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Abstract

This thesis comprises three essays on systemic risk using a computational approach

for the first two chapters and statistical analysis for the third.

Chapter 1 uses an agent-based model to determine whether the stability of a

financial system can be improved by incorporating BCVA into the pricing of OTC

derivative contracts. The results illustrate that the adjustments of financial institu-

tions credit can not only improve the stability of financial counter-parties in credit

events but can also reduce systemic risk in the entire network. The scale of the

benefit is dependent upon the leverage of institutions and is significantly affected

by connectivity and the premium of derivative contracts.

Chapter 2 investigates systemic risk in an agent-based model with collateral com-

mitments. Market prices of collateral are calculated by optimisation functions of fi-

nancial institutions’ efficiency. The experiments indicate that the value adjustments

(xVA) is more effective at eliminating financial systemic risk than by incorporating

only BCVA. However, this effect is unclear in systems of weak infrastructure. The

benefit of xVA is also reduced by large exogenous shocks. Similarly, the market

prices of collateral decline under high leverage or large premiums because the re-

serves for value adjustments limit financial funding of counter-parties. Asset traders

can only offer lower bid-ask prices.

Chapter 3 tests the effectiveness of Basel III liquidity standards to enhance the

stability of the banking sector. The analyses provide significant evidence that the

long-term liquidity regulation of NSFR exacerbates bank profitability and fragility,

especially for large banks. Short-term liquidity standard, also known as LCR, has a

positive influence on ROAA but a negative impact on bank risk-taking. Nonetheless,

these effects are economically insignificant. The Basel III regulations are therefore

ineffective at improving bank strength; indeed they reduce bank performance.
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Thesis Introduction

The weaknesses of Basel II contributed to the financial crisis of 2007. Basel II focused

on protecting banks by regulating through capital requirements, and it missed the

default correlations between corporations and banks. Defaults of financial institu-

tions can trigger contagion through connectivity within financial systems and reduce

the stability of the banking sector, as in the case of Lehman Brothers. Lehman was

one of the four largest investment banks in the US and was believed too big to

fail. However, Lehman’s bankruptcy filling in September 2008 triggered the global

crisis from the US market to European economies. Investors were forced to re-

examine risk-taking of all financial entities without exception. There was a lot of

research which studied bank risk-taking in lending markets, but risk exposures in

derivative markets receive less attention. The first chapter of this thesis, there-

fore, aims to investigate the situation where investors incorporate creditworthiness

of financial counter-parties in pricing their derivative transactions, in such case the

question is raised on whether the stability of each financial institution is enhanced.

Consequently, the whole system is strengthened. We use computational methods to

build an agent-based model simulating the 2007 financial network in which, financial

counter-parties connect to one another by Interest Rate Swaps (IRS) transactions.

Systemic risks are simulated by a Monte Carlo approach on identical networks with

and without counter-party credit risk and its value adjustments. The effect of ac-

counting for financial counter-parties’ creditworthiness is measured by the difference

between default numbers in the two scenarios. The outcomes of experiments indi-

cate that the equity cushion provided by credit value adjustments (BCVA) shields

financial participants against unexpected losses and contributes to the stability of

the entire network. This benefit is affected by the leverage of institutions, connec-

tivity of the network and premium of derivative contracts. In particular, BCVA is

2



more effective in a system with higher leverage. A more complete financial network

may alleviate systemic failures by propagating the negative impact of institutions’

insolvencies on others. However, greater connectivity acts as an effective channel

to transfer expose from the defaulted financial institution(s) to others and then ex-

acerbate systemic risk. Experimental evidence also emphasizes that if the shock is

caused by a small premium, BCVA could reduce systemic failures significantly.

Collateral was applied as a helpful mechanism against unanticipated credit events

although researchers pointed out some potential risks related to collateral commit-

ments. Gregory (2015) proposed that these risks consist of the collateral’s impact

outside OTC derivative markets, market risk and the risk related to margin period,

operational risk, legal risk, liquidity and funding liquidity risk. The major concerns

of counter-parties who hold collateral are transaction costs to liquidate collateral

within a time frame required and its discounted prices in credit events. Addition-

ally, another liquidity risk comes if investors simultaneously sell their collateral that

generates a large supply of assets resulting in a significant decline in the market

price of the collateral. The exposures of creditors are more extreme. Furthermore,

another aspect of being considered is the demand for funding to fulfil collateral re-

quirements, especially segregated collateral. The same is kept in a separate account

without interest rate return, and it can not be re-posted in another transaction.

A financial institution may go insolvent due to the constraint on funding to meet

its obligations of collateral before it goes bankrupt by exogenous shocks. Gregory

described some value adjustments which can be used as a buffer against collateral’s

financial risks in an expectation to contribute towards financial institutions’ stability

and the strengthening of the whole system. The value adjustments, which consists

of CVA, ColVA (Collateral Value Adjustment) and FVA (Funding Value Adjust-

ment) are denoted by a term called xVA in the second chapter. In this chapter,

systemic risk is examined by a Monte Carlo approach on the agent-based model

without xVA. The simulation is then repeated for the identical financial network

of the same financial entities but with a buffer equivalent to xVA. The effect of

xVA against systemic failures is evaluated by the gap between two Monte Carlo

simulations. Furthermore, we estimate the fluctuations of collateral market prices

by developing a function to optimise financial institutions’ benefits if they have to
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liquidate their assets. The results of chapter 2 provide evidence that the additional

equity equivalent substantially eliminates systemic risk to xVA. This benefit is how-

ever, ineffective if the network infrastructure is not strong enough, i.e. the financial

system has a small number of derivatives transactions between entities. A very loose

network even exacerbates the systems fragility. Besides, the benefits of xVA are also

reduced by large premiums. Although xVA is shown as an effective determinant in

improving the financial system’s stability, its cost is the decline in the assets’ market

prices, the role of xVA is hence critical.

The Basel Committee on Banking Supervision (BCBS) responded to the global

crisis by the introduction of Basel III. It requires a higher buffer in the capital and

new liquidity standards. The implementation of Basel III is expected to reduce

liquidity risk exposes and at the same time, enhance bank stability. However, the

new requirements on long-term and short-term liquidity can put BCBS’s members

into the limitation of liquidity funding. And if they can fulfil the new liquidity

standards, their performance might be negatively affected due to the constraints of

sources for possible financial investments. The third chapter is based on a panel

of the banking sector in developed European countries from 2011Q1 to 2018Q4 to

analyse banks’ performance and their stability after the announcement of Basel III.

The impacts of liquidity standards which are Net Stable Funding Ratio (NSFR)

for long-term capital and Liquidity Coverage Ratio (LCR) for short-term capital

are examined with other determinants of bank efficiency and strength to avoid bias

estimations. The statistical results of Chapter 3 indicate that long-term liquidity

standards not only reduces bank performance but also reduce bank stability. Though

the requirement of short-term liquidity may have positive impacts on the bank risk-

taking, the improvement is trivial. If a bank is a member of BCBS, such a bank

is more stable compared to a non-member of BCBS, although both apply Basel III

requirements. This chapter also supports prior literature in the impacts of bank-

specifics and macro-economics on the banking sector.
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Chapter 1

An Agent-Based Model of BCVA

and Systemic Risk

1.1 Introduction

The 2007-8 financial crisis highlighted significant weaknesses in Basel II’s treatment

of derivative contracts. Basel II regulated the capital requirements for all loans

from banks to corporations, but it did not consider the default correlations between

corporations and banks. Lehman Brothers was regarded as a risk-free financial

institution by most of its counter-parties, but it was allowed to fail on the 15th

of September 2008. This financial institution’s collapse impacted not only the US

market but also the economy of the EU. The global credit crisis forced investors to

carefully evaluate the default possibility of all financial institutions.

This paper aims to understand the response to this issue; if financial institutions

consider the creditworthiness of their counter-parties when pricing their derivatives

contracts, is there an improvement in their stability and does the entire network

become more stable? Whilst there is a significant amount of research focusing

on systemic risk in lending markets, there is little that examines the impact of the

deterioration of counter-parties’ credit rating on systemic risk in derivatives markets.

The rapid development of Basel standards after the global credit crisis poses the

question of whether Credit/Debit Value Adjustment play a role in improving the

stability of financial systems and to what extent. This paper thus examines the

relationship between interconnected architecture and systemic risk in a financial
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network.

To study this question, we construct an agent-based model of the financial system

in which financial institutions are connected by a network of derivative contracts.

Changes in the values of these contracts result in payments between institutions.

If these changes in value are larger than the capital of the associated institutions,

they may force defaults. The failure of institutions potentially results in the spread

of losses as institutions are no longer able to make their required payments pushing

losses onto their counterparties. We consider this system with and without CVA

and DVA price adjustments in order to understand how they affect market stability.

1.2 Credit Risk and Value Adjustments

Counter-party credit risk is the risk that each party in a transaction could suffer

in the form of a loss from its counter-parties’ failures before the expiration of their

contracts. In an Over-The-Counter (OTC) derivatives market, the issue of counter-

party credit risk is potentially serious. For example, in an Interest Rate Swaps

(IRS) transaction, one counter-party agrees to pay a fixed rate per annum on a

notional principal, and in return, the other counter-party agrees to pay a floating rate

which can be based on, for example, the London Interbank Offered Rate (LIBOR).

The time intervals at which payments are exchanged are initially specified by both

parties. At the points of exchange, one counter-party receives a payment from the

other depending on the value of the contract. Exposure can be to either the fixed-

rate payer or the floating-rate payer (bilateral exposure).

Since 1999, large banks have started to incorporate Credit Value Adjustments

(CVA) in order to evaluate the cost of counter-party risk. If the default probability

of an entity increases, its counter-party faces an equivalent increase in credit risk

if the entity is unable to pay its contractual obligations. The counter-party, there-

fore, needs to evaluate its credit risk and factor this into the pricing of contracts.

This adjustment is referred to a CVA and is calculated form the downgrade of the

entity’s credit rank. At the same time, counterparties will be evaluating the insti-

tutions rating and applying similar changes in value to reflect changes in default

probabilities. These too must be reflected in the price as Debt Value Adjustment
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(DVA). Thus, the dual component of CVA - DVA - should both be considered when

calculating the value of an asset. Beyond this, there are further components that

increase or decrease the market values of contracts such as collateral agreements,

initial margins, required capital etc. These elements should also be included e.g.

Collateral Value Adjustment (ColVA), Margin Value Adjustment (MVA) and Cap-

ital Value Adjustment (KVA) etc. The set of these adjustments are referred to as

xVA; however, in this paper, we focus just on the first two CVA and DVA. Below

we set out the mechanism by which CVA and DVA are calculated.

1.2.1 CVA/DVA

CVA is the price of counter-party risk, i.e. the expected loss due to counter-party

default(s) in the future (Gregory, 2010; Crepey, 2014). The market value of a

derivative should therefore be:

Market price = Fair price - CVA

Gregory (2010) derived the efficient formula to compute CVA in the assumption

of no wrong-way risk as follows:

CV A ≈ (1− δ)
m∑
j=1

B(tj)EE(tj)q(tj−1, tj) (1.1)

where:

Loss Given Default, (1 − δ), gives the proportion amount of expected loss in

default event.

Discount Factor, B(tj), denotes the risk-free discount factor at time tj.

Expected Exposure, EE(tj), is calculated for the relevant dates in the future given

by (tj) for j = 0, n→ m.

Default Probability, q(tj−1, tj), is the marginal default probability in the interval

between date tj−1 and tj.

However, unlike lending markets where the exposure is usually one-way or uni-

lateral, i.e. in where lenders face the risk that borrowers could default but not the

opposite situation, transactions in derivatives markets are two-way or bilateral, so

both counterparties have credit risk from the default possibilities of others. This is

why DVA needs to be considered as the cost of institutions’ own risk when financial
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firms fail before maturity.

DVA can be understood as the contrasting component of CVA and vice versa

(Green, 2016). Thus, in a bilateral derivatives contract with two counterparties A

and B, the below equation can be reached:

CV AA = DV AB; CV AB = DV AA

Market value of a counter-party in a derivatives transaction is now equal to:

Market price = Fair price - (CVA + DVA)

The consideration of DVA in this paper is due to the requirement of international

accountancy standard such as The Statement of Financial Accounting Standard

(FAS) No. 157 in 2006 or the International Financial Reporting Standards 13 (IFRS)

in 2013. Even though DVA is generally ignored in the market practice that will be

discussed in the next chapter, the record of CVA and DVA is useful to explain the

symmetrical concern on both counter-parties’ defaults.

1.2.2 BCVA

The combination of CVA and DVA in pricing a derivatives contract is known as

Bilateral Credit Value Adjustment (BCVA). A simplified approach by Pallavicini

et al. (2011) combines both components into one concept of BCVA equal to:

BCV A = CV A+DV A

Gregory (2010) argues, however, that the counter-party credit risk of one insti-

tution is only a concern if the institution survives after its counter-party default.

Therefore, Gregory’s adjusted BCVA is derived under one further assumption of no

simultaneous defaults. Brigo et al. (2011) also details this as:

BCV A ≈ (1− δ)
∑

j=1B(tj)EE(tj)SI(ti−1)q(tj−1, tj) + (1− δI)
∑

j=1B(tj)NEE(tj)S(ti−1)qI(tj−1, tj)

(1.2)
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where:

S(.) and SI(.) are the survival probabilities of institution and counter-party, re-

spectively.

qI and δI represent the default probability and recovery of the institution.

NEE(tj) denotes the negative expected exposure. That is the EE from the

perspective of the counter-party.

1.3 Literature Review

Systemic risk in derivative markets is received less attention than interbank lending

markets. The majority of the work that has gone on has focused on the role of the

credit derivatives market in the financial crisis and the benefits of Central Counter-

party clearing house (CCP) in reducing financial distress.

Bliss and Kaufman (2004) examined whether protective characteristics of deriva-

tives transactions, such as netting, collateral and close-out, can reduce systemic risk.

They found that the positive impacts are unclear because netting and collateral can

increase systemic risk by permitting the concentration of risk in dealers. However,

they may also decrease distress by giving dealers an effective tool to manage their

counter-party risk and reduce unanticipated defaults. Meanwhile, close-out can be

a potential source of systemic risk since applying close-out increases the difficulty of

managing major insolvent dealers. Conversely, Ali and Vause (2016), Singh (2010)

and Hull (2010) agreed that the OTC derivatives market is a potential source of

systemic risk, but financial institutions can effectively manage counter-party risk by

using bilateral netting or collateralisation agreements.

Kiff et al. (2009) and Russo (2010) argued that the credit derivatives market can

increase systemic risk and the inter-connectedness of large financial institutions. A

CCP can help to reduce systemic risk, however, the effectiveness of multiple CCPs

is arguable. This proposal is supported by Zigrand (2010), Wellink (2010), Yavorsky

(2010), as well as Cont and Minca (2014) who used network-based measures of sys-

temic risk and demonstrated that the default of an entity in the CDS market exposes

losses for both its counter-parties and protection sellers. If financial institutions do

not have enough reserves to fulfil their CDS liabilities, the credit event also causes
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the bankruptcy of protection sellers and widens the default contagion. Nonetheless,

if all major dealers join multilateral clearing with a CCP, the stability of the market

can increase. Whilst, Borovkova and Mouttalibi (2013) concludes that a CCP can

reduce the network’s fragility but only for a homogeneous financial system; a CCP’s

presence can exacerbate contagion defaults for non-homogeneous financial networks,

especially small financial firms.

1.4 Model

We construct a model of a financial system that is statistically similar to the real

network that was in place before the global credit crisis in 2008. There were at least

8,000 counter-parties working in the American derivatives market at this time. They

were connected to one another by approximately 1 million derivatives transactions,

including interest rate swaps, foreign exchange, and credit default swaps. The total

notional outstanding was approximately $800 trillion. It is not feasible to engage in

computational simulation with such a significant number of repetitions on a network

of 8,000 counter-parties, involving over 1 million derivatives transaction. Hence, this

paper attempts to develop a similar financial network on a smaller scale. Similarly,

we focus on a single type of deviate contract - interest rate swaps (IRS). This is

because these contracts account for approximately 80% of the derivatives market

(BISb, 2015).

1.4.1 Financial Network

Consider a closed-economy which comprising n risk-neutral financial institutions.

Each financial institution has a stylised balance sheet comprising derivative contracts

at their fair value (Y), capital (E) and a balancing term Residual Assets (A). The

value of the derivative position can be positive, negative or zero depending upon

the value of each derivative contract being an asset or liability for the institution.

If Y is negative, the derivatives are a net liability - the bank owes more than it is

owed. The residual assets term represent all other assets and liabilities, including

customer deposits, cash and loan position through. Note, as the derivative position,

and A can be positive or negative depending on the balance or the non-equity and
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derivative asset and liability terms. The expression of the stylised balance sheet is

illustrated in Figure 1.1.
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E 
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Y 
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Figure 1.1: Stylised balance sheet

These figures are related through the following accounting equation:

Ei = Yi +RAi

The derivatives position of financial institution i, Yi is comprised of the sum

of its contracts with other financial institutions. The value of a contract between

institution i and institution j is denoted by ytij = −ytji. If there is no contract

between bank i and bank j then ytij = ytji = 0. The fair value of bank i’s derivative

position at time t is equal to Y t
i =

∑n
j=1,j 6=i y

t
ij. Note we do not specify that a given

pair of banks have at most one derivative transaction connecting them, however,

the sum of transactions between a pair of banks may be netted together to be

considered as one single aggregate transaction. The set of derivatives contracts

across all institutions forms a network in which nodes are financial institutions and

edges are derivative positions.

1.4.2 Contracts and Payments

Each derivative contract has a floating rate and a fixed-rate payer. The fixed-rate is

specified at the start of the simulation whilst the floating rate is determined in each

time step. The net payment is the difference between these interest rates multiplied

by the notional value of the contract. This value is transferred from the payer of

the higher rate to that of the lower rate.

If one counter-party has a total amount of payables across all contracts which

is larger than its sum of receivables, it has an excess obligation RAi. If a financial
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institution has insufficient equity to cover the excess obligation, bank i is insolvent

according to the default rule:

Bank i defaults when Ei < RAi where RAi = Payment−Receive

The loss from insolvency can negatively impact other financial institutions through

the edges of the network leading to further insolvencies. Such insolvencies result in

second round defaults. The chain of defaults from the first to the final failure is the

financial contagion which is measured by the total number of insolvency.

1.4.3 Derivative Network

Define Lt
ij as the nominal liability of node i to node j at time t. Liabilities are

non-negative and no counter-party has a claim against itself. Let pti represent the

total payment by counter-party i to other counter-parties at time t and define

pti =
n∑

j=1

Lt
ij

The vector pt = {pt1, pt2, ..., ptn} represents the liabilities at time t of all financial

institutions respectively.

Let Πt denote the relative liability matrix which captures the proportion of the

nominal liabilities by counter-party i to be paid to counter-party j , therefore:

Πt
ij =


Lt
ij

pti
if pti > 0

0 otherwise

Under equal priority of payments, the payment by counter-party i to counter-

party j is ptiΠ
t
ij. Thus the total payments received by node i are equal to

∑n
j=1 Πt

ijp
t
j.

The fair value, or residual capital, of node i is the difference between the total

payments from creditors and total payments from creditors which is equivalent to:

Y t
i =

n∑
j=1

Πt
ijpj − pti (1.4)

Given the above, the fair value of each node is used to evaluate the stability of

each counter-party and the system as a whole via the algorithm of Eisenberg and

Noe (2001).

12



1.4.4 BCVA

We analyse the model with and without BCVA. In the presence of BCVA, the market

value of the derivatives contract is equal to the price of a risk-free derivative minus

BCVA.

Market price = Fair price - BCVA

BCV Ai of financial institution i is the sum of the bcvai for all its transactions:

BCV At
i =

n∑
j=1,j 6=i

bcvatij

In a derivative transaction between bank i and bank j, if bank j defaults, bank i

suffers a loss which is equivalent to the payment from bank j to bank i. Conversely,

if bank i is insolvent, bank j could not gain from bank i as its initial commitment.

Therefore, the bcvaij is estimated by:

bcvatij = δI × receivetij × PDt
j × PSt

i − δI × paymenttij × PDt
i × PSt

j (1.5)

where: δI is the recovery rate; receiveij is the receivable which bank i gains from

bank j; paymentij denotes the payable which bank i pays to bank j. PD and PS

are the respective probability of default and survival. The discounted interest rate

in the original formula (1.2.2) is ignored because we focus on the determination of

insolvency at a single point in time.

1.4.5 Parameters

In order to understand the effect of BCVA on market stability, we simulate the

model. Parameters are assigned based on data prior to the last financial crisis in

the period 2003 to 2007.

Exit price and duration

The notional values of the IRS contracts are randomly drawn from a uniform dis-

tribution with range 10,000 to 15 million currency units. Similarly, transaction

durations are randomly drawn with uniform probability from a discrete distribution
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with intervals at three months ranging from six months to five years.

Fixed rate and floating rate

Fixed rates are randomly assigned from a continuous uniform distribution spanning

3.734% to 6.007% which is the range of average three-month LIBOR in the data

window. Meanwhile, floating rates are drawn randomly from the uniform distribu-

tion with range 3.391% and 6.904%, reflecting the minimum and maximum LIBOR

in the same period.

Credit spread and the probability of default

Credit spreads of financial institutions are assumed to be positive values which are

normally distributed with a mean of 330 and a standard deviation of 500. The

conditional probability of default in calculating CVA/DVA is then:

λ̄ =
s(t)

1− δI
(1.6)

where:

s(T ) is the credit spread for the maturity of T

δI denotes the recovery rate which is assumed to be 40% for all financial institu-

tions

λ̄ is the the probability of first default between time 0 and time t of one counter-

party. Later probabilities of default are calculated based on the first default proba-

bility.

Equity

Equity is randomly drawn from a continuous distribution with range 10,000 to 1

million currency units. However, the equity value of each counter-party is relevant

to its credit spread. The formula (1.6) indicates that a higher credit spread implies

a higher probability of default. An institution with a high default probability should

not be endowed a large amount of equity. The connection between the probability

of default and equity is a monotonic relationship.
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1.5 Results

In order to estimate the impact of BCVA on systemic risk, we simulate systemic

risk on the identical networks with and without BCVA. The difference between the

numbers of defaults in the two scenarios is the effect of BCVA on systemic risk.

We use a Monte Carlo approach to evaluate how systemic risk happens in the

without-BCVA condition. Contagion is triggered by a shock of interest rates. We

draw a value of the floating rate interest rate from the distribution described above.

Institutions face difficulties in fulfilling their obligations if their payables are larger

than their own capital. Consequently, one or more insolvencies may occur. These

are considered first-round insolvencies. After that, any financial institutions which

are connected to the first defaulting institution are negatively influenced due to

credit losses. These losses are equal in value to the payments not received from the

defaulting institutions. Systemic risk is evaluated as the number of defaults from

the second round until no more defaults occur.

The experiment is then repeated for the same financial network with the same

financial institutions but with the addition of BCVA. The capital of financial insti-

tutions to cover credit risk can be either higher if CVA is larger than DVA or lower

if CVA is less than DVA. The processes of applying the default rule and determining

systemic risk are the same as with the non-BCVA simulation. The effect of account-

ing for BCVA in pricing derivatives on systemic risk is illustrated by the difference

in default numbers between two Monte Carlo simulations.

1.5.1 Systemic Risk vs Leverage

The effect of the introduction of BCVA on systemic risk is demonstrated in Figure 1.2

across three levels of derivatives contract sizes: 15 million (Panel a), 30 million

(Panel b) and 40 million (Panel c). Each case has the same level of equity. This

configuration allows the effect of BCVA to be estimated across different levels of

potential risk.

The results indicate that the stability of the financial network is improved by

accounting for counter-party credit risk in pricing derivatives. The level of improve-

ment is dependent upon the differences between the total notional principals of
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derivative contracts and the equity levels of financial institutions. The increased

equity available within the system protects institutions against the failure of their

counterparties. Larger exposures reduce the scale of this protection. Formally we

test the hypothesis:

H0a: Higher leverage results in a more fragile network

H1a: Higher leverage does not result in a more fragile network

H0b: Higher leverage reduces improvement of systemic risk caused by BCVA

H1b: Higher leverage does not reduce the improvement of systemic risk caused by

BCVA

Connectivity v.s. Systemic Risk in a network with differing levels of
notional outstanding
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Figure 1.2a: Contract size from 10 thousand to 15 million currency unit
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Figure 1.2b: Contract size from 10 thousand to 30 million currency unit
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Figure 1.2c: Contract size from 10 thousand to 40 million currency unit

In both cases, the alternative hypotheses of H1a and H1b are rejected at the 1%

significance level. Larger leverage leads to a more fragile system. Additionally,

higher leverage reduces the role of BCVA in enhancing the stability of the system.

Whilst the effect of leverage was perhaps intuitive, we further investigate the
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impact on systemic risk caused by network structure (also known as connectivity)

and premium (understood as the additional rate which floating-rate payers agree to

commit with fixed-rate payers).

1.5.2 Systemic Risk vs Connectivity

Connectivity has been shown in numerous papers to affect systemic risk, e.g. Ladley

(2013). We, therefore, examine the impact of connectivity associated with notional

principals of derivatives contracts. Figures 1.2 and 1.3 display the effect of con-

nectivity on systemic risk with two conditions for notional outstanding. The first,

Figure 1.2 increases notional outstanding as the number of connections increases, in

essence, adding more contracts to the market. The second fixes the notional out-

standing as connections increase, in effect, dispersing or reducing the per connection

contract size (Figure 1.3).

Connectivity v.s Systemic Risk in a network with fixed notional
outstanding
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Figure 1.3a: Total notional outstanding of 2 million for entire network
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Figure 1.3b: Total notional outstanding of 15 million for entire network
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Figure 1.3c: Total notional outstanding of 100 million for entire network

Figure 1.2 a-c indicate that more connections lead to higher systemic risk. This

finding supports work done by Blume et al. (2011) and Blume (2013). The shape

of the relationship between connectivity and systemic risk changes, however, with

the strength of connections between institutions. For relatively small contract sizes,
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systemic risk increases for the full range of connectivity’s all the way up to a fully

connected network. Each additional connection increases the risk of the spread

of failures by bringing more capacity to spread shocks into the system. Increas-

ing the levels of the contract size, however, changes the shape of this relationship.

Figures 1.2b shows that the network saturates at approximately 2,500 connections,

whereas for Figure 1.3 is saturated at a lower level. In these cases, larger contract

sizes suggest that banks are more likely to fail and therefore spread further failures.

As contract size increases the point at which all banks that can fail occurs with

fewer connections due to the larger losses associated with each connection.

Although the above result is intuitive and speaks to the growth of these markets,

it is also interesting to consider the effect of changing the structure of the market

whilst holding the value of contracts constant. Such a change has often been dis-

cussed by regulators and commentators. These results are presented in Figure 1.3

and have a markedly different shape. The positive monotonic relationship between

connectivity and systemic risk observed previously is no longer uniformly present.

Whilst it is still the case that higher value contracts increase the number of failures

observed connectivity also plays a role. For small contracts, failures are maximised

for relatively small numbers of contracts; however, as contract size increases the

maxima also increases. Notably, for intermediate size contracts, the relationship

between connectivity and defaults is n-shaped. This pattern somewhat mirrors the

results observed in Ladley (2013) and Acemoglu et al. (2015). Effectively, as shock

size increases the network changes from being risk-spreading to failure-spreading.

For small contract sizes, and therefore small shocks, the network spreads risk - as

the network becomes better connected fewer institutions fail. As the contracts get

larger, this relationship is replaced by the network acting to spread failures resulting

in the peak in the distribution moving rightwards.

Both Figure 1.2 and 1.3 indicate that as the size of constricts increases, BCVA

has a greater positive effect. In the case of higher notional principals of derivative

contracts, a financial institution has to reserve more capital for its counter-party

credit risk (BCVA). As a result the default probability of each financial entity de-

creases and the stability of the network is enhanced as it has greater loss-absorbing

capacity.
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1.5.3 Systemic Risk vs Premiums

In addition to the effect of leverage and connectivity, premiums also have a sub-

stantial impact on systemic risk. We consider and evaluate three levels of premium:

0.5%, 1% and 3%. The level of premium dictates the size of the payment owed from

one counter-party to the other. Larger premiums equate to a larger gap - effectively

a larger payment shock. Figure 1.4 illustrates the changes in systemic due to BCVA

for different levels of premiums.

The results suggest that BCVA is more effective for smaller premiums. For mar-

kets with low connectivity, BCVA has little effect. It only starts to have an impact

on greater numbers of connections. The higher connectivity results in shocks from

failures being better spread, therefore allowing the BCVA to more effectively absorb

the shock. More connections effectively lead to more BCVA reserves being available

to absorb the failure. This benefit of BCVA, however, decreases as the strength of

connections increases. Stronger connections limit the ability of BCVA to absorb the

failures.

Premium v.s Systemic Risk
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Figure 1.4a: 0.5% premium
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Figure 1.4b: 1% premium
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Figure 1.4c: 3% premium

1.6 Conclusion

Our paper is the first to analyse systemic risk in derivatives markets under the

effect of xVA. This paper numerically analyses the fragility of a financial network
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before and after accounting for bilateral credit valued adjustments. The results

illustrate that BCVA indeed has a positive influence on systemic risk of financial

networks although its effect is dependent upon the leverage ratio in the network.

In particular, the higher the leverage, the more effective the BCVA’s impact. This

paper provides evidence supporting the perspective that a more complete system

which can propagate negative effects from one or more defaulting counter-parties to

other entities reduces systemic failures. If shocks exceed a certain value, however,

more interconnections do not reduce contagion but instead act to transfer effectively

negative shocks from the financial institution(s) to others and widen systemic risk.

Our results also highlight the possible improvement of systemic risk by BCVA if the

variation of the premium is small enough.

In investors’ perspective, applying bilateral credit value adjustment could be ac-

cepted since it is useful to enhance financial institutions’ stability. However, this

benefit might be not enough for policy-makers who care about the entire network’s

fragile because the risk of systemic failures is not completely eliminated. Thus, we

examine more value adjustments by widening the financial network with collateral

instruments in the next chapter.
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Chapter 2

Systemic risk and collateral’s

market prices under xVA’s

treatment

2.1 Introduction

The previous chapter examined whether concern about a counter-party’s credit-

worthiness can help improve the stability of the financial system. However, the

financial network was built without collateral, which is a useful mechanism to mit-

igate counter-party credit risk, although there are some potential risks related to

collateralisation. Collateral agreements actually convert counter-party credit risk to

into other financial risks, for example, liquidity risk and funding liquidity risk (Gre-

gory, 2015). If a counter-party is insolvent, the creditor will liquidate the collateral

to cover the exposure. The creditor’s main considerations are bid-offer prices and

the volatility of the collateral’s market price at that time. If the market price of the

collateral is low and transaction costs are high, the creditor could not get enough to

cover the loss. Additionally, if a significant amount of collateral is traded because of

simultaneous bankruptcies, the supply of collateral in the market rapidly increases,

which will substantially decrease asset values. Hence financial counter-parties suffer

not only the loss because of high transaction costs to liquidate collateral but also the

loss due to the decrease in market prices of collateral. Apart from the liquidity risk

in the case of defaults, another financial risk is presented when a financial institution
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survives but does not have enough funding to meet collateral obligations. This is

funding liquidity risk because the counter-party would borrow financial funds from

financial markets. The costs of their loans might negatively affect their solvencies.

This risk is more serious if the collateral is held separately and/or cannot be re-

used in another financial transaction. This type of collateral raises a concern of

funding limitations, which forces counter-parties into insolvencies due to their fail-

ures to meet collateral requirements. Similar to BCVA which is used to account for

counter-party credit risk, the financial risks related to collateral agreements can be

measured by some value adjustments such as Collateral Value Adjustment (ColVA)

or Funding Value Adjustment (FVA). We used a term called xVA to describe the

family of BCVA, ColVA and FVA.

This chapter aims to understand the impact of xVA on systemic failure in a

derivatives market with the involvement of collateral agreements. The collateral’s

value adjustments are expected to improve the financial system’s stability. However,

the disadvantage of xVA is the shortage of capital funding, which either forces

institutions into insolvencies or decreases their efficiency because funding for value

adjustments is used as equity reserves instead of being invested in positive financial

portfolios. The development of Basel III from BCVA to a family of xVA raises the

first question of compared to BCVA, whether xVA provides financial institutions

more positive protections and enhances the entire system. Furthermore, if contagion

happens, a significant amount of collateral liquidated simultaneously will decline the

collateral’s market prices. The second question posed is how to determine the market

volatility of asset prices during stress periods.

To solve the first question, we use a Monte Carlo approach to simulate systemic

risks in a financial network based on an agent-based model in which connections

between financial entities are derivatives transactions with collateral agreements.

In each experiment, a counter-party goes bankrupt if it fails to pay its contractual

commitments. The failures can be spread through the connectivity within the net-

work. The simulations are repeated with and without the equity buffer provided

by xVA. The difference between two Monte Carlo simulation represents the effect of

xVA on network stability. We answer the second question of determining collateral’s

market prices during liquidation by determining the equilibrium of asset supply and
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demand. Suppliers are financial counter-parties who need to sell assets to meet their

liabilities. Other institutions that pass their payment requirements will trade assets

to maximise their benefits. We calculate the seller’s needs and derive optimisation

functions for buyers, then balance the supply and demand to determine the asset

prices in the market.

2.2 Value Adjustment Family (xVA)

Apart from CVA/DVA, which are the terms used to evaluate the downgrade of a

counter-party’s credit rating, there are value adjustments in collateral agreements.

Financial market participants apply three main types of collateral: initial margin,

maintenance margin and variation margin. Initial margin (IM) is the amount of

collateral required to open a position in a financial instrument. Maintenance margin

(MM) is the minimum collateral required to keep the position open; the level of MM

is usually less than the level of IM required. Because both IM and MM are segregated

meaning that collateral receivers hold these deposits in separate accounts without

paying interest, depositors face a cost to post these types of collateral. The terms

to estimate these costs are called Margin Value Adjustment (MVA) and Collateral

Value Adjustment (ColVA). If the requirements of IM and MM are the same, MVA

and ColVA are duplicated. We, therefore, only apply MVA in our model. In contrast,

the variation margin (VA) can be rehypothecated, which means that the collateral

can be used by the creditor in another transaction. The rehypothecation provides

benefits against funding cost. The collateral holders either suffer losses if they

borrow funds with interest rates higher than the interest rate returns on his loans

or gain benefits if the borrowing interest rates are less than the interest rates on the

lending. Funding Value Adjustment (FVA) is used to estimate such costs/benefits.

2.2.1 Magin Value Adjustment (MVA)

The MVA of financial institution i at time t is calculated using the equation below.

The value of MVA is always negative (-) because this is the cost of each financial

institution for its deposit.
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MVAt
i = −

m∑
k=1

EIMi,k × [FCt
i,k − s

t,IM
i,k ]× [dt − dt−1]× St (2.1)

where:

EIM t
i is the expected IM of bank i in transaction k

FCt
i,k is the funding cost of posting the IM at time t

sIMi,k is the remuneration of the IM at time t

[dt − dt−1] is the duration that collateral is held

St is the joint survival probability of bank i and its counter-party (i.e., the prob-

ability that neither the party nor their counter-party defaults).

2.2.2 Funding Value Adjustment (FVA)

FVA includes Funding Cost Adjustment (FCA) and Funding Benefit Adjustment

(FBA) as follows:

FV At
i = −

m∑
k=1

EEt
i,k × FSt

B × [dt − dt−1] +
m∑
k=1

NEEt
i,k × FSt

L × [dt − dt−1]

= FCAt
i + FBAt

i

(2.2)

where:

EEt
i,k and NEEt

i,k are respectively expected exposure and negative expected ex-

posure of financial institution i in the transaction k at time t

FSB and FSL represent the funding spreads for borrowing and lending at time t

respectively.

Funding value adjustment can be either negative if the cost is higher than the

benefit or positive if the cost is lower than the benefit.

2.2.3 DVA v.s FBA in derivatives

Recall the formula of DVA from Chapter 1:
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DV At
i = −CV At

i

≈ (1− δ)
m∑
k=1

Bt ×NEEt
i × qti

(2.3)

where:

Loss Given Default, (1 − δ), gives the proportion amount of expected loss in a

default event.

Discount Factor, Bt, denotes the risk-free discount factor at time tj.

Negative Expected Exposure, NEEt
i , is the payment which bank i could not pay

to bank j in the transaction k if i defaults.

Default Probability, qti , is the marginal default probability of bank i at time t.

Debit Value Adjustment is recognised as a benefit against the cost that bank i

paid for its counterparty credit risk. The calculations of DVA and FBA both have

the same term of NEE. Additionally, the multiplication of (1− δ)× qti in the DVA

estimation is equivalent to FSt
L in the formula of FBA. Thus DVA and FBA are

counted twice in the calculation of capital charge (Yi and Williams, 2010). Hence,

we chose to remove the term of DVA to avoid the issue. Gregory (2015) agreed

that DVA should not be counted as a part of CVA capital charge because first, DVA

cannot be monetised when bank i defaults; if it is, financial institutions are motivated

to make claims by going bankrupt, which is a moral hazard. Second, if a transaction

is unwound which can be understood as closing a large or complex transaction out,

two transactions with a counter-party are executed in which the values are equal but

opposite; the DVA benefit from the unwound transaction is ignored in calculating

the CVA charged of the replacements. Third, if investors attempt to exploit the

benefits of DVA by hedging, they could make a long hedge on their own credit by

selling Credit Default Swaps on themselves, which is impossible.

We, therefore, consider three main types of value adjustment included CVA, MVA

and FVA to examine the effect of xVA in the financial system with collateralisation:

xV At
i = CV At

i +MVAt
i + FV At

i
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2.3 Literature Review

The role of collateralisation in reducing systemic risk in derivatives markets is de-

bated. The work of Singh (2009) in a derivative system with Central Clearing Coun-

terparties (CCPs) proposed that to mitigate systemic risk, financial firms should be

required to post collateral regardless of the sizes of the banks and whether the col-

lateral is rehypothecated or not. Raykov (2019) extended his research on US and

Canadian futures markets during the credit crisis; his results illustrate that adequate

collateralisation can enhance the stability of financial systems, and large financial

institutions pay less for posting collateral than others.

However, instead of mitigating risk, the practical use of collateral can be the

reason for more risks because firstly, not all assets posted as collateral are risk-free,

even government bonds, which might lead to an unanticipated decrease in the mar-

ket value of the collateral, reducing its utility. Secondly, collateralisation introduces

the risk of moral hazard for creditors who transfer their emphasis from debtors’

creditworthiness to collateral and then ease their requirements on loans’ approval.

Thirdly, the application of collateral in derivatives faces noticeable operational and

legal risk which affect the collateral market’s liquidity. Bliss and Kaufman (2005)

conclude that it is unclear whether collateral has a positive effect in reducing sys-

temic risk in the US derivatives markets. Schwarcz (2015) agrees that collateral is

not useful protection against systemic risk. In the case of increasing concentrations

of connectedness, collateralisation even exacerbates network fragility.

2.4 Model

A model of financial institutions connected by derivatives transactions is constructed.

We simulate the model according to the real American financial market before the

2007-8 financial crisis. However, it is not practicable to apply computational ap-

proach on a financial system with approximately 8,000 counter-parties and more

than 1 million derivatives transactions. We, therefore, reduce the size of the system

and complicate the derivatives instruments by adding collateral agreements.

Obligations of financial institutions consist of contractual payments and collateral

requirements. We use the value adjustments to measure the risk exposure related
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to counter-party credit risk and collateral, but there are other financial risks which

are not accounted for. We, therefore, apply Value-At-Risk (VaR) to control other

risk exposure of each institution’s portfolio over the 3-month interval. Investors are

confident that under stress markets for three months, they could not lose more than

VaRs at given probabilities. The amount of VaR is used to calculate the reserve

needed to cover other potential exposure besides the losses caused by collateral

commitments. Therefore, at time (t − 1), each financial entity needs to prepare

a reserve for time t, which is equivalent to the contractual payments plus VaR. If

financial institution i lacks cash for its liabilities, the institution is forced to sell their

assets until they reach adequate reserves. If they still face difficulties to fulfil their

financial obligations after selling all their assets, they go bankrupt. In contrast,

counter-parties who meet their liabilities may buy more assets to maximise their

returns.

The failure(s) of insolvent institution(s) can trigger contagion within the network.

We simulate the model by a Monte Carlo approach to determine how systemic risk

happens without collateralisation. We then repeat the simulation but with the

addition of collateral’s value adjustment (xVA) to understand the response of the

financial system. The difference between two simulations is the effect of xVA on

systemic failures.

At each time t, the market prices of assets used as collateral change because of

the different demands and supplies. We estimate the fluctuation of asset prices by

deriving two equations. The first equation calculates the total amount of assets sold

by counter-parties who need to meet their collateral’s obligations. The second is an

optimisation function to maximise the benefit of institutions that want to buy more

assets. The balance between the assets’ supply and demand is the market price of

the collateral.

2.4.1 Contractual payments

A closed economy of one hundred risk neutral financial institutions denoted by

i = {1, 2, ...100} is considered. They connect to each other by IRS transactions with

quarterly contractual payments. Let Pk denote the notional principal of an IRS

contract between bank i and bank j. If bank i is a fixed-rate payer or floating-rate

30



receiver, the payable and receivable of bank i at time t are respectively:

pti = Pk × r0 × T

and

rti = Pk × rf × T

where:

r0 and rf are fixed rate and floating rate respectively

T = 0.25 is the 3-month period k denotes the kth contract

Denote lti = pti − rti , bank i loses an amount of (pti − rti) if pti > rti and vice versa.

Financial institution i has m IRS contracts with m other financial counter-parties

(m < n). Hence, if bank i is a fixed-rate payer, the total amount of bank i ’s losses

or gains is:

Lt
i =

m∑
k=1

lti =
m∑
k=1

Pk × (r0 − rf )× T (2.4)

If bank i is a floating-rate payer, the total amount of bank i’s gains or losses is:

Lt
i =

m∑
k=1

lti =
m∑
k=1

Pk × (rf − r0)× T (2.5)

If Lt
i < 0, financial institution i expects to gain an amount of Lt

i. Conversely, i

has to prepare cash to pay its contractual payment of Lt
i if Lt

i > 0. Moreover, bank

i also reserves more high liquid assets like cash for VaR, which is estimated in the

next section.

2.4.2 Value At Risk (VaR)

Value-at-Risk is the loss level at which investors are X% confident that it will not

be exceeded in a given period (Hull, 2008). Value-at-Risk is estimated based on

the distribution of losses of bank i with the assumption that its losses are normally

distributed with mean µi and standard deviation σi. Because each bank i trades

a portfolio of m derivatives transactions, we first determine mean and standard

deviation of institution i’s losses in each transaction m. Then the portfolio’s mean

and volatility are estimated with each contract’s weight.
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The mean and standard deviation of losses in a single contract m are respectively

calculated by:

µi,m =

∑dm
t=1 l

t
i,m

dm

and

σi,m =

√∑dm
t=1(l

t
i,m − µi,m)2

dm

where dm is the number of 3-month periods of contract m.

The mean and the standard deviation of bank i’s portfolio loses are respectively

determined by:

µi =
∑
m=1

wi,mµi,m (2.6)

and

σi =

√∑
m=1

w2
i,mσ

2
i,m +

∑
m=1

∑
h=1,h 6=m

wi,mwi,hcov(im, ih) (2.7)

where:

wi,m and wi,h are the respective proportions of bank i’s mth and hth positions in

the portfolio

σ2
i,m is the variance of bank i’s payments during contract m

cov(im, ih) is the covariance between the payments of bank i’s contract m and

contract h

With the standard normal percentiles and critical values, the 3-month VaR of

bank i at X% is estimated by:

V aRi = µi + zX% × σi (2.8)

The above equation calculates the loss level V aRi of bank i for a 3-month period

that will not be exceeded with X percent probability.
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2.4.3 Asset price without-XVA in a stress market

Each financial institution is endowed amounts of risk-less asset M t
i and risky assets

At
i initially. These amounts are uniformly distributed from a range of 10,000 to

1,000,000 currency units. Interest rates of risk-less assets and risky assets are rC

and rA, respectively. At each time t, bank i can either face a loss if E(Lt+1) > 0 or

receive a gain if E(Lt+1) ≤ 0.

Positive expected loss E(Lt+1) > 0

A positive loss E(Lt+1) > 0 is the payable which institution i must pay at time

(t+ 1). Moreover, i needs to prepare a reserve of VaR against potential risks during

stress markets. The total amount of cash required is:

Ct
i = E(Lt+1

i ) + V aRi (2.9)

Compared to the amount of current risk-less asset M t
i , there are two situations:

(1) bank i lacks enough money M t
i to cover the next payment M t

i < Ct
i and (2)

bank i has sufficient reserves M t
i ≥ Ct

i .

Scenario 1 If M t
i1
< Ct

i1
, bank i1 will sell more risky assets to reserve more cash

for the next payment. The amount of risky assets qtA,i1
should be sold at time t is:

qtA,i1
=
Ct

i1
−M t

i1

P t
A

or

qtA,i1
=

[E(Lt+1
i ) + V aRi]−M t

i1

P t
A

(2.10)

Bank i1 is a supplier trading risky assets in the market. There are sl bank i1

providing asset A into the risky asset market. The total supply of risky asset S1 in

the first scenario is:

S1 =

sl∑
i1=0

qtA,i1
=

sl∑
i1=0

[E(Lt+1
i1

) + V aRi1 ]−M t
i1

P t
A

(2.11)

Scenario 2 If M t
i2
≥ Ct

i2
, bank i2 has enough cash to cover the next payment.

Bank i2 could consider to buy more risky assets to maximise its benefit assuming
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the interest return of a risky asset is higher than the value of the risk-less assets.

The unit of risky assets which should be bought is determined by:

qtA,i2
=
M t

i2
− Ct

i2

P t
A

or

qtA,i2
=
M t

i2
− [E(Lt+1

i2
) + V aRi2 ]

P t
A

(2.12)

Bank i2 buys qtA,i2
risky asset to maximise its benefit Ri2 . With the assumption of

no transaction cost, the return on bank i2’s assets is calculated based on the interest

returns of risky assets and risk-less assets as follows:

max[Ri2 ] = max{rA × qtA,i2
; rC × [M t

i2
− (E(Lt+1

i2
) + V aRi2)]} (2.13)

where rA and rC are interest returns on risky assets and on risk-less assets, i.e.

cash. If rA ¿ rC , i will use all exceed amount of cash to buy risky asset and vice

versa.

There are dl bank i2 that are buyers in the market of risky asset, the total demand

of risky assets will be:

D1 =

dl∑
i2=0

qtA,i2
(2.14)

Negative expected loss E(Lt+1) < 0

Negative expected loss means that bank j expects to receive an amount of E(Lt+1
j )

at time t + 1; the expected risk-less asset of bank j’s at time t + 1 increases to the

amount of [M t
j − E(Lt+1

j )]. It needs to reserve cash only for the next VaR:

Ct
j = V aRj (2.15)

Similar to the case of positive expected loss, the situation is now that either (3)

bank j does not have sufficient reserve [M t
j − E(Lt+1

j )] < |Ct
j| or (4) bank j has

enough cash to cover the future payment [M t
j − E(Lt+1

j )] ≥ Ct
j

Scenario 3 If [M t
j1
− E(Lt+1

j1
)] < Ct

j1
, bank j1 should sell more of risky asset A
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to reserve enough cash for its next payment. The amount of asset A sold by bank

j1 is:

qtA,j1
=
Ct

j1
− [M t

j1
− E(Lt+1

j1
)]

P t
A

The total supply of risky asset, which is sold by s2 bank j1 is:

S2 =

s2∑
j1=0

qtA,j1
=

s2∑
j1=0

V aRj1 − [M t
j1
− E(Lt+1

j1
)]

P t
A

(2.16)

Scenario 4 If [M t
j1
− E(Lt+1

j1
)] ≥ Ct

j1
, bank j2 could buy qtj2 units of the risky

assets to maximise its benefit. The amount of risky asset and the function of max-

imising its benefit are respectively determined by the below equations:

qtA,j2
=

[M t
j2
− E(Lt+1

j2
)]− Ct

j2

P t
A

or

qtA,j2
=

[M t
j2
− E(Lt+1

j2
)]− V aRj2

P t
A

(2.17)

Bank j2 chooses to buy an amount of risky asset qtA,j2
to its maximise benefits or:

max[Ri2 ] = max{rA × qtA,j2
; rC × [(M t

j2
− E(Lt+1

j2
))− V aRj2 ]} (2.18)

The total demand of the risky asset by d2 bank j2 is:

D2 =

d2∑
j2=0

qtA,j2
(2.19)

The market price of risky asset P t
A is the price at which the total supply equals

total demand:

S1 + S2 = D1 +D2

or:
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sl∑
i1=0

[E(Lt+1
i1

) + V aRi1 ]−M t
i1

P t
A

+

s2∑
j1=0

V aRj1 − [M t
j1
− E(Lt+1

j1
)]

P t
A

=

dl∑
i2=0

qtA,i2
+

d2∑
j2=0

qtA,j2

(2.20)

Therefore, the price of risky asset P t
A is determined by the equation below:

P t
A =

∑sl
i1=0[(E(Lt+1

i1
) + V aRi1)−M t

i1
] +

∑s2
j1=0 [V aRj1 − (M t

j1
− E(Lt+1

j1
))]∑dl

i2=0 q
t
A,i2

+
∑d2

j2=0 q
t
A,j2

(2.21)

where qtA,i2
and qtA,j2

are the results of the maximisation functions (2.13) and

(2.18) with the constraints that qtA,i2
and qtA,j2

are integers and satisfy the equations

of (2.12) and (2.17).

2.4.4 xVA

As explained in Section 2, the value adjustment family of each financial institution

i is estimated by:

xV At
i = CV At

i +MVAt
i + FV At

i (2.22)

2.4.5 Credit Value Adjustment (CVA)

CVA of bank i at time t is estimated by:

CV At
i =

m∑
k=1

CV At
i,k =

m∑
k=1

LGDt
j,k × EPEt

i × PDt
j × PSt

i (2.23)

where LGDt
j,k is equal to 60%, and EPEt

i is the payment from bank j to bank i.

Bank j’s probability of default PDt
j at time t is:

PDt
j =

stj
LGDt

j

(2.24)

where stj is bank j’s 3-month credit spread. After the systemic failures during

2007-2009, investors seriously considered the role of value adjustments against the

fragility of financial systems. Hence our objective is to test the hypothesis if the

value adjustments are incorporated in pricing institutions’ portfolios, whether the
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systemic risk happens and to what extent. We defined the form of credit spreads’

distribution as well as the values of mean and volatility according to a histogram of

the real 5-year credit spreads of US financial institutions during 2003-2007. Credit

spreads are proposed to be positive values which are randomly drawn from a right-

skewed distribution with a mean of 330 and a standard deviation of 500. Bank i’s

probability of survival PSt
i will be equal to (1− PDt

i).

Margin Value Adjustment (MVA)

The MVA of financial institution i at time t is estimated by:

MVAt
i =

m∑
k=1

MVAt
i,k = −

m∑
k=1

EIMi,k × [FCt
i,k − s

t,IM
i,k ]× [dt − dt−1]× St

k (2.25)

The levels of Expected Initial Margin (EIM) are defined by BCBS (2013):

Duration 0-2 years 2-5 years 5+ years

Interest Rate Swaps 1% 2% 4%

Table 2.1: Standardised initial margin shedule

The remuneration of the IM st,IMi,k is randomly drawn from a continuous uniform

distribution spanning from 3.734% to 6.007%. This is the range of average 3-month

LIBOR from 2003 to 2007. The funding cost FCt
i,k is uniformly distributed based

on the ranges of [3.391% and 6.904%] which is the minimum and maximum values

of the same LIBOR data. Meanwhile, the joint survival probability of bank i and

bank j is St
k = 1− PDt

i × PDt
j where PDt(.) is estimated by formula 2.24.

Funding Value Adjustment (FVA)

The FVA of financial institution i at time t is determined by formula 2.26:

FV At
i =

m∑
k=1

FV At
i,k =

m∑
k=1

EEt
i,k × FSt

B × T −
m∑
k=1

NEEt
i,k × FSt

L × T (2.26)

FSt
B and FSt

L are uniformly distributed based on the respective ranges of [3.391%
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and 6.904%] and [3.734% to 6.007%]. The first range reflects the minimum and

maximum values of 3-month LIBOR in the US market from 2003 to 2007, while the

second is the average range of 3-month LIBOR in the data window.

2.4.6 Asset price with XVA in a stress market

The derivation is similar to the case of determining asset price without XVA in

a stressed market, but the requirement of a cash reserve is now increased by the

amount of XV At
i estimated by formula (2.22).

Positive expected loss E(Lt+1) > 0

The total cash required is now equal to:

C
′t
i = E(Lt+1

i ) + V aRi +XV At
i (2.27)

Scenario 1 If M
′t
i1
< C

′t
i1

: bank i1 should sell qtA,i1
units of risky asset A at time

t:

q
′t
A,i1

=
C

′t
i1
−M ′t

i1

P
′t
A

(2.28)

The total supply of risky asset S
′
1 in the first scenario is:

S
′

1 =

s
′
l∑

i1=0

q
′t
A,i1

=

s
′
l∑

i1=0

[E(Lt+1
i1

) + V aRi1 +XV At
i]−M

′t
i1

P
′t
A

(2.29)

Scenario 2 If M
′t
i2
> C

′t
i2

, bank i2 should buy the amount of risky asset which is

determined by:

q
′t
A,i2

=
M

′t
i2
− C ′t

i2

P
′t
A

(2.30)

where q
′t
A,i2

is the result of a maximisation function of bank i2’s benefit:

max[Ri2 ] = max[rA × q
′t
A,i2

; rC × (M
′t
i2
− (E(Lt+1

i2
) + V aRi2 +XV At

i2
))] (2.31)

The total demand D
′
1 of risky assets is:
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D
′

1 =

d
′
l∑

i2=0

q
′t
A,i2

(2.32)

Negative expected loss E(Lt+1) < 0

Financial institution i must now reserve cash for loss level and value adjustments:

C
′t
j = V aRj +XV At

i (2.33)

Scenario 3 If [M
′t
j1
− E(Lt+1

j1
)] < C

′t
j1

, the unit of asset A which should be sold

by bank j1 is:

q
′t
A,j1

=
C

′t
j1
− [M

′t
j1
− E(Lt+1

j1
)]

P
′t
A

(2.34)

The total supply S
′
2 of the risky asset is:

S
′

2 =

s
′
2∑

j1=0

q
′t
A,j1

=

s
′
2∑

j1=0

(V aRj1 +XV At
j1)− [M

′t
j1
− E(Lt+1

j1
)]

P
′t
A

(2.35)

Scenario 4 If [M
′t
j2
− E(Lt+1

j2
)] > C

′t
j2

, q
′t
j2

units of risky asset are bought:

q
′t
A,j2

=
[M

′t
j2
− E(Lt+1

j2
)]− C ′t

j2

P
′t
A

(2.36)

where q
′t
A,j2

is determined from the maximisation function of bank j2’s return:

max[Rj2 ] = max[rA × q
′t
A,j2

; rC × ((M
′t
j2
− E(Lt+1

j2
))− (V aRj2 +XV At

j2
)] (2.37)

The total demand D
′
2 of risky asset is:

D′2 =

d
′
2∑

j2=0

q
′t
A,j2

(2.38)

The market price of risky asset A at equilibrium is:
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s
′
l∑

i1=0

[E(Lt+1
i1

) + V aRi1 +XV At
i]−M

′t
i1

P
′t
A

+

s
′
2∑

j1=0

(V aRj1 +XV At
j1)− [M

′t
j1
− E(Lt+1

j1
)]

P
′t
A

=

d
′
l∑

i2=0

q
′t
A,i2

+

d
′
2∑

j2=0

q
′t
A,j2

(2.39)

Therefore, the price of risky asset with xVA under a stress market is:

P
′t
A =

[(E(Lt+1
i1

) + V aRi1 +XV At
i)−M

′t
i1

] + [(V aRj1 +XV At
j1)− (M

′t
j1
− E(Lt+1

j1
)]∑d

′
l

i2=0 q
′t
A,i2

+
∑d

′
2

j2=0 q
′t
A,j2

(2.40)

where q
′t
A,i2

and q
′t
A,j2

are respectively the results of maximisation functions (2.31)

and (2.37) with the constraints that q
′t
A,i2

and q
′t
A,j2

are integers and satisfy the

equations of (2.30) and (2.36).

2.5 Results

To understand the role of xVA in enhancing a financial system’s stability, we simulate

systemic risk before and after applying the xVA capital requirement. The difference

between default numbers in the two scenarios is the effect of xVA on systemic risk.

Furthermore, we investigate the role of leverage, network infrastructure and premium

in improving systemic risk by changing their levels in each simulation. Additionally,

we estimate the risky asset’s prices under stress markets to determine how the price

of the asset fluctuates with and without collateral’s value adjustments.

Simulation of systemic risk without xVA We trigger the contagion by the

first failure of a financial institution which is randomly assigned. The institution’s

capital is inadequate to meet obligations. Financial entities that connect to the

insolvent institution are negatively affected due to the lacks of repayments from

their counter-parties. The consequence is one or some failure(s) in the first round.

The contagion is widened due to more defaults of financial entities that connect

to the insolvent institutions in the first round. The chain of failures may spread
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through the network connectivity until no more defaults occur.

Simulation of systemic risk with xVA The experiment is repeated in an

identical system but with the involvement of collateral commitments. The financial

institutions’ equities are added amounts equivalent to their value adjustments. This

additional capital is expected to provide counter-parties a greater buffer against

potential losses. As such, we consider a upper bound for the effectiveness of xVA,

systemic risk is simulated by the same Monte Carlo approach to evaluate how the

system reacts to the same difficulties.

Both Monte Carlo simulations are repeated one thousand times at each point of

time and at each level of connectivity. The final result is the average of the thousand

outcomes. The range of connectivity is from a minimum of 30 derivatives and a

maximum of 4,950 contracts between 100 financial counter-parties. We also change

the level of leverage between the notional principal and equity of each financial

counter-party and the gap between fixed rate and floating rate to determine how

they affect systemic risk in both cases with and without the family of xVA.

2.5.1 Effect of xVA on Systemic Risk

The effects of xVA on the financial system’s stability and the market prices of collat-

eral are tested under the changes of three determinants, namely leverage, network

infrastructure and premiums. This chapter determines the leverage as the ratio be-

tween the notional outstanding of each institution’s derivatives and its equity. The

number of derivative contracts measures the concentration of network infrastructure.

The premium is understood as an additional gap between fixed rates and floating

rates.

Leverage

Figure 2.1 illustrates the same level of equity but with three levels of total notional

principal for each financial institution. The ratios between equities and notional

outstanding are considered at three levels: 1:10 (Panel a), 1:20 (Panel b) and 1:40

million (Panel c).

The graphs demonstrate that the system becomes more fragile under the treat-

ment of higher leverage, but accounting for xVA capital requirements is effective to
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eliminate the systemic failures in all scenarios. The higher leverage generates greater

exposure if unexpected events happen. The exposure spreads through the connectiv-

ity between financial institutions and makes them unstable. The additional equity

equivalent to collateral’s value adjustments now works as a cushion against higher

contractual payments, so contagion is cut off.

Systemic Risk in a network with differing levels of notional outstanding
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Figure 2.1a: Leverage 1. Contract size from 10 thousand to 10 million currency unit
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Figure 2.1b: Leverage 2. Contract size from 10 thousand to 20 million currency unit

0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0

Connectivity

N
um

be
r 

of
 d

ef
au

lts

Systemic Risk before xVA Systemic Risk after xVA

Figure 2.1c: Leverage 3. Contract size from 10 thousand to 40 million currency unit

Nevertheless, the ability of the xVA family to reduce systemic failures is only

transparent if the network infrastructure is strong enough. Panel b and c of Fig-

ure 2.1 indicate that at some levels of weak connectivity, i.e. the total number

of derivatives transactions in the systems is small; the systemic risk is more se-
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rious although the value adjustments are incorporated. Particularly, the opaque

effectiveness of xVA is recognised in the range from approximately 1,000 to 2,000

transactions at leverage two and lower than 1,000 at leverage 3.

The reason why we need to carefully examine the effectiveness of the xVA family

in improving networks’ stability is that systemic risk is considered as a risk with

(very) low frequency but (very) high severity. Investors should be worried if there

is any small chance of contagion. Nonetheless, counter-parties who apply the value

adjustments into their reserves have to pay greater costs which decrease not only

their performance but also their stability, which also deteriorates financial networks.

Therefore we focus on the details of the systemic risk before and after xVA for the

first 3,000 connections of each leverage level in Figure 2.2, Figure 2.3 and Figure 2.4.

Panels a, b and c respectively represent the numbers of defaults in the system from

0 to 1,000, from 1,000 to 2,000 and from 2,000 to 3,000 derivatives.

Systemic Risk in a network of 10-thousand-to-10-million notional
outstanding
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Figure 2.2a: First 1000 connections at leverage 1
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Figure 2.2b: Second 1000 connections at leverage 1
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Figure 2.2c: Third 1000 connections at leverage 1
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Systemic Risk in a network of 10-thousand-to-20-million notional
outstanding
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Figure 2.3a: First 1000 connections at leverage 2
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Figure 2.3b: Second 1000 connections at leverage 2
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Figure 2.3c: Third 1000 connections at leverage 2

Systemic Risk in a network of 10-thousand-to-40-million notional
outstanding
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Figure 2.4a: First 1000 connections at leverage 3
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Figure 2.4b: Second 1000 connections at leverage 3
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Figure 2.4c: Third 1000 connections at leverage 3

The graphs indicate that the buffers provided by the value adjustments do not

completely protect the entire network from contagion. In some loose systems, more

failures occur because of incorporating the xVA family. Its protection gradually

increases parallel to the increase in the concentration of network infrastructure. In
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other words, the role of xVA in improving the stability of a derivative network is

only effective if the network infrastructure reaches a certain level. Two reasons can

explain it; first, the network is discrete, and if the xVA reserve is effective, it only

protects counter-parties within particular transactions; this protection could not be

spread to other institutions. Second, financial counter-parties that do not join any

transactions can be overloaded by the additional capital requirements of xVA; they

become more insolvent. Panels a and b of each figure below illustrate that the

capacity of xVA for institutions against systemic failures is not guaranteed during

the range of first 2,000 transactions. Additionally, at the same level of network

infrastructure, the family of the value adjustments is more effective under higher

leverage.

Connectivity

Systemic risk is continuously examined under the conditions of fixing total notional

outstanding for the entire system whilst increasing the number of transactions be-

tween financial institutions. These conditions allow us to make the financial system

stronger. We then put the same exogenous shock on each level of connectivity and

evaluate how the network responded to the shock. Additionally, three levels of total

notional outstanding such as 25 million, 50 million and 100 million currency units

were applied to generate three different levels of exposures respectively presented by

Figure 2.5a, b and c as follows.

The outcomes illustrate that a larger total notional outstanding implies higher

systemic risk. This because with the same level of connectivity, the larger total

outstanding is equivalent to higher leverage. Thus if unanticipated events happen,
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the losses are more serious.

Systemic Risk in a network with three fixed levels of notional
outstanding
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Figure 2.5a: Level 1 of notional outstanding. 25 million currency unit
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Figure 2.5b: Level 2 of notional outstanding. 50 million currency unit
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Figure 2.5c: Level 3 of notional outstanding. 100 million currency unit

Although network infrastructure was proved to play an essential role in improving

systemic risk, our results support the proposal of Ladley (2013) that a strong network

exacerbates the system stability if the shock is large enough because more internal

connections act as bridges to spread the exposure to more counter-parties.

Moreover, incorporating the xVA family is likely to eliminate the systemic risk.

If financial entities reserve more equity capital equivalent to the value adjustments,

their capacities are widened to cover unexpected exposure. However, this benefit is

reduced in loose financial systems. In a weak infrastructure, financial institutions are

not closely connected; the positive impact of the value adjustment is only effective

in one or a small number of derivatives. The connectivity is not complex enough to

spread xVA’s effectiveness within the system.

Comparing the effects of BCVA and xVA, BCVA can absorb a part of systemic

exposure, but xVA is likely to eliminate systemic failures. This is because BCVA is

used for a concern of counter-party credit risk whilst financial systems can face other

potential risks related to collateral. Therefore, accounting for BCVA only protects

the network from credit events, whereas the xVA family provides institutions greater

ability to cover the damages caused by other financial risks and enhance the entire
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network.

Although the gaps between systemic risks before and after applying xVA are eas-

ily recognised, there are some ranges which are difficult to see in Figure 2.5. We,

therefore, present systemic risk in the first 1000 connections at each level of notional

outstanding in Figure 2.6. The graphs present several situations in which there are

more defaults under the treatment of xVA. The protection of xVA is ineffective for

loose networks. This is because besides the spread of exposures through derivative

transactions, some financial individuals who are not in any position lack sufficient

equity to fulfil the capital requirements of xVA. Their insolvencies contribute to

the system’s fragility. Meanwhile, counter-parties can more easily reserve the lower

capital required for BCVA; the systemic risk is clearly improved. Therefore, the de-

cision of whether applying BCVA or xVA against systemic risk is critical, especially

in financial networks with low levels of connectivity. The family of xVA requires a

higher cost for funding but still does not guarantee to entirely remove systemic risk

in weak network infrastructure whilst the benefit of BCVA is lower costs and give

an improvement in contagion for all levels of network connectivity, BCVA however

could not completely eliminate the systemic exposure.

First 1000 connections at three different levels of notional outstanding

200 400 600 800 1000

0
20

40
60

80
10

0
12

0

Connectivity

N
um

be
r 

of
 d

ef
au

lts

Systemic Risk before xVA Systemic Risk after xVA

Figure 2.6a: First 1000 connections at level 1 of notional outstanding

52



200 400 600 800 1000

0
20

40
60

80
10

0
12

0

Connectivity

N
um

be
r 

of
 d

ef
au

lts
Systemic Risk before xVA Systemic Risk after xVA

Figure 2.6b: First 1000 connections at level 2 of notional outstanding
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Figure 2.6c: First 1000 connections at level 3 of notional outstanding

Premium

Our next concern is the role of the value adjustments in maintaining the financial

system under the shock created by premiums. We generate three levels of premiums,
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0.1%, 0.3%, 0.5%, which are the distances between fixed rates and floating rates in

derivatives markets. These premiums are small but combine of the large notional

principals; they produce the large shocks to counter-parties whose commitments are

based on floating rates.

Figure 2.7 indicates how systemic risk happens with and without the additional

cushions of value adjustments. The larger premiums imply more extreme exposure.

Because of the positive effect of xVA under the shocks of leverage and connectivity, it

is also expected to eliminate systemic failures caused by premium shocks. However,

the xVA’s protection is limited under the stresses of premiums. BCVA and xVA have

similar characteristics under the same configuration of premiums. Larger shocks of

premiums reduce the positive effects of xVA.

The value adjustments are considered for the downgrade of credit rating and

the risk exposure of collateral. However, the difficulties generated by premiums are

contractual liabilities; they are not the potential exposure covered by xVA. Hence,

the additional capital can cover an entire liability (Panel a) or a part of it (Panels

b and c) depending on the level of obligations.

Systemic risk at three different levels of premiums
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Figure 2.7a: Premium 1. 0.1%

54



0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0

Connectivity

N
um

be
r 

of
 d

ef
au

lts
Systemic Risk before xVA Systemic Risk after xVA

Figure 2.7b: Premium 2. 0.3%
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Figure 2.7c: Premium 3. 0.5%

We draw more graphs for the invisible ranges of weak connectivity. Figure 2.8

presents the first 1,000 connections at level 1 (Panel a), level 2 (Panel b) and level
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3 of premiums (Panel c).

First 1000 connections at three levels of premiums
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Figure 2.8a: First 1000 connections at level 1 of premium
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Figure 2.8b: First 1000 connections at level 2 of premium

Under the shocks of leverage and connectivity, the simulations illustrated that the

shield of the value adjustments are restricted. Unlike those situations, the ability
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Figure 2.8c: First 1000 connections at level 3 of premium

of xVA to enhance system stability is consistent regardless of the level of network

infrastructure.

2.5.2 Effect of xVA on market prices of collateral

At each contractual time, financial counter-parties either have to sell risky assets to

meet their obligations or buy more to maximise their benefits. The balances between

supply and demand fluctuate at each time that leads to different market prices for

risky assets. The risky asset price is re-determined as long as there are one seller

and one buyer in the market. Hence the level of connectivity is not considered in

this part, but the durations of the derivatives contracts are. The market prices of

risky assets are examined under the treatment of leverage and premiums.

Leverage

The leverage between equity and notional outstanding of each counter-party is con-

sidered at three levels: 1:10, 1:20 and 1:30 in Figure 2.9a, b and c, respectively.

These graphs allow us to examine the trends of risky assets under a larger potential
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risk.

Market prices of risky assets at three levels of leverage
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Figure 2.9a: Leverage 1. Equity:Notional Outstanding = 1:10
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Figure 2.9b: Leverage 2. Equity:Notional Outstanding = 1:20

Figure 2.9 demonstrates that greater leverage imposes greater market volatility

of asset prices. The distances between asset prices before and after accounting xVA

expands associated with the leverage levels. This is because greater leverage causes
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Figure 2.9c: Leverage 3. Equity:Notional Outstanding = 1:40

more difficulties for financial entities in unanticipated events. The large exposure

forces more counter-parties to sell more assets. Hence the supplies and demands

of collateral vary considerably. The value adjustments are unlikely to reduce the

fluctuations of assets’ prices.

Moreover, xVA declines the market values of risky assets. Because financial insti-

tutions have to reserve more equity for the additional capital requirements of xVA,

their financial sources for investments is limited. In a market with the same amount

of assets but less capital, the market price of the assets is driven down.

Premium

We continuously investigate the changes in assets’ prices caused by the expansion

of premiums. Figure 2.10 presents the values of risky assets under the treatment of
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the premiums included 0.5% (Panel a), 1.5% (Panel b) and 5% (Panel c).

Market prices of risky assets at three levels of premium
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Figure 2.10a: Premium 1. 0.5%
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Figure 2.10b: Premium 2. 1.5%

It seems that xVA has no effect on the market prices, but it increases the gaps

between the market prices with and without the value adjustments. The reductions

in the market prices after xVA is applied can be explained by the same reason with
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Figure 2.10c: Premium 3. 5%

the configuration of leverage. The reserves for the Basel III capital standards reduce

the financial funding in the market, but the amount of assets traded in the market

is unchanged. Buyers propose lower bid prices while sellers are forced to sell their

assets. The sellers have to accept lower values for risky assets. Counter-parties

suffer the lost value in their risky assets. This is considered a cost of incorporating

the value adjustments to improve the stability of financial markets.

2.6 Conclusion

In this chapter, we attempt to mimic the real financial market by adding collateral

agreements. Apart from BCVA, the value adjustments related to collateral include

ColVA and FVA. We use a Monte Carlo approach to investigate how systemic risk

happens when incorporating the value adjustment family into counter-parties’ cap-

itals. Moreover, the demands and supplies of collateral vary at each time of con-

tractual commitments. This results in market volatility of assets’ prices. We derive

functions from estimating these collateral changes.

The experimental outcomes prove that xVA effectively eliminate systemic risk in

derivative markets. However, this effect is opaque in networks with low connectivity.

The consideration of xVA exacerbates the network’s fragility because more financial
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counter-parties fail to meet the higher capital requirements. Furthermore, after

applying the value adjustments, market prices of collateral are declined under higher

leverage or larger gaps between fixed rates and floating rates.

Therefore, the application of xVA is critical because of two reasons. First, there

is still the possibility of systemic risk in the weak financial systems. Second, xVA

decreases the market values of assets, so financial institutions suffer greater losses

in their assets.

The results of this chapter put investors in a situation to consider sacrifice between

their stability and market values. However, if the highest priority of policy-makers is

the stability of the whole financial system, they are interested in accounting for not

only BCVA but also xVA to entirely remove systemic risk. However, more capital

reserve could limit available funding sources for potential investments. Hence, we

examine the practical usefulness of capital reserve under the treatment of Basel III

liquidity standards in chapter 3, if such liquidity standards have any influence on

bank profitability and stability.
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Chapter 3

Do Basel III Liquidity Standards

Improve Banks’ Performance and

Stability?

3.1 Introduction

In 2010, the Basel Committee on Banking Supervision (BCBS) responded to the

global credit crisis by announcing higher global capital standards for commercial

banks, also known as ’Basel III’. These regulations proposed new requirements to

control liquidity risk: Liquidity Coverage Ratio (LCR) and Net Stable Funding Ratio

(NSFR). Bank for International Settlements (BIS, 2018) defined such two liquidity

standards as follows:

”The LCR is designed to ensure that banks hold a sufficient reserve of high-quality

liquid assets (HQLA) to allow them to survive a period of significant liquidity stress

lasting 30 calendar days”.

”The NSFR aims to promote resilience over a longer time horizon by creating

incentives for banks to fund their activities with more stable sources of funding on

an ongoing basis”

BCBS approved Basel III with an expectation that it would mitigate counter-

party risk of system entities and thus enhance the stability of financial markets.

However, under the new standards of capital requirements, by 2019 the European

banking system is estimated to need more approximately ¤1.1 trillion of Tier 1
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capital and about ¤1.3 trillion (¤2.3 trillion) of short-term (long-term) liquidity.

The pressure of funding needs can negatively influence bank performance and safety.

Additionally, Jones (2000) indicated that an application of the Basel Capital Accord

(Basel I) leads to opportunities of ”regulatory arbitrage”. Calem and LaCour-Little

(2004) highlighted that this intensive problem also happened under the treatment of

Basel II. Banks were motivated to re-arrange their asset portfolios to reduce capital

reserved for high-risk weighted assets. This raises a concern of whether the new

Basel III liquidity requirements encourage banks to arbitrate liquidity regulation for

short-term and long-term capital.

The objective of this chapter is to examine the impact of Basel III liquidity re-

quirements on financial institutions’ profitability and their possibilities of default.

The impacts are evaluated along with the influences of bank-specific determinants

and macroeconomic factors. This work provides a statistical analysis of costs and

profits of Basel III liquidity standards, particularly LCR and NSFR. Banks’ per-

formance is measured by their Return on Assets (ROA), and Return on Equity

(ROE) whilst their probabilities of default or distance-to-default are represented by

Z-scores. The relationships between Basel III liquidity ratios and financial institu-

tions’ health are estimated by linear regressions according to a panel of developed

European banks from 2011Q1 to 2018Q4.

3.2 Literature Reviews

This chapter focuses on the new liquidity requirements of NSFR and LCR, which

were introduced in Basel III. This part hence reviews papers related to the effect of

Basel III on bank efficiency and stability. Besides, the performance and safety of the

banking sector are not only influenced by the implementation of Basel III but also

by internal factors, understood as bank-specific determinants and external factors,

also called macroeconomic conditions, which are reviewed as follows.
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3.2.1 Effects of Basel III, internal and external determi-

nants on Bank Performance

Hrle et al. (2010) proposed that Basel III has a significant effect on the European

banking sector. Fulfiling the new capital requirements will reduce an average of 4%

Return on Equity (ROE) on European banks, whereas Wagner (2007) implied that

liquidity of banks’ assets is negatively related to bank’s probability of default. Fur-

thermore, Lindblom and Willesson (2013) and Maria and Eleftheria (2016) agreed

that the introduction of Basel III substantially affects both bank efficiency and risk

exposure. However, the results of Ayadi et al. (2019)’s work related to Basel com-

pliance and bank performance indicated that there is no relationship between them.

Apart from the impact of the new Basel capital standards, internal factors such

as bank size, leverage, capital strength, loans and deposits, asset management and

asset quality, operating efficiency, bank ownership were confirmed to statistically

significant affect banks’ profitability by Saunders and Schumacher (2013); Athana-

soglou et al. (2006); Pasiouras and Kosmidou (2007); Flamini et al. (2009); Di-

etricha and Wanzenriedb (2014); Shehzada and Scholtensa (2013); Menicucci and

Paolucci (2015); Narwal and Pathneja (2016); Goddard et al. (2004); Almaqtari et al.

(2018). Meanwhile, the external factors of tax rate, inflation, interest-rate volatility,

GDP growth, market concentration, financial crisis and ownership were examined to

have remarkable influences on banks’ performance (Saunders and Schumacher, 2013;

Micco et al., 2007; Pasiouras and Kosmidou, 2007; Flamini et al., 2009; Dietricha

and Wanzenriedb, 2014; Almaqtari et al., 2018). The research find mixed negative

and positive effects of bank-specific and macroeconomic conditions based on differ-

ent backgrounds, e.g. different countries such as Europe, US, Africa or China; and

different periods, for example before, during and/or after global crisis.

3.2.2 Effects of Basel III, internal and external determi-

nants on bank Distance-to-Default

Merrouche and Nier (2010) indicated that inadequate supervision and regulations are

key reasons for financial imbalances before the global credit crisis. Cihak et al. (2013)

supported the result that bank regulations may harm the stability of a financial
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system. However, research on cooperative banks by Fiordelisi and Mare (2013)

proposed that the Basel III capital agreement had a significant positive association

with banks’ probabilities of defaults because of higher capital buffers equivalent to

stronger loss-absorb ability (Giordana and Schumacher, 2017; Abugamea, 2018).

The probabilities of banks’ defaults were also affected by changes of internal

factors such as CAMEL (capital, asset quality, management, earnings and liquidity),

capital strength and deposit, operating efficiency and non-performing loans (Canicio

and Blessing, 2014; Leung et al., 2014; Schenck, 2014; Menicucci and Paolucci, 2015;

Abugamea, 2018; Makinen and Solanko, 2016; Jabra et al., 2017; Ali and Puah,

2019). External factors also significantly influence bank stability, including GDP

growth rate, capitalisation and interbank offered rate (Canicio and Blessing, 2014;

Diaconu and Oanea, 2014; Jabra et al., 2017), market competition measured by the

proportion of foreign banks and wholesale funded banks (Degryse et al., 2013). Even

though prior research attempted to study different countries and different regions,

the effects of internal and external factors are still ambiguous. We could not find

any research which studies the effects of the Basel III liquidity requirements along

with bank-specific in macroeconomics conditions.

Accordingly, this chapter aims to evaluate the impacts of NSFR and LCR along-

side the internal and external determinants on bank profitability and stability. In

the next section, we describe the measurements of banks’ performance and their

probabilities of default as well as the explanatory variables related to bank-specific

and macroeconomic factors.

3.3 Determinants of developed European banks’

profitability and risk taking

3.3.1 Dependent variables

We use two measures of banks’ profitability which are Return-On-Average-Asset

(ROAA) and Return-On-Average-Equity (ROAE) following recent studies of Narwal

and Pathneja (2016); Garcia and Trindade (2018); Xu et al. (2019). The reason for

using ROAA and ROAE instead of ROA and ROE is that ROA and ROE are
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calculated by dividing net income by the final total assets or shareholders’ equity,

respectively. The end values of total assets or shareholders’ equity can include last-

minute stock sales or dividend payments. Hence ROA and ROE calculated at one

time might not be accurate indicators of actual returns over a while. Meanwhile,

ROAA and ROAE are ratios of net income divided by the average total assets and

the average shareholders’ equity during a period. They allow investors to correctly

analyse the profitability of a financial institution over a period.

Probability of a bank’s default is estimated by the Z-score which has been exten-

sively used in prior research (Hesse and Cihak, 2007; Mercieca et al., 2007; Laeven

and Levine, 2009; Diaconu and Oanea, 2014). This indicator calculates the distance

to a bank’s insolvency, which happens when its loss is beyond equity (Loss > Equity

= - Return > Equity). Comparing these values to total bank assets, these are equiv-

alent to negative ROAA (- ROAA = - Return/Total Average Asset) and Capital

Asset Ratio (CAR = Equity/Total Average Asset). The probability of default is,

hence, the probability of (-ROAA > CAR). The inverse of this probability if re-

turns are normally distributed, is the distance-to-default Z-score. The advantage of

this measure that it is easily calculated, but it does not account for the correlation

between bank defaults (Diaconu and Oanea, 2014).

3.3.2 Independent variables

This section describes three categories of explanatory variables, namely liquidity

capital standards, bank-specific and macroeconomic conditions. Liquidity capital

requirements are measured by NSFR and LCR. Bank-specific variables include bank

size, capital strength, leverage, deposits, asset management, operational efficiency

and asset quality ratio. The final category of macroeconomic determinants consists

of GDP growth and inflation.

Basel III liquidity ratios

The objective of the Basel III liquidity standards is to maintain stability and liquidity

profiles of banks’ balance sheets. Particularly, NSFR requires a bank to hold a

minimum reserve of stable funding according to its assets and activities over one

year. LCR is the minimum amount of high liquidity assets for a bank’s survival
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during 30-day stress scenarios.

A working paper of Hoerova et al. (2018) showed that full compliance with liq-

uidity regulation could reduce European bank insolvency during the global financial

crisis. This result was consistent with the outcomes of Fiordelisi and Mare (2013);

Giordana and Schumacher (2017); Abugamea (2018). However, an application of the

Basel III liquidity standards can also reduce an average bank performance (Maria

and Eleftheria, 2016; Flotynski, 2017; Giordana and Schumacher, 2017).

BCBS’s members are strictly required to implement the Basel III requirements.

However, in financial markets there are non-members of BCBS who also follow the

new capital standards. The difference in the Basel III applications between members

and non-members is that members have to meet the minimum liquidity ratios whilst

non-members can be flexible dependent upon their capital ability. It leads to the fact

that although the standards may harm profitability and stability of the members,

they have no options to avoid. In contrast, the non-members can decide not to pay

the costs if their financial strength are threatened. We, therefore, use a dummy

variable of MEM to see how the differences in performance and risk-taking between

a member and a non-member of BCBS.

Bank-specific factors

Bank size (BAS). The proxy of bank size is the natural logarithm of total assets

which was commonly used in prior research. Terraza (2015) analysed data of 1270

European banks from 2005 to 2012 and proposed that there was no significant ev-

idence of a relationship between bank size and profitability. Nonetheless,Goddard

et al. (2004) stated that bank performance is affected by bank size, but this effect

is quite weak. Additionally, Regehr and Sengupta (2016) implied that although

higher returns are associated with larger banks, increasing bank size does not nec-

essarily lead to better performance. Adelopo et al. (2017); Abugamea (2018) also

supported the positive relationship between bank scale and profitability. The rea-

sons to believe bank size positively related to bank efficiency is that large banks take

advantage of the economic scale to reduce average fixed costs and operation costs

between branches, product lines or sectors (Mester, 2010; Hughes and Mester, 2015)

whereas some researchers propose a negative correlation between bank size and bank
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performance (Aladwan, 2015). Moreover, large banks become riskier because they

usually have lower capital, less-stable funding (Laeven et al., 2014). Indeed, a study

by Athanasoglou et al. (2008) from a panel data of Greek banks covering a period

from 1985 to 2001 stated that bank size does not influence bank performance.

In this chapter, we distinguish the effect of NSFR and LCR on small, medium and

large banks by dummy variables D1 and D2 and interaction variables NSFR*D1,

NSFR*D2, LCR*D1 and LCR*D2 where:

D1i =

1 if bank i is a large bank

0 if others

D2i =

1 if bank i is a medium bank

0 if others

Small banks and large banks are defined by their total assets which belong to the

first and the last 25% of quantiles.

Capital adequacy (CAA). Capital adequacy is estimated by a ratio of bank

equity to its total assets. It represents the capacity to cover losses from its portfo-

lio. Goddard et al. (2004) and Lee and Hsieh (2013) based on bank-level data of

European and Asian regions found that capital has a positive effect on bank prof-

itability but negative relationship on bank risk-taking. These impacts are different

between investment banks and commercial banks, and between lower-middle-income

to higher-income countries. Altunbas et al. (2007) look at European countries from

1992 to 2000 and show that banks holding higher capitals were inefficient and took

less risk. Agoraki et al. (2011) agreed that capital generally reduces bank fragility,

but this benefit is significantly less for banks with market power. However, Rime

(2001) showed evidence that an increase in bank capital does not have any effect on

bank risk.

Leverage (LEV). Leverage is measured by the ratio of total liabilities to total

assets. It is used as a tax shield to reduce income tax and hence increase revenue.

Alshatti (2015) showed evidence that higher leverage reduces the bank’s profitability

because of a higher cost to cover larger liabilities. Moreover, Switzer and Wang

(2013) proved that banks with higher leverage are more likely to default.
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Asset Management (ASM). Asset management is calculated as operating

income divided by total assets. This ratio indicates an amount of revenue which

is generated from one unit of asset. Masood and Ashraf (2012); Almaqtari et al.

(2018) revealed a positive effect of asset management on bank efficiency.

Operating Efficiency (OPE). Operating efficiency is estimated by the ratio

of total operating expense to total operating income (revenue). It represents how

a bank manages to maintain low cost with high revenue. The relationship between

bank risk and operating efficiency is arguable. Although an efficient bank is expected

to have larger capacity to restrain itself from insolvency, it is more flexible to involve

more risky activities for higher returns and then take more risk (Kwan and Eisenbeis,

1997). Fiordelisi et al. (2011) supported the negative correlation between bank risk

and its operating efficiency whilst Maudos et al. (2002) implied strong effects of cost

efficiency on low levels of profit.

Asset Quality (ASQ). A bad quality loan can become a non-performing loan

which is unable to repay. Banks need to reserve capital for the loan losses which is

called loan loss. A ratio of loan loss to total loans is used as a proxy of asset quality.

If this ratio is high, the bank has a large amount of bad loans, bank creditworthiness

can be downgraded. Impact of asset quality on bank profit is unpredictable because

higher risk loans equivalent to higher returns but poorer asset quality raises more

funding costs and then reduces bank efficiency (Iannotta et al., 2007).

Macroeconomic determinants

GDP growth (∆GDP) and inflation rate (INF) are used as two proxies of

macroeconomics factors (Naceur and Omran, 2011). Both factors were expected to

affect bank profit (Athanasoglou et al., 2008) positively. Higher growth of economies

motivates banks to lend more for more returns. However, Pasiouras and Kosmidou

(2007) showed that ∆GDP and INF significantly impact bank returns but with

opposite directions for domestic and foreign banks. It was explained that local banks

were more sensitive to inflation changes than foreign banks; they hence adjusted their

lending interest rates to earn higher benefits. Moreover, financial investments had

higher probabilities of getting expected returns under good economic conditions;

thus, the credit risk of banks was reduced (Kashyap et al., 1996).
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A short description of all dependent and independent variables is in Table 3.1.
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Table 3.1: Description of Dependent and Independent Variables

Variable Name Notation Measure
Expectation
on Perfor-

mance/Default

Dependent Variables

Return-On-Average-Assets
(%) ROAA

Net Income / Av-
erage Total Assets

Return-On-Average-Equity
(%) ROAE

Net Income / Aver-
gae Total Equity

Distance-To-Default Z-
score

(ROAA + CAR)/σ(ROAA)

Independent Variables

Liquidity standards

Net Stable Funding Ratio
(%) NSFR

Available Stable Funding
/ Required Stable Funding

±/±

Liquidity Coverage Ratio
(%) LCR

High quality Liquid
Asset Amount / Total
Net Cashflow Amount

±/±

Member of BCBS
MEM

1/0 = BCBS’s mem-
ber/not BCBS’s member

±/±
Bank-specifics determinants

Bank size
BAS LN(Total Assets) ±/-

Capital Adequacy
CAA Total Equity/Total Assets +/-

Leverage
LEV Total Debts/Total Assets -/+

Asset management ratio
(%) ASM

Operating In-
come/Total Assets

+/+

Operating Efficiency (%)
OPE

Operating Ex-
penses/Total Income

±/±

Assets Quality (%)
ASQ Loan Loss/Total Loans ±/±

Macro-economics
determinants

GDP Growth
∆GDP

(Recent GDP - Last
GDP)/Last GDP

±/±

Inflation (%)
INF

(Current CPI - Initial
CPI)*100/Initial CPI

±/±

Note. The variables of ROAA, ROAE, NSFR, LCR, ASM, OPE, ASQ, INF are
extracted from the S&P Global’s website: www.spglobal.com. The term of CPI is
Consumer Price Index.
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3.4 Methodology and Data

3.4.1 Empirical Methodology

Although some research has used the Generalized Moments Method (GMM) to

examine determinants of bank profitability and risk-taking (Goddard et al., 2004;

Athanasoglou et al., 2008; Lee and Hsieh, 2013), GMM approach can impose pos-

sible correlations between independent variables (Athanasoglou et al., 2008). The

problem of multicollinearity between explanatory variables is that the variance of

a coefficient is increased, then either the statistical significance of an independent

variable is reduced, or the signs of coefficients can be switched. Moreover, a serious

problem of GMM estimators is that estimations can be subject to large finite sample

biases when the instruments available are weak or when the moment conditions use

weak identification of parameters (Bond:2002). Therefore, this paper applies linear

regression models with pooled, fixed and random effects on a panel data following

Iannotta et al. (2007); Cihak et al. (2013); Almaqtari et al. (2018). Linear regressions

not only control the problem of multicollinearity but also deal with heterogeneity

which is caused by the inconstant variances of error terms. Furthermore, the main

advantage of linear regressions is that it is helpful to obtain more consistent and

comparable estimations (Almaqtari et al., 2018).

The general model can be expressed as follows:

πi,t = f(liquidityit, bank − specifici,t,macroeconomicsi,t) (3.1)

where πi,t represents bank profitability and their distance-to-default measured by

ROAA/ROAE and Z-score respectively. The expansion of the general model is:

πi,t =β0 + β1NSFRi,t + β2LCRi,t + β3NSFRi,t ∗D1i,t + β4NSFRi,t ∗D2i,t

+ β5LCRi,t ∗D1i,t + β6LCRi,t ∗D2i,t + β7D1 + β8D2

+ β9MEMi,t + β10BASi,t + β11CAAi,t + β12LEVi,t + β13ASMi,t

+ β14OPEi,t + β15ASQi,t + β16∆GDPi,t + β17INFi,t + γi,t

(3.2)

where t denotes quarterly data, γi,t is the model residual.
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Models with fixed effect are unbiased under an assumption that the idiosyn-

cratic error γi,t is uncorrelated with the dependent variables across all periods

(Wooldridge:2013). Hence explanatory variables which are constant over time for a

bank i should be removed from the fixed-effect regressions, i.e. D1, D2, MEM will

be dropped from the data.

We base on Adj-R2 to determine whether pooled OLS model or fixed/random

effect is suitable. A higher Adj-R2 represents a higher ability to explain the variation

of bank performance and stability. Between fixed and random effect, the Hausman

test is applied to identify the best estimation. The null hypothesis of the Hausman

test is that the model with random effects is preferred. If p-value of the Hausman

test is less than 0.01, 0.05 or 0.1, the null hypothesis can be rejected at 1%, 5% or

10% respectively. It can be concluded that the fixed effect is more suitable.

3.4.2 Data Sample

The original data of 594 developed European banks throughout 2011Q1 to 2018Q4

was exploited from the S&P Global website based on a quarterly basis. Banks were

excluded if they lack either NSFR or LCR information. The data which is much

smaller than the original includes 89 banks with 855 observations. Moreover, there

is a lack of data in some periods that makes the panel data unbalanced. Table 3.2

provides a brief overview of the data which is used in our analysis.

3.5 Empirical Results

3.5.1 Descriptive Statistics

Table 3.3 presents the summary statistic with percentiles of dependent and inde-

pendent variables in the data set. Although the Basel III was introduced in 2010,

BCBS’s members are required to apply the minimum levels of liquidity requirements

at 60% on 1 January 2015. The ratios are gradually increased annually until 100% on

1 January 2019. We, therefore, provide some comparisons of bank performance and

risk-taking before and after the implementation of the Basel III liquidity standards.
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Table 3.2: Data Sample

Number Country Number of banks
Number of

observations

Proportion of
observations

Perfor-
mance/Default

(%)

1 Austria 6 37 4.18
2 Belgium 1 25 2.82
3 Cyrus 1 17 1.92
4 Czech 2 34 3.84
5 Denmark 3 32 3.61
6 Finland 4 45 5.08
7 Germany 3 26 2.94
8 Greece 1 3 0.34
9 Iceland 3 40 4.52
10 Italy 8 92 10.40
11 Netherlands 2 9 1.02
12 Norway 26 180 20.34
13 Portugal 4 71 8.02
14 Slovenia 1 3 0.34
15 Spain 12 106 11.98
15 Sweden 8 115 13.00
16 Switzerland 1 2 0.23
17 United Kingdom 3 48 5.42

Total 89 885 100

Note. Data covers the period from 2011Q1 to 2018Q4. Banks are counted into the data
including commercial banks and investment banks.
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Table 3.3: Summary Statistics

Variable Mean Std Min 0.25 Median 0.75 Max

Dependent Variables
ROAA 0.5085 1.1816 -9.9700 -8.41 0.50 4.18 9.6100
ROAE 5.2224 17.2218 -270.37 -125.21 6.90 32.36 51.5700
Z-score 2.8887 3.2242 -5.4196 -3.5575 2.0802 13.4704 15.2929

Independent Variables
NSFR 117.9967 22.4641 50 50 116.02 217 384
LCR 199.4422 117.7649 0 48.70 163.40 790.37 946.7400
BAS 18.0786 1.8445 13.7227 13.7915 17.9028 21.8146 21.8657
CAA 0.0820 0.0358 0.0212 0.0314 0.0728 0.2040 0.2261
LEV 0.2341 0.2116 0 0 0.1771 0.9131 0.9153
ASM 0.7891 1.6163 -0.1182 -0.0323 0.5706 15.9958 16.5847
OPE 59.0627 22.2295 5.3300 7.09 55.95 178.87 224.1000
ASQ 3.6293 4.5466 0 0 1.99 24.82 25.2300
∆GDP 2.1618 1.4311 -2.9800 -2.03 1.98 8.78 9.2600
INF 0.3522 0.4143 -2.5840 -1.2019 0.3610 1.2152 2.2602

Note. ROAA is Return-On-Average-Assets (%), ROAE is Return-On-Average-Equity
(%), Z-score is Distance-to-default, NSFR is Net Stable Funding Ratio (%), LCR is
Liquidity Coverage Ratio (%), BAS is bank size, measured by LN(Total Assets), CAA is
Capital Adequacy, estimated by the ratio of Total Equity toTotal Assets, LEV is
leverage, calculated by the ratio of Total Debts to Total Assets, ASM is Asset
Management Ratio, measured by Operating Income divided by Total Assets (%), OPE is
Operating Efficiency, calculated by the ratio of Operating Expenses to Total Income (%),
ASQ is Asset Quality, proxied by Total Loan Loss divided by Total Loans, ∆GDP is
GDP growth, estimated by the difference in GDP of a period divided by the former
GDP, INF is the difference in CPI over a period divided by the inital CPI.

Using data of the top 35 European commercial banks from 2009 through 2013,

Menicucci and Paolucci (2015) summarised average ROA and ROE of 0.0792% and

0.3031% respectively. It can be seen that bank performance was much better than

the prior period, although banks had to deal with more liquidity regulations of

Basel III. Another data set of Goddard et al. (2004) analysed 665 commercial and

saving banks in six European countries showing the average ROE in 1998 was 8.90%.

Hence it can be expected that the banking sector has higher efficiency before the

application of Basel III. Ristolainen (2016) showed a large negative distance-to-

default of -12 according to monthly data of 37 large European banks from January

2006 to December 2013 compared to our positive value of +2.89 imply that the

stability of the banks is enhanced after the introduction of Basel III.
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3.5.2 Correlation Analysis

Table 3.4 reports the correlation matrix between all variables in the models. Apart

from the correlation of 0.8439 between ROAA and ROAE, none of the correla-

tions is beyond the threshold of high correlation which is defined by a value of 0.8

(Kennedy:2008). ROAA and ROAE are highly correlated due to the same return in

the calculations of ROAA and ROAE. However, this issue does not have any negative

effect because both proxies are dependent variables which are separately predicted

in different regressions. According to the positive correlations between liquidity

ratios and bank efficiency/distance-to-default, we predict that bank performance

and stability are improved by the liquidity regulations. However, the small values

of correlation imply that Basel III’s influences are not noticeable. Particularly, the

correlations between LCR and ROAA, ROAE and Z-score are tiny, at 0.0605, 0.0277

and 0.0324 respectively. In other words, a bank with better liquidity position might

not have better efficiency and a larger distance-to-default. We can expect that the

effects of short-term liquidity ratio are invisible. Although we expect that each

explanatory variable consistently impacts bank profitability (ROAA/ROAE), bank

sizes are oppositely correlated to ROAA and ROAE. Moreover, large banks with

higher leverage are likely to have larger distance-to-defaults, whereas high operat-

ing efficiency and asset quality are useful to strongly reduce Z-scores by the values

of -0.3961 and -0.4365, respectively. Notwithstanding, an increase in asset quality,

surprisingly exacerbates bank performance. The correlation matrix eliminates any

concern about multicollinearity in the models.
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Table 3.4: Correlation Matrix

ROAA ROAE Z-score NSFR LCR BAS CAA DEP ASM OPE ASQ ∆GDP INF

ROAA 1.0000
ROAE 0.8439 1.0000
Z-score 0.4736 0.4308 1.0000
NSFR 0.1572 0.1257 0.0993 1.0000
LCR 0.0605 0.0277 0.0324 0.1958 1.0000

BAS
-

0.0931
0.0100 0.2738 -0.1076 -0.0752 1.0000

CAA 0.3185 0.1179 0.0388 0.0106 -0.0343 -0.5894 1.0000
LEV 0.0108 0.0724 0.2251 -0.1014 0.1499 0.1870 -0.2646 1.0000
ASM 0.0766 0.0422 -0.0492 0.0540 -0.0318 -0.1673 0.1092 0.2274 1.0000

OPE
-

0.2970
-0.2728 -0.3961 0.0050 -0.0801 -0.0782 -0.0797 0.2896 -0.0636 1.0000

ASQ
-

0.3857
-0.4053 -0.4365 -0.2590 -0.0986 -0.0972 0.1014 0.3456 0.1248 0.1861 1.0000

∆GDP 0.1250 0.0445 0.0642 0.0659 0.0996 -0.1822 0.3785 0.0282 -0.0331 -0.0132 -0.0224 1.0000
INF 0.2347 0.1545 0.1528 0.1255 -0.0193 -0.0128 0.1041 -0.1099 -0.0201 -0.1016 -0.2466 0.0510 1.0000

Note. ROAA is Return-On-Average-Assets (%), ROAE is Return-On-Average-Equity (%), Z-score is Distance-to-default, NSFR is Net Stable
Funding Ratio (%), LCR is Liquidity Coverage Ratio (%), BAS is bank size, measured by LN(Total Assets), CAA is Capital Adequacy, estimated
by the ratio of Total Equity toTotal Assets, LEV is leverage, calculated by the ratio of Total Debts to Total Assets, ASM is Asset Management
Ratio, measured by Operating Income divided by Total Assets (%), OPE is Operating Efficiency, calculated by the ratio of Operating Expenses to
Total Income (%), ASQ is Asset Quality, proxied by Total Loan Loss divided by Total Loans, ∆GDP is GDP growth, estimated by the difference
in GDP of a period divided by the former GDP, INF is the difference in CPI over a period divided by the inital CPI.
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3.5.3 Regression Results

The three tables below show the results of Ordinary Least Squares (OLS) regressions

with pooled, fixed and random effects for the determinants of ROAA (Table 3.5),

ROAE (Table 3.6) and Z-score (Table 3.7). Following is the discussions on each

proxy.

Bank performance

Return On Average Assets (ROAA)

ROAA represents bank performance by returns on a unit of its asset. According

to the Adj-R2, the regressions with pooled and random effects have a similar ability

to explain approximate 39% of banks’ performance variations. The p-value of the

Hausman test is less than 1%, the fixed effect is more suitable than the random

effect, although it only explains 2.61% of ROAA’s changes.

The regressions with fixed and random effects indicate that liquidity regulations

have no statistically significant impact on ROAA. Meanwhile the pooled regression

shows that bank profitability is affected by long-term and short-term liquidity re-

quirements at the 10% significant level although their influences are economically

insignificant and opposite to each other. An increase of 1% in NSFR reduces 0.0035%

ROAA whilst it will be increased by 0.0011% by a 1% increase in LCR. A reason for

this opposite effect could be the different time horizons between NSFR and LCR.

Banks have to pay higher costs of NSFR to fund one-year or longer stress episodes

than costs of LCR which are for only 30-day stresses. The higher costs in long

term put more pressure on demands of available sources for effective investments

and reduced bank efficiency. Whereas the costs of short-term funding are classified

as an expenditure, it is not large enough to reduce the bank’s profitability. Addi-

tionally, the significant levels at 1% and 5% of the interaction variable NSFR*D1

and dummy variable D1 respectively in the pooled model imply that the negative

impact of the long-term liquidity requirement is stronger on large banks. If bank

size belongs to the top 25% quantile, bank size is equal to or larger than a value of

e21.8657 which is equivalent to EUR3,134,388,700. Banks’ performance is reduced

by an amount of (1.5639% - 0.0176%) or 1.5463%. Nevertheless, this exacerbation

is not confirmed with the fixed effect in which the positive effect of the NSFR*D1
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interaction is significant at 10%.

Table 3.5: Regression Results on ROAA

ROAA Pooled OLS Fixed Effect Random Effect
Variable Co.eff. tstat Co.eff. tstat Co.eff. tstat

Liquidity Variables

NSFR
-

0.0035
-1.92*** -0.0058 -1.21 -0.00211 -1.00

LCR 0.0011 1.87*** 0.0008 0.93 0.0009 1.42
NSFR*D1 0.0176 3.71* 0.0077 1.80*** 0.0085 1.46
NSFR*D2 0.0027 0.69 0.0045 1.41 1.41 1.07

LCR*D1
-

0.0009
-1.02 0.0045 -1.08 -0.0009 -0.98

LCR*D2
-

0.0007
-0.97 0.0001 0.13 -0.0002 -0.30

Bank-specific Variables

D1
-

1.5639
-2.50** . . -0.4600 -0.61

D2
-

0.0870
-0.18 . . -0.3830 -0.66

MEM
-

0.0412
-0.50 . . -0.0008 -0.01

BAS
-

0.0058
-0.13 0.6367 1.78*** -0.0029 -0.05

CAA 8.8716 6.39* 18.1383 4.80* 10.3410 5.82*

LEV
-

1.6073
-6.96* -1.1521 -1.02 -1.4111 -4.86*

ASM 0.0374 1.77*** 1.1018 6.01* 0.0500 1.75***

OPE
-

0.0150
-8.80* -0.0102 -4.78* -0.0148 -8.11*

ASQ
-

0.1208
-12.90* -0.0133 -0.58 -0.1003 -8.39*

Macroeconomic Variables
∆ GDP 0.0019 0.08 0.0131 0.47 .0075 0.30
INF 0.3343 4.14* 0.4494 5.59* 0.3653 4.61*

Adjusted-R2 0.3861 0.0279 0.3892
F-statistic 33.71 12.08 323.50

Prob(F-statistic) 0.00 0.00 0.00
Hausman test 0.0000

Note.
The model is described by: πi,t = f(liquidityit, bank − specifici,t,macroeconomicsi,t).
*, **, *** Co-efficient is statistically significant at 1%, 5% or 10% respectively.

Furthermore, supporting prior literature, both regressions with pooled and ran-

dom effects highlight the significant effects with the same directions of some bank-

specific variables such as capital adequacy (CAA), leverage (LEV), asset manage-
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ment (ASM), operating efficiency (OPE) and macro-economic determinants namely

inflation. In which, CAA can strongly increase ROAA by 8.87% whilst LEV reduces

bank profitability by 1.61% Other determinants have influences on bank performance

at small levels which are less than 0.12%. Nonetheless, the fixed-effect model does

not recognise the statistical influence of leverage.

Return On Average Equity (ROAE)

The regression with random effect on ROAE is the model which has the great-

est ability to explain ROAE’s fluctuation. However, only the pooled model detects

the significant negative effect of NSFR on bank performance; the decline in ROAE

is 0.05% by an increase of 1% in NSFR. Unlike the analysis of ROAA, this nega-

tive effect of NSFR on ROAE is independent of sizes of a bank. Meanwhile, the

positive impact of LCR is statistically insignificant. The models with pooled and

random effects do not recognise the role of asset management in increasing banks’

ROAE. Conversely, the fixed-effect model confirms the significant impact of asset

management but declines the role of leverage in ROAE’s variation.

Distance-to-default (Z-score)

According to the Adj-R2 in Table 3.7, the pooled regression is the best model to

explain bank risk-taking. The pooled model shows that the effects of liquidity ratios

are dependent on bank size. In which, the long-term liquidity requirement (NSFR)

plays a significant role in a large bank’ s probability of default. Meanwhile, the

short-term liquidity (LCR) negatively impacts only medium banks; the reductions

in their Z-score are very small, approximately 0.004. Whereas, a large bank’s Z-score

is reduced by a meaningful distance of (7.8561 - 1*0.0293) equivalent to 7.8558. If

the bank maintains sufficient amounts of highly liquid funding for NSFR, the bank

may be short of financial funds for positive investments.

Surprisingly, if a bank is a member of BCBS, its distance to default increases

by approximately 0.8 whilst this status is not helpful to improve bank performance

(ROAA/ROAE). This fact can be explained by the process of Basel III’s implemen-

tation. Members of the BCBS are requested to reach the minimum liquidity ratios

which are increased annually, hence their capacities against unanticipated risks are

also increased after each year. In opposite, non-members are flexible to maintain
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Table 3.6: Regression Results on ROAE

ROAE Pooled OLS Fixed Effect Random Effect
Variable Co.eff. tstat Co.eff. tstat Co.eff. tstat

Liquidity Variables

NSFR
-

0.0498
-1.68*** -.0057 -0.07 -0.0377 -1.22

LCR 0.0057 0.62 .0081 .57 0.0066 0.68
NSFR*D1 0.1018 1.34 .0345 0.48 0.0782 0.93
NSFR*D2 0.0677 1.07 .0082 0.15 0.0816 1.21

LCR*D1
-

0.0010
-0.07 -.0130 -0.63 -0.0033 -0.22

LCR*D2
-

0.0070
-0.62 -.0003 -0.02 -0.0060 -0.52

Bank-specific Variables

D1
-

7.7559
-0.77 . . -4.8621 -0.44

D2
-

5.9096
-0.75 . . -7.7981 -0.92

MEM
-

0.3347
-0.26 . . -0.0525 -0.04

BAS
-

0.2681
-0.37 10.1821 1.71*** -.0973 -0.12

CAA 33.880 1.52 344.1244 5.42* 45.8644 1.87***

LEV
-

22.4077
-6.05* -12.7347 -0.67 -20.8861 -5.17***

ASM 0.3527 1.04 8.3046 2.73* 0.3756 1.00

OPE
-

0.2151
-7.88* -.1880 -5.24* -.2104 -7.43*

ASQ
-

1.7744
-11.79* -.8600 -2.36** -1.6682 -10.20*

Macroeconomic Variables

∆ GDP
-

0.0159
-0.04 -.1703 -0.37 -0.0367 -0.09

INF 2.2723 1.76*** 4.5349 3.49* 2.6146 2.03**

Adjusted-R2 0.2594 0.0579 0.2727
F-statistic 19.13 8.15 252.26

Prob(F-statistic) 0.00 0.00 0.00
Hausman test 0.0000

Note.
The model is described by: πi,t = f(liquidityit, bank − specifici,t,macroeconomicsi,t).
*, **, *** Co-efficient is statistically significant at 1%, 5% or 10% respectively.

the ratios, they do not want to apply the Basel III if it negatively affects their

profitability. As a result, they might not be prepared in stress markets.
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Table 3.7: Regression Results on Z-score

Z-score Pooled OLS Fixed Effect Random Effect
Variable Co.eff. tstat Co.eff. tstat Co.eff. tstat

Liquidity Variables

NSFR
-

0.0013
-0.28 -0.0099 -1.93 -0.0079 -1.29

LCR 0.0018 1.24 0.0007 0.72 0.0004 0.45
NSFR*D1 0.0293 2.38** 0.0101 2.19** 0.0011 0.12

NSFR*D2
-

0.0026
-0.26 0.0002 0.07 0.0037 0.45

LCR*D1 0.0009 0.41 -0.0027 -2.07** -0.0024 -1.81***

LCR*D2
-

0.0040
-2.23** 0.0006 0.57 0.0008 0.81

Bank-specific Variables

D1
-

7.8561
-4.82* . . 0.8022 0.67

D2
-

1.4477
-1.13 . . -0.7147 -0.75

MEM 0.7962 3.75* . . -0.0524 -0.09
BAS 1.3102 11.11* 0.3335 0.87 0.5125 2.57*
CAA 21.2735 5.89* 14.4331 3.56* 17.5577 4.58*

LEV
-

1.5628
-2.61* -2.1339 -1.76*** -0.7948 -0.82

ASM
-

0.1210
-2.20** 0.6248 3.18* 0.2961 2.08**

OPE
-

0.0486
-11.00* -0.0190 -8.29* -0.0214 -9.43*

ASQ
-

0.2950
-12.12** -0.0702 -2.86* -0.0970 -4.08*

Macroeconomic Variables
∆ GDP .0440 0.69 .0483 1.62 .0448 1.50
INF .2729 1.30 .3820 4.43* .3787 4.35*

Adjusted-R2 0.4429 0.0930 0.2768
F-statistic 42.34 12.97 196.03

Prob(F-statistic) 0.00 0.00 0.00
Hausman test 0.0000

Note.
The model is described by: πi,t = f(liquidityit, bank − specifici,t,macroeconomicsi,t).
*, **, *** Co-efficient is statistically significant at 1%, 5% or 10% respectively.

Furthermore, the pooled results confirm the significant effects of all bank-specifics

on bank risk-taking. Beside bank size, capital strength is another independent

variable which strongly improves bank stability, particularly a unit increase in CAA

can increase a bank distance-to-default by 21.3 units. Other internal determinants
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such as leverage, asset management, operating efficiency and asset quality negatively

impact bank stability. The external factors of macro-economics, meanwhile, have

no significant effects on bank defaults.

3.6 Conclusion

This chapter analyses the effects of Basel III liquidity requirements on bank perfor-

mance and stability. The data used is an unbalanced panel of 89 developed European

banks during the period of 2011Q1 to 2018Q4. There are 885 observations which

were reported on a quarterly basis. The variations of bank efficiency and risk-taking

are measured by ROAA/ROAE and Z-score, respectively. They are examined by

three categories of explanatory variables, namely liquidity regulations, bank-specifics

and macro-economics. We also consider the interaction variables between NSFR and

LCR with dummy variables of bank size. The models were run with pooled, fixed

and random effects to determine the most suitable model to explain the fluctuations

of bank profitability and distance-to-default.

The results show that the long-term liquidity standard (NSFR) reduces bank

profitability and makes banks more fragile, especially large banks. Whereas the

positive effects of the short-term funding ratio (LCR) on ROAA and its negative

impact on Z-score are invisible. However, if a bank is a member of BCBS, it is more

stable because of an improvement in default distance. Nonetheless, this benefit is

eliminated by the strong negative impact of NSFR on large banks. These outcomes

challenge the introduction of Basel III liquidity requirements which are expected to

be helpful in reducing bank risk-taking. The Basel III standards not only decrease

performance of banking sector but also shorten their distance-to-default. Further-

more, this chapter provides evidences to support the mixed impacts of internal and

external determinants on bank performance and their strength.
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Thesis Conclusion

Prior literature focuses on systemic risk in (internal) lending markets whilst deriva-

tives markets have received less attention. In addition, investors usually use value

adjustments to account for the costs of funding, credit risk and regulatory capi-

tal. These value adjustments may have an impact on the stability of the financial

systems. The first chapter of this thesis contributes to the literature by investi-

gating systemic risk in derivatives markets while incorporating the bilateral value

adjustment. In the second chapter, we expand the model’s sophistication by using

collateral agreements. Systemic risk is examined before and after applying the value

adjustments related to counter-party credit risk and collateral’s financial risks. The

market prices of collateral are also estimated using optimisation functions. Chapter

3 analyses bank performance and risk-taking under the implementation of the Basel

III alongside bank-specific and macro-economic determinants.

In Chapter 1, an agent-based model is used to examine the effect of BCVA on sys-

temic risk in derivatives markets. We apply a Monte Carlo approach to simulate the

financial system before the 2007 global crisis. Systemic risk is examined before and

after incorporating BCVA into pricing derivatives contracts. The results illustrate

that the bilateral value adjustments effectively improve the stability of the entire

network. The equity cushion provided by BCVA shields financial intuitions against

unanticipated losses. This reduces the frequency and scale of systemic events and

the spread of losses. This positive effect of BCVA is dependent on the leverage of

institutions, connectivity and the premiums of derivatives contracts.

Chapter 2 examines the role of collateral’s value adjustments in improving a finan-

cial system’s stability. We compare the difference in the effects of xVA and BCVA on

systemic risk. We also introduce optimisation functions of financial counter-parties

benefit to estimate market prices of collateral during liquidation. The results show
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that the systemic risk in derivatives markets could be eliminated under the treat-

ment of xVA. However, this positive effect is opaque in the networks with a weak

infrastructure. This is first because the protection of xVA is effective within indi-

vidual derivatives transactions; it could not spread within the loose connectivity.

Secondly, more financial institutions who fail to meet higher capital requirements

may become insolvent. Besides, collateral’s market prices are reduced by higher

leverage or larger gaps between fixed rates and floating rates. Therefore the intro-

duction of xVA is critical in two aspects. Firstly, although the value adjustments

can eliminate systemic risk, financial systems may become fragile if the network

infrastructure is not strong enough. Secondly, the cost of xVA is the decrease in

the collateral’s market prices, that negatively affect the efficiency and stability of

financial institutions.

Chapter 3 tests whether the application of Basel III liquidity standards has any

impacts on bank performance and risk-taking. We analyse a panel of European

banks during 2011Q1 to 2018Q4 by linear regressions with pooled, fixed and random

effects. The outcomes indicate that the long-term liquidity ratio significantly reduces

both bank profitability and distance-to-default. This negative effect is more serious

for larger banks. Meanwhile, the impact of the short-term liquidity standard is

economically insignificant. The outcomes highlight the benefit of being the BCBS’s

members in improving their stability, but the members’ profitability is still reduced.

These results challenge the implementation of the Basel III liquidity requirements,

which are expected to affect banks’ performance and fragility positively.

The contribution of value adjustments reserve to financial institutions’ strength

and the entire network’s stability is proved through the Monte Carlo simulations

in chapter 1 and 2. The more value adjustments are accounted for, the lower level

of systemic risk is. However, the capital reserves equivalent to value adjustments

unexpectedly decrease the market price of institutions’ assets. Therefore, the ap-

plication of value adjustments is critical. If investors only account for the bilateral

value adjustment, they can reduce partial systemic defaults. In contrasts, financial

decision-makers want to eliminate the threat of the entire network, they can apply

extra value adjustments of collateral agreements, but it can reduce investors’ asset

values. Investors, hence, should balance their stability and market values. Mean-
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while, the statistical evidence from chapter 3 fails the expectation of Basel III’s

implementation. Liquidity standards not only reduce bank profitability but also

increase risk-taking. Policymakers should reconsider the scope of Basel III’s appli-

cation since members of BCBS have larger distances-to-default, but this benefit is

limited to large financial institutions.
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