uses the place as input. Line 27

generates a virtual and unique address and adds it to the address

set. Line 28 sets up the map value of  (p) to the address. Lines

29/30 and 31/32 set up the balance/received coins and

balance/received gene to the coin quantity of the input and {(,

(p), 100%)}. {(, (p), 100%)} as a row-definition of gene. Its

col-definitions are {{}, {(, a.balance)}, {(, 100%)}}, where

 represents a background DNA. Before Bitcoins are mined,

their genes usually stay pure and unpolluted. The pure genes

contain only one DNA , which are usually ignored as they are

not related to any suspected address.

By implementing Algorithm 1, a BTN is created, which can

be fired to simulate transaction occurrences and calculate the

features' values.

Before the BTN firing process, each dyeing DNA of every

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

7

address is setup to empty (dyeing DNA of an address being

empty means the address is not a dyeing pool). If we want to

trace the passing through of Bitcoins with specific address, we

need to set the corresponding address as a dyeing pool.

a.dyeingDNA denotes dyeing DNA of address a. a.dyeingDNA

should be given a specific identifier or name assuming d, i.e.,

a.dyeingDNA=d. In our framework, addresses are pre-clustered

based on the input address clustering method. Every dyeing

DNA of each address in the same cluster with address a should

also be setup to d because addresses within a cluster are very

likely belong to a user or group.

B. Firing of BTN

If a transition t satisfies the following conditions, it can be

fired.

Definition 7. Conditions of firing of transition t:

1. For pt, M(p)=1;

2. ()
p t

p
 o

≥
'

(')
p t

p
 o

;

3. For a*t, a.balance≥
()

()
p t p a

p



  = o

.

Condition 1 depicts that the inputs of transaction t are

available. Condition 2 depicts that the Bitcoins locked in inputs

of transaction t are more in quantity than Bitcoins locked in its

corresponding outputs. Condition 3 states for each address of

transaction t, its balance is no less than the Bitcoins withdrawn

from the respective address.

Results of firing a transition t are as follows.

--

Definition 8. Effects of firing of transition t:

Assume that a temp gene G= in initial state. When t is

firing,

For pt,

1. M(p)=0.

2.  (p).balance= (p).balance-(p);

3. G=G⊥( (p).balance.gene\(p));

For pt,

4. M(p)=1;

5.  (p).balance= (p).balance+(p);

6.  (p).received= (p).received+ (p);

7. G'=G \ (p);

8.  (p).balance.gene= (p).balance.gene ⊥ G';

9.  (p).received.gene= (p).received.gene ⊥ G';

10. If  (p).dyeingDNA, then  (p).balance.gene

= (p).balance.gene (p).dyeingDNA.

--

Lines 1-4 define the behaviors of transition's inputs. Line 1

means transition's firing consumes tokens from its input places.

Line 2 means that the balance of the address mapped by the

place p is subtracted by the Bitcoin quantity withdrawn by p.

Line 3 means that the balance gene of the address mapped by p

is split by (p); the split gene is merged to G.

Lines 4-9 define the behaviors of transition's outputs. Line 1

means that the transaction produces a new token for the place.

Line 5/6 adds (p) to the place's balance/received coins. Line 7

splits (p) gene from G to G'. Line 8/9 merges G' to the

balance/received gene of address mapped by p. Line 10 means

that if the address mapped by p is a dyeing pool, its balance

gene should be dyed by its dyeing DNA.

Firing sequence is a sequence of transitions that represents

an occurrence order of Bitcoin transactions. The Bitcoin

Blockchain itself maintains a transaction sequence. The

BitcoinDatabaseGenerator[31], i.e., the open source tool we

used to parse the Bitcoin Blockchain, does not restore the

transaction sequence. (One of our further works is to improve

this Blockchain parsing tool.) In order to recover the transition

sequence as close as possible to the transaction occurrence

sequence, we find a firing sequence according to the transaction

timestamps. The following algorithm describes the process of

firing of transitions.

Algorithm 2 Transition firing.

Input: an initialized BTN N=(P, T, F, A, , , M0)

Output: a BTN N with feature values.
1. T '={t|M(p)=1pt};

2. While T '≠ do

3. Find tT ' such that (t)≤(ti) for tiT 'tti;
4. Fire t using Definition 8;

5. T '={t|M(p)=1pt};
6. End while

Line 1 is used to find a transition set, where every transition

in the set can be fired. Line 2-6 are used to fire transitions

according to their fireable conditions and timestamps. Line 3 is

to find a fierable transition with the smallest timestamp. Line 4

is used to fire the transition according to Definition 8. Line 5 is

used to update the fireable transition set.

After processing Algorithm 2, a BTN with feature values is

obtained.

C. An Example

The BTN presented in Fig. 3 is used as an example to

illustrate how the values of dynamic features change during the

transitions firing process. Assume that we want to trace

Bitcoins passing through address a0. Let a0.dyeingDNA=d. In

Fig. 3, a1 and a2 are clustered into the same class. Other

addresses are clustered into different classes separately.

Therefore, only a0 is set as a dyeing pool. Assume that a firing

sequence is t0t1t2t3 and their states are M0M1M2M3 M4. Balance

and received coins of an address can be derived from its balance

gene and received gene. Therefore, in this example, we focus

on the analysis of gene.

In the initial state M0, only a4 and a5 have coins. Their

balance/received gene are {(, 2, 100%)}/{(, 1, 100%)} and

{(, 2, 100%)}/{(, 1, 100%)}. When t0 is fired, 2 coins are

moved from a4 to a0. Since a0 is a dyeing pool, its balance and

received gene become {(d, 2, 100%)} and {(d, 2, 100%)}. The

balance gene of a4 becomes . When t1 is fired, 1 coin is moved

from a5 to a1. The balance genes of a5 and a1 become  and

{(, 1, 100%)}. Received gene of a1 becomes {(, 1, 100%)}.

When t2 is fired, 2 coins in a0 are moved to a0 (1 coin) and a2 (1

coin). The balance and received genes of a2 are {(d, 1, 100%)}

and {(d, 1, 100%)}. The balance and received genes of a0

become {(d, 1, 100%)} and {(d, 3, 100%)}. When t3 is fired,

the BTN reaches the final state M4. Bitcoins in a1 and a2 are

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

8

mixed and moved to a0 and a3. The balance and received genes

of a0 become {(d, 2, 100%)} and {(d, 4, 100%)}. The balance

and received genes of a3 become {(, 0.5, 50%), (d, 0.5, 50%)}

and {(, 0.5, 50%), (d, 0.5, 50%)}. balance.gene and

received.gene of every address in each state are shown in Table

4 and Table 5. Genes in the two tables are represented by the

form of Definition 2 which is easier for understanding.

TABLE 4. BALANCE GENE OF EVERY ADDRESS IN EACH STATE

 M0 M1 M2 M3 M4

a0  {(d, 2, 100%)} {(d, 2, 100%)} {(d, 1, 100%)} {(d, 2, 100%)}

a1   {(, 1, 100%)} {(, 1, 100%)} 

a2    {(d, 1, 100%)} 

a3     {(, 0.5, 50%),

(d, 0.5, 50%)}

a4 {(, 2, 100%)}    

a5 {(, 1, 100%)} {(, 1, 100%)}   

TABLE 5. RECEIVED GENE OF EVERY ADDRESS IN EACH STATE

 M0 M1 M2 M3 M4

a0  {(d, 2, 100%)} {(d, 2, 100%)} {(d, 3, 100%)} {(d, 4, 100%)}

a1   {(, 1, 100%)} {(, 1, 100%)} {(, 1, 100%)}

a2    {(d, 1, 100%)} {(d, 1, 100%)}

a3     {(, 0.5, 50%),

(d, 0.5, 50%)}

a4 {(, 2, 100%)} {(, 2, 100%)} {(, 2, 100%)} {(, 2, 100%)} {(, 2, 100%)}

a5 {(, 1, 100%)} {(, 1, 100%)} {(, 1, 100%)} {(, 1, 100%)} {(, 1, 100%)}

VII. PATTERN ANALYSIS

A. Constitution of Pattern

Pattern matching aims to find addresses that satisfy a given

pattern. However, it is not easy to describe a complicated

pattern directly. Therefore, we propose instructions on how to

define a pattern by logical expressions.

Fig. 4 presents the constitution of a pattern. A pattern is

defined by a set of properties. A property is a set of feature

expressions. A feature expression can be defined as a logical

expression over features according to the clues provided. In

fact, the pattern, property and feature expression are all logical

expressions over features. A feature expression is used to

describe the character of a Bitcoin transaction feature. A

property expression is used to describe an aspect of a pattern. A

pattern expression describes a pattern. Generally, if we want to

define a pattern, we should first analyze the aspects included in

the pattern. Then for each aspect, a property should be defined

by one or more feature expressions.

Pattern

Property1 Propertyi ...

Expression1 Expressionj ...
Fig. 4. Constitution of a pattern.

Different types of feature expressions can be classed into

three levels. The first level is the address expression, denoted

as E1, which results in a set of addresses that satisfy E1; the

second level is the transaction expression, denoted as E2, which

results in a set of transactions that satisfy E2; and the third level

is the place expression, denoted as E3, which results in a set of

places that satisfy E3.

A pattern results in a set of addresses since the aim of pattern

matching is to find a set of addresses. A property also results in

a set of addresses because a resulting address set of a pattern is

the intersection of all the resulting address sets of the pattern's

properties in our scheme. Therefore, a property expression must

contain at least an address expression. Transaction expressions

or place expressions cannot be used alone in a property

expression. A transaction or place expression must be applied

with an address expression combined by a joint clause.

A transaction feature expression E2 can be used to refine an

address expression E1. A joint clause between E1 and E2 is t⸋a

or ta⸋. A place feature expression E3 can be used to refine an

address expression E1. A joint clause between E1 and E3 is (p)

=a. A place feature expression E3 can be used to refine a

transaction expression E2. A joint clause between E2 and E3 is

pt or pt. Fig. 5 shows the refining relationships between

E1, E2 and E3. Table 6 presents the joint clauses between E1, E2

and E3.

Address features, i.e. the level 1 features, are easy to use. For

example, the address balance is used to find addresses whose

balances are limited to a range. An expression 0<a.balance

<100 is used to find addresses whose balances are more than 0

but less than 100, which results in an address set

{a|0<a.balance<100}. Different features can be combined to a

complex expression. For example, an expression

(a.balance<100)(a.received>100) is used to find addresses

where each of the balance is less than 100 and each of the total

received coins are more than 100, which results in

{a|(a.balance<100)(a.received>100)}.

Address expression E1 Transaction expression E2

Place expression E3

Refine

RefineRefine

Fig. 5. Refining relationships between three level expressions.

TABLE 6. JOINT CLAUSES AND THEIR FUNCTIONS

Combination E1 and E2 E1 and E3 E2 and E3

Clauses t⸋a, ta⸋  (p)=a pt, pt

A transaction feature (a Level-2 feature) expression needs a

joint clause to become an address feature (level 1 feature)

expression. For example, an express (t⸋a)(()
p t

p
 >10) is

used to find addresses whose deposit transaction transfers more

than 10 Bitcoins. t⸋a is a joint clause. The resulting address

set is {a|(t⸋a)(()
p t

p
 >10)}.

A place feature (a level-3 feature) expression needs a joint

clause to become an address feature (a level-1 feature)

expression. For example, an expression ( (p)=a)(M(p)=1) is

used to find addresses having UTXOs.  (p)=a is joint clause.

The resulting address set is {a|( (p)=a)(M(p)=1)}. An

expression (t⸋a) (pt)((p)>10) is used to find addresses

where every output of each deposit transaction of the address a

moves more than 10 Bitcoins to this address a. The resulting

address set is {a|(t⸋a)(pt)((p)>10)}. This expression

contains two joint clauses. (p)>10 is a place feature

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

9

expression, which is combined with a joint clause pt. Then

expression (pt)((p)>10) becomes a transaction feature

expression. After that, (pt)((p)>10) is combined with joint

clause (t⸋a), thus (t⸋a)(pt)((p)>10) becomes an

address expression.

A matching program of a pattern is written manually at

present in our experiment. However, it would be more

convenient to develop a compiler to compile patterns into

programs automatically, which is a part of our further work.

B. Marginal Distribution Analysis of Feature Values

For a specific case, a set of addresses can be obtained once

pattern matching is completed. However, it is possible that

some addresses matching the rules may not relate to the case.

These samples of addresses are false positive samples. Marginal

distribution analysis is used to try to eliminate such false

positive samples.

An assumption of the marginal distribution analysis method

is that behaviors in a transaction pattern are similar. This

assumption is derived from another assumption that a user's

repeated behaviors in regards to a specific activity are similar.

This assumption is derived from statistical facts that have been

widely used in recommendation methods and abnormal

behavior detection methods. Therefore, samples of a feature

directly or indirectly related to addresses found by through

pattern matching should distribute near similar values. The

samples far away from the values are less likely to be relevant

to the case. Therefore, these deviated samples can be eliminated

to improve accuracy.

For example, let us assume an address set is obtained by

pattern matching. Its value range of the total received coin

amount is [x, y]. The range is divided into z intervals. If most

samples (%) are distributed into some continuous intervals,

then (1-)% samples can be deleted. The threshold  is an

empiric value. A histogram can be used to assist with

determining the value of .

A subset can be obtained by removing the false negative

samples based on their features. Different features can obtain

different subsets. An intersection of these subsets delivers the

final result set.

VIII. CASE STUDY

A. The Mt. Gox Case

Mt.Gox [32] is a Bitcoin exchange launched in July 2010. In

February 2014, Mt.Gox filed for bankruptcy protection since

more than 500k Bitcoins have gone missing, which are to be

likely stolen. Loss of Bitcoins probably started in August 2011

and lasted until late 2013. Based on the analysis of a Mt.Gox

deposit and withdrawal log data, which is leaked in 2014 (no

longer publicly available now), WizSec identified a transfer

pattern, as shown in Fig. 6 [33]. In this pattern, some Bitcoins

have been collected from different addresses and stored into

larger holding addresses (also called gathering addresses). After

that, these Bitcoins have been split and deposited onto different

exchanges. Although WizSec has identified millions of possible

Mt.Gox addresses, these addresses are not available. In this

paper, we use the transfer pattern shown in Fig. 6 and the public

Mt.Gox address “1LNWw6yCxkUmkhArb2Nf2MPw6vG7u5-

WG7q” as the clues for further investigation. Our goal is to

identify gathering addresses that match the transfer pattern.

These addresses are likely to be used to transfer the lost

Bitcoins.

Fig. 6. A recurring transfer pattern of the lost Bitcoins form Mt.Gox [33].

B. Experiment Setup and Preprocessing

The selected time window of Bitcoin transactions is chosen

from Jan/03/2009 to Dec/28/2013, which consists of more than

30,000,000 transactions. A virtual machine with 8 core CPU

and 64G RAM is used for our analysis.

The transaction data is parsed from the Bitcoin Blockchain

and stored in a SQL Server Database using BitcoinDatabase-

Generator[31]. All addresses are clustered by the input address

clustering method [8, 10-14]. The clustered information is

stored in the SQL Server Database. Mt.Gox address

“1LNWw6yCxkUmkhArb2Nf2MPw6vG7u5WG7q” is

clustered into a class that contains 544k addresses. All these

addresses in the class are setup as dyeing pools. The dyeing

gene of each of them is setup to mgDNA.

Creating BTN and its firing process are achieved in less than

20 minutes and less than 40 minutes respectively. On the

contrary, the pattern analysis takes less than a minute, which

thus the entire process is completed in an hour.

C. Pattern Setup

WizSec pointed that "Mt.Gox Bitcoins have been sent to a

new non-Mt.Gox address often in fairly recognizable amounts

of a few hundred BTC at a time. Shortly afterwards, these

addresses in turn would be gathered up into bigger addresses

holding a few thousand BTC. From there, the coins would get

deposited in chunks of some hundred BTC at a time onto

various Bitcoin exchanges." The transfer pattern is shown in

Fig. 6. The large holding addresses, also called gathering

addresses, are used as distinguishable points.

According to the clues indicated by WizSec, we formalized

the transfer pattern with the following 7 properties in which a

represents a gathering address.

1. The number of incoming addresses of a gathering

address a is not less than 3. The property is |{a'| (p)=a

t⸋pa'*t}|≥3.

2. “Each gathering address holds a few thousand Bitcoins”.

According to this, a total amount of received Bitcoin of

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

10

a large holding address a is setup to 1000-10000. The

property is 1000≤a.received≤10000.

3. “The losing behavior started from August 2011”. For the

sake of safety, we set the start date to July 15, 2011. The

property (t⸋a)((t)≥July/15/2011). t⸋a is a joint

clause.

4. Every transaction that transferred Bitcoins to a gathering

address a has only one output place. The property

(t⸋a)(|t|=1). t⸋a is a joint clause.

5. There are two methods to accept coin change: using the

gathering address, and using a new change address. It is

unknown which method has been used in the Mt.Gox

case. 1) If the first was used, there would be many

outgoing addresses, namely, the number of outgoing

addresses would be greater than 2; 2) If the second was

used, every transaction that transferred Bitcoins from a

gathering address would have two outputs belonging to

two different new addresses. Thus, the number of

outgoing addresses of a gathering address would be

equal to 2. According to 1) and 2), the number of

outgoing addresses of a gathering address a is no less

than 2. The property is (|{a'|  (p) = a  tp⸋a't*}|≥2).

6. Every transaction that withdrew Bitcoins from a

gathering address has only one incoming address. This

property is (ta⸋)(*t=1).

7. Received gene of every gathering address should contain

mgDNA. This property is mgDNAa.receive-d.gene.D.

The above 7 properties defined the pattern. Through analysis,

an address set denoted as S containing 236 addresses is found,

which transferred 560K bitcoins.

D. Marginal Distribution Analysis

The 236 addresses found are likely to contain false positive

samples, namely some found addresses may follow the pattern

but do not relate the Mt.Gox case. While the Marginal

Distribution Analysis (MDA) is primarily attempted to spot and

remove the false positive samples, it also found latent details

hidden in the pattern.

For example, as mentioned previously in section VIII.C,

there are two methods to accept coin change, the pattern does

not give insights into the method that is actually used. The

marginal distributions in the number of withdrawn transactions

and the number of outgoing addresses can reveal such details.

Fig. 7 and Fig. 8 present the two distributions. Only 16

gathering addresses from the totally found 236 gathering

addresses characterize more than 2 withdraw transactions and

outgoing addresses, which means most of them have used new

addresses to accept changes. This finding also conforms with

the fact that using a new address to receive change is safer than

reusing an old address. Then an address subset by excluding the

16 addresses is obtained, denoted as S1.

When Bitcoins have been collected to a gathering address,

information on the number of involved transactions collecting

these Bitcoins are not known. Distribution of the number of

deposit transactions of gathering addresses, as shown in Fig. 9,

reveal such details. There are only 23 addresses characterizing

2 or more deposit transactions, which means most of them have

actually used just a single transaction to collect Bitcoins. This

conforms with the fact that fewer number of transactions cost

less transaction fee. Then an address subset excluding these 23

addresses is obtained, denoted as S2.

Fig. 7. Distribution of the number of withdrawn transactions of gathering
addresses.

Fig. 8. Distribution of the number of outgoing addresses of gathering addresses.

Fig. 9. Distribution of the number of deposit transactions of gathering
addresses.

Fig. 10 presents the relationship between S, S1 and S2. About

90% (213) addresses share the same characteristics.

Fig. 10. Relationships between S, S1 and S2.

For some features, it is not difficult to determine their

thresholds which decide whether to include or exclude related

addresses. However, for other features, their appropriate

threshold values are not obvious. This entirely depends on the

analysis requirements. If a high precision is required, a radical

threshold should be selected to remove more addresses. If a

high recall is needed, a conservative threshold should be

selected to retain more addresses. For the above three features,

it is not difficult to determine their thresholds. However, the

following two features is on the contrary.

WizSec stated that Mt.Gox Bitcoins have been collected in

213

5 16
1 0 0 1

0

50

100

150

200

250

1 2 3 4 5 6 7

N
u

m
b

er
 o

f
g
at

h
er

in
g

ad
d

re
ss

es

Number of deposit transactions

S-S1

16, 6.8%

S1-S2

7, 3.3%

S2

213, 90.3%

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

11

amounts of a few hundred Bitcoins to form the gathering

addresses which then comprised a few thousand Bitcoins.

Nevertheless, we do not know the number of addresses

collected to form the gathering addresses. Fig. 11 presents the

distribution of the number of incoming addresses of gathering

addresses, where 12, 18 and 51 are the optional thresholds. If

we want to obtain addresses that have much higher similarity,

12 is a reasonable selection. If we focus on the recall of the

related addresses, 51 is an alternative. Herein, 18 is selected as

a threshold. The obtained address subset, denoted as S3, contains

203 addresses.

Fig. 11. Distribution of the number of incoming addresses of gathering

addresses.

In some cases, we need to combine features to form new

features for analysis. For example, the pattern information does

not provide the information regarding the duration required to

split the gathering Bitcoins into exchanges. Even among the 19

features, none of the features has represented the time span

directly. However, there are two features, the first and the last

transaction time of addresses, which can be used to obtain the

time span feature. Fig. 12 presents the distribution of time span

between depositing and withdrawing Bitcoins to or from

gathering addresses. There are many different thresholds, which

can be selected, such as 1, 4 and 7 according to requirements of

precision and recall. Herein, 4 is selected as a threshold. An

address subset S4 is obtained, which contains 186 addresses.

Fig. 12. Distribution of time span of depositing and withdrawing bitcoins to and
from gathering addresses.

Finally, an intersection of S1, S2, S3 and S4 is obtained. It

contains 161 addresses that transferred about 352K bitcoins.

The addresses in this intersection share similar features, and

very likely they belong to the same person or group. The

purpose of our analysis is to provide the 161 addresses that are

very likely related to the pattern. Then law enforcement

agencies can trace these Bitcoins. If they are transferred into an

exchange and the exchange has the identity information, then

suspects can be found effectively. It is not appropriate to argue

that all of the identified addresses relate to the required pattern.

But the results do provide very useful information for the

analysis of lost Bitcoins.

The Mt.Gox case is used as an example to illustrate the

effectiveness and efficiency of the proposed method in

analyzing Bitcoin patterns. From the above analysis, we can see

that the proposed method is very flexible and can be used for

various and complicated cases analysis.

IX. CONCLUSIONS

This paper proposed a novel framework for Bitcoin

transaction network analysis. In this framework, Bitcoin

transactions are formalized as an extended Safe Petri net, called

BTN. Its structure and semantic features are used to describe

Bitcoin transaction’s static and dynamic features. The gene

feature of Bitcoins can be used for the Bitcoin flow analysis.

Based on the described features, various transaction patterns

can be defined. The addresses matched with the patterns can be

identified. The proposed method has been proven to be an

efficient tool for future Bitcoin transaction forensic

investigation, based on real life case study analysis.

In our experiments, pattern expressions are programmed

manually. In the next step, a compiler will be developed to

compile patterns into programs automatically. Bitcoin

Blockchain data is tremendous, if intermediate states are saved

at different time points, a considerable amount of time can be

saved during a recent case analysis. Next, we will continue to

investigate the means of preserving intermediate states of BTN.

In our experiments, an open source tool, BitcoinDatabase-

Generator, is used to parse Bitcoin Blockchain. However, it

does not recover block and transaction orders information

which affects the analysis performance. Investigating this

drawback of this tool is our another research objective as future

work. An integrated bitcoin analysis platform is in our future

plan to assist with bitcoin forensic analysis.

ACKNOWLEDGMENT

This work was partially supported by the Natural Science

Foundation of Jiangsu Province under Grant BK20170069, the

National Natural Science Funds of China under Grants No.

U1836116, the National Key Research and Development

Program of China under Grants No. 2017YFB1400703, the

Postdoc Funds of China and Jiangsu Province under Grants No.

2015M580396 and 1501023A. UK-Jiangsu 20-20 World Class

University Initiative programme, and UK-Jiangsu 20-20

Initiative Pump Priming Grant.

REFERENCES

[1] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," 2008.

[2] D. Bryans, "Bitcoin and money laundering: mining for an effective

solution," Indiana Law Journal, vol. 89, pp. 1-33, 2014.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

12

[3] M. J. Barratt, "SILK ROAD: EBAY FOR DRUGS: The journal publishes
both invited and unsolicited letters," Addiction, vol. 107, pp. 683-683,

2012.

[4] M. Dittus, J. Wright, and M. Graham, "Platform Criminalism: The'last-
mile'geography of the darknet market supply chain," in proceedings of the

2018 World Wide Web Conference on World Wide Web, 2018, pp. 277-

286.

[5] G. White. UK company linked to laundered Bitcoin billions, BBC, (2018).

Available: https://www.bbc.com/news/technology-43291026

[6] N. J. Ajello, "Fitting a Square Peg in a Round Hole: Bitcoin, Money
Laundering, and the Fifth Amendment Privilege Against Self-

Incrimination," Brooklyn Law Review, vol. 80, p. 4, 2015.

[7] P. Reynolds and A. S.M. Irwin, "Tracking digital footprints: anonymity
within the bitcoin system," Journal of Money Laundering Control, vol. 20,

pp. 172-189, 2017.

[8] F. Reid and M. Harrigan, "An Analysis of Anonymity in the Bitcoin
System," in proceedings of 2011 IEEE Third International Conference on

Privacy, Security, Risk and Trust and 2011 IEEE Third International

Conference on Social Computing, 2011, pp. 1318-1326.

[9] S. Göbel, A Polynomial Translation of Mobile Ambients Into Safe Petri

Nets: Understanding a Calculus of Hierarchical Protection Domains:

Springer, 2016.

[10] D. Ron and A. Shamir, "Quantitative Analysis of the Full Bitcoin

Transaction Graph," in proceedings of International Conference on
Financial Cryptography and Data Security Berlin, Heidelberg, 2013, pp.

6-24.

[11] M. Fleder, M. S. Kester, and S. Pillai, "Bitcoin transaction graph analysis,"

arXiv preprint arXiv:1502.01657, 2015.

[12] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,

"Evaluating User Privacy in Bitcoin," in proceedings of International
Conference on Financial Cryptography and Data Security, Berlin,

Heidelberg, 2013, pp. 34-51.

[13] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, et al., "A fistful of bitcoins: characterizing payments among men

with no names," presented at the Proceedings of the 2013 conference on

Internet measurement conference, Barcelona, Spain, 2013.

[14] M. Spagnuolo, F. Maggi, and S. Zanero, "BitIodine: Extracting

Intelligence from the Bitcoin Network," in proceedings of International

Conference on Financial Cryptography and Data Security, Berlin,

Heidelberg, 2014, pp. 457-468.

[15] M. Harrigan and C. Fretter, "The unreasonable effectiveness of address

clustering," in proceedings of 2016 Intl IEEE Conferences on Ubiquitous
Intelligence & Computing, Advanced and Trusted Computing, Scalable

Computing and Communications, Cloud and Big Data Computing,

Internet of People, and Smart World Congress

(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016, pp. 368-373.

[16] C. Zhao and Y. Guan, "A GRAPH-BASED INVESTIGATION OF

BITCOIN TRANSACTIONS," in proceedings of Advances in Digital

Forensics XI, Cham, 2015, pp. 79-95.

[17] D. D. F. Maesa, A. Marino, and L. Ricci, "Uncovering the Bitcoin

Blockchain: An Analysis of the Full Users Graph," in proceedings of 2016
IEEE International Conference on Data Science and Advanced Analytics

(DSAA), 2016, pp. 537-546.

[18] D. Di Francesco Maesa, A. Marino, and L. Ricci, "Data-driven analysis of

Bitcoin properties: exploiting the users graph," International Journal of

Data Science and Analytics, September 25 2017.

[19] M. Ober, S. Katzenbeisser, and K. Hamacher, "Structure and anonymity
of the bitcoin transaction graph," Future internet, vol. 5, pp. 237-250,

2013.

[20] A. Pinna, R. Tonelli, M. Orrú, and M. Marchesi, "A Petri Nets Model for

Blockchain Analysis," arXiv preprint arXiv:1709.07790, 2017.

[21] A. Pinna, "A Petri Net-based Model for Investigating Disposable

Addresses in Bitcoin System," in proceedings of Knowledge Discovery on

the WEB, 2016, pp. 1-4.

[22] J. V. Monaco, "Identifying Bitcoin users by transaction behavior," in

proceedings of SPIE Defense + Security, 2015, p. 15.

[23] M. A. Harlev, H. Sun Yin, K. C. Langenheldt, R. Mukkamala, and R.

Vatrapu, "Breaking Bad: De-Anonymising Entity Types on the Bitcoin

Blockchain Using Supervised Machine Learning," in proceedings of the

51st Hawaii International Conference on System Sciences, 2018, pp. 1-

10.

[24] M. Möser, R. Böhme, and D. Breuker, "An inquiry into money laundering

tools in the Bitcoin ecosystem," in proceedings of APWG eCrime

Researchers Summit, 2013, pp. 1-14.

[25] G. D. Battista, V. D. Donato, M. Patrignani, M. Pizzonia, V. Roselli, and

R. Tamassia, "Bitconeview: visualization of flows in the bitcoin
transaction graph," in proceedings of IEEE Symposium on Visualization

for Cyber Security (VizSec), 2015, pp. 1-8.

[26] N. Christin, "Traveling the silk road: a measurement analysis of a large
anonymous online marketplace," presented at the Proceedings of the 22nd

international conference on World Wide Web, Rio de Janeiro, Brazil,

2013.

[27] D. Kondor, M. Pósfai, I. Csabai, and G. Vattay, "Do the rich get richer?

An empirical analysis of the Bitcoin transaction network," PloS one, vol.

9, pp. 1-10, 2014.

[28] D. McGinn, D. Birch, D. Akroyd, M. Molina-Solana, Y. Guo, and W. J.

Knottenbelt, "Visualizing dynamic bitcoin transaction patterns," Big data,

vol. 4, pp. 109-119, 2016.

[29] S. Bistarelli and F. Santini, "Go with the -Bitcoin- Flow, with Visual

Analytics," presented at the Proceedings of the 12th International

Conference on Availability, Reliability and Security, Reggio Calabria,

Italy, 2017.

[30] Y. Wu, A. Luo, and D. Xu, "Forensic Analysis of Bitcoin Transactions,"
in proceedings of 2019 IEEE International Conference on Intelligence

and Security Informatics (ISI), 2019, pp. 167-169.

[31] ladimolnar. BitcoinDatabaseGenerator, (2017). Available:

https://github.com/ladimolnar/BitcoinDatabaseGenerator

[32] Wikipedia. Mt.Gox, (2019). Available:

https://en.wikipedia.org/wiki/Mt._Gox

[33] WizSec. The missing MtGox bitcoins, (2015). Available:

https://blog.wizsec.jp/2015/04/the-missing-mtgox-bitcoins.html

Yan Wu is a Lecturer in the School of Computer

Science and Telecommunication Engineering at

Jiangsu University, China. He received the PhD

degree from Tongji University, Shanghai,

China, in 2014. He His research interests include

blockchain, formal methods, service-oriented

Computing, and big data.

Fang Tao received her PhD degree from

Loughborough University, UK, in 2017 and MSc

degree from Brunel University, UK, in 2005. She

is a researcher at Jiangsu University and a

visiting scholar at the University of Leicester,

UK. Her research interests are in business

analytics, data analytics and international

business.

Lu Liu is the Head of School of Informatics and

Professor of Informatics at the University of

Leicester, UK. Prof. Liu received his Ph.D.

degree from University of Surrey in 2008 and

M.S. degree from Brunel University in 2003.

Prof. Liu's research interests are in the areas of

data analytics, service computing, cloud

computing, Artificial Intelligence and the

Internet of Things. He is a Fellow of British

Computer Society (BCS).

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

13

Jiayan Gu received the BSc degree from

University of Derby, UK, in 2018. She is

currently working towards the PhD degree in the

University of Derby, UK. Her research interests

include service computing, edge computing and

cloud computing. She is a Member of IEEE.

John Panneerselvam is a Lecturer in

Computing at the University of Derby, United

Kingdom. John received his PhD in Computing

from the University of Derby in 2018 and an

MSc in advanced computer networks in 2013.

He is an active member of IEEE and British

Computer Society, and a HEA fellow. His

research interests include cloud computing, fog

computing, Internet of Things, big data

analytics, opportunistic networking and P2P

computing. He has won the best paper award in IEEE International

Conference on Data Science and Systems, Exeter, 2018.

Rongbo Zhu is currently a Professor in the

College of Computer Science at South-Central

University for Nationalities, China. Prof. Zhu

received the B.S. and M.S. degrees in Electronic

and Information Engineering from Wuhan

University of Technology, China, in 2000 and

2003, respectively; and Ph.D. degree in

communication and information systems from

Shanghai Jiao Tong University, China, in 2006.

His research interests include mobile computing, protocol design and

performance optimization in wireless networks.

Mohammad Shahzad has done his Bachelor in

Electronics and Master in Electrical Engineering

from COMSATS University, Pakistan. He is

currently doing PhD in Informatics at the

University of Leicester. His research interests

include Cloud Computing, IoT, Future Networks

and Machine Learning.

